cfgcleanup.c (first_pass): New static variable.
[gcc.git] / gcc / cfgcleanup.c
1 /* Control flow optimization code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains optimizer of the control flow. The main entrypoint is
23 cleanup_cfg. Following optimizations are performed:
24
25 - Unreachable blocks removal
26 - Edge forwarding (edge to the forwarder block is forwarded to it's
27 successor. Simplification of the branch instruction is performed by
28 underlying infrastructure so branch can be converted to simplejump or
29 eliminated).
30 - Cross jumping (tail merging)
31 - Conditional jump-around-simplejump simplification
32 - Basic block merging. */
33
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "rtl.h"
39 #include "hard-reg-set.h"
40 #include "basic-block.h"
41 #include "timevar.h"
42 #include "output.h"
43 #include "insn-config.h"
44 #include "flags.h"
45 #include "recog.h"
46 #include "toplev.h"
47 #include "cselib.h"
48 #include "params.h"
49 #include "tm_p.h"
50 #include "target.h"
51
52 /* cleanup_cfg maintains following flags for each basic block. */
53
54 enum bb_flags
55 {
56 /* Set if BB is the forwarder block to avoid too many
57 forwarder_block_p calls. */
58 BB_FORWARDER_BLOCK = 1,
59 BB_NONTHREADABLE_BLOCK = 2
60 };
61
62 #define BB_FLAGS(BB) (enum bb_flags) (BB)->aux
63 #define BB_SET_FLAG(BB, FLAG) \
64 (BB)->aux = (void *) (long) ((enum bb_flags) (BB)->aux | (FLAG))
65 #define BB_CLEAR_FLAG(BB, FLAG) \
66 (BB)->aux = (void *) (long) ((enum bb_flags) (BB)->aux & ~(FLAG))
67
68 #define FORWARDER_BLOCK_P(BB) (BB_FLAGS (BB) & BB_FORWARDER_BLOCK)
69
70 /* Set to true when we are running first pass of try_optimize_cfg loop. */
71 static bool first_pass;
72 static bool try_crossjump_to_edge (int, edge, edge);
73 static bool try_crossjump_bb (int, basic_block);
74 static bool outgoing_edges_match (int, basic_block, basic_block);
75 static int flow_find_cross_jump (int, basic_block, basic_block, rtx *, rtx *);
76 static bool insns_match_p (int, rtx, rtx);
77
78 static bool tail_recursion_label_p (rtx);
79 static void merge_blocks_move_predecessor_nojumps (basic_block, basic_block);
80 static void merge_blocks_move_successor_nojumps (basic_block, basic_block);
81 static bool try_optimize_cfg (int);
82 static bool try_simplify_condjump (basic_block);
83 static bool try_forward_edges (int, basic_block);
84 static edge thread_jump (int, edge, basic_block);
85 static bool mark_effect (rtx, bitmap);
86 static void notice_new_block (basic_block);
87 static void update_forwarder_flag (basic_block);
88 static int mentions_nonequal_regs (rtx *, void *);
89 \f
90 /* Set flags for newly created block. */
91
92 static void
93 notice_new_block (basic_block bb)
94 {
95 if (!bb)
96 return;
97
98 if (forwarder_block_p (bb))
99 BB_SET_FLAG (bb, BB_FORWARDER_BLOCK);
100 }
101
102 /* Recompute forwarder flag after block has been modified. */
103
104 static void
105 update_forwarder_flag (basic_block bb)
106 {
107 if (forwarder_block_p (bb))
108 BB_SET_FLAG (bb, BB_FORWARDER_BLOCK);
109 else
110 BB_CLEAR_FLAG (bb, BB_FORWARDER_BLOCK);
111 }
112 \f
113 /* Simplify a conditional jump around an unconditional jump.
114 Return true if something changed. */
115
116 static bool
117 try_simplify_condjump (basic_block cbranch_block)
118 {
119 basic_block jump_block, jump_dest_block, cbranch_dest_block;
120 edge cbranch_jump_edge, cbranch_fallthru_edge;
121 rtx cbranch_insn;
122 rtx insn, next;
123 rtx end;
124
125 /* Verify that there are exactly two successors. */
126 if (!cbranch_block->succ
127 || !cbranch_block->succ->succ_next
128 || cbranch_block->succ->succ_next->succ_next)
129 return false;
130
131 /* Verify that we've got a normal conditional branch at the end
132 of the block. */
133 cbranch_insn = BB_END (cbranch_block);
134 if (!any_condjump_p (cbranch_insn))
135 return false;
136
137 cbranch_fallthru_edge = FALLTHRU_EDGE (cbranch_block);
138 cbranch_jump_edge = BRANCH_EDGE (cbranch_block);
139
140 /* The next block must not have multiple predecessors, must not
141 be the last block in the function, and must contain just the
142 unconditional jump. */
143 jump_block = cbranch_fallthru_edge->dest;
144 if (jump_block->pred->pred_next
145 || jump_block->next_bb == EXIT_BLOCK_PTR
146 || !FORWARDER_BLOCK_P (jump_block))
147 return false;
148 jump_dest_block = jump_block->succ->dest;
149
150 /* The conditional branch must target the block after the
151 unconditional branch. */
152 cbranch_dest_block = cbranch_jump_edge->dest;
153
154 if (!can_fallthru (jump_block, cbranch_dest_block))
155 return false;
156
157 /* Invert the conditional branch. */
158 if (!invert_jump (cbranch_insn, block_label (jump_dest_block), 0))
159 return false;
160
161 if (rtl_dump_file)
162 fprintf (rtl_dump_file, "Simplifying condjump %i around jump %i\n",
163 INSN_UID (cbranch_insn), INSN_UID (BB_END (jump_block)));
164
165 /* Success. Update the CFG to match. Note that after this point
166 the edge variable names appear backwards; the redirection is done
167 this way to preserve edge profile data. */
168 cbranch_jump_edge = redirect_edge_succ_nodup (cbranch_jump_edge,
169 cbranch_dest_block);
170 cbranch_fallthru_edge = redirect_edge_succ_nodup (cbranch_fallthru_edge,
171 jump_dest_block);
172 cbranch_jump_edge->flags |= EDGE_FALLTHRU;
173 cbranch_fallthru_edge->flags &= ~EDGE_FALLTHRU;
174 update_br_prob_note (cbranch_block);
175
176 end = BB_END (jump_block);
177 /* Deleting a block may produce unreachable code warning even when we are
178 not deleting anything live. Suppress it by moving all the line number
179 notes out of the block. */
180 for (insn = BB_HEAD (jump_block); insn != NEXT_INSN (BB_END (jump_block));
181 insn = next)
182 {
183 next = NEXT_INSN (insn);
184 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
185 {
186 if (insn == BB_END (jump_block))
187 {
188 BB_END (jump_block) = PREV_INSN (insn);
189 if (insn == end)
190 break;
191 }
192 reorder_insns_nobb (insn, insn, end);
193 end = insn;
194 }
195 }
196 /* Delete the block with the unconditional jump, and clean up the mess. */
197 delete_block (jump_block);
198 tidy_fallthru_edge (cbranch_jump_edge, cbranch_block, cbranch_dest_block);
199
200 return true;
201 }
202 \f
203 /* Attempt to prove that operation is NOOP using CSElib or mark the effect
204 on register. Used by jump threading. */
205
206 static bool
207 mark_effect (rtx exp, regset nonequal)
208 {
209 int regno;
210 rtx dest;
211 switch (GET_CODE (exp))
212 {
213 /* In case we do clobber the register, mark it as equal, as we know the
214 value is dead so it don't have to match. */
215 case CLOBBER:
216 if (REG_P (XEXP (exp, 0)))
217 {
218 dest = XEXP (exp, 0);
219 regno = REGNO (dest);
220 CLEAR_REGNO_REG_SET (nonequal, regno);
221 if (regno < FIRST_PSEUDO_REGISTER)
222 {
223 int n = HARD_REGNO_NREGS (regno, GET_MODE (dest));
224 while (--n > 0)
225 CLEAR_REGNO_REG_SET (nonequal, regno + n);
226 }
227 }
228 return false;
229
230 case SET:
231 if (rtx_equal_for_cselib_p (SET_DEST (exp), SET_SRC (exp)))
232 return false;
233 dest = SET_DEST (exp);
234 if (dest == pc_rtx)
235 return false;
236 if (!REG_P (dest))
237 return true;
238 regno = REGNO (dest);
239 SET_REGNO_REG_SET (nonequal, regno);
240 if (regno < FIRST_PSEUDO_REGISTER)
241 {
242 int n = HARD_REGNO_NREGS (regno, GET_MODE (dest));
243 while (--n > 0)
244 SET_REGNO_REG_SET (nonequal, regno + n);
245 }
246 return false;
247
248 default:
249 return false;
250 }
251 }
252
253 /* Return nonzero if X is a register set in regset DATA.
