cfgcleanup.c (outgoing_edges_match): Compare the jump tables.
[gcc.git] / gcc / cfgcleanup.c
1 /* Control flow optimization code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains optimizer of the control flow. The main entrypoint is
23 cleanup_cfg. Following optimizations are performed:
24
25 - Unreachable blocks removal
26 - Edge forwarding (edge to the forwarder block is forwarded to it's
27 successor. Simplification of the branch instruction is performed by
28 underlying infrastructure so branch can be converted to simplejump or
29 eliminated).
30 - Cross jumping (tail merging)
31 - Conditional jump-around-simplejump simplification
32 - Basic block merging. */
33
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "rtl.h"
39 #include "hard-reg-set.h"
40 #include "basic-block.h"
41 #include "timevar.h"
42 #include "output.h"
43 #include "insn-config.h"
44 #include "flags.h"
45 #include "recog.h"
46 #include "toplev.h"
47 #include "cselib.h"
48 #include "params.h"
49 #include "tm_p.h"
50 #include "target.h"
51
52 /* cleanup_cfg maintains following flags for each basic block. */
53
54 enum bb_flags
55 {
56 /* Set if BB is the forwarder block to avoid too many
57 forwarder_block_p calls. */
58 BB_FORWARDER_BLOCK = 1,
59 BB_NONTHREADABLE_BLOCK = 2
60 };
61
62 #define BB_FLAGS(BB) (enum bb_flags) (BB)->aux
63 #define BB_SET_FLAG(BB, FLAG) \
64 (BB)->aux = (void *) (long) ((enum bb_flags) (BB)->aux | (FLAG))
65 #define BB_CLEAR_FLAG(BB, FLAG) \
66 (BB)->aux = (void *) (long) ((enum bb_flags) (BB)->aux & ~(FLAG))
67
68 #define FORWARDER_BLOCK_P(BB) (BB_FLAGS (BB) & BB_FORWARDER_BLOCK)
69
70 static bool try_crossjump_to_edge PARAMS ((int, edge, edge));
71 static bool try_crossjump_bb PARAMS ((int, basic_block));
72 static bool outgoing_edges_match PARAMS ((int,
73 basic_block, basic_block));
74 static int flow_find_cross_jump PARAMS ((int, basic_block, basic_block,
75 rtx *, rtx *));
76 static bool insns_match_p PARAMS ((int, rtx, rtx));
77
78 static bool label_is_jump_target_p PARAMS ((rtx, rtx));
79 static bool tail_recursion_label_p PARAMS ((rtx));
80 static void merge_blocks_move_predecessor_nojumps PARAMS ((basic_block,
81 basic_block));
82 static void merge_blocks_move_successor_nojumps PARAMS ((basic_block,
83 basic_block));
84 static basic_block merge_blocks PARAMS ((edge,basic_block,basic_block,
85 int));
86 static bool try_optimize_cfg PARAMS ((int));
87 static bool try_simplify_condjump PARAMS ((basic_block));
88 static bool try_forward_edges PARAMS ((int, basic_block));
89 static edge thread_jump PARAMS ((int, edge, basic_block));
90 static bool mark_effect PARAMS ((rtx, bitmap));
91 static void notice_new_block PARAMS ((basic_block));
92 static void update_forwarder_flag PARAMS ((basic_block));
93 static int mentions_nonequal_regs PARAMS ((rtx *, void *));
94 \f
95 /* Set flags for newly created block. */
96
97 static void
98 notice_new_block (bb)
99 basic_block bb;
100 {
101 if (!bb)
102 return;
103
104 if (forwarder_block_p (bb))
105 BB_SET_FLAG (bb, BB_FORWARDER_BLOCK);
106 }
107
108 /* Recompute forwarder flag after block has been modified. */
109
110 static void
111 update_forwarder_flag (bb)
112 basic_block bb;
113 {
114 if (forwarder_block_p (bb))
115 BB_SET_FLAG (bb, BB_FORWARDER_BLOCK);
116 else
117 BB_CLEAR_FLAG (bb, BB_FORWARDER_BLOCK);
118 }
119 \f
120 /* Simplify a conditional jump around an unconditional jump.
121 Return true if something changed. */
122
123 static bool
124 try_simplify_condjump (cbranch_block)
125 basic_block cbranch_block;
126 {
127 basic_block jump_block, jump_dest_block, cbranch_dest_block;
128 edge cbranch_jump_edge, cbranch_fallthru_edge;
129 rtx cbranch_insn;
130
131 /* Verify that there are exactly two successors. */
132 if (!cbranch_block->succ
133 || !cbranch_block->succ->succ_next
134 || cbranch_block->succ->succ_next->succ_next)
135 return false;
136
137 /* Verify that we've got a normal conditional branch at the end
138 of the block. */
139 cbranch_insn = cbranch_block->end;
140 if (!any_condjump_p (cbranch_insn))
141 return false;
142
143 cbranch_fallthru_edge = FALLTHRU_EDGE (cbranch_block);
144 cbranch_jump_edge = BRANCH_EDGE (cbranch_block);
145
146 /* The next block must not have multiple predecessors, must not
147 be the last block in the function, and must contain just the
148 unconditional jump. */
149 jump_block = cbranch_fallthru_edge->dest;
150 if (jump_block->pred->pred_next
151 || jump_block->next_bb == EXIT_BLOCK_PTR
152 || !FORWARDER_BLOCK_P (jump_block))
153 return false;
154 jump_dest_block = jump_block->succ->dest;
155
156 /* The conditional branch must target the block after the
157 unconditional branch. */
158 cbranch_dest_block = cbranch_jump_edge->dest;
159
160 if (!can_fallthru (jump_block, cbranch_dest_block))
161 return false;
162
163 /* Invert the conditional branch. */
164 if (!invert_jump (cbranch_insn, block_label (jump_dest_block), 0))
165 return false;
166
167 if (rtl_dump_file)
168 fprintf (rtl_dump_file, "Simplifying condjump %i around jump %i\n",
169 INSN_UID (cbranch_insn), INSN_UID (jump_block->end));
170
171 /* Success. Update the CFG to match. Note that after this point
172 the edge variable names appear backwards; the redirection is done
173 this way to preserve edge profile data. */
174 cbranch_jump_edge = redirect_edge_succ_nodup (cbranch_jump_edge,
175 cbranch_dest_block);
176 cbranch_fallthru_edge = redirect_edge_succ_nodup (cbranch_fallthru_edge,
177 jump_dest_block);
178 cbranch_jump_edge->flags |= EDGE_FALLTHRU;
179 cbranch_fallthru_edge->flags &= ~EDGE_FALLTHRU;
180 update_br_prob_note (cbranch_block);
181
182 /* Delete the block with the unconditional jump, and clean up the mess. */
183 flow_delete_block (jump_block);
184 tidy_fallthru_edge (cbranch_jump_edge, cbranch_block, cbranch_dest_block);
185
186 return true;
187 }
188 \f
189 /* Attempt to prove that operation is NOOP using CSElib or mark the effect
190 on register. Used by jump threading. */
191
192 static bool
193 mark_effect (exp, nonequal)
194 rtx exp;
195 regset nonequal;
196 {
197 int regno;
198 rtx dest;
199 switch (GET_CODE (exp))
200 {
201 /* In case we do clobber the register, mark it as equal, as we know the
202 value is dead so it don't have to match. */
203 case CLOBBER:
204 if (REG_P (XEXP (exp, 0)))
205 {
206 dest = XEXP (exp, 0);
207 regno = REGNO (dest);
208 CLEAR_REGNO_REG_SET (nonequal, regno);
209 if (regno < FIRST_PSEUDO_REGISTER)
210 {
211 int n = HARD_REGNO_NREGS (regno, GET_MODE (dest));
212 while (--n > 0)
213 CLEAR_REGNO_REG_SET (nonequal, regno + n);
214 }
215 }
216 return false;
217
218 case SET:
219 if (rtx_equal_for_cselib_p (SET_DEST (exp), SET_SRC (exp)))
220 return false;
221 dest = SET_DEST (exp);
222 if (dest == pc_rtx)
223 return false;
224 if (!REG_P (dest))
225 return true;
226 regno = REGNO (dest);
227 SET_REGNO_REG_SET (nonequal, regno);
228 if (regno < FIRST_PSEUDO_REGISTER)
229 {
230 int n = HARD_REGNO_NREGS (regno, GET_MODE (dest));
231 while (--n > 0)
232 SET_REGNO_REG_SET (nonequal, regno + n);
233 }
234 return false;
235
236 default:
237 return false;
238 }
239 }
240
241 /* Return nonzero if X is an register set in regset DATA.
