basic-block.h: Give the BB flags enum a name, bb_flags.
[gcc.git] / gcc / cfgcleanup.c
1 /* Control flow optimization code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 /* This file contains optimizer of the control flow. The main entry point is
23 cleanup_cfg. Following optimizations are performed:
24
25 - Unreachable blocks removal
26 - Edge forwarding (edge to the forwarder block is forwarded to its
27 successor. Simplification of the branch instruction is performed by
28 underlying infrastructure so branch can be converted to simplejump or
29 eliminated).
30 - Cross jumping (tail merging)
31 - Conditional jump-around-simplejump simplification
32 - Basic block merging. */
33
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "rtl.h"
39 #include "hard-reg-set.h"
40 #include "regs.h"
41 #include "timevar.h"
42 #include "output.h"
43 #include "insn-config.h"
44 #include "flags.h"
45 #include "recog.h"
46 #include "toplev.h"
47 #include "cselib.h"
48 #include "params.h"
49 #include "tm_p.h"
50 #include "target.h"
51 #include "cfglayout.h"
52 #include "emit-rtl.h"
53 #include "tree-pass.h"
54 #include "cfgloop.h"
55 #include "expr.h"
56
57 #define FORWARDER_BLOCK_P(BB) ((BB)->flags & BB_FORWARDER_BLOCK)
58
59 /* Set to true when we are running first pass of try_optimize_cfg loop. */
60 static bool first_pass;
61 static bool try_crossjump_to_edge (int, edge, edge);
62 static bool try_crossjump_bb (int, basic_block);
63 static bool outgoing_edges_match (int, basic_block, basic_block);
64 static int flow_find_cross_jump (int, basic_block, basic_block, rtx *, rtx *);
65 static bool insns_match_p (int, rtx, rtx);
66
67 static void merge_blocks_move_predecessor_nojumps (basic_block, basic_block);
68 static void merge_blocks_move_successor_nojumps (basic_block, basic_block);
69 static bool try_optimize_cfg (int);
70 static bool try_simplify_condjump (basic_block);
71 static bool try_forward_edges (int, basic_block);
72 static edge thread_jump (int, edge, basic_block);
73 static bool mark_effect (rtx, bitmap);
74 static void notice_new_block (basic_block);
75 static void update_forwarder_flag (basic_block);
76 static int mentions_nonequal_regs (rtx *, void *);
77 static void merge_memattrs (rtx, rtx);
78 \f
79 /* Set flags for newly created block. */
80
81 static void
82 notice_new_block (basic_block bb)
83 {
84 if (!bb)
85 return;
86
87 if (forwarder_block_p (bb))
88 bb->flags |= BB_FORWARDER_BLOCK;
89 }
90
91 /* Recompute forwarder flag after block has been modified. */
92
93 static void
94 update_forwarder_flag (basic_block bb)
95 {
96 if (forwarder_block_p (bb))
97 bb->flags |= BB_FORWARDER_BLOCK;
98 else
99 bb->flags &= ~BB_FORWARDER_BLOCK;
100 }
101 \f
102 /* Simplify a conditional jump around an unconditional jump.
103 Return true if something changed. */
104
105 static bool
106 try_simplify_condjump (basic_block cbranch_block)
107 {
108 basic_block jump_block, jump_dest_block, cbranch_dest_block;
109 edge cbranch_jump_edge, cbranch_fallthru_edge;
110 rtx cbranch_insn;
111
112 /* Verify that there are exactly two successors. */
113 if (EDGE_COUNT (cbranch_block->succs) != 2)
114 return false;
115
116 /* Verify that we've got a normal conditional branch at the end
117 of the block. */
118 cbranch_insn = BB_END (cbranch_block);
119 if (!any_condjump_p (cbranch_insn))
120 return false;
121
122 cbranch_fallthru_edge = FALLTHRU_EDGE (cbranch_block);
123 cbranch_jump_edge = BRANCH_EDGE (cbranch_block);
124
125 /* The next block must not have multiple predecessors, must not
126 be the last block in the function, and must contain just the
127 unconditional jump. */
128 jump_block = cbranch_fallthru_edge->dest;
129 if (!single_pred_p (jump_block)
130 || jump_block->next_bb == EXIT_BLOCK_PTR
131 || !FORWARDER_BLOCK_P (jump_block))
132 return false;
133 jump_dest_block = single_succ (jump_block);
134
135 /* If we are partitioning hot/cold basic blocks, we don't want to
136 mess up unconditional or indirect jumps that cross between hot
137 and cold sections.
138
139 Basic block partitioning may result in some jumps that appear to
140 be optimizable (or blocks that appear to be mergeable), but which really
141 must be left untouched (they are required to make it safely across
142 partition boundaries). See the comments at the top of
143 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
144
145 if (BB_PARTITION (jump_block) != BB_PARTITION (jump_dest_block)
146 || (cbranch_jump_edge->flags & EDGE_CROSSING))
147 return false;
148
149 /* The conditional branch must target the block after the
150 unconditional branch. */
151 cbranch_dest_block = cbranch_jump_edge->dest;
152
153 if (cbranch_dest_block == EXIT_BLOCK_PTR
154 || !can_fallthru (jump_block, cbranch_dest_block))
155 return false;
156
157 /* Invert the conditional branch. */
158 if (!invert_jump (cbranch_insn, block_label (jump_dest_block), 0))
159 return false;
160
161 if (dump_file)
162 fprintf (dump_file, "Simplifying condjump %i around jump %i\n",
163 INSN_UID (cbranch_insn), INSN_UID (BB_END (jump_block)));
164
165 /* Success. Update the CFG to match. Note that after this point
166 the edge variable names appear backwards; the redirection is done
167 this way to preserve edge profile data. */
168 cbranch_jump_edge = redirect_edge_succ_nodup (cbranch_jump_edge,
169 cbranch_dest_block);
170 cbranch_fallthru_edge = redirect_edge_succ_nodup (cbranch_fallthru_edge,
171 jump_dest_block);
172 cbranch_jump_edge->flags |= EDGE_FALLTHRU;
173 cbranch_fallthru_edge->flags &= ~EDGE_FALLTHRU;
174 update_br_prob_note (cbranch_block);
175
176 /* Delete the block with the unconditional jump, and clean up the mess. */
177 delete_basic_block (jump_block);
178 tidy_fallthru_edge (cbranch_jump_edge);
179 update_forwarder_flag (cbranch_block);
180
181 return true;
182 }
183 \f
184 /* Attempt to prove that operation is NOOP using CSElib or mark the effect
185 on register. Used by jump threading. */
186
187 static bool
188 mark_effect (rtx exp, regset nonequal)
189 {
190 int regno;
191 rtx dest;
192 switch (GET_CODE (exp))
193 {
194 /* In case we do clobber the register, mark it as equal, as we know the
195 value is dead so it don't have to match. */
196 case CLOBBER:
197 if (REG_P (XEXP (exp, 0)))
198 {
199 dest = XEXP (exp, 0);
200 regno = REGNO (dest);
201 CLEAR_REGNO_REG_SET (nonequal, regno);
202 if (regno < FIRST_PSEUDO_REGISTER)
203 {
204 int n = hard_regno_nregs[regno][GET_MODE (dest)];
205 while (--n > 0)
206 CLEAR_REGNO_REG_SET (nonequal, regno + n);
207 }
208 }
209 return false;
210
211 case SET:
212 if (rtx_equal_for_cselib_p (SET_DEST (exp), SET_SRC (exp)))
213 return false;
214 dest = SET_DEST (exp);
215 if (dest == pc_rtx)
216 return false;
217 if (!REG_P (dest))
218 return true;
219 regno = REGNO (dest);
220 SET_REGNO_REG_SET (nonequal, regno);
221 if (regno < FIRST_PSEUDO_REGISTER)
222 {
223 int n = hard_regno_nregs[regno][GET_MODE (dest)];
224 while (--n > 0)
225 SET_REGNO_REG_SET (nonequal, regno + n);
226 }
227 return false;
228
229 default:
230 return false;
231 }
232 }
233
234 /* Return nonzero if X is a register set in regset DATA.
235 Called via for_each_rtx. */
236 static int
237 mentions_nonequal_regs (rtx *x, void *data)
238 {
239 regset nonequal = (regset) data;
240 if (REG_P (*x))
241 {
242 int regno;
243
244 regno = REGNO (*x);
245 if (REGNO_REG_SET_P (nonequal, regno))
246 return 1;
247 if (regno < FIRST_PSEUDO_REGISTER)
248 {
249 int n = hard_regno_nregs[regno][GET_MODE (*x)];
250 while (--n > 0)
251 if (REGNO_REG_SET_P (nonequal, regno + n))
252 return 1;
253 }
254 }
255 return 0;
256 }
257 /* Attempt to prove that the basic block B will have no side effects and
258 always continues in the same edge if reached via E. Return the edge
259 if exist, NULL otherwise. */
260
261 static edge
262 thread_jump (int mode, edge e, basic_block b)
263 {
264 rtx set1, set2, cond1, cond2, insn;
265 enum rtx_code code1, code2, reversed_code2;
266 bool reverse1 = false;
267 unsigned i;
268 regset nonequal;
269 bool failed = false;
270 reg_set_iterator rsi;
271
272 if (b->flags & BB_NONTHREADABLE_BLOCK)
273 return NULL;
274
275 /* At the moment, we do handle only conditional jumps, but later we may
276 want to extend this code to tablejumps and others. */
277 if (EDGE_COUNT (e->src->succs) != 2)
278 return NULL;
279 if (EDGE_COUNT (b->succs) != 2)
280 {
281 b->flags |= BB_NONTHREADABLE_BLOCK;
282 return NULL;
283 }
284
285 /* Second branch must end with onlyjump, as we will eliminate the jump. */
286 if (!any_condjump_p (BB_END (e->src)))
287 return NULL;
288
289 if (!any_condjump_p (BB_END (b)) || !onlyjump_p (BB_END (b)))
290 {
291 b->flags |= BB_NONTHREADABLE_BLOCK;
292 return NULL;
293 }
294
295 set1 = pc_set (BB_END (e->src));
296 set2 = pc_set (BB_END (b));
297 if (((e->flags & EDGE_FALLTHRU) != 0)
298 != (XEXP (SET_SRC (set1), 1) == pc_rtx))
299 reverse1 = true;
300
301 cond1 = XEXP (SET_SRC (set1), 0);
302 cond2 = XEXP (SET_SRC (set2), 0);
303 if (reverse1)
304 code1 = reversed_comparison_code (cond1, BB_END (e->src));
305 else
306 code1 = GET_CODE (cond1);
307
308 code2 = GET_CODE (cond2);
309 reversed_code2 = reversed_comparison_code (cond2, BB_END (b));
310
311 if (!comparison_dominates_p (code1, code2)
312 && !comparison_dominates_p (code1, reversed_code2))
313 return NULL;
314
315 /* Ensure that the comparison operators are equivalent.
