cfgcleanup.c (mark_effect): Use bitmap_set_range/bitmap_clear_range instead of loop.
[gcc.git] / gcc / cfgcleanup.c
1 /* Control flow optimization code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2010, 2011
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file contains optimizer of the control flow. The main entry point is
23 cleanup_cfg. Following optimizations are performed:
24
25 - Unreachable blocks removal
26 - Edge forwarding (edge to the forwarder block is forwarded to its
27 successor. Simplification of the branch instruction is performed by
28 underlying infrastructure so branch can be converted to simplejump or
29 eliminated).
30 - Cross jumping (tail merging)
31 - Conditional jump-around-simplejump simplification
32 - Basic block merging. */
33
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "rtl.h"
39 #include "hard-reg-set.h"
40 #include "regs.h"
41 #include "timevar.h"
42 #include "output.h"
43 #include "insn-config.h"
44 #include "flags.h"
45 #include "recog.h"
46 #include "diagnostic-core.h"
47 #include "cselib.h"
48 #include "params.h"
49 #include "tm_p.h"
50 #include "target.h"
51 #include "cfglayout.h"
52 #include "emit-rtl.h"
53 #include "tree-pass.h"
54 #include "cfgloop.h"
55 #include "expr.h"
56 #include "df.h"
57 #include "dce.h"
58 #include "dbgcnt.h"
59
60 #define FORWARDER_BLOCK_P(BB) ((BB)->flags & BB_FORWARDER_BLOCK)
61
62 /* Set to true when we are running first pass of try_optimize_cfg loop. */
63 static bool first_pass;
64
65 /* Set to true if crossjumps occured in the latest run of try_optimize_cfg. */
66 static bool crossjumps_occured;
67
68 /* Set to true if we couldn't run an optimization due to stale liveness
69 information; we should run df_analyze to enable more opportunities. */
70 static bool block_was_dirty;
71
72 static bool try_crossjump_to_edge (int, edge, edge);
73 static bool try_crossjump_bb (int, basic_block);
74 static bool outgoing_edges_match (int, basic_block, basic_block);
75 static bool old_insns_match_p (int, rtx, rtx);
76
77 static void merge_blocks_move_predecessor_nojumps (basic_block, basic_block);
78 static void merge_blocks_move_successor_nojumps (basic_block, basic_block);
79 static bool try_optimize_cfg (int);
80 static bool try_simplify_condjump (basic_block);
81 static bool try_forward_edges (int, basic_block);
82 static edge thread_jump (edge, basic_block);
83 static bool mark_effect (rtx, bitmap);
84 static void notice_new_block (basic_block);
85 static void update_forwarder_flag (basic_block);
86 static int mentions_nonequal_regs (rtx *, void *);
87 static void merge_memattrs (rtx, rtx);
88 \f
89 /* Set flags for newly created block. */
90
91 static void
92 notice_new_block (basic_block bb)
93 {
94 if (!bb)
95 return;
96
97 if (forwarder_block_p (bb))
98 bb->flags |= BB_FORWARDER_BLOCK;
99 }
100
101 /* Recompute forwarder flag after block has been modified. */
102
103 static void
104 update_forwarder_flag (basic_block bb)
105 {
106 if (forwarder_block_p (bb))
107 bb->flags |= BB_FORWARDER_BLOCK;
108 else
109 bb->flags &= ~BB_FORWARDER_BLOCK;
110 }
111 \f
112 /* Simplify a conditional jump around an unconditional jump.
113 Return true if something changed. */
114
115 static bool
116 try_simplify_condjump (basic_block cbranch_block)
117 {
118 basic_block jump_block, jump_dest_block, cbranch_dest_block;
119 edge cbranch_jump_edge, cbranch_fallthru_edge;
120 rtx cbranch_insn;
121
122 /* Verify that there are exactly two successors. */
123 if (EDGE_COUNT (cbranch_block->succs) != 2)
124 return false;
125
126 /* Verify that we've got a normal conditional branch at the end
127 of the block. */
128 cbranch_insn = BB_END (cbranch_block);
129 if (!any_condjump_p (cbranch_insn))
130 return false;
131
132 cbranch_fallthru_edge = FALLTHRU_EDGE (cbranch_block);
133 cbranch_jump_edge = BRANCH_EDGE (cbranch_block);
134
135 /* The next block must not have multiple predecessors, must not
136 be the last block in the function, and must contain just the
137 unconditional jump. */
138 jump_block = cbranch_fallthru_edge->dest;
139 if (!single_pred_p (jump_block)
140 || jump_block->next_bb == EXIT_BLOCK_PTR
141 || !FORWARDER_BLOCK_P (jump_block))
142 return false;
143 jump_dest_block = single_succ (jump_block);
144
145 /* If we are partitioning hot/cold basic blocks, we don't want to
146 mess up unconditional or indirect jumps that cross between hot
147 and cold sections.
148
149 Basic block partitioning may result in some jumps that appear to
150 be optimizable (or blocks that appear to be mergeable), but which really
151 must be left untouched (they are required to make it safely across
152 partition boundaries). See the comments at the top of
153 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
154
155 if (BB_PARTITION (jump_block) != BB_PARTITION (jump_dest_block)
156 || (cbranch_jump_edge->flags & EDGE_CROSSING))
157 return false;
158
159 /* The conditional branch must target the block after the
160 unconditional branch. */
161 cbranch_dest_block = cbranch_jump_edge->dest;
162
163 if (cbranch_dest_block == EXIT_BLOCK_PTR
164 || !can_fallthru (jump_block, cbranch_dest_block))
165 return false;
166
167 /* Invert the conditional branch. */
168 if (!invert_jump (cbranch_insn, block_label (jump_dest_block), 0))
169 return false;
170
171 if (dump_file)
172 fprintf (dump_file, "Simplifying condjump %i around jump %i\n",
173 INSN_UID (cbranch_insn), INSN_UID (BB_END (jump_block)));
174
175 /* Success. Update the CFG to match. Note that after this point
176 the edge variable names appear backwards; the redirection is done
177 this way to preserve edge profile data. */
178 cbranch_jump_edge = redirect_edge_succ_nodup (cbranch_jump_edge,
179 cbranch_dest_block);
180 cbranch_fallthru_edge = redirect_edge_succ_nodup (cbranch_fallthru_edge,
181 jump_dest_block);
182 cbranch_jump_edge->flags |= EDGE_FALLTHRU;
183 cbranch_fallthru_edge->flags &= ~EDGE_FALLTHRU;
184 update_br_prob_note (cbranch_block);
185
186 /* Delete the block with the unconditional jump, and clean up the mess. */
187 delete_basic_block (jump_block);
188 tidy_fallthru_edge (cbranch_jump_edge);
189 update_forwarder_flag (cbranch_block);
190
191 return true;
192 }
193 \f
194 /* Attempt to prove that operation is NOOP using CSElib or mark the effect
195 on register. Used by jump threading. */
196
197 static bool
198 mark_effect (rtx exp, regset nonequal)
199 {
200 int regno;
201 rtx dest;
202 switch (GET_CODE (exp))
203 {
204 /* In case we do clobber the register, mark it as equal, as we know the
205 value is dead so it don't have to match. */
206 case CLOBBER:
207 if (REG_P (XEXP (exp, 0)))
208 {
209 dest = XEXP (exp, 0);
210 regno = REGNO (dest);
211 if (HARD_REGISTER_NUM_P (regno))
212 bitmap_clear_range (nonequal, regno,
213 hard_regno_nregs[regno][GET_MODE (dest)]);
214 else
215 bitmap_clear_bit (nonequal, regno);
216 }
217 return false;
218
219 case SET:
220 if (rtx_equal_for_cselib_p (SET_DEST (exp), SET_SRC (exp)))
221 return false;
222 dest = SET_DEST (exp);
223 if (dest == pc_rtx)
224 return false;
225 if (!REG_P (dest))
226 return true;
227 regno = REGNO (dest);
228 if (HARD_REGISTER_NUM_P (regno))
229 bitmap_set_range (nonequal, regno,
230 hard_regno_nregs[regno][GET_MODE (dest)]);
231 else
232 bitmap_set_bit (nonequal, regno);
233 return false;
234
235 default:
236 return false;
237 }
238 }
239
240 /* Return nonzero if X is a register set in regset DATA.
241 Called via for_each_rtx. */
242 static int
243 mentions_nonequal_regs (rtx *x, void *data)
244 {
245 regset nonequal = (regset) data;
246 if (REG_P (*x))
247 {
248 int regno;
249
250 regno = REGNO (*x);
251 if (REGNO_REG_SET_P (nonequal, regno))
252 return 1;
253 if (regno < FIRST_PSEUDO_REGISTER)
254 {
255 int n = hard_regno_nregs[regno][GET_MODE (*x)];
256 while (--n > 0)
257 if (REGNO_REG_SET_P (nonequal, regno + n))
258 return 1;
259 }
260 }
261 return 0;
262 }
263 /* Attempt to prove that the basic block B will have no side effects and
264 always continues in the same edge if reached via E. Return the edge
265 if exist, NULL otherwise. */
266
267 static edge
268 thread_jump (edge e, basic_block b)
269 {
270 rtx set1, set2, cond1, cond2, insn;
271 enum rtx_code code1, code2, reversed_code2;
272 bool reverse1 = false;
273 unsigned i;
274 regset nonequal;
275 bool failed = false;
276 reg_set_iterator rsi;
277
278 if (b->flags & BB_NONTHREADABLE_BLOCK)
279 return NULL;
280
281 /* At the moment, we do handle only conditional jumps, but later we may
282 want to extend this code to tablejumps and others. */
283 if (EDGE_COUNT (e->src->succs) != 2)
284 return NULL;
285 if (EDGE_COUNT (b->succs) != 2)
286 {
287 b->flags |= BB_NONTHREADABLE_BLOCK;
288 return NULL;
289 }
290
291 /* Second branch must end with onlyjump, as we will eliminate the jump. */
292 if (!any_condjump_p (BB_END (e->src)))
293 return NULL;
294
295 if (!any_condjump_p (BB_END (b)) || !onlyjump_p (BB_END (b)))
296 {
297 b->flags |= BB_NONTHREADABLE_BLOCK;
298 return NULL;
299 }
300
301 set1 = pc_set (BB_END (e->src));
302 set2 = pc_set (BB_END (b));
303 if (((e->flags & EDGE_FALLTHRU) != 0)
304 != (XEXP (SET_SRC (set1), 1) == pc_rtx))
305 reverse1 = true;
306
307 cond1 = XEXP (SET_SRC (set1), 0);
308 cond2 = XEXP (SET_SRC (set2), 0);
309 if (reverse1)
310 code1 = reversed_comparison_code (cond1, BB_END (e->src));
311 else
312 code1 = GET_CODE (cond1);
313
314 code2 = GET_CODE (cond2);
315 reversed_code2 = reversed_comparison_code (cond2, BB_END (b));
316
317 if (!comparison_dominates_p (code1, code2)
318 && !comparison_dominates_p (code1, reversed_code2))
319 return NULL;
320
321 /* Ensure that the comparison operators are equivalent.
322 ??? This is far too pessimistic. We should allow swapped operands,
323 different CCmodes, or for example comparisons for interval, that
324 dominate even when operands are not equivalent. */
325 if (!rtx_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
326 || !rtx_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
327 return NULL;
328
329 /* Short circuit cases where block B contains some side effects, as we can't
330 safely bypass it. */
331 for (insn = NEXT_INSN (BB_HEAD (b)); insn != NEXT_INSN (BB_END (b));
332 insn = NEXT_INSN (insn))
333 if (INSN_P (insn) && side_effects_p (PATTERN (insn)))
334 {
335 b->flags |= BB_NONTHREADABLE_BLOCK;
336 return NULL;
337 }
338
339 cselib_init (0);
340
341 /* First process all values computed in the source basic block. */
342 for (insn = NEXT_INSN (BB_HEAD (e->src));
343 insn != NEXT_INSN (BB_END (e->src));
344 insn = NEXT_INSN (insn))
345 if (INSN_P (insn))
346 cselib_process_insn (insn);
347
348 nonequal = BITMAP_ALLOC (NULL);
349 CLEAR_REG_SET (nonequal);
350
351 /* Now assume that we've continued by the edge E to B and continue
352 processing as if it were same basic block.
