re PR preprocessor/36674 (#include location is offset by one row in errors from prepr...
[gcc.git] / gcc / cfgcleanup.c
1 /* Control flow optimization code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file contains optimizer of the control flow. The main entry point is
23 cleanup_cfg. Following optimizations are performed:
24
25 - Unreachable blocks removal
26 - Edge forwarding (edge to the forwarder block is forwarded to its
27 successor. Simplification of the branch instruction is performed by
28 underlying infrastructure so branch can be converted to simplejump or
29 eliminated).
30 - Cross jumping (tail merging)
31 - Conditional jump-around-simplejump simplification
32 - Basic block merging. */
33
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "rtl.h"
39 #include "hard-reg-set.h"
40 #include "regs.h"
41 #include "timevar.h"
42 #include "output.h"
43 #include "insn-config.h"
44 #include "flags.h"
45 #include "recog.h"
46 #include "toplev.h"
47 #include "cselib.h"
48 #include "params.h"
49 #include "tm_p.h"
50 #include "target.h"
51 #include "cfglayout.h"
52 #include "emit-rtl.h"
53 #include "tree-pass.h"
54 #include "cfgloop.h"
55 #include "expr.h"
56 #include "df.h"
57 #include "dce.h"
58 #include "dbgcnt.h"
59
60 #define FORWARDER_BLOCK_P(BB) ((BB)->flags & BB_FORWARDER_BLOCK)
61
62 /* Set to true when we are running first pass of try_optimize_cfg loop. */
63 static bool first_pass;
64
65 /* Set to true if crossjumps occured in the latest run of try_optimize_cfg. */
66 static bool crossjumps_occured;
67
68 static bool try_crossjump_to_edge (int, edge, edge);
69 static bool try_crossjump_bb (int, basic_block);
70 static bool outgoing_edges_match (int, basic_block, basic_block);
71 static int flow_find_cross_jump (int, basic_block, basic_block, rtx *, rtx *);
72 static bool old_insns_match_p (int, rtx, rtx);
73
74 static void merge_blocks_move_predecessor_nojumps (basic_block, basic_block);
75 static void merge_blocks_move_successor_nojumps (basic_block, basic_block);
76 static bool try_optimize_cfg (int);
77 static bool try_simplify_condjump (basic_block);
78 static bool try_forward_edges (int, basic_block);
79 static edge thread_jump (edge, basic_block);
80 static bool mark_effect (rtx, bitmap);
81 static void notice_new_block (basic_block);
82 static void update_forwarder_flag (basic_block);
83 static int mentions_nonequal_regs (rtx *, void *);
84 static void merge_memattrs (rtx, rtx);
85 \f
86 /* Set flags for newly created block. */
87
88 static void
89 notice_new_block (basic_block bb)
90 {
91 if (!bb)
92 return;
93
94 if (forwarder_block_p (bb))
95 bb->flags |= BB_FORWARDER_BLOCK;
96 }
97
98 /* Recompute forwarder flag after block has been modified. */
99
100 static void
101 update_forwarder_flag (basic_block bb)
102 {
103 if (forwarder_block_p (bb))
104 bb->flags |= BB_FORWARDER_BLOCK;
105 else
106 bb->flags &= ~BB_FORWARDER_BLOCK;
107 }
108 \f
109 /* Simplify a conditional jump around an unconditional jump.
110 Return true if something changed. */
111
112 static bool
113 try_simplify_condjump (basic_block cbranch_block)
114 {
115 basic_block jump_block, jump_dest_block, cbranch_dest_block;
116 edge cbranch_jump_edge, cbranch_fallthru_edge;
117 rtx cbranch_insn;
118
119 /* Verify that there are exactly two successors. */
120 if (EDGE_COUNT (cbranch_block->succs) != 2)
121 return false;
122
123 /* Verify that we've got a normal conditional branch at the end
124 of the block. */
125 cbranch_insn = BB_END (cbranch_block);
126 if (!any_condjump_p (cbranch_insn))
127 return false;
128
129 cbranch_fallthru_edge = FALLTHRU_EDGE (cbranch_block);
130 cbranch_jump_edge = BRANCH_EDGE (cbranch_block);
131
132 /* The next block must not have multiple predecessors, must not
133 be the last block in the function, and must contain just the
134 unconditional jump. */
135 jump_block = cbranch_fallthru_edge->dest;
136 if (!single_pred_p (jump_block)
137 || jump_block->next_bb == EXIT_BLOCK_PTR
138 || !FORWARDER_BLOCK_P (jump_block))
139 return false;
140 jump_dest_block = single_succ (jump_block);
141
142 /* If we are partitioning hot/cold basic blocks, we don't want to
143 mess up unconditional or indirect jumps that cross between hot
144 and cold sections.
145
146 Basic block partitioning may result in some jumps that appear to
147 be optimizable (or blocks that appear to be mergeable), but which really
148 must be left untouched (they are required to make it safely across
149 partition boundaries). See the comments at the top of
150 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
151
152 if (BB_PARTITION (jump_block) != BB_PARTITION (jump_dest_block)
153 || (cbranch_jump_edge->flags & EDGE_CROSSING))
154 return false;
155
156 /* The conditional branch must target the block after the
157 unconditional branch. */
158 cbranch_dest_block = cbranch_jump_edge->dest;
159
160 if (cbranch_dest_block == EXIT_BLOCK_PTR
161 || !can_fallthru (jump_block, cbranch_dest_block))
162 return false;
163
164 /* Invert the conditional branch. */
165 if (!invert_jump (cbranch_insn, block_label (jump_dest_block), 0))
166 return false;
167
168 if (dump_file)
169 fprintf (dump_file, "Simplifying condjump %i around jump %i\n",
170 INSN_UID (cbranch_insn), INSN_UID (BB_END (jump_block)));
171
172 /* Success. Update the CFG to match. Note that after this point
173 the edge variable names appear backwards; the redirection is done
174 this way to preserve edge profile data. */
175 cbranch_jump_edge = redirect_edge_succ_nodup (cbranch_jump_edge,
176 cbranch_dest_block);
177 cbranch_fallthru_edge = redirect_edge_succ_nodup (cbranch_fallthru_edge,
178 jump_dest_block);
179 cbranch_jump_edge->flags |= EDGE_FALLTHRU;
180 cbranch_fallthru_edge->flags &= ~EDGE_FALLTHRU;
181 update_br_prob_note (cbranch_block);
182
183 /* Delete the block with the unconditional jump, and clean up the mess. */
184 delete_basic_block (jump_block);
185 tidy_fallthru_edge (cbranch_jump_edge);
186 update_forwarder_flag (cbranch_block);
187
188 return true;
189 }
190 \f
191 /* Attempt to prove that operation is NOOP using CSElib or mark the effect
192 on register. Used by jump threading. */
193
194 static bool
195 mark_effect (rtx exp, regset nonequal)
196 {
197 int regno;
198 rtx dest;
199 switch (GET_CODE (exp))
200 {
201 /* In case we do clobber the register, mark it as equal, as we know the
202 value is dead so it don't have to match. */
203 case CLOBBER:
204 if (REG_P (XEXP (exp, 0)))
205 {
206 dest = XEXP (exp, 0);
207 regno = REGNO (dest);
208 CLEAR_REGNO_REG_SET (nonequal, regno);
209 if (regno < FIRST_PSEUDO_REGISTER)
210 {
211 int n = hard_regno_nregs[regno][GET_MODE (dest)];
212 while (--n > 0)
213 CLEAR_REGNO_REG_SET (nonequal, regno + n);
214 }
215 }
216 return false;
217
218 case SET:
219 if (rtx_equal_for_cselib_p (SET_DEST (exp), SET_SRC (exp)))
220 return false;
221 dest = SET_DEST (exp);
222 if (dest == pc_rtx)
223 return false;
224 if (!REG_P (dest))
225 return true;
226 regno = REGNO (dest);
227 SET_REGNO_REG_SET (nonequal, regno);
228 if (regno < FIRST_PSEUDO_REGISTER)
229 {
230 int n = hard_regno_nregs[regno][GET_MODE (dest)];
231 while (--n > 0)
232 SET_REGNO_REG_SET (nonequal, regno + n);
233 }
234 return false;
235
236 default:
237 return false;
238 }
239 }
240
241 /* Return nonzero if X is a register set in regset DATA.
242 Called via for_each_rtx. */
243 static int
244 mentions_nonequal_regs (rtx *x, void *data)
245 {
246 regset nonequal = (regset) data;
247 if (REG_P (*x))
248 {
249 int regno;
250
251 regno = REGNO (*x);
252 if (REGNO_REG_SET_P (nonequal, regno))
253 return 1;
254 if (regno < FIRST_PSEUDO_REGISTER)
255 {
256 int n = hard_regno_nregs[regno][GET_MODE (*x)];
257 while (--n > 0)
258 if (REGNO_REG_SET_P (nonequal, regno + n))
259 return 1;
260 }
261 }
262 return 0;
263 }
264 /* Attempt to prove that the basic block B will have no side effects and
265 always continues in the same edge if reached via E. Return the edge
266 if exist, NULL otherwise. */
267
268 static edge
269 thread_jump (edge e, basic_block b)
270 {
271 rtx set1, set2, cond1, cond2, insn;
272 enum rtx_code code1, code2, reversed_code2;
273 bool reverse1 = false;
274 unsigned i;
275 regset nonequal;
276 bool failed = false;
277 reg_set_iterator rsi;
278
279 if (b->flags & BB_NONTHREADABLE_BLOCK)
280 return NULL;
281
282 /* At the moment, we do handle only conditional jumps, but later we may
283 want to extend this code to tablejumps and others. */
284 if (EDGE_COUNT (e->src->succs) != 2)
285 return NULL;
286 if (EDGE_COUNT (b->succs) != 2)
287 {
288 b->flags |= BB_NONTHREADABLE_BLOCK;
289 return NULL;
290 }
291
292 /* Second branch must end with onlyjump, as we will eliminate the jump. */
293 if (!any_condjump_p (BB_END (e->src)))
294 return NULL;
295
296 if (!any_condjump_p (BB_END (b)) || !onlyjump_p (BB_END (b)))
297 {
298 b->flags |= BB_NONTHREADABLE_BLOCK;
299 return NULL;
300 }
301
302 set1 = pc_set (BB_END (e->src));
303 set2 = pc_set (BB_END (b));
304 if (((e->flags & EDGE_FALLTHRU) != 0)
305 != (XEXP (SET_SRC (set1), 1) == pc_rtx))
306 reverse1 = true;
307
308 cond1 = XEXP (SET_SRC (set1), 0);
309 cond2 = XEXP (SET_SRC (set2), 0);
310 if (reverse1)
311 code1 = reversed_comparison_code (cond1, BB_END (e->src));
312 else
313 code1 = GET_CODE (cond1);
314
315 code2 = GET_CODE (cond2);
316 reversed_code2 = reversed_comparison_code (cond2, BB_END (b));
317
318 if (!comparison_dominates_p (code1, code2)
319 && !comparison_dominates_p (code1, reversed_code2))
320 return NULL;
321
322 /* Ensure that the comparison operators are equivalent.
