params.def (PARAM_MIN_CROSSJUMP_INSNS): New.
[gcc.git] / gcc / cfgcleanup.c
1 /* Control flow optimization code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains optimizer of the control flow. The main entry point is
23 cleanup_cfg. Following optimizations are performed:
24
25 - Unreachable blocks removal
26 - Edge forwarding (edge to the forwarder block is forwarded to its
27 successor. Simplification of the branch instruction is performed by
28 underlying infrastructure so branch can be converted to simplejump or
29 eliminated).
30 - Cross jumping (tail merging)
31 - Conditional jump-around-simplejump simplification
32 - Basic block merging. */
33
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "rtl.h"
39 #include "hard-reg-set.h"
40 #include "basic-block.h"
41 #include "timevar.h"
42 #include "output.h"
43 #include "insn-config.h"
44 #include "flags.h"
45 #include "recog.h"
46 #include "toplev.h"
47 #include "cselib.h"
48 #include "params.h"
49 #include "tm_p.h"
50 #include "target.h"
51 #include "regs.h"
52 #include "cfglayout.h"
53 #include "emit-rtl.h"
54
55 /* cleanup_cfg maintains following flags for each basic block. */
56
57 enum bb_flags
58 {
59 /* Set if BB is the forwarder block to avoid too many
60 forwarder_block_p calls. */
61 BB_FORWARDER_BLOCK = 1,
62 BB_NONTHREADABLE_BLOCK = 2
63 };
64
65 #define BB_FLAGS(BB) (enum bb_flags) (BB)->aux
66 #define BB_SET_FLAG(BB, FLAG) \
67 (BB)->aux = (void *) (long) ((enum bb_flags) (BB)->aux | (FLAG))
68 #define BB_CLEAR_FLAG(BB, FLAG) \
69 (BB)->aux = (void *) (long) ((enum bb_flags) (BB)->aux & ~(FLAG))
70
71 #define FORWARDER_BLOCK_P(BB) (BB_FLAGS (BB) & BB_FORWARDER_BLOCK)
72
73 /* Set to true when we are running first pass of try_optimize_cfg loop. */
74 static bool first_pass;
75 static bool try_crossjump_to_edge (int, edge, edge);
76 static bool try_crossjump_bb (int, basic_block);
77 static bool outgoing_edges_match (int, basic_block, basic_block);
78 static int flow_find_cross_jump (int, basic_block, basic_block, rtx *, rtx *);
79 static bool insns_match_p (int, rtx, rtx);
80
81 static void merge_blocks_move_predecessor_nojumps (basic_block, basic_block);
82 static void merge_blocks_move_successor_nojumps (basic_block, basic_block);
83 static bool try_optimize_cfg (int);
84 static bool try_simplify_condjump (basic_block);
85 static bool try_forward_edges (int, basic_block);
86 static edge thread_jump (int, edge, basic_block);
87 static bool mark_effect (rtx, bitmap);
88 static void notice_new_block (basic_block);
89 static void update_forwarder_flag (basic_block);
90 static int mentions_nonequal_regs (rtx *, void *);
91 static void merge_memattrs (rtx, rtx);
92 \f
93 /* Set flags for newly created block. */
94
95 static void
96 notice_new_block (basic_block bb)
97 {
98 if (!bb)
99 return;
100
101 if (forwarder_block_p (bb))
102 BB_SET_FLAG (bb, BB_FORWARDER_BLOCK);
103 }
104
105 /* Recompute forwarder flag after block has been modified. */
106
107 static void
108 update_forwarder_flag (basic_block bb)
109 {
110 if (forwarder_block_p (bb))
111 BB_SET_FLAG (bb, BB_FORWARDER_BLOCK);
112 else
113 BB_CLEAR_FLAG (bb, BB_FORWARDER_BLOCK);
114 }
115 \f
116 /* Simplify a conditional jump around an unconditional jump.
117 Return true if something changed. */
118
119 static bool
120 try_simplify_condjump (basic_block cbranch_block)
121 {
122 basic_block jump_block, jump_dest_block, cbranch_dest_block;
123 edge cbranch_jump_edge, cbranch_fallthru_edge;
124 rtx cbranch_insn;
125
126 /* Verify that there are exactly two successors. */
127 if (!cbranch_block->succ
128 || !cbranch_block->succ->succ_next
129 || cbranch_block->succ->succ_next->succ_next)
130 return false;
131
132 /* Verify that we've got a normal conditional branch at the end
133 of the block. */
134 cbranch_insn = BB_END (cbranch_block);
135 if (!any_condjump_p (cbranch_insn))
136 return false;
137
138 cbranch_fallthru_edge = FALLTHRU_EDGE (cbranch_block);
139 cbranch_jump_edge = BRANCH_EDGE (cbranch_block);
140
141 /* The next block must not have multiple predecessors, must not
142 be the last block in the function, and must contain just the
143 unconditional jump. */
144 jump_block = cbranch_fallthru_edge->dest;
145 if (jump_block->pred->pred_next
146 || jump_block->next_bb == EXIT_BLOCK_PTR
147 || !FORWARDER_BLOCK_P (jump_block))
148 return false;
149 jump_dest_block = jump_block->succ->dest;
150
151 /* If we are partitioning hot/cold basic blocks, we don't want to
152 mess up unconditional or indirect jumps that cross between hot
153 and cold sections. */
154
155 if (flag_reorder_blocks_and_partition
156 && (jump_block->partition != jump_dest_block->partition
157 || cbranch_jump_edge->crossing_edge))
158 return false;
159
160 /* The conditional branch must target the block after the
161 unconditional branch. */
162 cbranch_dest_block = cbranch_jump_edge->dest;
163
164 if (cbranch_dest_block == EXIT_BLOCK_PTR
165 || !can_fallthru (jump_block, cbranch_dest_block))
166 return false;
167
168 /* Invert the conditional branch. */
169 if (!invert_jump (cbranch_insn, block_label (jump_dest_block), 0))
170 return false;
171
172 if (dump_file)
173 fprintf (dump_file, "Simplifying condjump %i around jump %i\n",
174 INSN_UID (cbranch_insn), INSN_UID (BB_END (jump_block)));
175
176 /* Success. Update the CFG to match. Note that after this point
177 the edge variable names appear backwards; the redirection is done
178 this way to preserve edge profile data. */
179 cbranch_jump_edge = redirect_edge_succ_nodup (cbranch_jump_edge,
180 cbranch_dest_block);
181 cbranch_fallthru_edge = redirect_edge_succ_nodup (cbranch_fallthru_edge,
182 jump_dest_block);
183 cbranch_jump_edge->flags |= EDGE_FALLTHRU;
184 cbranch_fallthru_edge->flags &= ~EDGE_FALLTHRU;
185 update_br_prob_note (cbranch_block);
186
187 /* Delete the block with the unconditional jump, and clean up the mess. */
188 delete_basic_block (jump_block);
189 tidy_fallthru_edge (cbranch_jump_edge);
190 update_forwarder_flag (cbranch_block);
191
192 return true;
193 }
194 \f
195 /* Attempt to prove that operation is NOOP using CSElib or mark the effect
196 on register. Used by jump threading. */
197
198 static bool
199 mark_effect (rtx exp, regset nonequal)
200 {
201 int regno;
202 rtx dest;
203 switch (GET_CODE (exp))
204 {
205 /* In case we do clobber the register, mark it as equal, as we know the
206 value is dead so it don't have to match. */
207 case CLOBBER:
208 if (REG_P (XEXP (exp, 0)))
209 {
210 dest = XEXP (exp, 0);
211 regno = REGNO (dest);
212 CLEAR_REGNO_REG_SET (nonequal, regno);
213 if (regno < FIRST_PSEUDO_REGISTER)
214 {
215 int n = hard_regno_nregs[regno][GET_MODE (dest)];
216 while (--n > 0)
217 CLEAR_REGNO_REG_SET (nonequal, regno + n);
218 }
219 }
220 return false;
221
222 case SET:
223 if (rtx_equal_for_cselib_p (SET_DEST (exp), SET_SRC (exp)))
224 return false;
225 dest = SET_DEST (exp);
226 if (dest == pc_rtx)
227 return false;
228 if (!REG_P (dest))
229 return true;
230 regno = REGNO (dest);
231 SET_REGNO_REG_SET (nonequal, regno);
232 if (regno < FIRST_PSEUDO_REGISTER)
233 {
234 int n = hard_regno_nregs[regno][GET_MODE (dest)];
235 while (--n > 0)
236 SET_REGNO_REG_SET (nonequal, regno + n);
237 }
238 return false;
239
240 default:
241 return false;
242 }
243 }
244
245 /* Return nonzero if X is a register set in regset DATA.