254 Called via for_each_rtx. */
255 static int
256 mentions_nonequal_regs (rtx *x, void *data)
257 {
258 regset nonequal = (regset) data;
259 if (REG_P (*x))
260 {
261 int regno;
262
263 regno = REGNO (*x);
264 if (REGNO_REG_SET_P (nonequal, regno))
265 return 1;
266 if (regno < FIRST_PSEUDO_REGISTER)
267 {
268 int n = HARD_REGNO_NREGS (regno, GET_MODE (*x));
269 while (--n > 0)
270 if (REGNO_REG_SET_P (nonequal, regno + n))
271 return 1;
272 }
273 }
274 return 0;
275 }
276 /* Attempt to prove that the basic block B will have no side effects and
277 always continues in the same edge if reached via E. Return the edge
278 if exist, NULL otherwise. */
279
280 static edge
281 thread_jump (int mode, edge e, basic_block b)
282 {
283 rtx set1, set2, cond1, cond2, insn;
284 enum rtx_code code1, code2, reversed_code2;
285 bool reverse1 = false;
286 int i;
287 regset nonequal;
288 bool failed = false;
289
290 if (BB_FLAGS (b) & BB_NONTHREADABLE_BLOCK)
291 return NULL;
292
293 /* At the moment, we do handle only conditional jumps, but later we may
294 want to extend this code to tablejumps and others. */
295 if (!e->src->succ->succ_next || e->src->succ->succ_next->succ_next)
296 return NULL;
297 if (!b->succ || !b->succ->succ_next || b->succ->succ_next->succ_next)
298 {
299 BB_SET_FLAG (b, BB_NONTHREADABLE_BLOCK);
300 return NULL;
301 }
302
303 /* Second branch must end with onlyjump, as we will eliminate the jump. */
304 if (!any_condjump_p (BB_END (e->src)))
305 return NULL;
306
307 if (!any_condjump_p (BB_END (b)) || !onlyjump_p (BB_END (b)))
308 {
309 BB_SET_FLAG (b, BB_NONTHREADABLE_BLOCK);
310 return NULL;
311 }
312
313 set1 = pc_set (BB_END (e->src));
314 set2 = pc_set (BB_END (b));
315 if (((e->flags & EDGE_FALLTHRU) != 0)
316 != (XEXP (SET_SRC (set1), 1) == pc_rtx))
317 reverse1 = true;
318
319 cond1 = XEXP (SET_SRC (set1), 0);
320 cond2 = XEXP (SET_SRC (set2), 0);
321 if (reverse1)
322 code1 = reversed_comparison_code (cond1, BB_END (e->src));
323 else
324 code1 = GET_CODE (cond1);
325
326 code2 = GET_CODE (cond2);
327 reversed_code2 = reversed_comparison_code (cond2, BB_END (b));
328
329 if (!comparison_dominates_p (code1, code2)
330 && !comparison_dominates_p (code1, reversed_code2))
331 return NULL;
332
333 /* Ensure that the comparison operators are equivalent.
334 ??? This is far too pessimistic. We should allow swapped operands,
335 different CCmodes, or for example comparisons for interval, that
336 dominate even when operands are not equivalent. */
337 if (!rtx_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
338 || !rtx_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
339 return NULL;
340
341 /* Short circuit cases where block B contains some side effects, as we can't
342 safely bypass it. */
343 for (insn = NEXT_INSN (BB_HEAD (b)); insn != NEXT_INSN (BB_END (b));
344 insn = NEXT_INSN (insn))
345 if (INSN_P (insn) && side_effects_p (PATTERN (insn)))
346 {
347 BB_SET_FLAG (b, BB_NONTHREADABLE_BLOCK);
348 return NULL;
349 }
350
351 cselib_init ();
352
353 /* First process all values computed in the source basic block. */
354 for (insn = NEXT_INSN (BB_HEAD (e->src)); insn != NEXT_INSN (BB_END (e->src));
355 insn = NEXT_INSN (insn))
356 if (INSN_P (insn))
357 cselib_process_insn (insn);
358
359 nonequal = BITMAP_XMALLOC();
360 CLEAR_REG_SET (nonequal);
361
362 /* Now assume that we've continued by the edge E to B and continue
363 processing as if it were same basic block.
364 Our goal is to prove that whole block is an NOOP. */
365
366 for (insn = NEXT_INSN (BB_HEAD (b)); insn != NEXT_INSN (BB_END (b)) && !failed;
367 insn = NEXT_INSN (insn))
368 {
369 if (INSN_P (insn))
370 {
371 rtx pat = PATTERN (insn);
372
373 if (GET_CODE (pat) == PARALLEL)
374 {
375 for (i = 0; i < XVECLEN (pat, 0); i++)
376 failed |= mark_effect (XVECEXP (pat, 0, i), nonequal);
377 }
378 else
379 failed |= mark_effect (pat, nonequal);
380 }
381
382 cselib_process_insn (insn);
383 }
384
385 /* Later we should clear nonequal of dead registers. So far we don't
386 have life information in cfg_cleanup. */
387 if (failed)
388 {
389 BB_SET_FLAG (b, BB_NONTHREADABLE_BLOCK);
390 goto failed_exit;
391 }
392
393 /* cond2 must not mention any register that is not equal to the
394 former block. */
395 if (for_each_rtx (&cond2, mentions_nonequal_regs, nonequal))
396 goto failed_exit;
397
398 /* In case liveness information is available, we need to prove equivalence
399 only of the live values. */
400 if (mode & CLEANUP_UPDATE_LIFE)
401 AND_REG_SET (nonequal, b->global_live_at_end);
402
403 EXECUTE_IF_SET_IN_REG_SET (nonequal, 0, i, goto failed_exit;);
404
405 BITMAP_XFREE (nonequal);
406 cselib_finish ();
407 if ((comparison_dominates_p (code1, code2) != 0)
408 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
409 return BRANCH_EDGE (b);
410 else
411 return FALLTHRU_EDGE (b);
412
413 failed_exit:
414 BITMAP_XFREE (nonequal);
415 cselib_finish ();
416 return NULL;
417 }
418 \f
419 /* Attempt to forward edges leaving basic block B.
420 Return true if successful. */
421
422 static bool
423 try_forward_edges (int mode, basic_block b)
424 {
425 bool changed = false;
426 edge e, next, *threaded_edges = NULL;
427
428 for (e = b->succ; e; e = next)
429 {
430 basic_block target, first;
431 int counter;
432 bool threaded = false;
433 int nthreaded_edges = 0;
434 bool may_thread = first_pass | (b->flags & BB_DIRTY);
435
436 next = e->succ_next;
437
438 /* Skip complex edges because we don't know how to update them.
439
440 Still handle fallthru edges, as we can succeed to forward fallthru
441 edge to the same place as the branch edge of conditional branch
442 and turn conditional branch to an unconditional branch. */
443 if (e->flags & EDGE_COMPLEX)
444 continue;
445
446 target = first = e->dest;
447 counter = 0;
448
449 while (counter < n_basic_blocks)
450 {
451 basic_block new_target = NULL;
452 bool new_target_threaded = false;
453 may_thread |= target->flags & BB_DIRTY;
454
455 if (FORWARDER_BLOCK_P (target)
456 && target->succ->dest != EXIT_BLOCK_PTR)
457 {
458 /* Bypass trivial infinite loops. */
459 if (target == target->succ->dest)
460 counter = n_basic_blocks;
461 new_target = target->succ->dest;
462 }
463
464 /* Allow to thread only over one edge at time to simplify updating
465 of probabilities. */
466 else if ((mode & CLEANUP_THREADING) && may_thread)
467 {
468 edge t = thread_jump (mode, e, target);
469 if (t)
470 {
471 if (!threaded_edges)
472 threaded_edges = xmalloc (sizeof (*threaded_edges)
473 * n_basic_blocks);
474 else
475 {
476 int i;
477
478 /* Detect an infinite loop across blocks not
479 including the start block. */
480 for (i = 0; i < nthreaded_edges; ++i)
481 if (threaded_edges[i] == t)
482 break;
483 if (i < nthreaded_edges)
484 {
485 counter = n_basic_blocks;
486 break;
487 }
488 }
489
490 /* Detect an infinite loop across the start block. */
491 if (t->dest == b)
492 break;
493
494 if (nthreaded_edges >= n_basic_blocks)
495 abort ();
496 threaded_edges[nthreaded_edges++] = t;
497
498 new_target = t->dest;
499 new_target_threaded = true;
500 }
501 }
502
503 if (!new_target)
504 break;
505
506 /* Avoid killing of loop pre-headers, as it is the place loop
507 optimizer wants to hoist code to.