323 ??? This is far too pessimistic. We should allow swapped operands,
324 different CCmodes, or for example comparisons for interval, that
325 dominate even when operands are not equivalent. */
326 if (!rtx_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
327 || !rtx_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
328 return NULL;
329
330 /* Short circuit cases where block B contains some side effects, as we can't
331 safely bypass it. */
332 for (insn = NEXT_INSN (BB_HEAD (b)); insn != NEXT_INSN (BB_END (b));
333 insn = NEXT_INSN (insn))
334 if (INSN_P (insn) && side_effects_p (PATTERN (insn)))
335 {
336 b->flags |= BB_NONTHREADABLE_BLOCK;
337 return NULL;
338 }
339
340 cselib_init (false);
341
342 /* First process all values computed in the source basic block. */
343 for (insn = NEXT_INSN (BB_HEAD (e->src));
344 insn != NEXT_INSN (BB_END (e->src));
345 insn = NEXT_INSN (insn))
346 if (INSN_P (insn))
347 cselib_process_insn (insn);
348
349 nonequal = BITMAP_ALLOC (NULL);
350 CLEAR_REG_SET (nonequal);
351
352 /* Now assume that we've continued by the edge E to B and continue
353 processing as if it were same basic block.
354 Our goal is to prove that whole block is an NOOP. */
355
356 for (insn = NEXT_INSN (BB_HEAD (b));
357 insn != NEXT_INSN (BB_END (b)) && !failed;
358 insn = NEXT_INSN (insn))
359 {
360 if (INSN_P (insn))
361 {
362 rtx pat = PATTERN (insn);
363
364 if (GET_CODE (pat) == PARALLEL)
365 {
366 for (i = 0; i < (unsigned)XVECLEN (pat, 0); i++)
367 failed |= mark_effect (XVECEXP (pat, 0, i), nonequal);
368 }
369 else
370 failed |= mark_effect (pat, nonequal);
371 }
372
373 cselib_process_insn (insn);
374 }
375
376 /* Later we should clear nonequal of dead registers. So far we don't
377 have life information in cfg_cleanup. */
378 if (failed)
379 {
380 b->flags |= BB_NONTHREADABLE_BLOCK;
381 goto failed_exit;
382 }
383
384 /* cond2 must not mention any register that is not equal to the
385 former block. */
386 if (for_each_rtx (&cond2, mentions_nonequal_regs, nonequal))
387 goto failed_exit;
388
389 EXECUTE_IF_SET_IN_REG_SET (nonequal, 0, i, rsi)
390 goto failed_exit;
391
392 BITMAP_FREE (nonequal);
393 cselib_finish ();
394 if ((comparison_dominates_p (code1, code2) != 0)
395 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
396 return BRANCH_EDGE (b);
397 else
398 return FALLTHRU_EDGE (b);
399
400 failed_exit:
401 BITMAP_FREE (nonequal);
402 cselib_finish ();
403 return NULL;
404 }
405 \f
406 /* Attempt to forward edges leaving basic block B.
407 Return true if successful. */
408
409 static bool
410 try_forward_edges (int mode, basic_block b)
411 {
412 bool changed = false;
413 edge_iterator ei;
414 edge e, *threaded_edges = NULL;
415
416 /* If we are partitioning hot/cold basic blocks, we don't want to
417 mess up unconditional or indirect jumps that cross between hot
418 and cold sections.
419
420 Basic block partitioning may result in some jumps that appear to
421 be optimizable (or blocks that appear to be mergeable), but which really
422 must be left untouched (they are required to make it safely across
423 partition boundaries). See the comments at the top of
424 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
425
426 if (find_reg_note (BB_END (b), REG_CROSSING_JUMP, NULL_RTX))
427 return false;
428
429 for (ei = ei_start (b->succs); (e = ei_safe_edge (ei)); )
430 {
431 basic_block target, first;
432 int counter, goto_locus;
433 bool threaded = false;
434 int nthreaded_edges = 0;
435 bool may_thread = first_pass | df_get_bb_dirty (b);
436
437 /* Skip complex edges because we don't know how to update them.
438
439 Still handle fallthru edges, as we can succeed to forward fallthru
440 edge to the same place as the branch edge of conditional branch
441 and turn conditional branch to an unconditional branch. */
442 if (e->flags & EDGE_COMPLEX)
443 {
444 ei_next (&ei);
445 continue;
446 }
447
448 target = first = e->dest;
449 counter = NUM_FIXED_BLOCKS;
450 goto_locus = e->goto_locus;
451
452 /* If we are partitioning hot/cold basic_blocks, we don't want to mess
453 up jumps that cross between hot/cold sections.
454
455 Basic block partitioning may result in some jumps that appear
456 to be optimizable (or blocks that appear to be mergeable), but which
457 really must be left untouched (they are required to make it safely
458 across partition boundaries). See the comments at the top of
459 bb-reorder.c:partition_hot_cold_basic_blocks for complete
460 details. */
461
462 if (first != EXIT_BLOCK_PTR
463 && find_reg_note (BB_END (first), REG_CROSSING_JUMP, NULL_RTX))
464 return false;
465
466 while (counter < n_basic_blocks)
467 {
468 basic_block new_target = NULL;
469 bool new_target_threaded = false;
470 may_thread |= df_get_bb_dirty (target);
471
472 if (FORWARDER_BLOCK_P (target)
473 && !(single_succ_edge (target)->flags & EDGE_CROSSING)
474 && single_succ (target) != EXIT_BLOCK_PTR)
475 {
476 /* Bypass trivial infinite loops. */
477 new_target = single_succ (target);
478 if (target == new_target)
479 counter = n_basic_blocks;
480 else if (!optimize)
481 {
482 /* When not optimizing, ensure that edges or forwarder
483 blocks with different locus are not optimized out. */
484 int locus = single_succ_edge (target)->goto_locus;
485
486 if (locus && goto_locus && !locator_eq (locus, goto_locus))
487 counter = n_basic_blocks;
488 else if (locus)
489 goto_locus = locus;
490
491 if (INSN_P (BB_END (target)))
492 {
493 locus = INSN_LOCATOR (BB_END (target));
494
495 if (locus && goto_locus
496 && !locator_eq (locus, goto_locus))
497 counter = n_basic_blocks;
498 else if (locus)
499 goto_locus = locus;
500 }
501 }
502 }
503
504 /* Allow to thread only over one edge at time to simplify updating
505 of probabilities. */
506 else if ((mode & CLEANUP_THREADING) && may_thread)
507 {
508 edge t = thread_jump (e, target);
509 if (t)
510 {
511 if (!threaded_edges)
512 threaded_edges = XNEWVEC (edge, n_basic_blocks);
513 else
514 {
515 int i;
516
517 /* Detect an infinite loop across blocks not
518 including the start block. */
519 for (i = 0; i < nthreaded_edges; ++i)
520 if (threaded_edges[i] == t)
521 break;
522 if (i < nthreaded_edges)
523 {
524 counter = n_basic_blocks;
525 break;
526 }
527 }
528
529 /* Detect an infinite loop across the start block. */
530 if (t->dest == b)
531 break;
532
533 gcc_assert (nthreaded_edges < n_basic_blocks - NUM_FIXED_BLOCKS);
534 threaded_edges[nthreaded_edges++] = t;
535
536 new_target = t->dest;
537 new_target_threaded = true;
538 }
539 }
540
541 if (!new_target)
542 break;
543
544 counter++;
545 target = new_target;
546 threaded |= new_target_threaded;
547 }
548
549 if (counter >= n_basic_blocks)
550 {
551 if (dump_file)
552 fprintf (dump_file, "Infinite loop in BB %i.\n",
553 target->index);
554 }
555 else if (target == first)
556 ; /* We didn't do anything. */
557 else
558 {
559 /* Save the values now, as the edge may get removed. */
560 gcov_type edge_count = e->count;
561 int edge_probability = e->probability;
562 int edge_frequency;
563 int n = 0;
564
565 e->goto_locus = goto_locus;
566
567 /* Don't force if target is exit block. */
568 if (threaded && target != EXIT_BLOCK_PTR)
569 {
570 notice_new_block (redirect_edge_and_branch_force (e, target));
571 if (dump_file)
572 fprintf (dump_file, "Conditionals threaded.\n");
573 }
574 else if (!redirect_edge_and_branch (e, target))
575 {
576 if (dump_file)
577 fprintf (dump_file,
578 "Forwarding edge %i->%i to %i failed.\n",
579 b->index, e->dest->index, target->index);
580 ei_next (&ei);
581 continue;
582 }
583
584 /* We successfully forwarded the edge. Now update profile
585 data: for each edge we traversed in the chain, remove
586 the original edge's execution count. */
587 edge_frequency = ((edge_probability * b->frequency
588 + REG_BR_PROB_BASE / 2)
589 / REG_BR_PROB_BASE);
590
591 if (!FORWARDER_BLOCK_P (b) && forwarder_block_p (b))
592 b->flags |= BB_FORWARDER_BLOCK;
593
594 do
595 {
596 edge t;
597
598 if (!single_succ_p (first))
599 {
600 gcc_assert (n < nthreaded_edges);
601 t = threaded_edges [n++];
602 gcc_assert (t->src == first);
603 update_bb_profile_for_threading (first, edge_frequency,
604 edge_count, t);
605 update_br_prob_note (first);
606 }
607 else
608 {
609 first->count -= edge_count;
610 if (first->count < 0)
611 first->count = 0;
612 first->frequency -= edge_frequency;
613 if (first->frequency < 0)
614 first->frequency = 0;
615 /* It is possible that as the result of
616 threading we've removed edge as it is
617 threaded to the fallthru edge. Avoid
618 getting out of sync. */
619 if (n < nthreaded_edges
620 && first == threaded_edges [n]->src)
621 n++;
622 t = single_succ_edge (first);
623 }
624
625 t->count -= edge_count;
626 if (t->count < 0)
627 t->count = 0;
628 first = t->dest;
629 }
630 while (first != target);
631
632 changed = true;
633 continue;
634 }
635 ei_next (&ei);
636 }
637
638 if (threaded_edges)
639 free (threaded_edges);
640 return changed;
641 }
642 \f
643
644 /* Blocks A and B are to be merged into a single block. A has no incoming
645 fallthru edge, so it can be moved before B without adding or modifying
646 any jumps (aside from the jump from A to B). */
647
648 static void
649 merge_blocks_move_predecessor_nojumps (basic_block a, basic_block b)
650 {
651 rtx barrier;
652
653 /* If we are partitioning hot/cold basic blocks, we don't want to
654 mess up unconditional or indirect jumps that cross between hot
655 and cold sections.