353 Our goal is to prove that whole block is an NOOP. */
354
355 for (insn = NEXT_INSN (BB_HEAD (b));
356 insn != NEXT_INSN (BB_END (b)) && !failed;
357 insn = NEXT_INSN (insn))
358 {
359 if (INSN_P (insn))
360 {
361 rtx pat = PATTERN (insn);
362
363 if (GET_CODE (pat) == PARALLEL)
364 {
365 for (i = 0; i < (unsigned)XVECLEN (pat, 0); i++)
366 failed |= mark_effect (XVECEXP (pat, 0, i), nonequal);
367 }
368 else
369 failed |= mark_effect (pat, nonequal);
370 }
371
372 cselib_process_insn (insn);
373 }
374
375 /* Later we should clear nonequal of dead registers. So far we don't
376 have life information in cfg_cleanup. */
377 if (failed)
378 {
379 b->flags |= BB_NONTHREADABLE_BLOCK;
380 goto failed_exit;
381 }
382
383 /* cond2 must not mention any register that is not equal to the
384 former block. */
385 if (for_each_rtx (&cond2, mentions_nonequal_regs, nonequal))
386 goto failed_exit;
387
388 EXECUTE_IF_SET_IN_REG_SET (nonequal, 0, i, rsi)
389 goto failed_exit;
390
391 BITMAP_FREE (nonequal);
392 cselib_finish ();
393 if ((comparison_dominates_p (code1, code2) != 0)
394 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
395 return BRANCH_EDGE (b);
396 else
397 return FALLTHRU_EDGE (b);
398
399 failed_exit:
400 BITMAP_FREE (nonequal);
401 cselib_finish ();
402 return NULL;
403 }
404 \f
405 /* Attempt to forward edges leaving basic block B.
406 Return true if successful. */
407
408 static bool
409 try_forward_edges (int mode, basic_block b)
410 {
411 bool changed = false;
412 edge_iterator ei;
413 edge e, *threaded_edges = NULL;
414
415 /* If we are partitioning hot/cold basic blocks, we don't want to
416 mess up unconditional or indirect jumps that cross between hot
417 and cold sections.
418
419 Basic block partitioning may result in some jumps that appear to
420 be optimizable (or blocks that appear to be mergeable), but which really
421 must be left untouched (they are required to make it safely across
422 partition boundaries). See the comments at the top of
423 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
424
425 if (find_reg_note (BB_END (b), REG_CROSSING_JUMP, NULL_RTX))
426 return false;
427
428 for (ei = ei_start (b->succs); (e = ei_safe_edge (ei)); )
429 {
430 basic_block target, first;
431 int counter, goto_locus;
432 bool threaded = false;
433 int nthreaded_edges = 0;
434 bool may_thread = first_pass || (b->flags & BB_MODIFIED) != 0;
435
436 /* Skip complex edges because we don't know how to update them.
437
438 Still handle fallthru edges, as we can succeed to forward fallthru
439 edge to the same place as the branch edge of conditional branch
440 and turn conditional branch to an unconditional branch. */
441 if (e->flags & EDGE_COMPLEX)
442 {
443 ei_next (&ei);
444 continue;
445 }
446
447 target = first = e->dest;
448 counter = NUM_FIXED_BLOCKS;
449 goto_locus = e->goto_locus;
450
451 /* If we are partitioning hot/cold basic_blocks, we don't want to mess
452 up jumps that cross between hot/cold sections.
453
454 Basic block partitioning may result in some jumps that appear
455 to be optimizable (or blocks that appear to be mergeable), but which
456 really must be left untouched (they are required to make it safely
457 across partition boundaries). See the comments at the top of
458 bb-reorder.c:partition_hot_cold_basic_blocks for complete
459 details. */
460
461 if (first != EXIT_BLOCK_PTR
462 && find_reg_note (BB_END (first), REG_CROSSING_JUMP, NULL_RTX))
463 return false;
464
465 while (counter < n_basic_blocks)
466 {
467 basic_block new_target = NULL;
468 bool new_target_threaded = false;
469 may_thread |= (target->flags & BB_MODIFIED) != 0;
470
471 if (FORWARDER_BLOCK_P (target)
472 && !(single_succ_edge (target)->flags & EDGE_CROSSING)
473 && single_succ (target) != EXIT_BLOCK_PTR)
474 {
475 /* Bypass trivial infinite loops. */
476 new_target = single_succ (target);
477 if (target == new_target)
478 counter = n_basic_blocks;
479 else if (!optimize)
480 {
481 /* When not optimizing, ensure that edges or forwarder
482 blocks with different locus are not optimized out. */
483 int new_locus = single_succ_edge (target)->goto_locus;
484 int locus = goto_locus;
485
486 if (new_locus && locus && !locator_eq (new_locus, locus))
487 new_target = NULL;
488 else
489 {
490 rtx last;
491
492 if (new_locus)
493 locus = new_locus;
494
495 last = BB_END (target);
496 if (DEBUG_INSN_P (last))
497 last = prev_nondebug_insn (last);
498
499 new_locus = last && INSN_P (last)
500 ? INSN_LOCATOR (last) : 0;
501
502 if (new_locus && locus && !locator_eq (new_locus, locus))
503 new_target = NULL;
504 else
505 {
506 if (new_locus)
507 locus = new_locus;
508
509 goto_locus = locus;
510 }
511 }
512 }
513 }
514
515 /* Allow to thread only over one edge at time to simplify updating
516 of probabilities. */
517 else if ((mode & CLEANUP_THREADING) && may_thread)
518 {
519 edge t = thread_jump (e, target);
520 if (t)
521 {
522 if (!threaded_edges)
523 threaded_edges = XNEWVEC (edge, n_basic_blocks);
524 else
525 {
526 int i;
527
528 /* Detect an infinite loop across blocks not
529 including the start block. */
530 for (i = 0; i < nthreaded_edges; ++i)
531 if (threaded_edges[i] == t)
532 break;
533 if (i < nthreaded_edges)
534 {
535 counter = n_basic_blocks;
536 break;
537 }
538 }
539
540 /* Detect an infinite loop across the start block. */
541 if (t->dest == b)
542 break;
543
544 gcc_assert (nthreaded_edges < n_basic_blocks - NUM_FIXED_BLOCKS);
545 threaded_edges[nthreaded_edges++] = t;
546
547 new_target = t->dest;
548 new_target_threaded = true;
549 }
550 }
551
552 if (!new_target)
553 break;
554
555 counter++;
556 target = new_target;
557 threaded |= new_target_threaded;
558 }
559
560 if (counter >= n_basic_blocks)
561 {
562 if (dump_file)
563 fprintf (dump_file, "Infinite loop in BB %i.\n",
564 target->index);
565 }
566 else if (target == first)
567 ; /* We didn't do anything. */
568 else
569 {
570 /* Save the values now, as the edge may get removed. */
571 gcov_type edge_count = e->count;
572 int edge_probability = e->probability;
573 int edge_frequency;
574 int n = 0;
575
576 e->goto_locus = goto_locus;
577
578 /* Don't force if target is exit block. */
579 if (threaded && target != EXIT_BLOCK_PTR)
580 {
581 notice_new_block (redirect_edge_and_branch_force (e, target));
582 if (dump_file)
583 fprintf (dump_file, "Conditionals threaded.\n");
584 }
585 else if (!redirect_edge_and_branch (e, target))
586 {
587 if (dump_file)
588 fprintf (dump_file,
589 "Forwarding edge %i->%i to %i failed.\n",
590 b->index, e->dest->index, target->index);
591 ei_next (&ei);
592 continue;
593 }
594
595 /* We successfully forwarded the edge. Now update profile
596 data: for each edge we traversed in the chain, remove
597 the original edge's execution count. */
598 edge_frequency = ((edge_probability * b->frequency
599 + REG_BR_PROB_BASE / 2)
600 / REG_BR_PROB_BASE);
601
602 if (!FORWARDER_BLOCK_P (b) && forwarder_block_p (b))
603 b->flags |= BB_FORWARDER_BLOCK;
604
605 do
606 {
607 edge t;
608
609 if (!single_succ_p (first))
610 {
611 gcc_assert (n < nthreaded_edges);
612 t = threaded_edges [n++];
613 gcc_assert (t->src == first);
614 update_bb_profile_for_threading (first, edge_frequency,
615 edge_count, t);
616 update_br_prob_note (first);
617 }
618 else
619 {
620 first->count -= edge_count;
621 if (first->count < 0)
622 first->count = 0;
623 first->frequency -= edge_frequency;
624 if (first->frequency < 0)
625 first->frequency = 0;
626 /* It is possible that as the result of
627 threading we've removed edge as it is
628 threaded to the fallthru edge. Avoid
629 getting out of sync. */
630 if (n < nthreaded_edges
631 && first == threaded_edges [n]->src)
632 n++;
633 t = single_succ_edge (first);
634 }
635
636 t->count -= edge_count;
637 if (t->count < 0)
638 t->count = 0;
639 first = t->dest;
640 }
641 while (first != target);
642
643 changed = true;
644 continue;
645 }
646 ei_next (&ei);
647 }
648
649 if (threaded_edges)
650 free (threaded_edges);
651 return changed;
652 }
653 \f
654
655 /* Blocks A and B are to be merged into a single block. A has no incoming
656 fallthru edge, so it can be moved before B without adding or modifying
657 any jumps (aside from the jump from A to B). */
658
659 static void
660 merge_blocks_move_predecessor_nojumps (basic_block a, basic_block b)
661 {
662 rtx barrier;
663
664 /* If we are partitioning hot/cold basic blocks, we don't want to
665 mess up unconditional or indirect jumps that cross between hot
666 and cold sections.
667
668 Basic block partitioning may result in some jumps that appear to
669 be optimizable (or blocks that appear to be mergeable), but which really
670 must be left untouched (they are required to make it safely across
671 partition boundaries). See the comments at the top of
672 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
673
674 if (BB_PARTITION (a) != BB_PARTITION (b))
675 return;
676
677 barrier = next_nonnote_insn (BB_END (a));
678 gcc_assert (BARRIER_P (barrier));
679 delete_insn (barrier);
680
681 /* Scramble the insn chain. */
682 if (BB_END (a) != PREV_INSN (BB_HEAD (b)))
683 reorder_insns_nobb (BB_HEAD (a), BB_END (a), PREV_INSN (BB_HEAD (b)));
684 df_set_bb_dirty (a);
685
686 if (dump_file)
687 fprintf (dump_file, "Moved block %d before %d and merged.\n",
688 a->index, b->index);
689
690 /* Swap the records for the two blocks around. */
691
692 unlink_block (a);
693 link_block (a, b->prev_bb);
694
695 /* Now blocks A and B are contiguous. Merge them. */
696 merge_blocks (a, b);
697 }
698
699 /* Blocks A and B are to be merged into a single block. B has no outgoing
700 fallthru edge, so it can be moved after A without adding or modifying
701 any jumps (aside from the jump from A to B). */
702
703 static void
704 merge_blocks_move_successor_nojumps (basic_block a, basic_block b)
705 {
706 rtx barrier, real_b_end;
707 rtx label, table;
708
709 /* If we are partitioning hot/cold basic blocks, we don't want to
710 mess up unconditional or indirect jumps that cross between hot
711 and cold sections.
712
713 Basic block partitioning may result in some jumps that appear to
714 be optimizable (or blocks that appear to be mergeable), but which really
715 must be left untouched (they are required to make it safely across
716 partition boundaries). See the comments at the top of
717 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
718
719 if (BB_PARTITION (a) != BB_PARTITION (b))
720 return;
721
722 real_b_end = BB_END (b);
723
724 /* If there is a jump table following block B temporarily add the jump table
725 to block B so that it will also be moved to the correct location. */
726 if (tablejump_p (BB_END (b), &label, &table)
727 && prev_active_insn (label) == BB_END (b))
728 {
729 BB_END (b) = table;
730 }
731
732 /* There had better have been a barrier there. Delete it. */
733 barrier = NEXT_INSN (BB_END (b));
734 if (barrier && BARRIER_P (barrier))
735 delete_insn (barrier);
736
737
738 /* Scramble the insn chain. */
739 reorder_insns_nobb (BB_HEAD (b), BB_END (b), BB_END (a));
740
741 /* Restore the real end of b. */
742 BB_END (b) = real_b_end;
743
744 if (dump_file)
745 fprintf (dump_file, "Moved block %d after %d and merged.\n",
746 b->index, a->index);
747
748 /* Now blocks A and B are contiguous. Merge them. */
749 merge_blocks (a, b);
750 }
751
752 /* Attempt to merge basic blocks that are potentially non-adjacent.