508
509 For fallthru forwarders, the LOOP_BEG note must appear between
510 the header of block and CODE_LABEL of the loop, for non forwarders
511 it must appear before the JUMP_INSN. */
512 if ((mode & CLEANUP_PRE_LOOP) && optimize)
513 {
514 rtx insn = (target->succ->flags & EDGE_FALLTHRU
515 ? BB_HEAD (target) : prev_nonnote_insn (BB_END (target)));
516
517 if (GET_CODE (insn) != NOTE)
518 insn = NEXT_INSN (insn);
519
520 for (; insn && GET_CODE (insn) != CODE_LABEL && !INSN_P (insn);
521 insn = NEXT_INSN (insn))
522 if (GET_CODE (insn) == NOTE
523 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
524 break;
525
526 if (GET_CODE (insn) == NOTE)
527 break;
528
529 /* Do not clean up branches to just past the end of a loop
530 at this time; it can mess up the loop optimizer's
531 recognition of some patterns. */
532
533 insn = PREV_INSN (BB_HEAD (target));
534 if (insn && GET_CODE (insn) == NOTE
535 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
536 break;
537 }
538
539 counter++;
540 target = new_target;
541 threaded |= new_target_threaded;
542 }
543
544 if (counter >= n_basic_blocks)
545 {
546 if (rtl_dump_file)
547 fprintf (rtl_dump_file, "Infinite loop in BB %i.\n",
548 target->index);
549 }
550 else if (target == first)
551 ; /* We didn't do anything. */
552 else
553 {
554 /* Save the values now, as the edge may get removed. */
555 gcov_type edge_count = e->count;
556 int edge_probability = e->probability;
557 int edge_frequency;
558 int n = 0;
559
560 /* Don't force if target is exit block. */
561 if (threaded && target != EXIT_BLOCK_PTR)
562 {
563 notice_new_block (redirect_edge_and_branch_force (e, target));
564 if (rtl_dump_file)
565 fprintf (rtl_dump_file, "Conditionals threaded.\n");
566 }
567 else if (!redirect_edge_and_branch (e, target))
568 {
569 if (rtl_dump_file)
570 fprintf (rtl_dump_file,
571 "Forwarding edge %i->%i to %i failed.\n",
572 b->index, e->dest->index, target->index);
573 continue;
574 }
575
576 /* We successfully forwarded the edge. Now update profile
577 data: for each edge we traversed in the chain, remove
578 the original edge's execution count. */
579 edge_frequency = ((edge_probability * b->frequency
580 + REG_BR_PROB_BASE / 2)
581 / REG_BR_PROB_BASE);
582
583 if (!FORWARDER_BLOCK_P (b) && forwarder_block_p (b))
584 BB_SET_FLAG (b, BB_FORWARDER_BLOCK);
585
586 do
587 {
588 edge t;
589
590 first->count -= edge_count;
591 if (first->count < 0)
592 first->count = 0;
593 first->frequency -= edge_frequency;
594 if (first->frequency < 0)
595 first->frequency = 0;
596 if (first->succ->succ_next)
597 {
598 edge e;
599 int prob;
600 if (n >= nthreaded_edges)
601 abort ();
602 t = threaded_edges [n++];
603 if (t->src != first)
604 abort ();
605 if (first->frequency)
606 prob = edge_frequency * REG_BR_PROB_BASE / first->frequency;
607 else
608 prob = 0;
609 if (prob > t->probability)
610 prob = t->probability;
611 t->probability -= prob;
612 prob = REG_BR_PROB_BASE - prob;
613 if (prob <= 0)
614 {
615 first->succ->probability = REG_BR_PROB_BASE;
616 first->succ->succ_next->probability = 0;
617 }
618 else
619 for (e = first->succ; e; e = e->succ_next)
620 e->probability = ((e->probability * REG_BR_PROB_BASE)
621 / (double) prob);
622 update_br_prob_note (first);
623 }
624 else
625 {
626 /* It is possible that as the result of
627 threading we've removed edge as it is
628 threaded to the fallthru edge. Avoid
629 getting out of sync. */
630 if (n < nthreaded_edges
631 && first == threaded_edges [n]->src)
632 n++;
633 t = first->succ;
634 }
635
636 t->count -= edge_count;
637 if (t->count < 0)
638 t->count = 0;
639 first = t->dest;
640 }
641 while (first != target);
642
643 changed = true;
644 }
645 }
646
647 if (threaded_edges)
648 free (threaded_edges);
649 return changed;
650 }
651 \f
652 /* Return true if LABEL is used for tail recursion. */
653
654 static bool
655 tail_recursion_label_p (rtx label)
656 {
657 rtx x;
658
659 for (x = tail_recursion_label_list; x; x = XEXP (x, 1))
660 if (label == XEXP (x, 0))
661 return true;
662
663 return false;
664 }
665
666 /* Blocks A and B are to be merged into a single block. A has no incoming
667 fallthru edge, so it can be moved before B without adding or modifying
668 any jumps (aside from the jump from A to B). */
669
670 static void
671 merge_blocks_move_predecessor_nojumps (basic_block a, basic_block b)
672 {
673 rtx barrier;
674
675 barrier = next_nonnote_insn (BB_END (a));
676 if (GET_CODE (barrier) != BARRIER)
677 abort ();
678 delete_insn (barrier);
679
680 /* Move block and loop notes out of the chain so that we do not
681 disturb their order.
682
683 ??? A better solution would be to squeeze out all the non-nested notes
684 and adjust the block trees appropriately. Even better would be to have
685 a tighter connection between block trees and rtl so that this is not
686 necessary. */
687 if (squeeze_notes (&BB_HEAD (a), &BB_END (a)))
688 abort ();
689
690 /* Scramble the insn chain. */
691 if (BB_END (a) != PREV_INSN (BB_HEAD (b)))
692 reorder_insns_nobb (BB_HEAD (a), BB_END (a), PREV_INSN (BB_HEAD (b)));
693 a->flags |= BB_DIRTY;
694
695 if (rtl_dump_file)
696 fprintf (rtl_dump_file, "Moved block %d before %d and merged.\n",
697 a->index, b->index);
698
699 /* Swap the records for the two blocks around. */
700
701 unlink_block (a);
702 link_block (a, b->prev_bb);
703
704 /* Now blocks A and B are contiguous. Merge them. */
705 merge_blocks (a, b);
706 }
707
708 /* Blocks A and B are to be merged into a single block. B has no outgoing
709 fallthru edge, so it can be moved after A without adding or modifying
710 any jumps (aside from the jump from A to B). */
711
712 static void
713 merge_blocks_move_successor_nojumps (basic_block a, basic_block b)
714 {
715 rtx barrier, real_b_end;
716 rtx label, table;
717
718 real_b_end = BB_END (b);
719
720 /* If there is a jump table following block B temporarily add the jump table
721 to block B so that it will also be moved to the correct location. */
722 if (tablejump_p (BB_END (b), &label, &table)
723 && prev_active_insn (label) == BB_END (b))
724 {
725 BB_END (b) = table;
726 }
727
728 /* There had better have been a barrier there. Delete it. */
729 barrier = NEXT_INSN (BB_END (b));
730 if (barrier && GET_CODE (barrier) == BARRIER)
731 delete_insn (barrier);
732
733 /* Move block and loop notes out of the chain so that we do not
734 disturb their order.
735
736 ??? A better solution would be to squeeze out all the non-nested notes
737 and adjust the block trees appropriately. Even better would be to have
738 a tighter connection between block trees and rtl so that this is not
739 necessary. */
740 if (squeeze_notes (&BB_HEAD (b), &BB_END (b)))
741 abort ();
742
743 /* Scramble the insn chain. */
744 reorder_insns_nobb (BB_HEAD (b), BB_END (b), BB_END (a));
745
746 /* Restore the real end of b. */
747 BB_END (b) = real_b_end;
748
749 if (rtl_dump_file)
750 fprintf (rtl_dump_file, "Moved block %d after %d and merged.\n",
751 b->index, a->index);
752
753 /* Now blocks A and B are contiguous. Merge them. */
754 merge_blocks (a, b);
755 }
756
757 /* Attempt to merge basic blocks that are potentially non-adjacent.
758 Return NULL iff the attempt failed, otherwise return basic block
759 where cleanup_cfg should continue. Because the merging commonly
760 moves basic block away or introduces another optimization
761 possibility, return basic block just before B so cleanup_cfg don't
762 need to iterate.