242 Called via for_each_rtx. */
243 static int
244 mentions_nonequal_regs (x, data)
245 rtx *x;
246 void *data;
247 {
248 regset nonequal = (regset) data;
249 if (REG_P (*x))
250 {
251 int regno;
252
253 regno = REGNO (*x);
254 if (REGNO_REG_SET_P (nonequal, regno))
255 return 1;
256 if (regno < FIRST_PSEUDO_REGISTER)
257 {
258 int n = HARD_REGNO_NREGS (regno, GET_MODE (*x));
259 while (--n > 0)
260 if (REGNO_REG_SET_P (nonequal, regno + n))
261 return 1;
262 }
263 }
264 return 0;
265 }
266 /* Attempt to prove that the basic block B will have no side effects and
267 always continues in the same edge if reached via E. Return the edge
268 if exist, NULL otherwise. */
269
270 static edge
271 thread_jump (mode, e, b)
272 int mode;
273 edge e;
274 basic_block b;
275 {
276 rtx set1, set2, cond1, cond2, insn;
277 enum rtx_code code1, code2, reversed_code2;
278 bool reverse1 = false;
279 int i;
280 regset nonequal;
281 bool failed = false;
282
283 if (BB_FLAGS (b) & BB_NONTHREADABLE_BLOCK)
284 return NULL;
285
286 /* At the moment, we do handle only conditional jumps, but later we may
287 want to extend this code to tablejumps and others. */
288 if (!e->src->succ->succ_next || e->src->succ->succ_next->succ_next)
289 return NULL;
290 if (!b->succ || !b->succ->succ_next || b->succ->succ_next->succ_next)
291 {
292 BB_SET_FLAG (b, BB_NONTHREADABLE_BLOCK);
293 return NULL;
294 }
295
296 /* Second branch must end with onlyjump, as we will eliminate the jump. */
297 if (!any_condjump_p (e->src->end))
298 return NULL;
299
300 if (!any_condjump_p (b->end) || !onlyjump_p (b->end))
301 {
302 BB_SET_FLAG (b, BB_NONTHREADABLE_BLOCK);
303 return NULL;
304 }
305
306 set1 = pc_set (e->src->end);
307 set2 = pc_set (b->end);
308 if (((e->flags & EDGE_FALLTHRU) != 0)
309 != (XEXP (SET_SRC (set1), 1) == pc_rtx))
310 reverse1 = true;
311
312 cond1 = XEXP (SET_SRC (set1), 0);
313 cond2 = XEXP (SET_SRC (set2), 0);
314 if (reverse1)
315 code1 = reversed_comparison_code (cond1, e->src->end);
316 else
317 code1 = GET_CODE (cond1);
318
319 code2 = GET_CODE (cond2);
320 reversed_code2 = reversed_comparison_code (cond2, b->end);
321
322 if (!comparison_dominates_p (code1, code2)
323 && !comparison_dominates_p (code1, reversed_code2))
324 return NULL;
325
326 /* Ensure that the comparison operators are equivalent.
327 ??? This is far too pessimistic. We should allow swapped operands,
328 different CCmodes, or for example comparisons for interval, that
329 dominate even when operands are not equivalent. */
330 if (!rtx_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
331 || !rtx_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
332 return NULL;
333
334 /* Short circuit cases where block B contains some side effects, as we can't
335 safely bypass it. */
336 for (insn = NEXT_INSN (b->head); insn != NEXT_INSN (b->end);
337 insn = NEXT_INSN (insn))
338 if (INSN_P (insn) && side_effects_p (PATTERN (insn)))
339 {
340 BB_SET_FLAG (b, BB_NONTHREADABLE_BLOCK);
341 return NULL;
342 }
343
344 cselib_init ();
345
346 /* First process all values computed in the source basic block. */
347 for (insn = NEXT_INSN (e->src->head); insn != NEXT_INSN (e->src->end);
348 insn = NEXT_INSN (insn))
349 if (INSN_P (insn))
350 cselib_process_insn (insn);
351
352 nonequal = BITMAP_XMALLOC();
353 CLEAR_REG_SET (nonequal);
354
355 /* Now assume that we've continued by the edge E to B and continue
356 processing as if it were same basic block.
357 Our goal is to prove that whole block is an NOOP. */
358
359 for (insn = NEXT_INSN (b->head); insn != NEXT_INSN (b->end) && !failed;
360 insn = NEXT_INSN (insn))
361 {
362 if (INSN_P (insn))
363 {
364 rtx pat = PATTERN (insn);
365
366 if (GET_CODE (pat) == PARALLEL)
367 {
368 for (i = 0; i < XVECLEN (pat, 0); i++)
369 failed |= mark_effect (XVECEXP (pat, 0, i), nonequal);
370 }
371 else
372 failed |= mark_effect (pat, nonequal);
373 }
374
375 cselib_process_insn (insn);
376 }
377
378 /* Later we should clear nonequal of dead registers. So far we don't
379 have life information in cfg_cleanup. */
380 if (failed)
381 {
382 BB_SET_FLAG (b, BB_NONTHREADABLE_BLOCK);
383 goto failed_exit;
384 }
385
386 /* cond2 must not mention any register that is not equal to the
387 former block. */
388 if (for_each_rtx (&cond2, mentions_nonequal_regs, nonequal))
389 goto failed_exit;
390
391 /* In case liveness information is available, we need to prove equivalence
392 only of the live values. */
393 if (mode & CLEANUP_UPDATE_LIFE)
394 AND_REG_SET (nonequal, b->global_live_at_end);
395
396 EXECUTE_IF_SET_IN_REG_SET (nonequal, 0, i, goto failed_exit;);
397
398 BITMAP_XFREE (nonequal);
399 cselib_finish ();
400 if ((comparison_dominates_p (code1, code2) != 0)
401 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
402 return BRANCH_EDGE (b);
403 else
404 return FALLTHRU_EDGE (b);
405
406 failed_exit:
407 BITMAP_XFREE (nonequal);
408 cselib_finish ();
409 return NULL;
410 }
411 \f
412 /* Attempt to forward edges leaving basic block B.
413 Return true if successful. */
414
415 static bool
416 try_forward_edges (mode, b)
417 basic_block b;
418 int mode;
419 {
420 bool changed = false;
421 edge e, next, *threaded_edges = NULL;
422
423 for (e = b->succ; e; e = next)
424 {
425 basic_block target, first;
426 int counter;
427 bool threaded = false;
428 int nthreaded_edges = 0;
429
430 next = e->succ_next;
431
432 /* Skip complex edges because we don't know how to update them.
433
434 Still handle fallthru edges, as we can succeed to forward fallthru
435 edge to the same place as the branch edge of conditional branch
436 and turn conditional branch to an unconditional branch. */
437 if (e->flags & EDGE_COMPLEX)
438 continue;
439
440 target = first = e->dest;
441 counter = 0;
442
443 while (counter < n_basic_blocks)
444 {
445 basic_block new_target = NULL;
446 bool new_target_threaded = false;
447
448 if (FORWARDER_BLOCK_P (target)
449 && target->succ->dest != EXIT_BLOCK_PTR)
450 {
451 /* Bypass trivial infinite loops. */
452 if (target == target->succ->dest)
453 counter = n_basic_blocks;
454 new_target = target->succ->dest;
455 }
456
457 /* Allow to thread only over one edge at time to simplify updating
458 of probabilities. */
459 else if (mode & CLEANUP_THREADING)
460 {
461 edge t = thread_jump (mode, e, target);
462 if (t)
463 {
464 if (!threaded_edges)
465 threaded_edges = xmalloc (sizeof (*threaded_edges)
466 * n_basic_blocks);
467 else
468 {
469 int i;
470
471 /* Detect an infinite loop across blocks not
472 including the start block. */
473 for (i = 0; i < nthreaded_edges; ++i)
474 if (threaded_edges[i] == t)
475 break;
476 if (i < nthreaded_edges)
477 {
478 counter = n_basic_blocks;
479 break;
480 }
481 }
482
483 /* Detect an infinite loop across the start block. */
484 if (t->dest == b)
485 break;
486
487 if (nthreaded_edges >= n_basic_blocks)
488 abort ();
489 threaded_edges[nthreaded_edges++] = t;
490
491 new_target = t->dest;
492 new_target_threaded = true;
493 }
494 }
495
496 if (!new_target)
497 break;
498
499 /* Avoid killing of loop pre-headers, as it is the place loop
500 optimizer wants to hoist code to.