316 ??? This is far too pessimistic. We should allow swapped operands,
317 different CCmodes, or for example comparisons for interval, that
318 dominate even when operands are not equivalent. */
319 if (!rtx_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
320 || !rtx_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
321 return NULL;
322
323 /* Short circuit cases where block B contains some side effects, as we can't
324 safely bypass it. */
325 for (insn = NEXT_INSN (BB_HEAD (b)); insn != NEXT_INSN (BB_END (b));
326 insn = NEXT_INSN (insn))
327 if (INSN_P (insn) && side_effects_p (PATTERN (insn)))
328 {
329 b->flags |= BB_NONTHREADABLE_BLOCK;
330 return NULL;
331 }
332
333 cselib_init (false);
334
335 /* First process all values computed in the source basic block. */
336 for (insn = NEXT_INSN (BB_HEAD (e->src));
337 insn != NEXT_INSN (BB_END (e->src));
338 insn = NEXT_INSN (insn))
339 if (INSN_P (insn))
340 cselib_process_insn (insn);
341
342 nonequal = BITMAP_ALLOC (NULL);
343 CLEAR_REG_SET (nonequal);
344
345 /* Now assume that we've continued by the edge E to B and continue
346 processing as if it were same basic block.
347 Our goal is to prove that whole block is an NOOP. */
348
349 for (insn = NEXT_INSN (BB_HEAD (b));
350 insn != NEXT_INSN (BB_END (b)) && !failed;
351 insn = NEXT_INSN (insn))
352 {
353 if (INSN_P (insn))
354 {
355 rtx pat = PATTERN (insn);
356
357 if (GET_CODE (pat) == PARALLEL)
358 {
359 for (i = 0; i < (unsigned)XVECLEN (pat, 0); i++)
360 failed |= mark_effect (XVECEXP (pat, 0, i), nonequal);
361 }
362 else
363 failed |= mark_effect (pat, nonequal);
364 }
365
366 cselib_process_insn (insn);
367 }
368
369 /* Later we should clear nonequal of dead registers. So far we don't
370 have life information in cfg_cleanup. */
371 if (failed)
372 {
373 b->flags |= BB_NONTHREADABLE_BLOCK;
374 goto failed_exit;
375 }
376
377 /* cond2 must not mention any register that is not equal to the
378 former block. */
379 if (for_each_rtx (&cond2, mentions_nonequal_regs, nonequal))
380 goto failed_exit;
381
382 /* In case liveness information is available, we need to prove equivalence
383 only of the live values. */
384 if (mode & CLEANUP_UPDATE_LIFE)
385 AND_REG_SET (nonequal, b->il.rtl->global_live_at_end);
386
387 EXECUTE_IF_SET_IN_REG_SET (nonequal, 0, i, rsi)
388 goto failed_exit;
389
390 BITMAP_FREE (nonequal);
391 cselib_finish ();
392 if ((comparison_dominates_p (code1, code2) != 0)
393 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
394 return BRANCH_EDGE (b);
395 else
396 return FALLTHRU_EDGE (b);
397
398 failed_exit:
399 BITMAP_FREE (nonequal);
400 cselib_finish ();
401 return NULL;
402 }
403 \f
404 /* Attempt to forward edges leaving basic block B.
405 Return true if successful. */
406
407 static bool
408 try_forward_edges (int mode, basic_block b)
409 {
410 bool changed = false;
411 edge_iterator ei;
412 edge e, *threaded_edges = NULL;
413
414 /* If we are partitioning hot/cold basic blocks, we don't want to
415 mess up unconditional or indirect jumps that cross between hot
416 and cold sections.
417
418 Basic block partitioning may result in some jumps that appear to
419 be optimizable (or blocks that appear to be mergeable), but which really m
420 ust be left untouched (they are required to make it safely across
421 partition boundaries). See the comments at the top of
422 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
423
424 if (find_reg_note (BB_END (b), REG_CROSSING_JUMP, NULL_RTX))
425 return false;
426
427 for (ei = ei_start (b->succs); (e = ei_safe_edge (ei)); )
428 {
429 basic_block target, first;
430 int counter;
431 bool threaded = false;
432 int nthreaded_edges = 0;
433 bool may_thread = first_pass | (b->flags & BB_DIRTY);
434
435 /* Skip complex edges because we don't know how to update them.
436
437 Still handle fallthru edges, as we can succeed to forward fallthru
438 edge to the same place as the branch edge of conditional branch
439 and turn conditional branch to an unconditional branch. */
440 if (e->flags & EDGE_COMPLEX)
441 {
442 ei_next (&ei);
443 continue;
444 }
445
446 target = first = e->dest;
447 counter = 0;
448
449 /* If we are partitioning hot/cold basic_blocks, we don't want to mess
450 up jumps that cross between hot/cold sections.
451
452 Basic block partitioning may result in some jumps that appear
453 to be optimizable (or blocks that appear to be mergeable), but which
454 really must be left untouched (they are required to make it safely
455 across partition boundaries). See the comments at the top of
456 bb-reorder.c:partition_hot_cold_basic_blocks for complete
457 details. */
458
459 if (first != EXIT_BLOCK_PTR
460 && find_reg_note (BB_END (first), REG_CROSSING_JUMP, NULL_RTX))
461 return false;
462
463 while (counter < n_basic_blocks)
464 {
465 basic_block new_target = NULL;
466 bool new_target_threaded = false;
467 may_thread |= target->flags & BB_DIRTY;
468
469 if (FORWARDER_BLOCK_P (target)
470 && !(single_succ_edge (target)->flags & EDGE_CROSSING)
471 && single_succ (target) != EXIT_BLOCK_PTR)
472 {
473 /* Bypass trivial infinite loops. */
474 new_target = single_succ (target);
475 if (target == new_target)
476 counter = n_basic_blocks;
477 }
478
479 /* Allow to thread only over one edge at time to simplify updating
480 of probabilities. */
481 else if ((mode & CLEANUP_THREADING) && may_thread)
482 {
483 edge t = thread_jump (mode, e, target);
484 if (t)
485 {
486 if (!threaded_edges)
487 threaded_edges = xmalloc (sizeof (*threaded_edges)
488 * n_basic_blocks);
489 else
490 {
491 int i;
492
493 /* Detect an infinite loop across blocks not
494 including the start block. */
495 for (i = 0; i < nthreaded_edges; ++i)
496 if (threaded_edges[i] == t)
497 break;
498 if (i < nthreaded_edges)
499 {
500 counter = n_basic_blocks;
501 break;
502 }
503 }
504
505 /* Detect an infinite loop across the start block. */
506 if (t->dest == b)
507 break;
508
509 gcc_assert (nthreaded_edges < n_basic_blocks);
510 threaded_edges[nthreaded_edges++] = t;
511
512 new_target = t->dest;
513 new_target_threaded = true;
514 }
515 }
516
517 if (!new_target)
518 break;
519
520 /* Avoid killing of loop pre-headers, as it is the place loop
521 optimizer wants to hoist code to.
