Tie chains for move instructions.
[gcc.git] / gcc / cfganal.c
1 /* Control flow graph analysis code for GNU compiler.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file contains various simple utilities to analyze the CFG. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "cfghooks.h"
27 #include "timevar.h"
28 #include "cfganal.h"
29
30 /* Store the data structures necessary for depth-first search. */
31 struct depth_first_search_ds {
32 /* stack for backtracking during the algorithm */
33 basic_block *stack;
34
35 /* number of edges in the stack. That is, positions 0, ..., sp-1
36 have edges. */
37 unsigned int sp;
38
39 /* record of basic blocks already seen by depth-first search */
40 sbitmap visited_blocks;
41 };
42
43 static void flow_dfs_compute_reverse_init (depth_first_search_ds *);
44 static void flow_dfs_compute_reverse_add_bb (depth_first_search_ds *,
45 basic_block);
46 static basic_block flow_dfs_compute_reverse_execute (depth_first_search_ds *,
47 basic_block);
48 static void flow_dfs_compute_reverse_finish (depth_first_search_ds *);
49 \f
50 /* Mark the back edges in DFS traversal.
51 Return nonzero if a loop (natural or otherwise) is present.
52 Inspired by Depth_First_Search_PP described in:
53
54 Advanced Compiler Design and Implementation
55 Steven Muchnick
56 Morgan Kaufmann, 1997
57
58 and heavily borrowed from pre_and_rev_post_order_compute. */
59
60 bool
61 mark_dfs_back_edges (void)
62 {
63 edge_iterator *stack;
64 int *pre;
65 int *post;
66 int sp;
67 int prenum = 1;
68 int postnum = 1;
69 sbitmap visited;
70 bool found = false;
71
72 /* Allocate the preorder and postorder number arrays. */
73 pre = XCNEWVEC (int, last_basic_block_for_fn (cfun));
74 post = XCNEWVEC (int, last_basic_block_for_fn (cfun));
75
76 /* Allocate stack for back-tracking up CFG. */
77 stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1);
78 sp = 0;
79
80 /* Allocate bitmap to track nodes that have been visited. */
81 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
82
83 /* None of the nodes in the CFG have been visited yet. */
84 bitmap_clear (visited);
85
86 /* Push the first edge on to the stack. */
87 stack[sp++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
88
89 while (sp)
90 {
91 edge_iterator ei;
92 basic_block src;
93 basic_block dest;
94
95 /* Look at the edge on the top of the stack. */
96 ei = stack[sp - 1];
97 src = ei_edge (ei)->src;
98 dest = ei_edge (ei)->dest;
99 ei_edge (ei)->flags &= ~EDGE_DFS_BACK;
100
101 /* Check if the edge destination has been visited yet. */
102 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun) && ! bitmap_bit_p (visited,
103 dest->index))
104 {
105 /* Mark that we have visited the destination. */
106 bitmap_set_bit (visited, dest->index);
107
108 pre[dest->index] = prenum++;
109 if (EDGE_COUNT (dest->succs) > 0)
110 {
111 /* Since the DEST node has been visited for the first
112 time, check its successors. */
113 stack[sp++] = ei_start (dest->succs);
114 }
115 else
116 post[dest->index] = postnum++;
117 }
118 else
119 {
120 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
121 && src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
122 && pre[src->index] >= pre[dest->index]
123 && post[dest->index] == 0)
124 ei_edge (ei)->flags |= EDGE_DFS_BACK, found = true;
125
126 if (ei_one_before_end_p (ei)
127 && src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
128 post[src->index] = postnum++;
129
130 if (!ei_one_before_end_p (ei))
131 ei_next (&stack[sp - 1]);
132 else
133 sp--;
134 }
135 }
136
137 free (pre);
138 free (post);
139 free (stack);
140 sbitmap_free (visited);
141
142 return found;
143 }
144
145 /* Find unreachable blocks. An unreachable block will have 0 in
146 the reachable bit in block->flags. A nonzero value indicates the
147 block is reachable. */
148
149 void
150 find_unreachable_blocks (void)
151 {
152 edge e;
153 edge_iterator ei;
154 basic_block *tos, *worklist, bb;
155
156 tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
157
158 /* Clear all the reachability flags. */
159
160 FOR_EACH_BB_FN (bb, cfun)
161 bb->flags &= ~BB_REACHABLE;
162
163 /* Add our starting points to the worklist. Almost always there will
164 be only one. It isn't inconceivable that we might one day directly
165 support Fortran alternate entry points. */
166
167 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
168 {
169 *tos++ = e->dest;
170
171 /* Mark the block reachable. */
172 e->dest->flags |= BB_REACHABLE;
173 }
174
175 /* Iterate: find everything reachable from what we've already seen. */
176
177 while (tos != worklist)
178 {
179 basic_block b = *--tos;
180
181 FOR_EACH_EDGE (e, ei, b->succs)
182 {
183 basic_block dest = e->dest;
184
185 if (!(dest->flags & BB_REACHABLE))
186 {
187 *tos++ = dest;
188 dest->flags |= BB_REACHABLE;
189 }
190 }
191 }
192
193 free (worklist);
194 }
195
196 /* Verify that there are no unreachable blocks in the current function. */
197
198 void
199 verify_no_unreachable_blocks (void)
200 {
201 find_unreachable_blocks ();
202
203 basic_block bb;
204 FOR_EACH_BB_FN (bb, cfun)
205 gcc_assert ((bb->flags & BB_REACHABLE) != 0);
206 }
207
208 \f
209 /* Functions to access an edge list with a vector representation.
210 Enough data is kept such that given an index number, the
211 pred and succ that edge represents can be determined, or
212 given a pred and a succ, its index number can be returned.
