* cfgcleanup.c (try_optimize_cfg): Fix thinko in previous patch.
[gcc.git] / gcc / cfgcleanup.c
1 /* Control flow optimization code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains optimizer of the control flow. The main entrypoint is
23 cleanup_cfg. Following optimizations are performed:
24
25 - Unreachable blocks removal
26 - Edge forwarding (edge to the forwarder block is forwarded to it's
27 successor. Simplification of the branch instruction is performed by
28 underlying infrastructure so branch can be converted to simplejump or
29 eliminated).
30 - Cross jumping (tail merging)
31 - Conditional jump-around-simplejump simplification
32 - Basic block merging. */
33
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "rtl.h"
39 #include "hard-reg-set.h"
40 #include "basic-block.h"
41 #include "timevar.h"
42 #include "output.h"
43 #include "insn-config.h"
44 #include "flags.h"
45 #include "recog.h"
46 #include "toplev.h"
47 #include "cselib.h"
48 #include "params.h"
49 #include "tm_p.h"
50 #include "target.h"
51
52 /* cleanup_cfg maintains following flags for each basic block. */
53
54 enum bb_flags
55 {
56 /* Set if BB is the forwarder block to avoid too many
57 forwarder_block_p calls. */
58 BB_FORWARDER_BLOCK = 1,
59 BB_NONTHREADABLE_BLOCK = 2
60 };
61
62 #define BB_FLAGS(BB) (enum bb_flags) (BB)->aux
63 #define BB_SET_FLAG(BB, FLAG) \
64 (BB)->aux = (void *) (long) ((enum bb_flags) (BB)->aux | (FLAG))
65 #define BB_CLEAR_FLAG(BB, FLAG) \
66 (BB)->aux = (void *) (long) ((enum bb_flags) (BB)->aux & ~(FLAG))
67
68 #define FORWARDER_BLOCK_P(BB) (BB_FLAGS (BB) & BB_FORWARDER_BLOCK)
69
70 static bool try_crossjump_to_edge PARAMS ((int, edge, edge));
71 static bool try_crossjump_bb PARAMS ((int, basic_block));
72 static bool outgoing_edges_match PARAMS ((int,
73 basic_block, basic_block));
74 static int flow_find_cross_jump PARAMS ((int, basic_block, basic_block,
75 rtx *, rtx *));
76 static bool insns_match_p PARAMS ((int, rtx, rtx));
77
78 static bool label_is_jump_target_p PARAMS ((rtx, rtx));
79 static bool tail_recursion_label_p PARAMS ((rtx));
80 static void merge_blocks_move_predecessor_nojumps PARAMS ((basic_block,
81 basic_block));
82 static void merge_blocks_move_successor_nojumps PARAMS ((basic_block,
83 basic_block));
84 static basic_block merge_blocks PARAMS ((edge,basic_block,basic_block,
85 int));
86 static bool try_optimize_cfg PARAMS ((int));
87 static bool try_simplify_condjump PARAMS ((basic_block));
88 static bool try_forward_edges PARAMS ((int, basic_block));
89 static edge thread_jump PARAMS ((int, edge, basic_block));
90 static bool mark_effect PARAMS ((rtx, bitmap));
91 static void notice_new_block PARAMS ((basic_block));
92 static void update_forwarder_flag PARAMS ((basic_block));
93 static int mentions_nonequal_regs PARAMS ((rtx *, void *));
94 \f
95 /* Set flags for newly created block. */
96
97 static void
98 notice_new_block (bb)
99 basic_block bb;
100 {
101 if (!bb)
102 return;
103
104 if (forwarder_block_p (bb))
105 BB_SET_FLAG (bb, BB_FORWARDER_BLOCK);
106 }
107
108 /* Recompute forwarder flag after block has been modified. */
109
110 static void
111 update_forwarder_flag (bb)
112 basic_block bb;
113 {
114 if (forwarder_block_p (bb))
115 BB_SET_FLAG (bb, BB_FORWARDER_BLOCK);
116 else
117 BB_CLEAR_FLAG (bb, BB_FORWARDER_BLOCK);
118 }
119 \f
120 /* Simplify a conditional jump around an unconditional jump.
121 Return true if something changed. */
122
123 static bool
124 try_simplify_condjump (cbranch_block)
125 basic_block cbranch_block;
126 {
127 basic_block jump_block, jump_dest_block, cbranch_dest_block;
128 edge cbranch_jump_edge, cbranch_fallthru_edge;
129 rtx cbranch_insn;
130
131 /* Verify that there are exactly two successors. */
132 if (!cbranch_block->succ
133 || !cbranch_block->succ->succ_next
134 || cbranch_block->succ->succ_next->succ_next)
135 return false;
136
137 /* Verify that we've got a normal conditional branch at the end
138 of the block. */
139 cbranch_insn = cbranch_block->end;
140 if (!any_condjump_p (cbranch_insn))
141 return false;
142
143 cbranch_fallthru_edge = FALLTHRU_EDGE (cbranch_block);
144 cbranch_jump_edge = BRANCH_EDGE (cbranch_block);
145
146 /* The next block must not have multiple predecessors, must not
147 be the last block in the function, and must contain just the
148 unconditional jump. */
149 jump_block = cbranch_fallthru_edge->dest;
150 if (jump_block->pred->pred_next
151 || jump_block->next_bb == EXIT_BLOCK_PTR
152 || !FORWARDER_BLOCK_P (jump_block))
153 return false;
154 jump_dest_block = jump_block->succ->dest;
155
156 /* The conditional branch must target the block after the
157 unconditional branch. */
158 cbranch_dest_block = cbranch_jump_edge->dest;
159
160 if (!can_fallthru (jump_block, cbranch_dest_block))
161 return false;
162
163 /* Invert the conditional branch. */
164 if (!invert_jump (cbranch_insn, block_label (jump_dest_block), 0))
165 return false;
166
167 if (rtl_dump_file)
168 fprintf (rtl_dump_file, "Simplifying condjump %i around jump %i\n",
169 INSN_UID (cbranch_insn), INSN_UID (jump_block->end));
170
171 /* Success. Update the CFG to match. Note that after this point
172 the edge variable names appear backwards; the redirection is done
173 this way to preserve edge profile data. */
174 cbranch_jump_edge = redirect_edge_succ_nodup (cbranch_jump_edge,
175 cbranch_dest_block);
176 cbranch_fallthru_edge = redirect_edge_succ_nodup (cbranch_fallthru_edge,
177 jump_dest_block);
178 cbranch_jump_edge->flags |= EDGE_FALLTHRU;
179 cbranch_fallthru_edge->flags &= ~EDGE_FALLTHRU;
180 update_br_prob_note (cbranch_block);
181
182 /* Delete the block with the unconditional jump, and clean up the mess. */
183 flow_delete_block (jump_block);
184 tidy_fallthru_edge (cbranch_jump_edge, cbranch_block, cbranch_dest_block);
185
186 return true;
187 }
188 \f
189 /* Attempt to prove that operation is NOOP using CSElib or mark the effect
190 on register. Used by jump threading. */
191
192 static bool
193 mark_effect (exp, nonequal)
194 rtx exp;
195 regset nonequal;
196 {
197 int regno;
198 rtx dest;
199 switch (GET_CODE (exp))
200 {
201 /* In case we do clobber the register, mark it as equal, as we know the
202 value is dead so it don't have to match. */
203 case CLOBBER:
204 if (REG_P (XEXP (exp, 0)))
205 {
206 dest = XEXP (exp, 0);
207 regno = REGNO (dest);
208 CLEAR_REGNO_REG_SET (nonequal, regno);
209 if (regno < FIRST_PSEUDO_REGISTER)
210 {
211 int n = HARD_REGNO_NREGS (regno, GET_MODE (dest));
212 while (--n > 0)
213 CLEAR_REGNO_REG_SET (nonequal, regno + n);
214 }
215 }
216 return false;
217
218 case SET:
219 if (rtx_equal_for_cselib_p (SET_DEST (exp), SET_SRC (exp)))
220 return false;
221 dest = SET_DEST (exp);
222 if (dest == pc_rtx)
223 return false;
224 if (!REG_P (dest))
225 return true;
226 regno = REGNO (dest);
227 SET_REGNO_REG_SET (nonequal, regno);
228 if (regno < FIRST_PSEUDO_REGISTER)
229 {
230 int n = HARD_REGNO_NREGS (regno, GET_MODE (dest));
231 while (--n > 0)
232 SET_REGNO_REG_SET (nonequal, regno + n);
233 }
234 return false;
235
236 default:
237 return false;
238 }
239 }
240
241 /* Return nonzero if X is an register set in regset DATA.