753 Return NULL iff the attempt failed, otherwise return basic block
754 where cleanup_cfg should continue. Because the merging commonly
755 moves basic block away or introduces another optimization
756 possibility, return basic block just before B so cleanup_cfg don't
757 need to iterate.
758
759 It may be good idea to return basic block before C in the case
760 C has been moved after B and originally appeared earlier in the
761 insn sequence, but we have no information available about the
762 relative ordering of these two. Hopefully it is not too common. */
763
764 static basic_block
765 merge_blocks_move (edge e, basic_block b, basic_block c, int mode)
766 {
767 basic_block next;
768
769 /* If we are partitioning hot/cold basic blocks, we don't want to
770 mess up unconditional or indirect jumps that cross between hot
771 and cold sections.
772
773 Basic block partitioning may result in some jumps that appear to
774 be optimizable (or blocks that appear to be mergeable), but which really
775 must be left untouched (they are required to make it safely across
776 partition boundaries). See the comments at the top of
777 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
778
779 if (BB_PARTITION (b) != BB_PARTITION (c))
780 return NULL;
781
782 /* If B has a fallthru edge to C, no need to move anything. */
783 if (e->flags & EDGE_FALLTHRU)
784 {
785 int b_index = b->index, c_index = c->index;
786 merge_blocks (b, c);
787 update_forwarder_flag (b);
788
789 if (dump_file)
790 fprintf (dump_file, "Merged %d and %d without moving.\n",
791 b_index, c_index);
792
793 return b->prev_bb == ENTRY_BLOCK_PTR ? b : b->prev_bb;
794 }
795
796 /* Otherwise we will need to move code around. Do that only if expensive
797 transformations are allowed. */
798 else if (mode & CLEANUP_EXPENSIVE)
799 {
800 edge tmp_edge, b_fallthru_edge;
801 bool c_has_outgoing_fallthru;
802 bool b_has_incoming_fallthru;
803
804 /* Avoid overactive code motion, as the forwarder blocks should be
805 eliminated by edge redirection instead. One exception might have
806 been if B is a forwarder block and C has no fallthru edge, but
807 that should be cleaned up by bb-reorder instead. */
808 if (FORWARDER_BLOCK_P (b) || FORWARDER_BLOCK_P (c))
809 return NULL;
810
811 /* We must make sure to not munge nesting of lexical blocks,
812 and loop notes. This is done by squeezing out all the notes
813 and leaving them there to lie. Not ideal, but functional. */
814
815 tmp_edge = find_fallthru_edge (c->succs);
816 c_has_outgoing_fallthru = (tmp_edge != NULL);
817
818 tmp_edge = find_fallthru_edge (b->preds);
819 b_has_incoming_fallthru = (tmp_edge != NULL);
820 b_fallthru_edge = tmp_edge;
821 next = b->prev_bb;
822 if (next == c)
823 next = next->prev_bb;
824
825 /* Otherwise, we're going to try to move C after B. If C does
826 not have an outgoing fallthru, then it can be moved
827 immediately after B without introducing or modifying jumps. */
828 if (! c_has_outgoing_fallthru)
829 {
830 merge_blocks_move_successor_nojumps (b, c);
831 return next == ENTRY_BLOCK_PTR ? next->next_bb : next;
832 }
833
834 /* If B does not have an incoming fallthru, then it can be moved
835 immediately before C without introducing or modifying jumps.
836 C cannot be the first block, so we do not have to worry about
837 accessing a non-existent block. */
838
839 if (b_has_incoming_fallthru)
840 {
841 basic_block bb;
842
843 if (b_fallthru_edge->src == ENTRY_BLOCK_PTR)
844 return NULL;
845 bb = force_nonfallthru (b_fallthru_edge);
846 if (bb)
847 notice_new_block (bb);
848 }
849
850 merge_blocks_move_predecessor_nojumps (b, c);
851 return next == ENTRY_BLOCK_PTR ? next->next_bb : next;
852 }
853
854 return NULL;
855 }
856 \f
857
858 /* Removes the memory attributes of MEM expression
859 if they are not equal. */
860
861 void
862 merge_memattrs (rtx x, rtx y)
863 {
864 int i;
865 int j;
866 enum rtx_code code;
867 const char *fmt;
868
869 if (x == y)
870 return;
871 if (x == 0 || y == 0)
872 return;
873
874 code = GET_CODE (x);
875
876 if (code != GET_CODE (y))
877 return;
878
879 if (GET_MODE (x) != GET_MODE (y))
880 return;
881
882 if (code == MEM && MEM_ATTRS (x) != MEM_ATTRS (y))
883 {
884 if (! MEM_ATTRS (x))
885 MEM_ATTRS (y) = 0;
886 else if (! MEM_ATTRS (y))
887 MEM_ATTRS (x) = 0;
888 else
889 {
890 rtx mem_size;
891
892 if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
893 {
894 set_mem_alias_set (x, 0);
895 set_mem_alias_set (y, 0);
896 }
897
898 if (! mem_expr_equal_p (MEM_EXPR (x), MEM_EXPR (y)))
899 {
900 set_mem_expr (x, 0);
901 set_mem_expr (y, 0);
902 set_mem_offset (x, 0);
903 set_mem_offset (y, 0);
904 }
905 else if (MEM_OFFSET (x) != MEM_OFFSET (y))
906 {
907 set_mem_offset (x, 0);
908 set_mem_offset (y, 0);
909 }
910
911 if (!MEM_SIZE (x))
912 mem_size = NULL_RTX;
913 else if (!MEM_SIZE (y))
914 mem_size = NULL_RTX;
915 else
916 mem_size = GEN_INT (MAX (INTVAL (MEM_SIZE (x)),
917 INTVAL (MEM_SIZE (y))));
918 set_mem_size (x, mem_size);
919 set_mem_size (y, mem_size);
920
921 set_mem_align (x, MIN (MEM_ALIGN (x), MEM_ALIGN (y)));
922 set_mem_align (y, MEM_ALIGN (x));
923 }
924 }
925
926 fmt = GET_RTX_FORMAT (code);
927 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
928 {
929 switch (fmt[i])
930 {
931 case 'E':
932 /* Two vectors must have the same length. */
933 if (XVECLEN (x, i) != XVECLEN (y, i))
934 return;
935
936 for (j = 0; j < XVECLEN (x, i); j++)
937 merge_memattrs (XVECEXP (x, i, j), XVECEXP (y, i, j));
938
939 break;
940
941 case 'e':
942 merge_memattrs (XEXP (x, i), XEXP (y, i));
943 }
944 }
945 return;
946 }
947
948
949 /* Return true if I1 and I2 are equivalent and thus can be crossjumped. */
950
951 static bool
952 old_insns_match_p (int mode ATTRIBUTE_UNUSED, rtx i1, rtx i2)
953 {
954 rtx p1, p2;
955
956 /* Verify that I1 and I2 are equivalent. */
957 if (GET_CODE (i1) != GET_CODE (i2))
958 return false;
959
960 /* __builtin_unreachable() may lead to empty blocks (ending with
961 NOTE_INSN_BASIC_BLOCK). They may be crossjumped. */
962 if (NOTE_INSN_BASIC_BLOCK_P (i1) && NOTE_INSN_BASIC_BLOCK_P (i2))
963 return true;
964
965 p1 = PATTERN (i1);
966 p2 = PATTERN (i2);
967
968 if (GET_CODE (p1) != GET_CODE (p2))
969 return false;
970
971 /* If this is a CALL_INSN, compare register usage information.
972 If we don't check this on stack register machines, the two
973 CALL_INSNs might be merged leaving reg-stack.c with mismatching
974 numbers of stack registers in the same basic block.
975 If we don't check this on machines with delay slots, a delay slot may
976 be filled that clobbers a parameter expected by the subroutine.
977
978 ??? We take the simple route for now and assume that if they're
979 equal, they were constructed identically.
980
981 Also check for identical exception regions. */
982
983 if (CALL_P (i1))
984 {
985 /* Ensure the same EH region. */
986 rtx n1 = find_reg_note (i1, REG_EH_REGION, 0);
987 rtx n2 = find_reg_note (i2, REG_EH_REGION, 0);
988
989 if (!n1 && n2)
990 return false;
991
992 if (n1 && (!n2 || XEXP (n1, 0) != XEXP (n2, 0)))
993 return false;
994
995 if (!rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1),
996 CALL_INSN_FUNCTION_USAGE (i2))
997 || SIBLING_CALL_P (i1) != SIBLING_CALL_P (i2))
998 return false;
999 }
1000
1001 #ifdef STACK_REGS
1002 /* If cross_jump_death_matters is not 0, the insn's mode
1003 indicates whether or not the insn contains any stack-like
1004 regs. */
1005
1006 if ((mode & CLEANUP_POST_REGSTACK) && stack_regs_mentioned (i1))
1007 {
1008 /* If register stack conversion has already been done, then
1009 death notes must also be compared before it is certain that
1010 the two instruction streams match. */
1011
1012 rtx note;
1013 HARD_REG_SET i1_regset, i2_regset;
1014
1015 CLEAR_HARD_REG_SET (i1_regset);
1016 CLEAR_HARD_REG_SET (i2_regset);
1017
1018 for (note = REG_NOTES (i1); note; note = XEXP (note, 1))
1019 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
1020 SET_HARD_REG_BIT (i1_regset, REGNO (XEXP (note, 0)));
1021
1022 for (note = REG_NOTES (i2); note; note = XEXP (note, 1))
1023 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
1024 SET_HARD_REG_BIT (i2_regset, REGNO (XEXP (note, 0)));
1025
1026 if (!hard_reg_set_equal_p (i1_regset, i2_regset))
1027 return false;
1028 }
1029 #endif
1030
1031 if (reload_completed
1032 ? rtx_renumbered_equal_p (p1, p2) : rtx_equal_p (p1, p2))
1033 return true;
1034
1035 return false;
1036 }
1037 \f
1038 /* When comparing insns I1 and I2 in flow_find_cross_jump or
1039 flow_find_head_matching_sequence, ensure the notes match. */
1040
1041 static void
1042 merge_notes (rtx i1, rtx i2)
1043 {
1044 /* If the merged insns have different REG_EQUAL notes, then
1045 remove them. */
1046 rtx equiv1 = find_reg_equal_equiv_note (i1);
1047 rtx equiv2 = find_reg_equal_equiv_note (i2);
1048
1049 if (equiv1 && !equiv2)
1050 remove_note (i1, equiv1);
1051 else if (!equiv1 && equiv2)
1052 remove_note (i2, equiv2);
1053 else if (equiv1 && equiv2
1054 && !rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))
1055 {
1056 remove_note (i1, equiv1);
1057 remove_note (i2, equiv2);
1058 }
1059 }
1060
1061 /* Look through the insns at the end of BB1 and BB2 and find the longest
1062 sequence that are equivalent. Store the first insns for that sequence
1063 in *F1 and *F2 and return the sequence length.
1064
1065 To simplify callers of this function, if the blocks match exactly,
1066 store the head of the blocks in *F1 and *F2. */
1067
1068 int
1069 flow_find_cross_jump (basic_block bb1, basic_block bb2, rtx *f1, rtx *f2)
1070 {
1071 rtx i1, i2, last1, last2, afterlast1, afterlast2;
1072 int ninsns = 0;
1073
1074 /* Skip simple jumps at the end of the blocks. Complex jumps still
1075 need to be compared for equivalence, which we'll do below. */
1076
1077 i1 = BB_END (bb1);
1078 last1 = afterlast1 = last2 = afterlast2 = NULL_RTX;
1079 if (onlyjump_p (i1)
1080 || (returnjump_p (i1) && !side_effects_p (PATTERN (i1))))
1081 {
1082 last1 = i1;
1083 i1 = PREV_INSN (i1);
1084 }
1085
1086 i2 = BB_END (bb2);
1087 if (onlyjump_p (i2)
1088 || (returnjump_p (i2) && !side_effects_p (PATTERN (i2))))
1089 {
1090 last2 = i2;
1091 /* Count everything except for unconditional jump as insn. */
1092 if (!simplejump_p (i2) && !returnjump_p (i2) && last1)
1093 ninsns++;
1094 i2 = PREV_INSN (i2);
1095 }
1096
1097 while (true)
1098 {
1099 /* Ignore notes. */
1100 while (!NONDEBUG_INSN_P (i1) && i1 != BB_HEAD (bb1))
1101 i1 = PREV_INSN (i1);
1102
1103 while (!NONDEBUG_INSN_P (i2) && i2 != BB_HEAD (bb2))
1104 i2 = PREV_INSN (i2);
1105
1106 if (i1 == BB_HEAD (bb1) || i2 == BB_HEAD (bb2))
1107 break;
1108
1109 if (!old_insns_match_p (0, i1, i2))
1110 break;
1111
1112 merge_memattrs (i1, i2);
1113
1114 /* Don't begin a cross-jump with a NOTE insn. */
1115 if (INSN_P (i1))
1116 {
1117 merge_notes (i1, i2);
1118
1119 afterlast1 = last1, afterlast2 = last2;
1120 last1 = i1, last2 = i2;
1121 ninsns++;
1122 }
1123
1124 i1 = PREV_INSN (i1);
1125 i2 = PREV_INSN (i2);
1126 }
1127
1128 #ifdef HAVE_cc0
1129 /* Don't allow the insn after a compare to be shared by
1130 cross-jumping unless the compare is also shared. */
1131 if (ninsns && reg_mentioned_p (cc0_rtx, last1) && ! sets_cc0_p (last1))
1132 last1 = afterlast1, last2 = afterlast2, ninsns--;
1133 #endif
1134
1135 /* Include preceding notes and labels in the cross-jump. One,
1136 this may bring us to the head of the blocks as requested above.