213 This allows algorithms which consume a lot of memory to
214 represent the normally full matrix of edge (pred,succ) with a
215 single indexed vector, edge (EDGE_INDEX (pred, succ)), with no
216 wasted space in the client code due to sparse flow graphs. */
217
218 /* This functions initializes the edge list. Basically the entire
219 flowgraph is processed, and all edges are assigned a number,
220 and the data structure is filled in. */
221
222 struct edge_list *
223 create_edge_list (void)
224 {
225 struct edge_list *elist;
226 edge e;
227 int num_edges;
228 basic_block bb;
229 edge_iterator ei;
230
231 /* Determine the number of edges in the flow graph by counting successor
232 edges on each basic block. */
233 num_edges = 0;
234 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
235 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
236 {
237 num_edges += EDGE_COUNT (bb->succs);
238 }
239
240 elist = XNEW (struct edge_list);
241 elist->num_edges = num_edges;
242 elist->index_to_edge = XNEWVEC (edge, num_edges);
243
244 num_edges = 0;
245
246 /* Follow successors of blocks, and register these edges. */
247 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
248 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
249 FOR_EACH_EDGE (e, ei, bb->succs)
250 elist->index_to_edge[num_edges++] = e;
251
252 return elist;
253 }
254
255 /* This function free's memory associated with an edge list. */
256
257 void
258 free_edge_list (struct edge_list *elist)
259 {
260 if (elist)
261 {
262 free (elist->index_to_edge);
263 free (elist);
264 }
265 }
266
267 /* This function provides debug output showing an edge list. */
268
269 DEBUG_FUNCTION void
270 print_edge_list (FILE *f, struct edge_list *elist)
271 {
272 int x;
273
274 fprintf (f, "Compressed edge list, %d BBs + entry & exit, and %d edges\n",
275 n_basic_blocks_for_fn (cfun), elist->num_edges);
276
277 for (x = 0; x < elist->num_edges; x++)
278 {
279 fprintf (f, " %-4d - edge(", x);
280 if (INDEX_EDGE_PRED_BB (elist, x) == ENTRY_BLOCK_PTR_FOR_FN (cfun))
281 fprintf (f, "entry,");
282 else
283 fprintf (f, "%d,", INDEX_EDGE_PRED_BB (elist, x)->index);
284
285 if (INDEX_EDGE_SUCC_BB (elist, x) == EXIT_BLOCK_PTR_FOR_FN (cfun))
286 fprintf (f, "exit)\n");
287 else
288 fprintf (f, "%d)\n", INDEX_EDGE_SUCC_BB (elist, x)->index);
289 }
290 }
291
292 /* This function provides an internal consistency check of an edge list,
293 verifying that all edges are present, and that there are no
294 extra edges. */
295
296 DEBUG_FUNCTION void
297 verify_edge_list (FILE *f, struct edge_list *elist)
298 {
299 int pred, succ, index;
300 edge e;
301 basic_block bb, p, s;
302 edge_iterator ei;
303
304 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
305 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
306 {
307 FOR_EACH_EDGE (e, ei, bb->succs)
308 {
309 pred = e->src->index;
310 succ = e->dest->index;
311 index = EDGE_INDEX (elist, e->src, e->dest);
312 if (index == EDGE_INDEX_NO_EDGE)
313 {
314 fprintf (f, "*p* No index for edge from %d to %d\n", pred, succ);
315 continue;
316 }
317
318 if (INDEX_EDGE_PRED_BB (elist, index)->index != pred)
319 fprintf (f, "*p* Pred for index %d should be %d not %d\n",
320 index, pred, INDEX_EDGE_PRED_BB (elist, index)->index);
321 if (INDEX_EDGE_SUCC_BB (elist, index)->index != succ)
322 fprintf (f, "*p* Succ for index %d should be %d not %d\n",
323 index, succ, INDEX_EDGE_SUCC_BB (elist, index)->index);
324 }
325 }
326
327 /* We've verified that all the edges are in the list, now lets make sure
328 there are no spurious edges in the list. This is an expensive check! */
329
330 FOR_BB_BETWEEN (p, ENTRY_BLOCK_PTR_FOR_FN (cfun),
331 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
332 FOR_BB_BETWEEN (s, ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb, NULL, next_bb)
333 {
334 int found_edge = 0;
335
336 FOR_EACH_EDGE (e, ei, p->succs)
337 if (e->dest == s)
338 {
339 found_edge = 1;
340 break;
341 }
342
343 FOR_EACH_EDGE (e, ei, s->preds)
344 if (e->src == p)
345 {
346 found_edge = 1;
347 break;
348 }
349
350 if (EDGE_INDEX (elist, p, s)
351 == EDGE_INDEX_NO_EDGE && found_edge != 0)
352 fprintf (f, "*** Edge (%d, %d) appears to not have an index\n",
353 p->index, s->index);
354 if (EDGE_INDEX (elist, p, s)
355 != EDGE_INDEX_NO_EDGE && found_edge == 0)
356 fprintf (f, "*** Edge (%d, %d) has index %d, but there is no edge\n",
357 p->index, s->index, EDGE_INDEX (elist, p, s));
358 }
359 }
360
361
362 /* Functions to compute control dependences. */
363
364 /* Indicate block BB is control dependent on an edge with index EDGE_INDEX. */
365 void
366 control_dependences::set_control_dependence_map_bit (basic_block bb,
367 int edge_index)
368 {
369 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
370 return;
371 gcc_assert (bb != EXIT_BLOCK_PTR_FOR_FN (cfun));
372 bitmap_set_bit (control_dependence_map[bb->index], edge_index);
373 }
374
375 /* Clear all control dependences for block BB. */
376 void
377 control_dependences::clear_control_dependence_bitmap (basic_block bb)
378 {
379 bitmap_clear (control_dependence_map[bb->index]);
380 }
381
382 /* Find the immediate postdominator PDOM of the specified basic block BLOCK.