501
502 For fallthru forwarders, the LOOP_BEG note must appear between
503 the header of block and CODE_LABEL of the loop, for non forwarders
504 it must appear before the JUMP_INSN. */
505 if ((mode & CLEANUP_PRE_LOOP) && optimize)
506 {
507 rtx insn = (target->succ->flags & EDGE_FALLTHRU
508 ? target->head : prev_nonnote_insn (target->end));
509
510 if (GET_CODE (insn) != NOTE)
511 insn = NEXT_INSN (insn);
512
513 for (; insn && GET_CODE (insn) != CODE_LABEL && !INSN_P (insn);
514 insn = NEXT_INSN (insn))
515 if (GET_CODE (insn) == NOTE
516 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
517 break;
518
519 if (GET_CODE (insn) == NOTE)
520 break;
521
522 /* Do not clean up branches to just past the end of a loop
523 at this time; it can mess up the loop optimizer's
524 recognition of some patterns. */
525
526 insn = PREV_INSN (target->head);
527 if (insn && GET_CODE (insn) == NOTE
528 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
529 break;
530 }
531
532 counter++;
533 target = new_target;
534 threaded |= new_target_threaded;
535 }
536
537 if (counter >= n_basic_blocks)
538 {
539 if (rtl_dump_file)
540 fprintf (rtl_dump_file, "Infinite loop in BB %i.\n",
541 target->index);
542 }
543 else if (target == first)
544 ; /* We didn't do anything. */
545 else
546 {
547 /* Save the values now, as the edge may get removed. */
548 gcov_type edge_count = e->count;
549 int edge_probability = e->probability;
550 int edge_frequency;
551 int n = 0;
552
553 /* Don't force if target is exit block. */
554 if (threaded && target != EXIT_BLOCK_PTR)
555 {
556 notice_new_block (redirect_edge_and_branch_force (e, target));
557 if (rtl_dump_file)
558 fprintf (rtl_dump_file, "Conditionals threaded.\n");
559 }
560 else if (!redirect_edge_and_branch (e, target))
561 {
562 if (rtl_dump_file)
563 fprintf (rtl_dump_file,
564 "Forwarding edge %i->%i to %i failed.\n",
565 b->index, e->dest->index, target->index);
566 continue;
567 }
568
569 /* We successfully forwarded the edge. Now update profile
570 data: for each edge we traversed in the chain, remove
571 the original edge's execution count. */
572 edge_frequency = ((edge_probability * b->frequency
573 + REG_BR_PROB_BASE / 2)
574 / REG_BR_PROB_BASE);
575
576 if (!FORWARDER_BLOCK_P (b) && forwarder_block_p (b))
577 BB_SET_FLAG (b, BB_FORWARDER_BLOCK);
578
579 do
580 {
581 edge t;
582
583 first->count -= edge_count;
584 if (first->count < 0)
585 first->count = 0;
586 first->frequency -= edge_frequency;
587 if (first->frequency < 0)
588 first->frequency = 0;
589 if (first->succ->succ_next)
590 {
591 edge e;
592 int prob;
593 if (n >= nthreaded_edges)
594 abort ();
595 t = threaded_edges [n++];
596 if (t->src != first)
597 abort ();
598 if (first->frequency)
599 prob = edge_frequency * REG_BR_PROB_BASE / first->frequency;
600 else
601 prob = 0;
602 if (prob > t->probability)
603 prob = t->probability;
604 t->probability -= prob;
605 prob = REG_BR_PROB_BASE - prob;
606 if (prob <= 0)
607 {
608 first->succ->probability = REG_BR_PROB_BASE;
609 first->succ->succ_next->probability = 0;
610 }
611 else
612 for (e = first->succ; e; e = e->succ_next)
613 e->probability = ((e->probability * REG_BR_PROB_BASE)
614 / (double) prob);
615 update_br_prob_note (first);
616 }
617 else
618 {
619 /* It is possible that as the result of
620 threading we've removed edge as it is
621 threaded to the fallthru edge. Avoid
622 getting out of sync. */
623 if (n < nthreaded_edges
624 && first == threaded_edges [n]->src)
625 n++;
626 t = first->succ;
627 }
628
629 t->count -= edge_count;
630 if (t->count < 0)
631 t->count = 0;
632 first = t->dest;
633 }
634 while (first != target);
635
636 changed = true;
637 }
638 }
639
640 if (threaded_edges)
641 free (threaded_edges);
642 return changed;
643 }
644 \f
645 /* Return true if LABEL is a target of JUMP_INSN. This applies only
646 to non-complex jumps. That is, direct unconditional, conditional,
647 and tablejumps, but not computed jumps or returns. It also does
648 not apply to the fallthru case of a conditional jump. */
649
650 static bool
651 label_is_jump_target_p (label, jump_insn)
652 rtx label, jump_insn;
653 {
654 rtx tmp = JUMP_LABEL (jump_insn);
655
656 if (label == tmp)
657 return true;
658
659 if (tmp != NULL_RTX
660 && (tmp = NEXT_INSN (tmp)) != NULL_RTX
661 && GET_CODE (tmp) == JUMP_INSN
662 && (tmp = PATTERN (tmp),
663 GET_CODE (tmp) == ADDR_VEC
664 || GET_CODE (tmp) == ADDR_DIFF_VEC))
665 {
666 rtvec vec = XVEC (tmp, GET_CODE (tmp) == ADDR_DIFF_VEC);
667 int i, veclen = GET_NUM_ELEM (vec);
668
669 for (i = 0; i < veclen; ++i)
670 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
671 return true;
672 }
673
674 return false;
675 }
676
677 /* Return true if LABEL is used for tail recursion. */
678
679 static bool
680 tail_recursion_label_p (label)
681 rtx label;
682 {
683 rtx x;
684
685 for (x = tail_recursion_label_list; x; x = XEXP (x, 1))
686 if (label == XEXP (x, 0))
687 return true;
688
689 return false;
690 }
691
692 /* Blocks A and B are to be merged into a single block. A has no incoming
693 fallthru edge, so it can be moved before B without adding or modifying
694 any jumps (aside from the jump from A to B). */
695
696 static void
697 merge_blocks_move_predecessor_nojumps (a, b)
698 basic_block a, b;
699 {
700 rtx barrier;
701
702 barrier = next_nonnote_insn (a->end);
703 if (GET_CODE (barrier) != BARRIER)
704 abort ();
705 delete_insn (barrier);
706
707 /* Move block and loop notes out of the chain so that we do not
708 disturb their order.
709
710 ??? A better solution would be to squeeze out all the non-nested notes
711 and adjust the block trees appropriately. Even better would be to have
712 a tighter connection between block trees and rtl so that this is not
713 necessary. */
714 if (squeeze_notes (&a->head, &a->end))
715 abort ();
716
717 /* Scramble the insn chain. */
718 if (a->end != PREV_INSN (b->head))
719 reorder_insns_nobb (a->head, a->end, PREV_INSN (b->head));
720 a->flags |= BB_DIRTY;
721
722 if (rtl_dump_file)
723 fprintf (rtl_dump_file, "Moved block %d before %d and merged.\n",
724 a->index, b->index);
725
726 /* Swap the records for the two blocks around. */
727
728 unlink_block (a);
729 link_block (a, b->prev_bb);
730
731 /* Now blocks A and B are contiguous. Merge them. */
732 merge_blocks_nomove (a, b);
733 }
734
735 /* Blocks A and B are to be merged into a single block. B has no outgoing
736 fallthru edge, so it can be moved after A without adding or modifying
737 any jumps (aside from the jump from A to B). */
738
739 static void
740 merge_blocks_move_successor_nojumps (a, b)
741 basic_block a, b;
742 {
743 rtx barrier, real_b_end;
744
745 real_b_end = b->end;
746 barrier = NEXT_INSN (b->end);
747
748 /* Recognize a jump table following block B. */
749 if (barrier
750 && GET_CODE (barrier) == CODE_LABEL
751 && NEXT_INSN (barrier)
752 && GET_CODE (NEXT_INSN (barrier)) == JUMP_INSN
753 && (GET_CODE (PATTERN (NEXT_INSN (barrier))) == ADDR_VEC
754 || GET_CODE (PATTERN (NEXT_INSN (barrier))) == ADDR_DIFF_VEC))
755 {
756 /* Temporarily add the table jump insn to b, so that it will also
757 be moved to the correct location. */
758 b->end = NEXT_INSN (barrier);
759 barrier = NEXT_INSN (b->end);
760 }
761
762 /* There had better have been a barrier there. Delete it. */
763 if (barrier && GET_CODE (barrier) == BARRIER)
764 delete_insn (barrier);
765
766 /* Move block and loop notes out of the chain so that we do not
767 disturb their order.
