re PR target/43920 (Choosing conditional execution over conditional branches for...
[gcc.git] / gcc / cfgcleanup.c
1 /* Control flow optimization code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2010, 2011
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file contains optimizer of the control flow. The main entry point is
23 cleanup_cfg. Following optimizations are performed:
24
25 - Unreachable blocks removal
26 - Edge forwarding (edge to the forwarder block is forwarded to its
27 successor. Simplification of the branch instruction is performed by
28 underlying infrastructure so branch can be converted to simplejump or
29 eliminated).
30 - Cross jumping (tail merging)
31 - Conditional jump-around-simplejump simplification
32 - Basic block merging. */
33
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "rtl.h"
39 #include "hard-reg-set.h"
40 #include "regs.h"
41 #include "timevar.h"
42 #include "output.h"
43 #include "insn-config.h"
44 #include "flags.h"
45 #include "recog.h"
46 #include "diagnostic-core.h"
47 #include "cselib.h"
48 #include "params.h"
49 #include "tm_p.h"
50 #include "target.h"
51 #include "cfglayout.h"
52 #include "emit-rtl.h"
53 #include "tree-pass.h"
54 #include "cfgloop.h"
55 #include "expr.h"
56 #include "df.h"
57 #include "dce.h"
58 #include "dbgcnt.h"
59
60 #define FORWARDER_BLOCK_P(BB) ((BB)->flags & BB_FORWARDER_BLOCK)
61
62 /* Set to true when we are running first pass of try_optimize_cfg loop. */
63 static bool first_pass;
64
65 /* Set to true if crossjumps occured in the latest run of try_optimize_cfg. */
66 static bool crossjumps_occured;
67
68 /* Set to true if we couldn't run an optimization due to stale liveness
69 information; we should run df_analyze to enable more opportunities. */
70 static bool block_was_dirty;
71
72 static bool try_crossjump_to_edge (int, edge, edge);
73 static bool try_crossjump_bb (int, basic_block);
74 static bool outgoing_edges_match (int, basic_block, basic_block);
75 static enum replace_direction old_insns_match_p (int, rtx, rtx);
76
77 static void merge_blocks_move_predecessor_nojumps (basic_block, basic_block);
78 static void merge_blocks_move_successor_nojumps (basic_block, basic_block);
79 static bool try_optimize_cfg (int);
80 static bool try_simplify_condjump (basic_block);
81 static bool try_forward_edges (int, basic_block);
82 static edge thread_jump (edge, basic_block);
83 static bool mark_effect (rtx, bitmap);
84 static void notice_new_block (basic_block);
85 static void update_forwarder_flag (basic_block);
86 static int mentions_nonequal_regs (rtx *, void *);
87 static void merge_memattrs (rtx, rtx);
88 \f
89 /* Set flags for newly created block. */
90
91 static void
92 notice_new_block (basic_block bb)
93 {
94 if (!bb)
95 return;
96
97 if (forwarder_block_p (bb))
98 bb->flags |= BB_FORWARDER_BLOCK;
99 }
100
101 /* Recompute forwarder flag after block has been modified. */
102
103 static void
104 update_forwarder_flag (basic_block bb)
105 {
106 if (forwarder_block_p (bb))
107 bb->flags |= BB_FORWARDER_BLOCK;
108 else
109 bb->flags &= ~BB_FORWARDER_BLOCK;
110 }
111 \f
112 /* Simplify a conditional jump around an unconditional jump.
113 Return true if something changed. */
114
115 static bool
116 try_simplify_condjump (basic_block cbranch_block)
117 {
118 basic_block jump_block, jump_dest_block, cbranch_dest_block;
119 edge cbranch_jump_edge, cbranch_fallthru_edge;
120 rtx cbranch_insn;
121
122 /* Verify that there are exactly two successors. */
123 if (EDGE_COUNT (cbranch_block->succs) != 2)
124 return false;
125
126 /* Verify that we've got a normal conditional branch at the end
127 of the block. */
128 cbranch_insn = BB_END (cbranch_block);
129 if (!any_condjump_p (cbranch_insn))
130 return false;
131
132 cbranch_fallthru_edge = FALLTHRU_EDGE (cbranch_block);
133 cbranch_jump_edge = BRANCH_EDGE (cbranch_block);
134
135 /* The next block must not have multiple predecessors, must not
136 be the last block in the function, and must contain just the
137 unconditional jump. */
138 jump_block = cbranch_fallthru_edge->dest;
139 if (!single_pred_p (jump_block)
140 || jump_block->next_bb == EXIT_BLOCK_PTR
141 || !FORWARDER_BLOCK_P (jump_block))
142 return false;
143 jump_dest_block = single_succ (jump_block);
144
145 /* If we are partitioning hot/cold basic blocks, we don't want to
146 mess up unconditional or indirect jumps that cross between hot
147 and cold sections.
148
149 Basic block partitioning may result in some jumps that appear to
150 be optimizable (or blocks that appear to be mergeable), but which really
151 must be left untouched (they are required to make it safely across
152 partition boundaries). See the comments at the top of
153 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
154
155 if (BB_PARTITION (jump_block) != BB_PARTITION (jump_dest_block)
156 || (cbranch_jump_edge->flags & EDGE_CROSSING))
157 return false;
158
159 /* The conditional branch must target the block after the
160 unconditional branch. */
161 cbranch_dest_block = cbranch_jump_edge->dest;
162
163 if (cbranch_dest_block == EXIT_BLOCK_PTR
164 || !can_fallthru (jump_block, cbranch_dest_block))
165 return false;
166
167 /* Invert the conditional branch. */
168 if (!invert_jump (cbranch_insn, block_label (jump_dest_block), 0))
169 return false;
170
171 if (dump_file)
172 fprintf (dump_file, "Simplifying condjump %i around jump %i\n",
173 INSN_UID (cbranch_insn), INSN_UID (BB_END (jump_block)));
174
175 /* Success. Update the CFG to match. Note that after this point
176 the edge variable names appear backwards; the redirection is done
177 this way to preserve edge profile data. */
178 cbranch_jump_edge = redirect_edge_succ_nodup (cbranch_jump_edge,
179 cbranch_dest_block);
180 cbranch_fallthru_edge = redirect_edge_succ_nodup (cbranch_fallthru_edge,
181 jump_dest_block);
182 cbranch_jump_edge->flags |= EDGE_FALLTHRU;
183 cbranch_fallthru_edge->flags &= ~EDGE_FALLTHRU;
184 update_br_prob_note (cbranch_block);
185
186 /* Delete the block with the unconditional jump, and clean up the mess. */
187 delete_basic_block (jump_block);
188 tidy_fallthru_edge (cbranch_jump_edge);
189 update_forwarder_flag (cbranch_block);
190
191 return true;
192 }
193 \f
194 /* Attempt to prove that operation is NOOP using CSElib or mark the effect
195 on register. Used by jump threading. */
196
197 static bool
198 mark_effect (rtx exp, regset nonequal)
199 {
200 int regno;
201 rtx dest;
202 switch (GET_CODE (exp))
203 {
204 /* In case we do clobber the register, mark it as equal, as we know the
205 value is dead so it don't have to match. */
206 case CLOBBER:
207 if (REG_P (XEXP (exp, 0)))
208 {
209 dest = XEXP (exp, 0);
210 regno = REGNO (dest);
211 if (HARD_REGISTER_NUM_P (regno))
212 bitmap_clear_range (nonequal, regno,
213 hard_regno_nregs[regno][GET_MODE (dest)]);
214 else
215 bitmap_clear_bit (nonequal, regno);
216 }
217 return false;
218
219 case SET:
220 if (rtx_equal_for_cselib_p (SET_DEST (exp), SET_SRC (exp)))
221 return false;
222 dest = SET_DEST (exp);
223 if (dest == pc_rtx)
224 return false;
225 if (!REG_P (dest))
226 return true;
227 regno = REGNO (dest);
228 if (HARD_REGISTER_NUM_P (regno))
229 bitmap_set_range (nonequal, regno,
230 hard_regno_nregs[regno][GET_MODE (dest)]);
231 else
232 bitmap_set_bit (nonequal, regno);
233 return false;
234
235 default:
236 return false;
237 }
238 }
239
240 /* Return nonzero if X is a register set in regset DATA.
241 Called via for_each_rtx. */
242 static int
243 mentions_nonequal_regs (rtx *x, void *data)
244 {
245 regset nonequal = (regset) data;
246 if (REG_P (*x))
247 {
248 int regno;
249
250 regno = REGNO (*x);
251 if (REGNO_REG_SET_P (nonequal, regno))
252 return 1;
253 if (regno < FIRST_PSEUDO_REGISTER)
254 {
255 int n = hard_regno_nregs[regno][GET_MODE (*x)];
256 while (--n > 0)
257 if (REGNO_REG_SET_P (nonequal, regno + n))
258 return 1;
259 }
260 }
261 return 0;
262 }
263 /* Attempt to prove that the basic block B will have no side effects and
264 always continues in the same edge if reached via E. Return the edge
265 if exist, NULL otherwise. */
266
267 static edge
268 thread_jump (edge e, basic_block b)
269 {
270 rtx set1, set2, cond1, cond2, insn;
271 enum rtx_code code1, code2, reversed_code2;
272 bool reverse1 = false;
273 unsigned i;
274 regset nonequal;
275 bool failed = false;
276 reg_set_iterator rsi;
277
278 if (b->flags & BB_NONTHREADABLE_BLOCK)
279 return NULL;
280
281 /* At the moment, we do handle only conditional jumps, but later we may
282 want to extend this code to tablejumps and others. */
283 if (EDGE_COUNT (e->src->succs) != 2)
284 return NULL;
285 if (EDGE_COUNT (b->succs) != 2)
286 {
287 b->flags |= BB_NONTHREADABLE_BLOCK;
288 return NULL;
289 }
290
291 /* Second branch must end with onlyjump, as we will eliminate the jump. */
292 if (!any_condjump_p (BB_END (e->src)))
293 return NULL;
294
295 if (!any_condjump_p (BB_END (b)) || !onlyjump_p (BB_END (b)))
296 {
297 b->flags |= BB_NONTHREADABLE_BLOCK;
298 return NULL;
299 }
300
301 set1 = pc_set (BB_END (e->src));
302 set2 = pc_set (BB_END (b));
303 if (((e->flags & EDGE_FALLTHRU) != 0)
304 != (XEXP (SET_SRC (set1), 1) == pc_rtx))
305 reverse1 = true;
306
307 cond1 = XEXP (SET_SRC (set1), 0);
308 cond2 = XEXP (SET_SRC (set2), 0);
309 if (reverse1)
310 code1 = reversed_comparison_code (cond1, BB_END (e->src));
311 else
312 code1 = GET_CODE (cond1);
313
314 code2 = GET_CODE (cond2);
315 reversed_code2 = reversed_comparison_code (cond2, BB_END (b));
316
317 if (!comparison_dominates_p (code1, code2)
318 && !comparison_dominates_p (code1, reversed_code2))
319 return NULL;
320
321 /* Ensure that the comparison operators are equivalent.
322 ??? This is far too pessimistic. We should allow swapped operands,
323 different CCmodes, or for example comparisons for interval, that
324 dominate even when operands are not equivalent. */
325 if (!rtx_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
326 || !rtx_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
327 return NULL;
328
329 /* Short circuit cases where block B contains some side effects, as we can't
330 safely bypass it. */
331 for (insn = NEXT_INSN (BB_HEAD (b)); insn != NEXT_INSN (BB_END (b));
332 insn = NEXT_INSN (insn))
333 if (INSN_P (insn) && side_effects_p (PATTERN (insn)))
334 {
335 b->flags |= BB_NONTHREADABLE_BLOCK;
336 return NULL;
337 }
338
339 cselib_init (0);
340
341 /* First process all values computed in the source basic block. */
342 for (insn = NEXT_INSN (BB_HEAD (e->src));
343 insn != NEXT_INSN (BB_END (e->src));
344 insn = NEXT_INSN (insn))
345 if (INSN_P (insn))
346 cselib_process_insn (insn);
347
348 nonequal = BITMAP_ALLOC (NULL);
349 CLEAR_REG_SET (nonequal);
350
351 /* Now assume that we've continued by the edge E to B and continue
352 processing as if it were same basic block.
353 Our goal is to prove that whole block is an NOOP. */
354
355 for (insn = NEXT_INSN (BB_HEAD (b));
356 insn != NEXT_INSN (BB_END (b)) && !failed;
357 insn = NEXT_INSN (insn))
358 {
359 if (INSN_P (insn))
360 {
361 rtx pat = PATTERN (insn);
362
363 if (GET_CODE (pat) == PARALLEL)
364 {
365 for (i = 0; i < (unsigned)XVECLEN (pat, 0); i++)
366 failed |= mark_effect (XVECEXP (pat, 0, i), nonequal);
367 }
368 else
369 failed |= mark_effect (pat, nonequal);
370 }
371
372 cselib_process_insn (insn);
373 }
374
375 /* Later we should clear nonequal of dead registers. So far we don't
376 have life information in cfg_cleanup. */
377 if (failed)
378 {
379 b->flags |= BB_NONTHREADABLE_BLOCK;
380 goto failed_exit;
381 }
382
383 /* cond2 must not mention any register that is not equal to the
384 former block. */
385 if (for_each_rtx (&cond2, mentions_nonequal_regs, nonequal))
386 goto failed_exit;
387
388 EXECUTE_IF_SET_IN_REG_SET (nonequal, 0, i, rsi)
389 goto failed_exit;
390
391 BITMAP_FREE (nonequal);
392 cselib_finish ();
393 if ((comparison_dominates_p (code1, code2) != 0)
394 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
395 return BRANCH_EDGE (b);
396 else
397 return FALLTHRU_EDGE (b);
398
399 failed_exit:
400 BITMAP_FREE (nonequal);
401 cselib_finish ();
402 return NULL;
403 }
404 \f
405 /* Attempt to forward edges leaving basic block B.