246 Called via for_each_rtx. */
247 static int
248 mentions_nonequal_regs (rtx *x, void *data)
249 {
250 regset nonequal = (regset) data;
251 if (REG_P (*x))
252 {
253 int regno;
254
255 regno = REGNO (*x);
256 if (REGNO_REG_SET_P (nonequal, regno))
257 return 1;
258 if (regno < FIRST_PSEUDO_REGISTER)
259 {
260 int n = hard_regno_nregs[regno][GET_MODE (*x)];
261 while (--n > 0)
262 if (REGNO_REG_SET_P (nonequal, regno + n))
263 return 1;
264 }
265 }
266 return 0;
267 }
268 /* Attempt to prove that the basic block B will have no side effects and
269 always continues in the same edge if reached via E. Return the edge
270 if exist, NULL otherwise. */
271
272 static edge
273 thread_jump (int mode, edge e, basic_block b)
274 {
275 rtx set1, set2, cond1, cond2, insn;
276 enum rtx_code code1, code2, reversed_code2;
277 bool reverse1 = false;
278 int i;
279 regset nonequal;
280 bool failed = false;
281
282 if (BB_FLAGS (b) & BB_NONTHREADABLE_BLOCK)
283 return NULL;
284
285 /* At the moment, we do handle only conditional jumps, but later we may
286 want to extend this code to tablejumps and others. */
287 if (!e->src->succ->succ_next || e->src->succ->succ_next->succ_next)
288 return NULL;
289 if (!b->succ || !b->succ->succ_next || b->succ->succ_next->succ_next)
290 {
291 BB_SET_FLAG (b, BB_NONTHREADABLE_BLOCK);
292 return NULL;
293 }
294
295 /* Second branch must end with onlyjump, as we will eliminate the jump. */
296 if (!any_condjump_p (BB_END (e->src)))
297 return NULL;
298
299 if (!any_condjump_p (BB_END (b)) || !onlyjump_p (BB_END (b)))
300 {
301 BB_SET_FLAG (b, BB_NONTHREADABLE_BLOCK);
302 return NULL;
303 }
304
305 set1 = pc_set (BB_END (e->src));
306 set2 = pc_set (BB_END (b));
307 if (((e->flags & EDGE_FALLTHRU) != 0)
308 != (XEXP (SET_SRC (set1), 1) == pc_rtx))
309 reverse1 = true;
310
311 cond1 = XEXP (SET_SRC (set1), 0);
312 cond2 = XEXP (SET_SRC (set2), 0);
313 if (reverse1)
314 code1 = reversed_comparison_code (cond1, BB_END (e->src));
315 else
316 code1 = GET_CODE (cond1);
317
318 code2 = GET_CODE (cond2);
319 reversed_code2 = reversed_comparison_code (cond2, BB_END (b));
320
321 if (!comparison_dominates_p (code1, code2)
322 && !comparison_dominates_p (code1, reversed_code2))
323 return NULL;
324
325 /* Ensure that the comparison operators are equivalent.
326 ??? This is far too pessimistic. We should allow swapped operands,
327 different CCmodes, or for example comparisons for interval, that
328 dominate even when operands are not equivalent. */
329 if (!rtx_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
330 || !rtx_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
331 return NULL;
332
333 /* Short circuit cases where block B contains some side effects, as we can't
334 safely bypass it. */
335 for (insn = NEXT_INSN (BB_HEAD (b)); insn != NEXT_INSN (BB_END (b));
336 insn = NEXT_INSN (insn))
337 if (INSN_P (insn) && side_effects_p (PATTERN (insn)))
338 {
339 BB_SET_FLAG (b, BB_NONTHREADABLE_BLOCK);
340 return NULL;
341 }
342
343 cselib_init (false);
344
345 /* First process all values computed in the source basic block. */
346 for (insn = NEXT_INSN (BB_HEAD (e->src)); insn != NEXT_INSN (BB_END (e->src));
347 insn = NEXT_INSN (insn))
348 if (INSN_P (insn))
349 cselib_process_insn (insn);
350
351 nonequal = BITMAP_XMALLOC();
352 CLEAR_REG_SET (nonequal);
353
354 /* Now assume that we've continued by the edge E to B and continue
355 processing as if it were same basic block.
356 Our goal is to prove that whole block is an NOOP. */
357
358 for (insn = NEXT_INSN (BB_HEAD (b)); insn != NEXT_INSN (BB_END (b)) && !failed;
359 insn = NEXT_INSN (insn))
360 {
361 if (INSN_P (insn))
362 {
363 rtx pat = PATTERN (insn);
364
365 if (GET_CODE (pat) == PARALLEL)
366 {
367 for (i = 0; i < XVECLEN (pat, 0); i++)
368 failed |= mark_effect (XVECEXP (pat, 0, i), nonequal);
369 }
370 else
371 failed |= mark_effect (pat, nonequal);
372 }
373
374 cselib_process_insn (insn);
375 }
376
377 /* Later we should clear nonequal of dead registers. So far we don't
378 have life information in cfg_cleanup. */
379 if (failed)
380 {
381 BB_SET_FLAG (b, BB_NONTHREADABLE_BLOCK);
382 goto failed_exit;
383 }
384
385 /* cond2 must not mention any register that is not equal to the
386 former block. */
387 if (for_each_rtx (&cond2, mentions_nonequal_regs, nonequal))
388 goto failed_exit;
389
390 /* In case liveness information is available, we need to prove equivalence
391 only of the live values. */
392 if (mode & CLEANUP_UPDATE_LIFE)
393 AND_REG_SET (nonequal, b->global_live_at_end);
394
395 EXECUTE_IF_SET_IN_REG_SET (nonequal, 0, i, goto failed_exit;);
396
397 BITMAP_XFREE (nonequal);
398 cselib_finish ();
399 if ((comparison_dominates_p (code1, code2) != 0)
400 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
401 return BRANCH_EDGE (b);
402 else
403 return FALLTHRU_EDGE (b);
404
405 failed_exit:
406 BITMAP_XFREE (nonequal);
407 cselib_finish ();
408 return NULL;
409 }
410 \f
411 /* Attempt to forward edges leaving basic block B.
412 Return true if successful. */
413
414 static bool
415 try_forward_edges (int mode, basic_block b)
416 {
417 bool changed = false;
418 edge e, next, *threaded_edges = NULL;
419
420 /* If we are partitioning hot/cold basic blocks, we don't want to
421 mess up unconditional or indirect jumps that cross between hot
422 and cold sections. */
423
424 if (flag_reorder_blocks_and_partition
425 && find_reg_note (BB_END (b), REG_CROSSING_JUMP, NULL_RTX))
426 return false;
427
428 for (e = b->succ; e; e = next)
429 {
430 basic_block target, first;
431 int counter;
432 bool threaded = false;
433 int nthreaded_edges = 0;
434 bool may_thread = first_pass | (b->flags & BB_DIRTY);
435
436 next = e->succ_next;
437
438 /* Skip complex edges because we don't know how to update them.
439
440 Still handle fallthru edges, as we can succeed to forward fallthru
441 edge to the same place as the branch edge of conditional branch
442 and turn conditional branch to an unconditional branch. */
443 if (e->flags & EDGE_COMPLEX)
444 continue;
445
446 target = first = e->dest;
447 counter = 0;
448
449 while (counter < n_basic_blocks)
450 {
451 basic_block new_target = NULL;
452 bool new_target_threaded = false;
453 may_thread |= target->flags & BB_DIRTY;
454
455 if (FORWARDER_BLOCK_P (target)
456 && target->succ->dest != EXIT_BLOCK_PTR)
457 {
458 /* Bypass trivial infinite loops. */
459 if (target == target->succ->dest)
460 counter = n_basic_blocks;
461 new_target = target->succ->dest;
462 }
463
464 /* Allow to thread only over one edge at time to simplify updating
465 of probabilities. */
466 else if ((mode & CLEANUP_THREADING) && may_thread)
467 {
468 edge t = thread_jump (mode, e, target);
469 if (t)
470 {
471 if (!threaded_edges)
472 threaded_edges = xmalloc (sizeof (*threaded_edges)
473 * n_basic_blocks);
474 else
475 {
476 int i;
477
478 /* Detect an infinite loop across blocks not
479 including the start block. */
480 for (i = 0; i < nthreaded_edges; ++i)
481 if (threaded_edges[i] == t)
482 break;
483 if (i < nthreaded_edges)
484 {
485 counter = n_basic_blocks;
486 break;
487 }
488 }
489
490 /* Detect an infinite loop across the start block. */
491 if (t->dest == b)
492 break;
493
494 if (nthreaded_edges >= n_basic_blocks)
495 abort ();
496 threaded_edges[nthreaded_edges++] = t;
497
498 new_target = t->dest;
499 new_target_threaded = true;
500 }
501 }
502
503 if (!new_target)
504 break;
505
506 /* Avoid killing of loop pre-headers, as it is the place loop
507 optimizer wants to hoist code to.
