usage.adb: Change "pragma inline" to "pragma Inline" in information and error messages
[gcc.git] / gcc / cfgbuild.c
1 /* Control flow graph building code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* find_basic_blocks divides the current function's rtl into basic
23 blocks and constructs the CFG. The blocks are recorded in the
24 basic_block_info array; the CFG exists in the edge structures
25 referenced by the blocks.
26
27 find_basic_blocks also finds any unreachable loops and deletes them.
28
29 Available functionality:
30 - CFG construction
31 find_basic_blocks
32 - Local CFG construction
33 find_sub_basic_blocks */
34 \f
35 #include "config.h"
36 #include "system.h"
37 #include "coretypes.h"
38 #include "tm.h"
39 #include "tree.h"
40 #include "rtl.h"
41 #include "hard-reg-set.h"
42 #include "basic-block.h"
43 #include "regs.h"
44 #include "flags.h"
45 #include "output.h"
46 #include "function.h"
47 #include "except.h"
48 #include "toplev.h"
49 #include "timevar.h"
50
51 static int count_basic_blocks (rtx);
52 static void find_basic_blocks_1 (rtx);
53 static void make_edges (basic_block, basic_block, int);
54 static void make_label_edge (sbitmap *, basic_block, rtx, int);
55 static void find_bb_boundaries (basic_block);
56 static void compute_outgoing_frequencies (basic_block);
57 \f
58 /* Return true if insn is something that should be contained inside basic
59 block. */
60
61 bool
62 inside_basic_block_p (rtx insn)
63 {
64 switch (GET_CODE (insn))
65 {
66 case CODE_LABEL:
67 /* Avoid creating of basic block for jumptables. */
68 return (NEXT_INSN (insn) == 0
69 || !JUMP_P (NEXT_INSN (insn))
70 || (GET_CODE (PATTERN (NEXT_INSN (insn))) != ADDR_VEC
71 && GET_CODE (PATTERN (NEXT_INSN (insn))) != ADDR_DIFF_VEC));
72
73 case JUMP_INSN:
74 return (GET_CODE (PATTERN (insn)) != ADDR_VEC
75 && GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC);
76
77 case CALL_INSN:
78 case INSN:
79 return true;
80
81 case BARRIER:
82 case NOTE:
83 return false;
84
85 default:
86 gcc_unreachable ();
87 }
88 }
89
90 /* Return true if INSN may cause control flow transfer, so it should be last in
91 the basic block. */
92
93 bool
94 control_flow_insn_p (rtx insn)
95 {
96 rtx note;
97
98 switch (GET_CODE (insn))
99 {
100 case NOTE:
101 case CODE_LABEL:
102 return false;
103
104 case JUMP_INSN:
105 /* Jump insn always causes control transfer except for tablejumps. */
106 return (GET_CODE (PATTERN (insn)) != ADDR_VEC
107 && GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC);
108
109 case CALL_INSN:
110 /* Noreturn and sibling call instructions terminate the basic blocks
111 (but only if they happen unconditionally). */
112 if ((SIBLING_CALL_P (insn)
113 || find_reg_note (insn, REG_NORETURN, 0))
114 && GET_CODE (PATTERN (insn)) != COND_EXEC)
115 return true;
116 /* Call insn may return to the nonlocal goto handler. */
117 return ((nonlocal_goto_handler_labels
118 && (0 == (note = find_reg_note (insn, REG_EH_REGION,
119 NULL_RTX))
120 || INTVAL (XEXP (note, 0)) >= 0))
121 /* Or may trap. */
122 || can_throw_internal (insn));
123
124 case INSN:
125 return (flag_non_call_exceptions && can_throw_internal (insn));
126
127 case BARRIER:
128 /* It is nonsense to reach barrier when looking for the
129 end of basic block, but before dead code is eliminated
130 this may happen. */
131 return false;
132
133 default:
134 gcc_unreachable ();
135 }
136 }
137
138 /* Count the basic blocks of the function. */
139
140 static int
141 count_basic_blocks (rtx f)
142 {
143 int count = 0;
144 bool saw_insn = false;
145 rtx insn;
146
147 for (insn = f; insn; insn = NEXT_INSN (insn))
148 {
149 /* Code labels and barriers causes current basic block to be