406 Return true if successful. */
407
408 static bool
409 try_forward_edges (int mode, basic_block b)
410 {
411 bool changed = false;
412 edge_iterator ei;
413 edge e, *threaded_edges = NULL;
414
415 /* If we are partitioning hot/cold basic blocks, we don't want to
416 mess up unconditional or indirect jumps that cross between hot
417 and cold sections.
418
419 Basic block partitioning may result in some jumps that appear to
420 be optimizable (or blocks that appear to be mergeable), but which really
421 must be left untouched (they are required to make it safely across
422 partition boundaries). See the comments at the top of
423 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
424
425 if (find_reg_note (BB_END (b), REG_CROSSING_JUMP, NULL_RTX))
426 return false;
427
428 for (ei = ei_start (b->succs); (e = ei_safe_edge (ei)); )
429 {
430 basic_block target, first;
431 int counter, goto_locus;
432 bool threaded = false;
433 int nthreaded_edges = 0;
434 bool may_thread = first_pass || (b->flags & BB_MODIFIED) != 0;
435
436 /* Skip complex edges because we don't know how to update them.
437
438 Still handle fallthru edges, as we can succeed to forward fallthru
439 edge to the same place as the branch edge of conditional branch
440 and turn conditional branch to an unconditional branch. */
441 if (e->flags & EDGE_COMPLEX)
442 {
443 ei_next (&ei);
444 continue;
445 }
446
447 target = first = e->dest;
448 counter = NUM_FIXED_BLOCKS;
449 goto_locus = e->goto_locus;
450
451 /* If we are partitioning hot/cold basic_blocks, we don't want to mess
452 up jumps that cross between hot/cold sections.
453
454 Basic block partitioning may result in some jumps that appear
455 to be optimizable (or blocks that appear to be mergeable), but which
456 really must be left untouched (they are required to make it safely
457 across partition boundaries). See the comments at the top of
458 bb-reorder.c:partition_hot_cold_basic_blocks for complete
459 details. */
460
461 if (first != EXIT_BLOCK_PTR
462 && find_reg_note (BB_END (first), REG_CROSSING_JUMP, NULL_RTX))
463 return false;
464
465 while (counter < n_basic_blocks)
466 {
467 basic_block new_target = NULL;
468 bool new_target_threaded = false;
469 may_thread |= (target->flags & BB_MODIFIED) != 0;
470
471 if (FORWARDER_BLOCK_P (target)
472 && !(single_succ_edge (target)->flags & EDGE_CROSSING)
473 && single_succ (target) != EXIT_BLOCK_PTR)
474 {
475 /* Bypass trivial infinite loops. */
476 new_target = single_succ (target);
477 if (target == new_target)
478 counter = n_basic_blocks;
479 else if (!optimize)
480 {
481 /* When not optimizing, ensure that edges or forwarder
482 blocks with different locus are not optimized out. */
483 int new_locus = single_succ_edge (target)->goto_locus;
484 int locus = goto_locus;
485
486 if (new_locus && locus && !locator_eq (new_locus, locus))
487 new_target = NULL;
488 else
489 {
490 rtx last;
491
492 if (new_locus)
493 locus = new_locus;
494
495 last = BB_END (target);
496 if (DEBUG_INSN_P (last))
497 last = prev_nondebug_insn (last);
498
499 new_locus = last && INSN_P (last)
500 ? INSN_LOCATOR (last) : 0;
501
502 if (new_locus && locus && !locator_eq (new_locus, locus))
503 new_target = NULL;
504 else
505 {
506 if (new_locus)
507 locus = new_locus;
508
509 goto_locus = locus;
510 }
511 }
512 }
513 }
514
515 /* Allow to thread only over one edge at time to simplify updating
516 of probabilities. */
517 else if ((mode & CLEANUP_THREADING) && may_thread)
518 {
519 edge t = thread_jump (e, target);
520 if (t)
521 {
522 if (!threaded_edges)
523 threaded_edges = XNEWVEC (edge, n_basic_blocks);
524 else
525 {
526 int i;
527
528 /* Detect an infinite loop across blocks not
529 including the start block. */
530 for (i = 0; i < nthreaded_edges; ++i)
531 if (threaded_edges[i] == t)
532 break;
533 if (i < nthreaded_edges)
534 {
535 counter = n_basic_blocks;
536 break;
537 }
538 }
539
540 /* Detect an infinite loop across the start block. */
541 if (t->dest == b)
542 break;
543
544 gcc_assert (nthreaded_edges < n_basic_blocks - NUM_FIXED_BLOCKS);
545 threaded_edges[nthreaded_edges++] = t;
546
547 new_target = t->dest;
548 new_target_threaded = true;
549 }
550 }
551
552 if (!new_target)
553 break;
554
555 counter++;
556 target = new_target;
557 threaded |= new_target_threaded;
558 }
559
560 if (counter >= n_basic_blocks)
561 {
562 if (dump_file)
563 fprintf (dump_file, "Infinite loop in BB %i.\n",
564 target->index);
565 }
566 else if (target == first)
567 ; /* We didn't do anything. */
568 else
569 {
570 /* Save the values now, as the edge may get removed. */
571 gcov_type edge_count = e->count;
572 int edge_probability = e->probability;
573 int edge_frequency;
574 int n = 0;
575
576 e->goto_locus = goto_locus;
577
578 /* Don't force if target is exit block. */
579 if (threaded && target != EXIT_BLOCK_PTR)
580 {
581 notice_new_block (redirect_edge_and_branch_force (e, target));
582 if (dump_file)
583 fprintf (dump_file, "Conditionals threaded.\n");
584 }
585 else if (!redirect_edge_and_branch (e, target))
586 {
587 if (dump_file)
588 fprintf (dump_file,
589 "Forwarding edge %i->%i to %i failed.\n",
590 b->index, e->dest->index, target->index);
591 ei_next (&ei);
592 continue;
593 }
594
595 /* We successfully forwarded the edge. Now update profile
596 data: for each edge we traversed in the chain, remove
597 the original edge's execution count. */
598 edge_frequency = ((edge_probability * b->frequency
599 + REG_BR_PROB_BASE / 2)
600 / REG_BR_PROB_BASE);
601
602 if (!FORWARDER_BLOCK_P (b) && forwarder_block_p (b))
603 b->flags |= BB_FORWARDER_BLOCK;
604
605 do
606 {
607 edge t;
608
609 if (!single_succ_p (first))
610 {
611 gcc_assert (n < nthreaded_edges);
612 t = threaded_edges [n++];
613 gcc_assert (t->src == first);
614 update_bb_profile_for_threading (first, edge_frequency,
615 edge_count, t);
616 update_br_prob_note (first);
617 }
618 else
619 {
620 first->count -= edge_count;
621 if (first->count < 0)
622 first->count = 0;
623 first->frequency -= edge_frequency;
624 if (first->frequency < 0)
625 first->frequency = 0;
626 /* It is possible that as the result of
627 threading we've removed edge as it is
628 threaded to the fallthru edge. Avoid
629 getting out of sync. */
630 if (n < nthreaded_edges
631 && first == threaded_edges [n]->src)
632 n++;
633 t = single_succ_edge (first);
634 }
635
636 t->count -= edge_count;
637 if (t->count < 0)
638 t->count = 0;
639 first = t->dest;
640 }
641 while (first != target);
642
643 changed = true;
644 continue;
645 }
646 ei_next (&ei);
647 }
648
649 if (threaded_edges)
650 free (threaded_edges);
651 return changed;
652 }
653 \f
654
655 /* Blocks A and B are to be merged into a single block. A has no incoming
656 fallthru edge, so it can be moved before B without adding or modifying
657 any jumps (aside from the jump from A to B). */
658
659 static void
660 merge_blocks_move_predecessor_nojumps (basic_block a, basic_block b)
661 {
662 rtx barrier;
663
664 /* If we are partitioning hot/cold basic blocks, we don't want to
665 mess up unconditional or indirect jumps that cross between hot
666 and cold sections.
667
668 Basic block partitioning may result in some jumps that appear to
669 be optimizable (or blocks that appear to be mergeable), but which really
670 must be left untouched (they are required to make it safely across
671 partition boundaries). See the comments at the top of
672 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
673
674 if (BB_PARTITION (a) != BB_PARTITION (b))
675 return;
676
677 barrier = next_nonnote_insn (BB_END (a));
678 gcc_assert (BARRIER_P (barrier));
679 delete_insn (barrier);
680
681 /* Scramble the insn chain. */
682 if (BB_END (a) != PREV_INSN (BB_HEAD (b)))
683 reorder_insns_nobb (BB_HEAD (a), BB_END (a), PREV_INSN (BB_HEAD (b)));
684 df_set_bb_dirty (a);
685
686 if (dump_file)
687 fprintf (dump_file, "Moved block %d before %d and merged.\n",
688 a->index, b->index);
689
690 /* Swap the records for the two blocks around. */
691
692 unlink_block (a);
693 link_block (a, b->prev_bb);
694
695 /* Now blocks A and B are contiguous. Merge them. */
696 merge_blocks (a, b);
697 }
698
699 /* Blocks A and B are to be merged into a single block. B has no outgoing
700 fallthru edge, so it can be moved after A without adding or modifying
701 any jumps (aside from the jump from A to B). */
702
703 static void
704 merge_blocks_move_successor_nojumps (basic_block a, basic_block b)
705 {
706 rtx barrier, real_b_end;
707 rtx label, table;
708
709 /* If we are partitioning hot/cold basic blocks, we don't want to
710 mess up unconditional or indirect jumps that cross between hot
711 and cold sections.
712
713 Basic block partitioning may result in some jumps that appear to
714 be optimizable (or blocks that appear to be mergeable), but which really
715 must be left untouched (they are required to make it safely across
716 partition boundaries). See the comments at the top of
717 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
718
719 if (BB_PARTITION (a) != BB_PARTITION (b))
720 return;
721
722 real_b_end = BB_END (b);
723
724 /* If there is a jump table following block B temporarily add the jump table
725 to block B so that it will also be moved to the correct location. */
726 if (tablejump_p (BB_END (b), &label, &table)
727 && prev_active_insn (label) == BB_END (b))
728 {
729 BB_END (b) = table;
730 }
731
732 /* There had better have been a barrier there. Delete it. */
733 barrier = NEXT_INSN (BB_END (b));
734 if (barrier && BARRIER_P (barrier))
735 delete_insn (barrier);
736
737
738 /* Scramble the insn chain. */
739 reorder_insns_nobb (BB_HEAD (b), BB_END (b), BB_END (a));
740
741 /* Restore the real end of b. */
742 BB_END (b) = real_b_end;
743
744 if (dump_file)
745 fprintf (dump_file, "Moved block %d after %d and merged.\n",
746 b->index, a->index);
747
748 /* Now blocks A and B are contiguous. Merge them. */
749 merge_blocks (a, b);
750 }
751
752 /* Attempt to merge basic blocks that are potentially non-adjacent.
753 Return NULL iff the attempt failed, otherwise return basic block
754 where cleanup_cfg should continue. Because the merging commonly
755 moves basic block away or introduces another optimization
756 possibility, return basic block just before B so cleanup_cfg don't
757 need to iterate.
758
759 It may be good idea to return basic block before C in the case
760 C has been moved after B and originally appeared earlier in the
761 insn sequence, but we have no information available about the
762 relative ordering of these two. Hopefully it is not too common. */
763
764 static basic_block
765 merge_blocks_move (edge e, basic_block b, basic_block c, int mode)
766 {
767 basic_block next;
768
769 /* If we are partitioning hot/cold basic blocks, we don't want to
770 mess up unconditional or indirect jumps that cross between hot
771 and cold sections.
772
773 Basic block partitioning may result in some jumps that appear to
774 be optimizable (or blocks that appear to be mergeable), but which really
775 must be left untouched (they are required to make it safely across
776 partition boundaries). See the comments at the top of
777 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
778
779 if (BB_PARTITION (b) != BB_PARTITION (c))
780 return NULL;
781
782 /* If B has a fallthru edge to C, no need to move anything. */
783 if (e->flags & EDGE_FALLTHRU)
784 {
785 int b_index = b->index, c_index = c->index;
786 merge_blocks (b, c);
787 update_forwarder_flag (b);
788
789 if (dump_file)
790 fprintf (dump_file, "Merged %d and %d without moving.\n",
791 b_index, c_index);
792
793 return b->prev_bb == ENTRY_BLOCK_PTR ? b : b->prev_bb;
794 }
795
796 /* Otherwise we will need to move code around. Do that only if expensive
797 transformations are allowed. */
798 else if (mode & CLEANUP_EXPENSIVE)
799 {
800 edge tmp_edge, b_fallthru_edge;
801 bool c_has_outgoing_fallthru;
802 bool b_has_incoming_fallthru;
803
804 /* Avoid overactive code motion, as the forwarder blocks should be
805 eliminated by edge redirection instead. One exception might have
806 been if B is a forwarder block and C has no fallthru edge, but
807 that should be cleaned up by bb-reorder instead. */
808 if (FORWARDER_BLOCK_P (b) || FORWARDER_BLOCK_P (c))
809 return NULL;
810
811 /* We must make sure to not munge nesting of lexical blocks,
812 and loop notes. This is done by squeezing out all the notes
813 and leaving them there to lie. Not ideal, but functional. */
814
815 tmp_edge = find_fallthru_edge (c->succs);
816 c_has_outgoing_fallthru = (tmp_edge != NULL);
817
818 tmp_edge = find_fallthru_edge (b->preds);
819 b_has_incoming_fallthru = (tmp_edge != NULL);
820 b_fallthru_edge = tmp_edge;
821 next = b->prev_bb;
822 if (next == c)
823 next = next->prev_bb;
824
825 /* Otherwise, we're going to try to move C after B. If C does
826 not have an outgoing fallthru, then it can be moved
827 immediately after B without introducing or modifying jumps. */
828 if (! c_has_outgoing_fallthru)
829 {
830 merge_blocks_move_successor_nojumps (b, c);
831 return next == ENTRY_BLOCK_PTR ? next->next_bb : next;
832 }
833
834 /* If B does not have an incoming fallthru, then it can be moved
835 immediately before C without introducing or modifying jumps.