383 This function is necessary because some blocks have negative numbers. */
384
385 static inline basic_block
386 find_pdom (basic_block block)
387 {
388 gcc_assert (block != ENTRY_BLOCK_PTR_FOR_FN (cfun));
389
390 if (block == EXIT_BLOCK_PTR_FOR_FN (cfun))
391 return EXIT_BLOCK_PTR_FOR_FN (cfun);
392 else
393 {
394 basic_block bb = get_immediate_dominator (CDI_POST_DOMINATORS, block);
395 if (! bb)
396 return EXIT_BLOCK_PTR_FOR_FN (cfun);
397 return bb;
398 }
399 }
400
401 /* Determine all blocks' control dependences on the given edge with edge_list
402 EL index EDGE_INDEX, ala Morgan, Section 3.6. */
403
404 void
405 control_dependences::find_control_dependence (int edge_index)
406 {
407 basic_block current_block;
408 basic_block ending_block;
409
410 gcc_assert (INDEX_EDGE_PRED_BB (m_el, edge_index)
411 != EXIT_BLOCK_PTR_FOR_FN (cfun));
412
413 if (INDEX_EDGE_PRED_BB (m_el, edge_index) == ENTRY_BLOCK_PTR_FOR_FN (cfun))
414 ending_block = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
415 else
416 ending_block = find_pdom (INDEX_EDGE_PRED_BB (m_el, edge_index));
417
418 for (current_block = INDEX_EDGE_SUCC_BB (m_el, edge_index);
419 current_block != ending_block
420 && current_block != EXIT_BLOCK_PTR_FOR_FN (cfun);
421 current_block = find_pdom (current_block))
422 {
423 edge e = INDEX_EDGE (m_el, edge_index);
424
425 /* For abnormal edges, we don't make current_block control
426 dependent because instructions that throw are always necessary
427 anyway. */
428 if (e->flags & EDGE_ABNORMAL)
429 continue;
430
431 set_control_dependence_map_bit (current_block, edge_index);
432 }
433 }
434
435 /* Record all blocks' control dependences on all edges in the edge
436 list EL, ala Morgan, Section 3.6. */
437
438 control_dependences::control_dependences (struct edge_list *edges)
439 : m_el (edges)
440 {
441 timevar_push (TV_CONTROL_DEPENDENCES);
442 control_dependence_map.create (last_basic_block_for_fn (cfun));
443 for (int i = 0; i < last_basic_block_for_fn (cfun); ++i)
444 control_dependence_map.quick_push (BITMAP_ALLOC (NULL));
445 for (int i = 0; i < NUM_EDGES (m_el); ++i)
446 find_control_dependence (i);
447 timevar_pop (TV_CONTROL_DEPENDENCES);
448 }
449
450 /* Free control dependences and the associated edge list. */
451
452 control_dependences::~control_dependences ()
453 {
454 for (unsigned i = 0; i < control_dependence_map.length (); ++i)
455 BITMAP_FREE (control_dependence_map[i]);
456 control_dependence_map.release ();
457 free_edge_list (m_el);
458 }
459
460 /* Returns the bitmap of edges the basic-block I is dependent on. */
461
462 bitmap
463 control_dependences::get_edges_dependent_on (int i)
464 {
465 return control_dependence_map[i];
466 }
467
468 /* Returns the edge with index I from the edge list. */
469
470 edge
471 control_dependences::get_edge (int i)
472 {
473 return INDEX_EDGE (m_el, i);
474 }
475
476
477 /* Given PRED and SUCC blocks, return the edge which connects the blocks.
478 If no such edge exists, return NULL. */
479
480 edge
481 find_edge (basic_block pred, basic_block succ)
482 {
483 edge e;
484 edge_iterator ei;
485
486 if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
487 {
488 FOR_EACH_EDGE (e, ei, pred->succs)
489 if (e->dest == succ)
490 return e;
491 }
492 else
493 {
494 FOR_EACH_EDGE (e, ei, succ->preds)
495 if (e->src == pred)
496 return e;
497 }
498
499 return NULL;
500 }
501
502 /* This routine will determine what, if any, edge there is between
503 a specified predecessor and successor. */
504
505 int
506 find_edge_index (struct edge_list *edge_list, basic_block pred, basic_block succ)
507 {
508 int x;
509
510 for (x = 0; x < NUM_EDGES (edge_list); x++)
511 if (INDEX_EDGE_PRED_BB (edge_list, x) == pred
512 && INDEX_EDGE_SUCC_BB (edge_list, x) == succ)
513 return x;
514
515 return (EDGE_INDEX_NO_EDGE);
516 }
517 \f
518 /* This routine will remove any fake predecessor edges for a basic block.
519 When the edge is removed, it is also removed from whatever successor
520 list it is in. */
521
522 static void
523 remove_fake_predecessors (basic_block bb)
524 {
525 edge e;
526 edge_iterator ei;
527
528 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
529 {
530 if ((e->flags & EDGE_FAKE) == EDGE_FAKE)
531 remove_edge (e);
532 else
533 ei_next (&ei);
534 }
535 }
536
537 /* This routine will remove all fake edges from the flow graph. If
538 we remove all fake successors, it will automatically remove all
539 fake predecessors. */
540
541 void
542 remove_fake_edges (void)
543 {
544 basic_block bb;
545
546 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb, NULL, next_bb)
547 remove_fake_predecessors (bb);
548 }
549
550 /* This routine will remove all fake edges to the EXIT_BLOCK. */
551
552 void
553 remove_fake_exit_edges (void)
554 {
555 remove_fake_predecessors (EXIT_BLOCK_PTR_FOR_FN (cfun));
556 }
557
558
559 /* This function will add a fake edge between any block which has no
560 successors, and the exit block. Some data flow equations require these
561 edges to exist. */
562
563 void
564 add_noreturn_fake_exit_edges (void)
565 {
566 basic_block bb;
567
568 FOR_EACH_BB_FN (bb, cfun)
569 if (EDGE_COUNT (bb->succs) == 0)
570 make_single_succ_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
571 }
572
573 /* This function adds a fake edge between any infinite loops to the
574 exit block. Some optimizations require a path from each node to
575 the exit node.
