* jvspec.c (jvgenmain_spec): Don't handle -fnew-verifier.
[gcc.git] / gcc / cfganal.c
1 /* Control flow graph analysis code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file contains various simple utilities to analyze the CFG. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "obstack.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "insn-config.h"
32 #include "recog.h"
33 #include "diagnostic-core.h"
34 #include "toplev.h"
35 #include "tm_p.h"
36 #include "vec.h"
37 #include "vecprim.h"
38 #include "bitmap.h"
39 #include "sbitmap.h"
40 #include "timevar.h"
41
42 /* Store the data structures necessary for depth-first search. */
43 struct depth_first_search_dsS {
44 /* stack for backtracking during the algorithm */
45 basic_block *stack;
46
47 /* number of edges in the stack. That is, positions 0, ..., sp-1
48 have edges. */
49 unsigned int sp;
50
51 /* record of basic blocks already seen by depth-first search */
52 sbitmap visited_blocks;
53 };
54 typedef struct depth_first_search_dsS *depth_first_search_ds;
55
56 static void flow_dfs_compute_reverse_init (depth_first_search_ds);
57 static void flow_dfs_compute_reverse_add_bb (depth_first_search_ds,
58 basic_block);
59 static basic_block flow_dfs_compute_reverse_execute (depth_first_search_ds,
60 basic_block);
61 static void flow_dfs_compute_reverse_finish (depth_first_search_ds);
62 static bool flow_active_insn_p (const_rtx);
63 \f
64 /* Like active_insn_p, except keep the return value clobber around
65 even after reload. */
66
67 static bool
68 flow_active_insn_p (const_rtx insn)
69 {
70 if (active_insn_p (insn))
71 return true;
72
73 /* A clobber of the function return value exists for buggy
74 programs that fail to return a value. Its effect is to
75 keep the return value from being live across the entire
76 function. If we allow it to be skipped, we introduce the
77 possibility for register lifetime confusion. */
78 if (GET_CODE (PATTERN (insn)) == CLOBBER
79 && REG_P (XEXP (PATTERN (insn), 0))
80 && REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))
81 return true;
82
83 return false;
84 }
85
86 /* Return true if the block has no effect and only forwards control flow to
87 its single destination. */
88
89 bool
90 forwarder_block_p (const_basic_block bb)
91 {
92 rtx insn;
93
94 if (bb == EXIT_BLOCK_PTR || bb == ENTRY_BLOCK_PTR
95 || !single_succ_p (bb))
96 return false;
97
98 for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
99 if (INSN_P (insn) && flow_active_insn_p (insn))
100 return false;
101
102 return (!INSN_P (insn)
103 || (JUMP_P (insn) && simplejump_p (insn))
104 || !flow_active_insn_p (insn));
105 }
106
107 /* Return nonzero if we can reach target from src by falling through. */
108
109 bool
110 can_fallthru (basic_block src, basic_block target)
111 {
112 rtx insn = BB_END (src);
113 rtx insn2;
114 edge e;
115 edge_iterator ei;
116
117 if (target == EXIT_BLOCK_PTR)
118 return true;
119 if (src->next_bb != target)
120 return 0;
121 FOR_EACH_EDGE (e, ei, src->succs)
122 if (e->dest == EXIT_BLOCK_PTR
123 && e->flags & EDGE_FALLTHRU)
124 return 0;
125
126 insn2 = BB_HEAD (target);
127 if (insn2 && !active_insn_p (insn2))
128 insn2 = next_active_insn (insn2);
129
130 /* ??? Later we may add code to move jump tables offline. */
131 return next_active_insn (insn) == insn2;
132 }
133
134 /* Return nonzero if we could reach target from src by falling through,
135 if the target was made adjacent. If we already have a fall-through
136 edge to the exit block, we can't do that. */
137 bool
138 could_fall_through (basic_block src, basic_block target)
139 {
140 edge e;
141 edge_iterator ei;
142
143 if (target == EXIT_BLOCK_PTR)
144 return true;
145 FOR_EACH_EDGE (e, ei, src->succs)
146 if (e->dest == EXIT_BLOCK_PTR
147 && e->flags & EDGE_FALLTHRU)
148 return 0;
149 return true;
150 }
151 \f
152 /* Mark the back edges in DFS traversal.