656
657 Basic block partitioning may result in some jumps that appear to
658 be optimizable (or blocks that appear to be mergeable), but which really
659 must be left untouched (they are required to make it safely across
660 partition boundaries). See the comments at the top of
661 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
662
663 if (BB_PARTITION (a) != BB_PARTITION (b))
664 return;
665
666 barrier = next_nonnote_insn (BB_END (a));
667 gcc_assert (BARRIER_P (barrier));
668 delete_insn (barrier);
669
670 /* Scramble the insn chain. */
671 if (BB_END (a) != PREV_INSN (BB_HEAD (b)))
672 reorder_insns_nobb (BB_HEAD (a), BB_END (a), PREV_INSN (BB_HEAD (b)));
673 df_set_bb_dirty (a);
674
675 if (dump_file)
676 fprintf (dump_file, "Moved block %d before %d and merged.\n",
677 a->index, b->index);
678
679 /* Swap the records for the two blocks around. */
680
681 unlink_block (a);
682 link_block (a, b->prev_bb);
683
684 /* Now blocks A and B are contiguous. Merge them. */
685 merge_blocks (a, b);
686 }
687
688 /* Blocks A and B are to be merged into a single block. B has no outgoing
689 fallthru edge, so it can be moved after A without adding or modifying
690 any jumps (aside from the jump from A to B). */
691
692 static void
693 merge_blocks_move_successor_nojumps (basic_block a, basic_block b)
694 {
695 rtx barrier, real_b_end;
696 rtx label, table;
697
698 /* If we are partitioning hot/cold basic blocks, we don't want to
699 mess up unconditional or indirect jumps that cross between hot
700 and cold sections.
701
702 Basic block partitioning may result in some jumps that appear to
703 be optimizable (or blocks that appear to be mergeable), but which really
704 must be left untouched (they are required to make it safely across
705 partition boundaries). See the comments at the top of
706 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
707
708 if (BB_PARTITION (a) != BB_PARTITION (b))
709 return;
710
711 real_b_end = BB_END (b);
712
713 /* If there is a jump table following block B temporarily add the jump table
714 to block B so that it will also be moved to the correct location. */
715 if (tablejump_p (BB_END (b), &label, &table)
716 && prev_active_insn (label) == BB_END (b))
717 {
718 BB_END (b) = table;
719 }
720
721 /* There had better have been a barrier there. Delete it. */
722 barrier = NEXT_INSN (BB_END (b));
723 if (barrier && BARRIER_P (barrier))
724 delete_insn (barrier);
725
726
727 /* Scramble the insn chain. */
728 reorder_insns_nobb (BB_HEAD (b), BB_END (b), BB_END (a));
729
730 /* Restore the real end of b. */
731 BB_END (b) = real_b_end;
732
733 if (dump_file)
734 fprintf (dump_file, "Moved block %d after %d and merged.\n",
735 b->index, a->index);
736
737 /* Now blocks A and B are contiguous. Merge them. */
738 merge_blocks (a, b);
739 }
740
741 /* Attempt to merge basic blocks that are potentially non-adjacent.
742 Return NULL iff the attempt failed, otherwise return basic block
743 where cleanup_cfg should continue. Because the merging commonly
744 moves basic block away or introduces another optimization
745 possibility, return basic block just before B so cleanup_cfg don't
746 need to iterate.
747
748 It may be good idea to return basic block before C in the case
749 C has been moved after B and originally appeared earlier in the
750 insn sequence, but we have no information available about the
751 relative ordering of these two. Hopefully it is not too common. */
752
753 static basic_block
754 merge_blocks_move (edge e, basic_block b, basic_block c, int mode)
755 {
756 basic_block next;
757
758 /* If we are partitioning hot/cold basic blocks, we don't want to
759 mess up unconditional or indirect jumps that cross between hot
760 and cold sections.
761
762 Basic block partitioning may result in some jumps that appear to
763 be optimizable (or blocks that appear to be mergeable), but which really
764 must be left untouched (they are required to make it safely across
765 partition boundaries). See the comments at the top of
766 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
767
768 if (BB_PARTITION (b) != BB_PARTITION (c))
769 return NULL;
770
771 /* If B has a fallthru edge to C, no need to move anything. */
772 if (e->flags & EDGE_FALLTHRU)
773 {
774 int b_index = b->index, c_index = c->index;
775 merge_blocks (b, c);
776 update_forwarder_flag (b);
777
778 if (dump_file)
779 fprintf (dump_file, "Merged %d and %d without moving.\n",
780 b_index, c_index);
781
782 return b->prev_bb == ENTRY_BLOCK_PTR ? b : b->prev_bb;
783 }
784
785 /* Otherwise we will need to move code around. Do that only if expensive
786 transformations are allowed. */
787 else if (mode & CLEANUP_EXPENSIVE)
788 {
789 edge tmp_edge, b_fallthru_edge;
790 bool c_has_outgoing_fallthru;
791 bool b_has_incoming_fallthru;
792 edge_iterator ei;
793
794 /* Avoid overactive code motion, as the forwarder blocks should be
795 eliminated by edge redirection instead. One exception might have
796 been if B is a forwarder block and C has no fallthru edge, but
797 that should be cleaned up by bb-reorder instead. */
798 if (FORWARDER_BLOCK_P (b) || FORWARDER_BLOCK_P (c))
799 return NULL;
800
801 /* We must make sure to not munge nesting of lexical blocks,
802 and loop notes. This is done by squeezing out all the notes
803 and leaving them there to lie. Not ideal, but functional. */
804
805 FOR_EACH_EDGE (tmp_edge, ei, c->succs)
806 if (tmp_edge->flags & EDGE_FALLTHRU)
807 break;
808
809 c_has_outgoing_fallthru = (tmp_edge != NULL);
810
811 FOR_EACH_EDGE (tmp_edge, ei, b->preds)
812 if (tmp_edge->flags & EDGE_FALLTHRU)
813 break;
814
815 b_has_incoming_fallthru = (tmp_edge != NULL);
816 b_fallthru_edge = tmp_edge;
817 next = b->prev_bb;
818 if (next == c)
819 next = next->prev_bb;
820
821 /* Otherwise, we're going to try to move C after B. If C does
822 not have an outgoing fallthru, then it can be moved
823 immediately after B without introducing or modifying jumps. */
824 if (! c_has_outgoing_fallthru)
825 {
826 merge_blocks_move_successor_nojumps (b, c);
827 return next == ENTRY_BLOCK_PTR ? next->next_bb : next;
828 }
829
830 /* If B does not have an incoming fallthru, then it can be moved
831 immediately before C without introducing or modifying jumps.
832 C cannot be the first block, so we do not have to worry about
833 accessing a non-existent block. */
834
835 if (b_has_incoming_fallthru)
836 {
837 basic_block bb;
838
839 if (b_fallthru_edge->src == ENTRY_BLOCK_PTR)
840 return NULL;
841 bb = force_nonfallthru (b_fallthru_edge);
842 if (bb)
843 notice_new_block (bb);
844 }
845
846 merge_blocks_move_predecessor_nojumps (b, c);
847 return next == ENTRY_BLOCK_PTR ? next->next_bb : next;
848 }
849
850 return NULL;
851 }
852 \f
853
854 /* Removes the memory attributes of MEM expression
855 if they are not equal. */
856
857 void
858 merge_memattrs (rtx x, rtx y)
859 {
860 int i;
861 int j;
862 enum rtx_code code;
863 const char *fmt;
864
865 if (x == y)
866 return;
867 if (x == 0 || y == 0)
868 return;
869
870 code = GET_CODE (x);
871
872 if (code != GET_CODE (y))
873 return;
874
875 if (GET_MODE (x) != GET_MODE (y))
876 return;
877
878 if (code == MEM && MEM_ATTRS (x) != MEM_ATTRS (y))
879 {
880 if (! MEM_ATTRS (x))
881 MEM_ATTRS (y) = 0;
882 else if (! MEM_ATTRS (y))
883 MEM_ATTRS (x) = 0;
884 else
885 {
886 rtx mem_size;
887
888 if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
889 {
890 set_mem_alias_set (x, 0);
891 set_mem_alias_set (y, 0);
892 }
893
894 if (! mem_expr_equal_p (MEM_EXPR (x), MEM_EXPR (y)))
895 {
896 set_mem_expr (x, 0);
897 set_mem_expr (y, 0);
898 set_mem_offset (x, 0);
899 set_mem_offset (y, 0);
900 }
901 else if (MEM_OFFSET (x) != MEM_OFFSET (y))
902 {
903 set_mem_offset (x, 0);
904 set_mem_offset (y, 0);
905 }
906
907 if (!MEM_SIZE (x))
908 mem_size = NULL_RTX;
909 else if (!MEM_SIZE (y))
910 mem_size = NULL_RTX;
911 else
912 mem_size = GEN_INT (MAX (INTVAL (MEM_SIZE (x)),
913 INTVAL (MEM_SIZE (y))));
914 set_mem_size (x, mem_size);
915 set_mem_size (y, mem_size);
916
917 set_mem_align (x, MIN (MEM_ALIGN (x), MEM_ALIGN (y)));
918 set_mem_align (y, MEM_ALIGN (x));
919 }
920 }
921
922 fmt = GET_RTX_FORMAT (code);
923 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
924 {
925 switch (fmt[i])
926 {
927 case 'E':
928 /* Two vectors must have the same length. */
929 if (XVECLEN (x, i) != XVECLEN (y, i))
930 return;
931
932 for (j = 0; j < XVECLEN (x, i); j++)
933 merge_memattrs (XVECEXP (x, i, j), XVECEXP (y, i, j));
934
935 break;
936
937 case 'e':
938 merge_memattrs (XEXP (x, i), XEXP (y, i));
939 }
940 }
941 return;
942 }
943
944
945 /* Return true if I1 and I2 are equivalent and thus can be crossjumped. */
946
947 static bool
948 old_insns_match_p (int mode ATTRIBUTE_UNUSED, rtx i1, rtx i2)
949 {
950 rtx p1, p2;
951
952 /* Verify that I1 and I2 are equivalent. */
953 if (GET_CODE (i1) != GET_CODE (i2))
954 return false;
955
956 p1 = PATTERN (i1);
957 p2 = PATTERN (i2);
958
959 if (GET_CODE (p1) != GET_CODE (p2))
960 return false;
961
962 /* If this is a CALL_INSN, compare register usage information.