1137 Two, it keeps line number notes as matched as may be. */
1138 if (ninsns)
1139 {
1140 while (last1 != BB_HEAD (bb1) && !NONDEBUG_INSN_P (PREV_INSN (last1)))
1141 last1 = PREV_INSN (last1);
1142
1143 if (last1 != BB_HEAD (bb1) && LABEL_P (PREV_INSN (last1)))
1144 last1 = PREV_INSN (last1);
1145
1146 while (last2 != BB_HEAD (bb2) && !NONDEBUG_INSN_P (PREV_INSN (last2)))
1147 last2 = PREV_INSN (last2);
1148
1149 if (last2 != BB_HEAD (bb2) && LABEL_P (PREV_INSN (last2)))
1150 last2 = PREV_INSN (last2);
1151
1152 *f1 = last1;
1153 *f2 = last2;
1154 }
1155
1156 return ninsns;
1157 }
1158
1159 /* Like flow_find_cross_jump, except start looking for a matching sequence from
1160 the head of the two blocks. Do not include jumps at the end.
1161 If STOP_AFTER is nonzero, stop after finding that many matching
1162 instructions. */
1163
1164 int
1165 flow_find_head_matching_sequence (basic_block bb1, basic_block bb2, rtx *f1,
1166 rtx *f2, int stop_after)
1167 {
1168 rtx i1, i2, last1, last2, beforelast1, beforelast2;
1169 int ninsns = 0;
1170 edge e;
1171 edge_iterator ei;
1172 int nehedges1 = 0, nehedges2 = 0;
1173
1174 FOR_EACH_EDGE (e, ei, bb1->succs)
1175 if (e->flags & EDGE_EH)
1176 nehedges1++;
1177 FOR_EACH_EDGE (e, ei, bb2->succs)
1178 if (e->flags & EDGE_EH)
1179 nehedges2++;
1180
1181 i1 = BB_HEAD (bb1);
1182 i2 = BB_HEAD (bb2);
1183 last1 = beforelast1 = last2 = beforelast2 = NULL_RTX;
1184
1185 while (true)
1186 {
1187 /* Ignore notes, except NOTE_INSN_EPILOGUE_BEG. */
1188 while (!NONDEBUG_INSN_P (i1) && i1 != BB_END (bb1))
1189 {
1190 if (NOTE_P (i1) && NOTE_KIND (i1) == NOTE_INSN_EPILOGUE_BEG)
1191 break;
1192 i1 = NEXT_INSN (i1);
1193 }
1194
1195 while (!NONDEBUG_INSN_P (i2) && i2 != BB_END (bb2))
1196 {
1197 if (NOTE_P (i2) && NOTE_KIND (i2) == NOTE_INSN_EPILOGUE_BEG)
1198 break;
1199 i2 = NEXT_INSN (i2);
1200 }
1201
1202 if ((i1 == BB_END (bb1) && !NONDEBUG_INSN_P (i1))
1203 || (i2 == BB_END (bb2) && !NONDEBUG_INSN_P (i2)))
1204 break;
1205
1206 if (NOTE_P (i1) || NOTE_P (i2)
1207 || JUMP_P (i1) || JUMP_P (i2))
1208 break;
1209
1210 /* A sanity check to make sure we're not merging insns with different
1211 effects on EH. If only one of them ends a basic block, it shouldn't
1212 have an EH edge; if both end a basic block, there should be the same
1213 number of EH edges. */
1214 if ((i1 == BB_END (bb1) && i2 != BB_END (bb2)
1215 && nehedges1 > 0)
1216 || (i2 == BB_END (bb2) && i1 != BB_END (bb1)
1217 && nehedges2 > 0)
1218 || (i1 == BB_END (bb1) && i2 == BB_END (bb2)
1219 && nehedges1 != nehedges2))
1220 break;
1221
1222 if (!old_insns_match_p (0, i1, i2))
1223 break;
1224
1225 merge_memattrs (i1, i2);
1226
1227 /* Don't begin a cross-jump with a NOTE insn. */
1228 if (INSN_P (i1))
1229 {
1230 merge_notes (i1, i2);
1231
1232 beforelast1 = last1, beforelast2 = last2;
1233 last1 = i1, last2 = i2;
1234 ninsns++;
1235 }
1236
1237 if (i1 == BB_END (bb1) || i2 == BB_END (bb2)
1238 || (stop_after > 0 && ninsns == stop_after))
1239 break;
1240
1241 i1 = NEXT_INSN (i1);
1242 i2 = NEXT_INSN (i2);
1243 }
1244
1245 #ifdef HAVE_cc0
1246 /* Don't allow a compare to be shared by cross-jumping unless the insn
1247 after the compare is also shared. */
1248 if (ninsns && reg_mentioned_p (cc0_rtx, last1) && sets_cc0_p (last1))
1249 last1 = beforelast1, last2 = beforelast2, ninsns--;
1250 #endif
1251
1252 if (ninsns)
1253 {
1254 *f1 = last1;
1255 *f2 = last2;
1256 }
1257
1258 return ninsns;
1259 }
1260
1261 /* Return true iff outgoing edges of BB1 and BB2 match, together with
1262 the branch instruction. This means that if we commonize the control
1263 flow before end of the basic block, the semantic remains unchanged.
1264
1265 We may assume that there exists one edge with a common destination. */
1266
1267 static bool
1268 outgoing_edges_match (int mode, basic_block bb1, basic_block bb2)
1269 {
1270 int nehedges1 = 0, nehedges2 = 0;
1271 edge fallthru1 = 0, fallthru2 = 0;
1272 edge e1, e2;
1273 edge_iterator ei;
1274
1275 /* If BB1 has only one successor, we may be looking at either an
1276 unconditional jump, or a fake edge to exit. */
1277 if (single_succ_p (bb1)
1278 && (single_succ_edge (bb1)->flags & (EDGE_COMPLEX | EDGE_FAKE)) == 0
1279 && (!JUMP_P (BB_END (bb1)) || simplejump_p (BB_END (bb1))))
1280 return (single_succ_p (bb2)
1281 && (single_succ_edge (bb2)->flags
1282 & (EDGE_COMPLEX | EDGE_FAKE)) == 0
1283 && (!JUMP_P (BB_END (bb2)) || simplejump_p (BB_END (bb2))));
1284
1285 /* Match conditional jumps - this may get tricky when fallthru and branch
1286 edges are crossed. */
1287 if (EDGE_COUNT (bb1->succs) == 2
1288 && any_condjump_p (BB_END (bb1))
1289 && onlyjump_p (BB_END (bb1)))
1290 {
1291 edge b1, f1, b2, f2;
1292 bool reverse, match;
1293 rtx set1, set2, cond1, cond2;
1294 enum rtx_code code1, code2;
1295
1296 if (EDGE_COUNT (bb2->succs) != 2
1297 || !any_condjump_p (BB_END (bb2))
1298 || !onlyjump_p (BB_END (bb2)))
1299 return false;
1300
1301 b1 = BRANCH_EDGE (bb1);
1302 b2 = BRANCH_EDGE (bb2);
1303 f1 = FALLTHRU_EDGE (bb1);
1304 f2 = FALLTHRU_EDGE (bb2);
1305
1306 /* Get around possible forwarders on fallthru edges. Other cases
1307 should be optimized out already. */
1308 if (FORWARDER_BLOCK_P (f1->dest))
1309 f1 = single_succ_edge (f1->dest);
1310
1311 if (FORWARDER_BLOCK_P (f2->dest))
1312 f2 = single_succ_edge (f2->dest);
1313
1314 /* To simplify use of this function, return false if there are
1315 unneeded forwarder blocks. These will get eliminated later
1316 during cleanup_cfg. */
1317 if (FORWARDER_BLOCK_P (f1->dest)
1318 || FORWARDER_BLOCK_P (f2->dest)
1319 || FORWARDER_BLOCK_P (b1->dest)
1320 || FORWARDER_BLOCK_P (b2->dest))
1321 return false;
1322
1323 if (f1->dest == f2->dest && b1->dest == b2->dest)
1324 reverse = false;
1325 else if (f1->dest == b2->dest && b1->dest == f2->dest)
1326 reverse = true;
1327 else
1328 return false;
1329
1330 set1 = pc_set (BB_END (bb1));
1331 set2 = pc_set (BB_END (bb2));
1332 if ((XEXP (SET_SRC (set1), 1) == pc_rtx)
1333 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
1334 reverse = !reverse;
1335
1336 cond1 = XEXP (SET_SRC (set1), 0);
1337 cond2 = XEXP (SET_SRC (set2), 0);
1338 code1 = GET_CODE (cond1);
1339 if (reverse)
1340 code2 = reversed_comparison_code (cond2, BB_END (bb2));
1341 else
1342 code2 = GET_CODE (cond2);
1343
1344 if (code2 == UNKNOWN)
1345 return false;
1346
1347 /* Verify codes and operands match. */
1348 match = ((code1 == code2
1349 && rtx_renumbered_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
1350 && rtx_renumbered_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
1351 || (code1 == swap_condition (code2)
1352 && rtx_renumbered_equal_p (XEXP (cond1, 1),
1353 XEXP (cond2, 0))
1354 && rtx_renumbered_equal_p (XEXP (cond1, 0),
1355 XEXP (cond2, 1))));
1356
1357 /* If we return true, we will join the blocks. Which means that
1358 we will only have one branch prediction bit to work with. Thus
1359 we require the existing branches to have probabilities that are
1360 roughly similar. */
1361 if (match
1362 && optimize_bb_for_speed_p (bb1)
1363 && optimize_bb_for_speed_p (bb2))
1364 {
1365 int prob2;
1366
1367 if (b1->dest == b2->dest)
1368 prob2 = b2->probability;
1369 else
1370 /* Do not use f2 probability as f2 may be forwarded. */
1371 prob2 = REG_BR_PROB_BASE - b2->probability;
1372
1373 /* Fail if the difference in probabilities is greater than 50%.
1374 This rules out two well-predicted branches with opposite
1375 outcomes. */
1376 if (abs (b1->probability - prob2) > REG_BR_PROB_BASE / 2)
1377 {
1378 if (dump_file)
1379 fprintf (dump_file,
1380 "Outcomes of branch in bb %i and %i differ too much (%i %i)\n",
1381 bb1->index, bb2->index, b1->probability, prob2);
1382
1383 return false;
1384 }
1385 }
1386
1387 if (dump_file && match)
1388 fprintf (dump_file, "Conditionals in bb %i and %i match.\n",
1389 bb1->index, bb2->index);
1390
1391 return match;
1392 }
1393
1394 /* Generic case - we are seeing a computed jump, table jump or trapping
1395 instruction. */
1396
1397 /* Check whether there are tablejumps in the end of BB1 and BB2.