150 terminated at previous real insn. */
151 if ((LABEL_P (insn) || BARRIER_P (insn))
152 && saw_insn)
153 count++, saw_insn = false;
154
155 /* Start basic block if needed. */
156 if (!saw_insn && inside_basic_block_p (insn))
157 saw_insn = true;
158
159 /* Control flow insn causes current basic block to be terminated. */
160 if (saw_insn && control_flow_insn_p (insn))
161 count++, saw_insn = false;
162 }
163
164 if (saw_insn)
165 count++;
166
167 /* The rest of the compiler works a bit smoother when we don't have to
168 check for the edge case of do-nothing functions with no basic blocks. */
169 if (count == 0)
170 {
171 emit_insn (gen_rtx_USE (VOIDmode, const0_rtx));
172 count = 1;
173 }
174
175 return count;
176 }
177 \f
178 /* Create an edge between two basic blocks. FLAGS are auxiliary information
179 about the edge that is accumulated between calls. */
180
181 /* Create an edge from a basic block to a label. */
182
183 static void
184 make_label_edge (sbitmap *edge_cache, basic_block src, rtx label, int flags)
185 {
186 gcc_assert (LABEL_P (label));
187
188 /* If the label was never emitted, this insn is junk, but avoid a
189 crash trying to refer to BLOCK_FOR_INSN (label). This can happen
190 as a result of a syntax error and a diagnostic has already been
191 printed. */
192
193 if (INSN_UID (label) == 0)
194 return;
195
196 cached_make_edge (edge_cache, src, BLOCK_FOR_INSN (label), flags);
197 }
198
199 /* Create the edges generated by INSN in REGION. */
200
201 void
202 rtl_make_eh_edge (sbitmap *edge_cache, basic_block src, rtx insn)
203 {
204 int is_call = CALL_P (insn) ? EDGE_ABNORMAL_CALL : 0;
205 rtx handlers, i;
206
207 handlers = reachable_handlers (insn);
208
209 for (i = handlers; i; i = XEXP (i, 1))
210 make_label_edge (edge_cache, src, XEXP (i, 0),
211 EDGE_ABNORMAL | EDGE_EH | is_call);
212
213 free_INSN_LIST_list (&handlers);
214 }
215
216 /* Identify the edges between basic blocks MIN to MAX.
217
218 NONLOCAL_LABEL_LIST is a list of non-local labels in the function. Blocks
219 that are otherwise unreachable may be reachable with a non-local goto.
220
221 BB_EH_END is an array indexed by basic block number in which we record
222 the list of exception regions active at the end of the basic block. */
223
224 static void
225 make_edges (basic_block min, basic_block max, int update_p)
226 {
227 basic_block bb;
228 sbitmap *edge_cache = NULL;
229
230 /* Assume no computed jump; revise as we create edges. */
231 current_function_has_computed_jump = 0;
232
233 /* If we are partitioning hot and cold basic blocks into separate
234 sections, we cannot assume there is no computed jump (partitioning
235 sometimes requires the use of indirect jumps; see comments about
236 partitioning at the top of bb-reorder.c:partition_hot_cold_basic_blocks
237 for complete details). */
238
239 if (flag_reorder_blocks_and_partition)
240 current_function_has_computed_jump = 1;
241
242 /* Heavy use of computed goto in machine-generated code can lead to
243 nearly fully-connected CFGs. In that case we spend a significant
244 amount of time searching the edge lists for duplicates. */
245 if (forced_labels || cfun->max_jumptable_ents > 100)
246 {
247 edge_cache = sbitmap_vector_alloc (last_basic_block, last_basic_block);
248 sbitmap_vector_zero (edge_cache, last_basic_block);
249
250 if (update_p)
251 FOR_BB_BETWEEN (bb, min, max->next_bb, next_bb)
252 {
253 edge e;
254 edge_iterator ei;
255
256 FOR_EACH_EDGE (e, ei, bb->succs)
257 if (e->dest != EXIT_BLOCK_PTR)
258 SET_BIT (edge_cache[bb->index], e->dest->index);
259 }
260 }
261
262 /* By nature of the way these get numbered, ENTRY_BLOCK_PTR->next_bb block
