loop.c (emit_prefetch_instructions): Properly place the address computation.
[gcc.git] / gcc / cfgbuild.c
1 /* Control flow graph building code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* find_basic_blocks divides the current function's rtl into basic
23 blocks and constructs the CFG. The blocks are recorded in the
24 basic_block_info array; the CFG exists in the edge structures
25 referenced by the blocks.
26
27 find_basic_blocks also finds any unreachable loops and deletes them.
28
29 Available functionality:
30 - CFG construction
31 find_basic_blocks
32 - Local CFG construction
33 find_sub_basic_blocks */
34 \f
35 #include "config.h"
36 #include "system.h"
37 #include "tree.h"
38 #include "rtl.h"
39 #include "hard-reg-set.h"
40 #include "basic-block.h"
41 #include "regs.h"
42 #include "flags.h"
43 #include "output.h"
44 #include "function.h"
45 #include "except.h"
46 #include "toplev.h"
47 #include "timevar.h"
48 #include "obstack.h"
49
50 static int count_basic_blocks PARAMS ((rtx));
51 static void find_basic_blocks_1 PARAMS ((rtx));
52 static rtx find_label_refs PARAMS ((rtx, rtx));
53 static void make_edges PARAMS ((rtx, basic_block,
54 basic_block, int));
55 static void make_label_edge PARAMS ((sbitmap *, basic_block,
56 rtx, int));
57 static void make_eh_edge PARAMS ((sbitmap *, basic_block, rtx));
58 static void find_bb_boundaries PARAMS ((basic_block));
59 static void compute_outgoing_frequencies PARAMS ((basic_block));
60 static bool inside_basic_block_p PARAMS ((rtx));
61 static bool control_flow_insn_p PARAMS ((rtx));
62 \f
63 /* Return true if insn is something that should be contained inside basic
64 block. */
65
66 static bool
67 inside_basic_block_p (insn)
68 rtx insn;
69 {
70 switch (GET_CODE (insn))
71 {
72 case CODE_LABEL:
73 /* Avoid creating of basic block for jumptables. */
74 return (NEXT_INSN (insn) == 0
75 || GET_CODE (NEXT_INSN (insn)) != JUMP_INSN
76 || (GET_CODE (PATTERN (NEXT_INSN (insn))) != ADDR_VEC
77 && GET_CODE (PATTERN (NEXT_INSN (insn))) != ADDR_DIFF_VEC));
78
79 case JUMP_INSN:
80 return (GET_CODE (PATTERN (insn)) != ADDR_VEC
81 && GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC);
82
83 case CALL_INSN:
84 case INSN:
85 return true;
86
87 case BARRIER:
88 case NOTE:
89 return false;
90
91 default:
92 abort ();
93 }
94 }
95
96 /* Return true if INSN may cause control flow transfer, so it should be last in
97 the basic block. */
98
99 static bool
100 control_flow_insn_p (insn)
101 rtx insn;
102 {
103 rtx note;
104
105 switch (GET_CODE (insn))
106 {
107 case NOTE:
108 case CODE_LABEL:
109 return false;
110
111 case JUMP_INSN:
112 /* Jump insn always causes control transfer except for tablejumps. */
113 return (GET_CODE (PATTERN (insn)) != ADDR_VEC
114 && GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC);
115
116 case CALL_INSN:
117 /* Call insn may return to the nonlocal goto handler. */
118 return ((nonlocal_goto_handler_labels
119 && (0 == (note = find_reg_note (insn, REG_EH_REGION,
120 NULL_RTX))
121 || INTVAL (XEXP (note, 0)) >= 0))
122 /* Or may trap. */
123 || can_throw_internal (insn));
124
125 case INSN:
126 return (flag_non_call_exceptions && can_throw_internal (insn));
127
128 case BARRIER:
129 /* It is nonsence to reach barrier when looking for the
130 end of basic block, but before dead code is eliminated
131 this may happen. */
132 return false;
133
134 default:
135 abort ();
136 }
137 }
138
139 /* Count the basic blocks of the function. */
140
141 static int
142 count_basic_blocks (f)
143 rtx f;
144 {
145 int count = 0;
146 bool saw_insn = false;
147 rtx insn;
148
149 for (insn = f; insn; insn = NEXT_INSN (insn))
150 {
151 /* Code labels and barriers causes curent basic block to be
152 terminated at previous real insn. */
153 if ((GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == BARRIER)
154 && saw_insn)
155 count++, saw_insn = false;
156
157 /* Start basic block if needed. */
158 if (!saw_insn && inside_basic_block_p (insn))
159 saw_insn = true;
160
161 /* Control flow insn causes current basic block to be terminated. */
162 if (saw_insn && control_flow_insn_p (insn))
163 count++, saw_insn = false;
164 }
165
166 if (saw_insn)
167 count++;
168
169 /* The rest of the compiler works a bit smoother when we don't have to
170 check for the edge case of do-nothing functions with no basic blocks. */
171 if (count == 0)
172 {
173 emit_insn (gen_rtx_USE (VOIDmode, const0_rtx));
174 count = 1;
175 }
176
177 return count;
178 }
179
180 /* Scan a list of insns for labels referred to other than by jumps.
