re PR c++/24780 (ICE set_mem_attributes_minus_bitpos)
[gcc.git] / gcc / cfganal.c
1 /* Control flow graph analysis code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 /* This file contains various simple utilities to analyze the CFG. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "obstack.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "insn-config.h"
32 #include "recog.h"
33 #include "toplev.h"
34 #include "tm_p.h"
35 #include "timevar.h"
36
37 /* Store the data structures necessary for depth-first search. */
38 struct depth_first_search_dsS {
39 /* stack for backtracking during the algorithm */
40 basic_block *stack;
41
42 /* number of edges in the stack. That is, positions 0, ..., sp-1
43 have edges. */
44 unsigned int sp;
45
46 /* record of basic blocks already seen by depth-first search */
47 sbitmap visited_blocks;
48 };
49 typedef struct depth_first_search_dsS *depth_first_search_ds;
50
51 static void flow_dfs_compute_reverse_init (depth_first_search_ds);
52 static void flow_dfs_compute_reverse_add_bb (depth_first_search_ds,
53 basic_block);
54 static basic_block flow_dfs_compute_reverse_execute (depth_first_search_ds,
55 basic_block);
56 static void flow_dfs_compute_reverse_finish (depth_first_search_ds);
57 static bool flow_active_insn_p (rtx);
58 \f
59 /* Like active_insn_p, except keep the return value clobber around
60 even after reload. */
61
62 static bool
63 flow_active_insn_p (rtx insn)
64 {
65 if (active_insn_p (insn))
66 return true;
67
68 /* A clobber of the function return value exists for buggy
69 programs that fail to return a value. Its effect is to
70 keep the return value from being live across the entire
71 function. If we allow it to be skipped, we introduce the
72 possibility for register lifetime confusion. */
73 if (GET_CODE (PATTERN (insn)) == CLOBBER
74 && REG_P (XEXP (PATTERN (insn), 0))
75 && REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))
76 return true;
77
78 return false;
79 }
80
81 /* Return true if the block has no effect and only forwards control flow to
82 its single destination. */
83
84 bool
85 forwarder_block_p (basic_block bb)
86 {
87 rtx insn;
88
89 if (bb == EXIT_BLOCK_PTR || bb == ENTRY_BLOCK_PTR
90 || !single_succ_p (bb))
91 return false;
92
93 for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
94 if (INSN_P (insn) && flow_active_insn_p (insn))
95 return false;
96
97 return (!INSN_P (insn)
98 || (JUMP_P (insn) && simplejump_p (insn))
99 || !flow_active_insn_p (insn));
100 }
101
102 /* Return nonzero if we can reach target from src by falling through. */
103
104 bool
105 can_fallthru (basic_block src, basic_block target)
106 {
107 rtx insn = BB_END (src);
108 rtx insn2;
109 edge e;
110 edge_iterator ei;
111
112 if (target == EXIT_BLOCK_PTR)
113 return true;
114 if (src->next_bb != target)
115 return 0;
116 FOR_EACH_EDGE (e, ei, src->succs)
117 if (e->dest == EXIT_BLOCK_PTR
118 && e->flags & EDGE_FALLTHRU)
119 return 0;
120
121 insn2 = BB_HEAD (target);
122 if (insn2 && !active_insn_p (insn2))
123 insn2 = next_active_insn (insn2);
124
125 /* ??? Later we may add code to move jump tables offline. */
126 return next_active_insn (insn) == insn2;
127 }
128
129 /* Return nonzero if we could reach target from src by falling through,
130 if the target was made adjacent. If we already have a fall-through
131 edge to the exit block, we can't do that. */
132 bool
133 could_fall_through (basic_block src, basic_block target)
134 {
135 edge e;
136 edge_iterator ei;
137
138 if (target == EXIT_BLOCK_PTR)
139 return true;
140 FOR_EACH_EDGE (e, ei, src->succs)
141 if (e->dest == EXIT_BLOCK_PTR
142 && e->flags & EDGE_FALLTHRU)
143 return 0;
144 return true;
145 }
146 \f
147 /* Mark the back edges in DFS traversal.
