g-expect-vms.adb:
[gcc.git] / gcc / cfgcleanup.c
1 /* Control flow optimization code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23 /* This file contains optimizer of the control flow. The main entry point is
24 cleanup_cfg. Following optimizations are performed:
25
26 - Unreachable blocks removal
27 - Edge forwarding (edge to the forwarder block is forwarded to its
28 successor. Simplification of the branch instruction is performed by
29 underlying infrastructure so branch can be converted to simplejump or
30 eliminated).
31 - Cross jumping (tail merging)
32 - Conditional jump-around-simplejump simplification
33 - Basic block merging. */
34
35 #include "config.h"
36 #include "system.h"
37 #include "coretypes.h"
38 #include "tm.h"
39 #include "rtl.h"
40 #include "hard-reg-set.h"
41 #include "regs.h"
42 #include "timevar.h"
43 #include "output.h"
44 #include "insn-config.h"
45 #include "flags.h"
46 #include "recog.h"
47 #include "toplev.h"
48 #include "cselib.h"
49 #include "params.h"
50 #include "tm_p.h"
51 #include "target.h"
52 #include "cfglayout.h"
53 #include "emit-rtl.h"
54 #include "tree-pass.h"
55 #include "cfgloop.h"
56 #include "expr.h"
57
58 #define FORWARDER_BLOCK_P(BB) ((BB)->flags & BB_FORWARDER_BLOCK)
59
60 /* Set to true when we are running first pass of try_optimize_cfg loop. */
61 static bool first_pass;
62 static bool try_crossjump_to_edge (int, edge, edge);
63 static bool try_crossjump_bb (int, basic_block);
64 static bool outgoing_edges_match (int, basic_block, basic_block);
65 static int flow_find_cross_jump (int, basic_block, basic_block, rtx *, rtx *);
66 static bool old_insns_match_p (int, rtx, rtx);
67
68 static void merge_blocks_move_predecessor_nojumps (basic_block, basic_block);
69 static void merge_blocks_move_successor_nojumps (basic_block, basic_block);
70 static bool try_optimize_cfg (int);
71 static bool try_simplify_condjump (basic_block);
72 static bool try_forward_edges (int, basic_block);
73 static edge thread_jump (int, edge, basic_block);
74 static bool mark_effect (rtx, bitmap);
75 static void notice_new_block (basic_block);
76 static void update_forwarder_flag (basic_block);
77 static int mentions_nonequal_regs (rtx *, void *);
78 static void merge_memattrs (rtx, rtx);
79 \f
80 /* Set flags for newly created block. */
81
82 static void
83 notice_new_block (basic_block bb)
84 {
85 if (!bb)
86 return;
87
88 if (forwarder_block_p (bb))
89 bb->flags |= BB_FORWARDER_BLOCK;
90 }
91
92 /* Recompute forwarder flag after block has been modified. */
93
94 static void
95 update_forwarder_flag (basic_block bb)
96 {
97 if (forwarder_block_p (bb))
98 bb->flags |= BB_FORWARDER_BLOCK;
99 else
100 bb->flags &= ~BB_FORWARDER_BLOCK;
101 }
102 \f
103 /* Simplify a conditional jump around an unconditional jump.
104 Return true if something changed. */
105
106 static bool
107 try_simplify_condjump (basic_block cbranch_block)
108 {
109 basic_block jump_block, jump_dest_block, cbranch_dest_block;
110 edge cbranch_jump_edge, cbranch_fallthru_edge;
111 rtx cbranch_insn;
112
113 /* Verify that there are exactly two successors. */
114 if (EDGE_COUNT (cbranch_block->succs) != 2)
115 return false;
116
117 /* Verify that we've got a normal conditional branch at the end
118 of the block. */
119 cbranch_insn = BB_END (cbranch_block);
120 if (!any_condjump_p (cbranch_insn))
121 return false;
122
123 cbranch_fallthru_edge = FALLTHRU_EDGE (cbranch_block);
124 cbranch_jump_edge = BRANCH_EDGE (cbranch_block);
125
126 /* The next block must not have multiple predecessors, must not
127 be the last block in the function, and must contain just the
128 unconditional jump. */
129 jump_block = cbranch_fallthru_edge->dest;
130 if (!single_pred_p (jump_block)
131 || jump_block->next_bb == EXIT_BLOCK_PTR
132 || !FORWARDER_BLOCK_P (jump_block))
133 return false;
134 jump_dest_block = single_succ (jump_block);
135
136 /* If we are partitioning hot/cold basic blocks, we don't want to
137 mess up unconditional or indirect jumps that cross between hot
138 and cold sections.
139
140 Basic block partitioning may result in some jumps that appear to
141 be optimizable (or blocks that appear to be mergeable), but which really
142 must be left untouched (they are required to make it safely across
143 partition boundaries). See the comments at the top of
144 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
145
146 if (BB_PARTITION (jump_block) != BB_PARTITION (jump_dest_block)
147 || (cbranch_jump_edge->flags & EDGE_CROSSING))
148 return false;
149
150 /* The conditional branch must target the block after the
151 unconditional branch. */
152 cbranch_dest_block = cbranch_jump_edge->dest;
153
154 if (cbranch_dest_block == EXIT_BLOCK_PTR
155 || !can_fallthru (jump_block, cbranch_dest_block))
156 return false;
157
158 /* Invert the conditional branch. */
159 if (!invert_jump (cbranch_insn, block_label (jump_dest_block), 0))
160 return false;
161
162 if (dump_file)
163 fprintf (dump_file, "Simplifying condjump %i around jump %i\n",
164 INSN_UID (cbranch_insn), INSN_UID (BB_END (jump_block)));
165
166 /* Success. Update the CFG to match. Note that after this point
167 the edge variable names appear backwards; the redirection is done
168 this way to preserve edge profile data. */
169 cbranch_jump_edge = redirect_edge_succ_nodup (cbranch_jump_edge,
170 cbranch_dest_block);
171 cbranch_fallthru_edge = redirect_edge_succ_nodup (cbranch_fallthru_edge,
172 jump_dest_block);
173 cbranch_jump_edge->flags |= EDGE_FALLTHRU;
174 cbranch_fallthru_edge->flags &= ~EDGE_FALLTHRU;
175 update_br_prob_note (cbranch_block);
176
177 /* Delete the block with the unconditional jump, and clean up the mess. */
178 delete_basic_block (jump_block);
179 tidy_fallthru_edge (cbranch_jump_edge);
180 update_forwarder_flag (cbranch_block);
181
182 return true;
183 }
184 \f
185 /* Attempt to prove that operation is NOOP using CSElib or mark the effect
186 on register. Used by jump threading. */
187
188 static bool
189 mark_effect (rtx exp, regset nonequal)
190 {
191 int regno;
192 rtx dest;
193 switch (GET_CODE (exp))
194 {
195 /* In case we do clobber the register, mark it as equal, as we know the
196 value is dead so it don't have to match. */
197 case CLOBBER:
198 if (REG_P (XEXP (exp, 0)))
199 {
200 dest = XEXP (exp, 0);
201 regno = REGNO (dest);
202 CLEAR_REGNO_REG_SET (nonequal, regno);
203 if (regno < FIRST_PSEUDO_REGISTER)
204 {
205 int n = hard_regno_nregs[regno][GET_MODE (dest)];
206 while (--n > 0)
207 CLEAR_REGNO_REG_SET (nonequal, regno + n);
208 }
209 }
210 return false;
211
212 case SET:
213 if (rtx_equal_for_cselib_p (SET_DEST (exp), SET_SRC (exp)))
214 return false;
215 dest = SET_DEST (exp);
216 if (dest == pc_rtx)
217 return false;
218 if (!REG_P (dest))
219 return true;
220 regno = REGNO (dest);
221 SET_REGNO_REG_SET (nonequal, regno);
222 if (regno < FIRST_PSEUDO_REGISTER)
223 {
224 int n = hard_regno_nregs[regno][GET_MODE (dest)];
225 while (--n > 0)
226 SET_REGNO_REG_SET (nonequal, regno + n);
227 }
228 return false;
229
230 default:
231 return false;
232 }
233 }
234
235 /* Return nonzero if X is a register set in regset DATA.
236 Called via for_each_rtx. */
237 static int
238 mentions_nonequal_regs (rtx *x, void *data)
239 {
240 regset nonequal = (regset) data;
241 if (REG_P (*x))
242 {
243 int regno;
244
245 regno = REGNO (*x);
246 if (REGNO_REG_SET_P (nonequal, regno))
247 return 1;
248 if (regno < FIRST_PSEUDO_REGISTER)
249 {
250 int n = hard_regno_nregs[regno][GET_MODE (*x)];
251 while (--n > 0)
252 if (REGNO_REG_SET_P (nonequal, regno + n))
253 return 1;
254 }
255 }
256 return 0;
257 }
258 /* Attempt to prove that the basic block B will have no side effects and
259 always continues in the same edge if reached via E. Return the edge
260 if exist, NULL otherwise. */
261
262 static edge
263 thread_jump (int mode, edge e, basic_block b)
264 {
265 rtx set1, set2, cond1, cond2, insn;
266 enum rtx_code code1, code2, reversed_code2;
267 bool reverse1 = false;
268 unsigned i;
269 regset nonequal;
270 bool failed = false;
271 reg_set_iterator rsi;
272
273 if (b->flags & BB_NONTHREADABLE_BLOCK)
274 return NULL;
275
276 /* At the moment, we do handle only conditional jumps, but later we may
277 want to extend this code to tablejumps and others. */
278 if (EDGE_COUNT (e->src->succs) != 2)
279 return NULL;
280 if (EDGE_COUNT (b->succs) != 2)
281 {
282 b->flags |= BB_NONTHREADABLE_BLOCK;
283 return NULL;
284 }
285
286 /* Second branch must end with onlyjump, as we will eliminate the jump. */
287 if (!any_condjump_p (BB_END (e->src)))
288 return NULL;
289
290 if (!any_condjump_p (BB_END (b)) || !onlyjump_p (BB_END (b)))
291 {
292 b->flags |= BB_NONTHREADABLE_BLOCK;
293 return NULL;
294 }
295
296 set1 = pc_set (BB_END (e->src));
297 set2 = pc_set (BB_END (b));
298 if (((e->flags & EDGE_FALLTHRU) != 0)
299 != (XEXP (SET_SRC (set1), 1) == pc_rtx))
300 reverse1 = true;
301
302 cond1 = XEXP (SET_SRC (set1), 0);
303 cond2 = XEXP (SET_SRC (set2), 0);
304 if (reverse1)
305 code1 = reversed_comparison_code (cond1, BB_END (e->src));
306 else
307 code1 = GET_CODE (cond1);
308
309 code2 = GET_CODE (cond2);
310 reversed_code2 = reversed_comparison_code (cond2, BB_END (b));
311
312 if (!comparison_dominates_p (code1, code2)
313 && !comparison_dominates_p (code1, reversed_code2))
314 return NULL;
315
316 /* Ensure that the comparison operators are equivalent.