768
769 ??? A better solution would be to squeeze out all the non-nested notes
770 and adjust the block trees appropriately. Even better would be to have
771 a tighter connection between block trees and rtl so that this is not
772 necessary. */
773 if (squeeze_notes (&b->head, &b->end))
774 abort ();
775
776 /* Scramble the insn chain. */
777 reorder_insns_nobb (b->head, b->end, a->end);
778
779 /* Restore the real end of b. */
780 b->end = real_b_end;
781
782 if (rtl_dump_file)
783 fprintf (rtl_dump_file, "Moved block %d after %d and merged.\n",
784 b->index, a->index);
785
786 /* Now blocks A and B are contiguous. Merge them. */
787 merge_blocks_nomove (a, b);
788 }
789
790 /* Attempt to merge basic blocks that are potentially non-adjacent.
791 Return NULL iff the attempt failed, otherwise return basic block
792 where cleanup_cfg should continue. Because the merging commonly
793 moves basic block away or introduces another optimization
794 possiblity, return basic block just before B so cleanup_cfg don't
795 need to iterate.
796
797 It may be good idea to return basic block before C in the case
798 C has been moved after B and originally appeared earlier in the
799 insn seqeunce, but we have no infromation available about the
800 relative ordering of these two. Hopefully it is not too common. */
801
802 static basic_block
803 merge_blocks (e, b, c, mode)
804 edge e;
805 basic_block b, c;
806 int mode;
807 {
808 basic_block next;
809 /* If C has a tail recursion label, do not merge. There is no
810 edge recorded from the call_placeholder back to this label, as
811 that would make optimize_sibling_and_tail_recursive_calls more
812 complex for no gain. */
813 if ((mode & CLEANUP_PRE_SIBCALL)
814 && GET_CODE (c->head) == CODE_LABEL
815 && tail_recursion_label_p (c->head))
816 return NULL;
817
818 /* If B has a fallthru edge to C, no need to move anything. */
819 if (e->flags & EDGE_FALLTHRU)
820 {
821 int b_index = b->index, c_index = c->index;
822 merge_blocks_nomove (b, c);
823 update_forwarder_flag (b);
824
825 if (rtl_dump_file)
826 fprintf (rtl_dump_file, "Merged %d and %d without moving.\n",
827 b_index, c_index);
828
829 return b->prev_bb == ENTRY_BLOCK_PTR ? b : b->prev_bb;
830 }
831
832 /* Otherwise we will need to move code around. Do that only if expensive
833 transformations are allowed. */
834 else if (mode & CLEANUP_EXPENSIVE)
835 {
836 edge tmp_edge, b_fallthru_edge;
837 bool c_has_outgoing_fallthru;
838 bool b_has_incoming_fallthru;
839
840 /* Avoid overactive code motion, as the forwarder blocks should be
841 eliminated by edge redirection instead. One exception might have
842 been if B is a forwarder block and C has no fallthru edge, but
843 that should be cleaned up by bb-reorder instead. */
844 if (FORWARDER_BLOCK_P (b) || FORWARDER_BLOCK_P (c))
845 return NULL;
846
847 /* We must make sure to not munge nesting of lexical blocks,
848 and loop notes. This is done by squeezing out all the notes
849 and leaving them there to lie. Not ideal, but functional. */
850
851 for (tmp_edge = c->succ; tmp_edge; tmp_edge = tmp_edge->succ_next)
852 if (tmp_edge->flags & EDGE_FALLTHRU)
853 break;
854
855 c_has_outgoing_fallthru = (tmp_edge != NULL);
856
857 for (tmp_edge = b->pred; tmp_edge; tmp_edge = tmp_edge->pred_next)
858 if (tmp_edge->flags & EDGE_FALLTHRU)
859 break;
860
861 b_has_incoming_fallthru = (tmp_edge != NULL);
862 b_fallthru_edge = tmp_edge;
863 next = b->prev_bb;
864
865 /* Otherwise, we're going to try to move C after B. If C does
866 not have an outgoing fallthru, then it can be moved
867 immediately after B without introducing or modifying jumps. */
868 if (! c_has_outgoing_fallthru)
869 {
870 merge_blocks_move_successor_nojumps (b, c);
871 return next == ENTRY_BLOCK_PTR ? next->next_bb : next;
872 }
873
874 /* If B does not have an incoming fallthru, then it can be moved
875 immediately before C without introducing or modifying jumps.
876 C cannot be the first block, so we do not have to worry about
877 accessing a non-existent block. */
878
879 if (b_has_incoming_fallthru)
880 {
881 basic_block bb;
882
883 if (b_fallthru_edge->src == ENTRY_BLOCK_PTR)
884 return NULL;
885 bb = force_nonfallthru (b_fallthru_edge);
886 if (bb)
887 notice_new_block (bb);
888 }
889
890 merge_blocks_move_predecessor_nojumps (b, c);
891 return next == ENTRY_BLOCK_PTR ? next->next_bb : next;
892 }
893
894 return false;
895 }
896 \f
897
898 /* Return true if I1 and I2 are equivalent and thus can be crossjumped. */
899
900 static bool
901 insns_match_p (mode, i1, i2)
902 int mode ATTRIBUTE_UNUSED;
903 rtx i1, i2;
904 {
905 rtx p1, p2;
906
907 /* Verify that I1 and I2 are equivalent. */
908 if (GET_CODE (i1) != GET_CODE (i2))
909 return false;
910
911 p1 = PATTERN (i1);
912 p2 = PATTERN (i2);
913
914 if (GET_CODE (p1) != GET_CODE (p2))
915 return false;
916
917 /* If this is a CALL_INSN, compare register usage information.
918 If we don't check this on stack register machines, the two
919 CALL_INSNs might be merged leaving reg-stack.c with mismatching
920 numbers of stack registers in the same basic block.
921 If we don't check this on machines with delay slots, a delay slot may
922 be filled that clobbers a parameter expected by the subroutine.
923
924 ??? We take the simple route for now and assume that if they're
925 equal, they were constructed identically. */
926
927 if (GET_CODE (i1) == CALL_INSN
928 && (!rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1),
929 CALL_INSN_FUNCTION_USAGE (i2))
930 || SIBLING_CALL_P (i1) != SIBLING_CALL_P (i2)))
931 return false;
932
933 #ifdef STACK_REGS
934 /* If cross_jump_death_matters is not 0, the insn's mode
935 indicates whether or not the insn contains any stack-like
936 regs. */
937
938 if ((mode & CLEANUP_POST_REGSTACK) && stack_regs_mentioned (i1))
939 {
940 /* If register stack conversion has already been done, then
941 death notes must also be compared before it is certain that
942 the two instruction streams match. */
943
944 rtx note;
945 HARD_REG_SET i1_regset, i2_regset;
946
947 CLEAR_HARD_REG_SET (i1_regset);
948 CLEAR_HARD_REG_SET (i2_regset);
949
950 for (note = REG_NOTES (i1); note; note = XEXP (note, 1))
951 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
952 SET_HARD_REG_BIT (i1_regset, REGNO (XEXP (note, 0)));
953
954 for (note = REG_NOTES (i2); note; note = XEXP (note, 1))
955 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
956 SET_HARD_REG_BIT (i2_regset, REGNO (XEXP (note, 0)));
957
958 GO_IF_HARD_REG_EQUAL (i1_regset, i2_regset, done);
959
960 return false;
961
962 done:
963 ;
964 }
965 #endif
966
967 if (reload_completed
968 ? ! rtx_renumbered_equal_p (p1, p2) : ! rtx_equal_p (p1, p2))
969 {
970 /* The following code helps take care of G++ cleanups. */
971 rtx equiv1 = find_reg_equal_equiv_note (i1);
972 rtx equiv2 = find_reg_equal_equiv_note (i2);
973
974 if (equiv1 && equiv2
975 /* If the equivalences are not to a constant, they may
976 reference pseudos that no longer exist, so we can't
977 use them. */
978 && (! reload_completed
979 || (CONSTANT_P (XEXP (equiv1, 0))
980 && rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))))
981 {
982 rtx s1 = single_set (i1);
983 rtx s2 = single_set (i2);
984 if (s1 != 0 && s2 != 0
985 && rtx_renumbered_equal_p (SET_DEST (s1), SET_DEST (s2)))
986 {
987 validate_change (i1, &SET_SRC (s1), XEXP (equiv1, 0), 1);
988 validate_change (i2, &SET_SRC (s2), XEXP (equiv2, 0), 1);
989 if (! rtx_renumbered_equal_p (p1, p2))
990 cancel_changes (0);
991 else if (apply_change_group ())
992 return true;
993 }
994 }
995
996 return false;
997 }
998
999 return true;
1000 }
1001 \f
1002 /* Look through the insns at the end of BB1 and BB2 and find the longest
1003 sequence that are equivalent. Store the first insns for that sequence
1004 in *F1 and *F2 and return the sequence length.