508
509 For fallthru forwarders, the LOOP_BEG note must appear between
510 the header of block and CODE_LABEL of the loop, for non forwarders
511 it must appear before the JUMP_INSN. */
512 if ((mode & CLEANUP_PRE_LOOP) && optimize)
513 {
514 rtx insn = (target->succ->flags & EDGE_FALLTHRU
515 ? BB_HEAD (target) : prev_nonnote_insn (BB_END (target)));
516
517 if (!NOTE_P (insn))
518 insn = NEXT_INSN (insn);
519
520 for (; insn && !LABEL_P (insn) && !INSN_P (insn);
521 insn = NEXT_INSN (insn))
522 if (NOTE_P (insn)
523 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
524 break;
525
526 if (NOTE_P (insn))
527 break;
528
529 /* Do not clean up branches to just past the end of a loop
530 at this time; it can mess up the loop optimizer's
531 recognition of some patterns. */
532
533 insn = PREV_INSN (BB_HEAD (target));
534 if (insn && NOTE_P (insn)
535 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
536 break;
537 }
538
539 counter++;
540 target = new_target;
541 threaded |= new_target_threaded;
542 }
543
544 if (counter >= n_basic_blocks)
545 {
546 if (dump_file)
547 fprintf (dump_file, "Infinite loop in BB %i.\n",
548 target->index);
549 }
550 else if (target == first)
551 ; /* We didn't do anything. */
552 else
553 {
554 /* Save the values now, as the edge may get removed. */
555 gcov_type edge_count = e->count;
556 int edge_probability = e->probability;
557 int edge_frequency;
558 int n = 0;
559
560 /* Don't force if target is exit block. */
561 if (threaded && target != EXIT_BLOCK_PTR)
562 {
563 notice_new_block (redirect_edge_and_branch_force (e, target));
564 if (dump_file)
565 fprintf (dump_file, "Conditionals threaded.\n");
566 }
567 else if (!redirect_edge_and_branch (e, target))
568 {
569 if (dump_file)
570 fprintf (dump_file,
571 "Forwarding edge %i->%i to %i failed.\n",
572 b->index, e->dest->index, target->index);
573 continue;
574 }
575
576 /* We successfully forwarded the edge. Now update profile
577 data: for each edge we traversed in the chain, remove
578 the original edge's execution count. */
579 edge_frequency = ((edge_probability * b->frequency
580 + REG_BR_PROB_BASE / 2)
581 / REG_BR_PROB_BASE);
582
583 if (!FORWARDER_BLOCK_P (b) && forwarder_block_p (b))
584 BB_SET_FLAG (b, BB_FORWARDER_BLOCK);
585
586 do
587 {
588 edge t;
589
590 first->count -= edge_count;
591 if (first->count < 0)
592 first->count = 0;
593 first->frequency -= edge_frequency;
594 if (first->frequency < 0)
595 first->frequency = 0;
596 if (first->succ->succ_next)
597 {
598 edge e;
599 int prob;
600 if (n >= nthreaded_edges)
601 abort ();
602 t = threaded_edges [n++];
603 if (t->src != first)
604 abort ();
605 if (first->frequency)
606 prob = edge_frequency * REG_BR_PROB_BASE / first->frequency;
607 else
608 prob = 0;
609 if (prob > t->probability)
610 prob = t->probability;
611 t->probability -= prob;
612 prob = REG_BR_PROB_BASE - prob;
613 if (prob <= 0)
614 {
615 first->succ->probability = REG_BR_PROB_BASE;
616 first->succ->succ_next->probability = 0;
617 }
618 else
619 for (e = first->succ; e; e = e->succ_next)
620 e->probability = ((e->probability * REG_BR_PROB_BASE)
621 / (double) prob);
622 update_br_prob_note (first);
623 }
624 else
625 {
626 /* It is possible that as the result of
627 threading we've removed edge as it is
628 threaded to the fallthru edge. Avoid
629 getting out of sync. */
630 if (n < nthreaded_edges
631 && first == threaded_edges [n]->src)
632 n++;
633 t = first->succ;
634 }
635
636 t->count -= edge_count;
637 if (t->count < 0)
638 t->count = 0;
639 first = t->dest;
640 }
641 while (first != target);
642
643 changed = true;
644 }
645 }
646
647 if (threaded_edges)
648 free (threaded_edges);
649 return changed;
650 }
651 \f
652
653 /* Blocks A and B are to be merged into a single block. A has no incoming
654 fallthru edge, so it can be moved before B without adding or modifying
655 any jumps (aside from the jump from A to B). */
656
657 static void
658 merge_blocks_move_predecessor_nojumps (basic_block a, basic_block b)
659 {
660 rtx barrier;
661
662 /* If we are partitioning hot/cold basic blocks, we don't want to
663 mess up unconditional or indirect jumps that cross between hot
664 and cold sections. */
665
666 if (flag_reorder_blocks_and_partition
667 && (a->partition != b->partition
668 || find_reg_note (BB_END (a), REG_CROSSING_JUMP, NULL_RTX)))
669 return;
670
671 barrier = next_nonnote_insn (BB_END (a));
672 if (!BARRIER_P (barrier))
673 abort ();
674 delete_insn (barrier);
675
676 /* Move block and loop notes out of the chain so that we do not
677 disturb their order.
678
679 ??? A better solution would be to squeeze out all the non-nested notes
680 and adjust the block trees appropriately. Even better would be to have
681 a tighter connection between block trees and rtl so that this is not
682 necessary. */
683 if (squeeze_notes (&BB_HEAD (a), &BB_END (a)))
684 abort ();
685
686 /* Scramble the insn chain. */
687 if (BB_END (a) != PREV_INSN (BB_HEAD (b)))
688 reorder_insns_nobb (BB_HEAD (a), BB_END (a), PREV_INSN (BB_HEAD (b)));
689 a->flags |= BB_DIRTY;
690
691 if (dump_file)
692 fprintf (dump_file, "Moved block %d before %d and merged.\n",
693 a->index, b->index);
694
695 /* Swap the records for the two blocks around. */
696
697 unlink_block (a);
698 link_block (a, b->prev_bb);
699
700 /* Now blocks A and B are contiguous. Merge them. */
701 merge_blocks (a, b);
702 }
703
704 /* Blocks A and B are to be merged into a single block. B has no outgoing
705 fallthru edge, so it can be moved after A without adding or modifying
706 any jumps (aside from the jump from A to B). */
707
708 static void
709 merge_blocks_move_successor_nojumps (basic_block a, basic_block b)
710 {
711 rtx barrier, real_b_end;
712 rtx label, table;
713
714 /* If we are partitioning hot/cold basic blocks, we don't want to
715 mess up unconditional or indirect jumps that cross between hot
716 and cold sections. */
717
718 if (flag_reorder_blocks_and_partition
719 && (find_reg_note (BB_END (a), REG_CROSSING_JUMP, NULL_RTX)
720 || a->partition != b->partition))
721 return;
722
723 real_b_end = BB_END (b);
724
725 /* If there is a jump table following block B temporarily add the jump table
726 to block B so that it will also be moved to the correct location. */
727 if (tablejump_p (BB_END (b), &label, &table)
728 && prev_active_insn (label) == BB_END (b))
729 {
730 BB_END (b) = table;
731 }
732
733 /* There had better have been a barrier there. Delete it. */
734 barrier = NEXT_INSN (BB_END (b));
735 if (barrier && BARRIER_P (barrier))
736 delete_insn (barrier);
737
738 /* Move block and loop notes out of the chain so that we do not
739 disturb their order.
740
741 ??? A better solution would be to squeeze out all the non-nested notes
742 and adjust the block trees appropriately. Even better would be to have
743 a tighter connection between block trees and rtl so that this is not
744 necessary. */
745 if (squeeze_notes (&BB_HEAD (b), &BB_END (b)))
746 abort ();
747
748 /* Scramble the insn chain. */
749 reorder_insns_nobb (BB_HEAD (b), BB_END (b), BB_END (a));
750
751 /* Restore the real end of b. */
752 BB_END (b) = real_b_end;
753
754 if (dump_file)
755 fprintf (dump_file, "Moved block %d after %d and merged.\n",
756 b->index, a->index);
757
758 /* Now blocks A and B are contiguous. Merge them. */
759 merge_blocks (a, b);
760 }
761
762 /* Attempt to merge basic blocks that are potentially non-adjacent.
763 Return NULL iff the attempt failed, otherwise return basic block
764 where cleanup_cfg should continue. Because the merging commonly
765 moves basic block away or introduces another optimization
766 possibility, return basic block just before B so cleanup_cfg don't
767 need to iterate.
768
769 It may be good idea to return basic block before C in the case
770 C has been moved after B and originally appeared earlier in the
771 insn sequence, but we have no information available about the
772 relative ordering of these two. Hopefully it is not too common. */
773
774 static basic_block
775 merge_blocks_move (edge e, basic_block b, basic_block c, int mode)
776 {
777 basic_block next;
778
779 /* If we are partitioning hot/cold basic blocks, we don't want to
780 mess up unconditional or indirect jumps that cross between hot
781 and cold sections. */
782
783 if (flag_reorder_blocks_and_partition
784 && (find_reg_note (BB_END (b), REG_CROSSING_JUMP, NULL_RTX)
785 || find_reg_note (BB_END (c), REG_CROSSING_JUMP, NULL_RTX)
786 || b->partition != c->partition))
787 return NULL;
788
789
790
791 /* If B has a fallthru edge to C, no need to move anything. */
792 if (e->flags & EDGE_FALLTHRU)
793 {
794 int b_index = b->index, c_index = c->index;
795 merge_blocks (b, c);
796 update_forwarder_flag (b);
797
798 if (dump_file)
799 fprintf (dump_file, "Merged %d and %d without moving.\n",
800 b_index, c_index);
801
802 return b->prev_bb == ENTRY_BLOCK_PTR ? b : b->prev_bb;
803 }
804
805 /* Otherwise we will need to move code around. Do that only if expensive
806 transformations are allowed. */
807 else if (mode & CLEANUP_EXPENSIVE)
808 {
809 edge tmp_edge, b_fallthru_edge;
810 bool c_has_outgoing_fallthru;
811 bool b_has_incoming_fallthru;
812
813 /* Avoid overactive code motion, as the forwarder blocks should be
814 eliminated by edge redirection instead. One exception might have
815 been if B is a forwarder block and C has no fallthru edge, but
816 that should be cleaned up by bb-reorder instead. */
817 if (FORWARDER_BLOCK_P (b) || FORWARDER_BLOCK_P (c))
818 return NULL;
819
820 /* We must make sure to not munge nesting of lexical blocks,
821 and loop notes. This is done by squeezing out all the notes
822 and leaving them there to lie. Not ideal, but functional. */
823
824 for (tmp_edge = c->succ; tmp_edge; tmp_edge = tmp_edge->succ_next)
825 if (tmp_edge->flags & EDGE_FALLTHRU)
826 break;
827
828 c_has_outgoing_fallthru = (tmp_edge != NULL);
829
830 for (tmp_edge = b->pred; tmp_edge; tmp_edge = tmp_edge->pred_next)
831 if (tmp_edge->flags & EDGE_FALLTHRU)
832 break;
833
834 b_has_incoming_fallthru = (tmp_edge != NULL);
835 b_fallthru_edge = tmp_edge;
836 next = b->prev_bb;
837 if (next == c)
838 next = next->prev_bb;
839
840 /* Otherwise, we're going to try to move C after B. If C does
841 not have an outgoing fallthru, then it can be moved
842 immediately after B without introducing or modifying jumps. */
843 if (! c_has_outgoing_fallthru)
844 {
845 merge_blocks_move_successor_nojumps (b, c);
846 return next == ENTRY_BLOCK_PTR ? next->next_bb : next;
847 }
848
849 /* If B does not have an incoming fallthru, then it can be moved
850 immediately before C without introducing or modifying jumps.