522
523 For fallthru forwarders, the LOOP_BEG note must appear between
524 the header of block and CODE_LABEL of the loop, for non forwarders
525 it must appear before the JUMP_INSN. */
526 if ((mode & CLEANUP_PRE_LOOP) && optimize && flag_loop_optimize)
527 {
528 rtx insn = (EDGE_SUCC (target, 0)->flags & EDGE_FALLTHRU
529 ? BB_HEAD (target) : prev_nonnote_insn (BB_END (target)));
530
531 if (!NOTE_P (insn))
532 insn = NEXT_INSN (insn);
533
534 for (; insn && !LABEL_P (insn) && !INSN_P (insn);
535 insn = NEXT_INSN (insn))
536 if (NOTE_P (insn)
537 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
538 break;
539
540 if (NOTE_P (insn))
541 break;
542
543 /* Do not clean up branches to just past the end of a loop
544 at this time; it can mess up the loop optimizer's
545 recognition of some patterns. */
546
547 insn = PREV_INSN (BB_HEAD (target));
548 if (insn && NOTE_P (insn)
549 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
550 break;
551 }
552
553 counter++;
554 target = new_target;
555 threaded |= new_target_threaded;
556 }
557
558 if (counter >= n_basic_blocks)
559 {
560 if (dump_file)
561 fprintf (dump_file, "Infinite loop in BB %i.\n",
562 target->index);
563 }
564 else if (target == first)
565 ; /* We didn't do anything. */
566 else
567 {
568 /* Save the values now, as the edge may get removed. */
569 gcov_type edge_count = e->count;
570 int edge_probability = e->probability;
571 int edge_frequency;
572 int n = 0;
573
574 /* Don't force if target is exit block. */
575 if (threaded && target != EXIT_BLOCK_PTR)
576 {
577 notice_new_block (redirect_edge_and_branch_force (e, target));
578 if (dump_file)
579 fprintf (dump_file, "Conditionals threaded.\n");
580 }
581 else if (!redirect_edge_and_branch (e, target))
582 {
583 if (dump_file)
584 fprintf (dump_file,
585 "Forwarding edge %i->%i to %i failed.\n",
586 b->index, e->dest->index, target->index);
587 ei_next (&ei);
588 continue;
589 }
590
591 /* We successfully forwarded the edge. Now update profile
592 data: for each edge we traversed in the chain, remove
593 the original edge's execution count. */
594 edge_frequency = ((edge_probability * b->frequency
595 + REG_BR_PROB_BASE / 2)
596 / REG_BR_PROB_BASE);
597
598 if (!FORWARDER_BLOCK_P (b) && forwarder_block_p (b))
599 b->flags |= BB_FORWARDER_BLOCK;
600
601 do
602 {
603 edge t;
604
605 if (!single_succ_p (first))
606 {
607 gcc_assert (n < nthreaded_edges);
608 t = threaded_edges [n++];
609 gcc_assert (t->src == first);
610 update_bb_profile_for_threading (first, edge_frequency,
611 edge_count, t);
612 update_br_prob_note (first);
613 }
614 else
615 {
616 first->count -= edge_count;
617 if (first->count < 0)
618 first->count = 0;
619 first->frequency -= edge_frequency;
620 if (first->frequency < 0)
621 first->frequency = 0;
622 /* It is possible that as the result of
623 threading we've removed edge as it is
624 threaded to the fallthru edge. Avoid
625 getting out of sync. */
626 if (n < nthreaded_edges
627 && first == threaded_edges [n]->src)
628 n++;
629 t = single_succ_edge (first);
630 }
631
632 t->count -= edge_count;
633 if (t->count < 0)
634 t->count = 0;
635 first = t->dest;
636 }
637 while (first != target);
638
639 changed = true;
640 continue;
641 }
642 ei_next (&ei);
643 }
644
645 if (threaded_edges)
646 free (threaded_edges);
647 return changed;
648 }
649 \f
650
651 /* Blocks A and B are to be merged into a single block. A has no incoming
652 fallthru edge, so it can be moved before B without adding or modifying
653 any jumps (aside from the jump from A to B). */
654
655 static void
656 merge_blocks_move_predecessor_nojumps (basic_block a, basic_block b)
657 {
658 rtx barrier;
659 bool only_notes;
660
661 /* If we are partitioning hot/cold basic blocks, we don't want to
662 mess up unconditional or indirect jumps that cross between hot
663 and cold sections.
664
665 Basic block partitioning may result in some jumps that appear to
666 be optimizable (or blocks that appear to be mergeable), but which really
667 must be left untouched (they are required to make it safely across
668 partition boundaries). See the comments at the top of
669 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
670
671 if (BB_PARTITION (a) != BB_PARTITION (b))
672 return;
673
674 barrier = next_nonnote_insn (BB_END (a));
675 gcc_assert (BARRIER_P (barrier));
676 delete_insn (barrier);
677
678 /* Move block and loop notes out of the chain so that we do not
679 disturb their order.
680
681 ??? A better solution would be to squeeze out all the non-nested notes
682 and adjust the block trees appropriately. Even better would be to have
683 a tighter connection between block trees and rtl so that this is not
684 necessary. */
685 only_notes = squeeze_notes (&BB_HEAD (a), &BB_END (a));
686 gcc_assert (!only_notes);
687
688 /* Scramble the insn chain. */
689 if (BB_END (a) != PREV_INSN (BB_HEAD (b)))
690 reorder_insns_nobb (BB_HEAD (a), BB_END (a), PREV_INSN (BB_HEAD (b)));
691 a->flags |= BB_DIRTY;
692
693 if (dump_file)
694 fprintf (dump_file, "Moved block %d before %d and merged.\n",
695 a->index, b->index);
696
697 /* Swap the records for the two blocks around. */
698
699 unlink_block (a);
700 link_block (a, b->prev_bb);
701
702 /* Now blocks A and B are contiguous. Merge them. */
703 merge_blocks (a, b);
704 }
705
706 /* Blocks A and B are to be merged into a single block. B has no outgoing
707 fallthru edge, so it can be moved after A without adding or modifying
708 any jumps (aside from the jump from A to B). */
709
710 static void
711 merge_blocks_move_successor_nojumps (basic_block a, basic_block b)
712 {
713 rtx barrier, real_b_end;
714 rtx label, table;
715 bool only_notes;
716
717 /* If we are partitioning hot/cold basic blocks, we don't want to
718 mess up unconditional or indirect jumps that cross between hot
719 and cold sections.
720
721 Basic block partitioning may result in some jumps that appear to
722 be optimizable (or blocks that appear to be mergeable), but which really
723 must be left untouched (they are required to make it safely across
724 partition boundaries). See the comments at the top of
725 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
726
727 if (BB_PARTITION (a) != BB_PARTITION (b))
728 return;
729
730 real_b_end = BB_END (b);
731
732 /* If there is a jump table following block B temporarily add the jump table
733 to block B so that it will also be moved to the correct location. */
734 if (tablejump_p (BB_END (b), &label, &table)
735 && prev_active_insn (label) == BB_END (b))
736 {
737 BB_END (b) = table;
738 }
739
740 /* There had better have been a barrier there. Delete it. */
741 barrier = NEXT_INSN (BB_END (b));
742 if (barrier && BARRIER_P (barrier))
743 delete_insn (barrier);
744
745 /* Move block and loop notes out of the chain so that we do not
746 disturb their order.
747
748 ??? A better solution would be to squeeze out all the non-nested notes
749 and adjust the block trees appropriately. Even better would be to have
750 a tighter connection between block trees and rtl so that this is not
751 necessary. */
752 only_notes = squeeze_notes (&BB_HEAD (b), &BB_END (b));
753 gcc_assert (!only_notes);
754
755
756 /* Scramble the insn chain. */
757 reorder_insns_nobb (BB_HEAD (b), BB_END (b), BB_END (a));
758
759 /* Restore the real end of b. */
760 BB_END (b) = real_b_end;
761
762 if (dump_file)
763 fprintf (dump_file, "Moved block %d after %d and merged.\n",
764 b->index, a->index);
765
766 /* Now blocks A and B are contiguous. Merge them. */
767 merge_blocks (a, b);
768 }
769
770 /* Attempt to merge basic blocks that are potentially non-adjacent.
771 Return NULL iff the attempt failed, otherwise return basic block
772 where cleanup_cfg should continue. Because the merging commonly
773 moves basic block away or introduces another optimization
774 possibility, return basic block just before B so cleanup_cfg don't
775 need to iterate.
776
777 It may be good idea to return basic block before C in the case
778 C has been moved after B and originally appeared earlier in the
779 insn sequence, but we have no information available about the
780 relative ordering of these two. Hopefully it is not too common. */
781
782 static basic_block
783 merge_blocks_move (edge e, basic_block b, basic_block c, int mode)
784 {
785 basic_block next;
786
787 /* If we are partitioning hot/cold basic blocks, we don't want to
788 mess up unconditional or indirect jumps that cross between hot
789 and cold sections.
790
791 Basic block partitioning may result in some jumps that appear to
792 be optimizable (or blocks that appear to be mergeable), but which really
793 must be left untouched (they are required to make it safely across
794 partition boundaries). See the comments at the top of
795 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
796
797 if (BB_PARTITION (b) != BB_PARTITION (c))
798 return NULL;
799
800
801
802 /* If B has a fallthru edge to C, no need to move anything. */
803 if (e->flags & EDGE_FALLTHRU)
804 {
805 int b_index = b->index, c_index = c->index;
806 merge_blocks (b, c);
807 update_forwarder_flag (b);
808
809 if (dump_file)
810 fprintf (dump_file, "Merged %d and %d without moving.\n",
811 b_index, c_index);
812
813 return b->prev_bb == ENTRY_BLOCK_PTR ? b : b->prev_bb;
814 }
815
816 /* Otherwise we will need to move code around. Do that only if expensive
817 transformations are allowed. */
818 else if (mode & CLEANUP_EXPENSIVE)
819 {
820 edge tmp_edge, b_fallthru_edge;
821 bool c_has_outgoing_fallthru;
822 bool b_has_incoming_fallthru;
823 edge_iterator ei;
824
825 /* Avoid overactive code motion, as the forwarder blocks should be
826 eliminated by edge redirection instead. One exception might have
827 been if B is a forwarder block and C has no fallthru edge, but
828 that should be cleaned up by bb-reorder instead. */
829 if (FORWARDER_BLOCK_P (b) || FORWARDER_BLOCK_P (c))
830 return NULL;
831
832 /* We must make sure to not munge nesting of lexical blocks,
833 and loop notes. This is done by squeezing out all the notes
834 and leaving them there to lie. Not ideal, but functional. */
835
836 FOR_EACH_EDGE (tmp_edge, ei, c->succs)
837 if (tmp_edge->flags & EDGE_FALLTHRU)
838 break;
839
840 c_has_outgoing_fallthru = (tmp_edge != NULL);
841
842 FOR_EACH_EDGE (tmp_edge, ei, b->preds)
843 if (tmp_edge->flags & EDGE_FALLTHRU)
844 break;
845
846 b_has_incoming_fallthru = (tmp_edge != NULL);
847 b_fallthru_edge = tmp_edge;
848 next = b->prev_bb;
849 if (next == c)
850 next = next->prev_bb;
851
852 /* Otherwise, we're going to try to move C after B. If C does
853 not have an outgoing fallthru, then it can be moved
854 immediately after B without introducing or modifying jumps. */
855 if (! c_has_outgoing_fallthru)
856 {
857 merge_blocks_move_successor_nojumps (b, c);
858 return next == ENTRY_BLOCK_PTR ? next->next_bb : next;
859 }
860
861 /* If B does not have an incoming fallthru, then it can be moved
862 immediately before C without introducing or modifying jumps.