576
577 See also Morgan, Figure 3.10, pp. 82-83.
578
579 The current implementation is ugly, not attempting to minimize the
580 number of inserted fake edges. To reduce the number of fake edges
581 to insert, add fake edges from _innermost_ loops containing only
582 nodes not reachable from the exit block. */
583
584 void
585 connect_infinite_loops_to_exit (void)
586 {
587 basic_block unvisited_block = EXIT_BLOCK_PTR_FOR_FN (cfun);
588 basic_block deadend_block;
589 depth_first_search_ds dfs_ds;
590
591 /* Perform depth-first search in the reverse graph to find nodes
592 reachable from the exit block. */
593 flow_dfs_compute_reverse_init (&dfs_ds);
594 flow_dfs_compute_reverse_add_bb (&dfs_ds, EXIT_BLOCK_PTR_FOR_FN (cfun));
595
596 /* Repeatedly add fake edges, updating the unreachable nodes. */
597 while (1)
598 {
599 unvisited_block = flow_dfs_compute_reverse_execute (&dfs_ds,
600 unvisited_block);
601 if (!unvisited_block)
602 break;
603
604 deadend_block = dfs_find_deadend (unvisited_block);
605 make_edge (deadend_block, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
606 flow_dfs_compute_reverse_add_bb (&dfs_ds, deadend_block);
607 }
608
609 flow_dfs_compute_reverse_finish (&dfs_ds);
610 return;
611 }
612 \f
613 /* Compute reverse top sort order. This is computing a post order
614 numbering of the graph. If INCLUDE_ENTRY_EXIT is true, then
615 ENTRY_BLOCK and EXIT_BLOCK are included. If DELETE_UNREACHABLE is
616 true, unreachable blocks are deleted. */
617
618 int
619 post_order_compute (int *post_order, bool include_entry_exit,
620 bool delete_unreachable)
621 {
622 edge_iterator *stack;
623 int sp;
624 int post_order_num = 0;
625 sbitmap visited;
626 int count;
627
628 if (include_entry_exit)
629 post_order[post_order_num++] = EXIT_BLOCK;
630
631 /* Allocate stack for back-tracking up CFG. */
632 stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1);
633 sp = 0;
634
635 /* Allocate bitmap to track nodes that have been visited. */
636 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
637
638 /* None of the nodes in the CFG have been visited yet. */
639 bitmap_clear (visited);
640
641 /* Push the first edge on to the stack. */
642 stack[sp++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
643
644 while (sp)
645 {
646 edge_iterator ei;
647 basic_block src;
648 basic_block dest;
649
650 /* Look at the edge on the top of the stack. */
651 ei = stack[sp - 1];
652 src = ei_edge (ei)->src;
653 dest = ei_edge (ei)->dest;
654
655 /* Check if the edge destination has been visited yet. */
656 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
657 && ! bitmap_bit_p (visited, dest->index))
658 {
659 /* Mark that we have visited the destination. */
660 bitmap_set_bit (visited, dest->index);
661
662 if (EDGE_COUNT (dest->succs) > 0)
663 /* Since the DEST node has been visited for the first
664 time, check its successors. */
665 stack[sp++] = ei_start (dest->succs);
666 else
667 post_order[post_order_num++] = dest->index;
668 }
669 else
670 {
671 if (ei_one_before_end_p (ei)
672 && src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
673 post_order[post_order_num++] = src->index;
674
675 if (!ei_one_before_end_p (ei))
676 ei_next (&stack[sp - 1]);
677 else
678 sp--;
679 }
680 }
681
682 if (include_entry_exit)
683 {
684 post_order[post_order_num++] = ENTRY_BLOCK;
685 count = post_order_num;
686 }
687 else
688 count = post_order_num + 2;
689
690 /* Delete the unreachable blocks if some were found and we are
691 supposed to do it. */
692 if (delete_unreachable && (count != n_basic_blocks_for_fn (cfun)))
693 {
694 basic_block b;
695 basic_block next_bb;
696 for (b = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb; b
697 != EXIT_BLOCK_PTR_FOR_FN (cfun); b = next_bb)
698 {
699 next_bb = b->next_bb;
700
701 if (!(bitmap_bit_p (visited, b->index)))
702 delete_basic_block (b);
703 }
704
705 tidy_fallthru_edges ();
706 }
707
708 free (stack);
709 sbitmap_free (visited);
710 return post_order_num;
711 }
712
713
714 /* Helper routine for inverted_post_order_compute
715 flow_dfs_compute_reverse_execute, and the reverse-CFG
716 deapth first search in dominance.c.
717 BB has to belong to a region of CFG
718 unreachable by inverted traversal from the exit.
719 i.e. there's no control flow path from ENTRY to EXIT
720 that contains this BB.
721 This can happen in two cases - if there's an infinite loop
722 or if there's a block that has no successor
723 (call to a function with no return).
724 Some RTL passes deal with this condition by
725 calling connect_infinite_loops_to_exit () and/or
726 add_noreturn_fake_exit_edges ().
727 However, those methods involve modifying the CFG itself
728 which may not be desirable.
729 Hence, we deal with the infinite loop/no return cases
730 by identifying a unique basic block that can reach all blocks
731 in such a region by inverted traversal.
732 This function returns a basic block that guarantees
733 that all blocks in the region are reachable
734 by starting an inverted traversal from the returned block. */
735
736 basic_block
737 dfs_find_deadend (basic_block bb)
738 {
739 bitmap visited = BITMAP_ALLOC (NULL);
740
741 for (;;)
742 {
743 if (EDGE_COUNT (bb->succs) == 0
744 || ! bitmap_set_bit (visited, bb->index))
745 {
746 BITMAP_FREE (visited);
747 return bb;
748 }
749
750 bb = EDGE_SUCC (bb, 0)->dest;
751 }
752
753 gcc_unreachable ();
754 }
755
756
757 /* Compute the reverse top sort order of the inverted CFG
758 i.e. starting from the exit block and following the edges backward
759 (from successors to predecessors).
760 This ordering can be used for forward dataflow problems among others.
761
762 This function assumes that all blocks in the CFG are reachable
763 from the ENTRY (but not necessarily from EXIT).
764
765 If there's an infinite loop,
766 a simple inverted traversal starting from the blocks
767 with no successors can't visit all blocks.
768 To solve this problem, we first do inverted traversal
769 starting from the blocks with no successor.
770 And if there's any block left that's not visited by the regular
771 inverted traversal from EXIT,
772 those blocks are in such problematic region.
773 Among those, we find one block that has
774 any visited predecessor (which is an entry into such a region),
775 and start looking for a "dead end" from that block
776 and do another inverted traversal from that block. */
777
778 int
779 inverted_post_order_compute (int *post_order)
780 {
781 basic_block bb;
782 edge_iterator *stack;
783 int sp;
784 int post_order_num = 0;
785 sbitmap visited;
786
787 if (flag_checking)
788 verify_no_unreachable_blocks ();
789
790 /* Allocate stack for back-tracking up CFG. */
791 stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1);
792 sp = 0;
793
794 /* Allocate bitmap to track nodes that have been visited. */
795 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
796
797 /* None of the nodes in the CFG have been visited yet. */
798 bitmap_clear (visited);
799
800 /* Put all blocks that have no successor into the initial work list. */
801 FOR_ALL_BB_FN (bb, cfun)
802 if (EDGE_COUNT (bb->succs) == 0)
803 {
804 /* Push the initial edge on to the stack. */
805 if (EDGE_COUNT (bb->preds) > 0)
806 {
807 stack[sp++] = ei_start (bb->preds);
808 bitmap_set_bit (visited, bb->index);
809 }
810 }
811
812 do
813 {
814 bool has_unvisited_bb = false;
815
816 /* The inverted traversal loop. */
817 while (sp)
818 {
819 edge_iterator ei;
820 basic_block pred;
821
822 /* Look at the edge on the top of the stack. */
823 ei = stack[sp - 1];
824 bb = ei_edge (ei)->dest;
825 pred = ei_edge (ei)->src;
826
827 /* Check if the predecessor has been visited yet. */
828 if (! bitmap_bit_p (visited, pred->index))
829 {
830 /* Mark that we have visited the destination. */
831 bitmap_set_bit (visited, pred->index);
832
833 if (EDGE_COUNT (pred->preds) > 0)
834 /* Since the predecessor node has been visited for the first
835 time, check its predecessors. */
836 stack[sp++] = ei_start (pred->preds);
837 else
838 post_order[post_order_num++] = pred->index;
839 }
840 else
841 {
842 if (bb != EXIT_BLOCK_PTR_FOR_FN (cfun)
843 && ei_one_before_end_p (ei))
844 post_order[post_order_num++] = bb->index;
845
846 if (!ei_one_before_end_p (ei))
847 ei_next (&stack[sp - 1]);
848 else
849 sp--;
850 }
851 }
852
853 /* Detect any infinite loop and activate the kludge.