181 This is used to scan the alternatives of a call placeholder. */
182
183 static rtx
184 find_label_refs (f, lvl)
185 rtx f;
186 rtx lvl;
187 {
188 rtx insn;
189
190 for (insn = f; insn; insn = NEXT_INSN (insn))
191 if (INSN_P (insn) && GET_CODE (insn) != JUMP_INSN)
192 {
193 rtx note;
194
195 /* Make a list of all labels referred to other than by jumps
196 (which just don't have the REG_LABEL notes).
197
198 Make a special exception for labels followed by an ADDR*VEC,
199 as this would be a part of the tablejump setup code.
200
201 Make a special exception to registers loaded with label
202 values just before jump insns that use them. */
203
204 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
205 if (REG_NOTE_KIND (note) == REG_LABEL)
206 {
207 rtx lab = XEXP (note, 0), next;
208
209 if ((next = next_nonnote_insn (lab)) != NULL
210 && GET_CODE (next) == JUMP_INSN
211 && (GET_CODE (PATTERN (next)) == ADDR_VEC
212 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
213 ;
214 else if (GET_CODE (lab) == NOTE)
215 ;
216 else if (GET_CODE (NEXT_INSN (insn)) == JUMP_INSN
217 && find_reg_note (NEXT_INSN (insn), REG_LABEL, lab))
218 ;
219 else
220 lvl = alloc_EXPR_LIST (0, XEXP (note, 0), lvl);
221 }
222 }
223
224 return lvl;
225 }
226 \f
227 /* Create an edge between two basic blocks. FLAGS are auxiliary information
228 about the edge that is accumulated between calls. */
229
230 /* Create an edge from a basic block to a label. */
231
232 static void
233 make_label_edge (edge_cache, src, label, flags)
234 sbitmap *edge_cache;
235 basic_block src;
236 rtx label;
237 int flags;
238 {
239 if (GET_CODE (label) != CODE_LABEL)
240 abort ();
241
242 /* If the label was never emitted, this insn is junk, but avoid a
243 crash trying to refer to BLOCK_FOR_INSN (label). This can happen
244 as a result of a syntax error and a diagnostic has already been
245 printed. */
246
247 if (INSN_UID (label) == 0)
248 return;
249
250 cached_make_edge (edge_cache, src, BLOCK_FOR_INSN (label), flags);
251 }
252
253 /* Create the edges generated by INSN in REGION. */
254
255 static void
256 make_eh_edge (edge_cache, src, insn)
257 sbitmap *edge_cache;
258 basic_block src;
259 rtx insn;
260 {
261 int is_call = GET_CODE (insn) == CALL_INSN ? EDGE_ABNORMAL_CALL : 0;
262 rtx handlers, i;
263
264 handlers = reachable_handlers (insn);
265
266 for (i = handlers; i; i = XEXP (i, 1))
267 make_label_edge (edge_cache, src, XEXP (i, 0),
268 EDGE_ABNORMAL | EDGE_EH | is_call);
269
270 free_INSN_LIST_list (&handlers);
271 }
272
273 /* Identify the edges between basic blocks MIN to MAX.
274
275 NONLOCAL_LABEL_LIST is a list of non-local labels in the function. Blocks
276 that are otherwise unreachable may be reachable with a non-local goto.