863 C cannot be the first block, so we do not have to worry about
864 accessing a non-existent block. */
865
866 if (b_has_incoming_fallthru)
867 {
868 basic_block bb;
869
870 if (b_fallthru_edge->src == ENTRY_BLOCK_PTR)
871 return NULL;
872 bb = force_nonfallthru (b_fallthru_edge);
873 if (bb)
874 notice_new_block (bb);
875 }
876
877 merge_blocks_move_predecessor_nojumps (b, c);
878 return next == ENTRY_BLOCK_PTR ? next->next_bb : next;
879 }
880
881 return NULL;
882 }
883 \f
884
885 /* Removes the memory attributes of MEM expression
886 if they are not equal. */
887
888 void
889 merge_memattrs (rtx x, rtx y)
890 {
891 int i;
892 int j;
893 enum rtx_code code;
894 const char *fmt;
895
896 if (x == y)
897 return;
898 if (x == 0 || y == 0)
899 return;
900
901 code = GET_CODE (x);
902
903 if (code != GET_CODE (y))
904 return;
905
906 if (GET_MODE (x) != GET_MODE (y))
907 return;
908
909 if (code == MEM && MEM_ATTRS (x) != MEM_ATTRS (y))
910 {
911 if (! MEM_ATTRS (x))
912 MEM_ATTRS (y) = 0;
913 else if (! MEM_ATTRS (y))
914 MEM_ATTRS (x) = 0;
915 else
916 {
917 rtx mem_size;
918
919 if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
920 {
921 set_mem_alias_set (x, 0);
922 set_mem_alias_set (y, 0);
923 }
924
925 if (! mem_expr_equal_p (MEM_EXPR (x), MEM_EXPR (y)))
926 {
927 set_mem_expr (x, 0);
928 set_mem_expr (y, 0);
929 set_mem_offset (x, 0);
930 set_mem_offset (y, 0);
931 }
932 else if (MEM_OFFSET (x) != MEM_OFFSET (y))
933 {
934 set_mem_offset (x, 0);
935 set_mem_offset (y, 0);
936 }
937
938 if (!MEM_SIZE (x))
939 mem_size = NULL_RTX;
940 else if (!MEM_SIZE (y))
941 mem_size = NULL_RTX;
942 else
943 mem_size = GEN_INT (MAX (INTVAL (MEM_SIZE (x)),
944 INTVAL (MEM_SIZE (y))));
945 set_mem_size (x, mem_size);
946 set_mem_size (y, mem_size);
947
948 set_mem_align (x, MIN (MEM_ALIGN (x), MEM_ALIGN (y)));
949 set_mem_align (y, MEM_ALIGN (x));
950 }
951 }
952
953 fmt = GET_RTX_FORMAT (code);
954 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
955 {
956 switch (fmt[i])
957 {
958 case 'E':
959 /* Two vectors must have the same length. */
960 if (XVECLEN (x, i) != XVECLEN (y, i))
961 return;
962
963 for (j = 0; j < XVECLEN (x, i); j++)
964 merge_memattrs (XVECEXP (x, i, j), XVECEXP (y, i, j));
965
966 break;
967
968 case 'e':
969 merge_memattrs (XEXP (x, i), XEXP (y, i));
970 }
971 }
972 return;
973 }
974
975
976 /* Return true if I1 and I2 are equivalent and thus can be crossjumped. */
977
978 static bool
979 insns_match_p (int mode ATTRIBUTE_UNUSED, rtx i1, rtx i2)
980 {
981 rtx p1, p2;
982
983 /* Verify that I1 and I2 are equivalent. */
984 if (GET_CODE (i1) != GET_CODE (i2))
985 return false;
986
987 p1 = PATTERN (i1);
988 p2 = PATTERN (i2);
989
990 if (GET_CODE (p1) != GET_CODE (p2))
991 return false;
992
993 /* If this is a CALL_INSN, compare register usage information.
994 If we don't check this on stack register machines, the two
995 CALL_INSNs might be merged leaving reg-stack.c with mismatching
996 numbers of stack registers in the same basic block.
997 If we don't check this on machines with delay slots, a delay slot may
998 be filled that clobbers a parameter expected by the subroutine.
999
1000 ??? We take the simple route for now and assume that if they're
1001 equal, they were constructed identically. */
1002
1003 if (CALL_P (i1)
1004 && (!rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1),
1005 CALL_INSN_FUNCTION_USAGE (i2))
1006 || SIBLING_CALL_P (i1) != SIBLING_CALL_P (i2)))
1007 return false;
1008
1009 #ifdef STACK_REGS
1010 /* If cross_jump_death_matters is not 0, the insn's mode
1011 indicates whether or not the insn contains any stack-like
1012 regs. */
1013
1014 if ((mode & CLEANUP_POST_REGSTACK) && stack_regs_mentioned (i1))
1015 {
1016 /* If register stack conversion has already been done, then
1017 death notes must also be compared before it is certain that
1018 the two instruction streams match. */
1019
1020 rtx note;
1021 HARD_REG_SET i1_regset, i2_regset;
1022
1023 CLEAR_HARD_REG_SET (i1_regset);
1024 CLEAR_HARD_REG_SET (i2_regset);
1025
1026 for (note = REG_NOTES (i1); note; note = XEXP (note, 1))
1027 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
1028 SET_HARD_REG_BIT (i1_regset, REGNO (XEXP (note, 0)));
1029
1030 for (note = REG_NOTES (i2); note; note = XEXP (note, 1))
1031 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
1032 SET_HARD_REG_BIT (i2_regset, REGNO (XEXP (note, 0)));
1033
1034 GO_IF_HARD_REG_EQUAL (i1_regset, i2_regset, done);
1035
1036 return false;
1037
1038 done:
1039 ;
1040 }
1041 #endif
1042
1043 if (reload_completed
1044 ? rtx_renumbered_equal_p (p1, p2) : rtx_equal_p (p1, p2))
1045 return true;
1046
1047 /* Do not do EQUIV substitution after reload. First, we're undoing the
1048 work of reload_cse. Second, we may be undoing the work of the post-
1049 reload splitting pass. */
1050 /* ??? Possibly add a new phase switch variable that can be used by
1051 targets to disallow the troublesome insns after splitting. */
1052 if (!reload_completed)
1053 {
1054 /* The following code helps take care of G++ cleanups. */
1055 rtx equiv1 = find_reg_equal_equiv_note (i1);
1056 rtx equiv2 = find_reg_equal_equiv_note (i2);
1057
1058 if (equiv1 && equiv2
1059 /* If the equivalences are not to a constant, they may
1060 reference pseudos that no longer exist, so we can't
1061 use them. */
1062 && (! reload_completed
1063 || (CONSTANT_P (XEXP (equiv1, 0))
1064 && rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))))
1065 {
1066 rtx s1 = single_set (i1);
1067 rtx s2 = single_set (i2);
1068 if (s1 != 0 && s2 != 0
1069 && rtx_renumbered_equal_p (SET_DEST (s1), SET_DEST (s2)))
1070 {
1071 validate_change (i1, &SET_SRC (s1), XEXP (equiv1, 0), 1);
1072 validate_change (i2, &SET_SRC (s2), XEXP (equiv2, 0), 1);
1073 if (! rtx_renumbered_equal_p (p1, p2))
1074 cancel_changes (0);
1075 else if (apply_change_group ())
1076 return true;
1077 }
1078 }
1079 }
1080
1081 return false;
1082 }
1083 \f
1084 /* Look through the insns at the end of BB1 and BB2 and find the longest
1085 sequence that are equivalent. Store the first insns for that sequence
1086 in *F1 and *F2 and return the sequence length.
1087
1088 To simplify callers of this function, if the blocks match exactly,
1089 store the head of the blocks in *F1 and *F2. */
1090
1091 static int
1092 flow_find_cross_jump (int mode ATTRIBUTE_UNUSED, basic_block bb1,
1093 basic_block bb2, rtx *f1, rtx *f2)
1094 {
1095 rtx i1, i2, last1, last2, afterlast1, afterlast2;
1096 int ninsns = 0;
1097
1098 /* Skip simple jumps at the end of the blocks. Complex jumps still
1099 need to be compared for equivalence, which we'll do below. */
1100
1101 i1 = BB_END (bb1);
1102 last1 = afterlast1 = last2 = afterlast2 = NULL_RTX;
1103 if (onlyjump_p (i1)
1104 || (returnjump_p (i1) && !side_effects_p (PATTERN (i1))))
1105 {
1106 last1 = i1;
1107 i1 = PREV_INSN (i1);
1108 }
1109
1110 i2 = BB_END (bb2);
1111 if (onlyjump_p (i2)
1112 || (returnjump_p (i2) && !side_effects_p (PATTERN (i2))))
1113 {
1114 last2 = i2;
1115 /* Count everything except for unconditional jump as insn. */
1116 if (!simplejump_p (i2) && !returnjump_p (i2) && last1)
1117 ninsns++;
1118 i2 = PREV_INSN (i2);
1119 }
1120
1121 while (true)
1122 {
1123 /* Ignore notes. */
1124 while (!INSN_P (i1) && i1 != BB_HEAD (bb1))
1125 i1 = PREV_INSN (i1);
1126
1127 while (!INSN_P (i2) && i2 != BB_HEAD (bb2))
1128 i2 = PREV_INSN (i2);
1129
1130 if (i1 == BB_HEAD (bb1) || i2 == BB_HEAD (bb2))
1131 break;
1132
1133 if (!insns_match_p (mode, i1, i2))
1134 break;
1135
1136 merge_memattrs (i1, i2);
1137
1138 /* Don't begin a cross-jump with a NOTE insn. */
1139 if (INSN_P (i1))
1140 {
1141 /* If the merged insns have different REG_EQUAL notes, then
1142 remove them. */
1143 rtx equiv1 = find_reg_equal_equiv_note (i1);
1144 rtx equiv2 = find_reg_equal_equiv_note (i2);
1145
1146 if (equiv1 && !equiv2)
1147 remove_note (i1, equiv1);
1148 else if (!equiv1 && equiv2)
1149 remove_note (i2, equiv2);
1150 else if (equiv1 && equiv2
1151 && !rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))
1152 {
1153 remove_note (i1, equiv1);
1154 remove_note (i2, equiv2);
1155 }
1156
1157 afterlast1 = last1, afterlast2 = last2;
1158 last1 = i1, last2 = i2;
1159 ninsns++;
1160 }
1161
1162 i1 = PREV_INSN (i1);
1163 i2 = PREV_INSN (i2);
1164 }
1165
1166 #ifdef HAVE_cc0
1167 /* Don't allow the insn after a compare to be shared by
1168 cross-jumping unless the compare is also shared. */
1169 if (ninsns && reg_mentioned_p (cc0_rtx, last1) && ! sets_cc0_p (last1))
1170 last1 = afterlast1, last2 = afterlast2, ninsns--;
1171 #endif
1172
1173 /* Include preceding notes and labels in the cross-jump. One,
1174 this may bring us to the head of the blocks as requested above.