317 ??? This is far too pessimistic. We should allow swapped operands,
318 different CCmodes, or for example comparisons for interval, that
319 dominate even when operands are not equivalent. */
320 if (!rtx_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
321 || !rtx_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
322 return NULL;
323
324 /* Short circuit cases where block B contains some side effects, as we can't
325 safely bypass it. */
326 for (insn = NEXT_INSN (BB_HEAD (b)); insn != NEXT_INSN (BB_END (b));
327 insn = NEXT_INSN (insn))
328 if (INSN_P (insn) && side_effects_p (PATTERN (insn)))
329 {
330 b->flags |= BB_NONTHREADABLE_BLOCK;
331 return NULL;
332 }
333
334 cselib_init (false);
335
336 /* First process all values computed in the source basic block. */
337 for (insn = NEXT_INSN (BB_HEAD (e->src));
338 insn != NEXT_INSN (BB_END (e->src));
339 insn = NEXT_INSN (insn))
340 if (INSN_P (insn))
341 cselib_process_insn (insn);
342
343 nonequal = BITMAP_ALLOC (NULL);
344 CLEAR_REG_SET (nonequal);
345
346 /* Now assume that we've continued by the edge E to B and continue
347 processing as if it were same basic block.
348 Our goal is to prove that whole block is an NOOP. */
349
350 for (insn = NEXT_INSN (BB_HEAD (b));
351 insn != NEXT_INSN (BB_END (b)) && !failed;
352 insn = NEXT_INSN (insn))
353 {
354 if (INSN_P (insn))
355 {
356 rtx pat = PATTERN (insn);
357
358 if (GET_CODE (pat) == PARALLEL)
359 {
360 for (i = 0; i < (unsigned)XVECLEN (pat, 0); i++)
361 failed |= mark_effect (XVECEXP (pat, 0, i), nonequal);
362 }
363 else
364 failed |= mark_effect (pat, nonequal);
365 }
366
367 cselib_process_insn (insn);
368 }
369
370 /* Later we should clear nonequal of dead registers. So far we don't
371 have life information in cfg_cleanup. */
372 if (failed)
373 {
374 b->flags |= BB_NONTHREADABLE_BLOCK;
375 goto failed_exit;
376 }
377
378 /* cond2 must not mention any register that is not equal to the
379 former block. */
380 if (for_each_rtx (&cond2, mentions_nonequal_regs, nonequal))
381 goto failed_exit;
382
383 /* In case liveness information is available, we need to prove equivalence
384 only of the live values. */
385 if (mode & CLEANUP_UPDATE_LIFE)
386 AND_REG_SET (nonequal, b->il.rtl->global_live_at_end);
387
388 EXECUTE_IF_SET_IN_REG_SET (nonequal, 0, i, rsi)
389 goto failed_exit;
390
391 BITMAP_FREE (nonequal);
392 cselib_finish ();
393 if ((comparison_dominates_p (code1, code2) != 0)
394 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
395 return BRANCH_EDGE (b);
396 else
397 return FALLTHRU_EDGE (b);
398
399 failed_exit:
400 BITMAP_FREE (nonequal);
401 cselib_finish ();
402 return NULL;
403 }
404 \f
405 /* Attempt to forward edges leaving basic block B.
406 Return true if successful. */
407
408 static bool
409 try_forward_edges (int mode, basic_block b)
410 {
411 bool changed = false;
412 edge_iterator ei;
413 edge e, *threaded_edges = NULL;
414
415 /* If we are partitioning hot/cold basic blocks, we don't want to
416 mess up unconditional or indirect jumps that cross between hot
417 and cold sections.
418
419 Basic block partitioning may result in some jumps that appear to
420 be optimizable (or blocks that appear to be mergeable), but which really m
421 ust be left untouched (they are required to make it safely across
422 partition boundaries). See the comments at the top of
423 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
424
425 if (find_reg_note (BB_END (b), REG_CROSSING_JUMP, NULL_RTX))
426 return false;
427
428 for (ei = ei_start (b->succs); (e = ei_safe_edge (ei)); )
429 {
430 basic_block target, first;
431 int counter;
432 bool threaded = false;
433 int nthreaded_edges = 0;
434 bool may_thread = first_pass | (b->flags & BB_DIRTY);
435
436 /* Skip complex edges because we don't know how to update them.
437
438 Still handle fallthru edges, as we can succeed to forward fallthru
439 edge to the same place as the branch edge of conditional branch
440 and turn conditional branch to an unconditional branch. */
441 if (e->flags & EDGE_COMPLEX)
442 {
443 ei_next (&ei);
444 continue;
445 }
446
447 target = first = e->dest;
448 counter = NUM_FIXED_BLOCKS;
449
450 /* If we are partitioning hot/cold basic_blocks, we don't want to mess
451 up jumps that cross between hot/cold sections.
452
453 Basic block partitioning may result in some jumps that appear
454 to be optimizable (or blocks that appear to be mergeable), but which
455 really must be left untouched (they are required to make it safely
456 across partition boundaries). See the comments at the top of
457 bb-reorder.c:partition_hot_cold_basic_blocks for complete
458 details. */
459
460 if (first != EXIT_BLOCK_PTR
461 && find_reg_note (BB_END (first), REG_CROSSING_JUMP, NULL_RTX))
462 return false;
463
464 while (counter < n_basic_blocks)
465 {
466 basic_block new_target = NULL;
467 bool new_target_threaded = false;
468 may_thread |= target->flags & BB_DIRTY;
469
470 if (FORWARDER_BLOCK_P (target)
471 && !(single_succ_edge (target)->flags & EDGE_CROSSING)
472 && single_succ (target) != EXIT_BLOCK_PTR)
473 {
474 /* Bypass trivial infinite loops. */
475 new_target = single_succ (target);
476 if (target == new_target)
477 counter = n_basic_blocks;
478 }
479
480 /* Allow to thread only over one edge at time to simplify updating
481 of probabilities. */
482 else if ((mode & CLEANUP_THREADING) && may_thread)
483 {
484 edge t = thread_jump (mode, e, target);
485 if (t)
486 {
487 if (!threaded_edges)
488 threaded_edges = XNEWVEC (edge, n_basic_blocks);
489 else
490 {
491 int i;
492
493 /* Detect an infinite loop across blocks not
494 including the start block. */
495 for (i = 0; i < nthreaded_edges; ++i)
496 if (threaded_edges[i] == t)
497 break;
498 if (i < nthreaded_edges)
499 {
500 counter = n_basic_blocks;
501 break;
502 }
503 }
504
505 /* Detect an infinite loop across the start block. */
506 if (t->dest == b)
507 break;
508
509 gcc_assert (nthreaded_edges < n_basic_blocks - NUM_FIXED_BLOCKS);
510 threaded_edges[nthreaded_edges++] = t;
511
512 new_target = t->dest;
513 new_target_threaded = true;
514 }
515 }
516
517 if (!new_target)
518 break;
519
520 counter++;
521 target = new_target;
522 threaded |= new_target_threaded;
523 }
524
525 if (counter >= n_basic_blocks)
526 {
527 if (dump_file)
528 fprintf (dump_file, "Infinite loop in BB %i.\n",
529 target->index);
530 }
531 else if (target == first)
532 ; /* We didn't do anything. */
533 else
534 {
535 /* Save the values now, as the edge may get removed. */
536 gcov_type edge_count = e->count;
537 int edge_probability = e->probability;
538 int edge_frequency;
539 int n = 0;
540
541 /* Don't force if target is exit block. */
542 if (threaded && target != EXIT_BLOCK_PTR)
543 {
544 notice_new_block (redirect_edge_and_branch_force (e, target));
545 if (dump_file)
546 fprintf (dump_file, "Conditionals threaded.\n");
547 }
548 else if (!redirect_edge_and_branch (e, target))
549 {
550 if (dump_file)
551 fprintf (dump_file,
552 "Forwarding edge %i->%i to %i failed.\n",
553 b->index, e->dest->index, target->index);
554 ei_next (&ei);
555 continue;
556 }
557
558 /* We successfully forwarded the edge. Now update profile
559 data: for each edge we traversed in the chain, remove
560 the original edge's execution count. */
561 edge_frequency = ((edge_probability * b->frequency
562 + REG_BR_PROB_BASE / 2)
563 / REG_BR_PROB_BASE);
564
565 if (!FORWARDER_BLOCK_P (b) && forwarder_block_p (b))
566 b->flags |= BB_FORWARDER_BLOCK;
567
568 do
569 {
570 edge t;
571
572 if (!single_succ_p (first))
573 {
574 gcc_assert (n < nthreaded_edges);
575 t = threaded_edges [n++];
576 gcc_assert (t->src == first);
577 update_bb_profile_for_threading (first, edge_frequency,
578 edge_count, t);
579 update_br_prob_note (first);
580 }
581 else
582 {
583 first->count -= edge_count;
584 if (first->count < 0)
585 first->count = 0;
586 first->frequency -= edge_frequency;
587 if (first->frequency < 0)
588 first->frequency = 0;
589 /* It is possible that as the result of
590 threading we've removed edge as it is
591 threaded to the fallthru edge. Avoid
592 getting out of sync. */
593 if (n < nthreaded_edges
594 && first == threaded_edges [n]->src)
595 n++;
596 t = single_succ_edge (first);
597 }
598
599 t->count -= edge_count;
600 if (t->count < 0)
601 t->count = 0;
602 first = t->dest;
603 }
604 while (first != target);
605
606 changed = true;
607 continue;
608 }
609 ei_next (&ei);
610 }
611
612 if (threaded_edges)
613 free (threaded_edges);
614 return changed;
615 }
616 \f
617
618 /* Blocks A and B are to be merged into a single block. A has no incoming
619 fallthru edge, so it can be moved before B without adding or modifying
620 any jumps (aside from the jump from A to B). */
621
622 static void
623 merge_blocks_move_predecessor_nojumps (basic_block a, basic_block b)
624 {
625 rtx barrier;
626
627 /* If we are partitioning hot/cold basic blocks, we don't want to
628 mess up unconditional or indirect jumps that cross between hot
629 and cold sections.