851 C cannot be the first block, so we do not have to worry about
852 accessing a non-existent block. */
853
854 if (b_has_incoming_fallthru)
855 {
856 basic_block bb;
857
858 if (b_fallthru_edge->src == ENTRY_BLOCK_PTR)
859 return NULL;
860 bb = force_nonfallthru (b_fallthru_edge);
861 if (bb)
862 notice_new_block (bb);
863 }
864
865 merge_blocks_move_predecessor_nojumps (b, c);
866 return next == ENTRY_BLOCK_PTR ? next->next_bb : next;
867 }
868
869 return NULL;
870 }
871 \f
872
873 /* Removes the memory attributes of MEM expression
874 if they are not equal. */
875
876 void
877 merge_memattrs (rtx x, rtx y)
878 {
879 int i;
880 int j;
881 enum rtx_code code;
882 const char *fmt;
883
884 if (x == y)
885 return;
886 if (x == 0 || y == 0)
887 return;
888
889 code = GET_CODE (x);
890
891 if (code != GET_CODE (y))
892 return;
893
894 if (GET_MODE (x) != GET_MODE (y))
895 return;
896
897 if (code == MEM && MEM_ATTRS (x) != MEM_ATTRS (y))
898 {
899 if (! MEM_ATTRS (x))
900 MEM_ATTRS (y) = 0;
901 else if (! MEM_ATTRS (y))
902 MEM_ATTRS (x) = 0;
903 else
904 {
905 if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
906 {
907 set_mem_alias_set (x, 0);
908 set_mem_alias_set (y, 0);
909 }
910
911 if (! mem_expr_equal_p (MEM_EXPR (x), MEM_EXPR (y)))
912 {
913 set_mem_expr (x, 0);
914 set_mem_expr (y, 0);
915 set_mem_offset (x, 0);
916 set_mem_offset (y, 0);
917 }
918 else if (MEM_OFFSET (x) != MEM_OFFSET (y))
919 {
920 set_mem_offset (x, 0);
921 set_mem_offset (y, 0);
922 }
923
924 set_mem_size (x, MAX (MEM_SIZE (x), MEM_SIZE (y)));
925 set_mem_size (y, MEM_SIZE (x));
926
927 set_mem_align (x, MIN (MEM_ALIGN (x), MEM_ALIGN (y)));
928 set_mem_align (y, MEM_ALIGN (x));
929 }
930 }
931
932 fmt = GET_RTX_FORMAT (code);
933 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
934 {
935 switch (fmt[i])
936 {
937 case 'E':
938 /* Two vectors must have the same length. */
939 if (XVECLEN (x, i) != XVECLEN (y, i))
940 return;
941
942 for (j = 0; j < XVECLEN (x, i); j++)
943 merge_memattrs (XVECEXP (x, i, j), XVECEXP (y, i, j));
944
945 break;
946
947 case 'e':
948 merge_memattrs (XEXP (x, i), XEXP (y, i));
949 }
950 }
951 return;
952 }
953
954
955 /* Return true if I1 and I2 are equivalent and thus can be crossjumped. */
956
957 static bool
958 insns_match_p (int mode ATTRIBUTE_UNUSED, rtx i1, rtx i2)
959 {
960 rtx p1, p2;
961
962 /* Verify that I1 and I2 are equivalent. */
963 if (GET_CODE (i1) != GET_CODE (i2))
964 return false;
965
966 p1 = PATTERN (i1);
967 p2 = PATTERN (i2);
968
969 if (GET_CODE (p1) != GET_CODE (p2))
970 return false;
971
972 /* If this is a CALL_INSN, compare register usage information.
973 If we don't check this on stack register machines, the two
974 CALL_INSNs might be merged leaving reg-stack.c with mismatching
975 numbers of stack registers in the same basic block.
976 If we don't check this on machines with delay slots, a delay slot may
977 be filled that clobbers a parameter expected by the subroutine.
978
979 ??? We take the simple route for now and assume that if they're
980 equal, they were constructed identically. */
981
982 if (CALL_P (i1)
983 && (!rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1),
984 CALL_INSN_FUNCTION_USAGE (i2))
985 || SIBLING_CALL_P (i1) != SIBLING_CALL_P (i2)))
986 return false;
987
988 #ifdef STACK_REGS
989 /* If cross_jump_death_matters is not 0, the insn's mode
990 indicates whether or not the insn contains any stack-like
991 regs. */
992
993 if ((mode & CLEANUP_POST_REGSTACK) && stack_regs_mentioned (i1))
994 {
995 /* If register stack conversion has already been done, then
996 death notes must also be compared before it is certain that
997 the two instruction streams match. */
998
999 rtx note;
1000 HARD_REG_SET i1_regset, i2_regset;
1001
1002 CLEAR_HARD_REG_SET (i1_regset);
1003 CLEAR_HARD_REG_SET (i2_regset);
1004
1005 for (note = REG_NOTES (i1); note; note = XEXP (note, 1))
1006 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
1007 SET_HARD_REG_BIT (i1_regset, REGNO (XEXP (note, 0)));
1008
1009 for (note = REG_NOTES (i2); note; note = XEXP (note, 1))
1010 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
1011 SET_HARD_REG_BIT (i2_regset, REGNO (XEXP (note, 0)));
1012
1013 GO_IF_HARD_REG_EQUAL (i1_regset, i2_regset, done);
1014
1015 return false;
1016
1017 done:
1018 ;
1019 }
1020 #endif
1021
1022 if (reload_completed
1023 ? rtx_renumbered_equal_p (p1, p2) : rtx_equal_p (p1, p2))
1024 return true;
1025
1026 /* Do not do EQUIV substitution after reload. First, we're undoing the
1027 work of reload_cse. Second, we may be undoing the work of the post-
1028 reload splitting pass. */
1029 /* ??? Possibly add a new phase switch variable that can be used by
1030 targets to disallow the troublesome insns after splitting. */
1031 if (!reload_completed)
1032 {
1033 /* The following code helps take care of G++ cleanups. */
1034 rtx equiv1 = find_reg_equal_equiv_note (i1);
1035 rtx equiv2 = find_reg_equal_equiv_note (i2);
1036
1037 if (equiv1 && equiv2
1038 /* If the equivalences are not to a constant, they may
1039 reference pseudos that no longer exist, so we can't
1040 use them. */
1041 && (! reload_completed
1042 || (CONSTANT_P (XEXP (equiv1, 0))
1043 && rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))))
1044 {
1045 rtx s1 = single_set (i1);
1046 rtx s2 = single_set (i2);
1047 if (s1 != 0 && s2 != 0
1048 && rtx_renumbered_equal_p (SET_DEST (s1), SET_DEST (s2)))
1049 {
1050 validate_change (i1, &SET_SRC (s1), XEXP (equiv1, 0), 1);
1051 validate_change (i2, &SET_SRC (s2), XEXP (equiv2, 0), 1);
1052 if (! rtx_renumbered_equal_p (p1, p2))
1053 cancel_changes (0);
1054 else if (apply_change_group ())
1055 return true;
1056 }
1057 }
1058 }
1059
1060 return false;
1061 }
1062 \f
1063 /* Look through the insns at the end of BB1 and BB2 and find the longest
1064 sequence that are equivalent. Store the first insns for that sequence
1065 in *F1 and *F2 and return the sequence length.