277
278 BB_EH_END is an array indexed by basic block number in which we record
279 the list of exception regions active at the end of the basic block. */
280
281 static void
282 make_edges (label_value_list, min, max, update_p)
283 rtx label_value_list;
284 basic_block min, max;
285 int update_p;
286 {
287 basic_block bb;
288 sbitmap *edge_cache = NULL;
289
290 /* Assume no computed jump; revise as we create edges. */
291 current_function_has_computed_jump = 0;
292
293 /* Heavy use of computed goto in machine-generated code can lead to
294 nearly fully-connected CFGs. In that case we spend a significant
295 amount of time searching the edge lists for duplicates. */
296 if (forced_labels || label_value_list)
297 {
298 edge_cache = sbitmap_vector_alloc (last_basic_block, last_basic_block);
299 sbitmap_vector_zero (edge_cache, last_basic_block);
300
301 if (update_p)
302 FOR_BB_BETWEEN (bb, min, max->next_bb, next_bb)
303 {
304 edge e;
305
306 for (e = bb->succ; e ; e = e->succ_next)
307 if (e->dest != EXIT_BLOCK_PTR)
308 SET_BIT (edge_cache[bb->index], e->dest->index);
309 }
310 }
311
312 /* By nature of the way these get numbered, ENTRY_BLOCK_PTR->next_bb block
313 is always the entry. */
314 if (min == ENTRY_BLOCK_PTR->next_bb)
315 cached_make_edge (edge_cache, ENTRY_BLOCK_PTR, min,
316 EDGE_FALLTHRU);
317
318 FOR_BB_BETWEEN (bb, min, max->next_bb, next_bb)
319 {
320 rtx insn, x;
321 enum rtx_code code;
322 int force_fallthru = 0;
323
324 if (GET_CODE (bb->head) == CODE_LABEL && LABEL_ALTERNATE_NAME (bb->head))
325 cached_make_edge (NULL, ENTRY_BLOCK_PTR, bb, 0);
326
327 /* Examine the last instruction of the block, and discover the
328 ways we can leave the block. */
329
330 insn = bb->end;
331 code = GET_CODE (insn);
332
333 /* A branch. */
334 if (code == JUMP_INSN)
335 {
336 rtx tmp;
337
338 /* Recognize exception handling placeholders. */
339 if (GET_CODE (PATTERN (insn)) == RESX)
340 make_eh_edge (edge_cache, bb, insn);
341
342 /* Recognize a non-local goto as a branch outside the
343 current function. */
344 else if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
345 ;
346
347 /* ??? Recognize a tablejump and do the right thing. */
348 else if ((tmp = JUMP_LABEL (insn)) != NULL_RTX
349 && (tmp = NEXT_INSN (tmp)) != NULL_RTX
350 && GET_CODE (tmp) == JUMP_INSN
351 && (GET_CODE (PATTERN (tmp)) == ADDR_VEC
352 || GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC))
353 {
354 rtvec vec;
355 int j;
356
357 if (GET_CODE (PATTERN (tmp)) == ADDR_VEC)
358 vec = XVEC (PATTERN (tmp), 0);
359 else
360 vec = XVEC (PATTERN (tmp), 1);
361
362 for (j = GET_NUM_ELEM (vec) - 1; j >= 0; --j)
363 make_label_edge (edge_cache, bb,
364 XEXP (RTVEC_ELT (vec, j), 0), 0);
365
366 /* Some targets (eg, ARM) emit a conditional jump that also
367 contains the out-of-range target. Scan for these and
368 add an edge if necessary. */
369 if ((tmp = single_set (insn)) != NULL
370 && SET_DEST (tmp) == pc_rtx
371 && GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE
372 && GET_CODE (XEXP (SET_SRC (tmp), 2)) == LABEL_REF)
373 make_label_edge (edge_cache, bb,
374 XEXP (XEXP (SET_SRC (tmp), 2), 0), 0);
375
376 #ifdef CASE_DROPS_THROUGH
377 /* Silly VAXen. The ADDR_VEC is going to be in the way of
378 us naturally detecting fallthru into the next block. */
379 force_fallthru = 1;
380 #endif
381 }
382
383 /* If this is a computed jump, then mark it as reaching
384 everything on the label_value_list and forced_labels list. */
385 else if (computed_jump_p (insn))
386 {
387 current_function_has_computed_jump = 1;
388
389 for (x = label_value_list; x; x = XEXP (x, 1))
390 make_label_edge (edge_cache, bb, XEXP (x, 0), EDGE_ABNORMAL);
391
392 for (x = forced_labels; x; x = XEXP (x, 1))
393 make_label_edge (edge_cache, bb, XEXP (x, 0), EDGE_ABNORMAL);
394 }
395
396 /* Returns create an exit out. */
397 else if (returnjump_p (insn))
398 cached_make_edge (edge_cache, bb, EXIT_BLOCK_PTR, 0);
399
400 /* Otherwise, we have a plain conditional or unconditional jump. */
401 else
402 {
403 if (! JUMP_LABEL (insn))
404 abort ();
405 make_label_edge (edge_cache, bb, JUMP_LABEL (insn), 0);
406 }
407 }
408
409 /* If this is a sibling call insn, then this is in effect a combined call
410 and return, and so we need an edge to the exit block. No need to
411 worry about EH edges, since we wouldn't have created the sibling call
412 in the first place. */
413 if (code == CALL_INSN && SIBLING_CALL_P (insn))
414 cached_make_edge (edge_cache, bb, EXIT_BLOCK_PTR,
415 EDGE_ABNORMAL | EDGE_ABNORMAL_CALL);
416
417 /* If this is a CALL_INSN, then mark it as reaching the active EH
418 handler for this CALL_INSN. If we're handling non-call
419 exceptions then any insn can reach any of the active handlers.