263 is always the entry. */
264 if (min == ENTRY_BLOCK_PTR->next_bb)
265 cached_make_edge (edge_cache, ENTRY_BLOCK_PTR, min,
266 EDGE_FALLTHRU);
267
268 FOR_BB_BETWEEN (bb, min, max->next_bb, next_bb)
269 {
270 rtx insn, x;
271 enum rtx_code code;
272 int force_fallthru = 0;
273 edge e;
274 edge_iterator ei;
275
276 if (LABEL_P (BB_HEAD (bb))
277 && LABEL_ALT_ENTRY_P (BB_HEAD (bb)))
278 cached_make_edge (NULL, ENTRY_BLOCK_PTR, bb, 0);
279
280 /* Examine the last instruction of the block, and discover the
281 ways we can leave the block. */
282
283 insn = BB_END (bb);
284 code = GET_CODE (insn);
285
286 /* A branch. */
287 if (code == JUMP_INSN)
288 {
289 rtx tmp;
290
291 /* Recognize exception handling placeholders. */
292 if (GET_CODE (PATTERN (insn)) == RESX)
293 rtl_make_eh_edge (edge_cache, bb, insn);
294
295 /* Recognize a non-local goto as a branch outside the
296 current function. */
297 else if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
298 ;
299
300 /* Recognize a tablejump and do the right thing. */
301 else if (tablejump_p (insn, NULL, &tmp))
302 {
303 rtvec vec;
304 int j;
305
306 if (GET_CODE (PATTERN (tmp)) == ADDR_VEC)
307 vec = XVEC (PATTERN (tmp), 0);
308 else
309 vec = XVEC (PATTERN (tmp), 1);
310
311 for (j = GET_NUM_ELEM (vec) - 1; j >= 0; --j)
312 make_label_edge (edge_cache, bb,
313 XEXP (RTVEC_ELT (vec, j), 0), 0);
314
315 /* Some targets (eg, ARM) emit a conditional jump that also
316 contains the out-of-range target. Scan for these and
317 add an edge if necessary. */
318 if ((tmp = single_set (insn)) != NULL
319 && SET_DEST (tmp) == pc_rtx
320 && GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE
321 && GET_CODE (XEXP (SET_SRC (tmp), 2)) == LABEL_REF)
322 make_label_edge (edge_cache, bb,
323 XEXP (XEXP (SET_SRC (tmp), 2), 0), 0);
324
325 #ifdef CASE_DROPS_THROUGH
326 /* Silly VAXen. The ADDR_VEC is going to be in the way of
327 us naturally detecting fallthru into the next block. */
328 force_fallthru = 1;
329 #endif
330 }
331
332 /* If this is a computed jump, then mark it as reaching
333 everything on the forced_labels list. */
334 else if (computed_jump_p (insn))
335 {
336 current_function_has_computed_jump = 1;
337
338 for (x = forced_labels; x; x = XEXP (x, 1))
339 make_label_edge (edge_cache, bb, XEXP (x, 0), EDGE_ABNORMAL);
340 }
341
342 /* Returns create an exit out. */
343 else if (returnjump_p (insn))
344 cached_make_edge (edge_cache, bb, EXIT_BLOCK_PTR, 0);
345
346 /* Otherwise, we have a plain conditional or unconditional jump. */
347 else
348 {
349 gcc_assert (JUMP_LABEL (insn));
350 make_label_edge (edge_cache, bb, JUMP_LABEL (insn), 0);
351 }
352 }
353
354 /* If this is a sibling call insn, then this is in effect a combined call
355 and return, and so we need an edge to the exit block. No need to
356 worry about EH edges, since we wouldn't have created the sibling call
357 in the first place. */
358 if (code == CALL_INSN && SIBLING_CALL_P (insn))
359 cached_make_edge (edge_cache, bb, EXIT_BLOCK_PTR,
360 EDGE_SIBCALL | EDGE_ABNORMAL);
361
362 /* If this is a CALL_INSN, then mark it as reaching the active EH
363 handler for this CALL_INSN. If we're handling non-call
364 exceptions then any insn can reach any of the active handlers.
365 Also mark the CALL_INSN as reaching any nonlocal goto handler. */
366 else if (code == CALL_INSN || flag_non_call_exceptions)
367 {
368 /* Add any appropriate EH edges. */
369 rtl_make_eh_edge (edge_cache, bb, insn);
370
371 if (code == CALL_INSN && nonlocal_goto_handler_labels)
372 {
373 /* ??? This could be made smarter: in some cases it's possible
374 to tell that certain calls will not do a nonlocal goto.