153 Return nonzero if a loop (natural or otherwise) is present.
154 Inspired by Depth_First_Search_PP described in:
155
156 Advanced Compiler Design and Implementation
157 Steven Muchnick
158 Morgan Kaufmann, 1997
159
160 and heavily borrowed from pre_and_rev_post_order_compute. */
161
162 bool
163 mark_dfs_back_edges (void)
164 {
165 edge_iterator *stack;
166 int *pre;
167 int *post;
168 int sp;
169 int prenum = 1;
170 int postnum = 1;
171 sbitmap visited;
172 bool found = false;
173
174 /* Allocate the preorder and postorder number arrays. */
175 pre = XCNEWVEC (int, last_basic_block);
176 post = XCNEWVEC (int, last_basic_block);
177
178 /* Allocate stack for back-tracking up CFG. */
179 stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
180 sp = 0;
181
182 /* Allocate bitmap to track nodes that have been visited. */
183 visited = sbitmap_alloc (last_basic_block);
184
185 /* None of the nodes in the CFG have been visited yet. */
186 sbitmap_zero (visited);
187
188 /* Push the first edge on to the stack. */
189 stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
190
191 while (sp)
192 {
193 edge_iterator ei;
194 basic_block src;
195 basic_block dest;
196
197 /* Look at the edge on the top of the stack. */
198 ei = stack[sp - 1];
199 src = ei_edge (ei)->src;
200 dest = ei_edge (ei)->dest;
201 ei_edge (ei)->flags &= ~EDGE_DFS_BACK;
202
203 /* Check if the edge destination has been visited yet. */
204 if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
205 {
206 /* Mark that we have visited the destination. */
207 SET_BIT (visited, dest->index);
208
209 pre[dest->index] = prenum++;
210 if (EDGE_COUNT (dest->succs) > 0)
211 {
212 /* Since the DEST node has been visited for the first
213 time, check its successors. */
214 stack[sp++] = ei_start (dest->succs);
215 }
216 else
217 post[dest->index] = postnum++;
218 }
219 else
220 {
221 if (dest != EXIT_BLOCK_PTR && src != ENTRY_BLOCK_PTR
222 && pre[src->index] >= pre[dest->index]
223 && post[dest->index] == 0)
224 ei_edge (ei)->flags |= EDGE_DFS_BACK, found = true;
225
226 if (ei_one_before_end_p (ei) && src != ENTRY_BLOCK_PTR)
227 post[src->index] = postnum++;
228
229 if (!ei_one_before_end_p (ei))
230 ei_next (&stack[sp - 1]);
231 else
232 sp--;
233 }
234 }
235
236 free (pre);
237 free (post);
238 free (stack);
239 sbitmap_free (visited);
240
241 return found;
242 }
243
244 /* Set the flag EDGE_CAN_FALLTHRU for edges that can be fallthru. */
245
246 void
247 set_edge_can_fallthru_flag (void)
248 {
249 basic_block bb;
250
251 FOR_EACH_BB (bb)
252 {
253 edge e;
254 edge_iterator ei;
255
256 FOR_EACH_EDGE (e, ei, bb->succs)
257 {
258 e->flags &= ~EDGE_CAN_FALLTHRU;
259
260 /* The FALLTHRU edge is also CAN_FALLTHRU edge. */
261 if (e->flags & EDGE_FALLTHRU)
262 e->flags |= EDGE_CAN_FALLTHRU;
263 }
264
265 /* If the BB ends with an invertible condjump all (2) edges are
266 CAN_FALLTHRU edges. */
267 if (EDGE_COUNT (bb->succs) != 2)
268 continue;
269 if (!any_condjump_p (BB_END (bb)))
270 continue;
271 if (!invert_jump (BB_END (bb), JUMP_LABEL (BB_END (bb)), 0))
272 continue;
273 invert_jump (BB_END (bb), JUMP_LABEL (BB_END (bb)), 0);
274 EDGE_SUCC (bb, 0)->flags |= EDGE_CAN_FALLTHRU;
275 EDGE_SUCC (bb, 1)->flags |= EDGE_CAN_FALLTHRU;
276 }
277 }
278
279 /* Find unreachable blocks. An unreachable block will have 0 in
280 the reachable bit in block->flags. A nonzero value indicates the
281 block is reachable. */
282
283 void
284 find_unreachable_blocks (void)
285 {
286 edge e;
287 edge_iterator ei;
288 basic_block *tos, *worklist, bb;
289
290 tos = worklist = XNEWVEC (basic_block, n_basic_blocks);
291
292 /* Clear all the reachability flags. */
293
294 FOR_EACH_BB (bb)
295 bb->flags &= ~BB_REACHABLE;
296
297 /* Add our starting points to the worklist. Almost always there will
298 be only one. It isn't inconceivable that we might one day directly
299 support Fortran alternate entry points. */
300
301 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
302 {
303 *tos++ = e->dest;
304
305 /* Mark the block reachable. */
306 e->dest->flags |= BB_REACHABLE;
307 }
308
309 /* Iterate: find everything reachable from what we've already seen. */
310
311 while (tos != worklist)
312 {
313 basic_block b = *--tos;
314
315 FOR_EACH_EDGE (e, ei, b->succs)
316 {
317 basic_block dest = e->dest;
318
319 if (!(dest->flags & BB_REACHABLE))
320 {
321 *tos++ = dest;
322 dest->flags |= BB_REACHABLE;
323 }
324 }
325 }
326
327 free (worklist);
328 }
329 \f
330 /* Functions to access an edge list with a vector representation.
331 Enough data is kept such that given an index number, the
332 pred and succ that edge represents can be determined, or
333 given a pred and a succ, its index number can be returned.