1398 Return true if they are identical. */
1399 {
1400 rtx label1, label2;
1401 rtx table1, table2;
1402
1403 if (tablejump_p (BB_END (bb1), &label1, &table1)
1404 && tablejump_p (BB_END (bb2), &label2, &table2)
1405 && GET_CODE (PATTERN (table1)) == GET_CODE (PATTERN (table2)))
1406 {
1407 /* The labels should never be the same rtx. If they really are same
1408 the jump tables are same too. So disable crossjumping of blocks BB1
1409 and BB2 because when deleting the common insns in the end of BB1
1410 by delete_basic_block () the jump table would be deleted too. */
1411 /* If LABEL2 is referenced in BB1->END do not do anything
1412 because we would loose information when replacing
1413 LABEL1 by LABEL2 and then LABEL2 by LABEL1 in BB1->END. */
1414 if (label1 != label2 && !rtx_referenced_p (label2, BB_END (bb1)))
1415 {
1416 /* Set IDENTICAL to true when the tables are identical. */
1417 bool identical = false;
1418 rtx p1, p2;
1419
1420 p1 = PATTERN (table1);
1421 p2 = PATTERN (table2);
1422 if (GET_CODE (p1) == ADDR_VEC && rtx_equal_p (p1, p2))
1423 {
1424 identical = true;
1425 }
1426 else if (GET_CODE (p1) == ADDR_DIFF_VEC
1427 && (XVECLEN (p1, 1) == XVECLEN (p2, 1))
1428 && rtx_equal_p (XEXP (p1, 2), XEXP (p2, 2))
1429 && rtx_equal_p (XEXP (p1, 3), XEXP (p2, 3)))
1430 {
1431 int i;
1432
1433 identical = true;
1434 for (i = XVECLEN (p1, 1) - 1; i >= 0 && identical; i--)
1435 if (!rtx_equal_p (XVECEXP (p1, 1, i), XVECEXP (p2, 1, i)))
1436 identical = false;
1437 }
1438
1439 if (identical)
1440 {
1441 replace_label_data rr;
1442 bool match;
1443
1444 /* Temporarily replace references to LABEL1 with LABEL2
1445 in BB1->END so that we could compare the instructions. */
1446 rr.r1 = label1;
1447 rr.r2 = label2;
1448 rr.update_label_nuses = false;
1449 for_each_rtx (&BB_END (bb1), replace_label, &rr);
1450
1451 match = old_insns_match_p (mode, BB_END (bb1), BB_END (bb2));
1452 if (dump_file && match)
1453 fprintf (dump_file,
1454 "Tablejumps in bb %i and %i match.\n",
1455 bb1->index, bb2->index);
1456
1457 /* Set the original label in BB1->END because when deleting
1458 a block whose end is a tablejump, the tablejump referenced
1459 from the instruction is deleted too. */
1460 rr.r1 = label2;
1461 rr.r2 = label1;
1462 for_each_rtx (&BB_END (bb1), replace_label, &rr);
1463
1464 return match;
1465 }
1466 }
1467 return false;
1468 }
1469 }
1470
1471 /* First ensure that the instructions match. There may be many outgoing
1472 edges so this test is generally cheaper. */
1473 if (!old_insns_match_p (mode, BB_END (bb1), BB_END (bb2)))
1474 return false;
1475
1476 /* Search the outgoing edges, ensure that the counts do match, find possible
1477 fallthru and exception handling edges since these needs more
1478 validation. */
1479 if (EDGE_COUNT (bb1->succs) != EDGE_COUNT (bb2->succs))
1480 return false;
1481
1482 FOR_EACH_EDGE (e1, ei, bb1->succs)
1483 {
1484 e2 = EDGE_SUCC (bb2, ei.index);
1485
1486 if (e1->flags & EDGE_EH)
1487 nehedges1++;
1488
1489 if (e2->flags & EDGE_EH)
1490 nehedges2++;
1491
1492 if (e1->flags & EDGE_FALLTHRU)
1493 fallthru1 = e1;
1494 if (e2->flags & EDGE_FALLTHRU)
1495 fallthru2 = e2;
1496 }
1497
1498 /* If number of edges of various types does not match, fail. */
1499 if (nehedges1 != nehedges2
1500 || (fallthru1 != 0) != (fallthru2 != 0))
1501 return false;
1502
1503 /* fallthru edges must be forwarded to the same destination. */
1504 if (fallthru1)
1505 {
1506 basic_block d1 = (forwarder_block_p (fallthru1->dest)
1507 ? single_succ (fallthru1->dest): fallthru1->dest);
1508 basic_block d2 = (forwarder_block_p (fallthru2->dest)
1509 ? single_succ (fallthru2->dest): fallthru2->dest);
1510
1511 if (d1 != d2)
1512 return false;
1513 }
1514
1515 /* Ensure the same EH region. */
1516 {
1517 rtx n1 = find_reg_note (BB_END (bb1), REG_EH_REGION, 0);
1518 rtx n2 = find_reg_note (BB_END (bb2), REG_EH_REGION, 0);
1519
1520 if (!n1 && n2)
1521 return false;
1522
1523 if (n1 && (!n2 || XEXP (n1, 0) != XEXP (n2, 0)))
1524 return false;
1525 }
1526
1527 /* The same checks as in try_crossjump_to_edge. It is required for RTL
1528 version of sequence abstraction. */
1529 FOR_EACH_EDGE (e1, ei, bb2->succs)
1530 {
1531 edge e2;
1532 edge_iterator ei;
1533 basic_block d1 = e1->dest;
1534
1535 if (FORWARDER_BLOCK_P (d1))
1536 d1 = EDGE_SUCC (d1, 0)->dest;
1537
1538 FOR_EACH_EDGE (e2, ei, bb1->succs)
1539 {
1540 basic_block d2 = e2->dest;
1541 if (FORWARDER_BLOCK_P (d2))
1542 d2 = EDGE_SUCC (d2, 0)->dest;
1543 if (d1 == d2)
1544 break;
1545 }
1546
1547 if (!e2)
1548 return false;
1549 }
1550
1551 return true;
1552 }
1553
1554 /* Returns true if BB basic block has a preserve label. */
1555
1556 static bool
1557 block_has_preserve_label (basic_block bb)
1558 {
1559 return (bb
1560 && block_label (bb)
1561 && LABEL_PRESERVE_P (block_label (bb)));
1562 }
1563
1564 /* E1 and E2 are edges with the same destination block. Search their
1565 predecessors for common code. If found, redirect control flow from
1566 (maybe the middle of) E1->SRC to (maybe the middle of) E2->SRC. */
1567
1568 static bool
1569 try_crossjump_to_edge (int mode, edge e1, edge e2)
1570 {
1571 int nmatch;
1572 basic_block src1 = e1->src, src2 = e2->src;
1573 basic_block redirect_to, redirect_from, to_remove;
1574 rtx newpos1, newpos2;
1575 edge s;
1576 edge_iterator ei;
1577
1578 newpos1 = newpos2 = NULL_RTX;
1579
1580 /* If we have partitioned hot/cold basic blocks, it is a bad idea
1581 to try this optimization.
1582
1583 Basic block partitioning may result in some jumps that appear to
1584 be optimizable (or blocks that appear to be mergeable), but which really
1585 must be left untouched (they are required to make it safely across
1586 partition boundaries). See the comments at the top of
1587 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
1588
1589 if (flag_reorder_blocks_and_partition && reload_completed)
1590 return false;
1591
1592 /* Search backward through forwarder blocks. We don't need to worry
1593 about multiple entry or chained forwarders, as they will be optimized
1594 away. We do this to look past the unconditional jump following a
1595 conditional jump that is required due to the current CFG shape. */
1596 if (single_pred_p (src1)
1597 && FORWARDER_BLOCK_P (src1))
1598 e1 = single_pred_edge (src1), src1 = e1->src;
1599
1600 if (single_pred_p (src2)
1601 && FORWARDER_BLOCK_P (src2))
1602 e2 = single_pred_edge (src2), src2 = e2->src;
1603
1604 /* Nothing to do if we reach ENTRY, or a common source block. */
1605 if (src1 == ENTRY_BLOCK_PTR || src2 == ENTRY_BLOCK_PTR)
1606 return false;
1607 if (src1 == src2)
1608 return false;
1609
1610 /* Seeing more than 1 forwarder blocks would confuse us later... */
1611 if (FORWARDER_BLOCK_P (e1->dest)
1612 && FORWARDER_BLOCK_P (single_succ (e1->dest)))
1613 return false;
1614
1615 if (FORWARDER_BLOCK_P (e2->dest)
1616 && FORWARDER_BLOCK_P (single_succ (e2->dest)))
1617 return false;
1618
1619 /* Likewise with dead code (possibly newly created by the other optimizations
1620 of cfg_cleanup). */
1621 if (EDGE_COUNT (src1->preds) == 0 || EDGE_COUNT (src2->preds) == 0)
1622 return false;
1623
1624 /* Look for the common insn sequence, part the first ... */
1625 if (!outgoing_edges_match (mode, src1, src2))
1626 return false;
1627
1628 /* ... and part the second. */
1629 nmatch = flow_find_cross_jump (src1, src2, &newpos1, &newpos2);
1630
1631 /* Don't proceed with the crossjump unless we found a sufficient number
1632 of matching instructions or the 'from' block was totally matched
1633 (such that its predecessors will hopefully be redirected and the
1634 block removed). */
1635 if ((nmatch < PARAM_VALUE (PARAM_MIN_CROSSJUMP_INSNS))
1636 && (newpos1 != BB_HEAD (src1)))
1637 return false;
1638
1639 /* Avoid deleting preserve label when redirecting ABNORMAL edges. */
1640 if (block_has_preserve_label (e1->dest)
1641 && (e1->flags & EDGE_ABNORMAL))
1642 return false;
1643
1644 /* Here we know that the insns in the end of SRC1 which are common with SRC2
1645 will be deleted.