1005
1006 To simplify callers of this function, if the blocks match exactly,
1007 store the head of the blocks in *F1 and *F2. */
1008
1009 static int
1010 flow_find_cross_jump (mode, bb1, bb2, f1, f2)
1011 int mode ATTRIBUTE_UNUSED;
1012 basic_block bb1, bb2;
1013 rtx *f1, *f2;
1014 {
1015 rtx i1, i2, last1, last2, afterlast1, afterlast2;
1016 int ninsns = 0;
1017
1018 /* Skip simple jumps at the end of the blocks. Complex jumps still
1019 need to be compared for equivalence, which we'll do below. */
1020
1021 i1 = bb1->end;
1022 last1 = afterlast1 = last2 = afterlast2 = NULL_RTX;
1023 if (onlyjump_p (i1)
1024 || (returnjump_p (i1) && !side_effects_p (PATTERN (i1))))
1025 {
1026 last1 = i1;
1027 i1 = PREV_INSN (i1);
1028 }
1029
1030 i2 = bb2->end;
1031 if (onlyjump_p (i2)
1032 || (returnjump_p (i2) && !side_effects_p (PATTERN (i2))))
1033 {
1034 last2 = i2;
1035 /* Count everything except for unconditional jump as insn. */
1036 if (!simplejump_p (i2) && !returnjump_p (i2) && last1)
1037 ninsns++;
1038 i2 = PREV_INSN (i2);
1039 }
1040
1041 while (true)
1042 {
1043 /* Ignore notes. */
1044 while (!active_insn_p (i1) && i1 != bb1->head)
1045 i1 = PREV_INSN (i1);
1046
1047 while (!active_insn_p (i2) && i2 != bb2->head)
1048 i2 = PREV_INSN (i2);
1049
1050 if (i1 == bb1->head || i2 == bb2->head)
1051 break;
1052
1053 if (!insns_match_p (mode, i1, i2))
1054 break;
1055
1056 /* Don't begin a cross-jump with a USE or CLOBBER insn. */
1057 if (active_insn_p (i1))
1058 {
1059 /* If the merged insns have different REG_EQUAL notes, then
1060 remove them. */
1061 rtx equiv1 = find_reg_equal_equiv_note (i1);
1062 rtx equiv2 = find_reg_equal_equiv_note (i2);
1063
1064 if (equiv1 && !equiv2)
1065 remove_note (i1, equiv1);
1066 else if (!equiv1 && equiv2)
1067 remove_note (i2, equiv2);
1068 else if (equiv1 && equiv2
1069 && !rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))
1070 {
1071 remove_note (i1, equiv1);
1072 remove_note (i2, equiv2);
1073 }
1074
1075 afterlast1 = last1, afterlast2 = last2;
1076 last1 = i1, last2 = i2;
1077 ninsns++;
1078 }
1079
1080 i1 = PREV_INSN (i1);
1081 i2 = PREV_INSN (i2);
1082 }
1083
1084 #ifdef HAVE_cc0
1085 /* Don't allow the insn after a compare to be shared by
1086 cross-jumping unless the compare is also shared. */
1087 if (ninsns && reg_mentioned_p (cc0_rtx, last1) && ! sets_cc0_p (last1))
1088 last1 = afterlast1, last2 = afterlast2, ninsns--;
1089 #endif
1090
1091 /* Include preceding notes and labels in the cross-jump. One,
1092 this may bring us to the head of the blocks as requested above.
1093 Two, it keeps line number notes as matched as may be. */
1094 if (ninsns)
1095 {
1096 while (last1 != bb1->head && !active_insn_p (PREV_INSN (last1)))
1097 last1 = PREV_INSN (last1);
1098
1099 if (last1 != bb1->head && GET_CODE (PREV_INSN (last1)) == CODE_LABEL)
1100 last1 = PREV_INSN (last1);
1101
1102 while (last2 != bb2->head && !active_insn_p (PREV_INSN (last2)))
1103 last2 = PREV_INSN (last2);
1104
1105 if (last2 != bb2->head && GET_CODE (PREV_INSN (last2)) == CODE_LABEL)
1106 last2 = PREV_INSN (last2);
1107
1108 *f1 = last1;
1109 *f2 = last2;
1110 }
1111
1112 return ninsns;
1113 }
1114
1115 /* Return true iff outgoing edges of BB1 and BB2 match, together with
1116 the branch instruction. This means that if we commonize the control
1117 flow before end of the basic block, the semantic remains unchanged.
1118
1119 We may assume that there exists one edge with a common destination. */
1120
1121 static bool
1122 outgoing_edges_match (mode, bb1, bb2)
1123 int mode;
1124 basic_block bb1;
1125 basic_block bb2;
1126 {
1127 int nehedges1 = 0, nehedges2 = 0;
1128 edge fallthru1 = 0, fallthru2 = 0;
1129 edge e1, e2;
1130
1131 /* If BB1 has only one successor, we may be looking at either an
1132 unconditional jump, or a fake edge to exit. */
1133 if (bb1->succ && !bb1->succ->succ_next
1134 && (bb1->succ->flags & (EDGE_COMPLEX | EDGE_FAKE)) == 0
1135 && (GET_CODE (bb1->end) != JUMP_INSN || simplejump_p (bb1->end)))
1136 return (bb2->succ && !bb2->succ->succ_next
1137 && (bb2->succ->flags & (EDGE_COMPLEX | EDGE_FAKE)) == 0
1138 && (GET_CODE (bb2->end) != JUMP_INSN || simplejump_p (bb2->end)));
1139
1140 /* Match conditional jumps - this may get tricky when fallthru and branch
1141 edges are crossed. */
1142 if (bb1->succ
1143 && bb1->succ->succ_next
1144 && !bb1->succ->succ_next->succ_next
1145 && any_condjump_p (bb1->end)
1146 && onlyjump_p (bb1->end))
1147 {
1148 edge b1, f1, b2, f2;
1149 bool reverse, match;
1150 rtx set1, set2, cond1, cond2;
1151 enum rtx_code code1, code2;
1152
1153 if (!bb2->succ
1154 || !bb2->succ->succ_next
1155 || bb2->succ->succ_next->succ_next
1156 || !any_condjump_p (bb2->end)
1157 || !onlyjump_p (bb2->end))
1158 return false;
1159
1160 b1 = BRANCH_EDGE (bb1);
1161 b2 = BRANCH_EDGE (bb2);
1162 f1 = FALLTHRU_EDGE (bb1);
1163 f2 = FALLTHRU_EDGE (bb2);
1164
1165 /* Get around possible forwarders on fallthru edges. Other cases
1166 should be optimized out already. */
1167 if (FORWARDER_BLOCK_P (f1->dest))
1168 f1 = f1->dest->succ;
1169
1170 if (FORWARDER_BLOCK_P (f2->dest))
1171 f2 = f2->dest->succ;
1172
1173 /* To simplify use of this function, return false if there are
1174 unneeded forwarder blocks. These will get eliminated later
1175 during cleanup_cfg. */
1176 if (FORWARDER_BLOCK_P (f1->dest)
1177 || FORWARDER_BLOCK_P (f2->dest)
1178 || FORWARDER_BLOCK_P (b1->dest)
1179 || FORWARDER_BLOCK_P (b2->dest))
1180 return false;
1181
1182 if (f1->dest == f2->dest && b1->dest == b2->dest)
1183 reverse = false;
1184 else if (f1->dest == b2->dest && b1->dest == f2->dest)
1185 reverse = true;
1186 else
1187 return false;
1188
1189 set1 = pc_set (bb1->end);
1190 set2 = pc_set (bb2->end);
1191 if ((XEXP (SET_SRC (set1), 1) == pc_rtx)
1192 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
1193 reverse = !reverse;
1194
1195 cond1 = XEXP (SET_SRC (set1), 0);
1196 cond2 = XEXP (SET_SRC (set2), 0);
1197 code1 = GET_CODE (cond1);
1198 if (reverse)
1199 code2 = reversed_comparison_code (cond2, bb2->end);
1200 else
1201 code2 = GET_CODE (cond2);
1202
1203 if (code2 == UNKNOWN)
1204 return false;
1205
1206 /* Verify codes and operands match. */
1207 match = ((code1 == code2
1208 && rtx_renumbered_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
1209 && rtx_renumbered_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
1210 || (code1 == swap_condition (code2)
1211 && rtx_renumbered_equal_p (XEXP (cond1, 1),
1212 XEXP (cond2, 0))
1213 && rtx_renumbered_equal_p (XEXP (cond1, 0),
1214 XEXP (cond2, 1))));
1215
1216 /* If we return true, we will join the blocks. Which means that
1217 we will only have one branch prediction bit to work with. Thus
1218 we require the existing branches to have probabilities that are
1219 roughly similar. */
1220 if (match
1221 && !optimize_size
1222 && maybe_hot_bb_p (bb1)
1223 && maybe_hot_bb_p (bb2))
1224 {
1225 int prob2;
1226
1227 if (b1->dest == b2->dest)
1228 prob2 = b2->probability;
1229 else
1230 /* Do not use f2 probability as f2 may be forwarded. */
1231 prob2 = REG_BR_PROB_BASE - b2->probability;
1232
1233 /* Fail if the difference in probabilities is greater than 50%.