242 Called via for_each_rtx. */
243 static int
244 mentions_nonequal_regs (x, data)
245 rtx *x;
246 void *data;
247 {
248 regset nonequal = (regset) data;
249 if (REG_P (*x))
250 {
251 int regno;
252
253 regno = REGNO (*x);
254 if (REGNO_REG_SET_P (nonequal, regno))
255 return 1;
256 if (regno < FIRST_PSEUDO_REGISTER)
257 {
258 int n = HARD_REGNO_NREGS (regno, GET_MODE (*x));
259 while (--n > 0)
260 if (REGNO_REG_SET_P (nonequal, regno + n))
261 return 1;
262 }
263 }
264 return 0;
265 }
266 /* Attempt to prove that the basic block B will have no side effects and
267 always continues in the same edge if reached via E. Return the edge
268 if exist, NULL otherwise. */
269
270 static edge
271 thread_jump (mode, e, b)
272 int mode;
273 edge e;
274 basic_block b;
275 {
276 rtx set1, set2, cond1, cond2, insn;
277 enum rtx_code code1, code2, reversed_code2;
278 bool reverse1 = false;
279 int i;
280 regset nonequal;
281 bool failed = false;
282
283 if (BB_FLAGS (b) & BB_NONTHREADABLE_BLOCK)
284 return NULL;
285
286 /* At the moment, we do handle only conditional jumps, but later we may
287 want to extend this code to tablejumps and others. */
288 if (!e->src->succ->succ_next || e->src->succ->succ_next->succ_next)
289 return NULL;
290 if (!b->succ || !b->succ->succ_next || b->succ->succ_next->succ_next)
291 {
292 BB_SET_FLAG (b, BB_NONTHREADABLE_BLOCK);
293 return NULL;
294 }
295
296 /* Second branch must end with onlyjump, as we will eliminate the jump. */
297 if (!any_condjump_p (e->src->end))
298 return NULL;
299
300 if (!any_condjump_p (b->end) || !onlyjump_p (b->end))
301 {
302 BB_SET_FLAG (b, BB_NONTHREADABLE_BLOCK);
303 return NULL;
304 }
305
306 set1 = pc_set (e->src->end);
307 set2 = pc_set (b->end);
308 if (((e->flags & EDGE_FALLTHRU) != 0)
309 != (XEXP (SET_SRC (set1), 1) == pc_rtx))
310 reverse1 = true;
311
312 cond1 = XEXP (SET_SRC (set1), 0);
313 cond2 = XEXP (SET_SRC (set2), 0);
314 if (reverse1)
315 code1 = reversed_comparison_code (cond1, e->src->end);
316 else
317 code1 = GET_CODE (cond1);
318
319 code2 = GET_CODE (cond2);
320 reversed_code2 = reversed_comparison_code (cond2, b->end);
321
322 if (!comparison_dominates_p (code1, code2)
323 && !comparison_dominates_p (code1, reversed_code2))
324 return NULL;
325
326 /* Ensure that the comparison operators are equivalent.
327 ??? This is far too pessimistic. We should allow swapped operands,
328 different CCmodes, or for example comparisons for interval, that
329 dominate even when operands are not equivalent. */
330 if (!rtx_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
331 || !rtx_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
332 return NULL;
333
334 /* Short circuit cases where block B contains some side effects, as we can't
335 safely bypass it. */
336 for (insn = NEXT_INSN (b->head); insn != NEXT_INSN (b->end);
337 insn = NEXT_INSN (insn))
338 if (INSN_P (insn) && side_effects_p (PATTERN (insn)))
339 {
340 BB_SET_FLAG (b, BB_NONTHREADABLE_BLOCK);
341 return NULL;
342 }
343
344 cselib_init ();
345
346 /* First process all values computed in the source basic block. */
347 for (insn = NEXT_INSN (e->src->head); insn != NEXT_INSN (e->src->end);
348 insn = NEXT_INSN (insn))
349 if (INSN_P (insn))
350 cselib_process_insn (insn);
351
352 nonequal = BITMAP_XMALLOC();
353 CLEAR_REG_SET (nonequal);
354
355 /* Now assume that we've continued by the edge E to B and continue
356 processing as if it were same basic block.
357 Our goal is to prove that whole block is an NOOP. */
358
359 for (insn = NEXT_INSN (b->head); insn != NEXT_INSN (b->end) && !failed;
360 insn = NEXT_INSN (insn))
361 {
362 if (INSN_P (insn))
363 {
364 rtx pat = PATTERN (insn);
365
366 if (GET_CODE (pat) == PARALLEL)
367 {
368 for (i = 0; i < XVECLEN (pat, 0); i++)
369 failed |= mark_effect (XVECEXP (pat, 0, i), nonequal);
370 }
371 else
372 failed |= mark_effect (pat, nonequal);
373 }
374
375 cselib_process_insn (insn);
376 }
377
378 /* Later we should clear nonequal of dead registers. So far we don't
379 have life information in cfg_cleanup. */
380 if (failed)
381 {
382 BB_SET_FLAG (b, BB_NONTHREADABLE_BLOCK);
383 goto failed_exit;
384 }
385
386 /* cond2 must not mention any register that is not equal to the
387 former block. */
388 if (for_each_rtx (&cond2, mentions_nonequal_regs, nonequal))
389 goto failed_exit;
390
391 /* In case liveness information is available, we need to prove equivalence
392 only of the live values. */
393 if (mode & CLEANUP_UPDATE_LIFE)
394 AND_REG_SET (nonequal, b->global_live_at_end);
395
396 EXECUTE_IF_SET_IN_REG_SET (nonequal, 0, i, goto failed_exit;);
397
398 BITMAP_XFREE (nonequal);
399 cselib_finish ();
400 if ((comparison_dominates_p (code1, code2) != 0)
401 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
402 return BRANCH_EDGE (b);
403 else
404 return FALLTHRU_EDGE (b);
405
406 failed_exit:
407 BITMAP_XFREE (nonequal);
408 cselib_finish ();
409 return NULL;
410 }
411 \f
412 /* Attempt to forward edges leaving basic block B.
413 Return true if successful. */
414
415 static bool
416 try_forward_edges (mode, b)
417 basic_block b;
418 int mode;
419 {
420 bool changed = false;
421 edge e, next, *threaded_edges = NULL;
422
423 for (e = b->succ; e; e = next)
424 {
425 basic_block target, first;
426 int counter;
427 bool threaded = false;
428 int nthreaded_edges = 0;
429
430 next = e->succ_next;
431
432 /* Skip complex edges because we don't know how to update them.
433
434 Still handle fallthru edges, as we can succeed to forward fallthru
435 edge to the same place as the branch edge of conditional branch
436 and turn conditional branch to an unconditional branch. */
437 if (e->flags & EDGE_COMPLEX)
438 continue;
439
440 target = first = e->dest;
441 counter = 0;
442
443 while (counter < n_basic_blocks)
444 {
445 basic_block new_target = NULL;
446 bool new_target_threaded = false;
447
448 if (FORWARDER_BLOCK_P (target)
449 && target->succ->dest != EXIT_BLOCK_PTR)
450 {
451 /* Bypass trivial infinite loops. */
452 if (target == target->succ->dest)
453 counter = n_basic_blocks;
454 new_target = target->succ->dest;
455 }
456
457 /* Allow to thread only over one edge at time to simplify updating
458 of probabilities. */
459 else if (mode & CLEANUP_THREADING)
460 {
461 edge t = thread_jump (mode, e, target);
462 if (t)
463 {
464 if (!threaded_edges)
465 threaded_edges = xmalloc (sizeof (*threaded_edges)
466 * n_basic_blocks);
467 else
468 {
469 int i;
470
471 /* Detect an infinite loop across blocks not
472 including the start block. */
473 for (i = 0; i < nthreaded_edges; ++i)
474 if (threaded_edges[i] == t)
475 break;
476 if (i < nthreaded_edges)
477 {
478 counter = n_basic_blocks;
479 break;
480 }
481 }
482
483 /* Detect an infinite loop across the start block. */
484 if (t->dest == b)
485 break;
486
487 if (nthreaded_edges >= n_basic_blocks)
488 abort ();
489 threaded_edges[nthreaded_edges++] = t;
490
491 new_target = t->dest;
492 new_target_threaded = true;
493 }
494 }
495
496 if (!new_target)
497 break;
498
499 /* Avoid killing of loop pre-headers, as it is the place loop
500 optimizer wants to hoist code to.