1175 Two, it keeps line number notes as matched as may be. */
1176 if (ninsns)
1177 {
1178 while (last1 != BB_HEAD (bb1) && !INSN_P (PREV_INSN (last1)))
1179 last1 = PREV_INSN (last1);
1180
1181 if (last1 != BB_HEAD (bb1) && LABEL_P (PREV_INSN (last1)))
1182 last1 = PREV_INSN (last1);
1183
1184 while (last2 != BB_HEAD (bb2) && !INSN_P (PREV_INSN (last2)))
1185 last2 = PREV_INSN (last2);
1186
1187 if (last2 != BB_HEAD (bb2) && LABEL_P (PREV_INSN (last2)))
1188 last2 = PREV_INSN (last2);
1189
1190 *f1 = last1;
1191 *f2 = last2;
1192 }
1193
1194 return ninsns;
1195 }
1196
1197 /* Return true iff outgoing edges of BB1 and BB2 match, together with
1198 the branch instruction. This means that if we commonize the control
1199 flow before end of the basic block, the semantic remains unchanged.
1200
1201 We may assume that there exists one edge with a common destination. */
1202
1203 static bool
1204 outgoing_edges_match (int mode, basic_block bb1, basic_block bb2)
1205 {
1206 int nehedges1 = 0, nehedges2 = 0;
1207 edge fallthru1 = 0, fallthru2 = 0;
1208 edge e1, e2;
1209 edge_iterator ei;
1210
1211 /* If BB1 has only one successor, we may be looking at either an
1212 unconditional jump, or a fake edge to exit. */
1213 if (single_succ_p (bb1)
1214 && (single_succ_edge (bb1)->flags & (EDGE_COMPLEX | EDGE_FAKE)) == 0
1215 && (!JUMP_P (BB_END (bb1)) || simplejump_p (BB_END (bb1))))
1216 return (single_succ_p (bb2)
1217 && (single_succ_edge (bb2)->flags
1218 & (EDGE_COMPLEX | EDGE_FAKE)) == 0
1219 && (!JUMP_P (BB_END (bb2)) || simplejump_p (BB_END (bb2))));
1220
1221 /* Match conditional jumps - this may get tricky when fallthru and branch
1222 edges are crossed. */
1223 if (EDGE_COUNT (bb1->succs) == 2
1224 && any_condjump_p (BB_END (bb1))
1225 && onlyjump_p (BB_END (bb1)))
1226 {
1227 edge b1, f1, b2, f2;
1228 bool reverse, match;
1229 rtx set1, set2, cond1, cond2;
1230 enum rtx_code code1, code2;
1231
1232 if (EDGE_COUNT (bb2->succs) != 2
1233 || !any_condjump_p (BB_END (bb2))
1234 || !onlyjump_p (BB_END (bb2)))
1235 return false;
1236
1237 b1 = BRANCH_EDGE (bb1);
1238 b2 = BRANCH_EDGE (bb2);
1239 f1 = FALLTHRU_EDGE (bb1);
1240 f2 = FALLTHRU_EDGE (bb2);
1241
1242 /* Get around possible forwarders on fallthru edges. Other cases
1243 should be optimized out already. */
1244 if (FORWARDER_BLOCK_P (f1->dest))
1245 f1 = single_succ_edge (f1->dest);
1246
1247 if (FORWARDER_BLOCK_P (f2->dest))
1248 f2 = single_succ_edge (f2->dest);
1249
1250 /* To simplify use of this function, return false if there are
1251 unneeded forwarder blocks. These will get eliminated later
1252 during cleanup_cfg. */
1253 if (FORWARDER_BLOCK_P (f1->dest)
1254 || FORWARDER_BLOCK_P (f2->dest)
1255 || FORWARDER_BLOCK_P (b1->dest)
1256 || FORWARDER_BLOCK_P (b2->dest))
1257 return false;
1258
1259 if (f1->dest == f2->dest && b1->dest == b2->dest)
1260 reverse = false;
1261 else if (f1->dest == b2->dest && b1->dest == f2->dest)
1262 reverse = true;
1263 else
1264 return false;
1265
1266 set1 = pc_set (BB_END (bb1));
1267 set2 = pc_set (BB_END (bb2));
1268 if ((XEXP (SET_SRC (set1), 1) == pc_rtx)
1269 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
1270 reverse = !reverse;
1271
1272 cond1 = XEXP (SET_SRC (set1), 0);
1273 cond2 = XEXP (SET_SRC (set2), 0);
1274 code1 = GET_CODE (cond1);
1275 if (reverse)
1276 code2 = reversed_comparison_code (cond2, BB_END (bb2));
1277 else
1278 code2 = GET_CODE (cond2);
1279
1280 if (code2 == UNKNOWN)
1281 return false;
1282
1283 /* Verify codes and operands match. */
1284 match = ((code1 == code2
1285 && rtx_renumbered_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
1286 && rtx_renumbered_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
1287 || (code1 == swap_condition (code2)
1288 && rtx_renumbered_equal_p (XEXP (cond1, 1),
1289 XEXP (cond2, 0))
1290 && rtx_renumbered_equal_p (XEXP (cond1, 0),
1291 XEXP (cond2, 1))));
1292
1293 /* If we return true, we will join the blocks. Which means that
1294 we will only have one branch prediction bit to work with. Thus
1295 we require the existing branches to have probabilities that are
1296 roughly similar. */
1297 if (match
1298 && !optimize_size
1299 && maybe_hot_bb_p (bb1)
1300 && maybe_hot_bb_p (bb2))
1301 {
1302 int prob2;
1303
1304 if (b1->dest == b2->dest)
1305 prob2 = b2->probability;
1306 else
1307 /* Do not use f2 probability as f2 may be forwarded. */
1308 prob2 = REG_BR_PROB_BASE - b2->probability;
1309
1310 /* Fail if the difference in probabilities is greater than 50%.
1311 This rules out two well-predicted branches with opposite
1312 outcomes. */
1313 if (abs (b1->probability - prob2) > REG_BR_PROB_BASE / 2)
1314 {
1315 if (dump_file)
1316 fprintf (dump_file,
1317 "Outcomes of branch in bb %i and %i differ too much (%i %i)\n",
1318 bb1->index, bb2->index, b1->probability, prob2);
1319
1320 return false;
1321 }
1322 }
1323
1324 if (dump_file && match)
1325 fprintf (dump_file, "Conditionals in bb %i and %i match.\n",
1326 bb1->index, bb2->index);
1327
1328 return match;
1329 }
1330
1331 /* Generic case - we are seeing a computed jump, table jump or trapping
1332 instruction. */
1333
1334 /* Check whether there are tablejumps in the end of BB1 and BB2.