1646 If we have tablejumps in the end of SRC1 and SRC2
1647 they have been already compared for equivalence in outgoing_edges_match ()
1648 so replace the references to TABLE1 by references to TABLE2. */
1649 {
1650 rtx label1, label2;
1651 rtx table1, table2;
1652
1653 if (tablejump_p (BB_END (src1), &label1, &table1)
1654 && tablejump_p (BB_END (src2), &label2, &table2)
1655 && label1 != label2)
1656 {
1657 replace_label_data rr;
1658 rtx insn;
1659
1660 /* Replace references to LABEL1 with LABEL2. */
1661 rr.r1 = label1;
1662 rr.r2 = label2;
1663 rr.update_label_nuses = true;
1664 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1665 {
1666 /* Do not replace the label in SRC1->END because when deleting
1667 a block whose end is a tablejump, the tablejump referenced
1668 from the instruction is deleted too. */
1669 if (insn != BB_END (src1))
1670 for_each_rtx (&insn, replace_label, &rr);
1671 }
1672 }
1673 }
1674
1675 /* Avoid splitting if possible. We must always split when SRC2 has
1676 EH predecessor edges, or we may end up with basic blocks with both
1677 normal and EH predecessor edges. */
1678 if (newpos2 == BB_HEAD (src2)
1679 && !(EDGE_PRED (src2, 0)->flags & EDGE_EH))
1680 redirect_to = src2;
1681 else
1682 {
1683 if (newpos2 == BB_HEAD (src2))
1684 {
1685 /* Skip possible basic block header. */
1686 if (LABEL_P (newpos2))
1687 newpos2 = NEXT_INSN (newpos2);
1688 while (DEBUG_INSN_P (newpos2))
1689 newpos2 = NEXT_INSN (newpos2);
1690 if (NOTE_P (newpos2))
1691 newpos2 = NEXT_INSN (newpos2);
1692 while (DEBUG_INSN_P (newpos2))
1693 newpos2 = NEXT_INSN (newpos2);
1694 }
1695
1696 if (dump_file)
1697 fprintf (dump_file, "Splitting bb %i before %i insns\n",
1698 src2->index, nmatch);
1699 redirect_to = split_block (src2, PREV_INSN (newpos2))->dest;
1700 }
1701
1702 if (dump_file)
1703 fprintf (dump_file,
1704 "Cross jumping from bb %i to bb %i; %i common insns\n",
1705 src1->index, src2->index, nmatch);
1706
1707 /* We may have some registers visible through the block. */
1708 df_set_bb_dirty (redirect_to);
1709
1710 /* Recompute the frequencies and counts of outgoing edges. */
1711 FOR_EACH_EDGE (s, ei, redirect_to->succs)
1712 {
1713 edge s2;
1714 edge_iterator ei;
1715 basic_block d = s->dest;
1716
1717 if (FORWARDER_BLOCK_P (d))
1718 d = single_succ (d);
1719
1720 FOR_EACH_EDGE (s2, ei, src1->succs)
1721 {
1722 basic_block d2 = s2->dest;
1723 if (FORWARDER_BLOCK_P (d2))
1724 d2 = single_succ (d2);
1725 if (d == d2)
1726 break;
1727 }
1728
1729 s->count += s2->count;
1730
1731 /* Take care to update possible forwarder blocks. We verified
1732 that there is no more than one in the chain, so we can't run
1733 into infinite loop. */
1734 if (FORWARDER_BLOCK_P (s->dest))
1735 {
1736 single_succ_edge (s->dest)->count += s2->count;
1737 s->dest->count += s2->count;
1738 s->dest->frequency += EDGE_FREQUENCY (s);
1739 }
1740
1741 if (FORWARDER_BLOCK_P (s2->dest))
1742 {
1743 single_succ_edge (s2->dest)->count -= s2->count;
1744 if (single_succ_edge (s2->dest)->count < 0)
1745 single_succ_edge (s2->dest)->count = 0;
1746 s2->dest->count -= s2->count;
1747 s2->dest->frequency -= EDGE_FREQUENCY (s);
1748 if (s2->dest->frequency < 0)
1749 s2->dest->frequency = 0;
1750 if (s2->dest->count < 0)
1751 s2->dest->count = 0;
1752 }
1753
1754 if (!redirect_to->frequency && !src1->frequency)
1755 s->probability = (s->probability + s2->probability) / 2;
1756 else
1757 s->probability
1758 = ((s->probability * redirect_to->frequency +
1759 s2->probability * src1->frequency)
1760 / (redirect_to->frequency + src1->frequency));
1761 }
1762
1763 /* Adjust count and frequency for the block. An earlier jump
1764 threading pass may have left the profile in an inconsistent
1765 state (see update_bb_profile_for_threading) so we must be
1766 prepared for overflows. */
1767 redirect_to->count += src1->count;
1768 redirect_to->frequency += src1->frequency;
1769 if (redirect_to->frequency > BB_FREQ_MAX)
1770 redirect_to->frequency = BB_FREQ_MAX;
1771 update_br_prob_note (redirect_to);
1772
1773 /* Edit SRC1 to go to REDIRECT_TO at NEWPOS1. */
1774
1775 /* Skip possible basic block header. */
1776 if (LABEL_P (newpos1))
1777 newpos1 = NEXT_INSN (newpos1);
1778
1779 while (DEBUG_INSN_P (newpos1))
1780 newpos1 = NEXT_INSN (newpos1);
1781
1782 if (NOTE_INSN_BASIC_BLOCK_P (newpos1))
1783 newpos1 = NEXT_INSN (newpos1);
1784
1785 while (DEBUG_INSN_P (newpos1))
1786 newpos1 = NEXT_INSN (newpos1);
1787
1788 redirect_from = split_block (src1, PREV_INSN (newpos1))->src;
1789 to_remove = single_succ (redirect_from);
1790
1791 redirect_edge_and_branch_force (single_succ_edge (redirect_from), redirect_to);
1792 delete_basic_block (to_remove);
1793
1794 update_forwarder_flag (redirect_from);
1795 if (redirect_to != src2)
1796 update_forwarder_flag (src2);
1797
1798 return true;
1799 }
1800
1801 /* Search the predecessors of BB for common insn sequences. When found,
1802 share code between them by redirecting control flow. Return true if
1803 any changes made. */
1804
1805 static bool
1806 try_crossjump_bb (int mode, basic_block bb)
1807 {
1808 edge e, e2, fallthru;
1809 bool changed;
1810 unsigned max, ix, ix2;
1811 basic_block ev, ev2;
1812
1813 /* Nothing to do if there is not at least two incoming edges. */
1814 if (EDGE_COUNT (bb->preds) < 2)
1815 return false;
1816
1817 /* Don't crossjump if this block ends in a computed jump,
1818 unless we are optimizing for size. */
1819 if (optimize_bb_for_size_p (bb)
1820 && bb != EXIT_BLOCK_PTR
1821 && computed_jump_p (BB_END (bb)))
1822 return false;
1823
1824 /* If we are partitioning hot/cold basic blocks, we don't want to
1825 mess up unconditional or indirect jumps that cross between hot
1826 and cold sections.
1827
1828 Basic block partitioning may result in some jumps that appear to
1829 be optimizable (or blocks that appear to be mergeable), but which really
1830 must be left untouched (they are required to make it safely across
1831 partition boundaries). See the comments at the top of
1832 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
1833
1834 if (BB_PARTITION (EDGE_PRED (bb, 0)->src) !=
1835 BB_PARTITION (EDGE_PRED (bb, 1)->src)
1836 || (EDGE_PRED (bb, 0)->flags & EDGE_CROSSING))
1837 return false;
1838
1839 /* It is always cheapest to redirect a block that ends in a branch to
1840 a block that falls through into BB, as that adds no branches to the
1841 program. We'll try that combination first. */
1842 fallthru = NULL;
1843 max = PARAM_VALUE (PARAM_MAX_CROSSJUMP_EDGES);
1844
1845 if (EDGE_COUNT (bb->preds) > max)
1846 return false;
1847
1848 fallthru = find_fallthru_edge (bb->preds);
1849
1850 changed = false;
1851 for (ix = 0, ev = bb; ix < EDGE_COUNT (ev->preds); )
1852 {
1853 e = EDGE_PRED (ev, ix);
1854 ix++;
1855
1856 /* As noted above, first try with the fallthru predecessor (or, a
1857 fallthru predecessor if we are in cfglayout mode). */
1858 if (fallthru)
1859 {
1860 /* Don't combine the fallthru edge into anything else.
1861 If there is a match, we'll do it the other way around. */
1862 if (e == fallthru)
1863 continue;
1864 /* If nothing changed since the last attempt, there is nothing
1865 we can do. */
1866 if (!first_pass
1867 && !((e->src->flags & BB_MODIFIED)
1868 || (fallthru->src->flags & BB_MODIFIED)))
1869 continue;
1870
1871 if (try_crossjump_to_edge (mode, e, fallthru))
1872 {
1873 changed = true;
1874 ix = 0;
1875 ev = bb;
1876 continue;
1877 }
1878 }
1879
1880 /* Non-obvious work limiting check: Recognize that we're going
1881 to call try_crossjump_bb on every basic block. So if we have
1882 two blocks with lots of outgoing edges (a switch) and they
1883 share lots of common destinations, then we would do the
1884 cross-jump check once for each common destination.
1885
1886 Now, if the blocks actually are cross-jump candidates, then
1887 all of their destinations will be shared. Which means that
1888 we only need check them for cross-jump candidacy once. We
1889 can eliminate redundant checks of crossjump(A,B) by arbitrarily
1890 choosing to do the check from the block for which the edge
1891 in question is the first successor of A. */
1892 if (EDGE_SUCC (e->src, 0) != e)
1893 continue;
1894
1895 for (ix2 = 0, ev2 = bb; ix2 < EDGE_COUNT (ev2->preds); )
1896 {
1897 e2 = EDGE_PRED (ev2, ix2);
1898 ix2++;
1899
1900 if (e2 == e)
1901 continue;
1902
1903 /* We've already checked the fallthru edge above. */
1904 if (e2 == fallthru)
1905 continue;
1906
1907 /* The "first successor" check above only prevents multiple
1908 checks of crossjump(A,B). In order to prevent redundant
1909 checks of crossjump(B,A), require that A be the block
1910 with the lowest index. */
1911 if (e->src->index > e2->src->index)
1912 continue;
1913
1914 /* If nothing changed since the last attempt, there is nothing
1915 we can do. */
1916 if (!first_pass
1917 && !((e->src->flags & BB_MODIFIED)
1918 || (e2->src->flags & BB_MODIFIED)))
1919 continue;
1920
1921 if (try_crossjump_to_edge (mode, e, e2))
1922 {
1923 changed = true;
1924 ev2 = bb;
1925 ix = 0;
1926 break;
1927 }
1928 }
1929 }
1930
1931 if (changed)
1932 crossjumps_occured = true;
1933
1934 return changed;
1935 }
1936
1937 /* Search the successors of BB for common insn sequences. When found,
1938 share code between them by moving it across the basic block
1939 boundary. Return true if any changes made. */
1940
1941 static bool
1942 try_head_merge_bb (basic_block bb)
1943 {
1944 basic_block final_dest_bb = NULL;
1945 int max_match = INT_MAX;
1946 edge e0;
1947 rtx *headptr, *currptr, *nextptr;
1948 bool changed, moveall;
1949 unsigned ix;
1950 rtx e0_last_head, cond, move_before;
1951 unsigned nedges = EDGE_COUNT (bb->succs);
1952 rtx jump = BB_END (bb);
1953 regset live, live_union;
1954
1955 /* Nothing to do if there is not at least two outgoing edges. */
1956 if (nedges < 2)
1957 return false;
1958
1959 /* Don't crossjump if this block ends in a computed jump,
1960 unless we are optimizing for size. */
1961 if (optimize_bb_for_size_p (bb)
1962 && bb != EXIT_BLOCK_PTR
1963 && computed_jump_p (BB_END (bb)))
1964 return false;
1965
1966 cond = get_condition (jump, &move_before, true, false);
1967 if (cond == NULL_RTX)
1968 move_before = jump;
1969
1970 for (ix = 0; ix < nedges; ix++)
1971 if (EDGE_SUCC (bb, ix)->dest == EXIT_BLOCK_PTR)
1972 return false;
1973
1974 for (ix = 0; ix < nedges; ix++)
1975 {
1976 edge e = EDGE_SUCC (bb, ix);
1977 basic_block other_bb = e->dest;
1978
1979 if (df_get_bb_dirty (other_bb))
1980 {
1981 block_was_dirty = true;
1982 return false;
1983 }
1984
1985 if (e->flags & EDGE_ABNORMAL)
1986 return false;
1987
1988 /* Normally, all destination blocks must only be reachable from this
1989 block, i.e. they must have one incoming edge.
1990
1991 There is one special case we can handle, that of multiple consecutive
1992 jumps where the first jumps to one of the targets of the second jump.
1993 This happens frequently in switch statements for default labels.
1994 The structure is as follows:
1995 FINAL_DEST_BB
1996 ....
1997 if (cond) jump A;
1998 fall through
1999 BB
2000 jump with targets A, B, C, D...