375 For example, if the nested functions that do the nonlocal
376 gotos do not have their addresses taken, then only calls to
377 those functions or to other nested functions that use them
378 could possibly do nonlocal gotos. */
379
380 /* We do know that a REG_EH_REGION note with a value less
381 than 0 is guaranteed not to perform a non-local goto. */
382 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
383
384 if (!note || INTVAL (XEXP (note, 0)) >= 0)
385 for (x = nonlocal_goto_handler_labels; x; x = XEXP (x, 1))
386 make_label_edge (edge_cache, bb, XEXP (x, 0),
387 EDGE_ABNORMAL | EDGE_ABNORMAL_CALL);
388 }
389 }
390
391 /* Find out if we can drop through to the next block. */
392 insn = NEXT_INSN (insn);
393 FOR_EACH_EDGE (e, ei, bb->succs)
394 if (e->dest == EXIT_BLOCK_PTR && e->flags & EDGE_FALLTHRU)
395 {
396 insn = 0;
397 break;
398 }
399 while (insn
400 && NOTE_P (insn)
401 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK)
402 insn = NEXT_INSN (insn);
403
404 if (!insn || (bb->next_bb == EXIT_BLOCK_PTR && force_fallthru))
405 cached_make_edge (edge_cache, bb, EXIT_BLOCK_PTR, EDGE_FALLTHRU);
406 else if (bb->next_bb != EXIT_BLOCK_PTR)
407 {
408 if (force_fallthru || insn == BB_HEAD (bb->next_bb))
409 cached_make_edge (edge_cache, bb, bb->next_bb, EDGE_FALLTHRU);
410 }
411 }
412
413 if (edge_cache)
414 sbitmap_vector_free (edge_cache);
415 }
416 \f
417 /* Find all basic blocks of the function whose first insn is F.
418
419 Collect and return a list of labels whose addresses are taken. This
420 will be used in make_edges for use with computed gotos. */
421
422 static void
423 find_basic_blocks_1 (rtx f)
424 {
425 rtx insn, next;
426 rtx bb_note = NULL_RTX;
427 rtx head = NULL_RTX;
428 rtx end = NULL_RTX;
429 basic_block prev = ENTRY_BLOCK_PTR;
430
431 /* We process the instructions in a slightly different way than we did
432 previously. This is so that we see a NOTE_BASIC_BLOCK after we have
433 closed out the previous block, so that it gets attached at the proper
434 place. Since this form should be equivalent to the previous,
435 count_basic_blocks continues to use the old form as a check. */
436
437 for (insn = f; insn; insn = next)
438 {
439 enum rtx_code code = GET_CODE (insn);
440
441 next = NEXT_INSN (insn);
442
443 if ((LABEL_P (insn) || BARRIER_P (insn))
444 && head)
445 {
446 prev = create_basic_block_structure (head, end, bb_note, prev);
447 head = end = NULL_RTX;
448 bb_note = NULL_RTX;
449 }
450
451 if (inside_basic_block_p (insn))
452 {
453 if (head == NULL_RTX)
454 head = insn;
455 end = insn;
456 }
457
458 if (head && control_flow_insn_p (insn))
459 {
460 prev = create_basic_block_structure (head, end, bb_note, prev);
461 head = end = NULL_RTX;
462 bb_note = NULL_RTX;
463 }
464
465 switch (code)
466 {
467 case NOTE:
468 {
469 int kind = NOTE_LINE_NUMBER (insn);
470
471 /* Look for basic block notes with which to keep the
472 basic_block_info pointers stable. Unthread the note now;
473 we'll put it back at the right place in create_basic_block.
474 Or not at all if we've already found a note in this block. */
475 if (kind == NOTE_INSN_BASIC_BLOCK)
476 {
477 if (bb_note == NULL_RTX)
478 bb_note = insn;
479 else
480 next = delete_insn (insn);
481 }
482 break;
483 }
484
485 case CODE_LABEL:
486 case JUMP_INSN:
487 case CALL_INSN:
488 case INSN:
489 case BARRIER:
490 break;
491
492 default:
493 gcc_unreachable ();
494 }
495 }
496
497 if (head != NULL_RTX)
498 create_basic_block_structure (head, end, bb_note, prev);
499 else if (bb_note)
500 delete_insn (bb_note);
501
502 gcc_assert (last_basic_block == n_basic_blocks);
503
504 clear_aux_for_blocks ();
505 }
506
507
508 /* Find basic blocks of the current function.