1335 Return true if they are identical. */
1336 {
1337 rtx label1, label2;
1338 rtx table1, table2;
1339
1340 if (tablejump_p (BB_END (bb1), &label1, &table1)
1341 && tablejump_p (BB_END (bb2), &label2, &table2)
1342 && GET_CODE (PATTERN (table1)) == GET_CODE (PATTERN (table2)))
1343 {
1344 /* The labels should never be the same rtx. If they really are same
1345 the jump tables are same too. So disable crossjumping of blocks BB1
1346 and BB2 because when deleting the common insns in the end of BB1
1347 by delete_basic_block () the jump table would be deleted too. */
1348 /* If LABEL2 is referenced in BB1->END do not do anything
1349 because we would loose information when replacing
1350 LABEL1 by LABEL2 and then LABEL2 by LABEL1 in BB1->END. */
1351 if (label1 != label2 && !rtx_referenced_p (label2, BB_END (bb1)))
1352 {
1353 /* Set IDENTICAL to true when the tables are identical. */
1354 bool identical = false;
1355 rtx p1, p2;
1356
1357 p1 = PATTERN (table1);
1358 p2 = PATTERN (table2);
1359 if (GET_CODE (p1) == ADDR_VEC && rtx_equal_p (p1, p2))
1360 {
1361 identical = true;
1362 }
1363 else if (GET_CODE (p1) == ADDR_DIFF_VEC
1364 && (XVECLEN (p1, 1) == XVECLEN (p2, 1))
1365 && rtx_equal_p (XEXP (p1, 2), XEXP (p2, 2))
1366 && rtx_equal_p (XEXP (p1, 3), XEXP (p2, 3)))
1367 {
1368 int i;
1369
1370 identical = true;
1371 for (i = XVECLEN (p1, 1) - 1; i >= 0 && identical; i--)
1372 if (!rtx_equal_p (XVECEXP (p1, 1, i), XVECEXP (p2, 1, i)))
1373 identical = false;
1374 }
1375
1376 if (identical)
1377 {
1378 replace_label_data rr;
1379 bool match;
1380
1381 /* Temporarily replace references to LABEL1 with LABEL2
1382 in BB1->END so that we could compare the instructions. */
1383 rr.r1 = label1;
1384 rr.r2 = label2;
1385 rr.update_label_nuses = false;
1386 for_each_rtx (&BB_END (bb1), replace_label, &rr);
1387
1388 match = insns_match_p (mode, BB_END (bb1), BB_END (bb2));
1389 if (dump_file && match)
1390 fprintf (dump_file,
1391 "Tablejumps in bb %i and %i match.\n",
1392 bb1->index, bb2->index);
1393
1394 /* Set the original label in BB1->END because when deleting
1395 a block whose end is a tablejump, the tablejump referenced
1396 from the instruction is deleted too. */
1397 rr.r1 = label2;
1398 rr.r2 = label1;
1399 for_each_rtx (&BB_END (bb1), replace_label, &rr);
1400
1401 return match;
1402 }
1403 }
1404 return false;
1405 }
1406 }
1407
1408 /* First ensure that the instructions match. There may be many outgoing
1409 edges so this test is generally cheaper. */
1410 if (!insns_match_p (mode, BB_END (bb1), BB_END (bb2)))
1411 return false;
1412
1413 /* Search the outgoing edges, ensure that the counts do match, find possible
1414 fallthru and exception handling edges since these needs more
1415 validation. */
1416 if (EDGE_COUNT (bb1->succs) != EDGE_COUNT (bb2->succs))
1417 return false;
1418
1419 FOR_EACH_EDGE (e1, ei, bb1->succs)
1420 {
1421 e2 = EDGE_SUCC (bb2, ei.index);
1422
1423 if (e1->flags & EDGE_EH)
1424 nehedges1++;
1425
1426 if (e2->flags & EDGE_EH)
1427 nehedges2++;
1428
1429 if (e1->flags & EDGE_FALLTHRU)
1430 fallthru1 = e1;
1431 if (e2->flags & EDGE_FALLTHRU)
1432 fallthru2 = e2;
1433 }
1434
1435 /* If number of edges of various types does not match, fail. */
1436 if (nehedges1 != nehedges2
1437 || (fallthru1 != 0) != (fallthru2 != 0))
1438 return false;
1439
1440 /* fallthru edges must be forwarded to the same destination. */
1441 if (fallthru1)
1442 {
1443 basic_block d1 = (forwarder_block_p (fallthru1->dest)
1444 ? single_succ (fallthru1->dest): fallthru1->dest);
1445 basic_block d2 = (forwarder_block_p (fallthru2->dest)
1446 ? single_succ (fallthru2->dest): fallthru2->dest);
1447
1448 if (d1 != d2)
1449 return false;
1450 }
1451
1452 /* Ensure the same EH region. */
1453 {
1454 rtx n1 = find_reg_note (BB_END (bb1), REG_EH_REGION, 0);
1455 rtx n2 = find_reg_note (BB_END (bb2), REG_EH_REGION, 0);
1456
1457 if (!n1 && n2)
1458 return false;
1459
1460 if (n1 && (!n2 || XEXP (n1, 0) != XEXP (n2, 0)))
1461 return false;
1462 }
1463
1464 /* We don't need to match the rest of edges as above checks should be enough
1465 to ensure that they are equivalent. */
1466 return true;
1467 }
1468
1469 /* E1 and E2 are edges with the same destination block. Search their
1470 predecessors for common code. If found, redirect control flow from
1471 (maybe the middle of) E1->SRC to (maybe the middle of) E2->SRC. */
1472
1473 static bool
1474 try_crossjump_to_edge (int mode, edge e1, edge e2)
1475 {
1476 int nmatch;
1477 basic_block src1 = e1->src, src2 = e2->src;
1478 basic_block redirect_to, redirect_from, to_remove;
1479 rtx newpos1, newpos2;
1480 edge s;
1481 edge_iterator ei;
1482
1483 newpos1 = newpos2 = NULL_RTX;
1484
1485 /* If we have partitioned hot/cold basic blocks, it is a bad idea
1486 to try this optimization.
1487
1488 Basic block partitioning may result in some jumps that appear to
1489 be optimizable (or blocks that appear to be mergeable), but which really
1490 must be left untouched (they are required to make it safely across
1491 partition boundaries). See the comments at the top of
1492 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
1493
1494 if (flag_reorder_blocks_and_partition && no_new_pseudos)
1495 return false;
1496
1497 /* Search backward through forwarder blocks. We don't need to worry
1498 about multiple entry or chained forwarders, as they will be optimized
1499 away. We do this to look past the unconditional jump following a
1500 conditional jump that is required due to the current CFG shape. */
1501 if (single_pred_p (src1)
1502 && FORWARDER_BLOCK_P (src1))
1503 e1 = single_pred_edge (src1), src1 = e1->src;
1504
1505 if (single_pred_p (src2)
1506 && FORWARDER_BLOCK_P (src2))
1507 e2 = single_pred_edge (src2), src2 = e2->src;
1508
1509 /* Nothing to do if we reach ENTRY, or a common source block. */
1510 if (src1 == ENTRY_BLOCK_PTR || src2 == ENTRY_BLOCK_PTR)
1511 return false;
1512 if (src1 == src2)
1513 return false;
1514
1515 /* Seeing more than 1 forwarder blocks would confuse us later... */
1516 if (FORWARDER_BLOCK_P (e1->dest)
1517 && FORWARDER_BLOCK_P (single_succ (e1->dest)))
1518 return false;
1519
1520 if (FORWARDER_BLOCK_P (e2->dest)
1521 && FORWARDER_BLOCK_P (single_succ (e2->dest)))
1522 return false;
1523
1524 /* Likewise with dead code (possibly newly created by the other optimizations
1525 of cfg_cleanup). */
1526 if (EDGE_COUNT (src1->preds) == 0 || EDGE_COUNT (src2->preds) == 0)
1527 return false;
1528
1529 /* Look for the common insn sequence, part the first ... */
1530 if (!outgoing_edges_match (mode, src1, src2))
1531 return false;
1532
1533 /* ... and part the second. */
1534 nmatch = flow_find_cross_jump (mode, src1, src2, &newpos1, &newpos2);
1535
1536 /* Don't proceed with the crossjump unless we found a sufficient number
1537 of matching instructions or the 'from' block was totally matched
1538 (such that its predecessors will hopefully be redirected and the
1539 block removed). */
1540 if ((nmatch < PARAM_VALUE (PARAM_MIN_CROSSJUMP_INSNS))
1541 && (newpos1 != BB_HEAD (src1)))
1542 return false;
1543
1544 /* Here we know that the insns in the end of SRC1 which are common with SRC2
1545 will be deleted.
1546 If we have tablejumps in the end of SRC1 and SRC2
1547 they have been already compared for equivalence in outgoing_edges_match ()
1548 so replace the references to TABLE1 by references to TABLE2. */
1549 {
1550 rtx label1, label2;
1551 rtx table1, table2;
1552
1553 if (tablejump_p (BB_END (src1), &label1, &table1)
1554 && tablejump_p (BB_END (src2), &label2, &table2)
1555 && label1 != label2)
1556 {
1557 replace_label_data rr;
1558 rtx insn;
1559
1560 /* Replace references to LABEL1 with LABEL2. */
1561 rr.r1 = label1;
1562 rr.r2 = label2;
1563 rr.update_label_nuses = true;
1564 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1565 {
1566 /* Do not replace the label in SRC1->END because when deleting
1567 a block whose end is a tablejump, the tablejump referenced
1568 from the instruction is deleted too. */
1569 if (insn != BB_END (src1))
1570 for_each_rtx (&insn, replace_label, &rr);
1571 }
1572 }
1573 }
1574
1575 /* Avoid splitting if possible. */
1576 if (newpos2 == BB_HEAD (src2))
1577 redirect_to = src2;
1578 else
1579 {
1580 if (dump_file)
1581 fprintf (dump_file, "Splitting bb %i before %i insns\n",
1582 src2->index, nmatch);
1583 redirect_to = split_block (src2, PREV_INSN (newpos2))->dest;
1584 }
1585
1586 if (dump_file)
1587 fprintf (dump_file,
1588 "Cross jumping from bb %i to bb %i; %i common insns\n",
1589 src1->index, src2->index, nmatch);
1590
1591 redirect_to->count += src1->count;
1592 redirect_to->frequency += src1->frequency;
1593 /* We may have some registers visible trought the block. */
1594 redirect_to->flags |= BB_DIRTY;
1595
1596 /* Recompute the frequencies and counts of outgoing edges. */
1597 FOR_EACH_EDGE (s, ei, redirect_to->succs)
1598 {
1599 edge s2;
1600 edge_iterator ei;
1601 basic_block d = s->dest;
1602
1603 if (FORWARDER_BLOCK_P (d))
1604 d = single_succ (d);
1605
1606 FOR_EACH_EDGE (s2, ei, src1->succs)
1607 {
1608 basic_block d2 = s2->dest;
1609 if (FORWARDER_BLOCK_P (d2))
1610 d2 = single_succ (d2);
1611 if (d == d2)
1612 break;
1613 }
1614
1615 s->count += s2->count;
1616
1617 /* Take care to update possible forwarder blocks. We verified
1618 that there is no more than one in the chain, so we can't run
1619 into infinite loop. */
1620 if (FORWARDER_BLOCK_P (s->dest))
1621 {
1622 single_succ_edge (s->dest)->count += s2->count;
1623 s->dest->count += s2->count;
1624 s->dest->frequency += EDGE_FREQUENCY (s);
1625 }
1626
1627 if (FORWARDER_BLOCK_P (s2->dest))
1628 {
1629 single_succ_edge (s2->dest)->count -= s2->count;
1630 if (single_succ_edge (s2->dest)->count < 0)
1631 single_succ_edge (s2->dest)->count = 0;
1632 s2->dest->count -= s2->count;
1633 s2->dest->frequency -= EDGE_FREQUENCY (s);
1634 if (s2->dest->frequency < 0)
1635 s2->dest->frequency = 0;
1636 if (s2->dest->count < 0)
1637 s2->dest->count = 0;
1638 }
1639
1640 if (!redirect_to->frequency && !src1->frequency)
1641 s->probability = (s->probability + s2->probability) / 2;
1642 else
1643 s->probability
1644 = ((s->probability * redirect_to->frequency +
1645 s2->probability * src1->frequency)
1646 / (redirect_to->frequency + src1->frequency));
1647 }
1648
1649 update_br_prob_note (redirect_to);
1650
1651 /* Edit SRC1 to go to REDIRECT_TO at NEWPOS1. */
1652
1653 /* Skip possible basic block header. */
1654 if (LABEL_P (newpos1))
1655 newpos1 = NEXT_INSN (newpos1);
1656
1657 if (NOTE_P (newpos1))
1658 newpos1 = NEXT_INSN (newpos1);
1659
1660 redirect_from = split_block (src1, PREV_INSN (newpos1))->src;
1661 to_remove = single_succ (redirect_from);
1662
1663 redirect_edge_and_branch_force (single_succ_edge (redirect_from), redirect_to);
1664 delete_basic_block (to_remove);
1665
1666 update_forwarder_flag (redirect_from);
1667 if (redirect_to != src2)
1668 update_forwarder_flag (src2);
1669
1670 return true;
1671 }
1672
1673 /* Search the predecessors of BB for common insn sequences. When found,
1674 share code between them by redirecting control flow. Return true if
1675 any changes made. */
1676
1677 static bool
1678 try_crossjump_bb (int mode, basic_block bb)
1679 {
1680 edge e, e2, fallthru;
1681 bool changed;
1682 unsigned max, ix, ix2;
1683 basic_block ev, ev2;
1684 edge_iterator ei;
1685
1686 /* Nothing to do if there is not at least two incoming edges. */
1687 if (EDGE_COUNT (bb->preds) < 2)
1688 return false;
1689
1690 /* Don't crossjump if this block ends in a computed jump,
1691 unless we are optimizing for size. */
1692 if (!optimize_size
1693 && bb != EXIT_BLOCK_PTR
1694 && computed_jump_p (BB_END (bb)))
1695 return false;
1696
1697 /* If we are partitioning hot/cold basic blocks, we don't want to
1698 mess up unconditional or indirect jumps that cross between hot
1699 and cold sections.