836 C cannot be the first block, so we do not have to worry about
837 accessing a non-existent block. */
838
839 if (b_has_incoming_fallthru)
840 {
841 basic_block bb;
842
843 if (b_fallthru_edge->src == ENTRY_BLOCK_PTR)
844 return NULL;
845 bb = force_nonfallthru (b_fallthru_edge);
846 if (bb)
847 notice_new_block (bb);
848 }
849
850 merge_blocks_move_predecessor_nojumps (b, c);
851 return next == ENTRY_BLOCK_PTR ? next->next_bb : next;
852 }
853
854 return NULL;
855 }
856 \f
857
858 /* Removes the memory attributes of MEM expression
859 if they are not equal. */
860
861 void
862 merge_memattrs (rtx x, rtx y)
863 {
864 int i;
865 int j;
866 enum rtx_code code;
867 const char *fmt;
868
869 if (x == y)
870 return;
871 if (x == 0 || y == 0)
872 return;
873
874 code = GET_CODE (x);
875
876 if (code != GET_CODE (y))
877 return;
878
879 if (GET_MODE (x) != GET_MODE (y))
880 return;
881
882 if (code == MEM && MEM_ATTRS (x) != MEM_ATTRS (y))
883 {
884 if (! MEM_ATTRS (x))
885 MEM_ATTRS (y) = 0;
886 else if (! MEM_ATTRS (y))
887 MEM_ATTRS (x) = 0;
888 else
889 {
890 rtx mem_size;
891
892 if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
893 {
894 set_mem_alias_set (x, 0);
895 set_mem_alias_set (y, 0);
896 }
897
898 if (! mem_expr_equal_p (MEM_EXPR (x), MEM_EXPR (y)))
899 {
900 set_mem_expr (x, 0);
901 set_mem_expr (y, 0);
902 set_mem_offset (x, 0);
903 set_mem_offset (y, 0);
904 }
905 else if (MEM_OFFSET (x) != MEM_OFFSET (y))
906 {
907 set_mem_offset (x, 0);
908 set_mem_offset (y, 0);
909 }
910
911 if (!MEM_SIZE (x))
912 mem_size = NULL_RTX;
913 else if (!MEM_SIZE (y))
914 mem_size = NULL_RTX;
915 else
916 mem_size = GEN_INT (MAX (INTVAL (MEM_SIZE (x)),
917 INTVAL (MEM_SIZE (y))));
918 set_mem_size (x, mem_size);
919 set_mem_size (y, mem_size);
920
921 set_mem_align (x, MIN (MEM_ALIGN (x), MEM_ALIGN (y)));
922 set_mem_align (y, MEM_ALIGN (x));
923 }
924 }
925
926 fmt = GET_RTX_FORMAT (code);
927 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
928 {
929 switch (fmt[i])
930 {
931 case 'E':
932 /* Two vectors must have the same length. */
933 if (XVECLEN (x, i) != XVECLEN (y, i))
934 return;
935
936 for (j = 0; j < XVECLEN (x, i); j++)
937 merge_memattrs (XVECEXP (x, i, j), XVECEXP (y, i, j));
938
939 break;
940
941 case 'e':
942 merge_memattrs (XEXP (x, i), XEXP (y, i));
943 }
944 }
945 return;
946 }
947
948
949 /* Checks if patterns P1 and P2 are equivalent, apart from the possibly
950 different single sets S1 and S2. */
951
952 static bool
953 equal_different_set_p (rtx p1, rtx s1, rtx p2, rtx s2)
954 {
955 int i;
956 rtx e1, e2;
957
958 if (p1 == s1 && p2 == s2)
959 return true;
960
961 if (GET_CODE (p1) != PARALLEL || GET_CODE (p2) != PARALLEL)
962 return false;
963
964 if (XVECLEN (p1, 0) != XVECLEN (p2, 0))
965 return false;
966
967 for (i = 0; i < XVECLEN (p1, 0); i++)
968 {
969 e1 = XVECEXP (p1, 0, i);
970 e2 = XVECEXP (p2, 0, i);
971 if (e1 == s1 && e2 == s2)
972 continue;
973 if (reload_completed
974 ? rtx_renumbered_equal_p (e1, e2) : rtx_equal_p (e1, e2))
975 continue;
976
977 return false;
978 }
979
980 return true;
981 }
982
983 /* Examine register notes on I1 and I2 and return:
984 - dir_forward if I1 can be replaced by I2, or
985 - dir_backward if I2 can be replaced by I1, or
986 - dir_both if both are the case. */
987
988 static enum replace_direction
989 can_replace_by (rtx i1, rtx i2)
990 {
991 rtx s1, s2, d1, d2, src1, src2, note1, note2;
992 bool c1, c2;
993
994 /* Check for 2 sets. */
995 s1 = single_set (i1);
996 s2 = single_set (i2);
997 if (s1 == NULL_RTX || s2 == NULL_RTX)
998 return dir_none;
999
1000 /* Check that the 2 sets set the same dest. */
1001 d1 = SET_DEST (s1);
1002 d2 = SET_DEST (s2);
1003 if (!(reload_completed
1004 ? rtx_renumbered_equal_p (d1, d2) : rtx_equal_p (d1, d2)))
1005 return dir_none;
1006
1007 /* Find identical req_equiv or reg_equal note, which implies that the 2 sets
1008 set dest to the same value. */
1009 note1 = find_reg_equal_equiv_note (i1);
1010 note2 = find_reg_equal_equiv_note (i2);
1011 if (!note1 || !note2 || !rtx_equal_p (XEXP (note1, 0), XEXP (note2, 0))
1012 || !CONST_INT_P (XEXP (note1, 0)))
1013 return dir_none;
1014
1015 if (!equal_different_set_p (PATTERN (i1), s1, PATTERN (i2), s2))
1016 return dir_none;
1017
1018 /* Although the 2 sets set dest to the same value, we cannot replace
1019 (set (dest) (const_int))
1020 by
1021 (set (dest) (reg))
1022 because we don't know if the reg is live and has the same value at the
1023 location of replacement. */
1024 src1 = SET_SRC (s1);
1025 src2 = SET_SRC (s2);
1026 c1 = CONST_INT_P (src1);
1027 c2 = CONST_INT_P (src2);
1028 if (c1 && c2)
1029 return dir_both;
1030 else if (c2)
1031 return dir_forward;
1032 else if (c1)
1033 return dir_backward;
1034
1035 return dir_none;
1036 }
1037
1038 /* Merges directions A and B. */
1039
1040 static enum replace_direction
1041 merge_dir (enum replace_direction a, enum replace_direction b)
1042 {
1043 /* Implements the following table:
1044 |bo fw bw no
1045 ---+-----------
1046 bo |bo fw bw no
1047 fw |-- fw no no
1048 bw |-- -- bw no
1049 no |-- -- -- no. */
1050
1051 if (a == b)
1052 return a;
1053
1054 if (a == dir_both)
1055 return b;
1056 if (b == dir_both)
1057 return a;
1058
1059 return dir_none;
1060 }
1061
1062 /* Examine I1 and I2 and return:
1063 - dir_forward if I1 can be replaced by I2, or
1064 - dir_backward if I2 can be replaced by I1, or
1065 - dir_both if both are the case. */
1066
1067 static enum replace_direction
1068 old_insns_match_p (int mode ATTRIBUTE_UNUSED, rtx i1, rtx i2)
1069 {
1070 rtx p1, p2;
1071
1072 /* Verify that I1 and I2 are equivalent. */
1073 if (GET_CODE (i1) != GET_CODE (i2))
1074 return dir_none;
1075
1076 /* __builtin_unreachable() may lead to empty blocks (ending with
1077 NOTE_INSN_BASIC_BLOCK). They may be crossjumped. */
1078 if (NOTE_INSN_BASIC_BLOCK_P (i1) && NOTE_INSN_BASIC_BLOCK_P (i2))
1079 return dir_both;
1080
1081 p1 = PATTERN (i1);
1082 p2 = PATTERN (i2);
1083
1084 if (GET_CODE (p1) != GET_CODE (p2))
1085 return dir_none;
1086
1087 /* If this is a CALL_INSN, compare register usage information.
1088 If we don't check this on stack register machines, the two
1089 CALL_INSNs might be merged leaving reg-stack.c with mismatching
1090 numbers of stack registers in the same basic block.
1091 If we don't check this on machines with delay slots, a delay slot may
1092 be filled that clobbers a parameter expected by the subroutine.
1093
1094 ??? We take the simple route for now and assume that if they're
1095 equal, they were constructed identically.
1096
1097 Also check for identical exception regions. */
1098
1099 if (CALL_P (i1))
1100 {
1101 /* Ensure the same EH region. */
1102 rtx n1 = find_reg_note (i1, REG_EH_REGION, 0);
1103 rtx n2 = find_reg_note (i2, REG_EH_REGION, 0);
1104
1105 if (!n1 && n2)
1106 return dir_none;
1107
1108 if (n1 && (!n2 || XEXP (n1, 0) != XEXP (n2, 0)))
1109 return dir_none;
1110
1111 if (!rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1),
1112 CALL_INSN_FUNCTION_USAGE (i2))
1113 || SIBLING_CALL_P (i1) != SIBLING_CALL_P (i2))
1114 return dir_none;
1115 }
1116
1117 #ifdef STACK_REGS
1118 /* If cross_jump_death_matters is not 0, the insn's mode
1119 indicates whether or not the insn contains any stack-like
1120 regs. */
1121
1122 if ((mode & CLEANUP_POST_REGSTACK) && stack_regs_mentioned (i1))
1123 {
1124 /* If register stack conversion has already been done, then
1125 death notes must also be compared before it is certain that
1126 the two instruction streams match. */
1127
1128 rtx note;
1129 HARD_REG_SET i1_regset, i2_regset;
1130
1131 CLEAR_HARD_REG_SET (i1_regset);
1132 CLEAR_HARD_REG_SET (i2_regset);
1133
1134 for (note = REG_NOTES (i1); note; note = XEXP (note, 1))
1135 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
1136 SET_HARD_REG_BIT (i1_regset, REGNO (XEXP (note, 0)));
1137
1138 for (note = REG_NOTES (i2); note; note = XEXP (note, 1))
1139 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
1140 SET_HARD_REG_BIT (i2_regset, REGNO (XEXP (note, 0)));
1141
1142 if (!hard_reg_set_equal_p (i1_regset, i2_regset))
1143 return dir_none;
1144 }
1145 #endif
1146
1147 if (reload_completed
1148 ? rtx_renumbered_equal_p (p1, p2) : rtx_equal_p (p1, p2))
1149 return dir_both;
1150
1151 return can_replace_by (i1, i2);
1152 }
1153 \f
1154 /* When comparing insns I1 and I2 in flow_find_cross_jump or
1155 flow_find_head_matching_sequence, ensure the notes match. */
1156
1157 static void
1158 merge_notes (rtx i1, rtx i2)
1159 {
1160 /* If the merged insns have different REG_EQUAL notes, then
1161 remove them. */
1162 rtx equiv1 = find_reg_equal_equiv_note (i1);
1163 rtx equiv2 = find_reg_equal_equiv_note (i2);
1164
1165 if (equiv1 && !equiv2)
1166 remove_note (i1, equiv1);
1167 else if (!equiv1 && equiv2)
1168 remove_note (i2, equiv2);
1169 else if (equiv1 && equiv2
1170 && !rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))
1171 {
1172 remove_note (i1, equiv1);
1173 remove_note (i2, equiv2);
1174 }
1175 }
1176
1177 /* Walks from I1 in BB1 backward till the next non-debug insn, and returns the
1178 resulting insn in I1, and the corresponding bb in BB1. At the head of a
1179 bb, if there is a predecessor bb that reaches this bb via fallthru, and
1180 FOLLOW_FALLTHRU, walks further in the predecessor bb and registers this in
1181 DID_FALLTHRU. Otherwise, stops at the head of the bb. */
1182
1183 static void
1184 walk_to_nondebug_insn (rtx *i1, basic_block *bb1, bool follow_fallthru,
1185 bool *did_fallthru)
1186 {
1187 edge fallthru;
1188
1189 *did_fallthru = false;
1190
1191 /* Ignore notes. */
1192 while (!NONDEBUG_INSN_P (*i1))
1193 {
1194 if (*i1 != BB_HEAD (*bb1))
1195 {
1196 *i1 = PREV_INSN (*i1);
1197 continue;
1198 }
1199
1200 if (!follow_fallthru)
1201 return;
1202
1203 fallthru = find_fallthru_edge ((*bb1)->preds);
1204 if (!fallthru || fallthru->src == ENTRY_BLOCK_PTR_FOR_FUNCTION (cfun)
1205 || !single_succ_p (fallthru->src))
1206 return;
1207
1208 *bb1 = fallthru->src;
1209 *i1 = BB_END (*bb1);
1210 *did_fallthru = true;
1211 }
1212 }
1213
1214 /* Look through the insns at the end of BB1 and BB2 and find the longest
1215 sequence that are either equivalent, or allow forward or backward
1216 replacement. Store the first insns for that sequence in *F1 and *F2 and
1217 return the sequence length.