501
502 For fallthru forwarders, the LOOP_BEG note must appear between
503 the header of block and CODE_LABEL of the loop, for non forwarders
504 it must appear before the JUMP_INSN. */
505 if ((mode & CLEANUP_PRE_LOOP) && optimize)
506 {
507 rtx insn = (target->succ->flags & EDGE_FALLTHRU
508 ? target->head : prev_nonnote_insn (target->end));
509
510 if (GET_CODE (insn) != NOTE)
511 insn = NEXT_INSN (insn);
512
513 for (; insn && GET_CODE (insn) != CODE_LABEL && !INSN_P (insn);
514 insn = NEXT_INSN (insn))
515 if (GET_CODE (insn) == NOTE
516 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
517 break;
518
519 if (GET_CODE (insn) == NOTE)
520 break;
521
522 /* Do not clean up branches to just past the end of a loop
523 at this time; it can mess up the loop optimizer's
524 recognition of some patterns. */
525
526 insn = PREV_INSN (target->head);
527 if (insn && GET_CODE (insn) == NOTE
528 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
529 break;
530 }
531
532 counter++;
533 target = new_target;
534 threaded |= new_target_threaded;
535 }
536
537 if (counter >= n_basic_blocks)
538 {
539 if (rtl_dump_file)
540 fprintf (rtl_dump_file, "Infinite loop in BB %i.\n",
541 target->index);
542 }
543 else if (target == first)
544 ; /* We didn't do anything. */
545 else
546 {
547 /* Save the values now, as the edge may get removed. */
548 gcov_type edge_count = e->count;
549 int edge_probability = e->probability;
550 int edge_frequency;
551 int n = 0;
552
553 /* Don't force if target is exit block. */
554 if (threaded && target != EXIT_BLOCK_PTR)
555 {
556 notice_new_block (redirect_edge_and_branch_force (e, target));
557 if (rtl_dump_file)
558 fprintf (rtl_dump_file, "Conditionals threaded.\n");
559 }
560 else if (!redirect_edge_and_branch (e, target))
561 {
562 if (rtl_dump_file)
563 fprintf (rtl_dump_file,
564 "Forwarding edge %i->%i to %i failed.\n",
565 b->index, e->dest->index, target->index);
566 continue;
567 }
568
569 /* We successfully forwarded the edge. Now update profile
570 data: for each edge we traversed in the chain, remove
571 the original edge's execution count. */
572 edge_frequency = ((edge_probability * b->frequency
573 + REG_BR_PROB_BASE / 2)
574 / REG_BR_PROB_BASE);
575
576 if (!FORWARDER_BLOCK_P (b) && forwarder_block_p (b))
577 BB_SET_FLAG (b, BB_FORWARDER_BLOCK);
578
579 do
580 {
581 edge t;
582
583 first->count -= edge_count;
584 if (first->count < 0)
585 first->count = 0;
586 first->frequency -= edge_frequency;
587 if (first->frequency < 0)
588 first->frequency = 0;
589 if (first->succ->succ_next)
590 {
591 edge e;
592 int prob;
593 if (n >= nthreaded_edges)
594 abort ();
595 t = threaded_edges [n++];
596 if (t->src != first)
597 abort ();
598 if (first->frequency)
599 prob = edge_frequency * REG_BR_PROB_BASE / first->frequency;
600 else
601 prob = 0;
602 if (prob > t->probability)
603 prob = t->probability;
604 t->probability -= prob;
605 prob = REG_BR_PROB_BASE - prob;
606 if (prob <= 0)
607 {
608 first->succ->probability = REG_BR_PROB_BASE;
609 first->succ->succ_next->probability = 0;
610 }
611 else
612 for (e = first->succ; e; e = e->succ_next)
613 e->probability = ((e->probability * REG_BR_PROB_BASE)
614 / (double) prob);
615 update_br_prob_note (first);
616 }
617 else
618 {
619 /* It is possible that as the result of
620 threading we've removed edge as it is
621 threaded to the fallthru edge. Avoid
622 getting out of sync. */
623 if (n < nthreaded_edges
624 && first == threaded_edges [n]->src)
625 n++;
626 t = first->succ;
627 }
628
629 t->count -= edge_count;
630 if (t->count < 0)
631 t->count = 0;
632 first = t->dest;
633 }
634 while (first != target);
635
636 changed = true;
637 }
638 }
639
640 if (threaded_edges)
641 free (threaded_edges);
642 return changed;
643 }
644 \f
645 /* Return true if LABEL is a target of JUMP_INSN. This applies only
646 to non-complex jumps. That is, direct unconditional, conditional,
647 and tablejumps, but not computed jumps or returns. It also does
648 not apply to the fallthru case of a conditional jump. */
649
650 static bool
651 label_is_jump_target_p (label, jump_insn)
652 rtx label, jump_insn;
653 {
654 rtx tmp = JUMP_LABEL (jump_insn);
655
656 if (label == tmp)
657 return true;
658
659 if (tmp != NULL_RTX
660 && (tmp = NEXT_INSN (tmp)) != NULL_RTX
661 && GET_CODE (tmp) == JUMP_INSN
662 && (tmp = PATTERN (tmp),
663 GET_CODE (tmp) == ADDR_VEC
664 || GET_CODE (tmp) == ADDR_DIFF_VEC))
665 {
666 rtvec vec = XVEC (tmp, GET_CODE (tmp) == ADDR_DIFF_VEC);
667 int i, veclen = GET_NUM_ELEM (vec);
668
669 for (i = 0; i < veclen; ++i)
670 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
671 return true;
672 }
673
674 return false;
675 }
676
677 /* Return true if LABEL is used for tail recursion. */
678
679 static bool
680 tail_recursion_label_p (label)
681 rtx label;
682 {
683 rtx x;
684
685 for (x = tail_recursion_label_list; x; x = XEXP (x, 1))
686 if (label == XEXP (x, 0))
687 return true;
688
689 return false;
690 }
691
692 /* Blocks A and B are to be merged into a single block. A has no incoming
693 fallthru edge, so it can be moved before B without adding or modifying
694 any jumps (aside from the jump from A to B). */
695
696 static void
697 merge_blocks_move_predecessor_nojumps (a, b)
698 basic_block a, b;
699 {
700 rtx barrier;
701
702 barrier = next_nonnote_insn (a->end);
703 if (GET_CODE (barrier) != BARRIER)
704 abort ();
705 delete_insn (barrier);
706
707 /* Move block and loop notes out of the chain so that we do not
708 disturb their order.
709
710 ??? A better solution would be to squeeze out all the non-nested notes
711 and adjust the block trees appropriately. Even better would be to have
712 a tighter connection between block trees and rtl so that this is not
713 necessary. */
714 if (squeeze_notes (&a->head, &a->end))
715 abort ();
716
717 /* Scramble the insn chain. */
718 if (a->end != PREV_INSN (b->head))
719 reorder_insns_nobb (a->head, a->end, PREV_INSN (b->head));
720 a->flags |= BB_DIRTY;
721
722 if (rtl_dump_file)
723 fprintf (rtl_dump_file, "Moved block %d before %d and merged.\n",
724 a->index, b->index);
725
726 /* Swap the records for the two blocks around. */
727
728 unlink_block (a);
729 link_block (a, b->prev_bb);
730
731 /* Now blocks A and B are contiguous. Merge them. */
732 merge_blocks_nomove (a, b);
733 }
734
735 /* Blocks A and B are to be merged into a single block. B has no outgoing
736 fallthru edge, so it can be moved after A without adding or modifying
737 any jumps (aside from the jump from A to B). */
738
739 static void
740 merge_blocks_move_successor_nojumps (a, b)
741 basic_block a, b;
742 {
743 rtx barrier, real_b_end;
744
745 real_b_end = b->end;
746 barrier = NEXT_INSN (b->end);
747
748 /* Recognize a jump table following block B. */
749 if (barrier
750 && GET_CODE (barrier) == CODE_LABEL
751 && NEXT_INSN (barrier)
752 && GET_CODE (NEXT_INSN (barrier)) == JUMP_INSN
753 && (GET_CODE (PATTERN (NEXT_INSN (barrier))) == ADDR_VEC
754 || GET_CODE (PATTERN (NEXT_INSN (barrier))) == ADDR_DIFF_VEC))
755 {
756 /* Temporarily add the table jump insn to b, so that it will also
757 be moved to the correct location. */
758 b->end = NEXT_INSN (barrier);
759 barrier = NEXT_INSN (b->end);
760 }
761
762 /* There had better have been a barrier there. Delete it. */
763 if (barrier && GET_CODE (barrier) == BARRIER)
764 delete_insn (barrier);
765
766 /* Move block and loop notes out of the chain so that we do not
767 disturb their order.