1700
1701 Basic block partitioning may result in some jumps that appear to
1702 be optimizable (or blocks that appear to be mergeable), but which really
1703 must be left untouched (they are required to make it safely across
1704 partition boundaries). See the comments at the top of
1705 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
1706
1707 if (BB_PARTITION (EDGE_PRED (bb, 0)->src) !=
1708 BB_PARTITION (EDGE_PRED (bb, 1)->src)
1709 || (EDGE_PRED (bb, 0)->flags & EDGE_CROSSING))
1710 return false;
1711
1712 /* It is always cheapest to redirect a block that ends in a branch to
1713 a block that falls through into BB, as that adds no branches to the
1714 program. We'll try that combination first. */
1715 fallthru = NULL;
1716 max = PARAM_VALUE (PARAM_MAX_CROSSJUMP_EDGES);
1717
1718 if (EDGE_COUNT (bb->preds) > max)
1719 return false;
1720
1721 FOR_EACH_EDGE (e, ei, bb->preds)
1722 {
1723 if (e->flags & EDGE_FALLTHRU)
1724 fallthru = e;
1725 }
1726
1727 changed = false;
1728 for (ix = 0, ev = bb; ix < EDGE_COUNT (ev->preds); )
1729 {
1730 e = EDGE_PRED (ev, ix);
1731 ix++;
1732
1733 /* As noted above, first try with the fallthru predecessor. */
1734 if (fallthru)
1735 {
1736 /* Don't combine the fallthru edge into anything else.
1737 If there is a match, we'll do it the other way around. */
1738 if (e == fallthru)
1739 continue;
1740 /* If nothing changed since the last attempt, there is nothing
1741 we can do. */
1742 if (!first_pass
1743 && (!(e->src->flags & BB_DIRTY)
1744 && !(fallthru->src->flags & BB_DIRTY)))
1745 continue;
1746
1747 if (try_crossjump_to_edge (mode, e, fallthru))
1748 {
1749 changed = true;
1750 ix = 0;
1751 ev = bb;
1752 continue;
1753 }
1754 }
1755
1756 /* Non-obvious work limiting check: Recognize that we're going
1757 to call try_crossjump_bb on every basic block. So if we have
1758 two blocks with lots of outgoing edges (a switch) and they
1759 share lots of common destinations, then we would do the
1760 cross-jump check once for each common destination.
1761
1762 Now, if the blocks actually are cross-jump candidates, then
1763 all of their destinations will be shared. Which means that
1764 we only need check them for cross-jump candidacy once. We
1765 can eliminate redundant checks of crossjump(A,B) by arbitrarily
1766 choosing to do the check from the block for which the edge
1767 in question is the first successor of A. */
1768 if (EDGE_SUCC (e->src, 0) != e)
1769 continue;
1770
1771 for (ix2 = 0, ev2 = bb; ix2 < EDGE_COUNT (ev2->preds); )
1772 {
1773 e2 = EDGE_PRED (ev2, ix2);
1774 ix2++;
1775
1776 if (e2 == e)
1777 continue;
1778
1779 /* We've already checked the fallthru edge above. */
1780 if (e2 == fallthru)
1781 continue;
1782
1783 /* The "first successor" check above only prevents multiple
1784 checks of crossjump(A,B). In order to prevent redundant
1785 checks of crossjump(B,A), require that A be the block
1786 with the lowest index. */
1787 if (e->src->index > e2->src->index)
1788 continue;
1789
1790 /* If nothing changed since the last attempt, there is nothing
1791 we can do. */
1792 if (!first_pass
1793 && (!(e->src->flags & BB_DIRTY)
1794 && !(e2->src->flags & BB_DIRTY)))
1795 continue;
1796
1797 if (try_crossjump_to_edge (mode, e, e2))
1798 {
1799 changed = true;
1800 ev2 = bb;
1801 ix = 0;
1802 break;
1803 }
1804 }
1805 }
1806
1807 return changed;
1808 }
1809
1810 /* Do simple CFG optimizations - basic block merging, simplifying of jump
1811 instructions etc. Return nonzero if changes were made. */
1812
1813 static bool
1814 try_optimize_cfg (int mode)
1815 {
1816 bool changed_overall = false;
1817 bool changed;
1818 int iterations = 0;
1819 basic_block bb, b, next;
1820
1821 if (mode & CLEANUP_CROSSJUMP)
1822 add_noreturn_fake_exit_edges ();
1823
1824 if (mode & (CLEANUP_UPDATE_LIFE | CLEANUP_CROSSJUMP | CLEANUP_THREADING))
1825 clear_bb_flags ();
1826
1827 FOR_EACH_BB (bb)
1828 update_forwarder_flag (bb);
1829
1830 if (! targetm.cannot_modify_jumps_p ())
1831 {
1832 first_pass = true;
1833 /* Attempt to merge blocks as made possible by edge removal. If
1834 a block has only one successor, and the successor has only
1835 one predecessor, they may be combined. */
1836 do
1837 {
1838 changed = false;
1839 iterations++;
1840
1841 if (dump_file)
1842 fprintf (dump_file,
1843 "\n\ntry_optimize_cfg iteration %i\n\n",
1844 iterations);
1845
1846 for (b = ENTRY_BLOCK_PTR->next_bb; b != EXIT_BLOCK_PTR;)
1847 {
1848 basic_block c;
1849 edge s;
1850 bool changed_here = false;
1851
1852 /* Delete trivially dead basic blocks. */
1853 while (EDGE_COUNT (b->preds) == 0)
1854 {
1855 c = b->prev_bb;
1856 if (dump_file)
1857 fprintf (dump_file, "Deleting block %i.\n",
1858 b->index);
1859
1860 delete_basic_block (b);
1861 if (!(mode & CLEANUP_CFGLAYOUT))
1862 changed = true;
1863 b = c;
1864 }
1865
1866 /* Remove code labels no longer used. */
1867 if (single_pred_p (b)
1868 && (single_pred_edge (b)->flags & EDGE_FALLTHRU)
1869 && !(single_pred_edge (b)->flags & EDGE_COMPLEX)
1870 && LABEL_P (BB_HEAD (b))
1871 /* If the previous block ends with a branch to this
1872 block, we can't delete the label. Normally this
1873 is a condjump that is yet to be simplified, but
1874 if CASE_DROPS_THRU, this can be a tablejump with
1875 some element going to the same place as the
1876 default (fallthru). */
1877 && (single_pred (b) == ENTRY_BLOCK_PTR
1878 || !JUMP_P (BB_END (single_pred (b)))
1879 || ! label_is_jump_target_p (BB_HEAD (b),
1880 BB_END (single_pred (b)))))
1881 {
1882 rtx label = BB_HEAD (b);
1883
1884 delete_insn_chain (label, label);
1885 /* In the case label is undeletable, move it after the
1886 BASIC_BLOCK note. */
1887 if (NOTE_LINE_NUMBER (BB_HEAD (b)) == NOTE_INSN_DELETED_LABEL)
1888 {
1889 rtx bb_note = NEXT_INSN (BB_HEAD (b));
1890
1891 reorder_insns_nobb (label, label, bb_note);
1892 BB_HEAD (b) = bb_note;
1893 }
1894 if (dump_file)
1895 fprintf (dump_file, "Deleted label in block %i.\n",
1896 b->index);
1897 }
1898
1899 /* If we fall through an empty block, we can remove it. */
1900 if (!(mode & CLEANUP_CFGLAYOUT)
1901 && single_pred_p (b)
1902 && (single_pred_edge (b)->flags & EDGE_FALLTHRU)
1903 && !LABEL_P (BB_HEAD (b))
1904 && FORWARDER_BLOCK_P (b)
1905 /* Note that forwarder_block_p true ensures that
1906 there is a successor for this block. */
1907 && (single_succ_edge (b)->flags & EDGE_FALLTHRU)
1908 && n_basic_blocks > 1)
1909 {
1910 if (dump_file)
1911 fprintf (dump_file,
1912 "Deleting fallthru block %i.\n",
1913 b->index);
1914
1915 c = b->prev_bb == ENTRY_BLOCK_PTR ? b->next_bb : b->prev_bb;
1916 redirect_edge_succ_nodup (single_pred_edge (b),
1917 single_succ (b));
1918 delete_basic_block (b);
1919 changed = true;
1920 b = c;
1921 }
1922
1923 if (single_succ_p (b)
1924 && (s = single_succ_edge (b))
1925 && !(s->flags & EDGE_COMPLEX)
1926 && (c = s->dest) != EXIT_BLOCK_PTR
1927 && single_pred_p (c)
1928 && b != c)
1929 {
1930 /* When not in cfg_layout mode use code aware of reordering
1931 INSN. This code possibly creates new basic blocks so it
1932 does not fit merge_blocks interface and is kept here in