963 If we don't check this on stack register machines, the two
964 CALL_INSNs might be merged leaving reg-stack.c with mismatching
965 numbers of stack registers in the same basic block.
966 If we don't check this on machines with delay slots, a delay slot may
967 be filled that clobbers a parameter expected by the subroutine.
968
969 ??? We take the simple route for now and assume that if they're
970 equal, they were constructed identically. */
971
972 if (CALL_P (i1)
973 && (!rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1),
974 CALL_INSN_FUNCTION_USAGE (i2))
975 || SIBLING_CALL_P (i1) != SIBLING_CALL_P (i2)))
976 return false;
977
978 #ifdef STACK_REGS
979 /* If cross_jump_death_matters is not 0, the insn's mode
980 indicates whether or not the insn contains any stack-like
981 regs. */
982
983 if ((mode & CLEANUP_POST_REGSTACK) && stack_regs_mentioned (i1))
984 {
985 /* If register stack conversion has already been done, then
986 death notes must also be compared before it is certain that
987 the two instruction streams match. */
988
989 rtx note;
990 HARD_REG_SET i1_regset, i2_regset;
991
992 CLEAR_HARD_REG_SET (i1_regset);
993 CLEAR_HARD_REG_SET (i2_regset);
994
995 for (note = REG_NOTES (i1); note; note = XEXP (note, 1))
996 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
997 SET_HARD_REG_BIT (i1_regset, REGNO (XEXP (note, 0)));
998
999 for (note = REG_NOTES (i2); note; note = XEXP (note, 1))
1000 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
1001 SET_HARD_REG_BIT (i2_regset, REGNO (XEXP (note, 0)));
1002
1003 if (!hard_reg_set_equal_p (i1_regset, i2_regset))
1004 return false;
1005 }
1006 #endif
1007
1008 if (reload_completed
1009 ? rtx_renumbered_equal_p (p1, p2) : rtx_equal_p (p1, p2))
1010 return true;
1011
1012 /* Do not do EQUIV substitution after reload. First, we're undoing the
1013 work of reload_cse. Second, we may be undoing the work of the post-
1014 reload splitting pass. */
1015 /* ??? Possibly add a new phase switch variable that can be used by
1016 targets to disallow the troublesome insns after splitting. */
1017 if (!reload_completed)
1018 {
1019 /* The following code helps take care of G++ cleanups. */
1020 rtx equiv1 = find_reg_equal_equiv_note (i1);
1021 rtx equiv2 = find_reg_equal_equiv_note (i2);
1022
1023 if (equiv1 && equiv2
1024 /* If the equivalences are not to a constant, they may
1025 reference pseudos that no longer exist, so we can't
1026 use them. */
1027 && (! reload_completed
1028 || (CONSTANT_P (XEXP (equiv1, 0))
1029 && rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))))
1030 {
1031 rtx s1 = single_set (i1);
1032 rtx s2 = single_set (i2);
1033 if (s1 != 0 && s2 != 0
1034 && rtx_renumbered_equal_p (SET_DEST (s1), SET_DEST (s2)))
1035 {
1036 validate_change (i1, &SET_SRC (s1), XEXP (equiv1, 0), 1);
1037 validate_change (i2, &SET_SRC (s2), XEXP (equiv2, 0), 1);
1038 if (! rtx_renumbered_equal_p (p1, p2))
1039 cancel_changes (0);
1040 else if (apply_change_group ())
1041 return true;
1042 }
1043 }
1044 }
1045
1046 return false;
1047 }
1048 \f
1049 /* Look through the insns at the end of BB1 and BB2 and find the longest
1050 sequence that are equivalent. Store the first insns for that sequence
1051 in *F1 and *F2 and return the sequence length.
1052
1053 To simplify callers of this function, if the blocks match exactly,
1054 store the head of the blocks in *F1 and *F2. */
1055
1056 static int
1057 flow_find_cross_jump (int mode ATTRIBUTE_UNUSED, basic_block bb1,
1058 basic_block bb2, rtx *f1, rtx *f2)
1059 {
1060 rtx i1, i2, last1, last2, afterlast1, afterlast2;
1061 int ninsns = 0;
1062
1063 /* Skip simple jumps at the end of the blocks. Complex jumps still
1064 need to be compared for equivalence, which we'll do below. */
1065
1066 i1 = BB_END (bb1);
1067 last1 = afterlast1 = last2 = afterlast2 = NULL_RTX;
1068 if (onlyjump_p (i1)
1069 || (returnjump_p (i1) && !side_effects_p (PATTERN (i1))))
1070 {
1071 last1 = i1;
1072 i1 = PREV_INSN (i1);
1073 }
1074
1075 i2 = BB_END (bb2);
1076 if (onlyjump_p (i2)
1077 || (returnjump_p (i2) && !side_effects_p (PATTERN (i2))))
1078 {
1079 last2 = i2;
1080 /* Count everything except for unconditional jump as insn. */
1081 if (!simplejump_p (i2) && !returnjump_p (i2) && last1)
1082 ninsns++;
1083 i2 = PREV_INSN (i2);
1084 }
1085
1086 while (true)
1087 {
1088 /* Ignore notes. */
1089 while (!INSN_P (i1) && i1 != BB_HEAD (bb1))
1090 i1 = PREV_INSN (i1);
1091
1092 while (!INSN_P (i2) && i2 != BB_HEAD (bb2))
1093 i2 = PREV_INSN (i2);
1094
1095 if (i1 == BB_HEAD (bb1) || i2 == BB_HEAD (bb2))
1096 break;
1097
1098 if (!old_insns_match_p (mode, i1, i2))
1099 break;
1100
1101 merge_memattrs (i1, i2);
1102
1103 /* Don't begin a cross-jump with a NOTE insn. */
1104 if (INSN_P (i1))
1105 {
1106 /* If the merged insns have different REG_EQUAL notes, then
1107 remove them. */
1108 rtx equiv1 = find_reg_equal_equiv_note (i1);
1109 rtx equiv2 = find_reg_equal_equiv_note (i2);
1110
1111 if (equiv1 && !equiv2)
1112 remove_note (i1, equiv1);
1113 else if (!equiv1 && equiv2)
1114 remove_note (i2, equiv2);
1115 else if (equiv1 && equiv2
1116 && !rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))
1117 {
1118 remove_note (i1, equiv1);
1119 remove_note (i2, equiv2);
1120 }
1121
1122 afterlast1 = last1, afterlast2 = last2;
1123 last1 = i1, last2 = i2;
1124 ninsns++;
1125 }
1126
1127 i1 = PREV_INSN (i1);
1128 i2 = PREV_INSN (i2);
1129 }
1130
1131 #ifdef HAVE_cc0
1132 /* Don't allow the insn after a compare to be shared by
1133 cross-jumping unless the compare is also shared. */
1134 if (ninsns && reg_mentioned_p (cc0_rtx, last1) && ! sets_cc0_p (last1))
1135 last1 = afterlast1, last2 = afterlast2, ninsns--;
1136 #endif
1137
1138 /* Include preceding notes and labels in the cross-jump. One,
1139 this may bring us to the head of the blocks as requested above.
1140 Two, it keeps line number notes as matched as may be. */
1141 if (ninsns)
1142 {
1143 while (last1 != BB_HEAD (bb1) && !INSN_P (PREV_INSN (last1)))
1144 last1 = PREV_INSN (last1);
1145
1146 if (last1 != BB_HEAD (bb1) && LABEL_P (PREV_INSN (last1)))
1147 last1 = PREV_INSN (last1);
1148
1149 while (last2 != BB_HEAD (bb2) && !INSN_P (PREV_INSN (last2)))
1150 last2 = PREV_INSN (last2);
1151
1152 if (last2 != BB_HEAD (bb2) && LABEL_P (PREV_INSN (last2)))
1153 last2 = PREV_INSN (last2);
1154
1155 *f1 = last1;
1156 *f2 = last2;
1157 }
1158
1159 return ninsns;
1160 }
1161
1162 /* Return true iff outgoing edges of BB1 and BB2 match, together with
1163 the branch instruction. This means that if we commonize the control
1164 flow before end of the basic block, the semantic remains unchanged.