2001 A
2002 has two incoming edges, from FINAL_DEST_BB and BB
2003
2004 In this case, we can try to move the insns through BB and into
2005 FINAL_DEST_BB. */
2006 if (EDGE_COUNT (other_bb->preds) != 1)
2007 {
2008 edge incoming_edge, incoming_bb_other_edge;
2009 edge_iterator ei;
2010
2011 if (final_dest_bb != NULL
2012 || EDGE_COUNT (other_bb->preds) != 2)
2013 return false;
2014
2015 /* We must be able to move the insns across the whole block. */
2016 move_before = BB_HEAD (bb);
2017 while (!NONDEBUG_INSN_P (move_before))
2018 move_before = NEXT_INSN (move_before);
2019
2020 if (EDGE_COUNT (bb->preds) != 1)
2021 return false;
2022 incoming_edge = EDGE_PRED (bb, 0);
2023 final_dest_bb = incoming_edge->src;
2024 if (EDGE_COUNT (final_dest_bb->succs) != 2)
2025 return false;
2026 FOR_EACH_EDGE (incoming_bb_other_edge, ei, final_dest_bb->succs)
2027 if (incoming_bb_other_edge != incoming_edge)
2028 break;
2029 if (incoming_bb_other_edge->dest != other_bb)
2030 return false;
2031 }
2032 }
2033
2034 e0 = EDGE_SUCC (bb, 0);
2035 e0_last_head = NULL_RTX;
2036 changed = false;
2037
2038 for (ix = 1; ix < nedges; ix++)
2039 {
2040 edge e = EDGE_SUCC (bb, ix);
2041 rtx e0_last, e_last;
2042 int nmatch;
2043
2044 nmatch = flow_find_head_matching_sequence (e0->dest, e->dest,
2045 &e0_last, &e_last, 0);
2046 if (nmatch == 0)
2047 return false;
2048
2049 if (nmatch < max_match)
2050 {
2051 max_match = nmatch;
2052 e0_last_head = e0_last;
2053 }
2054 }
2055
2056 /* If we matched an entire block, we probably have to avoid moving the
2057 last insn. */
2058 if (max_match > 0
2059 && e0_last_head == BB_END (e0->dest)
2060 && (find_reg_note (e0_last_head, REG_EH_REGION, 0)
2061 || control_flow_insn_p (e0_last_head)))
2062 {
2063 max_match--;
2064 if (max_match == 0)
2065 return false;
2066 do
2067 e0_last_head = prev_real_insn (e0_last_head);
2068 while (DEBUG_INSN_P (e0_last_head));
2069 }
2070
2071 if (max_match == 0)
2072 return false;
2073
2074 /* We must find a union of the live registers at each of the end points. */
2075 live = BITMAP_ALLOC (NULL);
2076 live_union = BITMAP_ALLOC (NULL);
2077
2078 currptr = XNEWVEC (rtx, nedges);
2079 headptr = XNEWVEC (rtx, nedges);
2080 nextptr = XNEWVEC (rtx, nedges);
2081
2082 for (ix = 0; ix < nedges; ix++)
2083 {
2084 int j;
2085 basic_block merge_bb = EDGE_SUCC (bb, ix)->dest;
2086 rtx head = BB_HEAD (merge_bb);
2087
2088 while (!NONDEBUG_INSN_P (head))
2089 head = NEXT_INSN (head);
2090 headptr[ix] = head;
2091 currptr[ix] = head;
2092
2093 /* Compute the end point and live information */
2094 for (j = 1; j < max_match; j++)
2095 do
2096 head = NEXT_INSN (head);
2097 while (!NONDEBUG_INSN_P (head));
2098 simulate_backwards_to_point (merge_bb, live, head);
2099 IOR_REG_SET (live_union, live);
2100 }
2101
2102 /* If we're moving across two blocks, verify the validity of the
2103 first move, then adjust the target and let the loop below deal
2104 with the final move. */
2105 if (final_dest_bb != NULL)
2106 {
2107 rtx move_upto;
2108
2109 moveall = can_move_insns_across (currptr[0], e0_last_head, move_before,
2110 jump, e0->dest, live_union,
2111 NULL, &move_upto);
2112 if (!moveall)
2113 {
2114 if (move_upto == NULL_RTX)
2115 goto out;
2116
2117 while (e0_last_head != move_upto)
2118 {
2119 df_simulate_one_insn_backwards (e0->dest, e0_last_head,
2120 live_union);
2121 e0_last_head = PREV_INSN (e0_last_head);
2122 }
2123 }
2124 if (e0_last_head == NULL_RTX)
2125 goto out;
2126
2127 jump = BB_END (final_dest_bb);
2128 cond = get_condition (jump, &move_before, true, false);
2129 if (cond == NULL_RTX)
2130 move_before = jump;
2131 }
2132
2133 do
2134 {
2135 rtx move_upto;
2136 moveall = can_move_insns_across (currptr[0], e0_last_head,
2137 move_before, jump, e0->dest, live_union,
2138 NULL, &move_upto);
2139 if (!moveall && move_upto == NULL_RTX)
2140 {
2141 if (jump == move_before)
2142 break;
2143
2144 /* Try again, using a different insertion point. */
2145 move_before = jump;
2146
2147 #ifdef HAVE_cc0
2148 /* Don't try moving before a cc0 user, as that may invalidate
2149 the cc0. */
2150 if (reg_mentioned_p (cc0_rtx, jump))
2151 break;
2152 #endif
2153
2154 continue;
2155 }
2156
2157 if (final_dest_bb && !moveall)
2158 /* We haven't checked whether a partial move would be OK for the first
2159 move, so we have to fail this case. */
2160 break;
2161
2162 changed = true;
2163 for (;;)
2164 {
2165 if (currptr[0] == move_upto)
2166 break;
2167 for (ix = 0; ix < nedges; ix++)
2168 {
2169 rtx curr = currptr[ix];
2170 do
2171 curr = NEXT_INSN (curr);
2172 while (!NONDEBUG_INSN_P (curr));
2173 currptr[ix] = curr;
2174 }
2175 }
2176
2177 /* If we can't currently move all of the identical insns, remember
2178 each insn after the range that we'll merge. */
2179 if (!moveall)
2180 for (ix = 0; ix < nedges; ix++)
2181 {
2182 rtx curr = currptr[ix];
2183 do
2184 curr = NEXT_INSN (curr);
2185 while (!NONDEBUG_INSN_P (curr));
2186 nextptr[ix] = curr;
2187 }
2188
2189 reorder_insns (headptr[0], currptr[0], PREV_INSN (move_before));
2190 df_set_bb_dirty (EDGE_SUCC (bb, 0)->dest);
2191 if (final_dest_bb != NULL)
2192 df_set_bb_dirty (final_dest_bb);
2193 df_set_bb_dirty (bb);
2194 for (ix = 1; ix < nedges; ix++)
2195 {
2196 df_set_bb_dirty (EDGE_SUCC (bb, ix)->dest);
2197 delete_insn_chain (headptr[ix], currptr[ix], false);
2198 }
2199 if (!moveall)
2200 {
2201 if (jump == move_before)
2202 break;
2203
2204 /* For the unmerged insns, try a different insertion point. */
2205 move_before = jump;
2206
2207 #ifdef HAVE_cc0
2208 /* Don't try moving before a cc0 user, as that may invalidate
2209 the cc0. */
2210 if (reg_mentioned_p (cc0_rtx, jump))
2211 break;
2212 #endif
2213
2214 for (ix = 0; ix < nedges; ix++)
2215 currptr[ix] = headptr[ix] = nextptr[ix];
2216 }
2217 }
2218 while (!moveall);
2219
2220 out:
2221 free (currptr);
2222 free (headptr);
2223 free (nextptr);
2224
2225 crossjumps_occured |= changed;
2226
2227 return changed;
2228 }
2229
2230 /* Return true if BB contains just bb note, or bb note followed
2231 by only DEBUG_INSNs. */
2232
2233 static bool
2234 trivially_empty_bb_p (basic_block bb)
2235 {
2236 rtx insn = BB_END (bb);
2237
2238 while (1)
2239 {
2240 if (insn == BB_HEAD (bb))
2241 return true;
2242 if (!DEBUG_INSN_P (insn))
2243 return false;
2244 insn = PREV_INSN (insn);
2245 }
2246 }
2247
2248 /* Do simple CFG optimizations - basic block merging, simplifying of jump
2249 instructions etc. Return nonzero if changes were made. */
2250
2251 static bool
2252 try_optimize_cfg (int mode)
2253 {
2254 bool changed_overall = false;
2255 bool changed;
2256 int iterations = 0;
2257 basic_block bb, b, next;
2258
2259 if (mode & (CLEANUP_CROSSJUMP | CLEANUP_THREADING))
2260 clear_bb_flags ();
2261
2262 crossjumps_occured = false;
2263
2264 FOR_EACH_BB (bb)
2265 update_forwarder_flag (bb);
2266
2267 if (! targetm.cannot_modify_jumps_p ())
2268 {
2269 first_pass = true;
2270 /* Attempt to merge blocks as made possible by edge removal. If
2271 a block has only one successor, and the successor has only
2272 one predecessor, they may be combined. */
2273 do
2274 {
2275 block_was_dirty = false;
2276 changed = false;
2277 iterations++;
2278
2279 if (dump_file)
2280 fprintf (dump_file,
2281 "\n\ntry_optimize_cfg iteration %i\n\n",
2282 iterations);
2283
2284 for (b = ENTRY_BLOCK_PTR->next_bb; b != EXIT_BLOCK_PTR;)
2285 {
2286 basic_block c;
2287 edge s;
2288 bool changed_here = false;
2289
2290 /* Delete trivially dead basic blocks. This is either
2291 blocks with no predecessors, or empty blocks with no
2292 successors. However if the empty block with no
2293 successors is the successor of the ENTRY_BLOCK, it is
2294 kept. This ensures that the ENTRY_BLOCK will have a
2295 successor which is a precondition for many RTL
2296 passes. Empty blocks may result from expanding
2297 __builtin_unreachable (). */
2298 if (EDGE_COUNT (b->preds) == 0
2299 || (EDGE_COUNT (b->succs) == 0
2300 && trivially_empty_bb_p (b)
2301 && single_succ_edge (ENTRY_BLOCK_PTR)->dest != b))
2302 {
2303 c = b->prev_bb;
2304 if (EDGE_COUNT (b->preds) > 0)
2305 {
2306 edge e;
2307 edge_iterator ei;
2308
2309 if (current_ir_type () == IR_RTL_CFGLAYOUT)
2310 {
2311 if (b->il.rtl->footer
2312 && BARRIER_P (b->il.rtl->footer))
2313 FOR_EACH_EDGE (e, ei, b->preds)
2314 if ((e->flags & EDGE_FALLTHRU)
2315 && e->src->il.rtl->footer == NULL)
2316 {
2317 if (b->il.rtl->footer)
2318 {
2319 e->src->il.rtl->footer = b->il.rtl->footer;
2320 b->il.rtl->footer = NULL;
2321 }
2322 else
2323 {
2324 start_sequence ();
2325 e->src->il.rtl->footer = emit_barrier ();
2326 end_sequence ();
2327 }
2328 }
2329 }
2330 else
2331 {
2332 rtx last = get_last_bb_insn (b);
2333 if (last && BARRIER_P (last))
2334 FOR_EACH_EDGE (e, ei, b->preds)
2335 if ((e->flags & EDGE_FALLTHRU))
2336 emit_barrier_after (BB_END (e->src));
2337 }
2338 }
2339 delete_basic_block (b);
2340 changed = true;
2341 /* Avoid trying to remove ENTRY_BLOCK_PTR. */
2342 b = (c == ENTRY_BLOCK_PTR ? c->next_bb : c);
2343 continue;
2344 }
2345
2346 /* Remove code labels no longer used. */
2347 if (single_pred_p (b)
2348 && (single_pred_edge (b)->flags & EDGE_FALLTHRU)
2349 && !(single_pred_edge (b)->flags & EDGE_COMPLEX)
2350 && LABEL_P (BB_HEAD (b))
2351 /* If the previous block ends with a branch to this
2352 block, we can't delete the label. Normally this
2353 is a condjump that is yet to be simplified, but
2354 if CASE_DROPS_THRU, this can be a tablejump with
2355 some element going to the same place as the
2356 default (fallthru). */
2357 && (single_pred (b) == ENTRY_BLOCK_PTR
2358 || !JUMP_P (BB_END (single_pred (b)))
2359 || ! label_is_jump_target_p (BB_HEAD (b),
2360 BB_END (single_pred (b)))))
2361 {
2362 rtx label = BB_HEAD (b);
2363
2364 delete_insn_chain (label, label, false);
2365 /* If the case label is undeletable, move it after the
2366 BASIC_BLOCK note. */
2367 if (NOTE_KIND (BB_HEAD (b)) == NOTE_INSN_DELETED_LABEL)
2368 {
2369 rtx bb_note = NEXT_INSN (BB_HEAD (b));
2370
2371 reorder_insns_nobb (label, label, bb_note);
2372 BB_HEAD (b) = bb_note;
2373 if (BB_END (b) == bb_note)
2374 BB_END (b) = label;
2375 }
2376 if (dump_file)
2377 fprintf (dump_file, "Deleted label in block %i.\n",
2378 b->index);
2379 }
2380
2381 /* If we fall through an empty block, we can remove it. */
2382 if (!(mode & CLEANUP_CFGLAYOUT)
2383 && single_pred_p (b)
2384 && (single_pred_edge (b)->flags & EDGE_FALLTHRU)
2385 && !LABEL_P (BB_HEAD (b))
2386 && FORWARDER_BLOCK_P (b)
2387 /* Note that forwarder_block_p true ensures that
2388 there is a successor for this block. */