420 Also mark the CALL_INSN as reaching any nonlocal goto handler. */
421 else if (code == CALL_INSN || flag_non_call_exceptions)
422 {
423 /* Add any appropriate EH edges. */
424 make_eh_edge (edge_cache, bb, insn);
425
426 if (code == CALL_INSN && nonlocal_goto_handler_labels)
427 {
428 /* ??? This could be made smarter: in some cases it's possible
429 to tell that certain calls will not do a nonlocal goto.
430 For example, if the nested functions that do the nonlocal
431 gotos do not have their addresses taken, then only calls to
432 those functions or to other nested functions that use them
433 could possibly do nonlocal gotos. */
434
435 /* We do know that a REG_EH_REGION note with a value less
436 than 0 is guaranteed not to perform a non-local goto. */
437 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
438
439 if (!note || INTVAL (XEXP (note, 0)) >= 0)
440 for (x = nonlocal_goto_handler_labels; x; x = XEXP (x, 1))
441 make_label_edge (edge_cache, bb, XEXP (x, 0),
442 EDGE_ABNORMAL | EDGE_ABNORMAL_CALL);
443 }
444 }
445
446 /* Find out if we can drop through to the next block. */
447 insn = next_nonnote_insn (insn);
448 if (!insn || (bb->next_bb == EXIT_BLOCK_PTR && force_fallthru))
449 cached_make_edge (edge_cache, bb, EXIT_BLOCK_PTR, EDGE_FALLTHRU);
450 else if (bb->next_bb != EXIT_BLOCK_PTR)
451 {
452 rtx tmp = bb->next_bb->head;
453 if (GET_CODE (tmp) == NOTE)
454 tmp = next_nonnote_insn (tmp);
455 if (force_fallthru || insn == tmp)
456 cached_make_edge (edge_cache, bb, bb->next_bb, EDGE_FALLTHRU);
457 }
458 }
459
460 if (edge_cache)
461 sbitmap_vector_free (edge_cache);
462 }
463 \f
464 /* Find all basic blocks of the function whose first insn is F.
465
466 Collect and return a list of labels whose addresses are taken. This
467 will be used in make_edges for use with computed gotos. */
468
469 static void
470 find_basic_blocks_1 (f)
471 rtx f;
472 {
473 rtx insn, next;
474 rtx bb_note = NULL_RTX;
475 rtx lvl = NULL_RTX;
476 rtx trll = NULL_RTX;
477 rtx head = NULL_RTX;
478 rtx end = NULL_RTX;
479 basic_block prev = ENTRY_BLOCK_PTR;
480
481 /* We process the instructions in a slightly different way than we did
482 previously. This is so that we see a NOTE_BASIC_BLOCK after we have
483 closed out the previous block, so that it gets attached at the proper
484 place. Since this form should be equivalent to the previous,
485 count_basic_blocks continues to use the old form as a check. */
486
487 for (insn = f; insn; insn = next)
488 {
489 enum rtx_code code = GET_CODE (insn);
490
491 next = NEXT_INSN (insn);
492
493 if ((GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == BARRIER)
494 && head)
495 {
496 prev = create_basic_block_structure (last_basic_block++, head, end, bb_note, prev);
497 head = end = NULL_RTX;
498 bb_note = NULL_RTX;
499 }
500
501 if (inside_basic_block_p (insn))
502 {
503 if (head == NULL_RTX)
504 head = insn;
505 end = insn;
506 }
507
508 if (head && control_flow_insn_p (insn))
509 {
510 prev = create_basic_block_structure (last_basic_block++, head, end, bb_note, prev);
511 head = end = NULL_RTX;
512 bb_note = NULL_RTX;
513 }
514
515 switch (code)
516 {
517 case NOTE:
518 {
519 int kind = NOTE_LINE_NUMBER (insn);
520
521 /* Look for basic block notes with which to keep the
522 basic_block_info pointers stable. Unthread the note now;
523 we'll put it back at the right place in create_basic_block.