1165
1166 We may assume that there exists one edge with a common destination. */
1167
1168 static bool
1169 outgoing_edges_match (int mode, basic_block bb1, basic_block bb2)
1170 {
1171 int nehedges1 = 0, nehedges2 = 0;
1172 edge fallthru1 = 0, fallthru2 = 0;
1173 edge e1, e2;
1174 edge_iterator ei;
1175
1176 /* If BB1 has only one successor, we may be looking at either an
1177 unconditional jump, or a fake edge to exit. */
1178 if (single_succ_p (bb1)
1179 && (single_succ_edge (bb1)->flags & (EDGE_COMPLEX | EDGE_FAKE)) == 0
1180 && (!JUMP_P (BB_END (bb1)) || simplejump_p (BB_END (bb1))))
1181 return (single_succ_p (bb2)
1182 && (single_succ_edge (bb2)->flags
1183 & (EDGE_COMPLEX | EDGE_FAKE)) == 0
1184 && (!JUMP_P (BB_END (bb2)) || simplejump_p (BB_END (bb2))));
1185
1186 /* Match conditional jumps - this may get tricky when fallthru and branch
1187 edges are crossed. */
1188 if (EDGE_COUNT (bb1->succs) == 2
1189 && any_condjump_p (BB_END (bb1))
1190 && onlyjump_p (BB_END (bb1)))
1191 {
1192 edge b1, f1, b2, f2;
1193 bool reverse, match;
1194 rtx set1, set2, cond1, cond2;
1195 enum rtx_code code1, code2;
1196
1197 if (EDGE_COUNT (bb2->succs) != 2
1198 || !any_condjump_p (BB_END (bb2))
1199 || !onlyjump_p (BB_END (bb2)))
1200 return false;
1201
1202 b1 = BRANCH_EDGE (bb1);
1203 b2 = BRANCH_EDGE (bb2);
1204 f1 = FALLTHRU_EDGE (bb1);
1205 f2 = FALLTHRU_EDGE (bb2);
1206
1207 /* Get around possible forwarders on fallthru edges. Other cases
1208 should be optimized out already. */
1209 if (FORWARDER_BLOCK_P (f1->dest))
1210 f1 = single_succ_edge (f1->dest);
1211
1212 if (FORWARDER_BLOCK_P (f2->dest))
1213 f2 = single_succ_edge (f2->dest);
1214
1215 /* To simplify use of this function, return false if there are
1216 unneeded forwarder blocks. These will get eliminated later
1217 during cleanup_cfg. */
1218 if (FORWARDER_BLOCK_P (f1->dest)
1219 || FORWARDER_BLOCK_P (f2->dest)
1220 || FORWARDER_BLOCK_P (b1->dest)
1221 || FORWARDER_BLOCK_P (b2->dest))
1222 return false;
1223
1224 if (f1->dest == f2->dest && b1->dest == b2->dest)
1225 reverse = false;
1226 else if (f1->dest == b2->dest && b1->dest == f2->dest)
1227 reverse = true;
1228 else
1229 return false;
1230
1231 set1 = pc_set (BB_END (bb1));
1232 set2 = pc_set (BB_END (bb2));
1233 if ((XEXP (SET_SRC (set1), 1) == pc_rtx)
1234 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
1235 reverse = !reverse;
1236
1237 cond1 = XEXP (SET_SRC (set1), 0);
1238 cond2 = XEXP (SET_SRC (set2), 0);
1239 code1 = GET_CODE (cond1);
1240 if (reverse)
1241 code2 = reversed_comparison_code (cond2, BB_END (bb2));
1242 else
1243 code2 = GET_CODE (cond2);
1244
1245 if (code2 == UNKNOWN)
1246 return false;
1247
1248 /* Verify codes and operands match. */
1249 match = ((code1 == code2
1250 && rtx_renumbered_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
1251 && rtx_renumbered_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
1252 || (code1 == swap_condition (code2)
1253 && rtx_renumbered_equal_p (XEXP (cond1, 1),
1254 XEXP (cond2, 0))
1255 && rtx_renumbered_equal_p (XEXP (cond1, 0),
1256 XEXP (cond2, 1))));
1257
1258 /* If we return true, we will join the blocks. Which means that
1259 we will only have one branch prediction bit to work with. Thus
1260 we require the existing branches to have probabilities that are
1261 roughly similar. */
1262 if (match
1263 && optimize_bb_for_speed_p (bb1)
1264 && optimize_bb_for_speed_p (bb2))
1265 {
1266 int prob2;
1267
1268 if (b1->dest == b2->dest)
1269 prob2 = b2->probability;
1270 else
1271 /* Do not use f2 probability as f2 may be forwarded. */
1272 prob2 = REG_BR_PROB_BASE - b2->probability;
1273
1274 /* Fail if the difference in probabilities is greater than 50%.
1275 This rules out two well-predicted branches with opposite
1276 outcomes. */
1277 if (abs (b1->probability - prob2) > REG_BR_PROB_BASE / 2)
1278 {
1279 if (dump_file)
1280 fprintf (dump_file,
1281 "Outcomes of branch in bb %i and %i differ too much (%i %i)\n",
1282 bb1->index, bb2->index, b1->probability, prob2);
1283
1284 return false;
1285 }
1286 }
1287
1288 if (dump_file && match)
1289 fprintf (dump_file, "Conditionals in bb %i and %i match.\n",
1290 bb1->index, bb2->index);
1291
1292 return match;
1293 }
1294
1295 /* Generic case - we are seeing a computed jump, table jump or trapping
1296 instruction. */
1297
1298 /* Check whether there are tablejumps in the end of BB1 and BB2.
1299 Return true if they are identical. */
1300 {
1301 rtx label1, label2;
1302 rtx table1, table2;
1303
1304 if (tablejump_p (BB_END (bb1), &label1, &table1)
1305 && tablejump_p (BB_END (bb2), &label2, &table2)
1306 && GET_CODE (PATTERN (table1)) == GET_CODE (PATTERN (table2)))
1307 {
1308 /* The labels should never be the same rtx. If they really are same
1309 the jump tables are same too. So disable crossjumping of blocks BB1
1310 and BB2 because when deleting the common insns in the end of BB1
1311 by delete_basic_block () the jump table would be deleted too. */
1312 /* If LABEL2 is referenced in BB1->END do not do anything
1313 because we would loose information when replacing
1314 LABEL1 by LABEL2 and then LABEL2 by LABEL1 in BB1->END. */
1315 if (label1 != label2 && !rtx_referenced_p (label2, BB_END (bb1)))
1316 {
1317 /* Set IDENTICAL to true when the tables are identical. */
1318 bool identical = false;
1319 rtx p1, p2;
1320
1321 p1 = PATTERN (table1);
1322 p2 = PATTERN (table2);
1323 if (GET_CODE (p1) == ADDR_VEC && rtx_equal_p (p1, p2))
1324 {
1325 identical = true;
1326 }
1327 else if (GET_CODE (p1) == ADDR_DIFF_VEC
1328 && (XVECLEN (p1, 1) == XVECLEN (p2, 1))
1329 && rtx_equal_p (XEXP (p1, 2), XEXP (p2, 2))
1330 && rtx_equal_p (XEXP (p1, 3), XEXP (p2, 3)))
1331 {
1332 int i;
1333
1334 identical = true;
1335 for (i = XVECLEN (p1, 1) - 1; i >= 0 && identical; i--)
1336 if (!rtx_equal_p (XVECEXP (p1, 1, i), XVECEXP (p2, 1, i)))
1337 identical = false;
1338 }
1339
1340 if (identical)
1341 {
1342 replace_label_data rr;
1343 bool match;
1344
1345 /* Temporarily replace references to LABEL1 with LABEL2
1346 in BB1->END so that we could compare the instructions. */
1347 rr.r1 = label1;
1348 rr.r2 = label2;
1349 rr.update_label_nuses = false;
1350 for_each_rtx (&BB_END (bb1), replace_label, &rr);
1351
1352 match = old_insns_match_p (mode, BB_END (bb1), BB_END (bb2));
1353 if (dump_file && match)
1354 fprintf (dump_file,
1355 "Tablejumps in bb %i and %i match.\n",
1356 bb1->index, bb2->index);
1357
1358 /* Set the original label in BB1->END because when deleting
1359 a block whose end is a tablejump, the tablejump referenced
1360 from the instruction is deleted too. */
1361 rr.r1 = label2;
1362 rr.r2 = label1;
1363 for_each_rtx (&BB_END (bb1), replace_label, &rr);
1364
1365 return match;
1366 }
1367 }
1368 return false;
1369 }
1370 }
1371
1372 /* First ensure that the instructions match. There may be many outgoing
1373 edges so this test is generally cheaper. */
1374 if (!old_insns_match_p (mode, BB_END (bb1), BB_END (bb2)))
1375 return false;
1376
1377 /* Search the outgoing edges, ensure that the counts do match, find possible
1378 fallthru and exception handling edges since these needs more
1379 validation. */
1380 if (EDGE_COUNT (bb1->succs) != EDGE_COUNT (bb2->succs))
1381 return false;
1382
1383 FOR_EACH_EDGE (e1, ei, bb1->succs)
1384 {
1385 e2 = EDGE_SUCC (bb2, ei.index);
1386
1387 if (e1->flags & EDGE_EH)
1388 nehedges1++;
1389
1390 if (e2->flags & EDGE_EH)
1391 nehedges2++;
1392
1393 if (e1->flags & EDGE_FALLTHRU)
1394 fallthru1 = e1;
1395 if (e2->flags & EDGE_FALLTHRU)
1396 fallthru2 = e2;
1397 }
1398
1399 /* If number of edges of various types does not match, fail. */
1400 if (nehedges1 != nehedges2
1401 || (fallthru1 != 0) != (fallthru2 != 0))
1402 return false;
1403
1404 /* fallthru edges must be forwarded to the same destination. */
1405 if (fallthru1)
1406 {
1407 basic_block d1 = (forwarder_block_p (fallthru1->dest)
1408 ? single_succ (fallthru1->dest): fallthru1->dest);
1409 basic_block d2 = (forwarder_block_p (fallthru2->dest)
1410 ? single_succ (fallthru2->dest): fallthru2->dest);
1411
1412 if (d1 != d2)
1413 return false;
1414 }
1415
1416 /* Ensure the same EH region. */
1417 {
1418 rtx n1 = find_reg_note (BB_END (bb1), REG_EH_REGION, 0);
1419 rtx n2 = find_reg_note (BB_END (bb2), REG_EH_REGION, 0);
1420
1421 if (!n1 && n2)
1422 return false;
1423
1424 if (n1 && (!n2 || XEXP (n1, 0) != XEXP (n2, 0)))
1425 return false;
1426 }
1427
1428 /* The same checks as in try_crossjump_to_edge. It is required for RTL
1429 version of sequence abstraction. */
1430 FOR_EACH_EDGE (e1, ei, bb2->succs)
1431 {
1432 edge e2;
1433 edge_iterator ei;
1434 basic_block d1 = e1->dest;
1435
1436 if (FORWARDER_BLOCK_P (d1))
1437 d1 = EDGE_SUCC (d1, 0)->dest;
1438
1439 FOR_EACH_EDGE (e2, ei, bb1->succs)
1440 {
1441 basic_block d2 = e2->dest;
1442 if (FORWARDER_BLOCK_P (d2))
1443 d2 = EDGE_SUCC (d2, 0)->dest;
1444 if (d1 == d2)
1445 break;
1446 }
1447
1448 if (!e2)
1449 return false;
1450 }
1451
1452 return true;
1453 }
1454
1455 /* Returns true if BB basic block has a preserve label. */
1456
1457 static bool
1458 block_has_preserve_label (basic_block bb)
1459 {
1460 return (bb
1461 && block_label (bb)
1462 && LABEL_PRESERVE_P (block_label (bb)));
1463 }
1464
1465 /* E1 and E2 are edges with the same destination block. Search their
1466 predecessors for common code. If found, redirect control flow from
1467 (maybe the middle of) E1->SRC to (maybe the middle of) E2->SRC. */
1468
1469 static bool
1470 try_crossjump_to_edge (int mode, edge e1, edge e2)
1471 {
1472 int nmatch;
1473 basic_block src1 = e1->src, src2 = e2->src;
1474 basic_block redirect_to, redirect_from, to_remove;
1475 rtx newpos1, newpos2;
1476 edge s;
1477 edge_iterator ei;
1478
1479 newpos1 = newpos2 = NULL_RTX;
1480
1481 /* If we have partitioned hot/cold basic blocks, it is a bad idea
1482 to try this optimization.