768
769 ??? A better solution would be to squeeze out all the non-nested notes
770 and adjust the block trees appropriately. Even better would be to have
771 a tighter connection between block trees and rtl so that this is not
772 necessary. */
773 if (squeeze_notes (&b->head, &b->end))
774 abort ();
775
776 /* Scramble the insn chain. */
777 reorder_insns_nobb (b->head, b->end, a->end);
778
779 /* Restore the real end of b. */
780 b->end = real_b_end;
781
782 if (rtl_dump_file)
783 fprintf (rtl_dump_file, "Moved block %d after %d and merged.\n",
784 b->index, a->index);
785
786 /* Now blocks A and B are contiguous. Merge them. */
787 merge_blocks_nomove (a, b);
788 }
789
790 /* Attempt to merge basic blocks that are potentially non-adjacent.
791 Return NULL iff the attempt failed, otherwise return basic block
792 where cleanup_cfg should continue. Because the merging commonly
793 moves basic block away or introduces another optimization
794 possiblity, return basic block just before B so cleanup_cfg don't
795 need to iterate.
796
797 It may be good idea to return basic block before C in the case
798 C has been moved after B and originally appeared earlier in the
799 insn seqeunce, but we have no infromation available about the
800 relative ordering of these two. Hopefully it is not too common. */
801
802 static basic_block
803 merge_blocks (e, b, c, mode)
804 edge e;
805 basic_block b, c;
806 int mode;
807 {
808 basic_block next;
809 /* If C has a tail recursion label, do not merge. There is no
810 edge recorded from the call_placeholder back to this label, as
811 that would make optimize_sibling_and_tail_recursive_calls more
812 complex for no gain. */
813 if ((mode & CLEANUP_PRE_SIBCALL)
814 && GET_CODE (c->head) == CODE_LABEL
815 && tail_recursion_label_p (c->head))
816 return NULL;
817
818 /* If B has a fallthru edge to C, no need to move anything. */
819 if (e->flags & EDGE_FALLTHRU)
820 {
821 int b_index = b->index, c_index = c->index;
822 merge_blocks_nomove (b, c);
823 update_forwarder_flag (b);
824
825 if (rtl_dump_file)
826 fprintf (rtl_dump_file, "Merged %d and %d without moving.\n",
827 b_index, c_index);
828
829 return b->prev_bb == ENTRY_BLOCK_PTR ? b : b->prev_bb;
830 }
831
832 /* Otherwise we will need to move code around. Do that only if expensive
833 transformations are allowed. */
834 else if (mode & CLEANUP_EXPENSIVE)
835 {
836 edge tmp_edge, b_fallthru_edge;
837 bool c_has_outgoing_fallthru;
838 bool b_has_incoming_fallthru;
839
840 /* Avoid overactive code motion, as the forwarder blocks should be
841 eliminated by edge redirection instead. One exception might have
842 been if B is a forwarder block and C has no fallthru edge, but
843 that should be cleaned up by bb-reorder instead. */
844 if (FORWARDER_BLOCK_P (b) || FORWARDER_BLOCK_P (c))
845 return NULL;
846
847 /* We must make sure to not munge nesting of lexical blocks,
848 and loop notes. This is done by squeezing out all the notes
849 and leaving them there to lie. Not ideal, but functional. */
850
851 for (tmp_edge = c->succ; tmp_edge; tmp_edge = tmp_edge->succ_next)
852 if (tmp_edge->flags & EDGE_FALLTHRU)
853 break;
854
855 c_has_outgoing_fallthru = (tmp_edge != NULL);
856
857 for (tmp_edge = b->pred; tmp_edge; tmp_edge = tmp_edge->pred_next)
858 if (tmp_edge->flags & EDGE_FALLTHRU)
859 break;
860
861 b_has_incoming_fallthru = (tmp_edge != NULL);
862 b_fallthru_edge = tmp_edge;
863 next = b->prev_bb;
864 if (next == c)
865 next = next->prev_bb;
866
867 /* Otherwise, we're going to try to move C after B. If C does
868 not have an outgoing fallthru, then it can be moved
869 immediately after B without introducing or modifying jumps. */
870 if (! c_has_outgoing_fallthru)
871 {
872 merge_blocks_move_successor_nojumps (b, c);
873 return next == ENTRY_BLOCK_PTR ? next->next_bb : next;
874 }
875
876 /* If B does not have an incoming fallthru, then it can be moved
877 immediately before C without introducing or modifying jumps.
878 C cannot be the first block, so we do not have to worry about
879 accessing a non-existent block. */
880
881 if (b_has_incoming_fallthru)
882 {
883 basic_block bb;
884
885 if (b_fallthru_edge->src == ENTRY_BLOCK_PTR)
886 return NULL;
887 bb = force_nonfallthru (b_fallthru_edge);
888 if (bb)
889 notice_new_block (bb);
890 }
891
892 merge_blocks_move_predecessor_nojumps (b, c);
893 return next == ENTRY_BLOCK_PTR ? next->next_bb : next;
894 }
895
896 return false;
897 }
898 \f
899
900 /* Return true if I1 and I2 are equivalent and thus can be crossjumped. */
901
902 static bool
903 insns_match_p (mode, i1, i2)
904 int mode ATTRIBUTE_UNUSED;
905 rtx i1, i2;
906 {
907 rtx p1, p2;
908
909 /* Verify that I1 and I2 are equivalent. */
910 if (GET_CODE (i1) != GET_CODE (i2))
911 return false;
912
913 p1 = PATTERN (i1);
914 p2 = PATTERN (i2);
915
916 if (GET_CODE (p1) != GET_CODE (p2))
917 return false;
918
919 /* If this is a CALL_INSN, compare register usage information.
920 If we don't check this on stack register machines, the two
921 CALL_INSNs might be merged leaving reg-stack.c with mismatching
922 numbers of stack registers in the same basic block.
923 If we don't check this on machines with delay slots, a delay slot may
924 be filled that clobbers a parameter expected by the subroutine.
925
926 ??? We take the simple route for now and assume that if they're
927 equal, they were constructed identically. */
928
929 if (GET_CODE (i1) == CALL_INSN
930 && (!rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1),
931 CALL_INSN_FUNCTION_USAGE (i2))
932 || SIBLING_CALL_P (i1) != SIBLING_CALL_P (i2)))
933 return false;
934
935 #ifdef STACK_REGS
936 /* If cross_jump_death_matters is not 0, the insn's mode
937 indicates whether or not the insn contains any stack-like
938 regs. */
939
940 if ((mode & CLEANUP_POST_REGSTACK) && stack_regs_mentioned (i1))
941 {
942 /* If register stack conversion has already been done, then
943 death notes must also be compared before it is certain that
944 the two instruction streams match. */
945
946 rtx note;
947 HARD_REG_SET i1_regset, i2_regset;
948
949 CLEAR_HARD_REG_SET (i1_regset);
950 CLEAR_HARD_REG_SET (i2_regset);
951
952 for (note = REG_NOTES (i1); note; note = XEXP (note, 1))
953 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
954 SET_HARD_REG_BIT (i1_regset, REGNO (XEXP (note, 0)));
955
956 for (note = REG_NOTES (i2); note; note = XEXP (note, 1))
957 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
958 SET_HARD_REG_BIT (i2_regset, REGNO (XEXP (note, 0)));
959
960 GO_IF_HARD_REG_EQUAL (i1_regset, i2_regset, done);
961
962 return false;
963
964 done:
965 ;
966 }
967 #endif
968
969 if (reload_completed
970 ? ! rtx_renumbered_equal_p (p1, p2) : ! rtx_equal_p (p1, p2))
971 {
972 /* The following code helps take care of G++ cleanups. */
973 rtx equiv1 = find_reg_equal_equiv_note (i1);
974 rtx equiv2 = find_reg_equal_equiv_note (i2);
975
976 if (equiv1 && equiv2
977 /* If the equivalences are not to a constant, they may
978 reference pseudos that no longer exist, so we can't
979 use them. */
980 && (! reload_completed
981 || (CONSTANT_P (XEXP (equiv1, 0))
982 && rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))))
983 {
984 rtx s1 = single_set (i1);
985 rtx s2 = single_set (i2);
986 if (s1 != 0 && s2 != 0
987 && rtx_renumbered_equal_p (SET_DEST (s1), SET_DEST (s2)))
988 {
989 validate_change (i1, &SET_SRC (s1), XEXP (equiv1, 0), 1);
990 validate_change (i2, &SET_SRC (s2), XEXP (equiv2, 0), 1);
991 if (! rtx_renumbered_equal_p (p1, p2))
992 cancel_changes (0);
993 else if (apply_change_group ())
994 return true;
995 }
996 }
997
998 return false;
999 }
1000
1001 return true;
1002 }
1003 \f
1004 /* Look through the insns at the end of BB1 and BB2 and find the longest
1005 sequence that are equivalent. Store the first insns for that sequence
1006 in *F1 and *F2 and return the sequence length.