524 Or not at all if we've already found a note in this block. */
525 if (kind == NOTE_INSN_BASIC_BLOCK)
526 {
527 if (bb_note == NULL_RTX)
528 bb_note = insn;
529 else
530 next = delete_insn (insn);
531 }
532 break;
533 }
534
535 case CODE_LABEL:
536 case JUMP_INSN:
537 case INSN:
538 case BARRIER:
539 break;
540
541 case CALL_INSN:
542 if (GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
543 {
544 /* Scan each of the alternatives for label refs. */
545 lvl = find_label_refs (XEXP (PATTERN (insn), 0), lvl);
546 lvl = find_label_refs (XEXP (PATTERN (insn), 1), lvl);
547 lvl = find_label_refs (XEXP (PATTERN (insn), 2), lvl);
548 /* Record its tail recursion label, if any. */
549 if (XEXP (PATTERN (insn), 3) != NULL_RTX)
550 trll = alloc_EXPR_LIST (0, XEXP (PATTERN (insn), 3), trll);
551 }
552 break;
553
554 default:
555 abort ();
556 }
557
558 if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
559 {
560 rtx note;
561
562 /* Make a list of all labels referred to other than by jumps.
563
564 Make a special exception for labels followed by an ADDR*VEC,
565 as this would be a part of the tablejump setup code.
566
567 Make a special exception to registers loaded with label
568 values just before jump insns that use them. */
569
570 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
571 if (REG_NOTE_KIND (note) == REG_LABEL)
572 {
573 rtx lab = XEXP (note, 0), next;
574
575 if ((next = next_nonnote_insn (lab)) != NULL
576 && GET_CODE (next) == JUMP_INSN
577 && (GET_CODE (PATTERN (next)) == ADDR_VEC
578 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
579 ;
580 else if (GET_CODE (lab) == NOTE)
581 ;
582 else if (GET_CODE (NEXT_INSN (insn)) == JUMP_INSN
583 && find_reg_note (NEXT_INSN (insn), REG_LABEL, lab))
584 ;
585 else
586 lvl = alloc_EXPR_LIST (0, XEXP (note, 0), lvl);
587 }
588 }
589 }
590
591 if (head != NULL_RTX)
592 create_basic_block_structure (last_basic_block++, head, end, bb_note, prev);
593 else if (bb_note)
594 delete_insn (bb_note);
595
596 if (last_basic_block != n_basic_blocks)
597 abort ();
598
599 label_value_list = lvl;
600 tail_recursion_label_list = trll;
601 clear_aux_for_blocks ();
602 }
603
604
605 /* Find basic blocks of the current function.