509 F is the first insn of the function and NREGS the number of register
510 numbers in use. */
511
512 void
513 find_basic_blocks (rtx f, int nregs ATTRIBUTE_UNUSED,
514 FILE *file ATTRIBUTE_UNUSED)
515 {
516 basic_block bb;
517
518 timevar_push (TV_CFG);
519
520 /* Flush out existing data. */
521 if (basic_block_info != NULL)
522 {
523 clear_edges ();
524
525 /* Clear bb->aux on all extant basic blocks. We'll use this as a
526 tag for reuse during create_basic_block, just in case some pass
527 copies around basic block notes improperly. */
528 FOR_EACH_BB (bb)
529 bb->aux = NULL;
530
531 basic_block_info = NULL;
532 }
533
534 n_basic_blocks = count_basic_blocks (f);
535 last_basic_block = 0;
536 ENTRY_BLOCK_PTR->next_bb = EXIT_BLOCK_PTR;
537 EXIT_BLOCK_PTR->prev_bb = ENTRY_BLOCK_PTR;
538
539 /* Size the basic block table. The actual structures will be allocated
540 by find_basic_blocks_1, since we want to keep the structure pointers
541 stable across calls to find_basic_blocks. */
542 /* ??? This whole issue would be much simpler if we called find_basic_blocks
543 exactly once, and thereafter we don't have a single long chain of
544 instructions at all until close to the end of compilation when we
545 actually lay them out. */
546
547 VARRAY_BB_INIT (basic_block_info, n_basic_blocks, "basic_block_info");
548
549 find_basic_blocks_1 (f);
550
551 profile_status = PROFILE_ABSENT;
552
553 /* Discover the edges of our cfg. */
554 make_edges (ENTRY_BLOCK_PTR->next_bb, EXIT_BLOCK_PTR->prev_bb, 0);
555
556 /* Do very simple cleanup now, for the benefit of code that runs between
557 here and cleanup_cfg, e.g. thread_prologue_and_epilogue_insns. */
558 tidy_fallthru_edges ();
559
560 #ifdef ENABLE_CHECKING
561 verify_flow_info ();
562 #endif
563 timevar_pop (TV_CFG);
564 }
565 \f
566 /* State of basic block as seen by find_sub_basic_blocks. */
567 enum state {BLOCK_NEW = 0, BLOCK_ORIGINAL, BLOCK_TO_SPLIT};
568
569 #define STATE(BB) (enum state) ((size_t) (BB)->aux)
570 #define SET_STATE(BB, STATE) ((BB)->aux = (void *) (size_t) (STATE))
571
572 /* Scan basic block BB for possible BB boundaries inside the block
573 and create new basic blocks in the progress. */
574
575 static void
576 find_bb_boundaries (basic_block bb)
577 {
578 rtx insn = BB_HEAD (bb);
579 rtx end = BB_END (bb);
580 rtx flow_transfer_insn = NULL_RTX;
581 edge fallthru = NULL;
582
583 if (insn == BB_END (bb))
584 return;
585
586 if (LABEL_P (insn))
587 insn = NEXT_INSN (insn);
588
589 /* Scan insn chain and try to find new basic block boundaries. */
590 while (1)
591 {
592 enum rtx_code code = GET_CODE (insn);
593
594 /* On code label, split current basic block. */
595 if (code == CODE_LABEL)
596 {
597 fallthru = split_block (bb, PREV_INSN (insn));
598 if (flow_transfer_insn)
599 BB_END (bb) = flow_transfer_insn;
600
601 bb = fallthru->dest;
602 remove_edge (fallthru);
603 flow_transfer_insn = NULL_RTX;
604 if (LABEL_ALT_ENTRY_P (insn))
605 make_edge (ENTRY_BLOCK_PTR, bb, 0);
606 }
607
608 /* In case we've previously seen an insn that effects a control
609 flow transfer, split the block. */
610 if (flow_transfer_insn && inside_basic_block_p (insn))
611 {
612 fallthru = split_block (bb, PREV_INSN (insn));
613 BB_END (bb) = flow_transfer_insn;
614 bb = fallthru->dest;
615 remove_edge (fallthru);
616 flow_transfer_insn = NULL_RTX;
617 }
618
619 if (control_flow_insn_p (insn))
620 flow_transfer_insn = insn;
621 if (insn == end)
622 break;
623 insn = NEXT_INSN (insn);
624 }
625
626 /* In case expander replaced normal insn by sequence terminating by
627 return and barrier, or possibly other sequence not behaving like