1218
1219 DIR_P indicates the allowed replacement direction on function entry, and
1220 the actual replacement direction on function exit. If NULL, only equivalent
1221 sequences are allowed.
1222
1223 To simplify callers of this function, if the blocks match exactly,
1224 store the head of the blocks in *F1 and *F2. */
1225
1226 int
1227 flow_find_cross_jump (basic_block bb1, basic_block bb2, rtx *f1, rtx *f2,
1228 enum replace_direction *dir_p)
1229 {
1230 rtx i1, i2, last1, last2, afterlast1, afterlast2;
1231 int ninsns = 0;
1232 rtx p1;
1233 enum replace_direction dir, last_dir, afterlast_dir;
1234 bool follow_fallthru, did_fallthru;
1235
1236 if (dir_p)
1237 dir = *dir_p;
1238 else
1239 dir = dir_both;
1240 afterlast_dir = dir;
1241 last_dir = afterlast_dir;
1242
1243 /* Skip simple jumps at the end of the blocks. Complex jumps still
1244 need to be compared for equivalence, which we'll do below. */
1245
1246 i1 = BB_END (bb1);
1247 last1 = afterlast1 = last2 = afterlast2 = NULL_RTX;
1248 if (onlyjump_p (i1)
1249 || (returnjump_p (i1) && !side_effects_p (PATTERN (i1))))
1250 {
1251 last1 = i1;
1252 i1 = PREV_INSN (i1);
1253 }
1254
1255 i2 = BB_END (bb2);
1256 if (onlyjump_p (i2)
1257 || (returnjump_p (i2) && !side_effects_p (PATTERN (i2))))
1258 {
1259 last2 = i2;
1260 /* Count everything except for unconditional jump as insn. */
1261 if (!simplejump_p (i2) && !returnjump_p (i2) && last1)
1262 ninsns++;
1263 i2 = PREV_INSN (i2);
1264 }
1265
1266 while (true)
1267 {
1268 /* In the following example, we can replace all jumps to C by jumps to A.
1269
1270 This removes 4 duplicate insns.
1271 [bb A] insn1 [bb C] insn1
1272 insn2 insn2
1273 [bb B] insn3 insn3
1274 insn4 insn4
1275 jump_insn jump_insn
1276
1277 We could also replace all jumps to A by jumps to C, but that leaves B
1278 alive, and removes only 2 duplicate insns. In a subsequent crossjump
1279 step, all jumps to B would be replaced with jumps to the middle of C,
1280 achieving the same result with more effort.
1281 So we allow only the first possibility, which means that we don't allow
1282 fallthru in the block that's being replaced. */
1283
1284 follow_fallthru = dir_p && dir != dir_forward;
1285 walk_to_nondebug_insn (&i1, &bb1, follow_fallthru, &did_fallthru);
1286 if (did_fallthru)
1287 dir = dir_backward;
1288
1289 follow_fallthru = dir_p && dir != dir_backward;
1290 walk_to_nondebug_insn (&i2, &bb2, follow_fallthru, &did_fallthru);
1291 if (did_fallthru)
1292 dir = dir_forward;
1293
1294 if (i1 == BB_HEAD (bb1) || i2 == BB_HEAD (bb2))
1295 break;
1296
1297 dir = merge_dir (dir, old_insns_match_p (0, i1, i2));
1298 if (dir == dir_none || (!dir_p && dir != dir_both))
1299 break;
1300
1301 merge_memattrs (i1, i2);
1302
1303 /* Don't begin a cross-jump with a NOTE insn. */
1304 if (INSN_P (i1))
1305 {
1306 merge_notes (i1, i2);
1307
1308 afterlast1 = last1, afterlast2 = last2;
1309 last1 = i1, last2 = i2;
1310 afterlast_dir = last_dir;
1311 last_dir = dir;
1312 p1 = PATTERN (i1);
1313 if (!(GET_CODE (p1) == USE || GET_CODE (p1) == CLOBBER))
1314 ninsns++;
1315 }
1316
1317 i1 = PREV_INSN (i1);
1318 i2 = PREV_INSN (i2);
1319 }
1320
1321 #ifdef HAVE_cc0
1322 /* Don't allow the insn after a compare to be shared by
1323 cross-jumping unless the compare is also shared. */
1324 if (ninsns && reg_mentioned_p (cc0_rtx, last1) && ! sets_cc0_p (last1))
1325 last1 = afterlast1, last2 = afterlast2, last_dir = afterlast_dir, ninsns--;
1326 #endif
1327
1328 /* Include preceding notes and labels in the cross-jump. One,
1329 this may bring us to the head of the blocks as requested above.
1330 Two, it keeps line number notes as matched as may be. */
1331 if (ninsns)
1332 {
1333 bb1 = BLOCK_FOR_INSN (last1);
1334 while (last1 != BB_HEAD (bb1) && !NONDEBUG_INSN_P (PREV_INSN (last1)))
1335 last1 = PREV_INSN (last1);
1336
1337 if (last1 != BB_HEAD (bb1) && LABEL_P (PREV_INSN (last1)))
1338 last1 = PREV_INSN (last1);
1339
1340 bb2 = BLOCK_FOR_INSN (last2);
1341 while (last2 != BB_HEAD (bb2) && !NONDEBUG_INSN_P (PREV_INSN (last2)))
1342 last2 = PREV_INSN (last2);
1343
1344 if (last2 != BB_HEAD (bb2) && LABEL_P (PREV_INSN (last2)))
1345 last2 = PREV_INSN (last2);
1346
1347 *f1 = last1;
1348 *f2 = last2;
1349 }
1350
1351 if (dir_p)
1352 *dir_p = last_dir;
1353 return ninsns;
1354 }
1355
1356 /* Like flow_find_cross_jump, except start looking for a matching sequence from
1357 the head of the two blocks. Do not include jumps at the end.
1358 If STOP_AFTER is nonzero, stop after finding that many matching
1359 instructions. */
1360
1361 int
1362 flow_find_head_matching_sequence (basic_block bb1, basic_block bb2, rtx *f1,
1363 rtx *f2, int stop_after)
1364 {
1365 rtx i1, i2, last1, last2, beforelast1, beforelast2;
1366 int ninsns = 0;
1367 edge e;
1368 edge_iterator ei;
1369 int nehedges1 = 0, nehedges2 = 0;
1370
1371 FOR_EACH_EDGE (e, ei, bb1->succs)
1372 if (e->flags & EDGE_EH)
1373 nehedges1++;
1374 FOR_EACH_EDGE (e, ei, bb2->succs)
1375 if (e->flags & EDGE_EH)
1376 nehedges2++;
1377
1378 i1 = BB_HEAD (bb1);
1379 i2 = BB_HEAD (bb2);
1380 last1 = beforelast1 = last2 = beforelast2 = NULL_RTX;
1381
1382 while (true)
1383 {
1384 /* Ignore notes, except NOTE_INSN_EPILOGUE_BEG. */
1385 while (!NONDEBUG_INSN_P (i1) && i1 != BB_END (bb1))
1386 {
1387 if (NOTE_P (i1) && NOTE_KIND (i1) == NOTE_INSN_EPILOGUE_BEG)
1388 break;
1389 i1 = NEXT_INSN (i1);
1390 }
1391
1392 while (!NONDEBUG_INSN_P (i2) && i2 != BB_END (bb2))
1393 {
1394 if (NOTE_P (i2) && NOTE_KIND (i2) == NOTE_INSN_EPILOGUE_BEG)
1395 break;
1396 i2 = NEXT_INSN (i2);
1397 }
1398
1399 if ((i1 == BB_END (bb1) && !NONDEBUG_INSN_P (i1))
1400 || (i2 == BB_END (bb2) && !NONDEBUG_INSN_P (i2)))
1401 break;
1402
1403 if (NOTE_P (i1) || NOTE_P (i2)
1404 || JUMP_P (i1) || JUMP_P (i2))
1405 break;
1406
1407 /* A sanity check to make sure we're not merging insns with different
1408 effects on EH. If only one of them ends a basic block, it shouldn't
1409 have an EH edge; if both end a basic block, there should be the same
1410 number of EH edges. */
1411 if ((i1 == BB_END (bb1) && i2 != BB_END (bb2)
1412 && nehedges1 > 0)
1413 || (i2 == BB_END (bb2) && i1 != BB_END (bb1)
1414 && nehedges2 > 0)
1415 || (i1 == BB_END (bb1) && i2 == BB_END (bb2)
1416 && nehedges1 != nehedges2))
1417 break;
1418
1419 if (old_insns_match_p (0, i1, i2) != dir_both)
1420 break;
1421
1422 merge_memattrs (i1, i2);
1423
1424 /* Don't begin a cross-jump with a NOTE insn. */
1425 if (INSN_P (i1))
1426 {
1427 merge_notes (i1, i2);
1428
1429 beforelast1 = last1, beforelast2 = last2;
1430 last1 = i1, last2 = i2;
1431 ninsns++;
1432 }
1433
1434 if (i1 == BB_END (bb1) || i2 == BB_END (bb2)
1435 || (stop_after > 0 && ninsns == stop_after))
1436 break;
1437
1438 i1 = NEXT_INSN (i1);
1439 i2 = NEXT_INSN (i2);
1440 }
1441
1442 #ifdef HAVE_cc0
1443 /* Don't allow a compare to be shared by cross-jumping unless the insn
1444 after the compare is also shared. */
1445 if (ninsns && reg_mentioned_p (cc0_rtx, last1) && sets_cc0_p (last1))
1446 last1 = beforelast1, last2 = beforelast2, ninsns--;
1447 #endif
1448
1449 if (ninsns)
1450 {
1451 *f1 = last1;
1452 *f2 = last2;
1453 }
1454
1455 return ninsns;
1456 }
1457
1458 /* Return true iff outgoing edges of BB1 and BB2 match, together with
1459 the branch instruction. This means that if we commonize the control
1460 flow before end of the basic block, the semantic remains unchanged.
1461
1462 We may assume that there exists one edge with a common destination. */
1463
1464 static bool
1465 outgoing_edges_match (int mode, basic_block bb1, basic_block bb2)
1466 {
1467 int nehedges1 = 0, nehedges2 = 0;
1468 edge fallthru1 = 0, fallthru2 = 0;
1469 edge e1, e2;
1470 edge_iterator ei;
1471
1472 /* If BB1 has only one successor, we may be looking at either an
1473 unconditional jump, or a fake edge to exit. */
1474 if (single_succ_p (bb1)
1475 && (single_succ_edge (bb1)->flags & (EDGE_COMPLEX | EDGE_FAKE)) == 0
1476 && (!JUMP_P (BB_END (bb1)) || simplejump_p (BB_END (bb1))))
1477 return (single_succ_p (bb2)
1478 && (single_succ_edge (bb2)->flags
1479 & (EDGE_COMPLEX | EDGE_FAKE)) == 0
1480 && (!JUMP_P (BB_END (bb2)) || simplejump_p (BB_END (bb2))));
1481
1482 /* Match conditional jumps - this may get tricky when fallthru and branch
1483 edges are crossed. */
1484 if (EDGE_COUNT (bb1->succs) == 2
1485 && any_condjump_p (BB_END (bb1))
1486 && onlyjump_p (BB_END (bb1)))
1487 {
1488 edge b1, f1, b2, f2;
1489 bool reverse, match;
1490 rtx set1, set2, cond1, cond2;
1491 enum rtx_code code1, code2;
1492
1493 if (EDGE_COUNT (bb2->succs) != 2
1494 || !any_condjump_p (BB_END (bb2))
1495 || !onlyjump_p (BB_END (bb2)))
1496 return false;
1497
1498 b1 = BRANCH_EDGE (bb1);
1499 b2 = BRANCH_EDGE (bb2);
1500 f1 = FALLTHRU_EDGE (bb1);
1501 f2 = FALLTHRU_EDGE (bb2);
1502
1503 /* Get around possible forwarders on fallthru edges. Other cases
1504 should be optimized out already. */
1505 if (FORWARDER_BLOCK_P (f1->dest))
1506 f1 = single_succ_edge (f1->dest);
1507
1508 if (FORWARDER_BLOCK_P (f2->dest))
1509 f2 = single_succ_edge (f2->dest);
1510
1511 /* To simplify use of this function, return false if there are
1512 unneeded forwarder blocks. These will get eliminated later
1513 during cleanup_cfg. */
1514 if (FORWARDER_BLOCK_P (f1->dest)
1515 || FORWARDER_BLOCK_P (f2->dest)
1516 || FORWARDER_BLOCK_P (b1->dest)
1517 || FORWARDER_BLOCK_P (b2->dest))
1518 return false;
1519
1520 if (f1->dest == f2->dest && b1->dest == b2->dest)
1521 reverse = false;
1522 else if (f1->dest == b2->dest && b1->dest == f2->dest)
1523 reverse = true;
1524 else
1525 return false;
1526
1527 set1 = pc_set (BB_END (bb1));
1528 set2 = pc_set (BB_END (bb2));
1529 if ((XEXP (SET_SRC (set1), 1) == pc_rtx)
1530 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
1531 reverse = !reverse;
1532
1533 cond1 = XEXP (SET_SRC (set1), 0);
1534 cond2 = XEXP (SET_SRC (set2), 0);
1535 code1 = GET_CODE (cond1);
1536 if (reverse)
1537 code2 = reversed_comparison_code (cond2, BB_END (bb2));
1538 else
1539 code2 = GET_CODE (cond2);
1540
1541 if (code2 == UNKNOWN)
1542 return false;
1543
1544 /* Verify codes and operands match. */
1545 match = ((code1 == code2
1546 && rtx_renumbered_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
1547 && rtx_renumbered_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
1548 || (code1 == swap_condition (code2)
1549 && rtx_renumbered_equal_p (XEXP (cond1, 1),
1550 XEXP (cond2, 0))
1551 && rtx_renumbered_equal_p (XEXP (cond1, 0),
1552 XEXP (cond2, 1))));
1553
1554 /* If we return true, we will join the blocks. Which means that
1555 we will only have one branch prediction bit to work with. Thus
1556 we require the existing branches to have probabilities that are
1557 roughly similar. */
1558 if (match
1559 && optimize_bb_for_speed_p (bb1)
1560 && optimize_bb_for_speed_p (bb2))
1561 {
1562 int prob2;
1563
1564 if (b1->dest == b2->dest)
1565 prob2 = b2->probability;
1566 else
1567 /* Do not use f2 probability as f2 may be forwarded. */
1568 prob2 = REG_BR_PROB_BASE - b2->probability;
1569
1570 /* Fail if the difference in probabilities is greater than 50%.