334 This allows algorithms which consume a lot of memory to
335 represent the normally full matrix of edge (pred,succ) with a
336 single indexed vector, edge (EDGE_INDEX (pred, succ)), with no
337 wasted space in the client code due to sparse flow graphs. */
338
339 /* This functions initializes the edge list. Basically the entire
340 flowgraph is processed, and all edges are assigned a number,
341 and the data structure is filled in. */
342
343 struct edge_list *
344 create_edge_list (void)
345 {
346 struct edge_list *elist;
347 edge e;
348 int num_edges;
349 int block_count;
350 basic_block bb;
351 edge_iterator ei;
352
353 block_count = n_basic_blocks; /* Include the entry and exit blocks. */
354
355 num_edges = 0;
356
357 /* Determine the number of edges in the flow graph by counting successor
358 edges on each basic block. */
359 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
360 {
361 num_edges += EDGE_COUNT (bb->succs);
362 }
363
364 elist = XNEW (struct edge_list);
365 elist->num_blocks = block_count;
366 elist->num_edges = num_edges;
367 elist->index_to_edge = XNEWVEC (edge, num_edges);
368
369 num_edges = 0;
370
371 /* Follow successors of blocks, and register these edges. */
372 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
373 FOR_EACH_EDGE (e, ei, bb->succs)
374 elist->index_to_edge[num_edges++] = e;
375
376 return elist;
377 }
378
379 /* This function free's memory associated with an edge list. */
380
381 void
382 free_edge_list (struct edge_list *elist)
383 {
384 if (elist)
385 {
386 free (elist->index_to_edge);
387 free (elist);
388 }
389 }
390
391 /* This function provides debug output showing an edge list. */
392
393 DEBUG_FUNCTION void
394 print_edge_list (FILE *f, struct edge_list *elist)
395 {
396 int x;
397
398 fprintf (f, "Compressed edge list, %d BBs + entry & exit, and %d edges\n",
399 elist->num_blocks, elist->num_edges);
400
401 for (x = 0; x < elist->num_edges; x++)
402 {
403 fprintf (f, " %-4d - edge(", x);
404 if (INDEX_EDGE_PRED_BB (elist, x) == ENTRY_BLOCK_PTR)
405 fprintf (f, "entry,");
406 else
407 fprintf (f, "%d,", INDEX_EDGE_PRED_BB (elist, x)->index);
408
409 if (INDEX_EDGE_SUCC_BB (elist, x) == EXIT_BLOCK_PTR)
410 fprintf (f, "exit)\n");
411 else
412 fprintf (f, "%d)\n", INDEX_EDGE_SUCC_BB (elist, x)->index);
413 }
414 }
415
416 /* This function provides an internal consistency check of an edge list,
417 verifying that all edges are present, and that there are no
418 extra edges. */
419
420 DEBUG_FUNCTION void
421 verify_edge_list (FILE *f, struct edge_list *elist)
422 {
423 int pred, succ, index;
424 edge e;
425 basic_block bb, p, s;
426 edge_iterator ei;
427
428 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
429 {
430 FOR_EACH_EDGE (e, ei, bb->succs)
431 {
432 pred = e->src->index;
433 succ = e->dest->index;
434 index = EDGE_INDEX (elist, e->src, e->dest);
435 if (index == EDGE_INDEX_NO_EDGE)
436 {
437 fprintf (f, "*p* No index for edge from %d to %d\n", pred, succ);
438 continue;
439 }
440
441 if (INDEX_EDGE_PRED_BB (elist, index)->index != pred)
442 fprintf (f, "*p* Pred for index %d should be %d not %d\n",
443 index, pred, INDEX_EDGE_PRED_BB (elist, index)->index);
444 if (INDEX_EDGE_SUCC_BB (elist, index)->index != succ)
445 fprintf (f, "*p* Succ for index %d should be %d not %d\n",
446 index, succ, INDEX_EDGE_SUCC_BB (elist, index)->index);
447 }
448 }
449
450 /* We've verified that all the edges are in the list, now lets make sure
451 there are no spurious edges in the list. */
452
453 FOR_BB_BETWEEN (p, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
454 FOR_BB_BETWEEN (s, ENTRY_BLOCK_PTR->next_bb, NULL, next_bb)
455 {
456 int found_edge = 0;
457
458 FOR_EACH_EDGE (e, ei, p->succs)
459 if (e->dest == s)
460 {
461 found_edge = 1;
462 break;
463 }
464
465 FOR_EACH_EDGE (e, ei, s->preds)
466 if (e->src == p)
467 {
468 found_edge = 1;
469 break;
470 }
471
472 if (EDGE_INDEX (elist, p, s)
473 == EDGE_INDEX_NO_EDGE && found_edge != 0)
474 fprintf (f, "*** Edge (%d, %d) appears to not have an index\n",
475 p->index, s->index);
476 if (EDGE_INDEX (elist, p, s)
477 != EDGE_INDEX_NO_EDGE && found_edge == 0)
478 fprintf (f, "*** Edge (%d, %d) has index %d, but there is no edge\n",
479 p->index, s->index, EDGE_INDEX (elist, p, s));
480 }
481 }
482
483 /* Given PRED and SUCC blocks, return the edge which connects the blocks.
484 If no such edge exists, return NULL. */
485
486 edge
487 find_edge (basic_block pred, basic_block succ)
488 {
489 edge e;
490 edge_iterator ei;
491
492 if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
493 {
494 FOR_EACH_EDGE (e, ei, pred->succs)
495 if (e->dest == succ)
496 return e;
497 }
498 else
499 {
500 FOR_EACH_EDGE (e, ei, succ->preds)
501 if (e->src == pred)
502 return e;
503 }
504
505 return NULL;
506 }
507
508 /* This routine will determine what, if any, edge there is between
509 a specified predecessor and successor. */
510
511 int
512 find_edge_index (struct edge_list *edge_list, basic_block pred, basic_block succ)
513 {
514 int x;
515
516 for (x = 0; x < NUM_EDGES (edge_list); x++)
517 if (INDEX_EDGE_PRED_BB (edge_list, x) == pred
518 && INDEX_EDGE_SUCC_BB (edge_list, x) == succ)
519 return x;
520
521 return (EDGE_INDEX_NO_EDGE);
522 }
523
524 /* Dump the list of basic blocks in the bitmap NODES. */
525
526 void
527 flow_nodes_print (const char *str, const_sbitmap nodes, FILE *file)
528 {
529 unsigned int node = 0;
530 sbitmap_iterator sbi;
531
532 if (! nodes)
533 return;
534
535 fprintf (file, "%s { ", str);
536 EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, node, sbi)
537 fprintf (file, "%d ", node);
538 fputs ("}\n", file);
539 }
540
541 /* Dump the list of edges in the array EDGE_LIST. */
542
543 void
544 flow_edge_list_print (const char *str, const edge *edge_list, int num_edges, FILE *file)
545 {
546 int i;
547
548 if (! edge_list)
549 return;
550
551 fprintf (file, "%s { ", str);
552 for (i = 0; i < num_edges; i++)
553 fprintf (file, "%d->%d ", edge_list[i]->src->index,
554 edge_list[i]->dest->index);
555
556 fputs ("}\n", file);
557 }
558
559 \f
560 /* This routine will remove any fake predecessor edges for a basic block.