1483
1484 Basic block partitioning may result in some jumps that appear to
1485 be optimizable (or blocks that appear to be mergeable), but which really
1486 must be left untouched (they are required to make it safely across
1487 partition boundaries). See the comments at the top of
1488 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
1489
1490 if (flag_reorder_blocks_and_partition && reload_completed)
1491 return false;
1492
1493 /* Search backward through forwarder blocks. We don't need to worry
1494 about multiple entry or chained forwarders, as they will be optimized
1495 away. We do this to look past the unconditional jump following a
1496 conditional jump that is required due to the current CFG shape. */
1497 if (single_pred_p (src1)
1498 && FORWARDER_BLOCK_P (src1))
1499 e1 = single_pred_edge (src1), src1 = e1->src;
1500
1501 if (single_pred_p (src2)
1502 && FORWARDER_BLOCK_P (src2))
1503 e2 = single_pred_edge (src2), src2 = e2->src;
1504
1505 /* Nothing to do if we reach ENTRY, or a common source block. */
1506 if (src1 == ENTRY_BLOCK_PTR || src2 == ENTRY_BLOCK_PTR)
1507 return false;
1508 if (src1 == src2)
1509 return false;
1510
1511 /* Seeing more than 1 forwarder blocks would confuse us later... */
1512 if (FORWARDER_BLOCK_P (e1->dest)
1513 && FORWARDER_BLOCK_P (single_succ (e1->dest)))
1514 return false;
1515
1516 if (FORWARDER_BLOCK_P (e2->dest)
1517 && FORWARDER_BLOCK_P (single_succ (e2->dest)))
1518 return false;
1519
1520 /* Likewise with dead code (possibly newly created by the other optimizations
1521 of cfg_cleanup). */
1522 if (EDGE_COUNT (src1->preds) == 0 || EDGE_COUNT (src2->preds) == 0)
1523 return false;
1524
1525 /* Look for the common insn sequence, part the first ... */
1526 if (!outgoing_edges_match (mode, src1, src2))
1527 return false;
1528
1529 /* ... and part the second. */
1530 nmatch = flow_find_cross_jump (mode, src1, src2, &newpos1, &newpos2);
1531
1532 /* Don't proceed with the crossjump unless we found a sufficient number
1533 of matching instructions or the 'from' block was totally matched
1534 (such that its predecessors will hopefully be redirected and the
1535 block removed). */
1536 if ((nmatch < PARAM_VALUE (PARAM_MIN_CROSSJUMP_INSNS))
1537 && (newpos1 != BB_HEAD (src1)))
1538 return false;
1539
1540 /* Avoid deleting preserve label when redirecting ABNORMAL edges. */
1541 if (block_has_preserve_label (e1->dest)
1542 && (e1->flags & EDGE_ABNORMAL))
1543 return false;
1544
1545 /* Here we know that the insns in the end of SRC1 which are common with SRC2
1546 will be deleted.
1547 If we have tablejumps in the end of SRC1 and SRC2
1548 they have been already compared for equivalence in outgoing_edges_match ()
1549 so replace the references to TABLE1 by references to TABLE2. */
1550 {
1551 rtx label1, label2;
1552 rtx table1, table2;
1553
1554 if (tablejump_p (BB_END (src1), &label1, &table1)
1555 && tablejump_p (BB_END (src2), &label2, &table2)
1556 && label1 != label2)
1557 {
1558 replace_label_data rr;
1559 rtx insn;
1560
1561 /* Replace references to LABEL1 with LABEL2. */
1562 rr.r1 = label1;
1563 rr.r2 = label2;
1564 rr.update_label_nuses = true;
1565 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1566 {
1567 /* Do not replace the label in SRC1->END because when deleting
1568 a block whose end is a tablejump, the tablejump referenced
1569 from the instruction is deleted too. */
1570 if (insn != BB_END (src1))
1571 for_each_rtx (&insn, replace_label, &rr);
1572 }
1573 }
1574 }
1575
1576 /* Avoid splitting if possible. We must always split when SRC2 has
1577 EH predecessor edges, or we may end up with basic blocks with both
1578 normal and EH predecessor edges. */
1579 if (newpos2 == BB_HEAD (src2)
1580 && !(EDGE_PRED (src2, 0)->flags & EDGE_EH))
1581 redirect_to = src2;
1582 else
1583 {
1584 if (newpos2 == BB_HEAD (src2))
1585 {
1586 /* Skip possible basic block header. */
1587 if (LABEL_P (newpos2))
1588 newpos2 = NEXT_INSN (newpos2);
1589 if (NOTE_P (newpos2))
1590 newpos2 = NEXT_INSN (newpos2);
1591 }
1592
1593 if (dump_file)
1594 fprintf (dump_file, "Splitting bb %i before %i insns\n",
1595 src2->index, nmatch);
1596 redirect_to = split_block (src2, PREV_INSN (newpos2))->dest;
1597 }
1598
1599 if (dump_file)
1600 fprintf (dump_file,
1601 "Cross jumping from bb %i to bb %i; %i common insns\n",
1602 src1->index, src2->index, nmatch);
1603
1604 /* We may have some registers visible through the block. */
1605 df_set_bb_dirty (redirect_to);
1606
1607 /* Recompute the frequencies and counts of outgoing edges. */
1608 FOR_EACH_EDGE (s, ei, redirect_to->succs)
1609 {
1610 edge s2;
1611 edge_iterator ei;
1612 basic_block d = s->dest;
1613
1614 if (FORWARDER_BLOCK_P (d))
1615 d = single_succ (d);
1616
1617 FOR_EACH_EDGE (s2, ei, src1->succs)
1618 {
1619 basic_block d2 = s2->dest;
1620 if (FORWARDER_BLOCK_P (d2))
1621 d2 = single_succ (d2);
1622 if (d == d2)
1623 break;
1624 }
1625
1626 s->count += s2->count;
1627
1628 /* Take care to update possible forwarder blocks. We verified
1629 that there is no more than one in the chain, so we can't run
1630 into infinite loop. */
1631 if (FORWARDER_BLOCK_P (s->dest))
1632 {
1633 single_succ_edge (s->dest)->count += s2->count;
1634 s->dest->count += s2->count;
1635 s->dest->frequency += EDGE_FREQUENCY (s);
1636 }
1637
1638 if (FORWARDER_BLOCK_P (s2->dest))
1639 {
1640 single_succ_edge (s2->dest)->count -= s2->count;
1641 if (single_succ_edge (s2->dest)->count < 0)
1642 single_succ_edge (s2->dest)->count = 0;
1643 s2->dest->count -= s2->count;
1644 s2->dest->frequency -= EDGE_FREQUENCY (s);
1645 if (s2->dest->frequency < 0)
1646 s2->dest->frequency = 0;
1647 if (s2->dest->count < 0)
1648 s2->dest->count = 0;
1649 }
1650
1651 if (!redirect_to->frequency && !src1->frequency)
1652 s->probability = (s->probability + s2->probability) / 2;
1653 else
1654 s->probability
1655 = ((s->probability * redirect_to->frequency +
1656 s2->probability * src1->frequency)
1657 / (redirect_to->frequency + src1->frequency));
1658 }
1659
1660 /* Adjust count and frequency for the block. An earlier jump
1661 threading pass may have left the profile in an inconsistent
1662 state (see update_bb_profile_for_threading) so we must be
1663 prepared for overflows. */
1664 redirect_to->count += src1->count;
1665 redirect_to->frequency += src1->frequency;
1666 if (redirect_to->frequency > BB_FREQ_MAX)
1667 redirect_to->frequency = BB_FREQ_MAX;
1668 update_br_prob_note (redirect_to);
1669
1670 /* Edit SRC1 to go to REDIRECT_TO at NEWPOS1. */
1671
1672 /* Skip possible basic block header. */
1673 if (LABEL_P (newpos1))
1674 newpos1 = NEXT_INSN (newpos1);
1675
1676 if (NOTE_P (newpos1))
1677 newpos1 = NEXT_INSN (newpos1);
1678
1679 redirect_from = split_block (src1, PREV_INSN (newpos1))->src;
1680 to_remove = single_succ (redirect_from);
1681
1682 redirect_edge_and_branch_force (single_succ_edge (redirect_from), redirect_to);
1683 delete_basic_block (to_remove);
1684
1685 update_forwarder_flag (redirect_from);
1686 if (redirect_to != src2)
1687 update_forwarder_flag (src2);
1688
1689 return true;
1690 }
1691
1692 /* Search the predecessors of BB for common insn sequences. When found,
1693 share code between them by redirecting control flow. Return true if
1694 any changes made. */
1695
1696 static bool
1697 try_crossjump_bb (int mode, basic_block bb)
1698 {
1699 edge e, e2, fallthru;
1700 bool changed;
1701 unsigned max, ix, ix2;
1702 basic_block ev, ev2;
1703 edge_iterator ei;
1704
1705 /* Nothing to do if there is not at least two incoming edges. */
1706 if (EDGE_COUNT (bb->preds) < 2)
1707 return false;
1708
1709 /* Don't crossjump if this block ends in a computed jump,
1710 unless we are optimizing for size. */
1711 if (optimize_bb_for_size_p (bb)
1712 && bb != EXIT_BLOCK_PTR
1713 && computed_jump_p (BB_END (bb)))
1714 return false;
1715
1716 /* If we are partitioning hot/cold basic blocks, we don't want to
1717 mess up unconditional or indirect jumps that cross between hot
1718 and cold sections.