763
764 It may be good idea to return basic block before C in the case
765 C has been moved after B and originally appeared earlier in the
766 insn sequence, but we have no information available about the
767 relative ordering of these two. Hopefully it is not too common. */
768
769 static basic_block
770 merge_blocks_move (edge e, basic_block b, basic_block c, int mode)
771 {
772 basic_block next;
773 /* If C has a tail recursion label, do not merge. There is no
774 edge recorded from the call_placeholder back to this label, as
775 that would make optimize_sibling_and_tail_recursive_calls more
776 complex for no gain. */
777 if ((mode & CLEANUP_PRE_SIBCALL)
778 && GET_CODE (BB_HEAD (c)) == CODE_LABEL
779 && tail_recursion_label_p (BB_HEAD (c)))
780 return NULL;
781
782 /* If B has a fallthru edge to C, no need to move anything. */
783 if (e->flags & EDGE_FALLTHRU)
784 {
785 int b_index = b->index, c_index = c->index;
786 merge_blocks (b, c);
787 update_forwarder_flag (b);
788
789 if (rtl_dump_file)
790 fprintf (rtl_dump_file, "Merged %d and %d without moving.\n",
791 b_index, c_index);
792
793 return b->prev_bb == ENTRY_BLOCK_PTR ? b : b->prev_bb;
794 }
795
796 /* Otherwise we will need to move code around. Do that only if expensive
797 transformations are allowed. */
798 else if (mode & CLEANUP_EXPENSIVE)
799 {
800 edge tmp_edge, b_fallthru_edge;
801 bool c_has_outgoing_fallthru;
802 bool b_has_incoming_fallthru;
803
804 /* Avoid overactive code motion, as the forwarder blocks should be
805 eliminated by edge redirection instead. One exception might have
806 been if B is a forwarder block and C has no fallthru edge, but
807 that should be cleaned up by bb-reorder instead. */
808 if (FORWARDER_BLOCK_P (b) || FORWARDER_BLOCK_P (c))
809 return NULL;
810
811 /* We must make sure to not munge nesting of lexical blocks,
812 and loop notes. This is done by squeezing out all the notes
813 and leaving them there to lie. Not ideal, but functional. */
814
815 for (tmp_edge = c->succ; tmp_edge; tmp_edge = tmp_edge->succ_next)
816 if (tmp_edge->flags & EDGE_FALLTHRU)
817 break;
818
819 c_has_outgoing_fallthru = (tmp_edge != NULL);
820
821 for (tmp_edge = b->pred; tmp_edge; tmp_edge = tmp_edge->pred_next)
822 if (tmp_edge->flags & EDGE_FALLTHRU)
823 break;
824
825 b_has_incoming_fallthru = (tmp_edge != NULL);
826 b_fallthru_edge = tmp_edge;
827 next = b->prev_bb;
828 if (next == c)
829 next = next->prev_bb;
830
831 /* Otherwise, we're going to try to move C after B. If C does
832 not have an outgoing fallthru, then it can be moved
833 immediately after B without introducing or modifying jumps. */
834 if (! c_has_outgoing_fallthru)
835 {
836 merge_blocks_move_successor_nojumps (b, c);
837 return next == ENTRY_BLOCK_PTR ? next->next_bb : next;
838 }
839
840 /* If B does not have an incoming fallthru, then it can be moved
841 immediately before C without introducing or modifying jumps.
842 C cannot be the first block, so we do not have to worry about
843 accessing a non-existent block. */
844
845 if (b_has_incoming_fallthru)
846 {
847 basic_block bb;
848
849 if (b_fallthru_edge->src == ENTRY_BLOCK_PTR)
850 return NULL;
851 bb = force_nonfallthru (b_fallthru_edge);
852 if (bb)
853 notice_new_block (bb);
854 }
855
856 merge_blocks_move_predecessor_nojumps (b, c);
857 return next == ENTRY_BLOCK_PTR ? next->next_bb : next;
858 }
859
860 return NULL;
861 }
862 \f
863
864 /* Return true if I1 and I2 are equivalent and thus can be crossjumped. */
865
866 static bool
867 insns_match_p (int mode ATTRIBUTE_UNUSED, rtx i1, rtx i2)
868 {
869 rtx p1, p2;
870
871 /* Verify that I1 and I2 are equivalent. */
872 if (GET_CODE (i1) != GET_CODE (i2))
873 return false;
874
875 p1 = PATTERN (i1);
876 p2 = PATTERN (i2);
877
878 if (GET_CODE (p1) != GET_CODE (p2))
879 return false;
880
881 /* If this is a CALL_INSN, compare register usage information.
882 If we don't check this on stack register machines, the two
883 CALL_INSNs might be merged leaving reg-stack.c with mismatching
884 numbers of stack registers in the same basic block.
885 If we don't check this on machines with delay slots, a delay slot may
886 be filled that clobbers a parameter expected by the subroutine.
887
888 ??? We take the simple route for now and assume that if they're
889 equal, they were constructed identically. */
890
891 if (GET_CODE (i1) == CALL_INSN
892 && (!rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1),
893 CALL_INSN_FUNCTION_USAGE (i2))
894 || SIBLING_CALL_P (i1) != SIBLING_CALL_P (i2)))
895 return false;
896
897 #ifdef STACK_REGS
898 /* If cross_jump_death_matters is not 0, the insn's mode
899 indicates whether or not the insn contains any stack-like
900 regs. */
901
902 if ((mode & CLEANUP_POST_REGSTACK) && stack_regs_mentioned (i1))
903 {
904 /* If register stack conversion has already been done, then
905 death notes must also be compared before it is certain that
906 the two instruction streams match. */
907
908 rtx note;
909 HARD_REG_SET i1_regset, i2_regset;
910
911 CLEAR_HARD_REG_SET (i1_regset);
912 CLEAR_HARD_REG_SET (i2_regset);
913
914 for (note = REG_NOTES (i1); note; note = XEXP (note, 1))
915 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
916 SET_HARD_REG_BIT (i1_regset, REGNO (XEXP (note, 0)));
917
918 for (note = REG_NOTES (i2); note; note = XEXP (note, 1))
919 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
920 SET_HARD_REG_BIT (i2_regset, REGNO (XEXP (note, 0)));
921
922 GO_IF_HARD_REG_EQUAL (i1_regset, i2_regset, done);
923
924 return false;
925
926 done:
927 ;
928 }
929 #endif
930
931 if (reload_completed
932 ? rtx_renumbered_equal_p (p1, p2) : rtx_equal_p (p1, p2))
933 return true;
934
935 /* Do not do EQUIV substitution after reload. First, we're undoing the
936 work of reload_cse. Second, we may be undoing the work of the post-
937 reload splitting pass. */
938 /* ??? Possibly add a new phase switch variable that can be used by
939 targets to disallow the troublesome insns after splitting. */
940 if (!reload_completed)
941 {
942 /* The following code helps take care of G++ cleanups. */
943 rtx equiv1 = find_reg_equal_equiv_note (i1);
944 rtx equiv2 = find_reg_equal_equiv_note (i2);
945
946 if (equiv1 && equiv2
947 /* If the equivalences are not to a constant, they may
948 reference pseudos that no longer exist, so we can't
949 use them. */
950 && (! reload_completed
951 || (CONSTANT_P (XEXP (equiv1, 0))
952 && rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))))
953 {
954 rtx s1 = single_set (i1);
955 rtx s2 = single_set (i2);
956 if (s1 != 0 && s2 != 0
957 && rtx_renumbered_equal_p (SET_DEST (s1), SET_DEST (s2)))
958 {
959 validate_change (i1, &SET_SRC (s1), XEXP (equiv1, 0), 1);
960 validate_change (i2, &SET_SRC (s2), XEXP (equiv2, 0), 1);
961 if (! rtx_renumbered_equal_p (p1, p2))
962 cancel_changes (0);
963 else if (apply_change_group ())
964 return true;
965 }
966 }
967 }
968
969 return false;
970 }
971 \f
972 /* Look through the insns at the end of BB1 and BB2 and find the longest
973 sequence that are equivalent. Store the first insns for that sequence
974 in *F1 and *F2 and return the sequence length.