1007
1008 To simplify callers of this function, if the blocks match exactly,
1009 store the head of the blocks in *F1 and *F2. */
1010
1011 static int
1012 flow_find_cross_jump (mode, bb1, bb2, f1, f2)
1013 int mode ATTRIBUTE_UNUSED;
1014 basic_block bb1, bb2;
1015 rtx *f1, *f2;
1016 {
1017 rtx i1, i2, last1, last2, afterlast1, afterlast2;
1018 int ninsns = 0;
1019
1020 /* Skip simple jumps at the end of the blocks. Complex jumps still
1021 need to be compared for equivalence, which we'll do below. */
1022
1023 i1 = bb1->end;
1024 last1 = afterlast1 = last2 = afterlast2 = NULL_RTX;
1025 if (onlyjump_p (i1)
1026 || (returnjump_p (i1) && !side_effects_p (PATTERN (i1))))
1027 {
1028 last1 = i1;
1029 i1 = PREV_INSN (i1);
1030 }
1031
1032 i2 = bb2->end;
1033 if (onlyjump_p (i2)
1034 || (returnjump_p (i2) && !side_effects_p (PATTERN (i2))))
1035 {
1036 last2 = i2;
1037 /* Count everything except for unconditional jump as insn. */
1038 if (!simplejump_p (i2) && !returnjump_p (i2) && last1)
1039 ninsns++;
1040 i2 = PREV_INSN (i2);
1041 }
1042
1043 while (true)
1044 {
1045 /* Ignore notes. */
1046 while (!active_insn_p (i1) && i1 != bb1->head)
1047 i1 = PREV_INSN (i1);
1048
1049 while (!active_insn_p (i2) && i2 != bb2->head)
1050 i2 = PREV_INSN (i2);
1051
1052 if (i1 == bb1->head || i2 == bb2->head)
1053 break;
1054
1055 if (!insns_match_p (mode, i1, i2))
1056 break;
1057
1058 /* Don't begin a cross-jump with a USE or CLOBBER insn. */
1059 if (active_insn_p (i1))
1060 {
1061 /* If the merged insns have different REG_EQUAL notes, then
1062 remove them. */
1063 rtx equiv1 = find_reg_equal_equiv_note (i1);
1064 rtx equiv2 = find_reg_equal_equiv_note (i2);
1065
1066 if (equiv1 && !equiv2)
1067 remove_note (i1, equiv1);
1068 else if (!equiv1 && equiv2)
1069 remove_note (i2, equiv2);
1070 else if (equiv1 && equiv2
1071 && !rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))
1072 {
1073 remove_note (i1, equiv1);
1074 remove_note (i2, equiv2);
1075 }
1076
1077 afterlast1 = last1, afterlast2 = last2;
1078 last1 = i1, last2 = i2;
1079 ninsns++;
1080 }
1081
1082 i1 = PREV_INSN (i1);
1083 i2 = PREV_INSN (i2);
1084 }
1085
1086 #ifdef HAVE_cc0
1087 /* Don't allow the insn after a compare to be shared by
1088 cross-jumping unless the compare is also shared. */
1089 if (ninsns && reg_mentioned_p (cc0_rtx, last1) && ! sets_cc0_p (last1))
1090 last1 = afterlast1, last2 = afterlast2, ninsns--;
1091 #endif
1092
1093 /* Include preceding notes and labels in the cross-jump. One,
1094 this may bring us to the head of the blocks as requested above.
1095 Two, it keeps line number notes as matched as may be. */
1096 if (ninsns)
1097 {
1098 while (last1 != bb1->head && !active_insn_p (PREV_INSN (last1)))
1099 last1 = PREV_INSN (last1);
1100
1101 if (last1 != bb1->head && GET_CODE (PREV_INSN (last1)) == CODE_LABEL)
1102 last1 = PREV_INSN (last1);
1103
1104 while (last2 != bb2->head && !active_insn_p (PREV_INSN (last2)))
1105 last2 = PREV_INSN (last2);
1106
1107 if (last2 != bb2->head && GET_CODE (PREV_INSN (last2)) == CODE_LABEL)
1108 last2 = PREV_INSN (last2);
1109
1110 *f1 = last1;
1111 *f2 = last2;
1112 }
1113
1114 return ninsns;
1115 }
1116
1117 /* Return true iff outgoing edges of BB1 and BB2 match, together with
1118 the branch instruction. This means that if we commonize the control
1119 flow before end of the basic block, the semantic remains unchanged.
1120
1121 We may assume that there exists one edge with a common destination. */
1122
1123 static bool
1124 outgoing_edges_match (mode, bb1, bb2)
1125 int mode;
1126 basic_block bb1;
1127 basic_block bb2;
1128 {
1129 int nehedges1 = 0, nehedges2 = 0;
1130 edge fallthru1 = 0, fallthru2 = 0;
1131 edge e1, e2;
1132
1133 /* If BB1 has only one successor, we may be looking at either an
1134 unconditional jump, or a fake edge to exit. */
1135 if (bb1->succ && !bb1->succ->succ_next
1136 && (bb1->succ->flags & (EDGE_COMPLEX | EDGE_FAKE)) == 0
1137 && (GET_CODE (bb1->end) != JUMP_INSN || simplejump_p (bb1->end)))
1138 return (bb2->succ && !bb2->succ->succ_next
1139 && (bb2->succ->flags & (EDGE_COMPLEX | EDGE_FAKE)) == 0
1140 && (GET_CODE (bb2->end) != JUMP_INSN || simplejump_p (bb2->end)));
1141
1142 /* Match conditional jumps - this may get tricky when fallthru and branch
1143 edges are crossed. */
1144 if (bb1->succ
1145 && bb1->succ->succ_next
1146 && !bb1->succ->succ_next->succ_next
1147 && any_condjump_p (bb1->end)
1148 && onlyjump_p (bb1->end))
1149 {
1150 edge b1, f1, b2, f2;
1151 bool reverse, match;
1152 rtx set1, set2, cond1, cond2;
1153 enum rtx_code code1, code2;
1154
1155 if (!bb2->succ
1156 || !bb2->succ->succ_next
1157 || bb2->succ->succ_next->succ_next
1158 || !any_condjump_p (bb2->end)
1159 || !onlyjump_p (bb2->end))
1160 return false;
1161
1162 b1 = BRANCH_EDGE (bb1);
1163 b2 = BRANCH_EDGE (bb2);
1164 f1 = FALLTHRU_EDGE (bb1);
1165 f2 = FALLTHRU_EDGE (bb2);
1166
1167 /* Get around possible forwarders on fallthru edges. Other cases
1168 should be optimized out already. */
1169 if (FORWARDER_BLOCK_P (f1->dest))
1170 f1 = f1->dest->succ;
1171
1172 if (FORWARDER_BLOCK_P (f2->dest))
1173 f2 = f2->dest->succ;
1174
1175 /* To simplify use of this function, return false if there are
1176 unneeded forwarder blocks. These will get eliminated later
1177 during cleanup_cfg. */
1178 if (FORWARDER_BLOCK_P (f1->dest)
1179 || FORWARDER_BLOCK_P (f2->dest)
1180 || FORWARDER_BLOCK_P (b1->dest)
1181 || FORWARDER_BLOCK_P (b2->dest))
1182 return false;
1183
1184 if (f1->dest == f2->dest && b1->dest == b2->dest)
1185 reverse = false;
1186 else if (f1->dest == b2->dest && b1->dest == f2->dest)
1187 reverse = true;
1188 else
1189 return false;
1190
1191 set1 = pc_set (bb1->end);
1192 set2 = pc_set (bb2->end);
1193 if ((XEXP (SET_SRC (set1), 1) == pc_rtx)
1194 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
1195 reverse = !reverse;
1196
1197 cond1 = XEXP (SET_SRC (set1), 0);
1198 cond2 = XEXP (SET_SRC (set2), 0);
1199 code1 = GET_CODE (cond1);
1200 if (reverse)
1201 code2 = reversed_comparison_code (cond2, bb2->end);
1202 else
1203 code2 = GET_CODE (cond2);
1204
1205 if (code2 == UNKNOWN)
1206 return false;
1207
1208 /* Verify codes and operands match. */
1209 match = ((code1 == code2
1210 && rtx_renumbered_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
1211 && rtx_renumbered_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
1212 || (code1 == swap_condition (code2)
1213 && rtx_renumbered_equal_p (XEXP (cond1, 1),
1214 XEXP (cond2, 0))
1215 && rtx_renumbered_equal_p (XEXP (cond1, 0),
1216 XEXP (cond2, 1))));
1217
1218 /* If we return true, we will join the blocks. Which means that
1219 we will only have one branch prediction bit to work with. Thus
1220 we require the existing branches to have probabilities that are
1221 roughly similar. */
1222 if (match
1223 && !optimize_size
1224 && maybe_hot_bb_p (bb1)
1225 && maybe_hot_bb_p (bb2))
1226 {
1227 int prob2;
1228
1229 if (b1->dest == b2->dest)
1230 prob2 = b2->probability;
1231 else
1232 /* Do not use f2 probability as f2 may be forwarded. */
1233 prob2 = REG_BR_PROB_BASE - b2->probability;
1234
1235 /* Fail if the difference in probabilities is greater than 50%.