630
631 Basic block partitioning may result in some jumps that appear to
632 be optimizable (or blocks that appear to be mergeable), but which really
633 must be left untouched (they are required to make it safely across
634 partition boundaries). See the comments at the top of
635 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
636
637 if (BB_PARTITION (a) != BB_PARTITION (b))
638 return;
639
640 barrier = next_nonnote_insn (BB_END (a));
641 gcc_assert (BARRIER_P (barrier));
642 delete_insn (barrier);
643
644 /* Scramble the insn chain. */
645 if (BB_END (a) != PREV_INSN (BB_HEAD (b)))
646 reorder_insns_nobb (BB_HEAD (a), BB_END (a), PREV_INSN (BB_HEAD (b)));
647 a->flags |= BB_DIRTY;
648
649 if (dump_file)
650 fprintf (dump_file, "Moved block %d before %d and merged.\n",
651 a->index, b->index);
652
653 /* Swap the records for the two blocks around. */
654
655 unlink_block (a);
656 link_block (a, b->prev_bb);
657
658 /* Now blocks A and B are contiguous. Merge them. */
659 merge_blocks (a, b);
660 }
661
662 /* Blocks A and B are to be merged into a single block. B has no outgoing
663 fallthru edge, so it can be moved after A without adding or modifying
664 any jumps (aside from the jump from A to B). */
665
666 static void
667 merge_blocks_move_successor_nojumps (basic_block a, basic_block b)
668 {
669 rtx barrier, real_b_end;
670 rtx label, table;
671
672 /* If we are partitioning hot/cold basic blocks, we don't want to
673 mess up unconditional or indirect jumps that cross between hot
674 and cold sections.
675
676 Basic block partitioning may result in some jumps that appear to
677 be optimizable (or blocks that appear to be mergeable), but which really
678 must be left untouched (they are required to make it safely across
679 partition boundaries). See the comments at the top of
680 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
681
682 if (BB_PARTITION (a) != BB_PARTITION (b))
683 return;
684
685 real_b_end = BB_END (b);
686
687 /* If there is a jump table following block B temporarily add the jump table
688 to block B so that it will also be moved to the correct location. */
689 if (tablejump_p (BB_END (b), &label, &table)
690 && prev_active_insn (label) == BB_END (b))
691 {
692 BB_END (b) = table;
693 }
694
695 /* There had better have been a barrier there. Delete it. */
696 barrier = NEXT_INSN (BB_END (b));
697 if (barrier && BARRIER_P (barrier))
698 delete_insn (barrier);
699
700
701 /* Scramble the insn chain. */
702 reorder_insns_nobb (BB_HEAD (b), BB_END (b), BB_END (a));
703
704 /* Restore the real end of b. */
705 BB_END (b) = real_b_end;
706
707 if (dump_file)
708 fprintf (dump_file, "Moved block %d after %d and merged.\n",
709 b->index, a->index);
710
711 /* Now blocks A and B are contiguous. Merge them. */
712 merge_blocks (a, b);
713 }
714
715 /* Attempt to merge basic blocks that are potentially non-adjacent.
716 Return NULL iff the attempt failed, otherwise return basic block
717 where cleanup_cfg should continue. Because the merging commonly
718 moves basic block away or introduces another optimization
719 possibility, return basic block just before B so cleanup_cfg don't
720 need to iterate.
721
722 It may be good idea to return basic block before C in the case
723 C has been moved after B and originally appeared earlier in the
724 insn sequence, but we have no information available about the
725 relative ordering of these two. Hopefully it is not too common. */
726
727 static basic_block
728 merge_blocks_move (edge e, basic_block b, basic_block c, int mode)
729 {
730 basic_block next;
731
732 /* If we are partitioning hot/cold basic blocks, we don't want to
733 mess up unconditional or indirect jumps that cross between hot
734 and cold sections.
735
736 Basic block partitioning may result in some jumps that appear to
737 be optimizable (or blocks that appear to be mergeable), but which really
738 must be left untouched (they are required to make it safely across
739 partition boundaries). See the comments at the top of
740 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
741
742 if (BB_PARTITION (b) != BB_PARTITION (c))
743 return NULL;
744
745 /* If B has a fallthru edge to C, no need to move anything. */
746 if (e->flags & EDGE_FALLTHRU)
747 {
748 int b_index = b->index, c_index = c->index;
749 merge_blocks (b, c);
750 update_forwarder_flag (b);
751
752 if (dump_file)
753 fprintf (dump_file, "Merged %d and %d without moving.\n",
754 b_index, c_index);
755
756 return b->prev_bb == ENTRY_BLOCK_PTR ? b : b->prev_bb;
757 }
758
759 /* Otherwise we will need to move code around. Do that only if expensive
760 transformations are allowed. */
761 else if (mode & CLEANUP_EXPENSIVE)
762 {
763 edge tmp_edge, b_fallthru_edge;
764 bool c_has_outgoing_fallthru;
765 bool b_has_incoming_fallthru;
766 edge_iterator ei;
767
768 /* Avoid overactive code motion, as the forwarder blocks should be
769 eliminated by edge redirection instead. One exception might have
770 been if B is a forwarder block and C has no fallthru edge, but
771 that should be cleaned up by bb-reorder instead. */
772 if (FORWARDER_BLOCK_P (b) || FORWARDER_BLOCK_P (c))
773 return NULL;
774
775 /* We must make sure to not munge nesting of lexical blocks,
776 and loop notes. This is done by squeezing out all the notes
777 and leaving them there to lie. Not ideal, but functional. */
778
779 FOR_EACH_EDGE (tmp_edge, ei, c->succs)
780 if (tmp_edge->flags & EDGE_FALLTHRU)
781 break;
782
783 c_has_outgoing_fallthru = (tmp_edge != NULL);
784
785 FOR_EACH_EDGE (tmp_edge, ei, b->preds)
786 if (tmp_edge->flags & EDGE_FALLTHRU)
787 break;
788
789 b_has_incoming_fallthru = (tmp_edge != NULL);
790 b_fallthru_edge = tmp_edge;
791 next = b->prev_bb;
792 if (next == c)
793 next = next->prev_bb;
794
795 /* Otherwise, we're going to try to move C after B. If C does
796 not have an outgoing fallthru, then it can be moved
797 immediately after B without introducing or modifying jumps. */
798 if (! c_has_outgoing_fallthru)
799 {
800 merge_blocks_move_successor_nojumps (b, c);
801 return next == ENTRY_BLOCK_PTR ? next->next_bb : next;
802 }
803
804 /* If B does not have an incoming fallthru, then it can be moved
805 immediately before C without introducing or modifying jumps.
806 C cannot be the first block, so we do not have to worry about
807 accessing a non-existent block. */
808
809 if (b_has_incoming_fallthru)
810 {
811 basic_block bb;
812
813 if (b_fallthru_edge->src == ENTRY_BLOCK_PTR)
814 return NULL;
815 bb = force_nonfallthru (b_fallthru_edge);
816 if (bb)
817 notice_new_block (bb);
818 }
819
820 merge_blocks_move_predecessor_nojumps (b, c);
821 return next == ENTRY_BLOCK_PTR ? next->next_bb : next;
822 }
823
824 return NULL;
825 }
826 \f
827
828 /* Removes the memory attributes of MEM expression
829 if they are not equal. */
830
831 void
832 merge_memattrs (rtx x, rtx y)
833 {
834 int i;
835 int j;
836 enum rtx_code code;
837 const char *fmt;
838
839 if (x == y)
840 return;
841 if (x == 0 || y == 0)
842 return;
843
844 code = GET_CODE (x);
845
846 if (code != GET_CODE (y))
847 return;
848
849 if (GET_MODE (x) != GET_MODE (y))
850 return;
851
852 if (code == MEM && MEM_ATTRS (x) != MEM_ATTRS (y))
853 {
854 if (! MEM_ATTRS (x))
855 MEM_ATTRS (y) = 0;
856 else if (! MEM_ATTRS (y))
857 MEM_ATTRS (x) = 0;
858 else
859 {
860 rtx mem_size;
861
862 if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
863 {
864 set_mem_alias_set (x, 0);
865 set_mem_alias_set (y, 0);
866 }
867
868 if (! mem_expr_equal_p (MEM_EXPR (x), MEM_EXPR (y)))
869 {
870 set_mem_expr (x, 0);
871 set_mem_expr (y, 0);
872 set_mem_offset (x, 0);
873 set_mem_offset (y, 0);
874 }
875 else if (MEM_OFFSET (x) != MEM_OFFSET (y))
876 {
877 set_mem_offset (x, 0);
878 set_mem_offset (y, 0);
879 }
880
881 if (!MEM_SIZE (x))
882 mem_size = NULL_RTX;
883 else if (!MEM_SIZE (y))
884 mem_size = NULL_RTX;
885 else
886 mem_size = GEN_INT (MAX (INTVAL (MEM_SIZE (x)),
887 INTVAL (MEM_SIZE (y))));
888 set_mem_size (x, mem_size);
889 set_mem_size (y, mem_size);
890
891 set_mem_align (x, MIN (MEM_ALIGN (x), MEM_ALIGN (y)));
892 set_mem_align (y, MEM_ALIGN (x));
893 }
894 }
895
896 fmt = GET_RTX_FORMAT (code);
897 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
898 {
899 switch (fmt[i])
900 {
901 case 'E':
902 /* Two vectors must have the same length. */
903 if (XVECLEN (x, i) != XVECLEN (y, i))
904 return;
905
906 for (j = 0; j < XVECLEN (x, i); j++)
907 merge_memattrs (XVECEXP (x, i, j), XVECEXP (y, i, j));
908
909 break;
910
911 case 'e':
912 merge_memattrs (XEXP (x, i), XEXP (y, i));
913 }
914 }
915 return;
916 }
917
918
919 /* Return true if I1 and I2 are equivalent and thus can be crossjumped. */
920
921 static bool
922 old_insns_match_p (int mode ATTRIBUTE_UNUSED, rtx i1, rtx i2)
923 {
924 rtx p1, p2;
925
926 /* Verify that I1 and I2 are equivalent. */
927 if (GET_CODE (i1) != GET_CODE (i2))
928 return false;
929
930 p1 = PATTERN (i1);
931 p2 = PATTERN (i2);
932
933 if (GET_CODE (p1) != GET_CODE (p2))
934 return false;
935
936 /* If this is a CALL_INSN, compare register usage information.