854 Note that this doesn't check EXIT_BLOCK itself
855 since EXIT_BLOCK is always added after the outer do-while loop. */
856 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
857 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
858 if (!bitmap_bit_p (visited, bb->index))
859 {
860 has_unvisited_bb = true;
861
862 if (EDGE_COUNT (bb->preds) > 0)
863 {
864 edge_iterator ei;
865 edge e;
866 basic_block visited_pred = NULL;
867
868 /* Find an already visited predecessor. */
869 FOR_EACH_EDGE (e, ei, bb->preds)
870 {
871 if (bitmap_bit_p (visited, e->src->index))
872 visited_pred = e->src;
873 }
874
875 if (visited_pred)
876 {
877 basic_block be = dfs_find_deadend (bb);
878 gcc_assert (be != NULL);
879 bitmap_set_bit (visited, be->index);
880 stack[sp++] = ei_start (be->preds);
881 break;
882 }
883 }
884 }
885
886 if (has_unvisited_bb && sp == 0)
887 {
888 /* No blocks are reachable from EXIT at all.
889 Find a dead-end from the ENTRY, and restart the iteration. */
890 basic_block be = dfs_find_deadend (ENTRY_BLOCK_PTR_FOR_FN (cfun));
891 gcc_assert (be != NULL);
892 bitmap_set_bit (visited, be->index);
893 stack[sp++] = ei_start (be->preds);
894 }
895
896 /* The only case the below while fires is
897 when there's an infinite loop. */
898 }
899 while (sp);
900
901 /* EXIT_BLOCK is always included. */
902 post_order[post_order_num++] = EXIT_BLOCK;
903
904 free (stack);
905 sbitmap_free (visited);
906 return post_order_num;
907 }
908
909 /* Compute the depth first search order of FN and store in the array
910 PRE_ORDER if nonzero. If REV_POST_ORDER is nonzero, return the
911 reverse completion number for each node. Returns the number of nodes
912 visited. A depth first search tries to get as far away from the starting
913 point as quickly as possible.
914
915 In case the function has unreachable blocks the number of nodes
916 visited does not include them.
917
918 pre_order is a really a preorder numbering of the graph.
919 rev_post_order is really a reverse postorder numbering of the graph. */
920
921 int
922 pre_and_rev_post_order_compute_fn (struct function *fn,
923 int *pre_order, int *rev_post_order,
924 bool include_entry_exit)
925 {
926 edge_iterator *stack;
927 int sp;
928 int pre_order_num = 0;
929 int rev_post_order_num = n_basic_blocks_for_fn (cfun) - 1;
930 sbitmap visited;
931
932 /* Allocate stack for back-tracking up CFG. */
933 stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1);
934 sp = 0;
935
936 if (include_entry_exit)
937 {
938 if (pre_order)
939 pre_order[pre_order_num] = ENTRY_BLOCK;
940 pre_order_num++;
941 if (rev_post_order)
942 rev_post_order[rev_post_order_num--] = EXIT_BLOCK;
943 }
944 else
945 rev_post_order_num -= NUM_FIXED_BLOCKS;
946
947 /* Allocate bitmap to track nodes that have been visited. */
948 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
949
950 /* None of the nodes in the CFG have been visited yet. */
951 bitmap_clear (visited);
952
953 /* Push the first edge on to the stack. */
954 stack[sp++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (fn)->succs);
955
956 while (sp)
957 {
958 edge_iterator ei;
959 basic_block src;
960 basic_block dest;
961
962 /* Look at the edge on the top of the stack. */
963 ei = stack[sp - 1];
964 src = ei_edge (ei)->src;
965 dest = ei_edge (ei)->dest;
966
967 /* Check if the edge destination has been visited yet. */
968 if (dest != EXIT_BLOCK_PTR_FOR_FN (fn)
969 && ! bitmap_bit_p (visited, dest->index))
970 {
971 /* Mark that we have visited the destination. */
972 bitmap_set_bit (visited, dest->index);
973
974 if (pre_order)
975 pre_order[pre_order_num] = dest->index;
976
977 pre_order_num++;
978
979 if (EDGE_COUNT (dest->succs) > 0)
980 /* Since the DEST node has been visited for the first
981 time, check its successors. */
982 stack[sp++] = ei_start (dest->succs);
983 else if (rev_post_order)
984 /* There are no successors for the DEST node so assign
985 its reverse completion number. */
986 rev_post_order[rev_post_order_num--] = dest->index;
987 }
988 else
989 {
990 if (ei_one_before_end_p (ei)
991 && src != ENTRY_BLOCK_PTR_FOR_FN (fn)
992 && rev_post_order)
993 /* There are no more successors for the SRC node
994 so assign its reverse completion number. */
995 rev_post_order[rev_post_order_num--] = src->index;
996
997 if (!ei_one_before_end_p (ei))
998 ei_next (&stack[sp - 1]);
999 else
1000 sp--;
1001 }
1002 }
1003
1004 free (stack);
1005 sbitmap_free (visited);
1006
1007 if (include_entry_exit)
1008 {
1009 if (pre_order)
1010 pre_order[pre_order_num] = EXIT_BLOCK;
1011 pre_order_num++;
1012 if (rev_post_order)
1013 rev_post_order[rev_post_order_num--] = ENTRY_BLOCK;
1014 }
1015
1016 return pre_order_num;
1017 }
1018
1019 /* Like pre_and_rev_post_order_compute_fn but operating on the
1020 current function and asserting that all nodes were visited. */
1021
1022 int
1023 pre_and_rev_post_order_compute (int *pre_order, int *rev_post_order,
1024 bool include_entry_exit)
1025 {
1026 int pre_order_num
1027 = pre_and_rev_post_order_compute_fn (cfun, pre_order, rev_post_order,
1028 include_entry_exit);
1029 if (include_entry_exit)
1030 /* The number of nodes visited should be the number of blocks. */
1031 gcc_assert (pre_order_num == n_basic_blocks_for_fn (cfun));
1032 else
1033 /* The number of nodes visited should be the number of blocks minus
1034 the entry and exit blocks which are not visited here. */
1035 gcc_assert (pre_order_num
1036 == (n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS));
1037
1038 return pre_order_num;
1039 }
1040
1041 /* Compute the depth first search order on the _reverse_ graph and
1042 store in the array DFS_ORDER, marking the nodes visited in VISITED.