561 When the edge is removed, it is also removed from whatever successor
562 list it is in. */
563
564 static void
565 remove_fake_predecessors (basic_block bb)
566 {
567 edge e;
568 edge_iterator ei;
569
570 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
571 {
572 if ((e->flags & EDGE_FAKE) == EDGE_FAKE)
573 remove_edge (e);
574 else
575 ei_next (&ei);
576 }
577 }
578
579 /* This routine will remove all fake edges from the flow graph. If
580 we remove all fake successors, it will automatically remove all
581 fake predecessors. */
582
583 void
584 remove_fake_edges (void)
585 {
586 basic_block bb;
587
588 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb, NULL, next_bb)
589 remove_fake_predecessors (bb);
590 }
591
592 /* This routine will remove all fake edges to the EXIT_BLOCK. */
593
594 void
595 remove_fake_exit_edges (void)
596 {
597 remove_fake_predecessors (EXIT_BLOCK_PTR);
598 }
599
600
601 /* This function will add a fake edge between any block which has no
602 successors, and the exit block. Some data flow equations require these
603 edges to exist. */
604
605 void
606 add_noreturn_fake_exit_edges (void)
607 {
608 basic_block bb;
609
610 FOR_EACH_BB (bb)
611 if (EDGE_COUNT (bb->succs) == 0)
612 make_single_succ_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
613 }
614
615 /* This function adds a fake edge between any infinite loops to the
616 exit block. Some optimizations require a path from each node to
617 the exit node.
618
619 See also Morgan, Figure 3.10, pp. 82-83.
620
621 The current implementation is ugly, not attempting to minimize the
622 number of inserted fake edges. To reduce the number of fake edges
623 to insert, add fake edges from _innermost_ loops containing only
624 nodes not reachable from the exit block. */
625
626 void
627 connect_infinite_loops_to_exit (void)
628 {
629 basic_block unvisited_block = EXIT_BLOCK_PTR;
630 struct depth_first_search_dsS dfs_ds;
631
632 /* Perform depth-first search in the reverse graph to find nodes
633 reachable from the exit block. */
634 flow_dfs_compute_reverse_init (&dfs_ds);
635 flow_dfs_compute_reverse_add_bb (&dfs_ds, EXIT_BLOCK_PTR);
636
637 /* Repeatedly add fake edges, updating the unreachable nodes. */
638 while (1)
639 {
640 unvisited_block = flow_dfs_compute_reverse_execute (&dfs_ds,
641 unvisited_block);
642 if (!unvisited_block)
643 break;
644
645 make_edge (unvisited_block, EXIT_BLOCK_PTR, EDGE_FAKE);
646 flow_dfs_compute_reverse_add_bb (&dfs_ds, unvisited_block);
647 }
648
649 flow_dfs_compute_reverse_finish (&dfs_ds);
650 return;
651 }
652 \f
653 /* Compute reverse top sort order. This is computing a post order
654 numbering of the graph. If INCLUDE_ENTRY_EXIT is true, then then
655 ENTRY_BLOCK and EXIT_BLOCK are included. If DELETE_UNREACHABLE is
656 true, unreachable blocks are deleted. */
657
658 int
659 post_order_compute (int *post_order, bool include_entry_exit,
660 bool delete_unreachable)
661 {
662 edge_iterator *stack;
663 int sp;
664 int post_order_num = 0;
665 sbitmap visited;
666 int count;
667
668 if (include_entry_exit)
669 post_order[post_order_num++] = EXIT_BLOCK;
670
671 /* Allocate stack for back-tracking up CFG. */
672 stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
673 sp = 0;
674
675 /* Allocate bitmap to track nodes that have been visited. */
676 visited = sbitmap_alloc (last_basic_block);
677
678 /* None of the nodes in the CFG have been visited yet. */
679 sbitmap_zero (visited);
680
681 /* Push the first edge on to the stack. */
682 stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
683
684 while (sp)
685 {
686 edge_iterator ei;
687 basic_block src;
688 basic_block dest;
689
690 /* Look at the edge on the top of the stack. */
691 ei = stack[sp - 1];
692 src = ei_edge (ei)->src;
693 dest = ei_edge (ei)->dest;
694
695 /* Check if the edge destination has been visited yet. */
696 if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
697 {
698 /* Mark that we have visited the destination. */
699 SET_BIT (visited, dest->index);
700
701 if (EDGE_COUNT (dest->succs) > 0)
702 /* Since the DEST node has been visited for the first
703 time, check its successors. */
704 stack[sp++] = ei_start (dest->succs);
705 else
706 post_order[post_order_num++] = dest->index;
707 }
708 else
709 {
710 if (ei_one_before_end_p (ei) && src != ENTRY_BLOCK_PTR)
711 post_order[post_order_num++] = src->index;
712
713 if (!ei_one_before_end_p (ei))
714 ei_next (&stack[sp - 1]);
715 else
716 sp--;
717 }
718 }
719
720 if (include_entry_exit)
721 {
722 post_order[post_order_num++] = ENTRY_BLOCK;
723 count = post_order_num;
724 }
725 else
726 count = post_order_num + 2;
727
728 /* Delete the unreachable blocks if some were found and we are
729 supposed to do it. */
730 if (delete_unreachable && (count != n_basic_blocks))
731 {
732 basic_block b;
733 basic_block next_bb;
734 for (b = ENTRY_BLOCK_PTR->next_bb; b != EXIT_BLOCK_PTR; b = next_bb)
735 {
736 next_bb = b->next_bb;
737
738 if (!(TEST_BIT (visited, b->index)))
739 delete_basic_block (b);
740 }
741
742 tidy_fallthru_edges ();
743 }
744
745 free (stack);
746 sbitmap_free (visited);
747 return post_order_num;
748 }
749
750
751 /* Helper routine for inverted_post_order_compute.