937 If we don't check this on stack register machines, the two
938 CALL_INSNs might be merged leaving reg-stack.c with mismatching
939 numbers of stack registers in the same basic block.
940 If we don't check this on machines with delay slots, a delay slot may
941 be filled that clobbers a parameter expected by the subroutine.
942
943 ??? We take the simple route for now and assume that if they're
944 equal, they were constructed identically. */
945
946 if (CALL_P (i1)
947 && (!rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1),
948 CALL_INSN_FUNCTION_USAGE (i2))
949 || SIBLING_CALL_P (i1) != SIBLING_CALL_P (i2)))
950 return false;
951
952 #ifdef STACK_REGS
953 /* If cross_jump_death_matters is not 0, the insn's mode
954 indicates whether or not the insn contains any stack-like
955 regs. */
956
957 if ((mode & CLEANUP_POST_REGSTACK) && stack_regs_mentioned (i1))
958 {
959 /* If register stack conversion has already been done, then
960 death notes must also be compared before it is certain that
961 the two instruction streams match. */
962
963 rtx note;
964 HARD_REG_SET i1_regset, i2_regset;
965
966 CLEAR_HARD_REG_SET (i1_regset);
967 CLEAR_HARD_REG_SET (i2_regset);
968
969 for (note = REG_NOTES (i1); note; note = XEXP (note, 1))
970 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
971 SET_HARD_REG_BIT (i1_regset, REGNO (XEXP (note, 0)));
972
973 for (note = REG_NOTES (i2); note; note = XEXP (note, 1))
974 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
975 SET_HARD_REG_BIT (i2_regset, REGNO (XEXP (note, 0)));
976
977 if (!hard_reg_set_equal_p (i1_regset, i2_regset))
978 return false;
979 }
980 #endif
981
982 if (reload_completed
983 ? rtx_renumbered_equal_p (p1, p2) : rtx_equal_p (p1, p2))
984 return true;
985
986 /* Do not do EQUIV substitution after reload. First, we're undoing the
987 work of reload_cse. Second, we may be undoing the work of the post-
988 reload splitting pass. */
989 /* ??? Possibly add a new phase switch variable that can be used by
990 targets to disallow the troublesome insns after splitting. */
991 if (!reload_completed)
992 {
993 /* The following code helps take care of G++ cleanups. */
994 rtx equiv1 = find_reg_equal_equiv_note (i1);
995 rtx equiv2 = find_reg_equal_equiv_note (i2);
996
997 if (equiv1 && equiv2
998 /* If the equivalences are not to a constant, they may
999 reference pseudos that no longer exist, so we can't
1000 use them. */
1001 && (! reload_completed
1002 || (CONSTANT_P (XEXP (equiv1, 0))
1003 && rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))))
1004 {
1005 rtx s1 = single_set (i1);
1006 rtx s2 = single_set (i2);
1007 if (s1 != 0 && s2 != 0
1008 && rtx_renumbered_equal_p (SET_DEST (s1), SET_DEST (s2)))
1009 {
1010 validate_change (i1, &SET_SRC (s1), XEXP (equiv1, 0), 1);
1011 validate_change (i2, &SET_SRC (s2), XEXP (equiv2, 0), 1);
1012 if (! rtx_renumbered_equal_p (p1, p2))
1013 cancel_changes (0);
1014 else if (apply_change_group ())
1015 return true;
1016 }
1017 }
1018 }
1019
1020 return false;
1021 }
1022 \f
1023 /* Look through the insns at the end of BB1 and BB2 and find the longest
1024 sequence that are equivalent. Store the first insns for that sequence
1025 in *F1 and *F2 and return the sequence length.
1026
1027 To simplify callers of this function, if the blocks match exactly,
1028 store the head of the blocks in *F1 and *F2. */
1029
1030 static int
1031 flow_find_cross_jump (int mode ATTRIBUTE_UNUSED, basic_block bb1,
1032 basic_block bb2, rtx *f1, rtx *f2)
1033 {
1034 rtx i1, i2, last1, last2, afterlast1, afterlast2;
1035 int ninsns = 0;
1036
1037 /* Skip simple jumps at the end of the blocks. Complex jumps still
1038 need to be compared for equivalence, which we'll do below. */
1039
1040 i1 = BB_END (bb1);
1041 last1 = afterlast1 = last2 = afterlast2 = NULL_RTX;
1042 if (onlyjump_p (i1)
1043 || (returnjump_p (i1) && !side_effects_p (PATTERN (i1))))
1044 {
1045 last1 = i1;
1046 i1 = PREV_INSN (i1);
1047 }
1048
1049 i2 = BB_END (bb2);
1050 if (onlyjump_p (i2)
1051 || (returnjump_p (i2) && !side_effects_p (PATTERN (i2))))
1052 {
1053 last2 = i2;
1054 /* Count everything except for unconditional jump as insn. */
1055 if (!simplejump_p (i2) && !returnjump_p (i2) && last1)
1056 ninsns++;
1057 i2 = PREV_INSN (i2);
1058 }
1059
1060 while (true)
1061 {
1062 /* Ignore notes. */
1063 while (!INSN_P (i1) && i1 != BB_HEAD (bb1))
1064 i1 = PREV_INSN (i1);
1065
1066 while (!INSN_P (i2) && i2 != BB_HEAD (bb2))
1067 i2 = PREV_INSN (i2);
1068
1069 if (i1 == BB_HEAD (bb1) || i2 == BB_HEAD (bb2))
1070 break;
1071
1072 if (!old_insns_match_p (mode, i1, i2))
1073 break;
1074
1075 merge_memattrs (i1, i2);
1076
1077 /* Don't begin a cross-jump with a NOTE insn. */
1078 if (INSN_P (i1))
1079 {
1080 /* If the merged insns have different REG_EQUAL notes, then
1081 remove them. */
1082 rtx equiv1 = find_reg_equal_equiv_note (i1);
1083 rtx equiv2 = find_reg_equal_equiv_note (i2);
1084
1085 if (equiv1 && !equiv2)
1086 remove_note (i1, equiv1);
1087 else if (!equiv1 && equiv2)
1088 remove_note (i2, equiv2);
1089 else if (equiv1 && equiv2
1090 && !rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))
1091 {
1092 remove_note (i1, equiv1);
1093 remove_note (i2, equiv2);
1094 }
1095
1096 afterlast1 = last1, afterlast2 = last2;
1097 last1 = i1, last2 = i2;
1098 ninsns++;
1099 }
1100
1101 i1 = PREV_INSN (i1);
1102 i2 = PREV_INSN (i2);
1103 }
1104
1105 #ifdef HAVE_cc0
1106 /* Don't allow the insn after a compare to be shared by
1107 cross-jumping unless the compare is also shared. */
1108 if (ninsns && reg_mentioned_p (cc0_rtx, last1) && ! sets_cc0_p (last1))
1109 last1 = afterlast1, last2 = afterlast2, ninsns--;
1110 #endif
1111
1112 /* Include preceding notes and labels in the cross-jump. One,
1113 this may bring us to the head of the blocks as requested above.
1114 Two, it keeps line number notes as matched as may be. */
1115 if (ninsns)
1116 {
1117 while (last1 != BB_HEAD (bb1) && !INSN_P (PREV_INSN (last1)))
1118 last1 = PREV_INSN (last1);
1119
1120 if (last1 != BB_HEAD (bb1) && LABEL_P (PREV_INSN (last1)))
1121 last1 = PREV_INSN (last1);
1122
1123 while (last2 != BB_HEAD (bb2) && !INSN_P (PREV_INSN (last2)))
1124 last2 = PREV_INSN (last2);
1125
1126 if (last2 != BB_HEAD (bb2) && LABEL_P (PREV_INSN (last2)))
1127 last2 = PREV_INSN (last2);
1128
1129 *f1 = last1;
1130 *f2 = last2;
1131 }
1132
1133 return ninsns;
1134 }
1135
1136 /* Return true iff the condbranches at the end of BB1 and BB2 match. */
1137 bool
1138 condjump_equiv_p (struct equiv_info *info, bool call_init)
1139 {
1140 basic_block bb1 = info->x_block;
1141 basic_block bb2 = info->y_block;
1142 edge b1 = BRANCH_EDGE (bb1);
1143 edge b2 = BRANCH_EDGE (bb2);
1144 edge f1 = FALLTHRU_EDGE (bb1);
1145 edge f2 = FALLTHRU_EDGE (bb2);
1146 bool reverse, match;
1147 rtx set1, set2, cond1, cond2;
1148 rtx src1, src2;
1149 enum rtx_code code1, code2;
1150
1151 /* Get around possible forwarders on fallthru edges. Other cases
1152 should be optimized out already. */
1153 if (FORWARDER_BLOCK_P (f1->dest))
1154 f1 = single_succ_edge (f1->dest);
1155
1156 if (FORWARDER_BLOCK_P (f2->dest))
1157 f2 = single_succ_edge (f2->dest);
1158
1159 /* To simplify use of this function, return false if there are
1160 unneeded forwarder blocks. These will get eliminated later
1161 during cleanup_cfg. */
1162 if (FORWARDER_BLOCK_P (f1->dest)
1163 || FORWARDER_BLOCK_P (f2->dest)
1164 || FORWARDER_BLOCK_P (b1->dest)
1165 || FORWARDER_BLOCK_P (b2->dest))
1166 return false;
1167
1168 if (f1->dest == f2->dest && b1->dest == b2->dest)
1169 reverse = false;
1170 else if (f1->dest == b2->dest && b1->dest == f2->dest)
1171 reverse = true;
1172 else
1173 return false;
1174
1175 set1 = pc_set (BB_END (bb1));
1176 set2 = pc_set (BB_END (bb2));
1177 if ((XEXP (SET_SRC (set1), 1) == pc_rtx)
1178 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
1179 reverse = !reverse;
1180
1181 src1 = SET_SRC (set1);
1182 src2 = SET_SRC (set2);
1183 cond1 = XEXP (src1, 0);
1184 cond2 = XEXP (src2, 0);
1185 code1 = GET_CODE (cond1);
1186 if (reverse)
1187 code2 = reversed_comparison_code (cond2, BB_END (bb2));
1188 else
1189 code2 = GET_CODE (cond2);
1190
1191 if (code2 == UNKNOWN)
1192 return false;
1193
1194 if (call_init && !struct_equiv_init (STRUCT_EQUIV_START | info->mode, info))
1195 gcc_unreachable ();
1196 /* Make the sources of the pc sets unreadable so that when we call
1197 insns_match_p it won't process them.