148 Return nonzero if a loop (natural or otherwise) is present.
149 Inspired by Depth_First_Search_PP described in:
150
151 Advanced Compiler Design and Implementation
152 Steven Muchnick
153 Morgan Kaufmann, 1997
154
155 and heavily borrowed from flow_depth_first_order_compute. */
156
157 bool
158 mark_dfs_back_edges (void)
159 {
160 edge_iterator *stack;
161 int *pre;
162 int *post;
163 int sp;
164 int prenum = 1;
165 int postnum = 1;
166 sbitmap visited;
167 bool found = false;
168
169 /* Allocate the preorder and postorder number arrays. */
170 pre = xcalloc (last_basic_block, sizeof (int));
171 post = xcalloc (last_basic_block, sizeof (int));
172
173 /* Allocate stack for back-tracking up CFG. */
174 stack = xmalloc ((n_basic_blocks + 1) * sizeof (edge_iterator));
175 sp = 0;
176
177 /* Allocate bitmap to track nodes that have been visited. */
178 visited = sbitmap_alloc (last_basic_block);
179
180 /* None of the nodes in the CFG have been visited yet. */
181 sbitmap_zero (visited);
182
183 /* Push the first edge on to the stack. */
184 stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
185
186 while (sp)
187 {
188 edge_iterator ei;
189 basic_block src;
190 basic_block dest;
191
192 /* Look at the edge on the top of the stack. */
193 ei = stack[sp - 1];
194 src = ei_edge (ei)->src;
195 dest = ei_edge (ei)->dest;
196 ei_edge (ei)->flags &= ~EDGE_DFS_BACK;
197
198 /* Check if the edge destination has been visited yet. */
199 if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
200 {
201 /* Mark that we have visited the destination. */
202 SET_BIT (visited, dest->index);
203
204 pre[dest->index] = prenum++;
205 if (EDGE_COUNT (dest->succs) > 0)
206 {
207 /* Since the DEST node has been visited for the first
208 time, check its successors. */
209 stack[sp++] = ei_start (dest->succs);
210 }
211 else
212 post[dest->index] = postnum++;
213 }
214 else
215 {
216 if (dest != EXIT_BLOCK_PTR && src != ENTRY_BLOCK_PTR
217 && pre[src->index] >= pre[dest->index]
218 && post[dest->index] == 0)
219 ei_edge (ei)->flags |= EDGE_DFS_BACK, found = true;
220
221 if (ei_one_before_end_p (ei) && src != ENTRY_BLOCK_PTR)
222 post[src->index] = postnum++;
223
224 if (!ei_one_before_end_p (ei))
225 ei_next (&stack[sp - 1]);
226 else
227 sp--;
228 }
229 }
230
231 free (pre);
232 free (post);
233 free (stack);
234 sbitmap_free (visited);
235
236 return found;
237 }
238
239 /* Set the flag EDGE_CAN_FALLTHRU for edges that can be fallthru. */
240
241 void
242 set_edge_can_fallthru_flag (void)
243 {
244 basic_block bb;
245
246 FOR_EACH_BB (bb)
247 {
248 edge e;
249 edge_iterator ei;
250
251 FOR_EACH_EDGE (e, ei, bb->succs)
252 {
253 e->flags &= ~EDGE_CAN_FALLTHRU;
254
255 /* The FALLTHRU edge is also CAN_FALLTHRU edge. */
256 if (e->flags & EDGE_FALLTHRU)
257 e->flags |= EDGE_CAN_FALLTHRU;
258 }
259
260 /* If the BB ends with an invertible condjump all (2) edges are
261 CAN_FALLTHRU edges. */
262 if (EDGE_COUNT (bb->succs) != 2)
263 continue;
264 if (!any_condjump_p (BB_END (bb)))
265 continue;
266 if (!invert_jump (BB_END (bb), JUMP_LABEL (BB_END (bb)), 0))
267 continue;
268 invert_jump (BB_END (bb), JUMP_LABEL (BB_END (bb)), 0);
269 EDGE_SUCC (bb, 0)->flags |= EDGE_CAN_FALLTHRU;
270 EDGE_SUCC (bb, 1)->flags |= EDGE_CAN_FALLTHRU;
271 }
272 }
273
274 /* Find unreachable blocks. An unreachable block will have 0 in
275 the reachable bit in block->flags. A nonzero value indicates the
276 block is reachable. */
277
278 void
279 find_unreachable_blocks (void)
280 {
281 edge e;
282 edge_iterator ei;
283 basic_block *tos, *worklist, bb;
284
285 tos = worklist = xmalloc (sizeof (basic_block) * n_basic_blocks);