606 F is the first insn of the function and NREGS the number of register
607 numbers in use. */
608
609 void
610 find_basic_blocks (f, nregs, file)
611 rtx f;
612 int nregs ATTRIBUTE_UNUSED;
613 FILE *file ATTRIBUTE_UNUSED;
614 {
615 int max_uid;
616 basic_block bb;
617
618 timevar_push (TV_CFG);
619
620 /* Flush out existing data. */
621 if (basic_block_info != NULL)
622 {
623 clear_edges ();
624
625 /* Clear bb->aux on all extant basic blocks. We'll use this as a
626 tag for reuse during create_basic_block, just in case some pass
627 copies around basic block notes improperly. */
628 FOR_EACH_BB (bb)
629 bb->aux = NULL;
630
631 VARRAY_FREE (basic_block_info);
632 }
633
634 n_basic_blocks = count_basic_blocks (f);
635 last_basic_block = 0;
636 ENTRY_BLOCK_PTR->next_bb = EXIT_BLOCK_PTR;
637 EXIT_BLOCK_PTR->prev_bb = ENTRY_BLOCK_PTR;
638
639 /* Size the basic block table. The actual structures will be allocated
640 by find_basic_blocks_1, since we want to keep the structure pointers
641 stable across calls to find_basic_blocks. */
642 /* ??? This whole issue would be much simpler if we called find_basic_blocks
643 exactly once, and thereafter we don't have a single long chain of
644 instructions at all until close to the end of compilation when we
645 actually lay them out. */
646
647 VARRAY_BB_INIT (basic_block_info, n_basic_blocks, "basic_block_info");
648
649 find_basic_blocks_1 (f);
650
651 /* Record the block to which an insn belongs. */
652 /* ??? This should be done another way, by which (perhaps) a label is
653 tagged directly with the basic block that it starts. It is used for
654 more than that currently, but IMO that is the only valid use. */
655
656 max_uid = get_max_uid ();
657 #ifdef AUTO_INC_DEC
658 /* Leave space for insns life_analysis makes in some cases for auto-inc.
659 These cases are rare, so we don't need too much space. */
660 max_uid += max_uid / 10;
661 #endif
662
663 compute_bb_for_insn (max_uid);
664
665 /* Discover the edges of our cfg. */
666 make_edges (label_value_list, ENTRY_BLOCK_PTR->next_bb, EXIT_BLOCK_PTR->prev_bb, 0);
667
668 /* Do very simple cleanup now, for the benefit of code that runs between
669 here and cleanup_cfg, e.g. thread_prologue_and_epilogue_insns. */
670 tidy_fallthru_edges ();
671
672 #ifdef ENABLE_CHECKING
673 verify_flow_info ();
674 #endif
675 timevar_pop (TV_CFG);
676 }
677 \f
678 /* State of basic block as seen by find_sub_basic_blocks. */
679 enum state {BLOCK_NEW = 0, BLOCK_ORIGINAL, BLOCK_TO_SPLIT};
680
681 #define STATE(BB) (enum state) ((size_t) (BB)->aux)
682 #define SET_STATE(BB, STATE) ((BB)->aux = (void *) (size_t) (STATE))
683
684 /* Scan basic block BB for possible BB boundaries inside the block
685 and create new basic blocks in the progress. */
686
687 static void
688 find_bb_boundaries (bb)
689 basic_block bb;
690 {
691 rtx insn = bb->head;
692 rtx end = bb->end;
693 rtx flow_transfer_insn = NULL_RTX;
694 edge fallthru = NULL;
695
696 if (insn == bb->end)
697 return;
698
699 if (GET_CODE (insn) == CODE_LABEL)
700 insn = NEXT_INSN (insn);
701
702 /* Scan insn chain and try to find new basic block boundaries. */
703 while (1)
704 {
705 enum rtx_code code = GET_CODE (insn);
706
707 /* On code label, split current basic block. */
708 if (code == CODE_LABEL)
709 {
710 fallthru = split_block (bb, PREV_INSN (insn));
711 if (flow_transfer_insn)
712 bb->end = flow_transfer_insn;
713
714 bb = fallthru->dest;
715 remove_edge (fallthru);
716 flow_transfer_insn = NULL_RTX;
717 if (LABEL_ALTERNATE_NAME (insn))
718 make_edge (ENTRY_BLOCK_PTR, bb, 0);
719 }
720
721 /* In case we've previously seen an insn that effects a control
722 flow transfer, split the block. */
723 if (flow_transfer_insn && inside_basic_block_p (insn))
724 {
725 fallthru = split_block (bb, PREV_INSN (insn));
726 bb->end = flow_transfer_insn;