1066
1067 To simplify callers of this function, if the blocks match exactly,
1068 store the head of the blocks in *F1 and *F2. */
1069
1070 static int
1071 flow_find_cross_jump (int mode ATTRIBUTE_UNUSED, basic_block bb1,
1072 basic_block bb2, rtx *f1, rtx *f2)
1073 {
1074 rtx i1, i2, last1, last2, afterlast1, afterlast2;
1075 int ninsns = 0;
1076
1077 /* Skip simple jumps at the end of the blocks. Complex jumps still
1078 need to be compared for equivalence, which we'll do below. */
1079
1080 i1 = BB_END (bb1);
1081 last1 = afterlast1 = last2 = afterlast2 = NULL_RTX;
1082 if (onlyjump_p (i1)
1083 || (returnjump_p (i1) && !side_effects_p (PATTERN (i1))))
1084 {
1085 last1 = i1;
1086 i1 = PREV_INSN (i1);
1087 }
1088
1089 i2 = BB_END (bb2);
1090 if (onlyjump_p (i2)
1091 || (returnjump_p (i2) && !side_effects_p (PATTERN (i2))))
1092 {
1093 last2 = i2;
1094 /* Count everything except for unconditional jump as insn. */
1095 if (!simplejump_p (i2) && !returnjump_p (i2) && last1)
1096 ninsns++;
1097 i2 = PREV_INSN (i2);
1098 }
1099
1100 while (true)
1101 {
1102 /* Ignore notes. */
1103 while (!INSN_P (i1) && i1 != BB_HEAD (bb1))
1104 i1 = PREV_INSN (i1);
1105
1106 while (!INSN_P (i2) && i2 != BB_HEAD (bb2))
1107 i2 = PREV_INSN (i2);
1108
1109 if (i1 == BB_HEAD (bb1) || i2 == BB_HEAD (bb2))
1110 break;
1111
1112 if (!insns_match_p (mode, i1, i2))
1113 break;
1114
1115 merge_memattrs (i1, i2);
1116
1117 /* Don't begin a cross-jump with a NOTE insn. */
1118 if (INSN_P (i1))
1119 {
1120 /* If the merged insns have different REG_EQUAL notes, then
1121 remove them. */
1122 rtx equiv1 = find_reg_equal_equiv_note (i1);
1123 rtx equiv2 = find_reg_equal_equiv_note (i2);
1124
1125 if (equiv1 && !equiv2)
1126 remove_note (i1, equiv1);
1127 else if (!equiv1 && equiv2)
1128 remove_note (i2, equiv2);
1129 else if (equiv1 && equiv2
1130 && !rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))
1131 {
1132 remove_note (i1, equiv1);
1133 remove_note (i2, equiv2);
1134 }
1135
1136 afterlast1 = last1, afterlast2 = last2;
1137 last1 = i1, last2 = i2;
1138 ninsns++;
1139 }
1140
1141 i1 = PREV_INSN (i1);
1142 i2 = PREV_INSN (i2);
1143 }
1144
1145 #ifdef HAVE_cc0
1146 /* Don't allow the insn after a compare to be shared by
1147 cross-jumping unless the compare is also shared. */
1148 if (ninsns && reg_mentioned_p (cc0_rtx, last1) && ! sets_cc0_p (last1))
1149 last1 = afterlast1, last2 = afterlast2, ninsns--;
1150 #endif
1151
1152 /* Include preceding notes and labels in the cross-jump. One,
1153 this may bring us to the head of the blocks as requested above.
1154 Two, it keeps line number notes as matched as may be. */
1155 if (ninsns)
1156 {
1157 while (last1 != BB_HEAD (bb1) && !INSN_P (PREV_INSN (last1)))
1158 last1 = PREV_INSN (last1);
1159
1160 if (last1 != BB_HEAD (bb1) && LABEL_P (PREV_INSN (last1)))
1161 last1 = PREV_INSN (last1);
1162
1163 while (last2 != BB_HEAD (bb2) && !INSN_P (PREV_INSN (last2)))
1164 last2 = PREV_INSN (last2);
1165
1166 if (last2 != BB_HEAD (bb2) && LABEL_P (PREV_INSN (last2)))
1167 last2 = PREV_INSN (last2);
1168
1169 *f1 = last1;
1170 *f2 = last2;
1171 }
1172
1173 return ninsns;
1174 }
1175
1176 /* Return true iff outgoing edges of BB1 and BB2 match, together with
1177 the branch instruction. This means that if we commonize the control
1178 flow before end of the basic block, the semantic remains unchanged.
1179
1180 We may assume that there exists one edge with a common destination. */
1181
1182 static bool
1183 outgoing_edges_match (int mode, basic_block bb1, basic_block bb2)
1184 {
1185 int nehedges1 = 0, nehedges2 = 0;
1186 edge fallthru1 = 0, fallthru2 = 0;
1187 edge e1, e2;
1188
1189 /* If BB1 has only one successor, we may be looking at either an
1190 unconditional jump, or a fake edge to exit. */
1191 if (bb1->succ && !bb1->succ->succ_next
1192 && (bb1->succ->flags & (EDGE_COMPLEX | EDGE_FAKE)) == 0
1193 && (!JUMP_P (BB_END (bb1)) || simplejump_p (BB_END (bb1))))
1194 return (bb2->succ && !bb2->succ->succ_next
1195 && (bb2->succ->flags & (EDGE_COMPLEX | EDGE_FAKE)) == 0
1196 && (!JUMP_P (BB_END (bb2)) || simplejump_p (BB_END (bb2))));
1197
1198 /* Match conditional jumps - this may get tricky when fallthru and branch
1199 edges are crossed. */
1200 if (bb1->succ
1201 && bb1->succ->succ_next
1202 && !bb1->succ->succ_next->succ_next
1203 && any_condjump_p (BB_END (bb1))
1204 && onlyjump_p (BB_END (bb1)))
1205 {
1206 edge b1, f1, b2, f2;
1207 bool reverse, match;
1208 rtx set1, set2, cond1, cond2;
1209 enum rtx_code code1, code2;
1210
1211 if (!bb2->succ
1212 || !bb2->succ->succ_next
1213 || bb2->succ->succ_next->succ_next
1214 || !any_condjump_p (BB_END (bb2))
1215 || !onlyjump_p (BB_END (bb2)))
1216 return false;
1217
1218 b1 = BRANCH_EDGE (bb1);
1219 b2 = BRANCH_EDGE (bb2);
1220 f1 = FALLTHRU_EDGE (bb1);
1221 f2 = FALLTHRU_EDGE (bb2);
1222
1223 /* Get around possible forwarders on fallthru edges. Other cases
1224 should be optimized out already. */
1225 if (FORWARDER_BLOCK_P (f1->dest))
1226 f1 = f1->dest->succ;
1227
1228 if (FORWARDER_BLOCK_P (f2->dest))
1229 f2 = f2->dest->succ;
1230
1231 /* To simplify use of this function, return false if there are
1232 unneeded forwarder blocks. These will get eliminated later
1233 during cleanup_cfg. */
1234 if (FORWARDER_BLOCK_P (f1->dest)
1235 || FORWARDER_BLOCK_P (f2->dest)
1236 || FORWARDER_BLOCK_P (b1->dest)
1237 || FORWARDER_BLOCK_P (b2->dest))
1238 return false;
1239
1240 if (f1->dest == f2->dest && b1->dest == b2->dest)
1241 reverse = false;
1242 else if (f1->dest == b2->dest && b1->dest == f2->dest)
1243 reverse = true;
1244 else
1245 return false;
1246
1247 set1 = pc_set (BB_END (bb1));
1248 set2 = pc_set (BB_END (bb2));
1249 if ((XEXP (SET_SRC (set1), 1) == pc_rtx)
1250 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
1251 reverse = !reverse;
1252
1253 cond1 = XEXP (SET_SRC (set1), 0);
1254 cond2 = XEXP (SET_SRC (set2), 0);
1255 code1 = GET_CODE (cond1);
1256 if (reverse)
1257 code2 = reversed_comparison_code (cond2, BB_END (bb2));
1258 else
1259 code2 = GET_CODE (cond2);
1260
1261 if (code2 == UNKNOWN)
1262 return false;
1263
1264 /* Verify codes and operands match. */
1265 match = ((code1 == code2
1266 && rtx_renumbered_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
1267 && rtx_renumbered_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
1268 || (code1 == swap_condition (code2)
1269 && rtx_renumbered_equal_p (XEXP (cond1, 1),
1270 XEXP (cond2, 0))
1271 && rtx_renumbered_equal_p (XEXP (cond1, 0),
1272 XEXP (cond2, 1))));
1273
1274 /* If we return true, we will join the blocks. Which means that
1275 we will only have one branch prediction bit to work with. Thus
1276 we require the existing branches to have probabilities that are
1277 roughly similar. */
1278 if (match
1279 && !optimize_size
1280 && maybe_hot_bb_p (bb1)
1281 && maybe_hot_bb_p (bb2))
1282 {
1283 int prob2;
1284
1285 if (b1->dest == b2->dest)
1286 prob2 = b2->probability;
1287 else
1288 /* Do not use f2 probability as f2 may be forwarded. */
1289 prob2 = REG_BR_PROB_BASE - b2->probability;
1290
1291 /* Fail if the difference in probabilities is greater than 50%.
1292 This rules out two well-predicted branches with opposite
1293 outcomes. */
1294 if (abs (b1->probability - prob2) > REG_BR_PROB_BASE / 2)
1295 {
1296 if (dump_file)
1297 fprintf (dump_file,
1298 "Outcomes of branch in bb %i and %i differs to much (%i %i)\n",
1299 bb1->index, bb2->index, b1->probability, prob2);
1300
1301 return false;
1302 }
1303 }
1304
1305 if (dump_file && match)
1306 fprintf (dump_file, "Conditionals in bb %i and %i match.\n",
1307 bb1->index, bb2->index);
1308
1309 return match;
1310 }
1311
1312 /* Generic case - we are seeing a computed jump, table jump or trapping
1313 instruction. */
1314
1315 #ifndef CASE_DROPS_THROUGH
1316 /* Check whether there are tablejumps in the end of BB1 and BB2.