1236 This rules out two well-predicted branches with opposite
1237 outcomes. */
1238 if (abs (b1->probability - prob2) > REG_BR_PROB_BASE / 2)
1239 {
1240 if (rtl_dump_file)
1241 fprintf (rtl_dump_file,
1242 "Outcomes of branch in bb %i and %i differs to much (%i %i)\n",
1243 bb1->index, bb2->index, b1->probability, prob2);
1244
1245 return false;
1246 }
1247 }
1248
1249 if (rtl_dump_file && match)
1250 fprintf (rtl_dump_file, "Conditionals in bb %i and %i match.\n",
1251 bb1->index, bb2->index);
1252
1253 return match;
1254 }
1255
1256 /* Generic case - we are seeing a computed jump, table jump or trapping
1257 instruction. */
1258
1259 #ifndef CASE_DROPS_THROUGH
1260 /* Check whether there are tablejumps in the end of BB1 and BB2.
1261 Return true if they are identical. */
1262 {
1263 rtx label1, label2;
1264 rtx table1, table2;
1265
1266 if (tablejump_p (bb1->end, &label1, &table1)
1267 && tablejump_p (bb2->end, &label2, &table2)
1268 && GET_CODE (PATTERN (table1)) == GET_CODE (PATTERN (table2)))
1269 {
1270 /* The labels should never be the same rtx. If they really are same
1271 the jump tables are same too. So disable crossjumping of blocks BB1
1272 and BB2 because when deleting the common insns in the end of BB1
1273 by flow_delete_block () the jump table would be deleted too. */
1274 /* If LABEL2 is contained in BB1->END do not do anything
1275 because we would loose information when replacing
1276 LABEL1 by LABEL2 and then LABEL2 by LABEL1 in BB1->END. */
1277 if (label1 != label2 && !subrtx_p (label2, bb1->end))
1278 {
1279 /* Set IDENTICAL to true when the tables are identical. */
1280 bool identical = false;
1281 rtx p1, p2;
1282
1283 p1 = PATTERN (table1);
1284 p2 = PATTERN (table2);
1285 if (GET_CODE (p1) == ADDR_VEC && rtx_equal_p (p1, p2))
1286 {
1287 identical = true;
1288 }
1289 else if (GET_CODE (p1) == ADDR_DIFF_VEC
1290 && (XVECLEN (p1, 1) == XVECLEN (p2, 1))
1291 && rtx_equal_p (XEXP (p1, 2), XEXP (p2, 2))
1292 && rtx_equal_p (XEXP (p1, 3), XEXP (p2, 3)))
1293 {
1294 int i;
1295
1296 identical = true;
1297 for (i = XVECLEN (p1, 1) - 1; i >= 0 && identical; i--)
1298 if (!rtx_equal_p (XVECEXP (p1, 1, i), XVECEXP (p2, 1, i)))
1299 identical = false;
1300 }
1301
1302 if (identical)
1303 {
1304 rtx_pair rr;
1305 bool match;
1306
1307 /* Temporarily replace references to LABEL1 with LABEL2
1308 in BB1->END so that we could compare the instructions. */
1309 rr.r1 = label1;
1310 rr.r2 = label2;
1311 for_each_rtx (&bb1->end, replace_label, &rr);
1312
1313 match = insns_match_p (mode, bb1->end, bb2->end);
1314 if (rtl_dump_file && match)
1315 fprintf (rtl_dump_file,
1316 "Tablejumps in bb %i and %i match.\n",
1317 bb1->index, bb2->index);
1318
1319 /* Set the original label in BB1->END because when deleting
1320 a block whose end is a tablejump, the tablejump referenced
1321 from the instruction is deleted too. */
1322 rr.r1 = label2;
1323 rr.r2 = label1;
1324 for_each_rtx (&bb1->end, replace_label, &rr);
1325
1326 return match;
1327 }
1328 }
1329 return false;
1330 }
1331 }
1332 #endif
1333
1334 /* First ensure that the instructions match. There may be many outgoing
1335 edges so this test is generally cheaper. */
1336 if (!insns_match_p (mode, bb1->end, bb2->end))
1337 return false;
1338
1339 /* Search the outgoing edges, ensure that the counts do match, find possible
1340 fallthru and exception handling edges since these needs more
1341 validation. */
1342 for (e1 = bb1->succ, e2 = bb2->succ; e1 && e2;
1343 e1 = e1->succ_next, e2 = e2->succ_next)
1344 {
1345 if (e1->flags & EDGE_EH)
1346 nehedges1++;
1347
1348 if (e2->flags & EDGE_EH)
1349 nehedges2++;
1350
1351 if (e1->flags & EDGE_FALLTHRU)
1352 fallthru1 = e1;
1353 if (e2->flags & EDGE_FALLTHRU)
1354 fallthru2 = e2;
1355 }
1356
1357 /* If number of edges of various types does not match, fail. */
1358 if (e1 || e2
1359 || nehedges1 != nehedges2
1360 || (fallthru1 != 0) != (fallthru2 != 0))
1361 return false;
1362
1363 /* fallthru edges must be forwarded to the same destination. */
1364 if (fallthru1)
1365 {
1366 basic_block d1 = (forwarder_block_p (fallthru1->dest)
1367 ? fallthru1->dest->succ->dest: fallthru1->dest);
1368 basic_block d2 = (forwarder_block_p (fallthru2->dest)
1369 ? fallthru2->dest->succ->dest: fallthru2->dest);
1370
1371 if (d1 != d2)
1372 return false;
1373 }
1374
1375 /* In case we do have EH edges, ensure we are in the same region. */
1376 if (nehedges1)
1377 {
1378 rtx n1 = find_reg_note (bb1->end, REG_EH_REGION, 0);
1379 rtx n2 = find_reg_note (bb2->end, REG_EH_REGION, 0);
1380
1381 if (XEXP (n1, 0) != XEXP (n2, 0))
1382 return false;
1383 }
1384
1385 /* We don't need to match the rest of edges as above checks should be enought
1386 to ensure that they are equivalent. */
1387 return true;
1388 }
1389
1390 /* E1 and E2 are edges with the same destination block. Search their
1391 predecessors for common code. If found, redirect control flow from
1392 (maybe the middle of) E1->SRC to (maybe the middle of) E2->SRC. */
1393
1394 static bool
1395 try_crossjump_to_edge (mode, e1, e2)
1396 int mode;
1397 edge e1, e2;
1398 {
1399 int nmatch;
1400 basic_block src1 = e1->src, src2 = e2->src;
1401 basic_block redirect_to, redirect_from, to_remove;
1402 rtx newpos1, newpos2;
1403 edge s;
1404
1405 /* Search backward through forwarder blocks. We don't need to worry
1406 about multiple entry or chained forwarders, as they will be optimized
1407 away. We do this to look past the unconditional jump following a
1408 conditional jump that is required due to the current CFG shape. */
1409 if (src1->pred
1410 && !src1->pred->pred_next
1411 && FORWARDER_BLOCK_P (src1))
1412 e1 = src1->pred, src1 = e1->src;
1413
1414 if (src2->pred
1415 && !src2->pred->pred_next
1416 && FORWARDER_BLOCK_P (src2))
1417 e2 = src2->pred, src2 = e2->src;
1418
1419 /* Nothing to do if we reach ENTRY, or a common source block. */
1420 if (src1 == ENTRY_BLOCK_PTR || src2 == ENTRY_BLOCK_PTR)
1421 return false;
1422 if (src1 == src2)
1423 return false;
1424
1425 /* Seeing more than 1 forwarder blocks would confuse us later... */
1426 if (FORWARDER_BLOCK_P (e1->dest)
1427 && FORWARDER_BLOCK_P (e1->dest->succ->dest))
1428 return false;
1429
1430 if (FORWARDER_BLOCK_P (e2->dest)
1431 && FORWARDER_BLOCK_P (e2->dest->succ->dest))
1432 return false;
1433
1434 /* Likewise with dead code (possibly newly created by the other optimizations
1435 of cfg_cleanup). */
1436 if (!src1->pred || !src2->pred)
1437 return false;
1438
1439 /* Look for the common insn sequence, part the first ... */
1440 if (!outgoing_edges_match (mode, src1, src2))
1441 return false;
1442
1443 /* ... and part the second. */
1444 nmatch = flow_find_cross_jump (mode, src1, src2, &newpos1, &newpos2);
1445 if (!nmatch)
1446 return false;
1447
1448 #ifndef CASE_DROPS_THROUGH
1449 /* Here we know that the insns in the end of SRC1 which are common with SRC2
1450 will be deleted.