1571 This rules out two well-predicted branches with opposite
1572 outcomes. */
1573 if (abs (b1->probability - prob2) > REG_BR_PROB_BASE / 2)
1574 {
1575 if (dump_file)
1576 fprintf (dump_file,
1577 "Outcomes of branch in bb %i and %i differ too much (%i %i)\n",
1578 bb1->index, bb2->index, b1->probability, prob2);
1579
1580 return false;
1581 }
1582 }
1583
1584 if (dump_file && match)
1585 fprintf (dump_file, "Conditionals in bb %i and %i match.\n",
1586 bb1->index, bb2->index);
1587
1588 return match;
1589 }
1590
1591 /* Generic case - we are seeing a computed jump, table jump or trapping
1592 instruction. */
1593
1594 /* Check whether there are tablejumps in the end of BB1 and BB2.
1595 Return true if they are identical. */
1596 {
1597 rtx label1, label2;
1598 rtx table1, table2;
1599
1600 if (tablejump_p (BB_END (bb1), &label1, &table1)
1601 && tablejump_p (BB_END (bb2), &label2, &table2)
1602 && GET_CODE (PATTERN (table1)) == GET_CODE (PATTERN (table2)))
1603 {
1604 /* The labels should never be the same rtx. If they really are same
1605 the jump tables are same too. So disable crossjumping of blocks BB1
1606 and BB2 because when deleting the common insns in the end of BB1
1607 by delete_basic_block () the jump table would be deleted too. */
1608 /* If LABEL2 is referenced in BB1->END do not do anything
1609 because we would loose information when replacing
1610 LABEL1 by LABEL2 and then LABEL2 by LABEL1 in BB1->END. */
1611 if (label1 != label2 && !rtx_referenced_p (label2, BB_END (bb1)))
1612 {
1613 /* Set IDENTICAL to true when the tables are identical. */
1614 bool identical = false;
1615 rtx p1, p2;
1616
1617 p1 = PATTERN (table1);
1618 p2 = PATTERN (table2);
1619 if (GET_CODE (p1) == ADDR_VEC && rtx_equal_p (p1, p2))
1620 {
1621 identical = true;
1622 }
1623 else if (GET_CODE (p1) == ADDR_DIFF_VEC
1624 && (XVECLEN (p1, 1) == XVECLEN (p2, 1))
1625 && rtx_equal_p (XEXP (p1, 2), XEXP (p2, 2))
1626 && rtx_equal_p (XEXP (p1, 3), XEXP (p2, 3)))
1627 {
1628 int i;
1629
1630 identical = true;
1631 for (i = XVECLEN (p1, 1) - 1; i >= 0 && identical; i--)
1632 if (!rtx_equal_p (XVECEXP (p1, 1, i), XVECEXP (p2, 1, i)))
1633 identical = false;
1634 }
1635
1636 if (identical)
1637 {
1638 replace_label_data rr;
1639 bool match;
1640
1641 /* Temporarily replace references to LABEL1 with LABEL2
1642 in BB1->END so that we could compare the instructions. */
1643 rr.r1 = label1;
1644 rr.r2 = label2;
1645 rr.update_label_nuses = false;
1646 for_each_rtx (&BB_END (bb1), replace_label, &rr);
1647
1648 match = (old_insns_match_p (mode, BB_END (bb1), BB_END (bb2))
1649 == dir_both);
1650 if (dump_file && match)
1651 fprintf (dump_file,
1652 "Tablejumps in bb %i and %i match.\n",
1653 bb1->index, bb2->index);
1654
1655 /* Set the original label in BB1->END because when deleting
1656 a block whose end is a tablejump, the tablejump referenced
1657 from the instruction is deleted too. */
1658 rr.r1 = label2;
1659 rr.r2 = label1;
1660 for_each_rtx (&BB_END (bb1), replace_label, &rr);
1661
1662 return match;
1663 }
1664 }
1665 return false;
1666 }
1667 }
1668
1669 /* First ensure that the instructions match. There may be many outgoing
1670 edges so this test is generally cheaper. */
1671 if (old_insns_match_p (mode, BB_END (bb1), BB_END (bb2)) != dir_both)
1672 return false;
1673
1674 /* Search the outgoing edges, ensure that the counts do match, find possible
1675 fallthru and exception handling edges since these needs more
1676 validation. */
1677 if (EDGE_COUNT (bb1->succs) != EDGE_COUNT (bb2->succs))
1678 return false;
1679
1680 FOR_EACH_EDGE (e1, ei, bb1->succs)
1681 {
1682 e2 = EDGE_SUCC (bb2, ei.index);
1683
1684 if (e1->flags & EDGE_EH)
1685 nehedges1++;
1686
1687 if (e2->flags & EDGE_EH)
1688 nehedges2++;
1689
1690 if (e1->flags & EDGE_FALLTHRU)
1691 fallthru1 = e1;
1692 if (e2->flags & EDGE_FALLTHRU)
1693 fallthru2 = e2;
1694 }
1695
1696 /* If number of edges of various types does not match, fail. */
1697 if (nehedges1 != nehedges2
1698 || (fallthru1 != 0) != (fallthru2 != 0))
1699 return false;
1700
1701 /* fallthru edges must be forwarded to the same destination. */
1702 if (fallthru1)
1703 {
1704 basic_block d1 = (forwarder_block_p (fallthru1->dest)
1705 ? single_succ (fallthru1->dest): fallthru1->dest);
1706 basic_block d2 = (forwarder_block_p (fallthru2->dest)
1707 ? single_succ (fallthru2->dest): fallthru2->dest);
1708
1709 if (d1 != d2)
1710 return false;
1711 }
1712
1713 /* Ensure the same EH region. */
1714 {
1715 rtx n1 = find_reg_note (BB_END (bb1), REG_EH_REGION, 0);
1716 rtx n2 = find_reg_note (BB_END (bb2), REG_EH_REGION, 0);
1717
1718 if (!n1 && n2)
1719 return false;
1720
1721 if (n1 && (!n2 || XEXP (n1, 0) != XEXP (n2, 0)))
1722 return false;
1723 }
1724
1725 /* The same checks as in try_crossjump_to_edge. It is required for RTL
1726 version of sequence abstraction. */
1727 FOR_EACH_EDGE (e1, ei, bb2->succs)
1728 {
1729 edge e2;
1730 edge_iterator ei;
1731 basic_block d1 = e1->dest;
1732
1733 if (FORWARDER_BLOCK_P (d1))
1734 d1 = EDGE_SUCC (d1, 0)->dest;
1735
1736 FOR_EACH_EDGE (e2, ei, bb1->succs)
1737 {
1738 basic_block d2 = e2->dest;
1739 if (FORWARDER_BLOCK_P (d2))
1740 d2 = EDGE_SUCC (d2, 0)->dest;
1741 if (d1 == d2)
1742 break;
1743 }
1744
1745 if (!e2)
1746 return false;
1747 }
1748
1749 return true;
1750 }
1751
1752 /* Returns true if BB basic block has a preserve label. */
1753
1754 static bool
1755 block_has_preserve_label (basic_block bb)
1756 {
1757 return (bb
1758 && block_label (bb)
1759 && LABEL_PRESERVE_P (block_label (bb)));
1760 }
1761
1762 /* E1 and E2 are edges with the same destination block. Search their
1763 predecessors for common code. If found, redirect control flow from
1764 (maybe the middle of) E1->SRC to (maybe the middle of) E2->SRC. */
1765
1766 static bool
1767 try_crossjump_to_edge (int mode, edge e1, edge e2)
1768 {
1769 int nmatch;
1770 basic_block src1 = e1->src, src2 = e2->src;
1771 basic_block redirect_to, redirect_from, to_remove;
1772 basic_block osrc1, osrc2, redirect_edges_to, tmp;
1773 enum replace_direction dir;
1774 rtx newpos1, newpos2;
1775 edge s;
1776 edge_iterator ei;
1777
1778 newpos1 = newpos2 = NULL_RTX;
1779
1780 /* If we have partitioned hot/cold basic blocks, it is a bad idea
1781 to try this optimization.
1782
1783 Basic block partitioning may result in some jumps that appear to
1784 be optimizable (or blocks that appear to be mergeable), but which really
1785 must be left untouched (they are required to make it safely across
1786 partition boundaries). See the comments at the top of
1787 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
1788
1789 if (flag_reorder_blocks_and_partition && reload_completed)
1790 return false;
1791
1792 /* Search backward through forwarder blocks. We don't need to worry
1793 about multiple entry or chained forwarders, as they will be optimized
1794 away. We do this to look past the unconditional jump following a
1795 conditional jump that is required due to the current CFG shape. */
1796 if (single_pred_p (src1)
1797 && FORWARDER_BLOCK_P (src1))
1798 e1 = single_pred_edge (src1), src1 = e1->src;
1799
1800 if (single_pred_p (src2)
1801 && FORWARDER_BLOCK_P (src2))
1802 e2 = single_pred_edge (src2), src2 = e2->src;
1803
1804 /* Nothing to do if we reach ENTRY, or a common source block. */
1805 if (src1 == ENTRY_BLOCK_PTR || src2 == ENTRY_BLOCK_PTR)
1806 return false;
1807 if (src1 == src2)
1808 return false;
1809
1810 /* Seeing more than 1 forwarder blocks would confuse us later... */
1811 if (FORWARDER_BLOCK_P (e1->dest)
1812 && FORWARDER_BLOCK_P (single_succ (e1->dest)))
1813 return false;
1814
1815 if (FORWARDER_BLOCK_P (e2->dest)
1816 && FORWARDER_BLOCK_P (single_succ (e2->dest)))
1817 return false;
1818
1819 /* Likewise with dead code (possibly newly created by the other optimizations
1820 of cfg_cleanup). */
1821 if (EDGE_COUNT (src1->preds) == 0 || EDGE_COUNT (src2->preds) == 0)
1822 return false;
1823
1824 /* Look for the common insn sequence, part the first ... */
1825 if (!outgoing_edges_match (mode, src1, src2))
1826 return false;
1827
1828 /* ... and part the second. */
1829 dir = dir_forward;
1830 nmatch = flow_find_cross_jump (src1, src2, &newpos1, &newpos2, &dir);
1831
1832 osrc1 = src1;
1833 osrc2 = src2;
1834 if (newpos1 != NULL_RTX)
1835 src1 = BLOCK_FOR_INSN (newpos1);
1836 if (newpos2 != NULL_RTX)
1837 src2 = BLOCK_FOR_INSN (newpos2);
1838
1839 /* Don't proceed with the crossjump unless we found a sufficient number
1840 of matching instructions or the 'from' block was totally matched
1841 (such that its predecessors will hopefully be redirected and the
1842 block removed). */
1843 if ((nmatch < PARAM_VALUE (PARAM_MIN_CROSSJUMP_INSNS))
1844 && (newpos1 != BB_HEAD (src1)))
1845 return false;
1846
1847 /* Avoid deleting preserve label when redirecting ABNORMAL edges. */
1848 if (block_has_preserve_label (e1->dest)
1849 && (e1->flags & EDGE_ABNORMAL))
1850 return false;
1851
1852 /* Here we know that the insns in the end of SRC1 which are common with SRC2
1853 will be deleted.