1198 The death_notes_match_p from insns_match_p won't see the local registers
1199 used for the pc set, but that could only cause missed optimizations when
1200 there are actually condjumps that use stack registers. */
1201 SET_SRC (set1) = pc_rtx;
1202 SET_SRC (set2) = pc_rtx;
1203 /* Verify codes and operands match. */
1204 if (code1 == code2)
1205 {
1206 match = (insns_match_p (BB_END (bb1), BB_END (bb2), info)
1207 && rtx_equiv_p (&XEXP (cond1, 0), XEXP (cond2, 0), 1, info)
1208 && rtx_equiv_p (&XEXP (cond1, 1), XEXP (cond2, 1), 1, info));
1209
1210 }
1211 else if (code1 == swap_condition (code2))
1212 {
1213 match = (insns_match_p (BB_END (bb1), BB_END (bb2), info)
1214 && rtx_equiv_p (&XEXP (cond1, 1), XEXP (cond2, 0), 1, info)
1215 && rtx_equiv_p (&XEXP (cond1, 0), XEXP (cond2, 1), 1, info));
1216
1217 }
1218 else
1219 match = false;
1220 SET_SRC (set1) = src1;
1221 SET_SRC (set2) = src2;
1222 match &= verify_changes (0);
1223
1224 /* If we return true, we will join the blocks. Which means that
1225 we will only have one branch prediction bit to work with. Thus
1226 we require the existing branches to have probabilities that are
1227 roughly similar. */
1228 if (match
1229 && !optimize_size
1230 && maybe_hot_bb_p (bb1)
1231 && maybe_hot_bb_p (bb2))
1232 {
1233 int prob2;
1234
1235 if (b1->dest == b2->dest)
1236 prob2 = b2->probability;
1237 else
1238 /* Do not use f2 probability as f2 may be forwarded. */
1239 prob2 = REG_BR_PROB_BASE - b2->probability;
1240
1241 /* Fail if the difference in probabilities is greater than 50%.
1242 This rules out two well-predicted branches with opposite
1243 outcomes. */
1244 if (abs (b1->probability - prob2) > REG_BR_PROB_BASE / 2)
1245 {
1246 if (dump_file)
1247 fprintf (dump_file,
1248 "Outcomes of branch in bb %i and %i differ too much (%i %i)\n",
1249 bb1->index, bb2->index, b1->probability, prob2);
1250
1251 match = false;
1252 }
1253 }
1254
1255 if (dump_file && match)
1256 fprintf (dump_file, "Conditionals in bb %i and %i match.\n",
1257 bb1->index, bb2->index);
1258
1259 if (!match)
1260 cancel_changes (0);
1261 return match;
1262 }
1263
1264 /* Return true iff outgoing edges of BB1 and BB2 match, together with
1265 the branch instruction. This means that if we commonize the control
1266 flow before end of the basic block, the semantic remains unchanged.
1267
1268 We may assume that there exists one edge with a common destination. */
1269
1270 static bool
1271 outgoing_edges_match (int mode, basic_block bb1, basic_block bb2)
1272 {
1273 int nehedges1 = 0, nehedges2 = 0;
1274 edge fallthru1 = 0, fallthru2 = 0;
1275 edge e1, e2;
1276 edge_iterator ei;
1277
1278 /* If BB1 has only one successor, we may be looking at either an
1279 unconditional jump, or a fake edge to exit. */
1280 if (single_succ_p (bb1)
1281 && (single_succ_edge (bb1)->flags & (EDGE_COMPLEX | EDGE_FAKE)) == 0
1282 && (!JUMP_P (BB_END (bb1)) || simplejump_p (BB_END (bb1))))
1283 return (single_succ_p (bb2)
1284 && (single_succ_edge (bb2)->flags
1285 & (EDGE_COMPLEX | EDGE_FAKE)) == 0
1286 && (!JUMP_P (BB_END (bb2)) || simplejump_p (BB_END (bb2))));
1287
1288 /* Match conditional jumps - this may get tricky when fallthru and branch
1289 edges are crossed. */
1290 if (EDGE_COUNT (bb1->succs) == 2
1291 && any_condjump_p (BB_END (bb1))
1292 && onlyjump_p (BB_END (bb1)))
1293 {
1294 edge b1, f1, b2, f2;
1295 bool reverse, match;
1296 rtx set1, set2, cond1, cond2;
1297 enum rtx_code code1, code2;
1298
1299 if (EDGE_COUNT (bb2->succs) != 2
1300 || !any_condjump_p (BB_END (bb2))
1301 || !onlyjump_p (BB_END (bb2)))
1302 return false;
1303
1304 b1 = BRANCH_EDGE (bb1);
1305 b2 = BRANCH_EDGE (bb2);
1306 f1 = FALLTHRU_EDGE (bb1);
1307 f2 = FALLTHRU_EDGE (bb2);
1308
1309 /* Get around possible forwarders on fallthru edges. Other cases
1310 should be optimized out already. */
1311 if (FORWARDER_BLOCK_P (f1->dest))
1312 f1 = single_succ_edge (f1->dest);
1313
1314 if (FORWARDER_BLOCK_P (f2->dest))
1315 f2 = single_succ_edge (f2->dest);
1316
1317 /* To simplify use of this function, return false if there are
1318 unneeded forwarder blocks. These will get eliminated later
1319 during cleanup_cfg. */
1320 if (FORWARDER_BLOCK_P (f1->dest)
1321 || FORWARDER_BLOCK_P (f2->dest)
1322 || FORWARDER_BLOCK_P (b1->dest)
1323 || FORWARDER_BLOCK_P (b2->dest))
1324 return false;
1325
1326 if (f1->dest == f2->dest && b1->dest == b2->dest)
1327 reverse = false;
1328 else if (f1->dest == b2->dest && b1->dest == f2->dest)
1329 reverse = true;
1330 else
1331 return false;
1332
1333 set1 = pc_set (BB_END (bb1));
1334 set2 = pc_set (BB_END (bb2));
1335 if ((XEXP (SET_SRC (set1), 1) == pc_rtx)
1336 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
1337 reverse = !reverse;
1338
1339 cond1 = XEXP (SET_SRC (set1), 0);
1340 cond2 = XEXP (SET_SRC (set2), 0);
1341 code1 = GET_CODE (cond1);
1342 if (reverse)
1343 code2 = reversed_comparison_code (cond2, BB_END (bb2));
1344 else
1345 code2 = GET_CODE (cond2);
1346
1347 if (code2 == UNKNOWN)
1348 return false;
1349
1350 /* Verify codes and operands match. */
1351 match = ((code1 == code2
1352 && rtx_renumbered_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
1353 && rtx_renumbered_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
1354 || (code1 == swap_condition (code2)
1355 && rtx_renumbered_equal_p (XEXP (cond1, 1),
1356 XEXP (cond2, 0))
1357 && rtx_renumbered_equal_p (XEXP (cond1, 0),
1358 XEXP (cond2, 1))));
1359
1360 /* If we return true, we will join the blocks. Which means that
1361 we will only have one branch prediction bit to work with. Thus
1362 we require the existing branches to have probabilities that are
1363 roughly similar. */
1364 if (match
1365 && !optimize_size
1366 && maybe_hot_bb_p (bb1)
1367 && maybe_hot_bb_p (bb2))
1368 {
1369 int prob2;
1370
1371 if (b1->dest == b2->dest)
1372 prob2 = b2->probability;
1373 else
1374 /* Do not use f2 probability as f2 may be forwarded. */
1375 prob2 = REG_BR_PROB_BASE - b2->probability;
1376
1377 /* Fail if the difference in probabilities is greater than 50%.
1378 This rules out two well-predicted branches with opposite
1379 outcomes. */
1380 if (abs (b1->probability - prob2) > REG_BR_PROB_BASE / 2)
1381 {
1382 if (dump_file)
1383 fprintf (dump_file,
1384 "Outcomes of branch in bb %i and %i differ too much (%i %i)\n",
1385 bb1->index, bb2->index, b1->probability, prob2);
1386
1387 return false;
1388 }
1389 }
1390
1391 if (dump_file && match)
1392 fprintf (dump_file, "Conditionals in bb %i and %i match.\n",
1393 bb1->index, bb2->index);
1394
1395 return match;
1396 }
1397
1398 /* Generic case - we are seeing a computed jump, table jump or trapping
1399 instruction. */
1400
1401 /* Check whether there are tablejumps in the end of BB1 and BB2.