1451 If we have tablejumps in the end of SRC1 and SRC2
1452 they have been already compared for equivalence in outgoing_edges_match ()
1453 so replace the references to TABLE1 by references to TABLE2. */
1454 {
1455 rtx label1, label2;
1456 rtx table1, table2;
1457
1458 if (tablejump_p (src1->end, &label1, &table1)
1459 && tablejump_p (src2->end, &label2, &table2)
1460 && label1 != label2)
1461 {
1462 rtx_pair rr;
1463 rtx insn;
1464
1465 /* Replace references to LABEL1 with LABEL2. */
1466 rr.r1 = label1;
1467 rr.r2 = label2;
1468 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1469 {
1470 /* Do not replace the label in SRC1->END because when deleting
1471 a block whose end is a tablejump, the tablejump referenced
1472 from the instruction is deleted too. */
1473 if (insn != src1->end)
1474 for_each_rtx (&insn, replace_label, &rr);
1475 }
1476 }
1477 }
1478 #endif
1479
1480 /* Avoid splitting if possible. */
1481 if (newpos2 == src2->head)
1482 redirect_to = src2;
1483 else
1484 {
1485 if (rtl_dump_file)
1486 fprintf (rtl_dump_file, "Splitting bb %i before %i insns\n",
1487 src2->index, nmatch);
1488 redirect_to = split_block (src2, PREV_INSN (newpos2))->dest;
1489 }
1490
1491 if (rtl_dump_file)
1492 fprintf (rtl_dump_file,
1493 "Cross jumping from bb %i to bb %i; %i common insns\n",
1494 src1->index, src2->index, nmatch);
1495
1496 redirect_to->count += src1->count;
1497 redirect_to->frequency += src1->frequency;
1498 /* We may have some registers visible trought the block. */
1499 redirect_to->flags |= BB_DIRTY;
1500
1501 /* Recompute the frequencies and counts of outgoing edges. */
1502 for (s = redirect_to->succ; s; s = s->succ_next)
1503 {
1504 edge s2;
1505 basic_block d = s->dest;
1506
1507 if (FORWARDER_BLOCK_P (d))
1508 d = d->succ->dest;
1509
1510 for (s2 = src1->succ; ; s2 = s2->succ_next)
1511 {
1512 basic_block d2 = s2->dest;
1513 if (FORWARDER_BLOCK_P (d2))
1514 d2 = d2->succ->dest;
1515 if (d == d2)
1516 break;
1517 }
1518
1519 s->count += s2->count;
1520
1521 /* Take care to update possible forwarder blocks. We verified
1522 that there is no more than one in the chain, so we can't run
1523 into infinite loop. */
1524 if (FORWARDER_BLOCK_P (s->dest))
1525 {
1526 s->dest->succ->count += s2->count;
1527 s->dest->count += s2->count;
1528 s->dest->frequency += EDGE_FREQUENCY (s);
1529 }
1530
1531 if (FORWARDER_BLOCK_P (s2->dest))
1532 {
1533 s2->dest->succ->count -= s2->count;
1534 if (s2->dest->succ->count < 0)
1535 s2->dest->succ->count = 0;
1536 s2->dest->count -= s2->count;
1537 s2->dest->frequency -= EDGE_FREQUENCY (s);
1538 if (s2->dest->frequency < 0)
1539 s2->dest->frequency = 0;
1540 if (s2->dest->count < 0)
1541 s2->dest->count = 0;
1542 }
1543
1544 if (!redirect_to->frequency && !src1->frequency)
1545 s->probability = (s->probability + s2->probability) / 2;
1546 else
1547 s->probability
1548 = ((s->probability * redirect_to->frequency +
1549 s2->probability * src1->frequency)
1550 / (redirect_to->frequency + src1->frequency));
1551 }
1552
1553 update_br_prob_note (redirect_to);
1554
1555 /* Edit SRC1 to go to REDIRECT_TO at NEWPOS1. */
1556
1557 /* Skip possible basic block header. */
1558 if (GET_CODE (newpos1) == CODE_LABEL)
1559 newpos1 = NEXT_INSN (newpos1);
1560
1561 if (GET_CODE (newpos1) == NOTE)
1562 newpos1 = NEXT_INSN (newpos1);
1563
1564 redirect_from = split_block (src1, PREV_INSN (newpos1))->src;
1565 to_remove = redirect_from->succ->dest;
1566
1567 redirect_edge_and_branch_force (redirect_from->succ, redirect_to);
1568 flow_delete_block (to_remove);
1569
1570 update_forwarder_flag (redirect_from);
1571
1572 return true;
1573 }
1574
1575 /* Search the predecessors of BB for common insn sequences. When found,
1576 share code between them by redirecting control flow. Return true if
1577 any changes made. */
1578
1579 static bool
1580 try_crossjump_bb (mode, bb)
1581 int mode;
1582 basic_block bb;
1583 {
1584 edge e, e2, nexte2, nexte, fallthru;
1585 bool changed;
1586 int n = 0, max;
1587
1588 /* Nothing to do if there is not at least two incoming edges. */
1589 if (!bb->pred || !bb->pred->pred_next)
1590 return false;
1591
1592 /* It is always cheapest to redirect a block that ends in a branch to
1593 a block that falls through into BB, as that adds no branches to the
1594 program. We'll try that combination first. */
1595 fallthru = NULL;
1596 max = PARAM_VALUE (PARAM_MAX_CROSSJUMP_EDGES);
1597 for (e = bb->pred; e ; e = e->pred_next, n++)
1598 {
1599 if (e->flags & EDGE_FALLTHRU)
1600 fallthru = e;
1601 if (n > max)
1602 return false;
1603 }
1604
1605 changed = false;
1606 for (e = bb->pred; e; e = nexte)
1607 {
1608 nexte = e->pred_next;
1609
1610 /* As noted above, first try with the fallthru predecessor. */
1611 if (fallthru)
1612 {
1613 /* Don't combine the fallthru edge into anything else.
1614 If there is a match, we'll do it the other way around. */
1615 if (e == fallthru)
1616 continue;
1617
1618 if (try_crossjump_to_edge (mode, e, fallthru))
1619 {
1620 changed = true;
1621 nexte = bb->pred;
1622 continue;
1623 }
1624 }
1625
1626 /* Non-obvious work limiting check: Recognize that we're going
1627 to call try_crossjump_bb on every basic block. So if we have
1628 two blocks with lots of outgoing edges (a switch) and they
1629 share lots of common destinations, then we would do the
1630 cross-jump check once for each common destination.