975
976 To simplify callers of this function, if the blocks match exactly,
977 store the head of the blocks in *F1 and *F2. */
978
979 static int
980 flow_find_cross_jump (int mode ATTRIBUTE_UNUSED, basic_block bb1,
981 basic_block bb2, rtx *f1, rtx *f2)
982 {
983 rtx i1, i2, last1, last2, afterlast1, afterlast2;
984 int ninsns = 0;
985
986 /* Skip simple jumps at the end of the blocks. Complex jumps still
987 need to be compared for equivalence, which we'll do below. */
988
989 i1 = BB_END (bb1);
990 last1 = afterlast1 = last2 = afterlast2 = NULL_RTX;
991 if (onlyjump_p (i1)
992 || (returnjump_p (i1) && !side_effects_p (PATTERN (i1))))
993 {
994 last1 = i1;
995 i1 = PREV_INSN (i1);
996 }
997
998 i2 = BB_END (bb2);
999 if (onlyjump_p (i2)
1000 || (returnjump_p (i2) && !side_effects_p (PATTERN (i2))))
1001 {
1002 last2 = i2;
1003 /* Count everything except for unconditional jump as insn. */
1004 if (!simplejump_p (i2) && !returnjump_p (i2) && last1)
1005 ninsns++;
1006 i2 = PREV_INSN (i2);
1007 }
1008
1009 while (true)
1010 {
1011 /* Ignore notes. */
1012 while (!INSN_P (i1) && i1 != BB_HEAD (bb1))
1013 i1 = PREV_INSN (i1);
1014
1015 while (!INSN_P (i2) && i2 != BB_HEAD (bb2))
1016 i2 = PREV_INSN (i2);
1017
1018 if (i1 == BB_HEAD (bb1) || i2 == BB_HEAD (bb2))
1019 break;
1020
1021 if (!insns_match_p (mode, i1, i2))
1022 break;
1023
1024 /* Don't begin a cross-jump with a NOTE insn. */
1025 if (INSN_P (i1))
1026 {
1027 /* If the merged insns have different REG_EQUAL notes, then
1028 remove them. */
1029 rtx equiv1 = find_reg_equal_equiv_note (i1);
1030 rtx equiv2 = find_reg_equal_equiv_note (i2);
1031
1032 if (equiv1 && !equiv2)
1033 remove_note (i1, equiv1);
1034 else if (!equiv1 && equiv2)
1035 remove_note (i2, equiv2);
1036 else if (equiv1 && equiv2
1037 && !rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))
1038 {
1039 remove_note (i1, equiv1);
1040 remove_note (i2, equiv2);
1041 }
1042
1043 afterlast1 = last1, afterlast2 = last2;
1044 last1 = i1, last2 = i2;
1045 ninsns++;
1046 }
1047
1048 i1 = PREV_INSN (i1);
1049 i2 = PREV_INSN (i2);
1050 }
1051
1052 #ifdef HAVE_cc0
1053 /* Don't allow the insn after a compare to be shared by
1054 cross-jumping unless the compare is also shared. */
1055 if (ninsns && reg_mentioned_p (cc0_rtx, last1) && ! sets_cc0_p (last1))
1056 last1 = afterlast1, last2 = afterlast2, ninsns--;
1057 #endif
1058
1059 /* Include preceding notes and labels in the cross-jump. One,
1060 this may bring us to the head of the blocks as requested above.
1061 Two, it keeps line number notes as matched as may be. */
1062 if (ninsns)
1063 {
1064 while (last1 != BB_HEAD (bb1) && !INSN_P (PREV_INSN (last1)))
1065 last1 = PREV_INSN (last1);
1066
1067 if (last1 != BB_HEAD (bb1) && GET_CODE (PREV_INSN (last1)) == CODE_LABEL)
1068 last1 = PREV_INSN (last1);
1069
1070 while (last2 != BB_HEAD (bb2) && !INSN_P (PREV_INSN (last2)))
1071 last2 = PREV_INSN (last2);
1072
1073 if (last2 != BB_HEAD (bb2) && GET_CODE (PREV_INSN (last2)) == CODE_LABEL)
1074 last2 = PREV_INSN (last2);
1075
1076 *f1 = last1;
1077 *f2 = last2;
1078 }
1079
1080 return ninsns;
1081 }
1082
1083 /* Return true iff outgoing edges of BB1 and BB2 match, together with
1084 the branch instruction. This means that if we commonize the control
1085 flow before end of the basic block, the semantic remains unchanged.
1086
1087 We may assume that there exists one edge with a common destination. */
1088
1089 static bool
1090 outgoing_edges_match (int mode, basic_block bb1, basic_block bb2)
1091 {
1092 int nehedges1 = 0, nehedges2 = 0;
1093 edge fallthru1 = 0, fallthru2 = 0;
1094 edge e1, e2;
1095
1096 /* If BB1 has only one successor, we may be looking at either an
1097 unconditional jump, or a fake edge to exit. */
1098 if (bb1->succ && !bb1->succ->succ_next
1099 && (bb1->succ->flags & (EDGE_COMPLEX | EDGE_FAKE)) == 0
1100 && (GET_CODE (BB_END (bb1)) != JUMP_INSN || simplejump_p (BB_END (bb1))))
1101 return (bb2->succ && !bb2->succ->succ_next
1102 && (bb2->succ->flags & (EDGE_COMPLEX | EDGE_FAKE)) == 0
1103 && (GET_CODE (BB_END (bb2)) != JUMP_INSN || simplejump_p (BB_END (bb2))));
1104
1105 /* Match conditional jumps - this may get tricky when fallthru and branch
1106 edges are crossed. */
1107 if (bb1->succ
1108 && bb1->succ->succ_next
1109 && !bb1->succ->succ_next->succ_next
1110 && any_condjump_p (BB_END (bb1))
1111 && onlyjump_p (BB_END (bb1)))
1112 {
1113 edge b1, f1, b2, f2;
1114 bool reverse, match;
1115 rtx set1, set2, cond1, cond2;
1116 enum rtx_code code1, code2;
1117
1118 if (!bb2->succ
1119 || !bb2->succ->succ_next
1120 || bb2->succ->succ_next->succ_next
1121 || !any_condjump_p (BB_END (bb2))
1122 || !onlyjump_p (BB_END (bb2)))
1123 return false;
1124
1125 b1 = BRANCH_EDGE (bb1);
1126 b2 = BRANCH_EDGE (bb2);
1127 f1 = FALLTHRU_EDGE (bb1);
1128 f2 = FALLTHRU_EDGE (bb2);
1129
1130 /* Get around possible forwarders on fallthru edges. Other cases
1131 should be optimized out already. */
1132 if (FORWARDER_BLOCK_P (f1->dest))
1133 f1 = f1->dest->succ;
1134
1135 if (FORWARDER_BLOCK_P (f2->dest))
1136 f2 = f2->dest->succ;
1137
1138 /* To simplify use of this function, return false if there are
1139 unneeded forwarder blocks. These will get eliminated later
1140 during cleanup_cfg. */
1141 if (FORWARDER_BLOCK_P (f1->dest)
1142 || FORWARDER_BLOCK_P (f2->dest)
1143 || FORWARDER_BLOCK_P (b1->dest)
1144 || FORWARDER_BLOCK_P (b2->dest))
1145 return false;
1146
1147 if (f1->dest == f2->dest && b1->dest == b2->dest)
1148 reverse = false;
1149 else if (f1->dest == b2->dest && b1->dest == f2->dest)
1150 reverse = true;
1151 else
1152 return false;
1153
1154 set1 = pc_set (BB_END (bb1));
1155 set2 = pc_set (BB_END (bb2));
1156 if ((XEXP (SET_SRC (set1), 1) == pc_rtx)
1157 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
1158 reverse = !reverse;
1159
1160 cond1 = XEXP (SET_SRC (set1), 0);
1161 cond2 = XEXP (SET_SRC (set2), 0);
1162 code1 = GET_CODE (cond1);
1163 if (reverse)
1164 code2 = reversed_comparison_code (cond2, BB_END (bb2));
1165 else
1166 code2 = GET_CODE (cond2);
1167
1168 if (code2 == UNKNOWN)
1169 return false;
1170
1171 /* Verify codes and operands match. */
1172 match = ((code1 == code2
1173 && rtx_renumbered_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
1174 && rtx_renumbered_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
1175 || (code1 == swap_condition (code2)
1176 && rtx_renumbered_equal_p (XEXP (cond1, 1),
1177 XEXP (cond2, 0))
1178 && rtx_renumbered_equal_p (XEXP (cond1, 0),
1179 XEXP (cond2, 1))));
1180
1181 /* If we return true, we will join the blocks. Which means that
1182 we will only have one branch prediction bit to work with. Thus
1183 we require the existing branches to have probabilities that are
1184 roughly similar. */
1185 if (match
1186 && !optimize_size
1187 && maybe_hot_bb_p (bb1)
1188 && maybe_hot_bb_p (bb2))
1189 {
1190 int prob2;
1191
1192 if (b1->dest == b2->dest)
1193 prob2 = b2->probability;
1194 else
1195 /* Do not use f2 probability as f2 may be forwarded. */
1196 prob2 = REG_BR_PROB_BASE - b2->probability;
1197
1198 /* Fail if the difference in probabilities is greater than 50%.
1199 This rules out two well-predicted branches with opposite
1200 outcomes. */
1201 if (abs (b1->probability - prob2) > REG_BR_PROB_BASE / 2)
1202 {
1203 if (rtl_dump_file)
1204 fprintf (rtl_dump_file,
1205 "Outcomes of branch in bb %i and %i differs to much (%i %i)\n",
1206 bb1->index, bb2->index, b1->probability, prob2);
1207
1208 return false;
1209 }
1210 }
1211
1212 if (rtl_dump_file && match)
1213 fprintf (rtl_dump_file, "Conditionals in bb %i and %i match.\n",
1214 bb1->index, bb2->index);
1215
1216 return match;
1217 }
1218
1219 /* Generic case - we are seeing a computed jump, table jump or trapping
1220 instruction. */
1221
1222 #ifndef CASE_DROPS_THROUGH
1223 /* Check whether there are tablejumps in the end of BB1 and BB2.