727 bb = fallthru->dest;
728 remove_edge (fallthru);
729 flow_transfer_insn = NULL_RTX;
730 }
731
732 if (control_flow_insn_p (insn))
733 flow_transfer_insn = insn;
734 if (insn == end)
735 break;
736 insn = NEXT_INSN (insn);
737 }
738
739 /* In case expander replaced normal insn by sequence terminating by
740 return and barrier, or possibly other sequence not behaving like
741 ordinary jump, we need to take care and move basic block boundary. */
742 if (flow_transfer_insn)
743 bb->end = flow_transfer_insn;
744
745 /* We've possibly replaced the conditional jump by conditional jump
746 followed by cleanup at fallthru edge, so the outgoing edges may
747 be dead. */
748 purge_dead_edges (bb);
749 }
750
751 /* Assume that frequency of basic block B is known. Compute frequencies
752 and probabilities of outgoing edges. */
753
754 static void
755 compute_outgoing_frequencies (b)
756 basic_block b;
757 {
758 edge e, f;
759
760 if (b->succ && b->succ->succ_next && !b->succ->succ_next->succ_next)
761 {
762 rtx note = find_reg_note (b->end, REG_BR_PROB, NULL);
763 int probability;
764
765 if (!note)
766 return;
767
768 probability = INTVAL (XEXP (find_reg_note (b->end,
769 REG_BR_PROB, NULL),
770 0));
771 e = BRANCH_EDGE (b);
772 e->probability = probability;
773 e->count = ((b->count * probability + REG_BR_PROB_BASE / 2)
774 / REG_BR_PROB_BASE);
775 f = FALLTHRU_EDGE (b);
776 f->probability = REG_BR_PROB_BASE - probability;
777 f->count = b->count - e->count;
778 }
779
780 if (b->succ && !b->succ->succ_next)
781 {
782 e = b->succ;
783 e->probability = REG_BR_PROB_BASE;
784 e->count = b->count;
785 }
786 }
787
788 /* Assume that someone emitted code with control flow instructions to the
789 basic block. Update the data structure. */
790
791 void
792 find_many_sub_basic_blocks (blocks)
793 sbitmap blocks;
794 {
795 basic_block bb, min, max;
796
797 FOR_EACH_BB (bb)
798 SET_STATE (bb,
799 TEST_BIT (blocks, bb->index) ? BLOCK_TO_SPLIT : BLOCK_ORIGINAL);
800
801 FOR_EACH_BB (bb)
802 if (STATE (bb) == BLOCK_TO_SPLIT)
803 find_bb_boundaries (bb);
804
805 FOR_EACH_BB (bb)
806 if (STATE (bb) != BLOCK_ORIGINAL)
807 break;
808
809 min = max = bb;
810 for (; bb != EXIT_BLOCK_PTR; bb = bb->next_bb)
811 if (STATE (bb) != BLOCK_ORIGINAL)
812 max = bb;
813
814 /* Now re-scan and wire in all edges. This expect simple (conditional)
815 jumps at the end of each new basic blocks. */
816 make_edges (NULL, min, max, 1);
817
818 /* Update branch probabilities. Expect only (un)conditional jumps
819 to be created with only the forward edges. */
820 FOR_BB_BETWEEN (bb, min, max->next_bb, next_bb)
821 {
822 edge e;
823
824 if (STATE (bb) == BLOCK_ORIGINAL)
825 continue;
826 if (STATE (bb) == BLOCK_NEW)
827 {
828 bb->count = 0;
829 bb->frequency = 0;
830 for (e = bb->pred; e; e=e->pred_next)
831 {
832 bb->count += e->count;
833 bb->frequency += EDGE_FREQUENCY (e);
834 }
835 }
836
837 compute_outgoing_frequencies (bb);
838 }
839
840 FOR_EACH_BB (bb)
841 SET_STATE (bb, 0);
842 }
843
844 /* Like above but for single basic block only. */
845
846 void
847 find_sub_basic_blocks (bb)
848 basic_block bb;
849 {
850 basic_block min, max, b;
851 basic_block next = bb->next_bb;
852
853 min = bb;
854 find_bb_boundaries (bb);
855 max = next->prev_bb;
856
857 /* Now re-scan and wire in all edges. This expect simple (conditional)
858 jumps at the end of each new basic blocks. */
859 make_edges (NULL, min, max, 1);
860
861 /* Update branch probabilities. Expect only (un)conditional jumps
862 to be created with only the forward edges. */
863 FOR_BB_BETWEEN (b, min, max->next_bb, next_bb)
864 {
865 edge e;
866
867 if (b != min)
868 {
869 b->count = 0;
870 b->frequency = 0;
871 for (e = b->pred; e; e=e->pred_next)
872 {
873 b->count += e->count;
874 b->frequency += EDGE_FREQUENCY (e);
875 }
876 }
877
878 compute_outgoing_frequencies (b);
879 }
880 }