1402 Return true if they are identical. */
1403 {
1404 rtx label1, label2;
1405 rtx table1, table2;
1406
1407 if (tablejump_p (BB_END (bb1), &label1, &table1)
1408 && tablejump_p (BB_END (bb2), &label2, &table2)
1409 && GET_CODE (PATTERN (table1)) == GET_CODE (PATTERN (table2)))
1410 {
1411 /* The labels should never be the same rtx. If they really are same
1412 the jump tables are same too. So disable crossjumping of blocks BB1
1413 and BB2 because when deleting the common insns in the end of BB1
1414 by delete_basic_block () the jump table would be deleted too. */
1415 /* If LABEL2 is referenced in BB1->END do not do anything
1416 because we would loose information when replacing
1417 LABEL1 by LABEL2 and then LABEL2 by LABEL1 in BB1->END. */
1418 if (label1 != label2 && !rtx_referenced_p (label2, BB_END (bb1)))
1419 {
1420 /* Set IDENTICAL to true when the tables are identical. */
1421 bool identical = false;
1422 rtx p1, p2;
1423
1424 p1 = PATTERN (table1);
1425 p2 = PATTERN (table2);
1426 if (GET_CODE (p1) == ADDR_VEC && rtx_equal_p (p1, p2))
1427 {
1428 identical = true;
1429 }
1430 else if (GET_CODE (p1) == ADDR_DIFF_VEC
1431 && (XVECLEN (p1, 1) == XVECLEN (p2, 1))
1432 && rtx_equal_p (XEXP (p1, 2), XEXP (p2, 2))
1433 && rtx_equal_p (XEXP (p1, 3), XEXP (p2, 3)))
1434 {
1435 int i;
1436
1437 identical = true;
1438 for (i = XVECLEN (p1, 1) - 1; i >= 0 && identical; i--)
1439 if (!rtx_equal_p (XVECEXP (p1, 1, i), XVECEXP (p2, 1, i)))
1440 identical = false;
1441 }
1442
1443 if (identical)
1444 {
1445 replace_label_data rr;
1446 bool match;
1447
1448 /* Temporarily replace references to LABEL1 with LABEL2
1449 in BB1->END so that we could compare the instructions. */
1450 rr.r1 = label1;
1451 rr.r2 = label2;
1452 rr.update_label_nuses = false;
1453 for_each_rtx (&BB_END (bb1), replace_label, &rr);
1454
1455 match = old_insns_match_p (mode, BB_END (bb1), BB_END (bb2));
1456 if (dump_file && match)
1457 fprintf (dump_file,
1458 "Tablejumps in bb %i and %i match.\n",
1459 bb1->index, bb2->index);
1460
1461 /* Set the original label in BB1->END because when deleting
1462 a block whose end is a tablejump, the tablejump referenced
1463 from the instruction is deleted too. */
1464 rr.r1 = label2;
1465 rr.r2 = label1;
1466 for_each_rtx (&BB_END (bb1), replace_label, &rr);
1467
1468 return match;
1469 }
1470 }
1471 return false;
1472 }
1473 }
1474
1475 /* First ensure that the instructions match. There may be many outgoing
1476 edges so this test is generally cheaper. */
1477 if (!old_insns_match_p (mode, BB_END (bb1), BB_END (bb2)))
1478 return false;
1479
1480 /* Search the outgoing edges, ensure that the counts do match, find possible
1481 fallthru and exception handling edges since these needs more
1482 validation. */
1483 if (EDGE_COUNT (bb1->succs) != EDGE_COUNT (bb2->succs))
1484 return false;
1485
1486 FOR_EACH_EDGE (e1, ei, bb1->succs)
1487 {
1488 e2 = EDGE_SUCC (bb2, ei.index);
1489
1490 if (e1->flags & EDGE_EH)
1491 nehedges1++;
1492
1493 if (e2->flags & EDGE_EH)
1494 nehedges2++;
1495
1496 if (e1->flags & EDGE_FALLTHRU)
1497 fallthru1 = e1;
1498 if (e2->flags & EDGE_FALLTHRU)
1499 fallthru2 = e2;
1500 }
1501
1502 /* If number of edges of various types does not match, fail. */
1503 if (nehedges1 != nehedges2
1504 || (fallthru1 != 0) != (fallthru2 != 0))
1505 return false;
1506
1507 /* fallthru edges must be forwarded to the same destination. */
1508 if (fallthru1)
1509 {
1510 basic_block d1 = (forwarder_block_p (fallthru1->dest)
1511 ? single_succ (fallthru1->dest): fallthru1->dest);
1512 basic_block d2 = (forwarder_block_p (fallthru2->dest)
1513 ? single_succ (fallthru2->dest): fallthru2->dest);
1514
1515 if (d1 != d2)
1516 return false;
1517 }
1518
1519 /* Ensure the same EH region. */
1520 {
1521 rtx n1 = find_reg_note (BB_END (bb1), REG_EH_REGION, 0);
1522 rtx n2 = find_reg_note (BB_END (bb2), REG_EH_REGION, 0);
1523
1524 if (!n1 && n2)
1525 return false;
1526
1527 if (n1 && (!n2 || XEXP (n1, 0) != XEXP (n2, 0)))
1528 return false;
1529 }
1530
1531 /* The same checks as in try_crossjump_to_edge. It is required for RTL
1532 version of sequence abstraction. */
1533 FOR_EACH_EDGE (e1, ei, bb2->succs)
1534 {
1535 edge e2;
1536 edge_iterator ei;
1537 basic_block d1 = e1->dest;
1538
1539 if (FORWARDER_BLOCK_P (d1))
1540 d1 = EDGE_SUCC (d1, 0)->dest;
1541
1542 FOR_EACH_EDGE (e2, ei, bb1->succs)
1543 {
1544 basic_block d2 = e2->dest;
1545 if (FORWARDER_BLOCK_P (d2))
1546 d2 = EDGE_SUCC (d2, 0)->dest;
1547 if (d1 == d2)
1548 break;
1549 }
1550
1551 if (!e2)
1552 return false;
1553 }
1554
1555 return true;
1556 }
1557
1558 /* Returns true if BB basic block has a preserve label. */
1559
1560 static bool
1561 block_has_preserve_label (basic_block bb)
1562 {
1563 return (bb
1564 && block_label (bb)
1565 && LABEL_PRESERVE_P (block_label (bb)));
1566 }
1567
1568 /* E1 and E2 are edges with the same destination block. Search their
1569 predecessors for common code. If found, redirect control flow from
1570 (maybe the middle of) E1->SRC to (maybe the middle of) E2->SRC. */
1571
1572 static bool
1573 try_crossjump_to_edge (int mode, edge e1, edge e2)
1574 {
1575 int nmatch;
1576 basic_block src1 = e1->src, src2 = e2->src;
1577 basic_block redirect_to, redirect_from, to_remove;
1578 rtx newpos1, newpos2;
1579 edge s;
1580 edge_iterator ei;
1581
1582 newpos1 = newpos2 = NULL_RTX;
1583
1584 /* If we have partitioned hot/cold basic blocks, it is a bad idea
1585 to try this optimization.
1586
1587 Basic block partitioning may result in some jumps that appear to
1588 be optimizable (or blocks that appear to be mergeable), but which really
1589 must be left untouched (they are required to make it safely across
1590 partition boundaries). See the comments at the top of
1591 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
1592
1593 if (flag_reorder_blocks_and_partition && no_new_pseudos)
1594 return false;
1595
1596 /* Search backward through forwarder blocks. We don't need to worry
1597 about multiple entry or chained forwarders, as they will be optimized
1598 away. We do this to look past the unconditional jump following a
1599 conditional jump that is required due to the current CFG shape. */
1600 if (single_pred_p (src1)
1601 && FORWARDER_BLOCK_P (src1))
1602 e1 = single_pred_edge (src1), src1 = e1->src;
1603
1604 if (single_pred_p (src2)
1605 && FORWARDER_BLOCK_P (src2))
1606 e2 = single_pred_edge (src2), src2 = e2->src;
1607
1608 /* Nothing to do if we reach ENTRY, or a common source block. */
1609 if (src1 == ENTRY_BLOCK_PTR || src2 == ENTRY_BLOCK_PTR)
1610 return false;
1611 if (src1 == src2)
1612 return false;
1613
1614 /* Seeing more than 1 forwarder blocks would confuse us later... */
1615 if (FORWARDER_BLOCK_P (e1->dest)
1616 && FORWARDER_BLOCK_P (single_succ (e1->dest)))
1617 return false;
1618
1619 if (FORWARDER_BLOCK_P (e2->dest)
1620 && FORWARDER_BLOCK_P (single_succ (e2->dest)))
1621 return false;
1622
1623 /* Likewise with dead code (possibly newly created by the other optimizations
1624 of cfg_cleanup). */
1625 if (EDGE_COUNT (src1->preds) == 0 || EDGE_COUNT (src2->preds) == 0)
1626 return false;
1627
1628 /* Look for the common insn sequence, part the first ... */
1629 if (!outgoing_edges_match (mode, src1, src2))
1630 return false;
1631
1632 /* ... and part the second. */
1633 nmatch = flow_find_cross_jump (mode, src1, src2, &newpos1, &newpos2);
1634
1635 /* Don't proceed with the crossjump unless we found a sufficient number
1636 of matching instructions or the 'from' block was totally matched
1637 (such that its predecessors will hopefully be redirected and the
1638 block removed). */
1639 if ((nmatch < PARAM_VALUE (PARAM_MIN_CROSSJUMP_INSNS))
1640 && (newpos1 != BB_HEAD (src1)))
1641 return false;
1642
1643 /* Avoid deleting preserve label when redirecting ABNORMAL edges. */
1644 if (block_has_preserve_label (e1->dest)
1645 && (e1->flags & EDGE_ABNORMAL))
1646 return false;
1647
1648 /* Here we know that the insns in the end of SRC1 which are common with SRC2
1649 will be deleted.