752 BB has to belong to a region of CFG
753 unreachable by inverted traversal from the exit.
754 i.e. there's no control flow path from ENTRY to EXIT
755 that contains this BB.
756 This can happen in two cases - if there's an infinite loop
757 or if there's a block that has no successor
758 (call to a function with no return).
759 Some RTL passes deal with this condition by
760 calling connect_infinite_loops_to_exit () and/or
761 add_noreturn_fake_exit_edges ().
762 However, those methods involve modifying the CFG itself
763 which may not be desirable.
764 Hence, we deal with the infinite loop/no return cases
765 by identifying a unique basic block that can reach all blocks
766 in such a region by inverted traversal.
767 This function returns a basic block that guarantees
768 that all blocks in the region are reachable
769 by starting an inverted traversal from the returned block. */
770
771 static basic_block
772 dfs_find_deadend (basic_block bb)
773 {
774 sbitmap visited = sbitmap_alloc (last_basic_block);
775 sbitmap_zero (visited);
776
777 for (;;)
778 {
779 SET_BIT (visited, bb->index);
780 if (EDGE_COUNT (bb->succs) == 0
781 || TEST_BIT (visited, EDGE_SUCC (bb, 0)->dest->index))
782 {
783 sbitmap_free (visited);
784 return bb;
785 }
786
787 bb = EDGE_SUCC (bb, 0)->dest;
788 }
789
790 gcc_unreachable ();
791 }
792
793
794 /* Compute the reverse top sort order of the inverted CFG
795 i.e. starting from the exit block and following the edges backward
796 (from successors to predecessors).
797 This ordering can be used for forward dataflow problems among others.
798
799 This function assumes that all blocks in the CFG are reachable
800 from the ENTRY (but not necessarily from EXIT).
801
802 If there's an infinite loop,
803 a simple inverted traversal starting from the blocks
804 with no successors can't visit all blocks.
805 To solve this problem, we first do inverted traversal
806 starting from the blocks with no successor.
807 And if there's any block left that's not visited by the regular
808 inverted traversal from EXIT,
809 those blocks are in such problematic region.
810 Among those, we find one block that has
811 any visited predecessor (which is an entry into such a region),
812 and start looking for a "dead end" from that block
813 and do another inverted traversal from that block. */
814
815 int
816 inverted_post_order_compute (int *post_order)
817 {
818 basic_block bb;
819 edge_iterator *stack;
820 int sp;
821 int post_order_num = 0;
822 sbitmap visited;
823
824 /* Allocate stack for back-tracking up CFG. */
825 stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
826 sp = 0;
827
828 /* Allocate bitmap to track nodes that have been visited. */
829 visited = sbitmap_alloc (last_basic_block);
830
831 /* None of the nodes in the CFG have been visited yet. */
832 sbitmap_zero (visited);
833
834 /* Put all blocks that have no successor into the initial work list. */
835 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
836 if (EDGE_COUNT (bb->succs) == 0)
837 {
838 /* Push the initial edge on to the stack. */
839 if (EDGE_COUNT (bb->preds) > 0)
840 {
841 stack[sp++] = ei_start (bb->preds);
842 SET_BIT (visited, bb->index);
843 }
844 }
845
846 do
847 {
848 bool has_unvisited_bb = false;
849
850 /* The inverted traversal loop. */
851 while (sp)
852 {
853 edge_iterator ei;
854 basic_block pred;
855
856 /* Look at the edge on the top of the stack. */
857 ei = stack[sp - 1];
858 bb = ei_edge (ei)->dest;
859 pred = ei_edge (ei)->src;
860
861 /* Check if the predecessor has been visited yet. */
862 if (! TEST_BIT (visited, pred->index))
863 {
864 /* Mark that we have visited the destination. */
865 SET_BIT (visited, pred->index);
866
867 if (EDGE_COUNT (pred->preds) > 0)
868 /* Since the predecessor node has been visited for the first
869 time, check its predecessors. */
870 stack[sp++] = ei_start (pred->preds);
871 else
872 post_order[post_order_num++] = pred->index;
873 }
874 else
875 {
876 if (bb != EXIT_BLOCK_PTR && ei_one_before_end_p (ei))
877 post_order[post_order_num++] = bb->index;
878
879 if (!ei_one_before_end_p (ei))
880 ei_next (&stack[sp - 1]);
881 else
882 sp--;
883 }
884 }
885
886 /* Detect any infinite loop and activate the kludge.