1043 Returns the number of nodes visited.
1044
1045 The computation is split into three pieces:
1046
1047 flow_dfs_compute_reverse_init () creates the necessary data
1048 structures.
1049
1050 flow_dfs_compute_reverse_add_bb () adds a basic block to the data
1051 structures. The block will start the search.
1052
1053 flow_dfs_compute_reverse_execute () continues (or starts) the
1054 search using the block on the top of the stack, stopping when the
1055 stack is empty.
1056
1057 flow_dfs_compute_reverse_finish () destroys the necessary data
1058 structures.
1059
1060 Thus, the user will probably call ..._init(), call ..._add_bb() to
1061 add a beginning basic block to the stack, call ..._execute(),
1062 possibly add another bb to the stack and again call ..._execute(),
1063 ..., and finally call _finish(). */
1064
1065 /* Initialize the data structures used for depth-first search on the
1066 reverse graph. If INITIALIZE_STACK is nonzero, the exit block is
1067 added to the basic block stack. DATA is the current depth-first
1068 search context. If INITIALIZE_STACK is nonzero, there is an
1069 element on the stack. */
1070
1071 static void
1072 flow_dfs_compute_reverse_init (depth_first_search_ds *data)
1073 {
1074 /* Allocate stack for back-tracking up CFG. */
1075 data->stack = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
1076 data->sp = 0;
1077
1078 /* Allocate bitmap to track nodes that have been visited. */
1079 data->visited_blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
1080
1081 /* None of the nodes in the CFG have been visited yet. */
1082 bitmap_clear (data->visited_blocks);
1083
1084 return;
1085 }
1086
1087 /* Add the specified basic block to the top of the dfs data
1088 structures. When the search continues, it will start at the
1089 block. */
1090
1091 static void
1092 flow_dfs_compute_reverse_add_bb (depth_first_search_ds *data, basic_block bb)
1093 {
1094 data->stack[data->sp++] = bb;
1095 bitmap_set_bit (data->visited_blocks, bb->index);
1096 }
1097
1098 /* Continue the depth-first search through the reverse graph starting with the
1099 block at the stack's top and ending when the stack is empty. Visited nodes
1100 are marked. Returns an unvisited basic block, or NULL if there is none
1101 available. */
1102
1103 static basic_block
1104 flow_dfs_compute_reverse_execute (depth_first_search_ds *data,
1105 basic_block last_unvisited)
1106 {
1107 basic_block bb;
1108 edge e;
1109 edge_iterator ei;
1110
1111 while (data->sp > 0)
1112 {
1113 bb = data->stack[--data->sp];
1114
1115 /* Perform depth-first search on adjacent vertices. */
1116 FOR_EACH_EDGE (e, ei, bb->preds)
1117 if (!bitmap_bit_p (data->visited_blocks, e->src->index))
1118 flow_dfs_compute_reverse_add_bb (data, e->src);
1119 }
1120
1121 /* Determine if there are unvisited basic blocks. */
1122 FOR_BB_BETWEEN (bb, last_unvisited, NULL, prev_bb)
1123 if (!bitmap_bit_p (data->visited_blocks, bb->index))
1124 return bb;
1125
1126 return NULL;
1127 }
1128
1129 /* Destroy the data structures needed for depth-first search on the
1130 reverse graph. */
1131
1132 static void
1133 flow_dfs_compute_reverse_finish (depth_first_search_ds *data)
1134 {
1135 free (data->stack);
1136 sbitmap_free (data->visited_blocks);
1137 }
1138
1139 /* Performs dfs search from BB over vertices satisfying PREDICATE;
1140 if REVERSE, go against direction of edges. Returns number of blocks
1141 found and their list in RSLT. RSLT can contain at most RSLT_MAX items. */
1142 int
1143 dfs_enumerate_from (basic_block bb, int reverse,
1144 bool (*predicate) (const_basic_block, const void *),
1145 basic_block *rslt, int rslt_max, const void *data)
1146 {
1147 basic_block *st, lbb;
1148 int sp = 0, tv = 0;
1149 unsigned size;
1150
1151 /* A bitmap to keep track of visited blocks. Allocating it each time
1152 this function is called is not possible, since dfs_enumerate_from
1153 is often used on small (almost) disjoint parts of cfg (bodies of
1154 loops), and allocating a large sbitmap would lead to quadratic
1155 behavior. */
1156 static sbitmap visited;
1157 static unsigned v_size;
1158
1159 #define MARK_VISITED(BB) (bitmap_set_bit (visited, (BB)->index))
1160 #define UNMARK_VISITED(BB) (bitmap_clear_bit (visited, (BB)->index))
1161 #define VISITED_P(BB) (bitmap_bit_p (visited, (BB)->index))
1162
1163 /* Resize the VISITED sbitmap if necessary. */
1164 size = last_basic_block_for_fn (cfun);
1165 if (size < 10)
1166 size = 10;
1167
1168 if (!visited)
1169 {
1170
1171 visited = sbitmap_alloc (size);
1172 bitmap_clear (visited);
1173 v_size = size;
1174 }
1175 else if (v_size < size)
1176 {
1177 /* Ensure that we increase the size of the sbitmap exponentially. */
1178 if (2 * v_size > size)
1179 size = 2 * v_size;
1180
1181 visited = sbitmap_resize (visited, size, 0);
1182 v_size = size;
1183 }
1184
1185 st = XNEWVEC (basic_block, rslt_max);
1186 rslt[tv++] = st[sp++] = bb;
1187 MARK_VISITED (bb);
1188 while (sp)
1189 {
1190 edge e;
1191 edge_iterator ei;
1192 lbb = st[--sp];
1193 if (reverse)
1194 {
1195 FOR_EACH_EDGE (e, ei, lbb->preds)
1196 if (!VISITED_P (e->src) && predicate (e->src, data))
1197 {
1198 gcc_assert (tv != rslt_max);
1199 rslt[tv++] = st[sp++] = e->src;
1200 MARK_VISITED (e->src);
1201 }
1202 }
1203 else
1204 {
1205 FOR_EACH_EDGE (e, ei, lbb->succs)
1206 if (!VISITED_P (e->dest) && predicate (e->dest, data))
1207 {
1208 gcc_assert (tv != rslt_max);
1209 rslt[tv++] = st[sp++] = e->dest;
1210 MARK_VISITED (e->dest);
1211 }
1212 }
1213 }
1214 free (st);
1215 for (sp = 0; sp < tv; sp++)
1216 UNMARK_VISITED (rslt[sp]);
1217 return tv;
1218 #undef MARK_VISITED
1219 #undef UNMARK_VISITED
1220 #undef VISITED_P
1221 }
1222
1223
1224 /* Compute dominance frontiers, ala Harvey, Ferrante, et al.