1933 hope that it will become useless once more of compiler
1934 is transformed to use cfg_layout mode. */
1935
1936 if ((mode & CLEANUP_CFGLAYOUT)
1937 && can_merge_blocks_p (b, c))
1938 {
1939 merge_blocks (b, c);
1940 update_forwarder_flag (b);
1941 changed_here = true;
1942 }
1943 else if (!(mode & CLEANUP_CFGLAYOUT)
1944 /* If the jump insn has side effects,
1945 we can't kill the edge. */
1946 && (!JUMP_P (BB_END (b))
1947 || (reload_completed
1948 ? simplejump_p (BB_END (b))
1949 : (onlyjump_p (BB_END (b))
1950 && !tablejump_p (BB_END (b),
1951 NULL, NULL))))
1952 && (next = merge_blocks_move (s, b, c, mode)))
1953 {
1954 b = next;
1955 changed_here = true;
1956 }
1957 }
1958
1959 /* Simplify branch over branch. */
1960 if ((mode & CLEANUP_EXPENSIVE)
1961 && !(mode & CLEANUP_CFGLAYOUT)
1962 && try_simplify_condjump (b))
1963 changed_here = true;
1964
1965 /* If B has a single outgoing edge, but uses a
1966 non-trivial jump instruction without side-effects, we
1967 can either delete the jump entirely, or replace it
1968 with a simple unconditional jump. */
1969 if (single_succ_p (b)
1970 && single_succ (b) != EXIT_BLOCK_PTR
1971 && onlyjump_p (BB_END (b))
1972 && !find_reg_note (BB_END (b), REG_CROSSING_JUMP, NULL_RTX)
1973 && try_redirect_by_replacing_jump (single_succ_edge (b),
1974 single_succ (b),
1975 (mode & CLEANUP_CFGLAYOUT) != 0))
1976 {
1977 update_forwarder_flag (b);
1978 changed_here = true;
1979 }
1980
1981 /* Simplify branch to branch. */
1982 if (try_forward_edges (mode, b))
1983 changed_here = true;
1984
1985 /* Look for shared code between blocks. */
1986 if ((mode & CLEANUP_CROSSJUMP)
1987 && try_crossjump_bb (mode, b))
1988 changed_here = true;
1989
1990 /* Don't get confused by the index shift caused by
1991 deleting blocks. */
1992 if (!changed_here)
1993 b = b->next_bb;
1994 else
1995 changed = true;
1996 }
1997
1998 if ((mode & CLEANUP_CROSSJUMP)
1999 && try_crossjump_bb (mode, EXIT_BLOCK_PTR))
2000 changed = true;
2001
2002 #ifdef ENABLE_CHECKING
2003 if (changed)
2004 verify_flow_info ();
2005 #endif
2006
2007 changed_overall |= changed;
2008 first_pass = false;
2009 }
2010 while (changed);
2011 }
2012
2013 if (mode & CLEANUP_CROSSJUMP)
2014 remove_fake_exit_edges ();
2015
2016 FOR_ALL_BB (b)
2017 b->flags &= ~(BB_FORWARDER_BLOCK | BB_NONTHREADABLE_BLOCK);
2018
2019 return changed_overall;
2020 }
2021 \f
2022 /* Delete all unreachable basic blocks. */
2023
2024 bool
2025 delete_unreachable_blocks (void)
2026 {
2027 bool changed = false;
2028 basic_block b, next_bb;
2029
2030 find_unreachable_blocks ();
2031
2032 /* Delete all unreachable basic blocks. */
2033
2034 for (b = ENTRY_BLOCK_PTR->next_bb; b != EXIT_BLOCK_PTR; b = next_bb)
2035 {
2036 next_bb = b->next_bb;
2037
2038 if (!(b->flags & BB_REACHABLE))
2039 {
2040 delete_basic_block (b);
2041 changed = true;
2042 }
2043 }
2044
2045 if (changed)
2046 tidy_fallthru_edges ();
2047 return changed;
2048 }
2049
2050 /* Merges sequential blocks if possible. */
2051
2052 bool
2053 merge_seq_blocks (void)
2054 {
2055 basic_block bb;
2056 bool changed = false;
2057
2058 for (bb = ENTRY_BLOCK_PTR->next_bb; bb != EXIT_BLOCK_PTR; )
2059 {
2060 if (single_succ_p (bb)
2061 && can_merge_blocks_p (bb, single_succ (bb)))
2062 {
2063 /* Merge the blocks and retry. */
2064 merge_blocks (bb, single_succ (bb));
2065 changed = true;
2066 continue;
2067 }
2068
2069 bb = bb->next_bb;
2070 }
2071
2072 return changed;
2073 }
2074 \f
2075 /* Tidy the CFG by deleting unreachable code and whatnot. */
2076
2077 bool
2078 cleanup_cfg (int mode)
2079 {
2080 bool changed = false;
2081
2082 timevar_push (TV_CLEANUP_CFG);
2083 if (delete_unreachable_blocks ())
2084 {
2085 changed = true;
2086 /* We've possibly created trivially dead code. Cleanup it right
2087 now to introduce more opportunities for try_optimize_cfg. */
2088 if (!(mode & (CLEANUP_NO_INSN_DEL | CLEANUP_UPDATE_LIFE))
2089 && !reload_completed)
2090 delete_trivially_dead_insns (get_insns(), max_reg_num ());
2091 }
2092
2093 compact_blocks ();
2094
2095 while (try_optimize_cfg (mode))
2096 {
2097 delete_unreachable_blocks (), changed = true;
2098 if (mode & CLEANUP_UPDATE_LIFE)
2099 {
2100 /* Cleaning up CFG introduces more opportunities for dead code
2101 removal that in turn may introduce more opportunities for
2102 cleaning up the CFG. */
2103 if (!update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
2104 PROP_DEATH_NOTES
2105 | PROP_SCAN_DEAD_CODE
2106 | PROP_KILL_DEAD_CODE
2107 | ((mode & CLEANUP_LOG_LINKS)
2108 ? PROP_LOG_LINKS : 0)))
2109 break;
2110 }
2111 else if (!(mode & CLEANUP_NO_INSN_DEL)
2112 && (mode & CLEANUP_EXPENSIVE)
2113 && !reload_completed)
2114 {
2115 if (!delete_trivially_dead_insns (get_insns(), max_reg_num ()))
2116 break;
2117 }
2118 else
2119 break;
2120 delete_dead_jumptables ();
2121 }
2122
2123 timevar_pop (TV_CLEANUP_CFG);
2124
2125 return changed;
2126 }
2127 \f
2128 static void
2129 rest_of_handle_jump (void)
2130 {
2131 delete_unreachable_blocks ();
2132
2133 if (cfun->tail_call_emit)
2134 fixup_tail_calls ();
2135 }
2136
2137 struct tree_opt_pass pass_jump =
2138 {
2139 "sibling", /* name */
2140 NULL, /* gate */
2141 rest_of_handle_jump, /* execute */
2142 NULL, /* sub */
2143 NULL, /* next */
2144 0, /* static_pass_number */
2145 TV_JUMP, /* tv_id */
2146 0, /* properties_required */
2147 0, /* properties_provided */
2148 0, /* properties_destroyed */
2149 TODO_ggc_collect, /* todo_flags_start */
2150 TODO_dump_func |
2151 TODO_verify_flow, /* todo_flags_finish */
2152 'i' /* letter */
2153 };
2154
2155
2156 static void
2157 rest_of_handle_jump2 (void)
2158 {
2159 /* Turn NOTE_INSN_EXPECTED_VALUE into REG_BR_PROB. Do this
2160 before jump optimization switches branch directions. */
2161 if (flag_guess_branch_prob)
2162 expected_value_to_br_prob ();
2163
2164 delete_trivially_dead_insns (get_insns (), max_reg_num ());
2165 reg_scan (get_insns (), max_reg_num ());
2166 if (dump_file)
2167 dump_flow_info (dump_file);
2168 cleanup_cfg ((optimize ? CLEANUP_EXPENSIVE : 0) | CLEANUP_PRE_LOOP
2169 | (flag_thread_jumps ? CLEANUP_THREADING : 0));
2170
2171 create_loop_notes ();
2172
2173 purge_line_number_notes ();
2174
2175 if (optimize)
2176 cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_PRE_LOOP);
2177
2178 /* Jump optimization, and the removal of NULL pointer checks, may
2179 have reduced the number of instructions substantially. CSE, and
2180 future passes, allocate arrays whose dimensions involve the
2181 maximum instruction UID, so if we can reduce the maximum UID
2182 we'll save big on memory. */
2183 renumber_insns (dump_file);
2184 }
2185
2186
2187 struct tree_opt_pass pass_jump2 =
2188 {
2189 "jump", /* name */
2190 NULL, /* gate */
2191 rest_of_handle_jump2, /* execute */
2192 NULL, /* sub */
2193 NULL, /* next */
2194 0, /* static_pass_number */
2195 TV_JUMP, /* tv_id */
2196 0, /* properties_required */
2197 0, /* properties_provided */
2198 0, /* properties_destroyed */
2199 TODO_ggc_collect, /* todo_flags_start */
2200 TODO_dump_func, /* todo_flags_finish */
2201 'j' /* letter */
2202 };
2203
2204