81a23d4c8abff6b0deb6ac129e2d74a6fd808d56
[gcc.git] / gcc / cfgexpand.c
1 /* A pass for lowering trees to RTL.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "basic-block.h"
29 #include "function.h"
30 #include "expr.h"
31 #include "langhooks.h"
32 #include "tree-flow.h"
33 #include "timevar.h"
34 #include "tree-dump.h"
35 #include "tree-pass.h"
36 #include "except.h"
37 #include "flags.h"
38 #include "diagnostic.h"
39 #include "tree-pretty-print.h"
40 #include "gimple-pretty-print.h"
41 #include "toplev.h"
42 #include "debug.h"
43 #include "params.h"
44 #include "tree-inline.h"
45 #include "value-prof.h"
46 #include "target.h"
47 #include "ssaexpand.h"
48 #include "bitmap.h"
49 #include "sbitmap.h"
50 #include "insn-attr.h" /* For INSN_SCHEDULING. */
51
52 /* This variable holds information helping the rewriting of SSA trees
53 into RTL. */
54 struct ssaexpand SA;
55
56 /* This variable holds the currently expanded gimple statement for purposes
57 of comminucating the profile info to the builtin expanders. */
58 gimple currently_expanding_gimple_stmt;
59
60 /* Return an expression tree corresponding to the RHS of GIMPLE
61 statement STMT. */
62
63 tree
64 gimple_assign_rhs_to_tree (gimple stmt)
65 {
66 tree t;
67 enum gimple_rhs_class grhs_class;
68
69 grhs_class = get_gimple_rhs_class (gimple_expr_code (stmt));
70
71 if (grhs_class == GIMPLE_TERNARY_RHS)
72 t = build3 (gimple_assign_rhs_code (stmt),
73 TREE_TYPE (gimple_assign_lhs (stmt)),
74 gimple_assign_rhs1 (stmt),
75 gimple_assign_rhs2 (stmt),
76 gimple_assign_rhs3 (stmt));
77 else if (grhs_class == GIMPLE_BINARY_RHS)
78 t = build2 (gimple_assign_rhs_code (stmt),
79 TREE_TYPE (gimple_assign_lhs (stmt)),
80 gimple_assign_rhs1 (stmt),
81 gimple_assign_rhs2 (stmt));
82 else if (grhs_class == GIMPLE_UNARY_RHS)
83 t = build1 (gimple_assign_rhs_code (stmt),
84 TREE_TYPE (gimple_assign_lhs (stmt)),
85 gimple_assign_rhs1 (stmt));
86 else if (grhs_class == GIMPLE_SINGLE_RHS)
87 {
88 t = gimple_assign_rhs1 (stmt);
89 /* Avoid modifying this tree in place below. */
90 if ((gimple_has_location (stmt) && CAN_HAVE_LOCATION_P (t)
91 && gimple_location (stmt) != EXPR_LOCATION (t))
92 || (gimple_block (stmt)
93 && currently_expanding_to_rtl
94 && EXPR_P (t)
95 && gimple_block (stmt) != TREE_BLOCK (t)))
96 t = copy_node (t);
97 }
98 else
99 gcc_unreachable ();
100
101 if (gimple_has_location (stmt) && CAN_HAVE_LOCATION_P (t))
102 SET_EXPR_LOCATION (t, gimple_location (stmt));
103 if (gimple_block (stmt) && currently_expanding_to_rtl && EXPR_P (t))
104 TREE_BLOCK (t) = gimple_block (stmt);
105
106 return t;
107 }
108
109
110 #ifndef STACK_ALIGNMENT_NEEDED
111 #define STACK_ALIGNMENT_NEEDED 1
112 #endif
113
114 #define SSAVAR(x) (TREE_CODE (x) == SSA_NAME ? SSA_NAME_VAR (x) : x)
115
116 /* Associate declaration T with storage space X. If T is no
117 SSA name this is exactly SET_DECL_RTL, otherwise make the
118 partition of T associated with X. */
119 static inline void
120 set_rtl (tree t, rtx x)
121 {
122 if (TREE_CODE (t) == SSA_NAME)
123 {
124 SA.partition_to_pseudo[var_to_partition (SA.map, t)] = x;
125 if (x && !MEM_P (x))
126 set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (t), x);
127 /* For the benefit of debug information at -O0 (where vartracking
128 doesn't run) record the place also in the base DECL if it's
129 a normal variable (not a parameter). */
130 if (x && x != pc_rtx && TREE_CODE (SSA_NAME_VAR (t)) == VAR_DECL)
131 {
132 tree var = SSA_NAME_VAR (t);
133 /* If we don't yet have something recorded, just record it now. */
134 if (!DECL_RTL_SET_P (var))
135 SET_DECL_RTL (var, x);
136 /* If we have it set alrady to "multiple places" don't
137 change this. */
138 else if (DECL_RTL (var) == pc_rtx)
139 ;
140 /* If we have something recorded and it's not the same place
141 as we want to record now, we have multiple partitions for the
142 same base variable, with different places. We can't just
143 randomly chose one, hence we have to say that we don't know.