1631
1632 Now, if the blocks actually are cross-jump candidates, then
1633 all of their destinations will be shared. Which means that
1634 we only need check them for cross-jump candidacy once. We
1635 can eliminate redundant checks of crossjump(A,B) by arbitrarily
1636 choosing to do the check from the block for which the edge
1637 in question is the first successor of A. */
1638 if (e->src->succ != e)
1639 continue;
1640
1641 for (e2 = bb->pred; e2; e2 = nexte2)
1642 {
1643 nexte2 = e2->pred_next;
1644
1645 if (e2 == e)
1646 continue;
1647
1648 /* We've already checked the fallthru edge above. */
1649 if (e2 == fallthru)
1650 continue;
1651
1652 /* The "first successor" check above only prevents multiple
1653 checks of crossjump(A,B). In order to prevent redundant
1654 checks of crossjump(B,A), require that A be the block
1655 with the lowest index. */
1656 if (e->src->index > e2->src->index)
1657 continue;
1658
1659 if (try_crossjump_to_edge (mode, e, e2))
1660 {
1661 changed = true;
1662 nexte = bb->pred;
1663 break;
1664 }
1665 }
1666 }
1667
1668 return changed;
1669 }
1670
1671 /* Do simple CFG optimizations - basic block merging, simplifying of jump
1672 instructions etc. Return nonzero if changes were made. */
1673
1674 static bool
1675 try_optimize_cfg (mode)
1676 int mode;
1677 {
1678 bool changed_overall = false;
1679 bool changed;
1680 int iterations = 0;
1681 basic_block bb, b, next;
1682
1683 if (mode & CLEANUP_CROSSJUMP)
1684 add_noreturn_fake_exit_edges ();
1685
1686 FOR_EACH_BB (bb)
1687 update_forwarder_flag (bb);
1688
1689 if (mode & CLEANUP_UPDATE_LIFE)
1690 clear_bb_flags ();
1691
1692 if (! (* targetm.cannot_modify_jumps_p) ())
1693 {
1694 /* Attempt to merge blocks as made possible by edge removal. If
1695 a block has only one successor, and the successor has only
1696 one predecessor, they may be combined. */
1697 do
1698 {
1699 changed = false;
1700 iterations++;
1701
1702 if (rtl_dump_file)
1703 fprintf (rtl_dump_file,
1704 "\n\ntry_optimize_cfg iteration %i\n\n",
1705 iterations);
1706
1707 for (b = ENTRY_BLOCK_PTR->next_bb; b != EXIT_BLOCK_PTR;)
1708 {
1709 basic_block c;
1710 edge s;
1711 bool changed_here = false;
1712
1713 /* Delete trivially dead basic blocks. */
1714 while (b->pred == NULL)
1715 {
1716 c = b->prev_bb;
1717 if (rtl_dump_file)
1718 fprintf (rtl_dump_file, "Deleting block %i.\n",
1719 b->index);
1720
1721 flow_delete_block (b);
1722 changed = true;
1723 b = c;
1724 }
1725
1726 /* Remove code labels no longer used. Don't do this
1727 before CALL_PLACEHOLDER is removed, as some branches
1728 may be hidden within. */
1729 if (b->pred->pred_next == NULL
1730 && (b->pred->flags & EDGE_FALLTHRU)
1731 && !(b->pred->flags & EDGE_COMPLEX)
1732 && GET_CODE (b->head) == CODE_LABEL
1733 && (!(mode & CLEANUP_PRE_SIBCALL)
1734 || !tail_recursion_label_p (b->head))
1735 /* If the previous block ends with a branch to this
1736 block, we can't delete the label. Normally this
1737 is a condjump that is yet to be simplified, but
1738 if CASE_DROPS_THRU, this can be a tablejump with
1739 some element going to the same place as the
1740 default (fallthru). */
1741 && (b->pred->src == ENTRY_BLOCK_PTR
1742 || GET_CODE (b->pred->src->end) != JUMP_INSN
1743 || ! label_is_jump_target_p (b->head,
1744 b->pred->src->end)))
1745 {
1746 rtx label = b->head;
1747
1748 b->head = NEXT_INSN (b->head);
1749 delete_insn_chain (label, label);
1750 if (rtl_dump_file)
1751 fprintf (rtl_dump_file, "Deleted label in block %i.\n",
1752 b->index);
1753 }
1754
1755 /* If we fall through an empty block, we can remove it. */
1756 if (b->pred->pred_next == NULL
1757 && (b->pred->flags & EDGE_FALLTHRU)
1758 && GET_CODE (b->head) != CODE_LABEL
1759 && FORWARDER_BLOCK_P (b)
1760 /* Note that forwarder_block_p true ensures that
1761 there is a successor for this block. */
1762 && (b->succ->flags & EDGE_FALLTHRU)
1763 && n_basic_blocks > 1)
1764 {
1765 if (rtl_dump_file)
1766 fprintf (rtl_dump_file,
1767 "Deleting fallthru block %i.\n",
1768 b->index);
1769
1770 c = b->prev_bb == ENTRY_BLOCK_PTR ? b->next_bb : b->prev_bb;
1771 redirect_edge_succ_nodup (b->pred, b->succ->dest);
1772 flow_delete_block (b);
1773 changed = true;
1774 b = c;
1775 }
1776
1777 if ((s = b->succ) != NULL
1778 && s->succ_next == NULL
1779 && !(s->flags & EDGE_COMPLEX)
1780 && (c = s->dest) != EXIT_BLOCK_PTR
1781 && c->pred->pred_next == NULL
1782 && b != c
1783 /* If the jump insn has side effects,
1784 we can't kill the edge. */
1785 && (GET_CODE (b->end) != JUMP_INSN
1786 || simplejump_p (b->end))
1787 && (next = merge_blocks (s, b, c, mode)))
1788 {
1789 b = next;
1790 changed_here = true;
1791 }
1792
1793 /* Simplify branch over branch. */
1794 if ((mode & CLEANUP_EXPENSIVE) && try_simplify_condjump (b))
1795 changed_here = true;
1796
1797 /* If B has a single outgoing edge, but uses a
1798 non-trivial jump instruction without side-effects, we
1799 can either delete the jump entirely, or replace it
1800 with a simple unconditional jump. Use
1801 redirect_edge_and_branch to do the dirty work. */
1802 if (b->succ
1803 && ! b->succ->succ_next
1804 && b->succ->dest != EXIT_BLOCK_PTR
1805 && onlyjump_p (b->end)
1806 && redirect_edge_and_branch (b->succ, b->succ->dest))
1807 {
1808 update_forwarder_flag (b);
1809 changed_here = true;
1810 }
1811
1812 /* Simplify branch to branch. */
1813 if (try_forward_edges (mode, b))
1814 changed_here = true;
1815
1816 /* Look for shared code between blocks. */
1817 if ((mode & CLEANUP_CROSSJUMP)
1818 && try_crossjump_bb (mode, b))
1819 changed_here = true;
1820
1821 /* Don't get confused by the index shift caused by
1822 deleting blocks. */
1823 if (!changed_here)
1824 b = b->next_bb;
1825 else
1826 changed = true;
1827 }
1828
1829 if ((mode & CLEANUP_CROSSJUMP)
1830 && try_crossjump_bb (mode, EXIT_BLOCK_PTR))
1831 changed = true;
1832
1833 #ifdef ENABLE_CHECKING
1834 if (changed)
1835 verify_flow_info ();
1836 #endif
1837
1838 changed_overall |= changed;
1839 }
1840 while (changed);
1841 }
1842
1843 if (mode & CLEANUP_CROSSJUMP)
1844 remove_fake_edges ();
1845
1846 clear_aux_for_blocks ();
1847
1848 return changed_overall;
1849 }
1850 \f
1851 /* Delete all unreachable basic blocks. */
1852
1853 bool
1854 delete_unreachable_blocks ()
1855 {
1856 bool changed = false;
1857 basic_block b, next_bb;
1858
1859 find_unreachable_blocks ();
1860
1861 /* Delete all unreachable basic blocks. */
1862
1863 for (b = ENTRY_BLOCK_PTR->next_bb; b != EXIT_BLOCK_PTR; b = next_bb)
1864 {
1865 next_bb = b->next_bb;
1866
1867 if (!(b->flags & BB_REACHABLE))
1868 {
1869 flow_delete_block (b);
1870 changed = true;
1871 }
1872 }
1873
1874 if (changed)
1875 tidy_fallthru_edges ();
1876 return changed;
1877 }
1878 \f
1879 /* Tidy the CFG by deleting unreachable code and whatnot. */
1880
1881 bool
1882 cleanup_cfg (mode)
1883 int mode;
1884 {
1885 bool changed = false;
1886
1887 timevar_push (TV_CLEANUP_CFG);
1888 if (delete_unreachable_blocks ())
1889 {
1890 changed = true;
1891 /* We've possibly created trivially dead code. Cleanup it right
1892 now to introduce more opportunities for try_optimize_cfg. */
1893 if (!(mode & (CLEANUP_NO_INSN_DEL
1894 | CLEANUP_UPDATE_LIFE | CLEANUP_PRE_SIBCALL))
1895 && !reload_completed)
1896 delete_trivially_dead_insns (get_insns(), max_reg_num ());
1897 }
1898
1899 compact_blocks ();
1900
1901 while (try_optimize_cfg (mode))
1902 {
1903 delete_unreachable_blocks (), changed = true;
1904 if (mode & CLEANUP_UPDATE_LIFE)
1905 {
1906 /* Cleaning up CFG introduces more opportunities for dead code
1907 removal that in turn may introduce more opportunities for
1908 cleaning up the CFG. */
1909 if (!update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
1910 PROP_DEATH_NOTES
1911 | PROP_SCAN_DEAD_CODE
1912 | PROP_KILL_DEAD_CODE
1913 | PROP_LOG_LINKS))
1914 break;
1915 }
1916 else if (!(mode & (CLEANUP_NO_INSN_DEL | CLEANUP_PRE_SIBCALL))
1917 && (mode & CLEANUP_EXPENSIVE)
1918 && !reload_completed)
1919 {
1920 if (!delete_trivially_dead_insns (get_insns(), max_reg_num ()))
1921 break;
1922 }
1923 else
1924 break;
1925 delete_dead_jumptables ();
1926 }
1927
1928 /* Kill the data we won't maintain. */
1929 free_EXPR_LIST_list (&label_value_list);
1930 timevar_pop (TV_CLEANUP_CFG);
1931
1932 return changed;
1933 }