2389 && (single_succ_edge (b)->flags & EDGE_FALLTHRU)
2390 && n_basic_blocks > NUM_FIXED_BLOCKS + 1)
2391 {
2392 if (dump_file)
2393 fprintf (dump_file,
2394 "Deleting fallthru block %i.\n",
2395 b->index);
2396
2397 c = b->prev_bb == ENTRY_BLOCK_PTR ? b->next_bb : b->prev_bb;
2398 redirect_edge_succ_nodup (single_pred_edge (b),
2399 single_succ (b));
2400 delete_basic_block (b);
2401 changed = true;
2402 b = c;
2403 continue;
2404 }
2405
2406 /* Merge B with its single successor, if any. */
2407 if (single_succ_p (b)
2408 && (s = single_succ_edge (b))
2409 && !(s->flags & EDGE_COMPLEX)
2410 && (c = s->dest) != EXIT_BLOCK_PTR
2411 && single_pred_p (c)
2412 && b != c)
2413 {
2414 /* When not in cfg_layout mode use code aware of reordering
2415 INSN. This code possibly creates new basic blocks so it
2416 does not fit merge_blocks interface and is kept here in
2417 hope that it will become useless once more of compiler
2418 is transformed to use cfg_layout mode. */
2419
2420 if ((mode & CLEANUP_CFGLAYOUT)
2421 && can_merge_blocks_p (b, c))
2422 {
2423 merge_blocks (b, c);
2424 update_forwarder_flag (b);
2425 changed_here = true;
2426 }
2427 else if (!(mode & CLEANUP_CFGLAYOUT)
2428 /* If the jump insn has side effects,
2429 we can't kill the edge. */
2430 && (!JUMP_P (BB_END (b))
2431 || (reload_completed
2432 ? simplejump_p (BB_END (b))
2433 : (onlyjump_p (BB_END (b))
2434 && !tablejump_p (BB_END (b),
2435 NULL, NULL))))
2436 && (next = merge_blocks_move (s, b, c, mode)))
2437 {
2438 b = next;
2439 changed_here = true;
2440 }
2441 }
2442
2443 /* Simplify branch over branch. */
2444 if ((mode & CLEANUP_EXPENSIVE)
2445 && !(mode & CLEANUP_CFGLAYOUT)
2446 && try_simplify_condjump (b))
2447 changed_here = true;
2448
2449 /* If B has a single outgoing edge, but uses a
2450 non-trivial jump instruction without side-effects, we
2451 can either delete the jump entirely, or replace it
2452 with a simple unconditional jump. */
2453 if (single_succ_p (b)
2454 && single_succ (b) != EXIT_BLOCK_PTR
2455 && onlyjump_p (BB_END (b))
2456 && !find_reg_note (BB_END (b), REG_CROSSING_JUMP, NULL_RTX)
2457 && try_redirect_by_replacing_jump (single_succ_edge (b),
2458 single_succ (b),
2459 (mode & CLEANUP_CFGLAYOUT) != 0))
2460 {
2461 update_forwarder_flag (b);
2462 changed_here = true;
2463 }
2464
2465 /* Simplify branch to branch. */
2466 if (try_forward_edges (mode, b))
2467 changed_here = true;
2468
2469 /* Look for shared code between blocks. */
2470 if ((mode & CLEANUP_CROSSJUMP)
2471 && try_crossjump_bb (mode, b))
2472 changed_here = true;
2473
2474 if ((mode & CLEANUP_CROSSJUMP)
2475 /* This can lengthen register lifetimes. Do it only after
2476 reload. */
2477 && reload_completed
2478 && try_head_merge_bb (b))
2479 changed_here = true;
2480
2481 /* Don't get confused by the index shift caused by
2482 deleting blocks. */
2483 if (!changed_here)
2484 b = b->next_bb;
2485 else
2486 changed = true;
2487 }
2488
2489 if ((mode & CLEANUP_CROSSJUMP)
2490 && try_crossjump_bb (mode, EXIT_BLOCK_PTR))
2491 changed = true;
2492
2493 if (block_was_dirty)
2494 {
2495 /* This should only be set by head-merging. */
2496 gcc_assert (mode & CLEANUP_CROSSJUMP);
2497 df_analyze ();
2498 }
2499
2500 #ifdef ENABLE_CHECKING
2501 if (changed)
2502 verify_flow_info ();
2503 #endif
2504
2505 changed_overall |= changed;
2506 first_pass = false;
2507 }
2508 while (changed);
2509 }
2510
2511 FOR_ALL_BB (b)
2512 b->flags &= ~(BB_FORWARDER_BLOCK | BB_NONTHREADABLE_BLOCK);
2513
2514 return changed_overall;
2515 }
2516 \f
2517 /* Delete all unreachable basic blocks. */
2518
2519 bool
2520 delete_unreachable_blocks (void)
2521 {
2522 bool changed = false;
2523 basic_block b, prev_bb;
2524
2525 find_unreachable_blocks ();
2526
2527 /* When we're in GIMPLE mode and there may be debug insns, we should
2528 delete blocks in reverse dominator order, so as to get a chance
2529 to substitute all released DEFs into debug stmts. If we don't
2530 have dominators information, walking blocks backward gets us a
2531 better chance of retaining most debug information than
2532 otherwise. */
2533 if (MAY_HAVE_DEBUG_STMTS && current_ir_type () == IR_GIMPLE
2534 && dom_info_available_p (CDI_DOMINATORS))
2535 {
2536 for (b = EXIT_BLOCK_PTR->prev_bb; b != ENTRY_BLOCK_PTR; b = prev_bb)
2537 {
2538 prev_bb = b->prev_bb;
2539
2540 if (!(b->flags & BB_REACHABLE))
2541 {
2542 /* Speed up the removal of blocks that don't dominate
2543 others. Walking backwards, this should be the common
2544 case. */
2545 if (!first_dom_son (CDI_DOMINATORS, b))
2546 delete_basic_block (b);
2547 else
2548 {
2549 VEC (basic_block, heap) *h
2550 = get_all_dominated_blocks (CDI_DOMINATORS, b);
2551
2552 while (VEC_length (basic_block, h))
2553 {
2554 b = VEC_pop (basic_block, h);
2555
2556 prev_bb = b->prev_bb;
2557
2558 gcc_assert (!(b->flags & BB_REACHABLE));
2559
2560 delete_basic_block (b);
2561 }
2562
2563 VEC_free (basic_block, heap, h);
2564 }
2565
2566 changed = true;
2567 }
2568 }
2569 }
2570 else
2571 {
2572 for (b = EXIT_BLOCK_PTR->prev_bb; b != ENTRY_BLOCK_PTR; b = prev_bb)
2573 {
2574 prev_bb = b->prev_bb;
2575
2576 if (!(b->flags & BB_REACHABLE))
2577 {
2578 delete_basic_block (b);
2579 changed = true;
2580 }
2581 }
2582 }
2583
2584 if (changed)
2585 tidy_fallthru_edges ();
2586 return changed;
2587 }
2588
2589 /* Delete any jump tables never referenced. We can't delete them at the
2590 time of removing tablejump insn as they are referenced by the preceding
2591 insns computing the destination, so we delay deleting and garbagecollect
2592 them once life information is computed. */
2593 void
2594 delete_dead_jumptables (void)
2595 {
2596 basic_block bb;
2597
2598 /* A dead jump table does not belong to any basic block. Scan insns
2599 between two adjacent basic blocks. */
2600 FOR_EACH_BB (bb)
2601 {
2602 rtx insn, next;
2603
2604 for (insn = NEXT_INSN (BB_END (bb));
2605 insn && !NOTE_INSN_BASIC_BLOCK_P (insn);
2606 insn = next)
2607 {
2608 next = NEXT_INSN (insn);
2609 if (LABEL_P (insn)
2610 && LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
2611 && JUMP_TABLE_DATA_P (next))
2612 {
2613 rtx label = insn, jump = next;
2614
2615 if (dump_file)
2616 fprintf (dump_file, "Dead jumptable %i removed\n",
2617 INSN_UID (insn));
2618
2619 next = NEXT_INSN (next);
2620 delete_insn (jump);
2621 delete_insn (label);
2622 }
2623 }
2624 }
2625 }
2626
2627 \f
2628 /* Tidy the CFG by deleting unreachable code and whatnot. */
2629
2630 bool
2631 cleanup_cfg (int mode)
2632 {
2633 bool changed = false;
2634
2635 /* Set the cfglayout mode flag here. We could update all the callers
2636 but that is just inconvenient, especially given that we eventually
2637 want to have cfglayout mode as the default. */
2638 if (current_ir_type () == IR_RTL_CFGLAYOUT)
2639 mode |= CLEANUP_CFGLAYOUT;
2640
2641 timevar_push (TV_CLEANUP_CFG);
2642 if (delete_unreachable_blocks ())
2643 {
2644 changed = true;
2645 /* We've possibly created trivially dead code. Cleanup it right
2646 now to introduce more opportunities for try_optimize_cfg. */
2647 if (!(mode & (CLEANUP_NO_INSN_DEL))
2648 && !reload_completed)
2649 delete_trivially_dead_insns (get_insns (), max_reg_num ());
2650 }
2651
2652 compact_blocks ();
2653
2654 /* To tail-merge blocks ending in the same noreturn function (e.g.
2655 a call to abort) we have to insert fake edges to exit. Do this
2656 here once. The fake edges do not interfere with any other CFG
2657 cleanups. */
2658 if (mode & CLEANUP_CROSSJUMP)
2659 add_noreturn_fake_exit_edges ();
2660
2661 if (!dbg_cnt (cfg_cleanup))
2662 return changed;
2663
2664 while (try_optimize_cfg (mode))
2665 {
2666 delete_unreachable_blocks (), changed = true;
2667 if (!(mode & CLEANUP_NO_INSN_DEL))
2668 {
2669 /* Try to remove some trivially dead insns when doing an expensive
2670 cleanup. But delete_trivially_dead_insns doesn't work after
2671 reload (it only handles pseudos) and run_fast_dce is too costly
2672 to run in every iteration.
2673
2674 For effective cross jumping, we really want to run a fast DCE to
2675 clean up any dead conditions, or they get in the way of performing
2676 useful tail merges.
2677
2678 Other transformations in cleanup_cfg are not so sensitive to dead
2679 code, so delete_trivially_dead_insns or even doing nothing at all
2680 is good enough. */
2681 if ((mode & CLEANUP_EXPENSIVE) && !reload_completed
2682 && !delete_trivially_dead_insns (get_insns (), max_reg_num ()))
2683 break;
2684 if ((mode & CLEANUP_CROSSJUMP) && crossjumps_occured)
2685 run_fast_dce ();
2686 }
2687 else
2688 break;
2689 }
2690
2691 if (mode & CLEANUP_CROSSJUMP)
2692 remove_fake_exit_edges ();
2693
2694 /* Don't call delete_dead_jumptables in cfglayout mode, because
2695 that function assumes that jump tables are in the insns stream.
2696 But we also don't _have_ to delete dead jumptables in cfglayout
2697 mode because we shouldn't even be looking at things that are
2698 not in a basic block. Dead jumptables are cleaned up when
2699 going out of cfglayout mode. */
2700 if (!(mode & CLEANUP_CFGLAYOUT))
2701 delete_dead_jumptables ();
2702
2703 timevar_pop (TV_CLEANUP_CFG);
2704
2705 return changed;
2706 }
2707 \f
2708 static unsigned int
2709 rest_of_handle_jump (void)
2710 {
2711 if (crtl->tail_call_emit)
2712 fixup_tail_calls ();
2713 return 0;
2714 }
2715
2716 struct rtl_opt_pass pass_jump =
2717 {
2718 {
2719 RTL_PASS,
2720 "sibling", /* name */
2721 NULL, /* gate */
2722 rest_of_handle_jump, /* execute */
2723 NULL, /* sub */
2724 NULL, /* next */
2725 0, /* static_pass_number */
2726 TV_JUMP, /* tv_id */
2727 0, /* properties_required */
2728 0, /* properties_provided */
2729 0, /* properties_destroyed */
2730 TODO_ggc_collect, /* todo_flags_start */
2731 TODO_verify_flow, /* todo_flags_finish */
2732 }
2733 };
2734
2735
2736 static unsigned int
2737 rest_of_handle_jump2 (void)
2738 {
2739 delete_trivially_dead_insns (get_insns (), max_reg_num ());
2740 if (dump_file)
2741 dump_flow_info (dump_file, dump_flags);
2742 cleanup_cfg ((optimize ? CLEANUP_EXPENSIVE : 0)
2743 | (flag_thread_jumps ? CLEANUP_THREADING : 0));
2744 return 0;
2745 }
2746
2747
2748 struct rtl_opt_pass pass_jump2 =
2749 {
2750 {
2751 RTL_PASS,
2752 "jump", /* name */
2753 NULL, /* gate */
2754 rest_of_handle_jump2, /* execute */
2755 NULL, /* sub */
2756 NULL, /* next */
2757 0, /* static_pass_number */
2758 TV_JUMP, /* tv_id */
2759 0, /* properties_required */
2760 0, /* properties_provided */
2761 0, /* properties_destroyed */
2762 TODO_ggc_collect, /* todo_flags_start */
2763 TODO_dump_func | TODO_verify_rtl_sharing,/* todo_flags_finish */
2764 }
2765 };
2766
2767