286
287 /* Clear all the reachability flags. */
288
289 FOR_EACH_BB (bb)
290 bb->flags &= ~BB_REACHABLE;
291
292 /* Add our starting points to the worklist. Almost always there will
293 be only one. It isn't inconceivable that we might one day directly
294 support Fortran alternate entry points. */
295
296 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
297 {
298 *tos++ = e->dest;
299
300 /* Mark the block reachable. */
301 e->dest->flags |= BB_REACHABLE;
302 }
303
304 /* Iterate: find everything reachable from what we've already seen. */
305
306 while (tos != worklist)
307 {
308 basic_block b = *--tos;
309
310 FOR_EACH_EDGE (e, ei, b->succs)
311 {
312 basic_block dest = e->dest;
313
314 if (!(dest->flags & BB_REACHABLE))
315 {
316 *tos++ = dest;
317 dest->flags |= BB_REACHABLE;
318 }
319 }
320 }
321
322 free (worklist);
323 }
324 \f
325 /* Functions to access an edge list with a vector representation.
326 Enough data is kept such that given an index number, the
327 pred and succ that edge represents can be determined, or
328 given a pred and a succ, its index number can be returned.
329 This allows algorithms which consume a lot of memory to
330 represent the normally full matrix of edge (pred,succ) with a
331 single indexed vector, edge (EDGE_INDEX (pred, succ)), with no
332 wasted space in the client code due to sparse flow graphs. */
333
334 /* This functions initializes the edge list. Basically the entire
335 flowgraph is processed, and all edges are assigned a number,
336 and the data structure is filled in. */
337
338 struct edge_list *
339 create_edge_list (void)
340 {
341 struct edge_list *elist;
342 edge e;
343 int num_edges;
344 int block_count;
345 basic_block bb;
346 edge_iterator ei;
347
348 block_count = n_basic_blocks + 2; /* Include the entry and exit blocks. */
349
350 num_edges = 0;
351
352 /* Determine the number of edges in the flow graph by counting successor
353 edges on each basic block. */
354 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
355 {
356 num_edges += EDGE_COUNT (bb->succs);
357 }
358
359 elist = xmalloc (sizeof (struct edge_list));
360 elist->num_blocks = block_count;
361 elist->num_edges = num_edges;
362 elist->index_to_edge = xmalloc (sizeof (edge) * num_edges);
363
364 num_edges = 0;
365
366 /* Follow successors of blocks, and register these edges. */
367 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
368 FOR_EACH_EDGE (e, ei, bb->succs)
369 elist->index_to_edge[num_edges++] = e;
370
371 return elist;
372 }
373
374 /* This function free's memory associated with an edge list. */
375
376 void
377 free_edge_list (struct edge_list *elist)
378 {
379 if (elist)
380 {
381 free (elist->index_to_edge);
382 free (elist);
383 }
384 }
385
386 /* This function provides debug output showing an edge list. */
387
388 void
389 print_edge_list (FILE *f, struct edge_list *elist)
390 {
391 int x;
392
393 fprintf (f, "Compressed edge list, %d BBs + entry & exit, and %d edges\n",
394 elist->num_blocks - 2, elist->num_edges);
395
396 for (x = 0; x < elist->num_edges; x++)
397 {
398 fprintf (f, " %-4d - edge(", x);
399 if (INDEX_EDGE_PRED_BB (elist, x) == ENTRY_BLOCK_PTR)
400 fprintf (f, "entry,");
401 else
402 fprintf (f, "%d,", INDEX_EDGE_PRED_BB (elist, x)->index);
403
404 if (INDEX_EDGE_SUCC_BB (elist, x) == EXIT_BLOCK_PTR)
405 fprintf (f, "exit)\n");
406 else
407 fprintf (f, "%d)\n", INDEX_EDGE_SUCC_BB (elist, x)->index);
408 }
409 }
410
411 /* This function provides an internal consistency check of an edge list,
412 verifying that all edges are present, and that there are no
413 extra edges. */
414
415 void