628 ordinary jump, we need to take care and move basic block boundary. */
629 if (flow_transfer_insn)
630 BB_END (bb) = flow_transfer_insn;
631
632 /* We've possibly replaced the conditional jump by conditional jump
633 followed by cleanup at fallthru edge, so the outgoing edges may
634 be dead. */
635 purge_dead_edges (bb);
636 }
637
638 /* Assume that frequency of basic block B is known. Compute frequencies
639 and probabilities of outgoing edges. */
640
641 static void
642 compute_outgoing_frequencies (basic_block b)
643 {
644 edge e, f;
645 edge_iterator ei;
646
647 if (EDGE_COUNT (b->succs) == 2)
648 {
649 rtx note = find_reg_note (BB_END (b), REG_BR_PROB, NULL);
650 int probability;
651
652 if (note)
653 {
654 probability = INTVAL (XEXP (note, 0));
655 e = BRANCH_EDGE (b);
656 e->probability = probability;
657 e->count = ((b->count * probability + REG_BR_PROB_BASE / 2)
658 / REG_BR_PROB_BASE);
659 f = FALLTHRU_EDGE (b);
660 f->probability = REG_BR_PROB_BASE - probability;
661 f->count = b->count - e->count;
662 return;
663 }
664 }
665
666 if (EDGE_COUNT (b->succs) == 1)
667 {
668 e = EDGE_SUCC (b, 0);
669 e->probability = REG_BR_PROB_BASE;
670 e->count = b->count;
671 return;
672 }
673 guess_outgoing_edge_probabilities (b);
674 if (b->count)
675 FOR_EACH_EDGE (e, ei, b->succs)
676 e->count = ((b->count * e->probability + REG_BR_PROB_BASE / 2)
677 / REG_BR_PROB_BASE);
678 }
679
680 /* Assume that someone emitted code with control flow instructions to the
681 basic block. Update the data structure. */
682
683 void
684 find_many_sub_basic_blocks (sbitmap blocks)
685 {
686 basic_block bb, min, max;
687
688 FOR_EACH_BB (bb)
689 SET_STATE (bb,
690 TEST_BIT (blocks, bb->index) ? BLOCK_TO_SPLIT : BLOCK_ORIGINAL);
691
692 FOR_EACH_BB (bb)
693 if (STATE (bb) == BLOCK_TO_SPLIT)
694 find_bb_boundaries (bb);
695
696 FOR_EACH_BB (bb)
697 if (STATE (bb) != BLOCK_ORIGINAL)
698 break;
699
700 min = max = bb;
701 for (; bb != EXIT_BLOCK_PTR; bb = bb->next_bb)
702 if (STATE (bb) != BLOCK_ORIGINAL)
703 max = bb;
704
705 /* Now re-scan and wire in all edges. This expect simple (conditional)
706 jumps at the end of each new basic blocks. */
707 make_edges (min, max, 1);
708
709 /* Update branch probabilities. Expect only (un)conditional jumps
710 to be created with only the forward edges. */
711 if (profile_status != PROFILE_ABSENT)
712 FOR_BB_BETWEEN (bb, min, max->next_bb, next_bb)
713 {
714 edge e;
715 edge_iterator ei;
716
717 if (STATE (bb) == BLOCK_ORIGINAL)
718 continue;
719 if (STATE (bb) == BLOCK_NEW)
720 {
721 bb->count = 0;
722 bb->frequency = 0;
723 FOR_EACH_EDGE (e, ei, bb->preds)
724 {
725 bb->count += e->count;
726 bb->frequency += EDGE_FREQUENCY (e);
727 }
728 }
729
730 compute_outgoing_frequencies (bb);
731 }
732
733 FOR_EACH_BB (bb)
734 SET_STATE (bb, 0);
735 }
736
737 /* Like above but for single basic block only. */
738
739 void
740 find_sub_basic_blocks (basic_block bb)
741 {
742 basic_block min, max, b;
743 basic_block next = bb->next_bb;
744
745 min = bb;
746 find_bb_boundaries (bb);
747 max = next->prev_bb;
748
749 /* Now re-scan and wire in all edges. This expect simple (conditional)
750 jumps at the end of each new basic blocks. */
751 make_edges (min, max, 1);
752
753 /* Update branch probabilities. Expect only (un)conditional jumps
754 to be created with only the forward edges. */
755 FOR_BB_BETWEEN (b, min, max->next_bb, next_bb)
756 {
757 edge e;
758 edge_iterator ei;
759
760 if (b != min)
761 {
762 b->count = 0;
763 b->frequency = 0;
764 FOR_EACH_EDGE (e, ei, b->preds)
765 {
766 b->count += e->count;
767 b->frequency += EDGE_FREQUENCY (e);
768 }
769 }
770
771 compute_outgoing_frequencies (b);
772 }
773 }