1650 If we have tablejumps in the end of SRC1 and SRC2
1651 they have been already compared for equivalence in outgoing_edges_match ()
1652 so replace the references to TABLE1 by references to TABLE2. */
1653 {
1654 rtx label1, label2;
1655 rtx table1, table2;
1656
1657 if (tablejump_p (BB_END (src1), &label1, &table1)
1658 && tablejump_p (BB_END (src2), &label2, &table2)
1659 && label1 != label2)
1660 {
1661 replace_label_data rr;
1662 rtx insn;
1663
1664 /* Replace references to LABEL1 with LABEL2. */
1665 rr.r1 = label1;
1666 rr.r2 = label2;
1667 rr.update_label_nuses = true;
1668 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1669 {
1670 /* Do not replace the label in SRC1->END because when deleting
1671 a block whose end is a tablejump, the tablejump referenced
1672 from the instruction is deleted too. */
1673 if (insn != BB_END (src1))
1674 for_each_rtx (&insn, replace_label, &rr);
1675 }
1676 }
1677 }
1678
1679 /* Avoid splitting if possible. We must always split when SRC2 has
1680 EH predecessor edges, or we may end up with basic blocks with both
1681 normal and EH predecessor edges. */
1682 if (newpos2 == BB_HEAD (src2)
1683 && !(EDGE_PRED (src2, 0)->flags & EDGE_EH))
1684 redirect_to = src2;
1685 else
1686 {
1687 if (newpos2 == BB_HEAD (src2))
1688 {
1689 /* Skip possible basic block header. */
1690 if (LABEL_P (newpos2))
1691 newpos2 = NEXT_INSN (newpos2);
1692 if (NOTE_P (newpos2))
1693 newpos2 = NEXT_INSN (newpos2);
1694 }
1695
1696 if (dump_file)
1697 fprintf (dump_file, "Splitting bb %i before %i insns\n",
1698 src2->index, nmatch);
1699 redirect_to = split_block (src2, PREV_INSN (newpos2))->dest;
1700 }
1701
1702 if (dump_file)
1703 fprintf (dump_file,
1704 "Cross jumping from bb %i to bb %i; %i common insns\n",
1705 src1->index, src2->index, nmatch);
1706
1707 redirect_to->count += src1->count;
1708 redirect_to->frequency += src1->frequency;
1709 /* We may have some registers visible through the block. */
1710 redirect_to->flags |= BB_DIRTY;
1711
1712 /* Recompute the frequencies and counts of outgoing edges. */
1713 FOR_EACH_EDGE (s, ei, redirect_to->succs)
1714 {
1715 edge s2;
1716 edge_iterator ei;
1717 basic_block d = s->dest;
1718
1719 if (FORWARDER_BLOCK_P (d))
1720 d = single_succ (d);
1721
1722 FOR_EACH_EDGE (s2, ei, src1->succs)
1723 {
1724 basic_block d2 = s2->dest;
1725 if (FORWARDER_BLOCK_P (d2))
1726 d2 = single_succ (d2);
1727 if (d == d2)
1728 break;
1729 }
1730
1731 s->count += s2->count;
1732
1733 /* Take care to update possible forwarder blocks. We verified
1734 that there is no more than one in the chain, so we can't run
1735 into infinite loop. */
1736 if (FORWARDER_BLOCK_P (s->dest))
1737 {
1738 single_succ_edge (s->dest)->count += s2->count;
1739 s->dest->count += s2->count;
1740 s->dest->frequency += EDGE_FREQUENCY (s);
1741 }
1742
1743 if (FORWARDER_BLOCK_P (s2->dest))
1744 {
1745 single_succ_edge (s2->dest)->count -= s2->count;
1746 if (single_succ_edge (s2->dest)->count < 0)
1747 single_succ_edge (s2->dest)->count = 0;
1748 s2->dest->count -= s2->count;
1749 s2->dest->frequency -= EDGE_FREQUENCY (s);
1750 if (s2->dest->frequency < 0)
1751 s2->dest->frequency = 0;
1752 if (s2->dest->count < 0)
1753 s2->dest->count = 0;
1754 }
1755
1756 if (!redirect_to->frequency && !src1->frequency)
1757 s->probability = (s->probability + s2->probability) / 2;
1758 else
1759 s->probability
1760 = ((s->probability * redirect_to->frequency +
1761 s2->probability * src1->frequency)
1762 / (redirect_to->frequency + src1->frequency));
1763 }
1764
1765 update_br_prob_note (redirect_to);
1766
1767 /* Edit SRC1 to go to REDIRECT_TO at NEWPOS1. */
1768
1769 /* Skip possible basic block header. */
1770 if (LABEL_P (newpos1))
1771 newpos1 = NEXT_INSN (newpos1);
1772
1773 if (NOTE_P (newpos1))
1774 newpos1 = NEXT_INSN (newpos1);
1775
1776 redirect_from = split_block (src1, PREV_INSN (newpos1))->src;
1777 to_remove = single_succ (redirect_from);
1778
1779 redirect_edge_and_branch_force (single_succ_edge (redirect_from), redirect_to);
1780 delete_basic_block (to_remove);
1781
1782 update_forwarder_flag (redirect_from);
1783 if (redirect_to != src2)
1784 update_forwarder_flag (src2);
1785
1786 return true;
1787 }
1788
1789 /* Search the predecessors of BB for common insn sequences. When found,
1790 share code between them by redirecting control flow. Return true if
1791 any changes made. */
1792
1793 static bool
1794 try_crossjump_bb (int mode, basic_block bb)
1795 {
1796 edge e, e2, fallthru;
1797 bool changed;
1798 unsigned max, ix, ix2;
1799 basic_block ev, ev2;
1800 edge_iterator ei;
1801
1802 /* Nothing to do if there is not at least two incoming edges. */
1803 if (EDGE_COUNT (bb->preds) < 2)
1804 return false;
1805
1806 /* Don't crossjump if this block ends in a computed jump,
1807 unless we are optimizing for size. */
1808 if (!optimize_size
1809 && bb != EXIT_BLOCK_PTR
1810 && computed_jump_p (BB_END (bb)))
1811 return false;
1812
1813 /* If we are partitioning hot/cold basic blocks, we don't want to
1814 mess up unconditional or indirect jumps that cross between hot
1815 and cold sections.
1816
1817 Basic block partitioning may result in some jumps that appear to
1818 be optimizable (or blocks that appear to be mergeable), but which really
1819 must be left untouched (they are required to make it safely across
1820 partition boundaries). See the comments at the top of
1821 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
1822
1823 if (BB_PARTITION (EDGE_PRED (bb, 0)->src) !=
1824 BB_PARTITION (EDGE_PRED (bb, 1)->src)
1825 || (EDGE_PRED (bb, 0)->flags & EDGE_CROSSING))
1826 return false;
1827
1828 /* It is always cheapest to redirect a block that ends in a branch to
1829 a block that falls through into BB, as that adds no branches to the
1830 program. We'll try that combination first. */
1831 fallthru = NULL;
1832 max = PARAM_VALUE (PARAM_MAX_CROSSJUMP_EDGES);
1833
1834 if (EDGE_COUNT (bb->preds) > max)
1835 return false;
1836
1837 FOR_EACH_EDGE (e, ei, bb->preds)
1838 {
1839 if (e->flags & EDGE_FALLTHRU)
1840 fallthru = e;
1841 }
1842
1843 changed = false;
1844 for (ix = 0, ev = bb; ix < EDGE_COUNT (ev->preds); )
1845 {
1846 e = EDGE_PRED (ev, ix);
1847 ix++;
1848
1849 /* As noted above, first try with the fallthru predecessor. */
1850 if (fallthru)
1851 {
1852 /* Don't combine the fallthru edge into anything else.
1853 If there is a match, we'll do it the other way around. */
1854 if (e == fallthru)
1855 continue;
1856 /* If nothing changed since the last attempt, there is nothing
1857 we can do. */
1858 if (!first_pass
1859 && (!(e->src->flags & BB_DIRTY)
1860 && !(fallthru->src->flags & BB_DIRTY)))
1861 continue;
1862
1863 if (try_crossjump_to_edge (mode, e, fallthru))
1864 {
1865 changed = true;
1866 ix = 0;
1867 ev = bb;
1868 continue;
1869 }
1870 }
1871
1872 /* Non-obvious work limiting check: Recognize that we're going
1873 to call try_crossjump_bb on every basic block. So if we have
1874 two blocks with lots of outgoing edges (a switch) and they
1875 share lots of common destinations, then we would do the
1876 cross-jump check once for each common destination.
1877
1878 Now, if the blocks actually are cross-jump candidates, then
1879 all of their destinations will be shared. Which means that
1880 we only need check them for cross-jump candidacy once. We
1881 can eliminate redundant checks of crossjump(A,B) by arbitrarily
1882 choosing to do the check from the block for which the edge
1883 in question is the first successor of A. */
1884 if (EDGE_SUCC (e->src, 0) != e)
1885 continue;
1886
1887 for (ix2 = 0, ev2 = bb; ix2 < EDGE_COUNT (ev2->preds); )
1888 {
1889 e2 = EDGE_PRED (ev2, ix2);
1890 ix2++;
1891
1892 if (e2 == e)
1893 continue;
1894
1895 /* We've already checked the fallthru edge above. */
1896 if (e2 == fallthru)
1897 continue;
1898
1899 /* The "first successor" check above only prevents multiple
1900 checks of crossjump(A,B). In order to prevent redundant
1901 checks of crossjump(B,A), require that A be the block
1902 with the lowest index. */
1903 if (e->src->index > e2->src->index)
1904 continue;
1905
1906 /* If nothing changed since the last attempt, there is nothing
1907 we can do. */
1908 if (!first_pass
1909 && (!(e->src->flags & BB_DIRTY)
1910 && !(e2->src->flags & BB_DIRTY)))
1911 continue;
1912
1913 if (try_crossjump_to_edge (mode, e, e2))
1914 {
1915 changed = true;
1916 ev2 = bb;
1917 ix = 0;
1918 break;
1919 }
1920 }
1921 }
1922
1923 return changed;
1924 }
1925
1926 /* Do simple CFG optimizations - basic block merging, simplifying of jump
1927 instructions etc. Return nonzero if changes were made. */
1928
1929 static bool
1930 try_optimize_cfg (int mode)
1931 {
1932 bool changed_overall = false;
1933 bool changed;
1934 int iterations = 0;
1935 basic_block bb, b, next;
1936
1937 if (mode & CLEANUP_CROSSJUMP)
1938 add_noreturn_fake_exit_edges ();
1939
1940 if (mode & (CLEANUP_UPDATE_LIFE | CLEANUP_CROSSJUMP | CLEANUP_THREADING))
1941 clear_bb_flags ();
1942
1943 FOR_EACH_BB (bb)
1944 update_forwarder_flag (bb);
1945
1946 if (! targetm.cannot_modify_jumps_p ())
1947 {
1948 first_pass = true;
1949 /* Attempt to merge blocks as made possible by edge removal. If
1950 a block has only one successor, and the successor has only
1951 one predecessor, they may be combined. */
1952 do
1953 {
1954 changed = false;
1955 iterations++;
1956
1957 if (dump_file)
1958 fprintf (dump_file,
1959 "\n\ntry_optimize_cfg iteration %i\n\n",
1960 iterations);
1961