416 verify_edge_list (FILE *f, struct edge_list *elist)
417 {
418 int pred, succ, index;
419 edge e;
420 basic_block bb, p, s;
421 edge_iterator ei;
422
423 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
424 {
425 FOR_EACH_EDGE (e, ei, bb->succs)
426 {
427 pred = e->src->index;
428 succ = e->dest->index;
429 index = EDGE_INDEX (elist, e->src, e->dest);
430 if (index == EDGE_INDEX_NO_EDGE)
431 {
432 fprintf (f, "*p* No index for edge from %d to %d\n", pred, succ);
433 continue;
434 }
435
436 if (INDEX_EDGE_PRED_BB (elist, index)->index != pred)
437 fprintf (f, "*p* Pred for index %d should be %d not %d\n",
438 index, pred, INDEX_EDGE_PRED_BB (elist, index)->index);
439 if (INDEX_EDGE_SUCC_BB (elist, index)->index != succ)
440 fprintf (f, "*p* Succ for index %d should be %d not %d\n",
441 index, succ, INDEX_EDGE_SUCC_BB (elist, index)->index);
442 }
443 }
444
445 /* We've verified that all the edges are in the list, now lets make sure
446 there are no spurious edges in the list. */
447
448 FOR_BB_BETWEEN (p, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
449 FOR_BB_BETWEEN (s, ENTRY_BLOCK_PTR->next_bb, NULL, next_bb)
450 {
451 int found_edge = 0;
452
453 FOR_EACH_EDGE (e, ei, p->succs)
454 if (e->dest == s)
455 {
456 found_edge = 1;
457 break;
458 }
459
460 FOR_EACH_EDGE (e, ei, s->preds)
461 if (e->src == p)
462 {
463 found_edge = 1;
464 break;
465 }
466
467 if (EDGE_INDEX (elist, p, s)
468 == EDGE_INDEX_NO_EDGE && found_edge != 0)
469 fprintf (f, "*** Edge (%d, %d) appears to not have an index\n",
470 p->index, s->index);
471 if (EDGE_INDEX (elist, p, s)
472 != EDGE_INDEX_NO_EDGE && found_edge == 0)
473 fprintf (f, "*** Edge (%d, %d) has index %d, but there is no edge\n",
474 p->index, s->index, EDGE_INDEX (elist, p, s));
475 }
476 }
477
478 /* Given PRED and SUCC blocks, return the edge which connects the blocks.
479 If no such edge exists, return NULL. */
480
481 edge
482 find_edge (basic_block pred, basic_block succ)
483 {
484 edge e;
485 edge_iterator ei;
486
487 if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
488 {
489 FOR_EACH_EDGE (e, ei, pred->succs)
490 if (e->dest == succ)
491 return e;
492 }
493 else
494 {
495 FOR_EACH_EDGE (e, ei, succ->preds)
496 if (e->src == pred)
497 return e;
498 }
499
500 return NULL;
501 }
502
503 /* This routine will determine what, if any, edge there is between
504 a specified predecessor and successor. */
505
506 int
507 find_edge_index (struct edge_list *edge_list, basic_block pred, basic_block succ)
508 {
509 int x;
510
511 for (x = 0; x < NUM_EDGES (edge_list); x++)
512 if (INDEX_EDGE_PRED_BB (edge_list, x) == pred
513 && INDEX_EDGE_SUCC_BB (edge_list, x) == succ)
514 return x;
515
516 return (EDGE_INDEX_NO_EDGE);
517 }
518
519 /* Dump the list of basic blocks in the bitmap NODES. */
520
521 void
522 flow_nodes_print (const char *str, const sbitmap nodes, FILE *file)
523 {
524 unsigned int node = 0;
525 sbitmap_iterator sbi;
526
527 if (! nodes)
528 return;
529
530 fprintf (file, "%s { ", str);
531 EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, node, sbi)
532 fprintf (file, "%d ", node);
533 fputs ("}\n", file);
534 }
535
536 /* Dump the list of edges in the array EDGE_LIST. */
537
538 void
539 flow_edge_list_print (const char *str, const edge *edge_list, int num_edges, FILE *file)
540 {
541 int i;
542
543 if (! edge_list)
544 return;
545
546 fprintf (file, "%s { ", str);
547 for (i = 0; i < num_edges; i++)
548 fprintf (file, "%d->%d ", edge_list[i]->src->index,
549 edge_list[i]->dest->index);
550
551 fputs ("}\n", file);
552 }
553
554 \f
555 /* This routine will remove any fake predecessor edges for a basic block.