1854 If we have tablejumps in the end of SRC1 and SRC2
1855 they have been already compared for equivalence in outgoing_edges_match ()
1856 so replace the references to TABLE1 by references to TABLE2. */
1857 {
1858 rtx label1, label2;
1859 rtx table1, table2;
1860
1861 if (tablejump_p (BB_END (osrc1), &label1, &table1)
1862 && tablejump_p (BB_END (osrc2), &label2, &table2)
1863 && label1 != label2)
1864 {
1865 replace_label_data rr;
1866 rtx insn;
1867
1868 /* Replace references to LABEL1 with LABEL2. */
1869 rr.r1 = label1;
1870 rr.r2 = label2;
1871 rr.update_label_nuses = true;
1872 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1873 {
1874 /* Do not replace the label in SRC1->END because when deleting
1875 a block whose end is a tablejump, the tablejump referenced
1876 from the instruction is deleted too. */
1877 if (insn != BB_END (osrc1))
1878 for_each_rtx (&insn, replace_label, &rr);
1879 }
1880 }
1881 }
1882
1883 /* Avoid splitting if possible. We must always split when SRC2 has
1884 EH predecessor edges, or we may end up with basic blocks with both
1885 normal and EH predecessor edges. */
1886 if (newpos2 == BB_HEAD (src2)
1887 && !(EDGE_PRED (src2, 0)->flags & EDGE_EH))
1888 redirect_to = src2;
1889 else
1890 {
1891 if (newpos2 == BB_HEAD (src2))
1892 {
1893 /* Skip possible basic block header. */
1894 if (LABEL_P (newpos2))
1895 newpos2 = NEXT_INSN (newpos2);
1896 while (DEBUG_INSN_P (newpos2))
1897 newpos2 = NEXT_INSN (newpos2);
1898 if (NOTE_P (newpos2))
1899 newpos2 = NEXT_INSN (newpos2);
1900 while (DEBUG_INSN_P (newpos2))
1901 newpos2 = NEXT_INSN (newpos2);
1902 }
1903
1904 if (dump_file)
1905 fprintf (dump_file, "Splitting bb %i before %i insns\n",
1906 src2->index, nmatch);
1907 redirect_to = split_block (src2, PREV_INSN (newpos2))->dest;
1908 }
1909
1910 if (dump_file)
1911 fprintf (dump_file,
1912 "Cross jumping from bb %i to bb %i; %i common insns\n",
1913 src1->index, src2->index, nmatch);
1914
1915 /* We may have some registers visible through the block. */
1916 df_set_bb_dirty (redirect_to);
1917
1918 if (osrc2 == src2)
1919 redirect_edges_to = redirect_to;
1920 else
1921 redirect_edges_to = osrc2;
1922
1923 /* Recompute the frequencies and counts of outgoing edges. */
1924 FOR_EACH_EDGE (s, ei, redirect_edges_to->succs)
1925 {
1926 edge s2;
1927 edge_iterator ei;
1928 basic_block d = s->dest;
1929
1930 if (FORWARDER_BLOCK_P (d))
1931 d = single_succ (d);
1932
1933 FOR_EACH_EDGE (s2, ei, src1->succs)
1934 {
1935 basic_block d2 = s2->dest;
1936 if (FORWARDER_BLOCK_P (d2))
1937 d2 = single_succ (d2);
1938 if (d == d2)
1939 break;
1940 }
1941
1942 s->count += s2->count;
1943
1944 /* Take care to update possible forwarder blocks. We verified
1945 that there is no more than one in the chain, so we can't run
1946 into infinite loop. */
1947 if (FORWARDER_BLOCK_P (s->dest))
1948 {
1949 single_succ_edge (s->dest)->count += s2->count;
1950 s->dest->count += s2->count;
1951 s->dest->frequency += EDGE_FREQUENCY (s);
1952 }
1953
1954 if (FORWARDER_BLOCK_P (s2->dest))
1955 {
1956 single_succ_edge (s2->dest)->count -= s2->count;
1957 if (single_succ_edge (s2->dest)->count < 0)
1958 single_succ_edge (s2->dest)->count = 0;
1959 s2->dest->count -= s2->count;
1960 s2->dest->frequency -= EDGE_FREQUENCY (s);
1961 if (s2->dest->frequency < 0)
1962 s2->dest->frequency = 0;
1963 if (s2->dest->count < 0)
1964 s2->dest->count = 0;
1965 }
1966
1967 if (!redirect_edges_to->frequency && !src1->frequency)
1968 s->probability = (s->probability + s2->probability) / 2;
1969 else
1970 s->probability
1971 = ((s->probability * redirect_edges_to->frequency +
1972 s2->probability * src1->frequency)
1973 / (redirect_edges_to->frequency + src1->frequency));
1974 }
1975
1976 /* Adjust count and frequency for the block. An earlier jump
1977 threading pass may have left the profile in an inconsistent
1978 state (see update_bb_profile_for_threading) so we must be
1979 prepared for overflows. */
1980 tmp = redirect_to;
1981 do
1982 {
1983 tmp->count += src1->count;
1984 tmp->frequency += src1->frequency;
1985 if (tmp->frequency > BB_FREQ_MAX)
1986 tmp->frequency = BB_FREQ_MAX;
1987 if (tmp == redirect_edges_to)
1988 break;
1989 tmp = find_fallthru_edge (tmp->succs)->dest;
1990 }
1991 while (true);
1992 update_br_prob_note (redirect_edges_to);
1993
1994 /* Edit SRC1 to go to REDIRECT_TO at NEWPOS1. */
1995
1996 /* Skip possible basic block header. */
1997 if (LABEL_P (newpos1))
1998 newpos1 = NEXT_INSN (newpos1);
1999
2000 while (DEBUG_INSN_P (newpos1))
2001 newpos1 = NEXT_INSN (newpos1);
2002
2003 if (NOTE_INSN_BASIC_BLOCK_P (newpos1))
2004 newpos1 = NEXT_INSN (newpos1);
2005
2006 while (DEBUG_INSN_P (newpos1))
2007 newpos1 = NEXT_INSN (newpos1);
2008
2009 redirect_from = split_block (src1, PREV_INSN (newpos1))->src;
2010 to_remove = single_succ (redirect_from);
2011
2012 redirect_edge_and_branch_force (single_succ_edge (redirect_from), redirect_to);
2013 delete_basic_block (to_remove);
2014
2015 update_forwarder_flag (redirect_from);
2016 if (redirect_to != src2)
2017 update_forwarder_flag (src2);
2018
2019 return true;
2020 }
2021
2022 /* Search the predecessors of BB for common insn sequences. When found,
2023 share code between them by redirecting control flow. Return true if
2024 any changes made. */
2025
2026 static bool
2027 try_crossjump_bb (int mode, basic_block bb)
2028 {
2029 edge e, e2, fallthru;
2030 bool changed;
2031 unsigned max, ix, ix2;
2032
2033 /* Nothing to do if there is not at least two incoming edges. */
2034 if (EDGE_COUNT (bb->preds) < 2)
2035 return false;
2036
2037 /* Don't crossjump if this block ends in a computed jump,
2038 unless we are optimizing for size. */
2039 if (optimize_bb_for_size_p (bb)
2040 && bb != EXIT_BLOCK_PTR
2041 && computed_jump_p (BB_END (bb)))
2042 return false;
2043
2044 /* If we are partitioning hot/cold basic blocks, we don't want to
2045 mess up unconditional or indirect jumps that cross between hot
2046 and cold sections.
2047
2048 Basic block partitioning may result in some jumps that appear to
2049 be optimizable (or blocks that appear to be mergeable), but which really
2050 must be left untouched (they are required to make it safely across
2051 partition boundaries). See the comments at the top of
2052 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
2053
2054 if (BB_PARTITION (EDGE_PRED (bb, 0)->src) !=
2055 BB_PARTITION (EDGE_PRED (bb, 1)->src)
2056 || (EDGE_PRED (bb, 0)->flags & EDGE_CROSSING))
2057 return false;
2058
2059 /* It is always cheapest to redirect a block that ends in a branch to
2060 a block that falls through into BB, as that adds no branches to the
2061 program. We'll try that combination first. */
2062 fallthru = NULL;
2063 max = PARAM_VALUE (PARAM_MAX_CROSSJUMP_EDGES);
2064
2065 if (EDGE_COUNT (bb->preds) > max)
2066 return false;
2067
2068 fallthru = find_fallthru_edge (bb->preds);
2069
2070 changed = false;
2071 for (ix = 0; ix < EDGE_COUNT (bb->preds);)
2072 {
2073 e = EDGE_PRED (bb, ix);
2074 ix++;
2075
2076 /* As noted above, first try with the fallthru predecessor (or, a
2077 fallthru predecessor if we are in cfglayout mode). */
2078 if (fallthru)
2079 {
2080 /* Don't combine the fallthru edge into anything else.
2081 If there is a match, we'll do it the other way around. */
2082 if (e == fallthru)
2083 continue;
2084 /* If nothing changed since the last attempt, there is nothing
2085 we can do. */
2086 if (!first_pass
2087 && !((e->src->flags & BB_MODIFIED)
2088 || (fallthru->src->flags & BB_MODIFIED)))
2089 continue;
2090
2091 if (try_crossjump_to_edge (mode, e, fallthru))
2092 {
2093 changed = true;
2094 ix = 0;
2095 continue;
2096 }
2097 }
2098
2099 /* Non-obvious work limiting check: Recognize that we're going
2100 to call try_crossjump_bb on every basic block. So if we have
2101 two blocks with lots of outgoing edges (a switch) and they
2102 share lots of common destinations, then we would do the
2103 cross-jump check once for each common destination.
2104
2105 Now, if the blocks actually are cross-jump candidates, then
2106 all of their destinations will be shared. Which means that
2107 we only need check them for cross-jump candidacy once. We
2108 can eliminate redundant checks of crossjump(A,B) by arbitrarily
2109 choosing to do the check from the block for which the edge
2110 in question is the first successor of A. */
2111 if (EDGE_SUCC (e->src, 0) != e)
2112 continue;
2113
2114 for (ix2 = 0; ix2 < EDGE_COUNT (bb->preds); ix2++)
2115 {
2116 e2 = EDGE_PRED (bb, ix2);
2117
2118 if (e2 == e)
2119 continue;
2120
2121 /* We've already checked the fallthru edge above. */
2122 if (e2 == fallthru)
2123 continue;
2124
2125 /* The "first successor" check above only prevents multiple
2126 checks of crossjump(A,B). In order to prevent redundant
2127 checks of crossjump(B,A), require that A be the block
2128 with the lowest index. */
2129 if (e->src->index > e2->src->index)
2130 continue;
2131
2132 /* If nothing changed since the last attempt, there is nothing
2133 we can do. */
2134 if (!first_pass
2135 && !((e->src->flags & BB_MODIFIED)
2136 || (e2->src->flags & BB_MODIFIED)))
2137 continue;
2138
2139 if (try_crossjump_to_edge (mode, e, e2))
2140 {
2141 changed = true;
2142 ix = 0;
2143 break;
2144 }
2145 }
2146 }
2147
2148 if (changed)
2149 crossjumps_occured = true;
2150
2151 return changed;
2152 }
2153
2154 /* Search the successors of BB for common insn sequences. When found,
2155 share code between them by moving it across the basic block
2156 boundary. Return true if any changes made. */
2157
2158 static bool
2159 try_head_merge_bb (basic_block bb)
2160 {
2161 basic_block final_dest_bb = NULL;
2162 int max_match = INT_MAX;
2163 edge e0;
2164 rtx *headptr, *currptr, *nextptr;
2165 bool changed, moveall;
2166 unsigned ix;
2167 rtx e0_last_head, cond, move_before;
2168 unsigned nedges = EDGE_COUNT (bb->succs);
2169 rtx jump = BB_END (bb);
2170 regset live, live_union;
2171
2172 /* Nothing to do if there is not at least two outgoing edges. */
2173 if (nedges < 2)
2174 return false;
2175
2176 /* Don't crossjump if this block ends in a computed jump,
2177 unless we are optimizing for size. */
2178 if (optimize_bb_for_size_p (bb)
2179 && bb != EXIT_BLOCK_PTR
2180 && computed_jump_p (BB_END (bb)))
2181 return false;
2182
2183 cond = get_condition (jump, &move_before, true, false);
2184 if (cond == NULL_RTX)
2185 move_before = jump;
2186
2187 for (ix = 0; ix < nedges; ix++)
2188 if (EDGE_SUCC (bb, ix)->dest == EXIT_BLOCK_PTR)
2189 return false;
2190
2191 for (ix = 0; ix < nedges; ix++)
2192 {
2193 edge e = EDGE_SUCC (bb, ix);
2194 basic_block other_bb = e->dest;
2195
2196 if (df_get_bb_dirty (other_bb))
2197 {
2198 block_was_dirty = true;
2199 return false;
2200 }
2201
2202 if (e->flags & EDGE_ABNORMAL)
2203 return false;
2204
2205 /* Normally, all destination blocks must only be reachable from this
2206 block, i.e. they must have one incoming edge.
2207
2208 There is one special case we can handle, that of multiple consecutive
2209 jumps where the first jumps to one of the targets of the second jump.
2210 This happens frequently in switch statements for default labels.
2211 The structure is as follows:
2212 FINAL_DEST_BB
2213 ....
2214 if (cond) jump A;
2215 fall through
2216 BB
2217 jump with targets A, B, C, D...