1225
1226 This algorithm can be found in Timothy Harvey's PhD thesis, at
1227 http://www.cs.rice.edu/~harv/dissertation.pdf in the section on iterative
1228 dominance algorithms.
1229
1230 First, we identify each join point, j (any node with more than one
1231 incoming edge is a join point).
1232
1233 We then examine each predecessor, p, of j and walk up the dominator tree
1234 starting at p.
1235
1236 We stop the walk when we reach j's immediate dominator - j is in the
1237 dominance frontier of each of the nodes in the walk, except for j's
1238 immediate dominator. Intuitively, all of the rest of j's dominators are
1239 shared by j's predecessors as well.
1240 Since they dominate j, they will not have j in their dominance frontiers.
1241
1242 The number of nodes touched by this algorithm is equal to the size
1243 of the dominance frontiers, no more, no less.
1244 */
1245
1246
1247 static void
1248 compute_dominance_frontiers_1 (bitmap_head *frontiers)
1249 {
1250 edge p;
1251 edge_iterator ei;
1252 basic_block b;
1253 FOR_EACH_BB_FN (b, cfun)
1254 {
1255 if (EDGE_COUNT (b->preds) >= 2)
1256 {
1257 FOR_EACH_EDGE (p, ei, b->preds)
1258 {
1259 basic_block runner = p->src;
1260 basic_block domsb;
1261 if (runner == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1262 continue;
1263
1264 domsb = get_immediate_dominator (CDI_DOMINATORS, b);
1265 while (runner != domsb)
1266 {
1267 if (!bitmap_set_bit (&frontiers[runner->index],
1268 b->index))
1269 break;
1270 runner = get_immediate_dominator (CDI_DOMINATORS,
1271 runner);
1272 }
1273 }
1274 }
1275 }
1276 }
1277
1278
1279 void
1280 compute_dominance_frontiers (bitmap_head *frontiers)
1281 {
1282 timevar_push (TV_DOM_FRONTIERS);
1283
1284 compute_dominance_frontiers_1 (frontiers);
1285
1286 timevar_pop (TV_DOM_FRONTIERS);
1287 }
1288
1289 /* Given a set of blocks with variable definitions (DEF_BLOCKS),
1290 return a bitmap with all the blocks in the iterated dominance
1291 frontier of the blocks in DEF_BLOCKS. DFS contains dominance
1292 frontier information as returned by compute_dominance_frontiers.
1293
1294 The resulting set of blocks are the potential sites where PHI nodes
1295 are needed. The caller is responsible for freeing the memory
1296 allocated for the return value. */
1297
1298 bitmap
1299 compute_idf (bitmap def_blocks, bitmap_head *dfs)
1300 {
1301 bitmap_iterator bi;
1302 unsigned bb_index, i;
1303 bitmap phi_insertion_points;
1304
1305 /* Each block can appear at most twice on the work-stack. */
1306 auto_vec<int> work_stack (2 * n_basic_blocks_for_fn (cfun));
1307 phi_insertion_points = BITMAP_ALLOC (NULL);
1308
1309 /* Seed the work list with all the blocks in DEF_BLOCKS. We use
1310 vec::quick_push here for speed. This is safe because we know that
1311 the number of definition blocks is no greater than the number of
1312 basic blocks, which is the initial capacity of WORK_STACK. */
1313 EXECUTE_IF_SET_IN_BITMAP (def_blocks, 0, bb_index, bi)
1314 work_stack.quick_push (bb_index);
1315
1316 /* Pop a block off the worklist, add every block that appears in
1317 the original block's DF that we have not already processed to
1318 the worklist. Iterate until the worklist is empty. Blocks
1319 which are added to the worklist are potential sites for
1320 PHI nodes. */
1321 while (work_stack.length () > 0)
1322 {
1323 bb_index = work_stack.pop ();
1324
1325 /* Since the registration of NEW -> OLD name mappings is done
1326 separately from the call to update_ssa, when updating the SSA
1327 form, the basic blocks where new and/or old names are defined
1328 may have disappeared by CFG cleanup calls. In this case,
1329 we may pull a non-existing block from the work stack. */
1330 gcc_checking_assert (bb_index
1331 < (unsigned) last_basic_block_for_fn (cfun));
1332
1333 EXECUTE_IF_AND_COMPL_IN_BITMAP (&dfs[bb_index], phi_insertion_points,
1334 0, i, bi)
1335 {
1336 work_stack.quick_push (i);
1337 bitmap_set_bit (phi_insertion_points, i);
1338 }
1339 }
1340
1341 return phi_insertion_points;
1342 }
1343
1344 /* Intersection and union of preds/succs for sbitmap based data flow
1345 solvers. All four functions defined below take the same arguments:
1346 B is the basic block to perform the operation for. DST is the
1347 target sbitmap, i.e. the result. SRC is an sbitmap vector of size
1348 last_basic_block so that it can be indexed with basic block indices.