556 When the edge is removed, it is also removed from whatever successor
557 list it is in. */
558
559 static void
560 remove_fake_predecessors (basic_block bb)
561 {
562 edge e;
563 edge_iterator ei;
564
565 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
566 {
567 if ((e->flags & EDGE_FAKE) == EDGE_FAKE)
568 remove_edge (e);
569 else
570 ei_next (&ei);
571 }
572 }
573
574 /* This routine will remove all fake edges from the flow graph. If
575 we remove all fake successors, it will automatically remove all
576 fake predecessors. */
577
578 void
579 remove_fake_edges (void)
580 {
581 basic_block bb;
582
583 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb, NULL, next_bb)
584 remove_fake_predecessors (bb);
585 }
586
587 /* This routine will remove all fake edges to the EXIT_BLOCK. */
588
589 void
590 remove_fake_exit_edges (void)
591 {
592 remove_fake_predecessors (EXIT_BLOCK_PTR);
593 }
594
595
596 /* This function will add a fake edge between any block which has no
597 successors, and the exit block. Some data flow equations require these
598 edges to exist. */
599
600 void
601 add_noreturn_fake_exit_edges (void)
602 {
603 basic_block bb;
604
605 FOR_EACH_BB (bb)
606 if (EDGE_COUNT (bb->succs) == 0)
607 make_single_succ_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
608 }
609
610 /* This function adds a fake edge between any infinite loops to the
611 exit block. Some optimizations require a path from each node to
612 the exit node.
613
614 See also Morgan, Figure 3.10, pp. 82-83.
615
616 The current implementation is ugly, not attempting to minimize the
617 number of inserted fake edges. To reduce the number of fake edges
618 to insert, add fake edges from _innermost_ loops containing only
619 nodes not reachable from the exit block. */
620
621 void
622 connect_infinite_loops_to_exit (void)
623 {
624 basic_block unvisited_block = EXIT_BLOCK_PTR;
625 struct depth_first_search_dsS dfs_ds;
626
627 /* Perform depth-first search in the reverse graph to find nodes
628 reachable from the exit block. */
629 flow_dfs_compute_reverse_init (&dfs_ds);
630 flow_dfs_compute_reverse_add_bb (&dfs_ds, EXIT_BLOCK_PTR);
631
632 /* Repeatedly add fake edges, updating the unreachable nodes. */
633 while (1)
634 {
635 unvisited_block = flow_dfs_compute_reverse_execute (&dfs_ds,
636 unvisited_block);
637 if (!unvisited_block)
638 break;
639
640 make_edge (unvisited_block, EXIT_BLOCK_PTR, EDGE_FAKE);
641 flow_dfs_compute_reverse_add_bb (&dfs_ds, unvisited_block);
642 }
643
644 flow_dfs_compute_reverse_finish (&dfs_ds);
645 return;
646 }
647 \f
648 /* Compute reverse top sort order. */
649
650 void
651 flow_reverse_top_sort_order_compute (int *rts_order)
652 {
653 edge_iterator *stack;
654 int sp;
655 int postnum = 0;
656 sbitmap visited;
657
658 /* Allocate stack for back-tracking up CFG. */
659 stack = xmalloc ((n_basic_blocks + 1) * sizeof (edge_iterator));
660 sp = 0;
661
662 /* Allocate bitmap to track nodes that have been visited. */
663 visited = sbitmap_alloc (last_basic_block);
664
665 /* None of the nodes in the CFG have been visited yet. */
666 sbitmap_zero (visited);
667
668 /* Push the first edge on to the stack. */
669 stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
670
671 while (sp)
672 {
673 edge_iterator ei;
674 basic_block src;
675 basic_block dest;
676
677 /* Look at the edge on the top of the stack. */
678 ei = stack[sp - 1];
679 src = ei_edge (ei)->src;
680 dest = ei_edge (ei)->dest;
681
682 /* Check if the edge destination has been visited yet. */