1234 This rules out two well-predicted branches with opposite
1235 outcomes. */
1236 if (abs (b1->probability - prob2) > REG_BR_PROB_BASE / 2)
1237 {
1238 if (rtl_dump_file)
1239 fprintf (rtl_dump_file,
1240 "Outcomes of branch in bb %i and %i differs to much (%i %i)\n",
1241 bb1->index, bb2->index, b1->probability, prob2);
1242
1243 return false;
1244 }
1245 }
1246
1247 if (rtl_dump_file && match)
1248 fprintf (rtl_dump_file, "Conditionals in bb %i and %i match.\n",
1249 bb1->index, bb2->index);
1250
1251 return match;
1252 }
1253
1254 /* Generic case - we are seeing a computed jump, table jump or trapping
1255 instruction. */
1256
1257 #ifndef CASE_DROPS_THROUGH
1258 /* Check whether there are tablejumps in the end of BB1 and BB2.
1259 Return true if they are identical. */
1260 {
1261 rtx label1, label2;
1262 rtx table1, table2;
1263
1264 if (tablejump_p (bb1->end, &label1, &table1)
1265 && tablejump_p (bb2->end, &label2, &table2)
1266 && GET_CODE (PATTERN (table1)) == GET_CODE (PATTERN (table2)))
1267 {
1268 /* The labels should never be the same rtx. If they really are same
1269 the jump tables are same too. So disable crossjumping of blocks BB1
1270 and BB2 because when deleting the common insns in the end of BB1
1271 by flow_delete_block () the jump table would be deleted too. */
1272 /* If LABEL2 is contained in BB1->END do not do anything
1273 because we would loose information when replacing
1274 LABEL1 by LABEL2 and then LABEL2 by LABEL1 in BB1->END. */
1275 if (label1 != label2 && !subrtx_p (label2, bb1->end))
1276 {
1277 /* Set IDENTICAL to true when the tables are identical. */
1278 bool identical = false;
1279 rtx p1, p2;
1280
1281 p1 = PATTERN (table1);
1282 p2 = PATTERN (table2);
1283 if (GET_CODE (p1) == ADDR_VEC && rtx_equal_p (p1, p2))
1284 {
1285 identical = true;
1286 }
1287 else if (GET_CODE (p1) == ADDR_DIFF_VEC
1288 && (XVECLEN (p1, 1) == XVECLEN (p2, 1))
1289 && rtx_equal_p (XEXP (p1, 2), XEXP (p2, 2))
1290 && rtx_equal_p (XEXP (p1, 3), XEXP (p2, 3)))
1291 {
1292 int i;
1293
1294 identical = true;
1295 for (i = XVECLEN (p1, 1) - 1; i >= 0 && identical; i--)
1296 if (!rtx_equal_p (XVECEXP (p1, 1, i), XVECEXP (p2, 1, i)))
1297 identical = false;
1298 }
1299
1300 if (identical)
1301 {
1302 rtx_pair rr;
1303 bool match;
1304
1305 /* Temporarily replace references to LABEL1 with LABEL2
1306 in BB1->END so that we could compare the instructions. */
1307 rr.r1 = label1;
1308 rr.r2 = label2;
1309 for_each_rtx (&bb1->end, replace_label, &rr);
1310
1311 match = insns_match_p (mode, bb1->end, bb2->end);
1312 if (rtl_dump_file && match)
1313 fprintf (rtl_dump_file,
1314 "Tablejumps in bb %i and %i match.\n",
1315 bb1->index, bb2->index);
1316
1317 /* Set the original label in BB1->END because when deleting
1318 a block whose end is a tablejump, the tablejump referenced
1319 from the instruction is deleted too. */
1320 rr.r1 = label2;
1321 rr.r2 = label1;
1322 for_each_rtx (&bb1->end, replace_label, &rr);
1323
1324 return match;
1325 }
1326 }
1327 return false;
1328 }
1329 }
1330 #endif
1331
1332 /* First ensure that the instructions match. There may be many outgoing
1333 edges so this test is generally cheaper. */
1334 if (!insns_match_p (mode, bb1->end, bb2->end))
1335 return false;
1336
1337 /* Search the outgoing edges, ensure that the counts do match, find possible
1338 fallthru and exception handling edges since these needs more
1339 validation. */
1340 for (e1 = bb1->succ, e2 = bb2->succ; e1 && e2;
1341 e1 = e1->succ_next, e2 = e2->succ_next)
1342 {
1343 if (e1->flags & EDGE_EH)
1344 nehedges1++;
1345
1346 if (e2->flags & EDGE_EH)
1347 nehedges2++;
1348
1349 if (e1->flags & EDGE_FALLTHRU)
1350 fallthru1 = e1;
1351 if (e2->flags & EDGE_FALLTHRU)
1352 fallthru2 = e2;
1353 }
1354
1355 /* If number of edges of various types does not match, fail. */
1356 if (e1 || e2
1357 || nehedges1 != nehedges2
1358 || (fallthru1 != 0) != (fallthru2 != 0))
1359 return false;
1360
1361 /* fallthru edges must be forwarded to the same destination. */
1362 if (fallthru1)
1363 {
1364 basic_block d1 = (forwarder_block_p (fallthru1->dest)
1365 ? fallthru1->dest->succ->dest: fallthru1->dest);
1366 basic_block d2 = (forwarder_block_p (fallthru2->dest)
1367 ? fallthru2->dest->succ->dest: fallthru2->dest);
1368
1369 if (d1 != d2)
1370 return false;
1371 }
1372
1373 /* In case we do have EH edges, ensure we are in the same region. */
1374 if (nehedges1)
1375 {
1376 rtx n1 = find_reg_note (bb1->end, REG_EH_REGION, 0);
1377 rtx n2 = find_reg_note (bb2->end, REG_EH_REGION, 0);
1378
1379 if (XEXP (n1, 0) != XEXP (n2, 0))
1380 return false;
1381 }
1382
1383 /* We don't need to match the rest of edges as above checks should be enought
1384 to ensure that they are equivalent. */
1385 return true;
1386 }
1387
1388 /* E1 and E2 are edges with the same destination block. Search their
1389 predecessors for common code. If found, redirect control flow from
1390 (maybe the middle of) E1->SRC to (maybe the middle of) E2->SRC. */
1391
1392 static bool
1393 try_crossjump_to_edge (mode, e1, e2)
1394 int mode;
1395 edge e1, e2;
1396 {
1397 int nmatch;
1398 basic_block src1 = e1->src, src2 = e2->src;
1399 basic_block redirect_to, redirect_from, to_remove;
1400 rtx newpos1, newpos2;
1401 edge s;
1402
1403 /* Search backward through forwarder blocks. We don't need to worry
1404 about multiple entry or chained forwarders, as they will be optimized
1405 away. We do this to look past the unconditional jump following a
1406 conditional jump that is required due to the current CFG shape. */
1407 if (src1->pred
1408 && !src1->pred->pred_next
1409 && FORWARDER_BLOCK_P (src1))
1410 e1 = src1->pred, src1 = e1->src;
1411
1412 if (src2->pred
1413 && !src2->pred->pred_next
1414 && FORWARDER_BLOCK_P (src2))
1415 e2 = src2->pred, src2 = e2->src;
1416
1417 /* Nothing to do if we reach ENTRY, or a common source block. */
1418 if (src1 == ENTRY_BLOCK_PTR || src2 == ENTRY_BLOCK_PTR)
1419 return false;
1420 if (src1 == src2)
1421 return false;
1422
1423 /* Seeing more than 1 forwarder blocks would confuse us later... */
1424 if (FORWARDER_BLOCK_P (e1->dest)
1425 && FORWARDER_BLOCK_P (e1->dest->succ->dest))
1426 return false;
1427
1428 if (FORWARDER_BLOCK_P (e2->dest)
1429 && FORWARDER_BLOCK_P (e2->dest->succ->dest))
1430 return false;
1431
1432 /* Likewise with dead code (possibly newly created by the other optimizations
1433 of cfg_cleanup). */
1434 if (!src1->pred || !src2->pred)
1435 return false;
1436
1437 /* Look for the common insn sequence, part the first ... */
1438 if (!outgoing_edges_match (mode, src1, src2))
1439 return false;
1440
1441 /* ... and part the second. */
1442 nmatch = flow_find_cross_jump (mode, src1, src2, &newpos1, &newpos2);
1443 if (!nmatch)
1444 return false;
1445
1446 #ifndef CASE_DROPS_THROUGH
1447 /* Here we know that the insns in the end of SRC1 which are common with SRC2
1448 will be deleted.