1224 Return true if they are identical. */
1225 {
1226 rtx label1, label2;
1227 rtx table1, table2;
1228
1229 if (tablejump_p (BB_END (bb1), &label1, &table1)
1230 && tablejump_p (BB_END (bb2), &label2, &table2)
1231 && GET_CODE (PATTERN (table1)) == GET_CODE (PATTERN (table2)))
1232 {
1233 /* The labels should never be the same rtx. If they really are same
1234 the jump tables are same too. So disable crossjumping of blocks BB1
1235 and BB2 because when deleting the common insns in the end of BB1
1236 by delete_block () the jump table would be deleted too. */
1237 /* If LABEL2 is referenced in BB1->END do not do anything
1238 because we would loose information when replacing
1239 LABEL1 by LABEL2 and then LABEL2 by LABEL1 in BB1->END. */
1240 if (label1 != label2 && !rtx_referenced_p (label2, BB_END (bb1)))
1241 {
1242 /* Set IDENTICAL to true when the tables are identical. */
1243 bool identical = false;
1244 rtx p1, p2;
1245
1246 p1 = PATTERN (table1);
1247 p2 = PATTERN (table2);
1248 if (GET_CODE (p1) == ADDR_VEC && rtx_equal_p (p1, p2))
1249 {
1250 identical = true;
1251 }
1252 else if (GET_CODE (p1) == ADDR_DIFF_VEC
1253 && (XVECLEN (p1, 1) == XVECLEN (p2, 1))
1254 && rtx_equal_p (XEXP (p1, 2), XEXP (p2, 2))
1255 && rtx_equal_p (XEXP (p1, 3), XEXP (p2, 3)))
1256 {
1257 int i;
1258
1259 identical = true;
1260 for (i = XVECLEN (p1, 1) - 1; i >= 0 && identical; i--)
1261 if (!rtx_equal_p (XVECEXP (p1, 1, i), XVECEXP (p2, 1, i)))
1262 identical = false;
1263 }
1264
1265 if (identical)
1266 {
1267 replace_label_data rr;
1268 bool match;
1269
1270 /* Temporarily replace references to LABEL1 with LABEL2
1271 in BB1->END so that we could compare the instructions. */
1272 rr.r1 = label1;
1273 rr.r2 = label2;
1274 rr.update_label_nuses = false;
1275 for_each_rtx (&BB_END (bb1), replace_label, &rr);
1276
1277 match = insns_match_p (mode, BB_END (bb1), BB_END (bb2));
1278 if (rtl_dump_file && match)
1279 fprintf (rtl_dump_file,
1280 "Tablejumps in bb %i and %i match.\n",
1281 bb1->index, bb2->index);
1282
1283 /* Set the original label in BB1->END because when deleting
1284 a block whose end is a tablejump, the tablejump referenced
1285 from the instruction is deleted too. */
1286 rr.r1 = label2;
1287 rr.r2 = label1;
1288 for_each_rtx (&BB_END (bb1), replace_label, &rr);
1289
1290 return match;
1291 }
1292 }
1293 return false;
1294 }
1295 }
1296 #endif
1297
1298 /* First ensure that the instructions match. There may be many outgoing
1299 edges so this test is generally cheaper. */
1300 if (!insns_match_p (mode, BB_END (bb1), BB_END (bb2)))
1301 return false;
1302
1303 /* Search the outgoing edges, ensure that the counts do match, find possible
1304 fallthru and exception handling edges since these needs more
1305 validation. */
1306 for (e1 = bb1->succ, e2 = bb2->succ; e1 && e2;
1307 e1 = e1->succ_next, e2 = e2->succ_next)
1308 {
1309 if (e1->flags & EDGE_EH)
1310 nehedges1++;
1311
1312 if (e2->flags & EDGE_EH)
1313 nehedges2++;
1314
1315 if (e1->flags & EDGE_FALLTHRU)
1316 fallthru1 = e1;
1317 if (e2->flags & EDGE_FALLTHRU)
1318 fallthru2 = e2;
1319 }
1320
1321 /* If number of edges of various types does not match, fail. */
1322 if (e1 || e2
1323 || nehedges1 != nehedges2
1324 || (fallthru1 != 0) != (fallthru2 != 0))
1325 return false;
1326
1327 /* fallthru edges must be forwarded to the same destination. */
1328 if (fallthru1)
1329 {
1330 basic_block d1 = (forwarder_block_p (fallthru1->dest)
1331 ? fallthru1->dest->succ->dest: fallthru1->dest);
1332 basic_block d2 = (forwarder_block_p (fallthru2->dest)
1333 ? fallthru2->dest->succ->dest: fallthru2->dest);
1334
1335 if (d1 != d2)
1336 return false;
1337 }
1338
1339 /* Ensure the same EH region. */
1340 {
1341 rtx n1 = find_reg_note (BB_END (bb1), REG_EH_REGION, 0);
1342 rtx n2 = find_reg_note (BB_END (bb2), REG_EH_REGION, 0);
1343
1344 if (!n1 && n2)
1345 return false;
1346
1347 if (n1 && (!n2 || XEXP (n1, 0) != XEXP (n2, 0)))
1348 return false;
1349 }
1350
1351 /* We don't need to match the rest of edges as above checks should be enough
1352 to ensure that they are equivalent. */
1353 return true;
1354 }
1355
1356 /* E1 and E2 are edges with the same destination block. Search their
1357 predecessors for common code. If found, redirect control flow from
1358 (maybe the middle of) E1->SRC to (maybe the middle of) E2->SRC. */
1359
1360 static bool
1361 try_crossjump_to_edge (int mode, edge e1, edge e2)
1362 {
1363 int nmatch;
1364 basic_block src1 = e1->src, src2 = e2->src;
1365 basic_block redirect_to, redirect_from, to_remove;
1366 rtx newpos1, newpos2;
1367 edge s;
1368
1369 /* Search backward through forwarder blocks. We don't need to worry
1370 about multiple entry or chained forwarders, as they will be optimized
1371 away. We do this to look past the unconditional jump following a
1372 conditional jump that is required due to the current CFG shape. */
1373 if (src1->pred
1374 && !src1->pred->pred_next
1375 && FORWARDER_BLOCK_P (src1))
1376 e1 = src1->pred, src1 = e1->src;
1377
1378 if (src2->pred
1379 && !src2->pred->pred_next
1380 && FORWARDER_BLOCK_P (src2))
1381 e2 = src2->pred, src2 = e2->src;
1382
1383 /* Nothing to do if we reach ENTRY, or a common source block. */
1384 if (src1 == ENTRY_BLOCK_PTR || src2 == ENTRY_BLOCK_PTR)
1385 return false;
1386 if (src1 == src2)
1387 return false;
1388
1389 /* Seeing more than 1 forwarder blocks would confuse us later... */
1390 if (FORWARDER_BLOCK_P (e1->dest)
1391 && FORWARDER_BLOCK_P (e1->dest->succ->dest))
1392 return false;
1393
1394 if (FORWARDER_BLOCK_P (e2->dest)
1395 && FORWARDER_BLOCK_P (e2->dest->succ->dest))
1396 return false;
1397
1398 /* Likewise with dead code (possibly newly created by the other optimizations
1399 of cfg_cleanup). */
1400 if (!src1->pred || !src2->pred)
1401 return false;
1402
1403 /* Look for the common insn sequence, part the first ... */
1404 if (!outgoing_edges_match (mode, src1, src2))
1405 return false;
1406
1407 /* ... and part the second. */
1408 nmatch = flow_find_cross_jump (mode, src1, src2, &newpos1, &newpos2);
1409 if (!nmatch)
1410 return false;
1411
1412 #ifndef CASE_DROPS_THROUGH
1413 /* Here we know that the insns in the end of SRC1 which are common with SRC2
1414 will be deleted.