683 if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
684 {
685 /* Mark that we have visited the destination. */
686 SET_BIT (visited, dest->index);
687
688 if (EDGE_COUNT (dest->succs) > 0)
689 /* Since the DEST node has been visited for the first
690 time, check its successors. */
691 stack[sp++] = ei_start (dest->succs);
692 else
693 rts_order[postnum++] = dest->index;
694 }
695 else
696 {
697 if (ei_one_before_end_p (ei) && src != ENTRY_BLOCK_PTR)
698 rts_order[postnum++] = src->index;
699
700 if (!ei_one_before_end_p (ei))
701 ei_next (&stack[sp - 1]);
702 else
703 sp--;
704 }
705 }
706
707 free (stack);
708 sbitmap_free (visited);
709 }
710
711 /* Compute the depth first search order and store in the array
712 DFS_ORDER if nonzero, marking the nodes visited in VISITED. If
713 RC_ORDER is nonzero, return the reverse completion number for each
714 node. Returns the number of nodes visited. A depth first search
715 tries to get as far away from the starting point as quickly as
716 possible. */
717
718 int
719 flow_depth_first_order_compute (int *dfs_order, int *rc_order)
720 {
721 edge_iterator *stack;
722 int sp;
723 int dfsnum = 0;
724 int rcnum = n_basic_blocks - 1;
725 sbitmap visited;
726
727 /* Allocate stack for back-tracking up CFG. */
728 stack = xmalloc ((n_basic_blocks + 1) * sizeof (edge_iterator));
729 sp = 0;
730
731 /* Allocate bitmap to track nodes that have been visited. */
732 visited = sbitmap_alloc (last_basic_block);
733
734 /* None of the nodes in the CFG have been visited yet. */
735 sbitmap_zero (visited);
736
737 /* Push the first edge on to the stack. */
738 stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
739
740 while (sp)
741 {
742 edge_iterator ei;
743 basic_block src;
744 basic_block dest;
745
746 /* Look at the edge on the top of the stack. */
747 ei = stack[sp - 1];
748 src = ei_edge (ei)->src;
749 dest = ei_edge (ei)->dest;
750
751 /* Check if the edge destination has been visited yet. */
752 if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
753 {
754 /* Mark that we have visited the destination. */
755 SET_BIT (visited, dest->index);
756
757 if (dfs_order)
758 dfs_order[dfsnum] = dest->index;
759
760 dfsnum++;
761
762 if (EDGE_COUNT (dest->succs) > 0)
763 /* Since the DEST node has been visited for the first
764 time, check its successors. */
765 stack[sp++] = ei_start (dest->succs);
766 else if (rc_order)
767 /* There are no successors for the DEST node so assign
768 its reverse completion number. */
769 rc_order[rcnum--] = dest->index;
770 }
771 else
772 {
773 if (ei_one_before_end_p (ei) && src != ENTRY_BLOCK_PTR
774 && rc_order)
775 /* There are no more successors for the SRC node
776 so assign its reverse completion number. */
777 rc_order[rcnum--] = src->index;
778
779 if (!ei_one_before_end_p (ei))
780 ei_next (&stack[sp - 1]);
781 else
782 sp--;
783 }
784 }
785
786 free (stack);
787 sbitmap_free (visited);
788
789 /* The number of nodes visited should be the number of blocks. */
790 gcc_assert (dfsnum == n_basic_blocks);
791
792 return dfsnum;
793 }
794
795 /* Compute the depth first search order on the _reverse_ graph and
796 store in the array DFS_ORDER, marking the nodes visited in VISITED.
797 Returns the number of nodes visited.
798
799 The computation is split into three pieces:
800
801 flow_dfs_compute_reverse_init () creates the necessary data
802 structures.
803
804 flow_dfs_compute_reverse_add_bb () adds a basic block to the data
805 structures. The block will start the search.