1449 If we have tablejumps in the end of SRC1 and SRC2
1450 they have been already compared for equivalence in outgoing_edges_match ()
1451 so replace the references to TABLE1 by references to TABLE2. */
1452 {
1453 rtx label1, label2;
1454 rtx table1, table2;
1455
1456 if (tablejump_p (src1->end, &label1, &table1)
1457 && tablejump_p (src2->end, &label2, &table2)
1458 && label1 != label2)
1459 {
1460 rtx_pair rr;
1461 rtx insn;
1462
1463 /* Replace references to LABEL1 with LABEL2. */
1464 rr.r1 = label1;
1465 rr.r2 = label2;
1466 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1467 {
1468 /* Do not replace the label in SRC1->END because when deleting
1469 a block whose end is a tablejump, the tablejump referenced
1470 from the instruction is deleted too. */
1471 if (insn != src1->end)
1472 for_each_rtx (&insn, replace_label, &rr);
1473 }
1474 }
1475 }
1476 #endif
1477
1478 /* Avoid splitting if possible. */
1479 if (newpos2 == src2->head)
1480 redirect_to = src2;
1481 else
1482 {
1483 if (rtl_dump_file)
1484 fprintf (rtl_dump_file, "Splitting bb %i before %i insns\n",
1485 src2->index, nmatch);
1486 redirect_to = split_block (src2, PREV_INSN (newpos2))->dest;
1487 }
1488
1489 if (rtl_dump_file)
1490 fprintf (rtl_dump_file,
1491 "Cross jumping from bb %i to bb %i; %i common insns\n",
1492 src1->index, src2->index, nmatch);
1493
1494 redirect_to->count += src1->count;
1495 redirect_to->frequency += src1->frequency;
1496 /* We may have some registers visible trought the block. */
1497 redirect_to->flags |= BB_DIRTY;
1498
1499 /* Recompute the frequencies and counts of outgoing edges. */
1500 for (s = redirect_to->succ; s; s = s->succ_next)
1501 {
1502 edge s2;
1503 basic_block d = s->dest;
1504
1505 if (FORWARDER_BLOCK_P (d))
1506 d = d->succ->dest;
1507
1508 for (s2 = src1->succ; ; s2 = s2->succ_next)
1509 {
1510 basic_block d2 = s2->dest;
1511 if (FORWARDER_BLOCK_P (d2))
1512 d2 = d2->succ->dest;
1513 if (d == d2)
1514 break;
1515 }
1516
1517 s->count += s2->count;
1518
1519 /* Take care to update possible forwarder blocks. We verified
1520 that there is no more than one in the chain, so we can't run
1521 into infinite loop. */
1522 if (FORWARDER_BLOCK_P (s->dest))
1523 {
1524 s->dest->succ->count += s2->count;
1525 s->dest->count += s2->count;
1526 s->dest->frequency += EDGE_FREQUENCY (s);
1527 }
1528
1529 if (FORWARDER_BLOCK_P (s2->dest))
1530 {
1531 s2->dest->succ->count -= s2->count;
1532 if (s2->dest->succ->count < 0)
1533 s2->dest->succ->count = 0;
1534 s2->dest->count -= s2->count;
1535 s2->dest->frequency -= EDGE_FREQUENCY (s);
1536 if (s2->dest->frequency < 0)
1537 s2->dest->frequency = 0;
1538 if (s2->dest->count < 0)
1539 s2->dest->count = 0;
1540 }
1541
1542 if (!redirect_to->frequency && !src1->frequency)
1543 s->probability = (s->probability + s2->probability) / 2;
1544 else
1545 s->probability
1546 = ((s->probability * redirect_to->frequency +
1547 s2->probability * src1->frequency)
1548 / (redirect_to->frequency + src1->frequency));
1549 }
1550
1551 update_br_prob_note (redirect_to);
1552
1553 /* Edit SRC1 to go to REDIRECT_TO at NEWPOS1. */
1554
1555 /* Skip possible basic block header. */
1556 if (GET_CODE (newpos1) == CODE_LABEL)
1557 newpos1 = NEXT_INSN (newpos1);
1558
1559 if (GET_CODE (newpos1) == NOTE)
1560 newpos1 = NEXT_INSN (newpos1);
1561
1562 redirect_from = split_block (src1, PREV_INSN (newpos1))->src;
1563 to_remove = redirect_from->succ->dest;
1564
1565 redirect_edge_and_branch_force (redirect_from->succ, redirect_to);
1566 flow_delete_block (to_remove);
1567
1568 update_forwarder_flag (redirect_from);
1569
1570 return true;
1571 }
1572
1573 /* Search the predecessors of BB for common insn sequences. When found,
1574 share code between them by redirecting control flow. Return true if
1575 any changes made. */
1576
1577 static bool
1578 try_crossjump_bb (mode, bb)
1579 int mode;
1580 basic_block bb;
1581 {
1582 edge e, e2, nexte2, nexte, fallthru;
1583 bool changed;
1584 int n = 0, max;
1585
1586 /* Nothing to do if there is not at least two incoming edges. */
1587 if (!bb->pred || !bb->pred->pred_next)
1588 return false;
1589
1590 /* It is always cheapest to redirect a block that ends in a branch to
1591 a block that falls through into BB, as that adds no branches to the
1592 program. We'll try that combination first. */
1593 fallthru = NULL;
1594 max = PARAM_VALUE (PARAM_MAX_CROSSJUMP_EDGES);
1595 for (e = bb->pred; e ; e = e->pred_next, n++)
1596 {
1597 if (e->flags & EDGE_FALLTHRU)
1598 fallthru = e;
1599 if (n > max)
1600 return false;
1601 }
1602
1603 changed = false;
1604 for (e = bb->pred; e; e = nexte)
1605 {
1606 nexte = e->pred_next;
1607
1608 /* As noted above, first try with the fallthru predecessor. */
1609 if (fallthru)
1610 {
1611 /* Don't combine the fallthru edge into anything else.
1612 If there is a match, we'll do it the other way around. */
1613 if (e == fallthru)
1614 continue;
1615
1616 if (try_crossjump_to_edge (mode, e, fallthru))
1617 {
1618 changed = true;
1619 nexte = bb->pred;
1620 continue;
1621 }
1622 }
1623
1624 /* Non-obvious work limiting check: Recognize that we're going
1625 to call try_crossjump_bb on every basic block. So if we have
1626 two blocks with lots of outgoing edges (a switch) and they
1627 share lots of common destinations, then we would do the
1628 cross-jump check once for each common destination.