1317 Return true if they are identical. */
1318 {
1319 rtx label1, label2;
1320 rtx table1, table2;
1321
1322 if (tablejump_p (BB_END (bb1), &label1, &table1)
1323 && tablejump_p (BB_END (bb2), &label2, &table2)
1324 && GET_CODE (PATTERN (table1)) == GET_CODE (PATTERN (table2)))
1325 {
1326 /* The labels should never be the same rtx. If they really are same
1327 the jump tables are same too. So disable crossjumping of blocks BB1
1328 and BB2 because when deleting the common insns in the end of BB1
1329 by delete_basic_block () the jump table would be deleted too. */
1330 /* If LABEL2 is referenced in BB1->END do not do anything
1331 because we would loose information when replacing
1332 LABEL1 by LABEL2 and then LABEL2 by LABEL1 in BB1->END. */
1333 if (label1 != label2 && !rtx_referenced_p (label2, BB_END (bb1)))
1334 {
1335 /* Set IDENTICAL to true when the tables are identical. */
1336 bool identical = false;
1337 rtx p1, p2;
1338
1339 p1 = PATTERN (table1);
1340 p2 = PATTERN (table2);
1341 if (GET_CODE (p1) == ADDR_VEC && rtx_equal_p (p1, p2))
1342 {
1343 identical = true;
1344 }
1345 else if (GET_CODE (p1) == ADDR_DIFF_VEC
1346 && (XVECLEN (p1, 1) == XVECLEN (p2, 1))
1347 && rtx_equal_p (XEXP (p1, 2), XEXP (p2, 2))
1348 && rtx_equal_p (XEXP (p1, 3), XEXP (p2, 3)))
1349 {
1350 int i;
1351
1352 identical = true;
1353 for (i = XVECLEN (p1, 1) - 1; i >= 0 && identical; i--)
1354 if (!rtx_equal_p (XVECEXP (p1, 1, i), XVECEXP (p2, 1, i)))
1355 identical = false;
1356 }
1357
1358 if (identical)
1359 {
1360 replace_label_data rr;
1361 bool match;
1362
1363 /* Temporarily replace references to LABEL1 with LABEL2
1364 in BB1->END so that we could compare the instructions. */
1365 rr.r1 = label1;
1366 rr.r2 = label2;
1367 rr.update_label_nuses = false;
1368 for_each_rtx (&BB_END (bb1), replace_label, &rr);
1369
1370 match = insns_match_p (mode, BB_END (bb1), BB_END (bb2));
1371 if (dump_file && match)
1372 fprintf (dump_file,
1373 "Tablejumps in bb %i and %i match.\n",
1374 bb1->index, bb2->index);
1375
1376 /* Set the original label in BB1->END because when deleting
1377 a block whose end is a tablejump, the tablejump referenced
1378 from the instruction is deleted too. */
1379 rr.r1 = label2;
1380 rr.r2 = label1;
1381 for_each_rtx (&BB_END (bb1), replace_label, &rr);
1382
1383 return match;
1384 }
1385 }
1386 return false;
1387 }
1388 }
1389 #endif
1390
1391 /* First ensure that the instructions match. There may be many outgoing
1392 edges so this test is generally cheaper. */
1393 if (!insns_match_p (mode, BB_END (bb1), BB_END (bb2)))
1394 return false;
1395
1396 /* Search the outgoing edges, ensure that the counts do match, find possible
1397 fallthru and exception handling edges since these needs more
1398 validation. */
1399 for (e1 = bb1->succ, e2 = bb2->succ; e1 && e2;
1400 e1 = e1->succ_next, e2 = e2->succ_next)
1401 {
1402 if (e1->flags & EDGE_EH)
1403 nehedges1++;
1404
1405 if (e2->flags & EDGE_EH)
1406 nehedges2++;
1407
1408 if (e1->flags & EDGE_FALLTHRU)
1409 fallthru1 = e1;
1410 if (e2->flags & EDGE_FALLTHRU)
1411 fallthru2 = e2;
1412 }
1413
1414 /* If number of edges of various types does not match, fail. */
1415 if (e1 || e2
1416 || nehedges1 != nehedges2
1417 || (fallthru1 != 0) != (fallthru2 != 0))
1418 return false;
1419
1420 /* fallthru edges must be forwarded to the same destination. */
1421 if (fallthru1)
1422 {
1423 basic_block d1 = (forwarder_block_p (fallthru1->dest)
1424 ? fallthru1->dest->succ->dest: fallthru1->dest);
1425 basic_block d2 = (forwarder_block_p (fallthru2->dest)
1426 ? fallthru2->dest->succ->dest: fallthru2->dest);
1427
1428 if (d1 != d2)
1429 return false;
1430 }
1431
1432 /* Ensure the same EH region. */
1433 {
1434 rtx n1 = find_reg_note (BB_END (bb1), REG_EH_REGION, 0);
1435 rtx n2 = find_reg_note (BB_END (bb2), REG_EH_REGION, 0);
1436
1437 if (!n1 && n2)
1438 return false;
1439
1440 if (n1 && (!n2 || XEXP (n1, 0) != XEXP (n2, 0)))
1441 return false;
1442 }
1443
1444 /* We don't need to match the rest of edges as above checks should be enough
1445 to ensure that they are equivalent. */
1446 return true;
1447 }
1448
1449 /* E1 and E2 are edges with the same destination block. Search their
1450 predecessors for common code. If found, redirect control flow from
1451 (maybe the middle of) E1->SRC to (maybe the middle of) E2->SRC. */
1452
1453 static bool
1454 try_crossjump_to_edge (int mode, edge e1, edge e2)
1455 {
1456 int nmatch;
1457 basic_block src1 = e1->src, src2 = e2->src;
1458 basic_block redirect_to, redirect_from, to_remove;
1459 rtx newpos1, newpos2;
1460 edge s;
1461
1462 newpos1 = newpos2 = NULL_RTX;
1463
1464 /* If we have partitioned hot/cold basic blocks, it is a bad idea
1465 to try this optimization. */
1466
1467 if (flag_reorder_blocks_and_partition && no_new_pseudos)
1468 return false;
1469
1470 /* Search backward through forwarder blocks. We don't need to worry
1471 about multiple entry or chained forwarders, as they will be optimized
1472 away. We do this to look past the unconditional jump following a
1473 conditional jump that is required due to the current CFG shape. */
1474 if (src1->pred
1475 && !src1->pred->pred_next
1476 && FORWARDER_BLOCK_P (src1))
1477 e1 = src1->pred, src1 = e1->src;
1478
1479 if (src2->pred
1480 && !src2->pred->pred_next
1481 && FORWARDER_BLOCK_P (src2))
1482 e2 = src2->pred, src2 = e2->src;
1483
1484 /* Nothing to do if we reach ENTRY, or a common source block. */
1485 if (src1 == ENTRY_BLOCK_PTR || src2 == ENTRY_BLOCK_PTR)
1486 return false;
1487 if (src1 == src2)
1488 return false;
1489
1490 /* Seeing more than 1 forwarder blocks would confuse us later... */
1491 if (FORWARDER_BLOCK_P (e1->dest)
1492 && FORWARDER_BLOCK_P (e1->dest->succ->dest))
1493 return false;
1494
1495 if (FORWARDER_BLOCK_P (e2->dest)
1496 && FORWARDER_BLOCK_P (e2->dest->succ->dest))
1497 return false;
1498
1499 /* Likewise with dead code (possibly newly created by the other optimizations
1500 of cfg_cleanup). */
1501 if (!src1->pred || !src2->pred)
1502 return false;
1503
1504 /* Look for the common insn sequence, part the first ... */
1505 if (!outgoing_edges_match (mode, src1, src2))
1506 return false;
1507
1508 /* ... and part the second. */
1509 nmatch = flow_find_cross_jump (mode, src1, src2, &newpos1, &newpos2);
1510
1511 /* Don't proceed with the crossjump unless we found a sufficient number
1512 of matching instructions or the 'from' block was totally matched
1513 (such that its predecessors will hopefully be redirected and the
1514 block removed). */
1515 if ((nmatch < PARAM_VALUE (PARAM_MIN_CROSSJUMP_INSNS))
1516 && (newpos1 != BB_HEAD (src1)))
1517 return false;
1518
1519 #ifndef CASE_DROPS_THROUGH
1520 /* Here we know that the insns in the end of SRC1 which are common with SRC2
1521 will be deleted.