806
807 flow_dfs_compute_reverse_execute () continues (or starts) the
808 search using the block on the top of the stack, stopping when the
809 stack is empty.
810
811 flow_dfs_compute_reverse_finish () destroys the necessary data
812 structures.
813
814 Thus, the user will probably call ..._init(), call ..._add_bb() to
815 add a beginning basic block to the stack, call ..._execute(),
816 possibly add another bb to the stack and again call ..._execute(),
817 ..., and finally call _finish(). */
818
819 /* Initialize the data structures used for depth-first search on the
820 reverse graph. If INITIALIZE_STACK is nonzero, the exit block is
821 added to the basic block stack. DATA is the current depth-first
822 search context. If INITIALIZE_STACK is nonzero, there is an
823 element on the stack. */
824
825 static void
826 flow_dfs_compute_reverse_init (depth_first_search_ds data)
827 {
828 /* Allocate stack for back-tracking up CFG. */
829 data->stack = xmalloc ((n_basic_blocks - (INVALID_BLOCK + 1))
830 * sizeof (basic_block));
831 data->sp = 0;
832
833 /* Allocate bitmap to track nodes that have been visited. */
834 data->visited_blocks = sbitmap_alloc (last_basic_block - (INVALID_BLOCK + 1));
835
836 /* None of the nodes in the CFG have been visited yet. */
837 sbitmap_zero (data->visited_blocks);
838
839 return;
840 }
841
842 /* Add the specified basic block to the top of the dfs data
843 structures. When the search continues, it will start at the
844 block. */
845
846 static void
847 flow_dfs_compute_reverse_add_bb (depth_first_search_ds data, basic_block bb)
848 {
849 data->stack[data->sp++] = bb;
850 SET_BIT (data->visited_blocks, bb->index - (INVALID_BLOCK + 1));
851 }
852
853 /* Continue the depth-first search through the reverse graph starting with the
854 block at the stack's top and ending when the stack is empty. Visited nodes
855 are marked. Returns an unvisited basic block, or NULL if there is none
856 available. */
857
858 static basic_block
859 flow_dfs_compute_reverse_execute (depth_first_search_ds data,
860 basic_block last_unvisited)
861 {
862 basic_block bb;
863 edge e;
864 edge_iterator ei;
865
866 while (data->sp > 0)
867 {
868 bb = data->stack[--data->sp];
869
870 /* Perform depth-first search on adjacent vertices. */
871 FOR_EACH_EDGE (e, ei, bb->preds)
872 if (!TEST_BIT (data->visited_blocks,
873 e->src->index - (INVALID_BLOCK + 1)))
874 flow_dfs_compute_reverse_add_bb (data, e->src);
875 }
876
877 /* Determine if there are unvisited basic blocks. */
878 FOR_BB_BETWEEN (bb, last_unvisited, NULL, prev_bb)
879 if (!TEST_BIT (data->visited_blocks, bb->index - (INVALID_BLOCK + 1)))
880 return bb;
881
882 return NULL;
883 }
884
885 /* Destroy the data structures needed for depth-first search on the
886 reverse graph. */
887
888 static void
889 flow_dfs_compute_reverse_finish (depth_first_search_ds data)
890 {
891 free (data->stack);
892 sbitmap_free (data->visited_blocks);
893 }
894
895 /* Performs dfs search from BB over vertices satisfying PREDICATE;
896 if REVERSE, go against direction of edges. Returns number of blocks
897 found and their list in RSLT. RSLT can contain at most RSLT_MAX items. */
898 int
899 dfs_enumerate_from (basic_block bb, int reverse,
900 bool (*predicate) (basic_block, void *),
901 basic_block *rslt, int rslt_max, void *data)
902 {
903 basic_block *st, lbb;
904 int sp = 0, tv = 0;
905 unsigned size;
906
907 /* A bitmap to keep track of visited blocks. Allocating it each time
908 this function is called is not possible, since dfs_enumerate_from