1962 for (b = ENTRY_BLOCK_PTR->next_bb; b != EXIT_BLOCK_PTR;)
1963 {
1964 basic_block c;
1965 edge s;
1966 bool changed_here = false;
1967
1968 /* Delete trivially dead basic blocks. */
1969 if (EDGE_COUNT (b->preds) == 0)
1970 {
1971 c = b->prev_bb;
1972 if (dump_file)
1973 fprintf (dump_file, "Deleting block %i.\n",
1974 b->index);
1975
1976 delete_basic_block (b);
1977 if (!(mode & CLEANUP_CFGLAYOUT))
1978 changed = true;
1979 /* Avoid trying to remove ENTRY_BLOCK_PTR. */
1980 b = (c == ENTRY_BLOCK_PTR ? c->next_bb : c);
1981 continue;
1982 }
1983
1984 /* Remove code labels no longer used. */
1985 if (single_pred_p (b)
1986 && (single_pred_edge (b)->flags & EDGE_FALLTHRU)
1987 && !(single_pred_edge (b)->flags & EDGE_COMPLEX)
1988 && LABEL_P (BB_HEAD (b))
1989 /* If the previous block ends with a branch to this
1990 block, we can't delete the label. Normally this
1991 is a condjump that is yet to be simplified, but
1992 if CASE_DROPS_THRU, this can be a tablejump with
1993 some element going to the same place as the
1994 default (fallthru). */
1995 && (single_pred (b) == ENTRY_BLOCK_PTR
1996 || !JUMP_P (BB_END (single_pred (b)))
1997 || ! label_is_jump_target_p (BB_HEAD (b),
1998 BB_END (single_pred (b)))))
1999 {
2000 rtx label = BB_HEAD (b);
2001
2002 delete_insn_chain (label, label);
2003 /* In the case label is undeletable, move it after the
2004 BASIC_BLOCK note. */
2005 if (NOTE_KIND (BB_HEAD (b)) == NOTE_INSN_DELETED_LABEL)
2006 {
2007 rtx bb_note = NEXT_INSN (BB_HEAD (b));
2008
2009 reorder_insns_nobb (label, label, bb_note);
2010 BB_HEAD (b) = bb_note;
2011 if (BB_END (b) == bb_note)
2012 BB_END (b) = label;
2013 }
2014 if (dump_file)
2015 fprintf (dump_file, "Deleted label in block %i.\n",
2016 b->index);
2017 }
2018
2019 /* If we fall through an empty block, we can remove it. */
2020 if (!(mode & CLEANUP_CFGLAYOUT)
2021 && single_pred_p (b)
2022 && (single_pred_edge (b)->flags & EDGE_FALLTHRU)
2023 && !LABEL_P (BB_HEAD (b))
2024 && FORWARDER_BLOCK_P (b)
2025 /* Note that forwarder_block_p true ensures that
2026 there is a successor for this block. */
2027 && (single_succ_edge (b)->flags & EDGE_FALLTHRU)
2028 && n_basic_blocks > NUM_FIXED_BLOCKS + 1)
2029 {
2030 if (dump_file)
2031 fprintf (dump_file,
2032 "Deleting fallthru block %i.\n",
2033 b->index);
2034
2035 c = b->prev_bb == ENTRY_BLOCK_PTR ? b->next_bb : b->prev_bb;
2036 redirect_edge_succ_nodup (single_pred_edge (b),
2037 single_succ (b));
2038 delete_basic_block (b);
2039 changed = true;
2040 b = c;
2041 }
2042
2043 if (single_succ_p (b)
2044 && (s = single_succ_edge (b))
2045 && !(s->flags & EDGE_COMPLEX)
2046 && (c = s->dest) != EXIT_BLOCK_PTR
2047 && single_pred_p (c)
2048 && b != c)
2049 {
2050 /* When not in cfg_layout mode use code aware of reordering
2051 INSN. This code possibly creates new basic blocks so it
2052 does not fit merge_blocks interface and is kept here in
2053 hope that it will become useless once more of compiler
2054 is transformed to use cfg_layout mode. */
2055
2056 if ((mode & CLEANUP_CFGLAYOUT)
2057 && can_merge_blocks_p (b, c))
2058 {
2059 merge_blocks (b, c);
2060 update_forwarder_flag (b);
2061 changed_here = true;
2062 }
2063 else if (!(mode & CLEANUP_CFGLAYOUT)
2064 /* If the jump insn has side effects,
2065 we can't kill the edge. */
2066 && (!JUMP_P (BB_END (b))
2067 || (reload_completed
2068 ? simplejump_p (BB_END (b))
2069 : (onlyjump_p (BB_END (b))
2070 && !tablejump_p (BB_END (b),
2071 NULL, NULL))))
2072 && (next = merge_blocks_move (s, b, c, mode)))
2073 {
2074 b = next;
2075 changed_here = true;
2076 }
2077 }
2078
2079 /* Simplify branch over branch. */
2080 if ((mode & CLEANUP_EXPENSIVE)
2081 && !(mode & CLEANUP_CFGLAYOUT)
2082 && try_simplify_condjump (b))
2083 changed_here = true;
2084
2085 /* If B has a single outgoing edge, but uses a
2086 non-trivial jump instruction without side-effects, we
2087 can either delete the jump entirely, or replace it
2088 with a simple unconditional jump. */
2089 if (single_succ_p (b)
2090 && single_succ (b) != EXIT_BLOCK_PTR
2091 && onlyjump_p (BB_END (b))
2092 && !find_reg_note (BB_END (b), REG_CROSSING_JUMP, NULL_RTX)
2093 && try_redirect_by_replacing_jump (single_succ_edge (b),
2094 single_succ (b),
2095 (mode & CLEANUP_CFGLAYOUT) != 0))
2096 {
2097 update_forwarder_flag (b);
2098 changed_here = true;
2099 }
2100
2101 /* Simplify branch to branch. */
2102 if (try_forward_edges (mode, b))
2103 changed_here = true;
2104
2105 /* Look for shared code between blocks. */
2106 if ((mode & CLEANUP_CROSSJUMP)
2107 && try_crossjump_bb (mode, b))
2108 changed_here = true;
2109
2110 /* Don't get confused by the index shift caused by
2111 deleting blocks. */
2112 if (!changed_here)
2113 b = b->next_bb;
2114 else
2115 changed = true;
2116 }
2117
2118 if ((mode & CLEANUP_CROSSJUMP)
2119 && try_crossjump_bb (mode, EXIT_BLOCK_PTR))
2120 changed = true;
2121
2122 #ifdef ENABLE_CHECKING
2123 if (changed)
2124 verify_flow_info ();
2125 #endif
2126
2127 changed_overall |= changed;
2128 first_pass = false;
2129 }
2130 while (changed);
2131 }
2132
2133 if (mode & CLEANUP_CROSSJUMP)
2134 remove_fake_exit_edges ();
2135
2136 FOR_ALL_BB (b)
2137 b->flags &= ~(BB_FORWARDER_BLOCK | BB_NONTHREADABLE_BLOCK);
2138
2139 return changed_overall;
2140 }
2141 \f
2142 /* Delete all unreachable basic blocks. */
2143
2144 bool
2145 delete_unreachable_blocks (void)
2146 {
2147 bool changed = false;
2148 basic_block b, next_bb;
2149
2150 find_unreachable_blocks ();
2151
2152 /* Delete all unreachable basic blocks. */
2153
2154 for (b = ENTRY_BLOCK_PTR->next_bb; b != EXIT_BLOCK_PTR; b = next_bb)
2155 {
2156 next_bb = b->next_bb;
2157
2158 if (!(b->flags & BB_REACHABLE))
2159 {
2160 delete_basic_block (b);
2161 changed = true;
2162 }
2163 }
2164
2165 if (changed)
2166 tidy_fallthru_edges ();
2167 return changed;
2168 }
2169 \f
2170 /* Tidy the CFG by deleting unreachable code and whatnot. */
2171
2172 bool
2173 cleanup_cfg (int mode)
2174 {
2175 bool changed = false;
2176
2177 /* Set the cfglayout mode flag here. We could update all the callers
2178 but that is just inconvenient, especially given that we eventually
2179 want to have cfglayout mode as the default. */
2180 if (current_ir_type () == IR_RTL_CFGLAYOUT)
2181 mode |= CLEANUP_CFGLAYOUT;
2182
2183 timevar_push (TV_CLEANUP_CFG);
2184 if (delete_unreachable_blocks ())
2185 {
2186 changed = true;
2187 /* We've possibly created trivially dead code. Cleanup it right
2188 now to introduce more opportunities for try_optimize_cfg. */
2189 if (!(mode & (CLEANUP_NO_INSN_DEL | CLEANUP_UPDATE_LIFE))
2190 && !reload_completed)
2191 delete_trivially_dead_insns (get_insns (), max_reg_num ());
2192 }
2193
2194 compact_blocks ();
2195
2196 while (try_optimize_cfg (mode))
2197 {
2198 delete_unreachable_blocks (), changed = true;
2199 if (mode & CLEANUP_UPDATE_LIFE)
2200 {
2201 /* Cleaning up CFG introduces more opportunities for dead code
2202 removal that in turn may introduce more opportunities for
2203 cleaning up the CFG. */
2204 if (!update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
2205 PROP_DEATH_NOTES
2206 | PROP_SCAN_DEAD_CODE
2207 | PROP_KILL_DEAD_CODE
2208 | ((mode & CLEANUP_LOG_LINKS)
2209 ? PROP_LOG_LINKS : 0)))
2210 break;
2211 }
2212 else if (!(mode & CLEANUP_NO_INSN_DEL)
2213 && (mode & CLEANUP_EXPENSIVE)
2214 && !reload_completed)
2215 {
2216 if (!delete_trivially_dead_insns (get_insns (), max_reg_num ()))
2217 break;
2218 }
2219 else
2220 break;
2221
2222 /* Don't call delete_dead_jumptables in cfglayout mode, because
2223 that function assumes that jump tables are in the insns stream.
2224 But we also don't _have_ to delete dead jumptables in cfglayout
2225 mode because we shouldn't even be looking at things that are
2226 not in a basic block. Dead jumptables are cleaned up when
2227 going out of cfglayout mode. */
2228 if (!(mode & CLEANUP_CFGLAYOUT))
2229 delete_dead_jumptables ();
2230 }
2231
2232 timevar_pop (TV_CLEANUP_CFG);
2233
2234 return changed;
2235 }
2236 \f
2237 static unsigned int
2238 rest_of_handle_jump (void)
2239 {
2240 delete_unreachable_blocks ();
2241
2242 if (cfun->tail_call_emit)
2243 fixup_tail_calls ();
2244 return 0;
2245 }
2246
2247 struct tree_opt_pass pass_jump =
2248 {
2249 "sibling", /* name */
2250 NULL, /* gate */
2251 rest_of_handle_jump, /* execute */
2252 NULL, /* sub */
2253 NULL, /* next */
2254 0, /* static_pass_number */
2255 TV_JUMP, /* tv_id */
2256 0, /* properties_required */
2257 0, /* properties_provided */
2258 0, /* properties_destroyed */
2259 TODO_ggc_collect, /* todo_flags_start */
2260 TODO_dump_func |
2261 TODO_verify_flow, /* todo_flags_finish */
2262 'i' /* letter */
2263 };
2264
2265
2266 static unsigned int
2267 rest_of_handle_jump2 (void)
2268 {
2269 delete_trivially_dead_insns (get_insns (), max_reg_num ());
2270 reg_scan (get_insns (), max_reg_num ());
2271 if (dump_file)
2272 dump_flow_info (dump_file, dump_flags);
2273 cleanup_cfg ((optimize ? CLEANUP_EXPENSIVE : 0)
2274 | (flag_thread_jumps ? CLEANUP_THREADING : 0));
2275 return 0;
2276 }
2277
2278
2279 struct tree_opt_pass pass_jump2 =
2280 {
2281 "jump", /* name */
2282 NULL, /* gate */
2283 rest_of_handle_jump2, /* execute */
2284 NULL, /* sub */
2285 NULL, /* next */
2286 0, /* static_pass_number */
2287 TV_JUMP, /* tv_id */
2288 0, /* properties_required */
2289 0, /* properties_provided */
2290 0, /* properties_destroyed */
2291 TODO_ggc_collect, /* todo_flags_start */
2292 TODO_dump_func, /* todo_flags_finish */
2293 'j' /* letter */
2294 };
2295
2296