887 Note that this doesn't check EXIT_BLOCK itself
888 since EXIT_BLOCK is always added after the outer do-while loop. */
889 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
890 if (!TEST_BIT (visited, bb->index))
891 {
892 has_unvisited_bb = true;
893
894 if (EDGE_COUNT (bb->preds) > 0)
895 {
896 edge_iterator ei;
897 edge e;
898 basic_block visited_pred = NULL;
899
900 /* Find an already visited predecessor. */
901 FOR_EACH_EDGE (e, ei, bb->preds)
902 {
903 if (TEST_BIT (visited, e->src->index))
904 visited_pred = e->src;
905 }
906
907 if (visited_pred)
908 {
909 basic_block be = dfs_find_deadend (bb);
910 gcc_assert (be != NULL);
911 SET_BIT (visited, be->index);
912 stack[sp++] = ei_start (be->preds);
913 break;
914 }
915 }
916 }
917
918 if (has_unvisited_bb && sp == 0)
919 {
920 /* No blocks are reachable from EXIT at all.
921 Find a dead-end from the ENTRY, and restart the iteration. */
922 basic_block be = dfs_find_deadend (ENTRY_BLOCK_PTR);
923 gcc_assert (be != NULL);
924 SET_BIT (visited, be->index);
925 stack[sp++] = ei_start (be->preds);
926 }
927
928 /* The only case the below while fires is
929 when there's an infinite loop. */
930 }
931 while (sp);
932
933 /* EXIT_BLOCK is always included. */
934 post_order[post_order_num++] = EXIT_BLOCK;
935
936 free (stack);
937 sbitmap_free (visited);
938 return post_order_num;
939 }
940
941 /* Compute the depth first search order and store in the array
942 PRE_ORDER if nonzero, marking the nodes visited in VISITED. If
943 REV_POST_ORDER is nonzero, return the reverse completion number for each
944 node. Returns the number of nodes visited. A depth first search
945 tries to get as far away from the starting point as quickly as
946 possible.
947
948 pre_order is a really a preorder numbering of the graph.
949 rev_post_order is really a reverse postorder numbering of the graph.
950 */
951
952 int
953 pre_and_rev_post_order_compute (int *pre_order, int *rev_post_order,
954 bool include_entry_exit)
955 {
956 edge_iterator *stack;
957 int sp;
958 int pre_order_num = 0;
959 int rev_post_order_num = n_basic_blocks - 1;
960 sbitmap visited;
961
962 /* Allocate stack for back-tracking up CFG. */
963 stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
964 sp = 0;
965
966 if (include_entry_exit)
967 {
968 if (pre_order)
969 pre_order[pre_order_num] = ENTRY_BLOCK;
970 pre_order_num++;
971 if (rev_post_order)
972 rev_post_order[rev_post_order_num--] = ENTRY_BLOCK;
973 }
974 else
975 rev_post_order_num -= NUM_FIXED_BLOCKS;
976
977 /* Allocate bitmap to track nodes that have been visited. */
978 visited = sbitmap_alloc (last_basic_block);
979
980 /* None of the nodes in the CFG have been visited yet. */
981 sbitmap_zero (visited);
982
983 /* Push the first edge on to the stack. */
984 stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
985
986 while (sp)
987 {
988 edge_iterator ei;
989 basic_block src;
990 basic_block dest;
991
992 /* Look at the edge on the top of the stack. */
993 ei = stack[sp - 1];
994 src = ei_edge (ei)->src;
995 dest = ei_edge (ei)->dest;
996
997 /* Check if the edge destination has been visited yet. */
998 if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
999 {
1000 /* Mark that we have visited the destination. */
1001 SET_BIT (visited, dest->index);
1002
1003 if (pre_order)
1004 pre_order[pre_order_num] = dest->index;
1005
1006 pre_order_num++;
1007
1008 if (EDGE_COUNT (dest->succs) > 0)
1009 /* Since the DEST node has been visited for the first
1010 time, check its successors. */
1011 stack[sp++] = ei_start (dest->succs);
1012 else if (rev_post_order)
1013 /* There are no successors for the DEST node so assign
1014 its reverse completion number. */
1015 rev_post_order[rev_post_order_num--] = dest->index;
1016 }
1017 else
1018 {
1019 if (ei_one_before_end_p (ei) && src != ENTRY_BLOCK_PTR
1020 && rev_post_order)
1021 /* There are no more successors for the SRC node
1022 so assign its reverse completion number. */
1023 rev_post_order[rev_post_order_num--] = src->index;
1024
1025 if (!ei_one_before_end_p (ei))
1026 ei_next (&stack[sp - 1]);
1027 else
1028 sp--;
1029 }
1030 }
1031
1032 free (stack);
1033 sbitmap_free (visited);
1034
1035 if (include_entry_exit)
1036 {
1037 if (pre_order)
1038 pre_order[pre_order_num] = EXIT_BLOCK;
1039 pre_order_num++;
1040 if (rev_post_order)
1041 rev_post_order[rev_post_order_num--] = EXIT_BLOCK;
1042 /* The number of nodes visited should be the number of blocks. */
1043 gcc_assert (pre_order_num == n_basic_blocks);
1044 }
1045 else
1046 /* The number of nodes visited should be the number of blocks minus
1047 the entry and exit blocks which are not visited here. */
1048 gcc_assert (pre_order_num == n_basic_blocks - NUM_FIXED_BLOCKS);
1049
1050 return pre_order_num;
1051 }
1052
1053 /* Compute the depth first search order on the _reverse_ graph and
1054 store in the array DFS_ORDER, marking the nodes visited in VISITED.
1055 Returns the number of nodes visited.
1056
1057 The computation is split into three pieces:
1058
1059 flow_dfs_compute_reverse_init () creates the necessary data
1060 structures.
1061
1062 flow_dfs_compute_reverse_add_bb () adds a basic block to the data
1063 structures. The block will start the search.
1064
1065 flow_dfs_compute_reverse_execute () continues (or starts) the
1066 search using the block on the top of the stack, stopping when the
1067 stack is empty.