909 is often used on small (almost) disjoint parts of cfg (bodies of
910 loops), and allocating a large sbitmap would lead to quadratic
911 behavior. */
912 static sbitmap visited;
913 static unsigned v_size;
914
915 #define MARK_VISITED(BB) (SET_BIT (visited, (BB)->index + 2))
916 #define UNMARK_VISITED(BB) (RESET_BIT (visited, (BB)->index + 2))
917 #define VISITED_P(BB) (TEST_BIT (visited, (BB)->index + 2))
918
919 /* Resize the VISITED sbitmap if necessary. */
920 size = last_basic_block + 2;
921 if (size < 10)
922 size = 10;
923
924 if (!visited)
925 {
926
927 visited = sbitmap_alloc (size);
928 sbitmap_zero (visited);
929 v_size = size;
930 }
931 else if (v_size < size)
932 {
933 /* Ensure that we increase the size of the sbitmap exponentially. */
934 if (2 * v_size > size)
935 size = 2 * v_size;
936
937 visited = sbitmap_resize (visited, size, 0);
938 v_size = size;
939 }
940
941 st = xcalloc (rslt_max, sizeof (basic_block));
942 rslt[tv++] = st[sp++] = bb;
943 MARK_VISITED (bb);
944 while (sp)
945 {
946 edge e;
947 edge_iterator ei;
948 lbb = st[--sp];
949 if (reverse)
950 {
951 FOR_EACH_EDGE (e, ei, lbb->preds)
952 if (!VISITED_P (e->src) && predicate (e->src, data))
953 {
954 gcc_assert (tv != rslt_max);
955 rslt[tv++] = st[sp++] = e->src;
956 MARK_VISITED (e->src);
957 }
958 }
959 else
960 {
961 FOR_EACH_EDGE (e, ei, lbb->succs)
962 if (!VISITED_P (e->dest) && predicate (e->dest, data))
963 {
964 gcc_assert (tv != rslt_max);
965 rslt[tv++] = st[sp++] = e->dest;
966 MARK_VISITED (e->dest);
967 }
968 }
969 }
970 free (st);
971 for (sp = 0; sp < tv; sp++)
972 UNMARK_VISITED (rslt[sp]);
973 return tv;
974 #undef MARK_VISITED
975 #undef UNMARK_VISITED
976 #undef VISITED_P
977 }
978
979
980 /* Compute dominance frontiers, ala Harvey, Ferrante, et al.
981
982 This algorithm can be found in Timothy Harvey's PhD thesis, at
983 http://www.cs.rice.edu/~harv/dissertation.pdf in the section on iterative
984 dominance algorithms.
985
986 First, we identify each join point, j (any node with more than one
987 incoming edge is a join point).
988
989 We then examine each predecessor, p, of j and walk up the dominator tree
990 starting at p.
991
992 We stop the walk when we reach j's immediate dominator - j is in the
993 dominance frontier of each of the nodes in the walk, except for j's
994 immediate dominator. Intuitively, all of the rest of j's dominators are
995 shared by j's predecessors as well.
996 Since they dominate j, they will not have j in their dominance frontiers.
997
998 The number of nodes touched by this algorithm is equal to the size
999 of the dominance frontiers, no more, no less.
1000 */
1001
1002
1003 static void
1004 compute_dominance_frontiers_1 (bitmap *frontiers)
1005 {
1006 edge p;
1007 edge_iterator ei;
1008 basic_block b;
1009 FOR_EACH_BB (b)
1010 {
1011 if (EDGE_COUNT (b->preds) >= 2)
1012 {
1013 FOR_EACH_EDGE (p, ei, b->preds)
1014 {
1015 basic_block runner = p->src;
1016 basic_block domsb;
1017 if (runner == ENTRY_BLOCK_PTR)
1018 continue;
1019
1020 domsb = get_immediate_dominator (CDI_DOMINATORS, b);
1021 while (runner != domsb)
1022 {
1023 bitmap_set_bit (frontiers[runner->index],
1024 b->index);
1025 runner = get_immediate_dominator (CDI_DOMINATORS,
1026 runner);
1027 }
1028 }
1029 }
1030 }
1031 }
1032
1033
1034 void
1035 compute_dominance_frontiers (bitmap *frontiers)
1036 {
1037 timevar_push (TV_DOM_FRONTIERS);
1038
1039 compute_dominance_frontiers_1 (frontiers);
1040
1041 timevar_pop (TV_DOM_FRONTIERS);
1042 }
1043