1719
1720 Basic block partitioning may result in some jumps that appear to
1721 be optimizable (or blocks that appear to be mergeable), but which really
1722 must be left untouched (they are required to make it safely across
1723 partition boundaries). See the comments at the top of
1724 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
1725
1726 if (BB_PARTITION (EDGE_PRED (bb, 0)->src) !=
1727 BB_PARTITION (EDGE_PRED (bb, 1)->src)
1728 || (EDGE_PRED (bb, 0)->flags & EDGE_CROSSING))
1729 return false;
1730
1731 /* It is always cheapest to redirect a block that ends in a branch to
1732 a block that falls through into BB, as that adds no branches to the
1733 program. We'll try that combination first. */
1734 fallthru = NULL;
1735 max = PARAM_VALUE (PARAM_MAX_CROSSJUMP_EDGES);
1736
1737 if (EDGE_COUNT (bb->preds) > max)
1738 return false;
1739
1740 FOR_EACH_EDGE (e, ei, bb->preds)
1741 {
1742 if (e->flags & EDGE_FALLTHRU)
1743 {
1744 fallthru = e;
1745 break;
1746 }
1747 }
1748
1749 changed = false;
1750 for (ix = 0, ev = bb; ix < EDGE_COUNT (ev->preds); )
1751 {
1752 e = EDGE_PRED (ev, ix);
1753 ix++;
1754
1755 /* As noted above, first try with the fallthru predecessor (or, a
1756 fallthru predecessor if we are in cfglayout mode). */
1757 if (fallthru)
1758 {
1759 /* Don't combine the fallthru edge into anything else.
1760 If there is a match, we'll do it the other way around. */
1761 if (e == fallthru)
1762 continue;
1763 /* If nothing changed since the last attempt, there is nothing
1764 we can do. */
1765 if (!first_pass
1766 && (!(df_get_bb_dirty (e->src))
1767 && !(df_get_bb_dirty (fallthru->src))))
1768 continue;
1769
1770 if (try_crossjump_to_edge (mode, e, fallthru))
1771 {
1772 changed = true;
1773 ix = 0;
1774 ev = bb;
1775 continue;
1776 }
1777 }
1778
1779 /* Non-obvious work limiting check: Recognize that we're going
1780 to call try_crossjump_bb on every basic block. So if we have
1781 two blocks with lots of outgoing edges (a switch) and they
1782 share lots of common destinations, then we would do the
1783 cross-jump check once for each common destination.
1784
1785 Now, if the blocks actually are cross-jump candidates, then
1786 all of their destinations will be shared. Which means that
1787 we only need check them for cross-jump candidacy once. We
1788 can eliminate redundant checks of crossjump(A,B) by arbitrarily
1789 choosing to do the check from the block for which the edge
1790 in question is the first successor of A. */
1791 if (EDGE_SUCC (e->src, 0) != e)
1792 continue;
1793
1794 for (ix2 = 0, ev2 = bb; ix2 < EDGE_COUNT (ev2->preds); )
1795 {
1796 e2 = EDGE_PRED (ev2, ix2);
1797 ix2++;
1798
1799 if (e2 == e)
1800 continue;
1801
1802 /* We've already checked the fallthru edge above. */
1803 if (e2 == fallthru)
1804 continue;
1805
1806 /* The "first successor" check above only prevents multiple
1807 checks of crossjump(A,B). In order to prevent redundant
1808 checks of crossjump(B,A), require that A be the block
1809 with the lowest index. */
1810 if (e->src->index > e2->src->index)
1811 continue;
1812
1813 /* If nothing changed since the last attempt, there is nothing
1814 we can do. */
1815 if (!first_pass
1816 && (!(df_get_bb_dirty (e->src))
1817 && !(df_get_bb_dirty (e2->src))))
1818 continue;
1819
1820 if (try_crossjump_to_edge (mode, e, e2))
1821 {
1822 changed = true;
1823 ev2 = bb;
1824 ix = 0;
1825 break;
1826 }
1827 }
1828 }
1829
1830 if (changed)
1831 crossjumps_occured = true;
1832
1833 return changed;
1834 }
1835
1836 /* Do simple CFG optimizations - basic block merging, simplifying of jump
1837 instructions etc. Return nonzero if changes were made. */
1838
1839 static bool
1840 try_optimize_cfg (int mode)
1841 {
1842 bool changed_overall = false;
1843 bool changed;
1844 int iterations = 0;
1845 basic_block bb, b, next;
1846
1847 if (mode & (CLEANUP_CROSSJUMP | CLEANUP_THREADING))
1848 clear_bb_flags ();
1849
1850 crossjumps_occured = false;
1851
1852 FOR_EACH_BB (bb)
1853 update_forwarder_flag (bb);
1854
1855 if (! targetm.cannot_modify_jumps_p ())
1856 {
1857 first_pass = true;
1858 /* Attempt to merge blocks as made possible by edge removal. If
1859 a block has only one successor, and the successor has only
1860 one predecessor, they may be combined. */
1861 do
1862 {
1863 changed = false;
1864 iterations++;
1865
1866 if (dump_file)
1867 fprintf (dump_file,
1868 "\n\ntry_optimize_cfg iteration %i\n\n",
1869 iterations);
1870
1871 for (b = ENTRY_BLOCK_PTR->next_bb; b != EXIT_BLOCK_PTR;)
1872 {
1873 basic_block c;
1874 edge s;
1875 bool changed_here = false;
1876
1877 /* Delete trivially dead basic blocks. */
1878 if (EDGE_COUNT (b->preds) == 0)
1879 {
1880 c = b->prev_bb;
1881 if (dump_file)
1882 fprintf (dump_file, "Deleting block %i.\n",
1883 b->index);
1884
1885 delete_basic_block (b);
1886 if (!(mode & CLEANUP_CFGLAYOUT))
1887 changed = true;
1888 /* Avoid trying to remove ENTRY_BLOCK_PTR. */
1889 b = (c == ENTRY_BLOCK_PTR ? c->next_bb : c);
1890 continue;
1891 }
1892
1893 /* Remove code labels no longer used. */
1894 if (single_pred_p (b)
1895 && (single_pred_edge (b)->flags & EDGE_FALLTHRU)
1896 && !(single_pred_edge (b)->flags & EDGE_COMPLEX)
1897 && LABEL_P (BB_HEAD (b))
1898 /* If the previous block ends with a branch to this
1899 block, we can't delete the label. Normally this
1900 is a condjump that is yet to be simplified, but
1901 if CASE_DROPS_THRU, this can be a tablejump with
1902 some element going to the same place as the
1903 default (fallthru). */
1904 && (single_pred (b) == ENTRY_BLOCK_PTR
1905 || !JUMP_P (BB_END (single_pred (b)))
1906 || ! label_is_jump_target_p (BB_HEAD (b),
1907 BB_END (single_pred (b)))))
1908 {
1909 rtx label = BB_HEAD (b);
1910
1911 delete_insn_chain (label, label, false);
1912 /* If the case label is undeletable, move it after the
1913 BASIC_BLOCK note. */
1914 if (NOTE_KIND (BB_HEAD (b)) == NOTE_INSN_DELETED_LABEL)
1915 {
1916 rtx bb_note = NEXT_INSN (BB_HEAD (b));
1917
1918 reorder_insns_nobb (label, label, bb_note);
1919 BB_HEAD (b) = bb_note;
1920 if (BB_END (b) == bb_note)
1921 BB_END (b) = label;
1922 }
1923 if (dump_file)
1924 fprintf (dump_file, "Deleted label in block %i.\n",
1925 b->index);
1926 }
1927
1928 /* If we fall through an empty block, we can remove it. */
1929 if (!(mode & CLEANUP_CFGLAYOUT)
1930 && single_pred_p (b)
1931 && (single_pred_edge (b)->flags & EDGE_FALLTHRU)
1932 && !LABEL_P (BB_HEAD (b))
1933 && FORWARDER_BLOCK_P (b)
1934 /* Note that forwarder_block_p true ensures that
1935 there is a successor for this block. */
1936 && (single_succ_edge (b)->flags & EDGE_FALLTHRU)
1937 && n_basic_blocks > NUM_FIXED_BLOCKS + 1)
1938 {
1939 if (dump_file)
1940 fprintf (dump_file,
1941 "Deleting fallthru block %i.\n",
1942 b->index);
1943
1944 c = b->prev_bb == ENTRY_BLOCK_PTR ? b->next_bb : b->prev_bb;
1945 redirect_edge_succ_nodup (single_pred_edge (b),
1946 single_succ (b));
1947 delete_basic_block (b);
1948 changed = true;
1949 b = c;
1950 }
1951
1952 if (single_succ_p (b)
1953 && (s = single_succ_edge (b))
1954 && !(s->flags & EDGE_COMPLEX)
1955 && (c = s->dest) != EXIT_BLOCK_PTR
1956 && single_pred_p (c)
1957 && b != c)
1958 {
1959 /* When not in cfg_layout mode use code aware of reordering
1960 INSN. This code possibly creates new basic blocks so it
1961 does not fit merge_blocks interface and is kept here in
1962 hope that it will become useless once more of compiler
1963 is transformed to use cfg_layout mode. */
1964
1965 if ((mode & CLEANUP_CFGLAYOUT)
1966 && can_merge_blocks_p (b, c))
1967 {
1968 merge_blocks (b, c);
1969 update_forwarder_flag (b);
1970 changed_here = true;
1971 }
1972 else if (!(mode & CLEANUP_CFGLAYOUT)
1973 /* If the jump insn has side effects,
1974 we can't kill the edge. */
1975 && (!JUMP_P (BB_END (b))
1976 || (reload_completed