1415 If we have tablejumps in the end of SRC1 and SRC2
1416 they have been already compared for equivalence in outgoing_edges_match ()
1417 so replace the references to TABLE1 by references to TABLE2. */
1418 {
1419 rtx label1, label2;
1420 rtx table1, table2;
1421
1422 if (tablejump_p (BB_END (src1), &label1, &table1)
1423 && tablejump_p (BB_END (src2), &label2, &table2)
1424 && label1 != label2)
1425 {
1426 replace_label_data rr;
1427 rtx insn;
1428
1429 /* Replace references to LABEL1 with LABEL2. */
1430 rr.r1 = label1;
1431 rr.r2 = label2;
1432 rr.update_label_nuses = true;
1433 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1434 {
1435 /* Do not replace the label in SRC1->END because when deleting
1436 a block whose end is a tablejump, the tablejump referenced
1437 from the instruction is deleted too. */
1438 if (insn != BB_END (src1))
1439 for_each_rtx (&insn, replace_label, &rr);
1440 }
1441 }
1442 }
1443 #endif
1444
1445 /* Avoid splitting if possible. */
1446 if (newpos2 == BB_HEAD (src2))
1447 redirect_to = src2;
1448 else
1449 {
1450 if (rtl_dump_file)
1451 fprintf (rtl_dump_file, "Splitting bb %i before %i insns\n",
1452 src2->index, nmatch);
1453 redirect_to = split_block (src2, PREV_INSN (newpos2))->dest;
1454 }
1455
1456 if (rtl_dump_file)
1457 fprintf (rtl_dump_file,
1458 "Cross jumping from bb %i to bb %i; %i common insns\n",
1459 src1->index, src2->index, nmatch);
1460
1461 redirect_to->count += src1->count;
1462 redirect_to->frequency += src1->frequency;
1463 /* We may have some registers visible trought the block. */
1464 redirect_to->flags |= BB_DIRTY;
1465
1466 /* Recompute the frequencies and counts of outgoing edges. */
1467 for (s = redirect_to->succ; s; s = s->succ_next)
1468 {
1469 edge s2;
1470 basic_block d = s->dest;
1471
1472 if (FORWARDER_BLOCK_P (d))
1473 d = d->succ->dest;
1474
1475 for (s2 = src1->succ; ; s2 = s2->succ_next)
1476 {
1477 basic_block d2 = s2->dest;
1478 if (FORWARDER_BLOCK_P (d2))
1479 d2 = d2->succ->dest;
1480 if (d == d2)
1481 break;
1482 }
1483
1484 s->count += s2->count;
1485
1486 /* Take care to update possible forwarder blocks. We verified
1487 that there is no more than one in the chain, so we can't run
1488 into infinite loop. */
1489 if (FORWARDER_BLOCK_P (s->dest))
1490 {
1491 s->dest->succ->count += s2->count;
1492 s->dest->count += s2->count;
1493 s->dest->frequency += EDGE_FREQUENCY (s);
1494 }
1495
1496 if (FORWARDER_BLOCK_P (s2->dest))
1497 {
1498 s2->dest->succ->count -= s2->count;
1499 if (s2->dest->succ->count < 0)
1500 s2->dest->succ->count = 0;
1501 s2->dest->count -= s2->count;
1502 s2->dest->frequency -= EDGE_FREQUENCY (s);
1503 if (s2->dest->frequency < 0)
1504 s2->dest->frequency = 0;
1505 if (s2->dest->count < 0)
1506 s2->dest->count = 0;
1507 }
1508
1509 if (!redirect_to->frequency && !src1->frequency)
1510 s->probability = (s->probability + s2->probability) / 2;
1511 else
1512 s->probability
1513 = ((s->probability * redirect_to->frequency +
1514 s2->probability * src1->frequency)
1515 / (redirect_to->frequency + src1->frequency));
1516 }
1517
1518 update_br_prob_note (redirect_to);
1519
1520 /* Edit SRC1 to go to REDIRECT_TO at NEWPOS1. */
1521
1522 /* Skip possible basic block header. */
1523 if (GET_CODE (newpos1) == CODE_LABEL)
1524 newpos1 = NEXT_INSN (newpos1);
1525
1526 if (GET_CODE (newpos1) == NOTE)
1527 newpos1 = NEXT_INSN (newpos1);
1528
1529 redirect_from = split_block (src1, PREV_INSN (newpos1))->src;
1530 to_remove = redirect_from->succ->dest;
1531
1532 redirect_edge_and_branch_force (redirect_from->succ, redirect_to);
1533 delete_block (to_remove);
1534
1535 update_forwarder_flag (redirect_from);
1536
1537 return true;
1538 }
1539
1540 /* Search the predecessors of BB for common insn sequences. When found,
1541 share code between them by redirecting control flow. Return true if
1542 any changes made. */
1543
1544 static bool
1545 try_crossjump_bb (int mode, basic_block bb)
1546 {
1547 edge e, e2, nexte2, nexte, fallthru;
1548 bool changed;
1549 int n = 0, max;
1550
1551 /* Nothing to do if there is not at least two incoming edges. */
1552 if (!bb->pred || !bb->pred->pred_next)
1553 return false;
1554
1555 /* It is always cheapest to redirect a block that ends in a branch to
1556 a block that falls through into BB, as that adds no branches to the
1557 program. We'll try that combination first. */
1558 fallthru = NULL;
1559 max = PARAM_VALUE (PARAM_MAX_CROSSJUMP_EDGES);
1560 for (e = bb->pred; e ; e = e->pred_next, n++)
1561 {
1562 if (e->flags & EDGE_FALLTHRU)
1563 fallthru = e;
1564 if (n > max)
1565 return false;
1566 }
1567
1568 changed = false;
1569 for (e = bb->pred; e; e = nexte)
1570 {
1571 nexte = e->pred_next;
1572
1573 /* As noted above, first try with the fallthru predecessor. */
1574 if (fallthru)
1575 {
1576 /* Don't combine the fallthru edge into anything else.
1577 If there is a match, we'll do it the other way around. */
1578 if (e == fallthru)
1579 continue;
1580 /* If nothing changed since the last attempt, there is nothing
1581 we can do. */
1582 if (!first_pass
1583 && (!(e->src->flags & BB_DIRTY)
1584 && !(fallthru->src->flags & BB_DIRTY)))
1585 continue;
1586
1587 if (try_crossjump_to_edge (mode, e, fallthru))
1588 {
1589 changed = true;
1590 nexte = bb->pred;
1591 continue;
1592 }
1593 }
1594
1595 /* Non-obvious work limiting check: Recognize that we're going
1596 to call try_crossjump_bb on every basic block. So if we have
1597 two blocks with lots of outgoing edges (a switch) and they
1598 share lots of common destinations, then we would do the
1599 cross-jump check once for each common destination.
1600
1601 Now, if the blocks actually are cross-jump candidates, then
1602 all of their destinations will be shared. Which means that
1603 we only need check them for cross-jump candidacy once. We
1604 can eliminate redundant checks of crossjump(A,B) by arbitrarily
1605 choosing to do the check from the block for which the edge
1606 in question is the first successor of A. */
1607 if (e->src->succ != e)
1608 continue;
1609
1610 for (e2 = bb->pred; e2; e2 = nexte2)
1611 {
1612 nexte2 = e2->pred_next;
1613
1614 if (e2 == e)
1615 continue;
1616
1617 /* We've already checked the fallthru edge above. */
1618 if (e2 == fallthru)
1619 continue;
1620
1621 /* The "first successor" check above only prevents multiple
1622 checks of crossjump(A,B). In order to prevent redundant
1623 checks of crossjump(B,A), require that A be the block
1624 with the lowest index. */
1625 if (e->src->index > e2->src->index)
1626 continue;
1627
1628 /* If nothing changed since the last attempt, there is nothing
1629 we can do. */
1630 if (!first_pass
1631 && (!(e->src->flags & BB_DIRTY)
1632 && !(e2->src->flags & BB_DIRTY)))
1633 continue;
1634
1635 if (try_crossjump_to_edge (mode, e, e2))
1636 {
1637 changed = true;
1638 nexte = bb->pred;
1639 break;
1640 }
1641 }
1642 }
1643
1644 return changed;
1645 }
1646
1647 /* Do simple CFG optimizations - basic block merging, simplifying of jump
1648 instructions etc. Return nonzero if changes were made. */
1649
1650 static bool
1651 try_optimize_cfg (int mode)
1652 {
1653 bool changed_overall = false;
1654 bool changed;
1655 int iterations = 0;
1656 basic_block bb, b, next;
1657
1658 if (mode & CLEANUP_CROSSJUMP)
1659 add_noreturn_fake_exit_edges ();
1660
1661 FOR_EACH_BB (bb)
1662 update_forwarder_flag (bb);
1663
1664 if (mode & (CLEANUP_UPDATE_LIFE | CLEANUP_CROSSJUMP | CLEANUP_THREADING))
1665 clear_bb_flags ();
1666
1667 if (! (* targetm.cannot_modify_jumps_p) ())
1668 {
1669 first_pass = true;