1068
1069 flow_dfs_compute_reverse_finish () destroys the necessary data
1070 structures.
1071
1072 Thus, the user will probably call ..._init(), call ..._add_bb() to
1073 add a beginning basic block to the stack, call ..._execute(),
1074 possibly add another bb to the stack and again call ..._execute(),
1075 ..., and finally call _finish(). */
1076
1077 /* Initialize the data structures used for depth-first search on the
1078 reverse graph. If INITIALIZE_STACK is nonzero, the exit block is
1079 added to the basic block stack. DATA is the current depth-first
1080 search context. If INITIALIZE_STACK is nonzero, there is an
1081 element on the stack. */
1082
1083 static void
1084 flow_dfs_compute_reverse_init (depth_first_search_ds data)
1085 {
1086 /* Allocate stack for back-tracking up CFG. */
1087 data->stack = XNEWVEC (basic_block, n_basic_blocks);
1088 data->sp = 0;
1089
1090 /* Allocate bitmap to track nodes that have been visited. */
1091 data->visited_blocks = sbitmap_alloc (last_basic_block);
1092
1093 /* None of the nodes in the CFG have been visited yet. */
1094 sbitmap_zero (data->visited_blocks);
1095
1096 return;
1097 }
1098
1099 /* Add the specified basic block to the top of the dfs data
1100 structures. When the search continues, it will start at the
1101 block. */
1102
1103 static void
1104 flow_dfs_compute_reverse_add_bb (depth_first_search_ds data, basic_block bb)
1105 {
1106 data->stack[data->sp++] = bb;
1107 SET_BIT (data->visited_blocks, bb->index);
1108 }
1109
1110 /* Continue the depth-first search through the reverse graph starting with the
1111 block at the stack's top and ending when the stack is empty. Visited nodes
1112 are marked. Returns an unvisited basic block, or NULL if there is none
1113 available. */
1114
1115 static basic_block
1116 flow_dfs_compute_reverse_execute (depth_first_search_ds data,
1117 basic_block last_unvisited)
1118 {
1119 basic_block bb;
1120 edge e;
1121 edge_iterator ei;
1122
1123 while (data->sp > 0)
1124 {
1125 bb = data->stack[--data->sp];
1126
1127 /* Perform depth-first search on adjacent vertices. */
1128 FOR_EACH_EDGE (e, ei, bb->preds)
1129 if (!TEST_BIT (data->visited_blocks, e->src->index))
1130 flow_dfs_compute_reverse_add_bb (data, e->src);
1131 }
1132
1133 /* Determine if there are unvisited basic blocks. */
1134 FOR_BB_BETWEEN (bb, last_unvisited, NULL, prev_bb)
1135 if (!TEST_BIT (data->visited_blocks, bb->index))
1136 return bb;
1137
1138 return NULL;
1139 }
1140
1141 /* Destroy the data structures needed for depth-first search on the
1142 reverse graph. */
1143
1144 static void
1145 flow_dfs_compute_reverse_finish (depth_first_search_ds data)
1146 {
1147 free (data->stack);
1148 sbitmap_free (data->visited_blocks);
1149 }
1150
1151 /* Performs dfs search from BB over vertices satisfying PREDICATE;
1152 if REVERSE, go against direction of edges. Returns number of blocks
1153 found and their list in RSLT. RSLT can contain at most RSLT_MAX items. */
1154 int
1155 dfs_enumerate_from (basic_block bb, int reverse,
1156 bool (*predicate) (const_basic_block, const void *),
1157 basic_block *rslt, int rslt_max, const void *data)
1158 {
1159 basic_block *st, lbb;
1160 int sp = 0, tv = 0;
1161 unsigned size;
1162
1163 /* A bitmap to keep track of visited blocks. Allocating it each time
1164 this function is called is not possible, since dfs_enumerate_from
1165 is often used on small (almost) disjoint parts of cfg (bodies of
1166 loops), and allocating a large sbitmap would lead to quadratic
1167 behavior. */
1168 static sbitmap visited;
1169 static unsigned v_size;
1170
1171 #define MARK_VISITED(BB) (SET_BIT (visited, (BB)->index))
1172 #define UNMARK_VISITED(BB) (RESET_BIT (visited, (BB)->index))
1173 #define VISITED_P(BB) (TEST_BIT (visited, (BB)->index))
1174
1175 /* Resize the VISITED sbitmap if necessary. */
1176 size = last_basic_block;
1177 if (size < 10)
1178 size = 10;
1179
1180 if (!visited)
1181 {
1182
1183 visited = sbitmap_alloc (size);
1184 sbitmap_zero (visited);
1185 v_size = size;
1186 }
1187 else if (v_size < size)
1188 {
1189 /* Ensure that we increase the size of the sbitmap exponentially. */
1190 if (2 * v_size > size)
1191 size = 2 * v_size;
1192
1193 visited = sbitmap_resize (visited, size, 0);
1194 v_size = size;
1195 }
1196
1197 st = XCNEWVEC (basic_block, rslt_max);
1198 rslt[tv++] = st[sp++] = bb;
1199 MARK_VISITED (bb);
1200 while (sp)
1201 {
1202 edge e;
1203 edge_iterator ei;
1204 lbb = st[--sp];
1205 if (reverse)
1206 {
1207 FOR_EACH_EDGE (e, ei, lbb->preds)
1208 if (!VISITED_P (e->src) && predicate (e->src, data))
1209 {
1210 gcc_assert (tv != rslt_max);
1211 rslt[tv++] = st[sp++] = e->src;
1212 MARK_VISITED (e->src);
1213 }
1214 }
1215 else
1216 {
1217 FOR_EACH_EDGE (e, ei, lbb->succs)
1218 if (!VISITED_P (e->dest) && predicate (e->dest, data))
1219 {
1220 gcc_assert (tv != rslt_max);
1221 rslt[tv++] = st[sp++] = e->dest;
1222 MARK_VISITED (e->dest);
1223 }
1224 }
1225 }
1226 free (st);
1227 for (sp = 0; sp < tv; sp++)
1228 UNMARK_VISITED (rslt[sp]);
1229 return tv;
1230 #undef MARK_VISITED
1231 #undef UNMARK_VISITED
1232 #undef VISITED_P
1233 }
1234
1235
1236 /* Compute dominance frontiers, ala Harvey, Ferrante, et al.