1977 ? simplejump_p (BB_END (b))
1978 : (onlyjump_p (BB_END (b))
1979 && !tablejump_p (BB_END (b),
1980 NULL, NULL))))
1981 && (next = merge_blocks_move (s, b, c, mode)))
1982 {
1983 b = next;
1984 changed_here = true;
1985 }
1986 }
1987
1988 /* Simplify branch over branch. */
1989 if ((mode & CLEANUP_EXPENSIVE)
1990 && !(mode & CLEANUP_CFGLAYOUT)
1991 && try_simplify_condjump (b))
1992 changed_here = true;
1993
1994 /* If B has a single outgoing edge, but uses a
1995 non-trivial jump instruction without side-effects, we
1996 can either delete the jump entirely, or replace it
1997 with a simple unconditional jump. */
1998 if (single_succ_p (b)
1999 && single_succ (b) != EXIT_BLOCK_PTR
2000 && onlyjump_p (BB_END (b))
2001 && !find_reg_note (BB_END (b), REG_CROSSING_JUMP, NULL_RTX)
2002 && try_redirect_by_replacing_jump (single_succ_edge (b),
2003 single_succ (b),
2004 (mode & CLEANUP_CFGLAYOUT) != 0))
2005 {
2006 update_forwarder_flag (b);
2007 changed_here = true;
2008 }
2009
2010 /* Simplify branch to branch. */
2011 if (try_forward_edges (mode, b))
2012 changed_here = true;
2013
2014 /* Look for shared code between blocks. */
2015 if ((mode & CLEANUP_CROSSJUMP)
2016 && try_crossjump_bb (mode, b))
2017 changed_here = true;
2018
2019 /* Don't get confused by the index shift caused by
2020 deleting blocks. */
2021 if (!changed_here)
2022 b = b->next_bb;
2023 else
2024 changed = true;
2025 }
2026
2027 if ((mode & CLEANUP_CROSSJUMP)
2028 && try_crossjump_bb (mode, EXIT_BLOCK_PTR))
2029 changed = true;
2030
2031 #ifdef ENABLE_CHECKING
2032 if (changed)
2033 verify_flow_info ();
2034 #endif
2035
2036 changed_overall |= changed;
2037 first_pass = false;
2038 }
2039 while (changed);
2040 }
2041
2042 FOR_ALL_BB (b)
2043 b->flags &= ~(BB_FORWARDER_BLOCK | BB_NONTHREADABLE_BLOCK);
2044
2045 return changed_overall;
2046 }
2047 \f
2048 /* Delete all unreachable basic blocks. */
2049
2050 bool
2051 delete_unreachable_blocks (void)
2052 {
2053 bool changed = false;
2054 basic_block b, next_bb;
2055
2056 find_unreachable_blocks ();
2057
2058 /* Delete all unreachable basic blocks. */
2059
2060 for (b = ENTRY_BLOCK_PTR->next_bb; b != EXIT_BLOCK_PTR; b = next_bb)
2061 {
2062 next_bb = b->next_bb;
2063
2064 if (!(b->flags & BB_REACHABLE))
2065 {
2066 delete_basic_block (b);
2067 changed = true;
2068 }
2069 }
2070
2071 if (changed)
2072 tidy_fallthru_edges ();
2073 return changed;
2074 }
2075
2076 /* Delete any jump tables never referenced. We can't delete them at the
2077 time of removing tablejump insn as they are referenced by the preceding
2078 insns computing the destination, so we delay deleting and garbagecollect
2079 them once life information is computed. */
2080 void
2081 delete_dead_jumptables (void)
2082 {
2083 basic_block bb;
2084
2085 /* A dead jump table does not belong to any basic block. Scan insns
2086 between two adjacent basic blocks. */
2087 FOR_EACH_BB (bb)
2088 {
2089 rtx insn, next;
2090
2091 for (insn = NEXT_INSN (BB_END (bb));
2092 insn && !NOTE_INSN_BASIC_BLOCK_P (insn);
2093 insn = next)
2094 {
2095 next = NEXT_INSN (insn);
2096 if (LABEL_P (insn)
2097 && LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
2098 && JUMP_P (next)
2099 && (GET_CODE (PATTERN (next)) == ADDR_VEC
2100 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
2101 {
2102 rtx label = insn, jump = next;
2103
2104 if (dump_file)
2105 fprintf (dump_file, "Dead jumptable %i removed\n",
2106 INSN_UID (insn));
2107
2108 next = NEXT_INSN (next);
2109 delete_insn (jump);
2110 delete_insn (label);
2111 }
2112 }
2113 }
2114 }
2115
2116 \f
2117 /* Tidy the CFG by deleting unreachable code and whatnot. */
2118
2119 bool
2120 cleanup_cfg (int mode)
2121 {
2122 bool changed = false;
2123
2124 /* Set the cfglayout mode flag here. We could update all the callers
2125 but that is just inconvenient, especially given that we eventually
2126 want to have cfglayout mode as the default. */
2127 if (current_ir_type () == IR_RTL_CFGLAYOUT)
2128 mode |= CLEANUP_CFGLAYOUT;
2129
2130 timevar_push (TV_CLEANUP_CFG);
2131 if (delete_unreachable_blocks ())
2132 {
2133 changed = true;
2134 /* We've possibly created trivially dead code. Cleanup it right
2135 now to introduce more opportunities for try_optimize_cfg. */
2136 if (!(mode & (CLEANUP_NO_INSN_DEL))
2137 && !reload_completed)
2138 delete_trivially_dead_insns (get_insns (), max_reg_num ());
2139 }
2140
2141 compact_blocks ();
2142
2143 /* To tail-merge blocks ending in the same noreturn function (e.g.
2144 a call to abort) we have to insert fake edges to exit. Do this
2145 here once. The fake edges do not interfere with any other CFG
2146 cleanups. */
2147 if (mode & CLEANUP_CROSSJUMP)
2148 add_noreturn_fake_exit_edges ();
2149
2150 if (!dbg_cnt (cfg_cleanup))
2151 return changed;
2152
2153 while (try_optimize_cfg (mode))
2154 {
2155 delete_unreachable_blocks (), changed = true;
2156 if (!(mode & CLEANUP_NO_INSN_DEL))
2157 {
2158 /* Try to remove some trivially dead insns when doing an expensive
2159 cleanup. But delete_trivially_dead_insns doesn't work after
2160 reload (it only handles pseudos) and run_fast_dce is too costly
2161 to run in every iteration.
2162
2163 For effective cross jumping, we really want to run a fast DCE to
2164 clean up any dead conditions, or they get in the way of performing
2165 useful tail merges.
2166
2167 Other transformations in cleanup_cfg are not so sensitive to dead
2168 code, so delete_trivially_dead_insns or even doing nothing at all
2169 is good enough. */
2170 if ((mode & CLEANUP_EXPENSIVE) && !reload_completed
2171 && !delete_trivially_dead_insns (get_insns (), max_reg_num ()))
2172 break;
2173 else if ((mode & CLEANUP_CROSSJUMP)
2174 && crossjumps_occured)
2175 run_fast_dce ();
2176 }
2177 else
2178 break;
2179 }
2180
2181 if (mode & CLEANUP_CROSSJUMP)
2182 remove_fake_exit_edges ();
2183
2184 /* Don't call delete_dead_jumptables in cfglayout mode, because
2185 that function assumes that jump tables are in the insns stream.
2186 But we also don't _have_ to delete dead jumptables in cfglayout
2187 mode because we shouldn't even be looking at things that are
2188 not in a basic block. Dead jumptables are cleaned up when
2189 going out of cfglayout mode. */
2190 if (!(mode & CLEANUP_CFGLAYOUT))
2191 delete_dead_jumptables ();
2192
2193 timevar_pop (TV_CLEANUP_CFG);
2194
2195 return changed;
2196 }
2197 \f
2198 static unsigned int
2199 rest_of_handle_jump (void)
2200 {
2201 if (crtl->tail_call_emit)
2202 fixup_tail_calls ();
2203 return 0;
2204 }
2205
2206 struct rtl_opt_pass pass_jump =
2207 {
2208 {
2209 RTL_PASS,
2210 "sibling", /* name */
2211 NULL, /* gate */
2212 rest_of_handle_jump, /* execute */
2213 NULL, /* sub */
2214 NULL, /* next */
2215 0, /* static_pass_number */
2216 TV_JUMP, /* tv_id */
2217 0, /* properties_required */
2218 0, /* properties_provided */
2219 0, /* properties_destroyed */
2220 TODO_ggc_collect, /* todo_flags_start */
2221 TODO_verify_flow, /* todo_flags_finish */
2222 }
2223 };
2224
2225
2226 static unsigned int
2227 rest_of_handle_jump2 (void)
2228 {
2229 delete_trivially_dead_insns (get_insns (), max_reg_num ());
2230 if (dump_file)
2231 dump_flow_info (dump_file, dump_flags);
2232 cleanup_cfg ((optimize ? CLEANUP_EXPENSIVE : 0)
2233 | (flag_thread_jumps ? CLEANUP_THREADING : 0));
2234 return 0;
2235 }
2236
2237
2238 struct rtl_opt_pass pass_jump2 =
2239 {
2240 {
2241 RTL_PASS,
2242 "jump", /* name */
2243 NULL, /* gate */
2244 rest_of_handle_jump2, /* execute */
2245 NULL, /* sub */
2246 NULL, /* next */
2247 0, /* static_pass_number */
2248 TV_JUMP, /* tv_id */
2249 0, /* properties_required */
2250 0, /* properties_provided */
2251 0, /* properties_destroyed */
2252 TODO_ggc_collect, /* todo_flags_start */
2253 TODO_dump_func | TODO_verify_rtl_sharing,/* todo_flags_finish */
2254 }
2255 };
2256
2257