1522 If we have tablejumps in the end of SRC1 and SRC2
1523 they have been already compared for equivalence in outgoing_edges_match ()
1524 so replace the references to TABLE1 by references to TABLE2. */
1525 {
1526 rtx label1, label2;
1527 rtx table1, table2;
1528
1529 if (tablejump_p (BB_END (src1), &label1, &table1)
1530 && tablejump_p (BB_END (src2), &label2, &table2)
1531 && label1 != label2)
1532 {
1533 replace_label_data rr;
1534 rtx insn;
1535
1536 /* Replace references to LABEL1 with LABEL2. */
1537 rr.r1 = label1;
1538 rr.r2 = label2;
1539 rr.update_label_nuses = true;
1540 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1541 {
1542 /* Do not replace the label in SRC1->END because when deleting
1543 a block whose end is a tablejump, the tablejump referenced
1544 from the instruction is deleted too. */
1545 if (insn != BB_END (src1))
1546 for_each_rtx (&insn, replace_label, &rr);
1547 }
1548 }
1549 }
1550 #endif
1551
1552 /* Avoid splitting if possible. */
1553 if (newpos2 == BB_HEAD (src2))
1554 redirect_to = src2;
1555 else
1556 {
1557 if (dump_file)
1558 fprintf (dump_file, "Splitting bb %i before %i insns\n",
1559 src2->index, nmatch);
1560 redirect_to = split_block (src2, PREV_INSN (newpos2))->dest;
1561 }
1562
1563 if (dump_file)
1564 fprintf (dump_file,
1565 "Cross jumping from bb %i to bb %i; %i common insns\n",
1566 src1->index, src2->index, nmatch);
1567
1568 redirect_to->count += src1->count;
1569 redirect_to->frequency += src1->frequency;
1570 /* We may have some registers visible trought the block. */
1571 redirect_to->flags |= BB_DIRTY;
1572
1573 /* Recompute the frequencies and counts of outgoing edges. */
1574 for (s = redirect_to->succ; s; s = s->succ_next)
1575 {
1576 edge s2;
1577 basic_block d = s->dest;
1578
1579 if (FORWARDER_BLOCK_P (d))
1580 d = d->succ->dest;
1581
1582 for (s2 = src1->succ; ; s2 = s2->succ_next)
1583 {
1584 basic_block d2 = s2->dest;
1585 if (FORWARDER_BLOCK_P (d2))
1586 d2 = d2->succ->dest;
1587 if (d == d2)
1588 break;
1589 }
1590
1591 s->count += s2->count;
1592
1593 /* Take care to update possible forwarder blocks. We verified
1594 that there is no more than one in the chain, so we can't run
1595 into infinite loop. */
1596 if (FORWARDER_BLOCK_P (s->dest))
1597 {
1598 s->dest->succ->count += s2->count;
1599 s->dest->count += s2->count;
1600 s->dest->frequency += EDGE_FREQUENCY (s);
1601 }
1602
1603 if (FORWARDER_BLOCK_P (s2->dest))
1604 {
1605 s2->dest->succ->count -= s2->count;
1606 if (s2->dest->succ->count < 0)
1607 s2->dest->succ->count = 0;
1608 s2->dest->count -= s2->count;
1609 s2->dest->frequency -= EDGE_FREQUENCY (s);
1610 if (s2->dest->frequency < 0)
1611 s2->dest->frequency = 0;
1612 if (s2->dest->count < 0)
1613 s2->dest->count = 0;
1614 }
1615
1616 if (!redirect_to->frequency && !src1->frequency)
1617 s->probability = (s->probability + s2->probability) / 2;
1618 else
1619 s->probability
1620 = ((s->probability * redirect_to->frequency +
1621 s2->probability * src1->frequency)
1622 / (redirect_to->frequency + src1->frequency));
1623 }
1624
1625 update_br_prob_note (redirect_to);
1626
1627 /* Edit SRC1 to go to REDIRECT_TO at NEWPOS1. */
1628
1629 /* Skip possible basic block header. */
1630 if (LABEL_P (newpos1))
1631 newpos1 = NEXT_INSN (newpos1);
1632
1633 if (NOTE_P (newpos1))
1634 newpos1 = NEXT_INSN (newpos1);
1635
1636 redirect_from = split_block (src1, PREV_INSN (newpos1))->src;
1637 to_remove = redirect_from->succ->dest;
1638
1639 redirect_edge_and_branch_force (redirect_from->succ, redirect_to);
1640 delete_basic_block (to_remove);
1641
1642 update_forwarder_flag (redirect_from);
1643
1644 return true;
1645 }
1646
1647 /* Search the predecessors of BB for common insn sequences. When found,
1648 share code between them by redirecting control flow. Return true if
1649 any changes made. */
1650
1651 static bool
1652 try_crossjump_bb (int mode, basic_block bb)
1653 {
1654 edge e, e2, nexte2, nexte, fallthru;
1655 bool changed;
1656 int n = 0, max;
1657
1658 /* Nothing to do if there is not at least two incoming edges. */
1659 if (!bb->pred || !bb->pred->pred_next)
1660 return false;
1661
1662 /* If we are partitioning hot/cold basic blocks, we don't want to
1663 mess up unconditional or indirect jumps that cross between hot
1664 and cold sections. */
1665
1666 if (flag_reorder_blocks_and_partition
1667 && (bb->pred->src->partition != bb->pred->pred_next->src->partition
1668 || bb->pred->crossing_edge))
1669 return false;
1670
1671 /* It is always cheapest to redirect a block that ends in a branch to
1672 a block that falls through into BB, as that adds no branches to the
1673 program. We'll try that combination first. */
1674 fallthru = NULL;
1675 max = PARAM_VALUE (PARAM_MAX_CROSSJUMP_EDGES);
1676 for (e = bb->pred; e ; e = e->pred_next, n++)
1677 {
1678 if (e->flags & EDGE_FALLTHRU)
1679 fallthru = e;
1680 if (n > max)
1681 return false;
1682 }
1683
1684 changed = false;
1685 for (e = bb->pred; e; e = nexte)
1686 {
1687 nexte = e->pred_next;
1688
1689 /* As noted above, first try with the fallthru predecessor. */
1690 if (fallthru)
1691 {
1692 /* Don't combine the fallthru edge into anything else.
1693 If there is a match, we'll do it the other way around. */
1694 if (e == fallthru)
1695 continue;
1696 /* If nothing changed since the last attempt, there is nothing
1697 we can do. */
1698 if (!first_pass
1699 && (!(e->src->flags & BB_DIRTY)
1700 && !(fallthru->src->flags & BB_DIRTY)))
1701 continue;
1702
1703 if (try_crossjump_to_edge (mode, e, fallthru))
1704 {
1705 changed = true;
1706 nexte = bb->pred;
1707 continue;
1708 }
1709 }
1710
1711 /* Non-obvious work limiting check: Recognize that we're going
1712 to call try_crossjump_bb on every basic block. So if we have
1713 two blocks with lots of outgoing edges (a switch) and they
1714 share lots of common destinations, then we would do the
1715 cross-jump check once for each common destination.
1716
1717 Now, if the blocks actually are cross-jump candidates, then
1718 all of their destinations will be shared. Which means that
1719 we only need check them for cross-jump candidacy once. We
1720 can eliminate redundant checks of crossjump(A,B) by arbitrarily
1721 choosing to do the check from the block for which the edge
1722 in question is the first successor of A. */
1723 if (e->src->succ != e)
1724 continue;
1725
1726 for (e2 = bb->pred; e2; e2 = nexte2)
1727 {
1728 nexte2 = e2->pred_next;
1729
1730 if (e2 == e)
1731 continue;
1732
1733 /* We've already checked the fallthru edge above. */
1734 if (e2 == fallthru)
1735 continue;
1736
1737 /* The "first successor" check above only prevents multiple
1738 checks of crossjump(A,B). In order to prevent redundant
1739 checks of crossjump(B,A), require that A be the block
1740 with the lowest index. */
1741 if (e->src->index > e2->src->index)
1742 continue;
1743
1744 /* If nothing changed since the last attempt, there is nothing
1745 we can do. */
1746 if (!first_pass
1747 && (!(e->src->flags & BB_DIRTY)
1748 && !(e2->src->flags & BB_DIRTY)))
1749 continue;
1750
1751 if (try_crossjump_to_edge (mode, e, e2))
1752 {
1753 changed = true;
1754 nexte = bb->pred;
1755 break;
1756 }
1757 }
1758 }
1759
1760 return changed;
1761 }
1762
1763 /* Do simple CFG optimizations - basic block merging, simplifying of jump
1764 instructions etc. Return nonzero if changes were made. */
1765
1766 static bool
1767 try_optimize_cfg (int mode)
1768 {
1769 bool changed_overall = false;
1770 bool changed;
1771 int iterations = 0;
1772 basic_block bb, b, next;
1773
1774 if (mode & CLEANUP_CROSSJUMP)
1775 add_noreturn_fake_exit_edges ();
1776
1777 FOR_EACH_BB (bb)
1778 update_forwarder_flag (bb);
1779
1780 if (mode & (CLEANUP_UPDATE_LIFE | CLEANUP_CROSSJUMP | CLEANUP_THREADING))
1781 clear_bb_flags ();
1782
1783 if (! targetm.cannot_modify_jumps_p ())
1784 {
1785 first_pass = true;
1786 /* Attempt to merge blocks as made possible by edge removal. If