1237
1238 This algorithm can be found in Timothy Harvey's PhD thesis, at
1239 http://www.cs.rice.edu/~harv/dissertation.pdf in the section on iterative
1240 dominance algorithms.
1241
1242 First, we identify each join point, j (any node with more than one
1243 incoming edge is a join point).
1244
1245 We then examine each predecessor, p, of j and walk up the dominator tree
1246 starting at p.
1247
1248 We stop the walk when we reach j's immediate dominator - j is in the
1249 dominance frontier of each of the nodes in the walk, except for j's
1250 immediate dominator. Intuitively, all of the rest of j's dominators are
1251 shared by j's predecessors as well.
1252 Since they dominate j, they will not have j in their dominance frontiers.
1253
1254 The number of nodes touched by this algorithm is equal to the size
1255 of the dominance frontiers, no more, no less.
1256 */
1257
1258
1259 static void
1260 compute_dominance_frontiers_1 (bitmap_head *frontiers)
1261 {
1262 edge p;
1263 edge_iterator ei;
1264 basic_block b;
1265 FOR_EACH_BB (b)
1266 {
1267 if (EDGE_COUNT (b->preds) >= 2)
1268 {
1269 FOR_EACH_EDGE (p, ei, b->preds)
1270 {
1271 basic_block runner = p->src;
1272 basic_block domsb;
1273 if (runner == ENTRY_BLOCK_PTR)
1274 continue;
1275
1276 domsb = get_immediate_dominator (CDI_DOMINATORS, b);
1277 while (runner != domsb)
1278 {
1279 if (!bitmap_set_bit (&frontiers[runner->index],
1280 b->index))
1281 break;
1282 runner = get_immediate_dominator (CDI_DOMINATORS,
1283 runner);
1284 }
1285 }
1286 }
1287 }
1288 }
1289
1290
1291 void
1292 compute_dominance_frontiers (bitmap_head *frontiers)
1293 {
1294 timevar_push (TV_DOM_FRONTIERS);
1295
1296 compute_dominance_frontiers_1 (frontiers);
1297
1298 timevar_pop (TV_DOM_FRONTIERS);
1299 }
1300
1301 /* Given a set of blocks with variable definitions (DEF_BLOCKS),
1302 return a bitmap with all the blocks in the iterated dominance
1303 frontier of the blocks in DEF_BLOCKS. DFS contains dominance
1304 frontier information as returned by compute_dominance_frontiers.
1305
1306 The resulting set of blocks are the potential sites where PHI nodes
1307 are needed. The caller is responsible for freeing the memory
1308 allocated for the return value. */
1309
1310 bitmap
1311 compute_idf (bitmap def_blocks, bitmap_head *dfs)
1312 {
1313 bitmap_iterator bi;
1314 unsigned bb_index, i;
1315 VEC(int,heap) *work_stack;
1316 bitmap phi_insertion_points;
1317
1318 work_stack = VEC_alloc (int, heap, n_basic_blocks);
1319 phi_insertion_points = BITMAP_ALLOC (NULL);
1320
1321 /* Seed the work list with all the blocks in DEF_BLOCKS. We use
1322 VEC_quick_push here for speed. This is safe because we know that
1323 the number of definition blocks is no greater than the number of
1324 basic blocks, which is the initial capacity of WORK_STACK. */
1325 EXECUTE_IF_SET_IN_BITMAP (def_blocks, 0, bb_index, bi)
1326 VEC_quick_push (int, work_stack, bb_index);
1327
1328 /* Pop a block off the worklist, add every block that appears in
1329 the original block's DF that we have not already processed to
1330 the worklist. Iterate until the worklist is empty. Blocks
1331 which are added to the worklist are potential sites for
1332 PHI nodes. */
1333 while (VEC_length (int, work_stack) > 0)
1334 {
1335 bb_index = VEC_pop (int, work_stack);
1336
1337 /* Since the registration of NEW -> OLD name mappings is done
1338 separately from the call to update_ssa, when updating the SSA
1339 form, the basic blocks where new and/or old names are defined
1340 may have disappeared by CFG cleanup calls. In this case,
1341 we may pull a non-existing block from the work stack. */
1342 gcc_assert (bb_index < (unsigned) last_basic_block);
1343
1344 EXECUTE_IF_AND_COMPL_IN_BITMAP (&dfs[bb_index], phi_insertion_points,
1345 0, i, bi)
1346 {
1347 /* Use a safe push because if there is a definition of VAR
1348 in every basic block, then WORK_STACK may eventually have
1349 more than N_BASIC_BLOCK entries. */
1350 VEC_safe_push (int, heap, work_stack, i);
1351 bitmap_set_bit (phi_insertion_points, i);
1352 }
1353 }
1354
1355 VEC_free (int, heap, work_stack);
1356
1357 return phi_insertion_points;
1358 }
1359
1360