1629
1630 Now, if the blocks actually are cross-jump candidates, then
1631 all of their destinations will be shared. Which means that
1632 we only need check them for cross-jump candidacy once. We
1633 can eliminate redundant checks of crossjump(A,B) by arbitrarily
1634 choosing to do the check from the block for which the edge
1635 in question is the first successor of A. */
1636 if (e->src->succ != e)
1637 continue;
1638
1639 for (e2 = bb->pred; e2; e2 = nexte2)
1640 {
1641 nexte2 = e2->pred_next;
1642
1643 if (e2 == e)
1644 continue;
1645
1646 /* We've already checked the fallthru edge above. */
1647 if (e2 == fallthru)
1648 continue;
1649
1650 /* The "first successor" check above only prevents multiple
1651 checks of crossjump(A,B). In order to prevent redundant
1652 checks of crossjump(B,A), require that A be the block
1653 with the lowest index. */
1654 if (e->src->index > e2->src->index)
1655 continue;
1656
1657 if (try_crossjump_to_edge (mode, e, e2))
1658 {
1659 changed = true;
1660 nexte = bb->pred;
1661 break;
1662 }
1663 }
1664 }
1665
1666 return changed;
1667 }
1668
1669 /* Do simple CFG optimizations - basic block merging, simplifying of jump
1670 instructions etc. Return nonzero if changes were made. */
1671
1672 static bool
1673 try_optimize_cfg (mode)
1674 int mode;
1675 {
1676 bool changed_overall = false;
1677 bool changed;
1678 int iterations = 0;
1679 basic_block bb, b, next;
1680
1681 if (mode & CLEANUP_CROSSJUMP)
1682 add_noreturn_fake_exit_edges ();
1683
1684 FOR_EACH_BB (bb)
1685 update_forwarder_flag (bb);
1686
1687 if (mode & CLEANUP_UPDATE_LIFE)
1688 clear_bb_flags ();
1689
1690 if (! (* targetm.cannot_modify_jumps_p) ())
1691 {
1692 /* Attempt to merge blocks as made possible by edge removal. If
1693 a block has only one successor, and the successor has only
1694 one predecessor, they may be combined. */
1695 do
1696 {
1697 changed = false;
1698 iterations++;
1699
1700 if (rtl_dump_file)
1701 fprintf (rtl_dump_file,
1702 "\n\ntry_optimize_cfg iteration %i\n\n",
1703 iterations);
1704
1705 for (b = ENTRY_BLOCK_PTR->next_bb; b != EXIT_BLOCK_PTR;)
1706 {
1707 basic_block c;
1708 edge s;
1709 bool changed_here = false;
1710
1711 /* Delete trivially dead basic blocks. */
1712 while (b->pred == NULL)
1713 {
1714 c = b->prev_bb;
1715 if (rtl_dump_file)
1716 fprintf (rtl_dump_file, "Deleting block %i.\n",
1717 b->index);
1718
1719 flow_delete_block (b);
1720 changed = true;
1721 b = c;
1722 }
1723
1724 /* Remove code labels no longer used. Don't do this
1725 before CALL_PLACEHOLDER is removed, as some branches
1726 may be hidden within. */
1727 if (b->pred->pred_next == NULL
1728 && (b->pred->flags & EDGE_FALLTHRU)
1729 && !(b->pred->flags & EDGE_COMPLEX)
1730 && GET_CODE (b->head) == CODE_LABEL
1731 && (!(mode & CLEANUP_PRE_SIBCALL)
1732 || !tail_recursion_label_p (b->head))
1733 /* If the previous block ends with a branch to this
1734 block, we can't delete the label. Normally this
1735 is a condjump that is yet to be simplified, but
1736 if CASE_DROPS_THRU, this can be a tablejump with
1737 some element going to the same place as the
1738 default (fallthru). */
1739 && (b->pred->src == ENTRY_BLOCK_PTR
1740 || GET_CODE (b->pred->src->end) != JUMP_INSN
1741 || ! label_is_jump_target_p (b->head,
1742 b->pred->src->end)))
1743 {
1744 rtx label = b->head;
1745
1746 b->head = NEXT_INSN (b->head);
1747 delete_insn_chain (label, label);
1748 if (rtl_dump_file)
1749 fprintf (rtl_dump_file, "Deleted label in block %i.\n",
1750 b->index);
1751 }
1752
1753 /* If we fall through an empty block, we can remove it. */
1754 if (b->pred->pred_next == NULL
1755 && (b->pred->flags & EDGE_FALLTHRU)
1756 && GET_CODE (b->head) != CODE_LABEL
1757 && FORWARDER_BLOCK_P (b)
1758 /* Note that forwarder_block_p true ensures that
1759 there is a successor for this block. */
1760 && (b->succ->flags & EDGE_FALLTHRU)
1761 && n_basic_blocks > 1)
1762 {
1763 if (rtl_dump_file)
1764 fprintf (rtl_dump_file,
1765 "Deleting fallthru block %i.\n",
1766 b->index);
1767
1768 c = b->prev_bb == ENTRY_BLOCK_PTR ? b->next_bb : b->prev_bb;
1769 redirect_edge_succ_nodup (b->pred, b->succ->dest);
1770 flow_delete_block (b);
1771 changed = true;
1772 b = c;
1773 }
1774
1775 if ((s = b->succ) != NULL
1776 && s->succ_next == NULL
1777 && !(s->flags & EDGE_COMPLEX)
1778 && (c = s->dest) != EXIT_BLOCK_PTR
1779 && c->pred->pred_next == NULL
1780 && b != c
1781 /* If the jump insn has side effects,
1782 we can't kill the edge. */
1783 && (GET_CODE (b->end) != JUMP_INSN
1784 || simplejump_p (b->end))
1785 && (next = merge_blocks (s, b, c, mode)))
1786 {
1787 b = next;
1788 changed_here = true;
1789 }
1790
1791 /* Simplify branch over branch. */
1792 if ((mode & CLEANUP_EXPENSIVE) && try_simplify_condjump (b))
1793 changed_here = true;
1794
1795 /* If B has a single outgoing edge, but uses a
1796 non-trivial jump instruction without side-effects, we
1797 can either delete the jump entirely, or replace it
1798 with a simple unconditional jump. Use
1799 redirect_edge_and_branch to do the dirty work. */
1800 if (b->succ
1801 && ! b->succ->succ_next
1802 && b->succ->dest != EXIT_BLOCK_PTR
1803 && onlyjump_p (b->end)
1804 && redirect_edge_and_branch (b->succ, b->succ->dest))
1805 {
1806 update_forwarder_flag (b);
1807 changed_here = true;
1808 }
1809
1810 /* Simplify branch to branch. */
1811 if (try_forward_edges (mode, b))
1812 changed_here = true;
1813
1814 /* Look for shared code between blocks. */
1815 if ((mode & CLEANUP_CROSSJUMP)
1816 && try_crossjump_bb (mode, b))
1817 changed_here = true;
1818
1819 /* Don't get confused by the index shift caused by
1820 deleting blocks. */
1821 if (!changed_here)
1822 b = b->next_bb;
1823 else
1824 changed = true;
1825 }
1826
1827 if ((mode & CLEANUP_CROSSJUMP)
1828 && try_crossjump_bb (mode, EXIT_BLOCK_PTR))
1829 changed = true;
1830
1831 #ifdef ENABLE_CHECKING
1832 if (changed)
1833 verify_flow_info ();
1834 #endif
1835
1836 changed_overall |= changed;
1837 }
1838 while (changed);
1839 }
1840
1841 if (mode & CLEANUP_CROSSJUMP)
1842 remove_fake_edges ();
1843
1844 clear_aux_for_blocks ();
1845
1846 return changed_overall;
1847 }
1848 \f
1849 /* Delete all unreachable basic blocks. */
1850
1851 bool
1852 delete_unreachable_blocks ()
1853 {
1854 bool changed = false;
1855 basic_block b, next_bb;
1856
1857 find_unreachable_blocks ();
1858
1859 /* Delete all unreachable basic blocks. */
1860
1861 for (b = ENTRY_BLOCK_PTR->next_bb; b != EXIT_BLOCK_PTR; b = next_bb)
1862 {
1863 next_bb = b->next_bb;
1864
1865 if (!(b->flags & BB_REACHABLE))
1866 {
1867 flow_delete_block (b);
1868 changed = true;
1869 }
1870 }
1871
1872 if (changed)
1873 tidy_fallthru_edges ();
1874 return changed;
1875 }
1876 \f
1877 /* Tidy the CFG by deleting unreachable code and whatnot. */
1878
1879 bool
1880 cleanup_cfg (mode)
1881 int mode;
1882 {
1883 bool changed = false;
1884
1885 timevar_push (TV_CLEANUP_CFG);
1886 if (delete_unreachable_blocks ())
1887 {
1888 changed = true;
1889 /* We've possibly created trivially dead code. Cleanup it right
1890 now to introduce more opportunities for try_optimize_cfg. */
1891 if (!(mode & (CLEANUP_NO_INSN_DEL
1892 | CLEANUP_UPDATE_LIFE | CLEANUP_PRE_SIBCALL))
1893 && !reload_completed)
1894 delete_trivially_dead_insns (get_insns(), max_reg_num ());
1895 }
1896
1897 compact_blocks ();
1898
1899 while (try_optimize_cfg (mode))
1900 {
1901 delete_unreachable_blocks (), changed = true;
1902 if (mode & CLEANUP_UPDATE_LIFE)
1903 {
1904 /* Cleaning up CFG introduces more opportunities for dead code
1905 removal that in turn may introduce more opportunities for
1906 cleaning up the CFG. */
1907 if (!update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
1908 PROP_DEATH_NOTES
1909 | PROP_SCAN_DEAD_CODE
1910 | PROP_KILL_DEAD_CODE
1911 | PROP_LOG_LINKS))
1912 break;
1913 }
1914 else if (!(mode & (CLEANUP_NO_INSN_DEL | CLEANUP_PRE_SIBCALL))
1915 && (mode & CLEANUP_EXPENSIVE)
1916 && !reload_completed)
1917 {
1918 if (!delete_trivially_dead_insns (get_insns(), max_reg_num ()))
1919 break;
1920 }
1921 else
1922 break;
1923 delete_dead_jumptables ();
1924 }
1925
1926 /* Kill the data we won't maintain. */
1927 free_EXPR_LIST_list (&label_value_list);
1928 timevar_pop (TV_CLEANUP_CFG);
1929
1930 return changed;
1931 }