2218 A
2219 has two incoming edges, from FINAL_DEST_BB and BB
2220
2221 In this case, we can try to move the insns through BB and into
2222 FINAL_DEST_BB. */
2223 if (EDGE_COUNT (other_bb->preds) != 1)
2224 {
2225 edge incoming_edge, incoming_bb_other_edge;
2226 edge_iterator ei;
2227
2228 if (final_dest_bb != NULL
2229 || EDGE_COUNT (other_bb->preds) != 2)
2230 return false;
2231
2232 /* We must be able to move the insns across the whole block. */
2233 move_before = BB_HEAD (bb);
2234 while (!NONDEBUG_INSN_P (move_before))
2235 move_before = NEXT_INSN (move_before);
2236
2237 if (EDGE_COUNT (bb->preds) != 1)
2238 return false;
2239 incoming_edge = EDGE_PRED (bb, 0);
2240 final_dest_bb = incoming_edge->src;
2241 if (EDGE_COUNT (final_dest_bb->succs) != 2)
2242 return false;
2243 FOR_EACH_EDGE (incoming_bb_other_edge, ei, final_dest_bb->succs)
2244 if (incoming_bb_other_edge != incoming_edge)
2245 break;
2246 if (incoming_bb_other_edge->dest != other_bb)
2247 return false;
2248 }
2249 }
2250
2251 e0 = EDGE_SUCC (bb, 0);
2252 e0_last_head = NULL_RTX;
2253 changed = false;
2254
2255 for (ix = 1; ix < nedges; ix++)
2256 {
2257 edge e = EDGE_SUCC (bb, ix);
2258 rtx e0_last, e_last;
2259 int nmatch;
2260
2261 nmatch = flow_find_head_matching_sequence (e0->dest, e->dest,
2262 &e0_last, &e_last, 0);
2263 if (nmatch == 0)
2264 return false;
2265
2266 if (nmatch < max_match)
2267 {
2268 max_match = nmatch;
2269 e0_last_head = e0_last;
2270 }
2271 }
2272
2273 /* If we matched an entire block, we probably have to avoid moving the
2274 last insn. */
2275 if (max_match > 0
2276 && e0_last_head == BB_END (e0->dest)
2277 && (find_reg_note (e0_last_head, REG_EH_REGION, 0)
2278 || control_flow_insn_p (e0_last_head)))
2279 {
2280 max_match--;
2281 if (max_match == 0)
2282 return false;
2283 do
2284 e0_last_head = prev_real_insn (e0_last_head);
2285 while (DEBUG_INSN_P (e0_last_head));
2286 }
2287
2288 if (max_match == 0)
2289 return false;
2290
2291 /* We must find a union of the live registers at each of the end points. */
2292 live = BITMAP_ALLOC (NULL);
2293 live_union = BITMAP_ALLOC (NULL);
2294
2295 currptr = XNEWVEC (rtx, nedges);
2296 headptr = XNEWVEC (rtx, nedges);
2297 nextptr = XNEWVEC (rtx, nedges);
2298
2299 for (ix = 0; ix < nedges; ix++)
2300 {
2301 int j;
2302 basic_block merge_bb = EDGE_SUCC (bb, ix)->dest;
2303 rtx head = BB_HEAD (merge_bb);
2304
2305 while (!NONDEBUG_INSN_P (head))
2306 head = NEXT_INSN (head);
2307 headptr[ix] = head;
2308 currptr[ix] = head;
2309
2310 /* Compute the end point and live information */
2311 for (j = 1; j < max_match; j++)
2312 do
2313 head = NEXT_INSN (head);
2314 while (!NONDEBUG_INSN_P (head));
2315 simulate_backwards_to_point (merge_bb, live, head);
2316 IOR_REG_SET (live_union, live);
2317 }
2318
2319 /* If we're moving across two blocks, verify the validity of the
2320 first move, then adjust the target and let the loop below deal
2321 with the final move. */
2322 if (final_dest_bb != NULL)
2323 {
2324 rtx move_upto;
2325
2326 moveall = can_move_insns_across (currptr[0], e0_last_head, move_before,
2327 jump, e0->dest, live_union,
2328 NULL, &move_upto);
2329 if (!moveall)
2330 {
2331 if (move_upto == NULL_RTX)
2332 goto out;
2333
2334 while (e0_last_head != move_upto)
2335 {
2336 df_simulate_one_insn_backwards (e0->dest, e0_last_head,
2337 live_union);
2338 e0_last_head = PREV_INSN (e0_last_head);
2339 }
2340 }
2341 if (e0_last_head == NULL_RTX)
2342 goto out;
2343
2344 jump = BB_END (final_dest_bb);
2345 cond = get_condition (jump, &move_before, true, false);
2346 if (cond == NULL_RTX)
2347 move_before = jump;
2348 }
2349
2350 do
2351 {
2352 rtx move_upto;
2353 moveall = can_move_insns_across (currptr[0], e0_last_head,
2354 move_before, jump, e0->dest, live_union,
2355 NULL, &move_upto);
2356 if (!moveall && move_upto == NULL_RTX)
2357 {
2358 if (jump == move_before)
2359 break;
2360
2361 /* Try again, using a different insertion point. */
2362 move_before = jump;
2363
2364 #ifdef HAVE_cc0
2365 /* Don't try moving before a cc0 user, as that may invalidate
2366 the cc0. */
2367 if (reg_mentioned_p (cc0_rtx, jump))
2368 break;
2369 #endif
2370
2371 continue;
2372 }
2373
2374 if (final_dest_bb && !moveall)
2375 /* We haven't checked whether a partial move would be OK for the first
2376 move, so we have to fail this case. */
2377 break;
2378
2379 changed = true;
2380 for (;;)
2381 {
2382 if (currptr[0] == move_upto)
2383 break;
2384 for (ix = 0; ix < nedges; ix++)
2385 {
2386 rtx curr = currptr[ix];
2387 do
2388 curr = NEXT_INSN (curr);
2389 while (!NONDEBUG_INSN_P (curr));
2390 currptr[ix] = curr;
2391 }
2392 }
2393
2394 /* If we can't currently move all of the identical insns, remember
2395 each insn after the range that we'll merge. */
2396 if (!moveall)
2397 for (ix = 0; ix < nedges; ix++)
2398 {
2399 rtx curr = currptr[ix];
2400 do
2401 curr = NEXT_INSN (curr);
2402 while (!NONDEBUG_INSN_P (curr));
2403 nextptr[ix] = curr;
2404 }
2405
2406 reorder_insns (headptr[0], currptr[0], PREV_INSN (move_before));
2407 df_set_bb_dirty (EDGE_SUCC (bb, 0)->dest);
2408 if (final_dest_bb != NULL)
2409 df_set_bb_dirty (final_dest_bb);
2410 df_set_bb_dirty (bb);
2411 for (ix = 1; ix < nedges; ix++)
2412 {
2413 df_set_bb_dirty (EDGE_SUCC (bb, ix)->dest);
2414 delete_insn_chain (headptr[ix], currptr[ix], false);
2415 }
2416 if (!moveall)
2417 {
2418 if (jump == move_before)
2419 break;
2420
2421 /* For the unmerged insns, try a different insertion point. */
2422 move_before = jump;
2423
2424 #ifdef HAVE_cc0
2425 /* Don't try moving before a cc0 user, as that may invalidate
2426 the cc0. */
2427 if (reg_mentioned_p (cc0_rtx, jump))
2428 break;
2429 #endif
2430
2431 for (ix = 0; ix < nedges; ix++)
2432 currptr[ix] = headptr[ix] = nextptr[ix];
2433 }
2434 }
2435 while (!moveall);
2436
2437 out:
2438 free (currptr);
2439 free (headptr);
2440 free (nextptr);
2441
2442 crossjumps_occured |= changed;
2443
2444 return changed;
2445 }
2446
2447 /* Return true if BB contains just bb note, or bb note followed
2448 by only DEBUG_INSNs. */
2449
2450 static bool
2451 trivially_empty_bb_p (basic_block bb)
2452 {
2453 rtx insn = BB_END (bb);
2454
2455 while (1)
2456 {
2457 if (insn == BB_HEAD (bb))
2458 return true;
2459 if (!DEBUG_INSN_P (insn))
2460 return false;
2461 insn = PREV_INSN (insn);
2462 }
2463 }
2464
2465 /* Do simple CFG optimizations - basic block merging, simplifying of jump
2466 instructions etc. Return nonzero if changes were made. */
2467
2468 static bool
2469 try_optimize_cfg (int mode)
2470 {
2471 bool changed_overall = false;
2472 bool changed;
2473 int iterations = 0;
2474 basic_block bb, b, next;
2475
2476 if (mode & (CLEANUP_CROSSJUMP | CLEANUP_THREADING))
2477 clear_bb_flags ();
2478
2479 crossjumps_occured = false;
2480
2481 FOR_EACH_BB (bb)
2482 update_forwarder_flag (bb);
2483
2484 if (! targetm.cannot_modify_jumps_p ())
2485 {
2486 first_pass = true;
2487 /* Attempt to merge blocks as made possible by edge removal. If
2488 a block has only one successor, and the successor has only
2489 one predecessor, they may be combined. */
2490 do
2491 {
2492 block_was_dirty = false;
2493 changed = false;
2494 iterations++;
2495
2496 if (dump_file)
2497 fprintf (dump_file,
2498 "\n\ntry_optimize_cfg iteration %i\n\n",
2499 iterations);
2500
2501 for (b = ENTRY_BLOCK_PTR->next_bb; b != EXIT_BLOCK_PTR;)
2502 {
2503 basic_block c;
2504 edge s;
2505 bool changed_here = false;
2506
2507 /* Delete trivially dead basic blocks. This is either
2508 blocks with no predecessors, or empty blocks with no
2509 successors. However if the empty block with no
2510 successors is the successor of the ENTRY_BLOCK, it is
2511 kept. This ensures that the ENTRY_BLOCK will have a
2512 successor which is a precondition for many RTL
2513 passes. Empty blocks may result from expanding
2514 __builtin_unreachable (). */
2515 if (EDGE_COUNT (b->preds) == 0
2516 || (EDGE_COUNT (b->succs) == 0
2517 && trivially_empty_bb_p (b)
2518 && single_succ_edge (ENTRY_BLOCK_PTR)->dest != b))
2519 {
2520 c = b->prev_bb;
2521 if (EDGE_COUNT (b->preds) > 0)
2522 {
2523 edge e;
2524 edge_iterator ei;
2525
2526 if (current_ir_type () == IR_RTL_CFGLAYOUT)
2527 {
2528 if (b->il.rtl->footer
2529 && BARRIER_P (b->il.rtl->footer))
2530 FOR_EACH_EDGE (e, ei, b->preds)
2531 if ((e->flags & EDGE_FALLTHRU)
2532 && e->src->il.rtl->footer == NULL)
2533 {
2534 if (b->il.rtl->footer)
2535 {
2536 e->src->il.rtl->footer = b->il.rtl->footer;
2537 b->il.rtl->footer = NULL;
2538 }
2539 else
2540 {
2541 start_sequence ();
2542 e->src->il.rtl->footer = emit_barrier ();
2543 end_sequence ();
2544 }
2545 }
2546 }
2547 else
2548 {
2549 rtx last = get_last_bb_insn (b);
2550 if (last && BARRIER_P (last))
2551 FOR_EACH_EDGE (e, ei, b->preds)
2552 if ((e->flags & EDGE_FALLTHRU))
2553 emit_barrier_after (BB_END (e->src));
2554 }
2555 }
2556 delete_basic_block (b);
2557 changed = true;
2558 /* Avoid trying to remove ENTRY_BLOCK_PTR. */
2559 b = (c == ENTRY_BLOCK_PTR ? c->next_bb : c);
2560 continue;
2561 }
2562
2563 /* Remove code labels no longer used. */
2564 if (single_pred_p (b)
2565 && (single_pred_edge (b)->flags & EDGE_FALLTHRU)
2566 && !(single_pred_edge (b)->flags & EDGE_COMPLEX)
2567 && LABEL_P (BB_HEAD (b))
2568 /* If the previous block ends with a branch to this
2569 block, we can't delete the label. Normally this
2570 is a condjump that is yet to be simplified, but
2571 if CASE_DROPS_THRU, this can be a tablejump with
2572 some element going to the same place as the
2573 default (fallthru). */
2574 && (single_pred (b) == ENTRY_BLOCK_PTR
2575 || !JUMP_P (BB_END (single_pred (b)))
2576 || ! label_is_jump_target_p (BB_HEAD (b),
2577 BB_END (single_pred (b)))))
2578 {
2579 rtx label = BB_HEAD (b);
2580
2581 delete_insn_chain (label, label, false);
2582 /* If the case label is undeletable, move it after the
2583 BASIC_BLOCK note. */
2584 if (NOTE_KIND (BB_HEAD (b)) == NOTE_INSN_DELETED_LABEL)
2585 {
2586 rtx bb_note = NEXT_INSN (BB_HEAD (b));
2587
2588 reorder_insns_nobb (label, label, bb_note);
2589 BB_HEAD (b) = bb_note;
2590 if (BB_END (b) == bb_note)
2591 BB_END (b) = label;
2592 }
2593 if (dump_file)
2594 fprintf (dump_file, "Deleted label in block %i.\n",
2595 b->index);
2596 }
2597
2598 /* If we fall through an empty block, we can remove it. */
2599 if (!(mode & CLEANUP_CFGLAYOUT)
2600 && single_pred_p (b)
2601 && (single_pred_edge (b)->flags & EDGE_FALLTHRU)
2602 && !LABEL_P (BB_HEAD (b))
2603 && FORWARDER_BLOCK_P (b)
2604 /* Note that forwarder_block_p true ensures that
2605 there is a successor for this block. */