1787 a block has only one successor, and the successor has only
1788 one predecessor, they may be combined. */
1789 do
1790 {
1791 changed = false;
1792 iterations++;
1793
1794 if (dump_file)
1795 fprintf (dump_file,
1796 "\n\ntry_optimize_cfg iteration %i\n\n",
1797 iterations);
1798
1799 for (b = ENTRY_BLOCK_PTR->next_bb; b != EXIT_BLOCK_PTR;)
1800 {
1801 basic_block c;
1802 edge s;
1803 bool changed_here = false;
1804
1805 /* Delete trivially dead basic blocks. */
1806 while (b->pred == NULL)
1807 {
1808 c = b->prev_bb;
1809 if (dump_file)
1810 fprintf (dump_file, "Deleting block %i.\n",
1811 b->index);
1812
1813 delete_basic_block (b);
1814 if (!(mode & CLEANUP_CFGLAYOUT))
1815 changed = true;
1816 b = c;
1817 }
1818
1819 /* Remove code labels no longer used. */
1820 if (b->pred->pred_next == NULL
1821 && (b->pred->flags & EDGE_FALLTHRU)
1822 && !(b->pred->flags & EDGE_COMPLEX)
1823 && LABEL_P (BB_HEAD (b))
1824 /* If the previous block ends with a branch to this
1825 block, we can't delete the label. Normally this
1826 is a condjump that is yet to be simplified, but
1827 if CASE_DROPS_THRU, this can be a tablejump with
1828 some element going to the same place as the
1829 default (fallthru). */
1830 && (b->pred->src == ENTRY_BLOCK_PTR
1831 || !JUMP_P (BB_END (b->pred->src))
1832 || ! label_is_jump_target_p (BB_HEAD (b),
1833 BB_END (b->pred->src))))
1834 {
1835 rtx label = BB_HEAD (b);
1836
1837 delete_insn_chain (label, label);
1838 /* In the case label is undeletable, move it after the
1839 BASIC_BLOCK note. */
1840 if (NOTE_LINE_NUMBER (BB_HEAD (b)) == NOTE_INSN_DELETED_LABEL)
1841 {
1842 rtx bb_note = NEXT_INSN (BB_HEAD (b));
1843
1844 reorder_insns_nobb (label, label, bb_note);
1845 BB_HEAD (b) = bb_note;
1846 }
1847 if (dump_file)
1848 fprintf (dump_file, "Deleted label in block %i.\n",
1849 b->index);
1850 }
1851
1852 /* If we fall through an empty block, we can remove it. */
1853 if (!(mode & CLEANUP_CFGLAYOUT)
1854 && b->pred->pred_next == NULL
1855 && (b->pred->flags & EDGE_FALLTHRU)
1856 && !LABEL_P (BB_HEAD (b))
1857 && FORWARDER_BLOCK_P (b)
1858 /* Note that forwarder_block_p true ensures that
1859 there is a successor for this block. */
1860 && (b->succ->flags & EDGE_FALLTHRU)
1861 && n_basic_blocks > 1)
1862 {
1863 if (dump_file)
1864 fprintf (dump_file,
1865 "Deleting fallthru block %i.\n",
1866 b->index);
1867
1868 c = b->prev_bb == ENTRY_BLOCK_PTR ? b->next_bb : b->prev_bb;
1869 redirect_edge_succ_nodup (b->pred, b->succ->dest);
1870 delete_basic_block (b);
1871 changed = true;
1872 b = c;
1873 }
1874
1875 if ((s = b->succ) != NULL
1876 && s->succ_next == NULL
1877 && !(s->flags & EDGE_COMPLEX)
1878 && (c = s->dest) != EXIT_BLOCK_PTR
1879 && c->pred->pred_next == NULL
1880 && b != c)
1881 {
1882 /* When not in cfg_layout mode use code aware of reordering
1883 INSN. This code possibly creates new basic blocks so it
1884 does not fit merge_blocks interface and is kept here in
1885 hope that it will become useless once more of compiler
1886 is transformed to use cfg_layout mode. */
1887
1888 if ((mode & CLEANUP_CFGLAYOUT)
1889 && can_merge_blocks_p (b, c))
1890 {
1891 merge_blocks (b, c);
1892 update_forwarder_flag (b);
1893 changed_here = true;
1894 }
1895 else if (!(mode & CLEANUP_CFGLAYOUT)
1896 /* If the jump insn has side effects,
1897 we can't kill the edge. */
1898 && (!JUMP_P (BB_END (b))
1899 || (reload_completed
1900 ? simplejump_p (BB_END (b))
1901 : (onlyjump_p (BB_END (b))
1902 && !tablejump_p (BB_END (b),
1903 NULL, NULL))))
1904 && (next = merge_blocks_move (s, b, c, mode)))
1905 {
1906 b = next;
1907 changed_here = true;
1908 }
1909 }
1910
1911 /* Simplify branch over branch. */
1912 if ((mode & CLEANUP_EXPENSIVE)
1913 && !(mode & CLEANUP_CFGLAYOUT)
1914 && try_simplify_condjump (b))
1915 changed_here = true;
1916
1917 /* If B has a single outgoing edge, but uses a
1918 non-trivial jump instruction without side-effects, we
1919 can either delete the jump entirely, or replace it
1920 with a simple unconditional jump. */
1921 if (b->succ
1922 && ! b->succ->succ_next
1923 && b->succ->dest != EXIT_BLOCK_PTR
1924 && onlyjump_p (BB_END (b))
1925 && !find_reg_note (BB_END (b), REG_CROSSING_JUMP, NULL_RTX)
1926 && try_redirect_by_replacing_jump (b->succ, b->succ->dest,
1927 (mode & CLEANUP_CFGLAYOUT) != 0))
1928 {
1929 update_forwarder_flag (b);
1930 changed_here = true;
1931 }
1932
1933 /* Simplify branch to branch. */
1934 if (try_forward_edges (mode, b))
1935 changed_here = true;
1936
1937 /* Look for shared code between blocks. */
1938 if ((mode & CLEANUP_CROSSJUMP)
1939 && try_crossjump_bb (mode, b))
1940 changed_here = true;
1941
1942 /* Don't get confused by the index shift caused by
1943 deleting blocks. */
1944 if (!changed_here)
1945 b = b->next_bb;
1946 else
1947 changed = true;
1948 }
1949
1950 if ((mode & CLEANUP_CROSSJUMP)
1951 && try_crossjump_bb (mode, EXIT_BLOCK_PTR))
1952 changed = true;
1953
1954 #ifdef ENABLE_CHECKING
1955 if (changed)
1956 verify_flow_info ();
1957 #endif
1958
1959 changed_overall |= changed;
1960 first_pass = false;
1961 }
1962 while (changed);
1963 }
1964
1965 if (mode & CLEANUP_CROSSJUMP)
1966 remove_fake_exit_edges ();
1967
1968 clear_aux_for_blocks ();
1969
1970 return changed_overall;
1971 }
1972 \f
1973 /* Delete all unreachable basic blocks. */
1974
1975 bool
1976 delete_unreachable_blocks (void)
1977 {
1978 bool changed = false;
1979 basic_block b, next_bb;
1980
1981 find_unreachable_blocks ();
1982
1983 /* Delete all unreachable basic blocks. */
1984
1985 for (b = ENTRY_BLOCK_PTR->next_bb; b != EXIT_BLOCK_PTR; b = next_bb)
1986 {
1987 next_bb = b->next_bb;
1988
1989 if (!(b->flags & BB_REACHABLE))
1990 {
1991 delete_basic_block (b);
1992 changed = true;
1993 }
1994 }
1995
1996 if (changed)
1997 tidy_fallthru_edges ();
1998 return changed;
1999 }
2000
2001 /* Merges sequential blocks if possible. */
2002
2003 bool
2004 merge_seq_blocks (void)
2005 {
2006 basic_block bb;
2007 bool changed = false;
2008
2009 for (bb = ENTRY_BLOCK_PTR->next_bb; bb != EXIT_BLOCK_PTR; )
2010 {
2011 if (bb->succ
2012 && !bb->succ->succ_next
2013 && can_merge_blocks_p (bb, bb->succ->dest))
2014 {
2015 /* Merge the blocks and retry. */
2016 merge_blocks (bb, bb->succ->dest);
2017 changed = true;
2018 continue;
2019 }
2020
2021 bb = bb->next_bb;
2022 }
2023
2024 return changed;
2025 }
2026 \f
2027 /* Tidy the CFG by deleting unreachable code and whatnot. */
2028
2029 bool
2030 cleanup_cfg (int mode)
2031 {
2032 bool changed = false;
2033
2034 timevar_push (TV_CLEANUP_CFG);
2035 if (delete_unreachable_blocks ())
2036 {
2037 changed = true;
2038 /* We've possibly created trivially dead code. Cleanup it right
2039 now to introduce more opportunities for try_optimize_cfg. */
2040 if (!(mode & (CLEANUP_NO_INSN_DEL | CLEANUP_UPDATE_LIFE))
2041 && !reload_completed)
2042 delete_trivially_dead_insns (get_insns(), max_reg_num ());
2043 }
2044
2045 compact_blocks ();
2046
2047 while (try_optimize_cfg (mode))
2048 {
2049 delete_unreachable_blocks (), changed = true;
2050 if (mode & CLEANUP_UPDATE_LIFE)
2051 {
2052 /* Cleaning up CFG introduces more opportunities for dead code
2053 removal that in turn may introduce more opportunities for
2054 cleaning up the CFG. */
2055 if (!update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
2056 PROP_DEATH_NOTES
2057 | PROP_SCAN_DEAD_CODE
2058 | PROP_KILL_DEAD_CODE
2059 | ((mode & CLEANUP_LOG_LINKS)
2060 ? PROP_LOG_LINKS : 0)))
2061 break;
2062 }
2063 else if (!(mode & CLEANUP_NO_INSN_DEL)
2064 && (mode & CLEANUP_EXPENSIVE)
2065 && !reload_completed)
2066 {
2067 if (!delete_trivially_dead_insns (get_insns(), max_reg_num ()))
2068 break;
2069 }
2070 else
2071 break;
2072 delete_dead_jumptables ();
2073 }
2074
2075 /* Kill the data we won't maintain. */
2076 free_EXPR_LIST_list (&label_value_list);
2077 timevar_pop (TV_CLEANUP_CFG);
2078
2079 return changed;
2080 }