1670 /* Attempt to merge blocks as made possible by edge removal. If
1671 a block has only one successor, and the successor has only
1672 one predecessor, they may be combined. */
1673 do
1674 {
1675 changed = false;
1676 iterations++;
1677
1678 if (rtl_dump_file)
1679 fprintf (rtl_dump_file,
1680 "\n\ntry_optimize_cfg iteration %i\n\n",
1681 iterations);
1682
1683 for (b = ENTRY_BLOCK_PTR->next_bb; b != EXIT_BLOCK_PTR;)
1684 {
1685 basic_block c;
1686 edge s;
1687 bool changed_here = false;
1688
1689 /* Delete trivially dead basic blocks. */
1690 while (b->pred == NULL)
1691 {
1692 c = b->prev_bb;
1693 if (rtl_dump_file)
1694 fprintf (rtl_dump_file, "Deleting block %i.\n",
1695 b->index);
1696
1697 delete_block (b);
1698 if (!(mode & CLEANUP_CFGLAYOUT))
1699 changed = true;
1700 b = c;
1701 }
1702
1703 /* Remove code labels no longer used. Don't do this
1704 before CALL_PLACEHOLDER is removed, as some branches
1705 may be hidden within. */
1706 if (b->pred->pred_next == NULL
1707 && (b->pred->flags & EDGE_FALLTHRU)
1708 && !(b->pred->flags & EDGE_COMPLEX)
1709 && GET_CODE (BB_HEAD (b)) == CODE_LABEL
1710 && (!(mode & CLEANUP_PRE_SIBCALL)
1711 || !tail_recursion_label_p (BB_HEAD (b)))
1712 /* If the previous block ends with a branch to this
1713 block, we can't delete the label. Normally this
1714 is a condjump that is yet to be simplified, but
1715 if CASE_DROPS_THRU, this can be a tablejump with
1716 some element going to the same place as the
1717 default (fallthru). */
1718 && (b->pred->src == ENTRY_BLOCK_PTR
1719 || GET_CODE (BB_END (b->pred->src)) != JUMP_INSN
1720 || ! label_is_jump_target_p (BB_HEAD (b),
1721 BB_END (b->pred->src))))
1722 {
1723 rtx label = BB_HEAD (b);
1724
1725 delete_insn_chain (label, label);
1726 /* In the case label is undeletable, move it after the
1727 BASIC_BLOCK note. */
1728 if (NOTE_LINE_NUMBER (BB_HEAD (b)) == NOTE_INSN_DELETED_LABEL)
1729 {
1730 rtx bb_note = NEXT_INSN (BB_HEAD (b));
1731
1732 reorder_insns_nobb (label, label, bb_note);
1733 BB_HEAD (b) = bb_note;
1734 }
1735 if (rtl_dump_file)
1736 fprintf (rtl_dump_file, "Deleted label in block %i.\n",
1737 b->index);
1738 }
1739
1740 /* If we fall through an empty block, we can remove it. */
1741 if (!(mode & CLEANUP_CFGLAYOUT)
1742 && b->pred->pred_next == NULL
1743 && (b->pred->flags & EDGE_FALLTHRU)
1744 && GET_CODE (BB_HEAD (b)) != CODE_LABEL
1745 && FORWARDER_BLOCK_P (b)
1746 /* Note that forwarder_block_p true ensures that
1747 there is a successor for this block. */
1748 && (b->succ->flags & EDGE_FALLTHRU)
1749 && n_basic_blocks > 1)
1750 {
1751 if (rtl_dump_file)
1752 fprintf (rtl_dump_file,
1753 "Deleting fallthru block %i.\n",
1754 b->index);
1755
1756 c = b->prev_bb == ENTRY_BLOCK_PTR ? b->next_bb : b->prev_bb;
1757 redirect_edge_succ_nodup (b->pred, b->succ->dest);
1758 delete_block (b);
1759 changed = true;
1760 b = c;
1761 }
1762
1763 if ((s = b->succ) != NULL
1764 && s->succ_next == NULL
1765 && !(s->flags & EDGE_COMPLEX)
1766 && (c = s->dest) != EXIT_BLOCK_PTR
1767 && c->pred->pred_next == NULL
1768 && b != c)
1769 {
1770 /* When not in cfg_layout mode use code aware of reordering
1771 INSN. This code possibly creates new basic blocks so it
1772 does not fit merge_blocks interface and is kept here in
1773 hope that it will become useless once more of compiler
1774 is transformed to use cfg_layout mode. */
1775
1776 if ((mode & CLEANUP_CFGLAYOUT)
1777 && can_merge_blocks_p (b, c))
1778 {
1779 merge_blocks (b, c);
1780 update_forwarder_flag (b);
1781 changed_here = true;
1782 }
1783 else if (!(mode & CLEANUP_CFGLAYOUT)
1784 /* If the jump insn has side effects,
1785 we can't kill the edge. */
1786 && (GET_CODE (BB_END (b)) != JUMP_INSN
1787 || (reload_completed
1788 ? simplejump_p (BB_END (b))
1789 : onlyjump_p (BB_END (b))))
1790 && (next = merge_blocks_move (s, b, c, mode)))
1791 {
1792 b = next;
1793 changed_here = true;
1794 }
1795 }
1796
1797 /* Simplify branch over branch. */
1798 if ((mode & CLEANUP_EXPENSIVE)
1799 && !(mode & CLEANUP_CFGLAYOUT)
1800 && try_simplify_condjump (b))
1801 changed_here = true;
1802
1803 /* If B has a single outgoing edge, but uses a
1804 non-trivial jump instruction without side-effects, we
1805 can either delete the jump entirely, or replace it
1806 with a simple unconditional jump. */
1807 if (b->succ
1808 && ! b->succ->succ_next
1809 && b->succ->dest != EXIT_BLOCK_PTR
1810 && onlyjump_p (BB_END (b))
1811 && try_redirect_by_replacing_jump (b->succ, b->succ->dest,
1812 (mode & CLEANUP_CFGLAYOUT)))
1813 {
1814 update_forwarder_flag (b);
1815 changed_here = true;
1816 }
1817
1818 /* Simplify branch to branch. */
1819 if (try_forward_edges (mode, b))
1820 changed_here = true;
1821
1822 /* Look for shared code between blocks. */
1823 if ((mode & CLEANUP_CROSSJUMP)
1824 && try_crossjump_bb (mode, b))
1825 changed_here = true;
1826
1827 /* Don't get confused by the index shift caused by
1828 deleting blocks. */
1829 if (!changed_here)
1830 b = b->next_bb;
1831 else
1832 changed = true;
1833 }
1834
1835 if ((mode & CLEANUP_CROSSJUMP)
1836 && try_crossjump_bb (mode, EXIT_BLOCK_PTR))
1837 changed = true;
1838
1839 #ifdef ENABLE_CHECKING
1840 if (changed)
1841 verify_flow_info ();
1842 #endif
1843
1844 changed_overall |= changed;
1845 first_pass = false;
1846 }
1847 while (changed);
1848 }
1849
1850 if (mode & CLEANUP_CROSSJUMP)
1851 remove_fake_edges ();
1852
1853 clear_aux_for_blocks ();
1854
1855 return changed_overall;
1856 }
1857 \f
1858 /* Delete all unreachable basic blocks. */
1859
1860 bool
1861 delete_unreachable_blocks (void)
1862 {
1863 bool changed = false;
1864 basic_block b, next_bb;
1865
1866 find_unreachable_blocks ();
1867
1868 /* Delete all unreachable basic blocks. */
1869
1870 for (b = ENTRY_BLOCK_PTR->next_bb; b != EXIT_BLOCK_PTR; b = next_bb)
1871 {
1872 next_bb = b->next_bb;
1873
1874 if (!(b->flags & BB_REACHABLE))
1875 {
1876 delete_block (b);
1877 changed = true;
1878 }
1879 }
1880
1881 if (changed)
1882 tidy_fallthru_edges ();
1883 return changed;
1884 }
1885 \f
1886 /* Tidy the CFG by deleting unreachable code and whatnot. */
1887
1888 bool
1889 cleanup_cfg (int mode)
1890 {
1891 bool changed = false;
1892
1893 timevar_push (TV_CLEANUP_CFG);
1894 if (delete_unreachable_blocks ())
1895 {
1896 changed = true;
1897 /* We've possibly created trivially dead code. Cleanup it right
1898 now to introduce more opportunities for try_optimize_cfg. */
1899 if (!(mode & (CLEANUP_NO_INSN_DEL
1900 | CLEANUP_UPDATE_LIFE | CLEANUP_PRE_SIBCALL))
1901 && !reload_completed)
1902 delete_trivially_dead_insns (get_insns(), max_reg_num ());
1903 }
1904
1905 compact_blocks ();
1906
1907 while (try_optimize_cfg (mode))
1908 {
1909 delete_unreachable_blocks (), changed = true;
1910 if (mode & CLEANUP_UPDATE_LIFE)
1911 {
1912 /* Cleaning up CFG introduces more opportunities for dead code
1913 removal that in turn may introduce more opportunities for
1914 cleaning up the CFG. */
1915 if (!update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
1916 PROP_DEATH_NOTES
1917 | PROP_SCAN_DEAD_CODE
1918 | PROP_KILL_DEAD_CODE
1919 | PROP_LOG_LINKS))
1920 break;
1921 }
1922 else if (!(mode & (CLEANUP_NO_INSN_DEL | CLEANUP_PRE_SIBCALL))
1923 && (mode & CLEANUP_EXPENSIVE)
1924 && !reload_completed)
1925 {
1926 if (!delete_trivially_dead_insns (get_insns(), max_reg_num ()))
1927 break;
1928 }
1929 else
1930 break;
1931 delete_dead_jumptables ();
1932 }
1933
1934 /* Kill the data we won't maintain. */
1935 free_EXPR_LIST_list (&label_value_list);
1936 timevar_pop (TV_CLEANUP_CFG);
1937
1938 return changed;
1939 }