2606 && (single_succ_edge (b)->flags & EDGE_FALLTHRU)
2607 && n_basic_blocks > NUM_FIXED_BLOCKS + 1)
2608 {
2609 if (dump_file)
2610 fprintf (dump_file,
2611 "Deleting fallthru block %i.\n",
2612 b->index);
2613
2614 c = b->prev_bb == ENTRY_BLOCK_PTR ? b->next_bb : b->prev_bb;
2615 redirect_edge_succ_nodup (single_pred_edge (b),
2616 single_succ (b));
2617 delete_basic_block (b);
2618 changed = true;
2619 b = c;
2620 continue;
2621 }
2622
2623 /* Merge B with its single successor, if any. */
2624 if (single_succ_p (b)
2625 && (s = single_succ_edge (b))
2626 && !(s->flags & EDGE_COMPLEX)
2627 && (c = s->dest) != EXIT_BLOCK_PTR
2628 && single_pred_p (c)
2629 && b != c)
2630 {
2631 /* When not in cfg_layout mode use code aware of reordering
2632 INSN. This code possibly creates new basic blocks so it
2633 does not fit merge_blocks interface and is kept here in
2634 hope that it will become useless once more of compiler
2635 is transformed to use cfg_layout mode. */
2636
2637 if ((mode & CLEANUP_CFGLAYOUT)
2638 && can_merge_blocks_p (b, c))
2639 {
2640 merge_blocks (b, c);
2641 update_forwarder_flag (b);
2642 changed_here = true;
2643 }
2644 else if (!(mode & CLEANUP_CFGLAYOUT)
2645 /* If the jump insn has side effects,
2646 we can't kill the edge. */
2647 && (!JUMP_P (BB_END (b))
2648 || (reload_completed
2649 ? simplejump_p (BB_END (b))
2650 : (onlyjump_p (BB_END (b))
2651 && !tablejump_p (BB_END (b),
2652 NULL, NULL))))
2653 && (next = merge_blocks_move (s, b, c, mode)))
2654 {
2655 b = next;
2656 changed_here = true;
2657 }
2658 }
2659
2660 /* Simplify branch over branch. */
2661 if ((mode & CLEANUP_EXPENSIVE)
2662 && !(mode & CLEANUP_CFGLAYOUT)
2663 && try_simplify_condjump (b))
2664 changed_here = true;
2665
2666 /* If B has a single outgoing edge, but uses a
2667 non-trivial jump instruction without side-effects, we
2668 can either delete the jump entirely, or replace it
2669 with a simple unconditional jump. */
2670 if (single_succ_p (b)
2671 && single_succ (b) != EXIT_BLOCK_PTR
2672 && onlyjump_p (BB_END (b))
2673 && !find_reg_note (BB_END (b), REG_CROSSING_JUMP, NULL_RTX)
2674 && try_redirect_by_replacing_jump (single_succ_edge (b),
2675 single_succ (b),
2676 (mode & CLEANUP_CFGLAYOUT) != 0))
2677 {
2678 update_forwarder_flag (b);
2679 changed_here = true;
2680 }
2681
2682 /* Simplify branch to branch. */
2683 if (try_forward_edges (mode, b))
2684 changed_here = true;
2685
2686 /* Look for shared code between blocks. */
2687 if ((mode & CLEANUP_CROSSJUMP)
2688 && try_crossjump_bb (mode, b))
2689 changed_here = true;
2690
2691 if ((mode & CLEANUP_CROSSJUMP)
2692 /* This can lengthen register lifetimes. Do it only after
2693 reload. */
2694 && reload_completed
2695 && try_head_merge_bb (b))
2696 changed_here = true;
2697
2698 /* Don't get confused by the index shift caused by
2699 deleting blocks. */
2700 if (!changed_here)
2701 b = b->next_bb;
2702 else
2703 changed = true;
2704 }
2705
2706 if ((mode & CLEANUP_CROSSJUMP)
2707 && try_crossjump_bb (mode, EXIT_BLOCK_PTR))
2708 changed = true;
2709
2710 if (block_was_dirty)
2711 {
2712 /* This should only be set by head-merging. */
2713 gcc_assert (mode & CLEANUP_CROSSJUMP);
2714 df_analyze ();
2715 }
2716
2717 #ifdef ENABLE_CHECKING
2718 if (changed)
2719 verify_flow_info ();
2720 #endif
2721
2722 changed_overall |= changed;
2723 first_pass = false;
2724 }
2725 while (changed);
2726 }
2727
2728 FOR_ALL_BB (b)
2729 b->flags &= ~(BB_FORWARDER_BLOCK | BB_NONTHREADABLE_BLOCK);
2730
2731 return changed_overall;
2732 }
2733 \f
2734 /* Delete all unreachable basic blocks. */
2735
2736 bool
2737 delete_unreachable_blocks (void)
2738 {
2739 bool changed = false;
2740 basic_block b, prev_bb;
2741
2742 find_unreachable_blocks ();
2743
2744 /* When we're in GIMPLE mode and there may be debug insns, we should
2745 delete blocks in reverse dominator order, so as to get a chance
2746 to substitute all released DEFs into debug stmts. If we don't
2747 have dominators information, walking blocks backward gets us a
2748 better chance of retaining most debug information than
2749 otherwise. */
2750 if (MAY_HAVE_DEBUG_STMTS && current_ir_type () == IR_GIMPLE
2751 && dom_info_available_p (CDI_DOMINATORS))
2752 {
2753 for (b = EXIT_BLOCK_PTR->prev_bb; b != ENTRY_BLOCK_PTR; b = prev_bb)
2754 {
2755 prev_bb = b->prev_bb;
2756
2757 if (!(b->flags & BB_REACHABLE))
2758 {
2759 /* Speed up the removal of blocks that don't dominate
2760 others. Walking backwards, this should be the common
2761 case. */
2762 if (!first_dom_son (CDI_DOMINATORS, b))
2763 delete_basic_block (b);
2764 else
2765 {
2766 VEC (basic_block, heap) *h
2767 = get_all_dominated_blocks (CDI_DOMINATORS, b);
2768
2769 while (VEC_length (basic_block, h))
2770 {
2771 b = VEC_pop (basic_block, h);
2772
2773 prev_bb = b->prev_bb;
2774
2775 gcc_assert (!(b->flags & BB_REACHABLE));
2776
2777 delete_basic_block (b);
2778 }
2779
2780 VEC_free (basic_block, heap, h);
2781 }
2782
2783 changed = true;
2784 }
2785 }
2786 }
2787 else
2788 {
2789 for (b = EXIT_BLOCK_PTR->prev_bb; b != ENTRY_BLOCK_PTR; b = prev_bb)
2790 {
2791 prev_bb = b->prev_bb;
2792
2793 if (!(b->flags & BB_REACHABLE))
2794 {
2795 delete_basic_block (b);
2796 changed = true;
2797 }
2798 }
2799 }
2800
2801 if (changed)
2802 tidy_fallthru_edges ();
2803 return changed;
2804 }
2805
2806 /* Delete any jump tables never referenced. We can't delete them at the
2807 time of removing tablejump insn as they are referenced by the preceding
2808 insns computing the destination, so we delay deleting and garbagecollect
2809 them once life information is computed. */
2810 void
2811 delete_dead_jumptables (void)
2812 {
2813 basic_block bb;
2814
2815 /* A dead jump table does not belong to any basic block. Scan insns
2816 between two adjacent basic blocks. */
2817 FOR_EACH_BB (bb)
2818 {
2819 rtx insn, next;
2820
2821 for (insn = NEXT_INSN (BB_END (bb));
2822 insn && !NOTE_INSN_BASIC_BLOCK_P (insn);
2823 insn = next)
2824 {
2825 next = NEXT_INSN (insn);
2826 if (LABEL_P (insn)
2827 && LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
2828 && JUMP_TABLE_DATA_P (next))
2829 {
2830 rtx label = insn, jump = next;
2831
2832 if (dump_file)
2833 fprintf (dump_file, "Dead jumptable %i removed\n",
2834 INSN_UID (insn));
2835
2836 next = NEXT_INSN (next);
2837 delete_insn (jump);
2838 delete_insn (label);
2839 }
2840 }
2841 }
2842 }
2843
2844 \f
2845 /* Tidy the CFG by deleting unreachable code and whatnot. */
2846
2847 bool
2848 cleanup_cfg (int mode)
2849 {
2850 bool changed = false;
2851
2852 /* Set the cfglayout mode flag here. We could update all the callers
2853 but that is just inconvenient, especially given that we eventually
2854 want to have cfglayout mode as the default. */
2855 if (current_ir_type () == IR_RTL_CFGLAYOUT)
2856 mode |= CLEANUP_CFGLAYOUT;
2857
2858 timevar_push (TV_CLEANUP_CFG);
2859 if (delete_unreachable_blocks ())
2860 {
2861 changed = true;
2862 /* We've possibly created trivially dead code. Cleanup it right
2863 now to introduce more opportunities for try_optimize_cfg. */
2864 if (!(mode & (CLEANUP_NO_INSN_DEL))
2865 && !reload_completed)
2866 delete_trivially_dead_insns (get_insns (), max_reg_num ());
2867 }
2868
2869 compact_blocks ();
2870
2871 /* To tail-merge blocks ending in the same noreturn function (e.g.
2872 a call to abort) we have to insert fake edges to exit. Do this
2873 here once. The fake edges do not interfere with any other CFG
2874 cleanups. */
2875 if (mode & CLEANUP_CROSSJUMP)
2876 add_noreturn_fake_exit_edges ();
2877
2878 if (!dbg_cnt (cfg_cleanup))
2879 return changed;
2880
2881 while (try_optimize_cfg (mode))
2882 {
2883 delete_unreachable_blocks (), changed = true;
2884 if (!(mode & CLEANUP_NO_INSN_DEL))
2885 {
2886 /* Try to remove some trivially dead insns when doing an expensive
2887 cleanup. But delete_trivially_dead_insns doesn't work after
2888 reload (it only handles pseudos) and run_fast_dce is too costly
2889 to run in every iteration.
2890
2891 For effective cross jumping, we really want to run a fast DCE to
2892 clean up any dead conditions, or they get in the way of performing
2893 useful tail merges.
2894
2895 Other transformations in cleanup_cfg are not so sensitive to dead
2896 code, so delete_trivially_dead_insns or even doing nothing at all
2897 is good enough. */
2898 if ((mode & CLEANUP_EXPENSIVE) && !reload_completed
2899 && !delete_trivially_dead_insns (get_insns (), max_reg_num ()))
2900 break;
2901 if ((mode & CLEANUP_CROSSJUMP) && crossjumps_occured)
2902 run_fast_dce ();
2903 }
2904 else
2905 break;
2906 }
2907
2908 if (mode & CLEANUP_CROSSJUMP)
2909 remove_fake_exit_edges ();
2910
2911 /* Don't call delete_dead_jumptables in cfglayout mode, because
2912 that function assumes that jump tables are in the insns stream.
2913 But we also don't _have_ to delete dead jumptables in cfglayout
2914 mode because we shouldn't even be looking at things that are
2915 not in a basic block. Dead jumptables are cleaned up when
2916 going out of cfglayout mode. */
2917 if (!(mode & CLEANUP_CFGLAYOUT))
2918 delete_dead_jumptables ();
2919
2920 timevar_pop (TV_CLEANUP_CFG);
2921
2922 return changed;
2923 }
2924 \f
2925 static unsigned int
2926 rest_of_handle_jump (void)
2927 {
2928 if (crtl->tail_call_emit)
2929 fixup_tail_calls ();
2930 return 0;
2931 }
2932
2933 struct rtl_opt_pass pass_jump =
2934 {
2935 {
2936 RTL_PASS,
2937 "sibling", /* name */
2938 NULL, /* gate */
2939 rest_of_handle_jump, /* execute */
2940 NULL, /* sub */
2941 NULL, /* next */
2942 0, /* static_pass_number */
2943 TV_JUMP, /* tv_id */
2944 0, /* properties_required */
2945 0, /* properties_provided */
2946 0, /* properties_destroyed */
2947 TODO_ggc_collect, /* todo_flags_start */
2948 TODO_verify_flow, /* todo_flags_finish */
2949 }
2950 };
2951
2952
2953 static unsigned int
2954 rest_of_handle_jump2 (void)
2955 {
2956 delete_trivially_dead_insns (get_insns (), max_reg_num ());
2957 if (dump_file)
2958 dump_flow_info (dump_file, dump_flags);
2959 cleanup_cfg ((optimize ? CLEANUP_EXPENSIVE : 0)
2960 | (flag_thread_jumps ? CLEANUP_THREADING : 0));
2961 return 0;
2962 }
2963
2964
2965 struct rtl_opt_pass pass_jump2 =
2966 {
2967 {
2968 RTL_PASS,
2969 "jump", /* name */
2970 NULL, /* gate */
2971 rest_of_handle_jump2, /* execute */
2972 NULL, /* sub */
2973 NULL, /* next */
2974 0, /* static_pass_number */
2975 TV_JUMP, /* tv_id */
2976 0, /* properties_required */
2977 0, /* properties_provided */
2978 0, /* properties_destroyed */
2979 TODO_ggc_collect, /* todo_flags_start */
2980 TODO_dump_func | TODO_verify_rtl_sharing,/* todo_flags_finish */
2981 }
2982 };
2983
2984