1349 DST may be (but does not have to be) SRC[B->index]. */
1350
1351 /* Set the bitmap DST to the intersection of SRC of successors of
1352 basic block B. */
1353
1354 void
1355 bitmap_intersection_of_succs (sbitmap dst, sbitmap *src, basic_block b)
1356 {
1357 unsigned int set_size = dst->size;
1358 edge e;
1359 unsigned ix;
1360
1361 gcc_assert (!dst->popcount);
1362
1363 for (e = NULL, ix = 0; ix < EDGE_COUNT (b->succs); ix++)
1364 {
1365 e = EDGE_SUCC (b, ix);
1366 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1367 continue;
1368
1369 bitmap_copy (dst, src[e->dest->index]);
1370 break;
1371 }
1372
1373 if (e == 0)
1374 bitmap_ones (dst);
1375 else
1376 for (++ix; ix < EDGE_COUNT (b->succs); ix++)
1377 {
1378 unsigned int i;
1379 SBITMAP_ELT_TYPE *p, *r;
1380
1381 e = EDGE_SUCC (b, ix);
1382 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1383 continue;
1384
1385 p = src[e->dest->index]->elms;
1386 r = dst->elms;
1387 for (i = 0; i < set_size; i++)
1388 *r++ &= *p++;
1389 }
1390 }
1391
1392 /* Set the bitmap DST to the intersection of SRC of predecessors of
1393 basic block B. */
1394
1395 void
1396 bitmap_intersection_of_preds (sbitmap dst, sbitmap *src, basic_block b)
1397 {
1398 unsigned int set_size = dst->size;
1399 edge e;
1400 unsigned ix;
1401
1402 gcc_assert (!dst->popcount);
1403
1404 for (e = NULL, ix = 0; ix < EDGE_COUNT (b->preds); ix++)
1405 {
1406 e = EDGE_PRED (b, ix);
1407 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1408 continue;
1409
1410 bitmap_copy (dst, src[e->src->index]);
1411 break;
1412 }
1413
1414 if (e == 0)
1415 bitmap_ones (dst);
1416 else
1417 for (++ix; ix < EDGE_COUNT (b->preds); ix++)
1418 {
1419 unsigned int i;
1420 SBITMAP_ELT_TYPE *p, *r;
1421
1422 e = EDGE_PRED (b, ix);
1423 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1424 continue;
1425
1426 p = src[e->src->index]->elms;
1427 r = dst->elms;
1428 for (i = 0; i < set_size; i++)
1429 *r++ &= *p++;
1430 }
1431 }
1432
1433 /* Set the bitmap DST to the union of SRC of successors of
1434 basic block B. */
1435
1436 void
1437 bitmap_union_of_succs (sbitmap dst, sbitmap *src, basic_block b)
1438 {
1439 unsigned int set_size = dst->size;
1440 edge e;
1441 unsigned ix;
1442
1443 gcc_assert (!dst->popcount);
1444
1445 for (ix = 0; ix < EDGE_COUNT (b->succs); ix++)
1446 {
1447 e = EDGE_SUCC (b, ix);
1448 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1449 continue;
1450
1451 bitmap_copy (dst, src[e->dest->index]);
1452 break;
1453 }
1454
1455 if (ix == EDGE_COUNT (b->succs))
1456 bitmap_clear (dst);
1457 else
1458 for (ix++; ix < EDGE_COUNT (b->succs); ix++)
1459 {
1460 unsigned int i;
1461 SBITMAP_ELT_TYPE *p, *r;
1462
1463 e = EDGE_SUCC (b, ix);
1464 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1465 continue;
1466
1467 p = src[e->dest->index]->elms;
1468 r = dst->elms;
1469 for (i = 0; i < set_size; i++)
1470 *r++ |= *p++;
1471 }
1472 }
1473
1474 /* Set the bitmap DST to the union of SRC of predecessors of
1475 basic block B. */
1476
1477 void
1478 bitmap_union_of_preds (sbitmap dst, sbitmap *src, basic_block b)
1479 {
1480 unsigned int set_size = dst->size;
1481 edge e;
1482 unsigned ix;
1483
1484 gcc_assert (!dst->popcount);
1485
1486 for (ix = 0; ix < EDGE_COUNT (b->preds); ix++)
1487 {
1488 e = EDGE_PRED (b, ix);
1489 if (e->src== ENTRY_BLOCK_PTR_FOR_FN (cfun))
1490 continue;
1491
1492 bitmap_copy (dst, src[e->src->index]);
1493 break;
1494 }
1495
1496 if (ix == EDGE_COUNT (b->preds))
1497 bitmap_clear (dst);
1498 else
1499 for (ix++; ix < EDGE_COUNT (b->preds); ix++)
1500 {
1501 unsigned int i;
1502 SBITMAP_ELT_TYPE *p, *r;
1503
1504 e = EDGE_PRED (b, ix);
1505 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1506 continue;
1507
1508 p = src[e->src->index]->elms;
1509 r = dst->elms;
1510 for (i = 0; i < set_size; i++)
1511 *r++ |= *p++;
1512 }
1513 }
1514
1515 /* Returns the list of basic blocks in the function in an order that guarantees
1516 that if a block X has just a single predecessor Y, then Y is after X in the
1517 ordering. */
1518
1519 basic_block *
1520 single_pred_before_succ_order (void)
1521 {
1522 basic_block x, y;
1523 basic_block *order = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
1524 unsigned n = n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS;
1525 unsigned np, i;
1526 sbitmap visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
1527
1528 #define MARK_VISITED(BB) (bitmap_set_bit (visited, (BB)->index))
1529 #define VISITED_P(BB) (bitmap_bit_p (visited, (BB)->index))
1530
1531 bitmap_clear (visited);
1532
1533 MARK_VISITED (ENTRY_BLOCK_PTR_FOR_FN (cfun));
1534 FOR_EACH_BB_FN (x, cfun)
1535 {
1536 if (VISITED_P (x))
1537 continue;
1538
1539 /* Walk the predecessors of x as long as they have precisely one
1540 predecessor and add them to the list, so that they get stored
1541 after x. */
1542 for (y = x, np = 1;
1543 single_pred_p (y) && !VISITED_P (single_pred (y));
1544 y = single_pred (y))
1545 np++;
1546 for (y = x, i = n - np;
1547 single_pred_p (y) && !VISITED_P (single_pred (y));
1548 y = single_pred (y), i++)
1549 {
1550 order[i] = y;
1551 MARK_VISITED (y);
1552 }
1553 order[i] = y;
1554 MARK_VISITED (y);
1555
1556 gcc_assert (i == n - 1);
1557 n -= np;
1558 }
1559
1560 sbitmap_free (visited);
1561 gcc_assert (n == 0);
1562 return order;
1563
1564 #undef MARK_VISITED
1565 #undef VISITED_P
1566 }