144 This only happens with optimization, and there var-tracking
145 will figure out the right thing. */
146 else if (DECL_RTL (var) != x)
147 SET_DECL_RTL (var, pc_rtx);
148 }
149 }
150 else
151 SET_DECL_RTL (t, x);
152 }
153
154 /* This structure holds data relevant to one variable that will be
155 placed in a stack slot. */
156 struct stack_var
157 {
158 /* The Variable. */
159 tree decl;
160
161 /* The offset of the variable. During partitioning, this is the
162 offset relative to the partition. After partitioning, this
163 is relative to the stack frame. */
164 HOST_WIDE_INT offset;
165
166 /* Initially, the size of the variable. Later, the size of the partition,
167 if this variable becomes it's partition's representative. */
168 HOST_WIDE_INT size;
169
170 /* The *byte* alignment required for this variable. Or as, with the
171 size, the alignment for this partition. */
172 unsigned int alignb;
173
174 /* The partition representative. */
175 size_t representative;
176
177 /* The next stack variable in the partition, or EOC. */
178 size_t next;
179
180 /* The numbers of conflicting stack variables. */
181 bitmap conflicts;
182 };
183
184 #define EOC ((size_t)-1)
185
186 /* We have an array of such objects while deciding allocation. */
187 static struct stack_var *stack_vars;
188 static size_t stack_vars_alloc;
189 static size_t stack_vars_num;
190
191 /* An array of indices such that stack_vars[stack_vars_sorted[i]].size
192 is non-decreasing. */
193 static size_t *stack_vars_sorted;
194
195 /* The phase of the stack frame. This is the known misalignment of
196 virtual_stack_vars_rtx from PREFERRED_STACK_BOUNDARY. That is,
197 (frame_offset+frame_phase) % PREFERRED_STACK_BOUNDARY == 0. */
198 static int frame_phase;
199
200 /* Used during expand_used_vars to remember if we saw any decls for
201 which we'd like to enable stack smashing protection. */
202 static bool has_protected_decls;
203
204 /* Used during expand_used_vars. Remember if we say a character buffer
205 smaller than our cutoff threshold. Used for -Wstack-protector. */
206 static bool has_short_buffer;
207
208 /* Discover the byte alignment to use for DECL. Ignore alignment
209 we can't do with expected alignment of the stack boundary. */
210
211 static unsigned int
212 get_decl_align_unit (tree decl)
213 {
214 unsigned int align = LOCAL_DECL_ALIGNMENT (decl);
215 return align / BITS_PER_UNIT;
216 }
217
218 /* Allocate SIZE bytes at byte alignment ALIGN from the stack frame.
219 Return the frame offset. */
220
221 static HOST_WIDE_INT
222 alloc_stack_frame_space (HOST_WIDE_INT size, unsigned HOST_WIDE_INT align)
223 {
224 HOST_WIDE_INT offset, new_frame_offset;
225
226 new_frame_offset = frame_offset;
227 if (FRAME_GROWS_DOWNWARD)
228 {
229 new_frame_offset -= size + frame_phase;
230 new_frame_offset &= -align;
231 new_frame_offset += frame_phase;
232 offset = new_frame_offset;
233 }
234 else
235 {
236 new_frame_offset -= frame_phase;
237 new_frame_offset += align - 1;
238 new_frame_offset &= -align;
239 new_frame_offset += frame_phase;
240 offset = new_frame_offset;
241 new_frame_offset += size;
242 }
243 frame_offset = new_frame_offset;
244
245 if (frame_offset_overflow (frame_offset, cfun->decl))
246 frame_offset = offset = 0;
247
248 return offset;
249 }
250
251 /* Accumulate DECL into STACK_VARS. */
252
253 static void
254 add_stack_var (tree decl)
255 {
256 struct stack_var *v;
257
258 if (stack_vars_num >= stack_vars_alloc)
259 {
260 if (stack_vars_alloc)
261 stack_vars_alloc = stack_vars_alloc * 3 / 2;
262 else
263 stack_vars_alloc = 32;
264 stack_vars
265 = XRESIZEVEC (struct stack_var, stack_vars, stack_vars_alloc);
266 }
267 v = &stack_vars[stack_vars_num];
268
269 v->decl = decl;
270 v->offset = 0;
271 v->size = tree_low_cst (DECL_SIZE_UNIT (SSAVAR (decl)), 1);
272 /* Ensure that all variables have size, so that &a != &b for any two
273 variables that are simultaneously live. */
274 if (v->size == 0)
275 v->size = 1;
276 v->alignb = get_decl_align_unit (SSAVAR (decl));
277
278 /* All variables are initially in their own partition. */
279 v->representative = stack_vars_num;
280 v->next = EOC;
281
282 /* All variables initially conflict with no other. */
283 v->conflicts = NULL;
284
285 /* Ensure that this decl doesn't get put onto the list twice. */
286 set_rtl (decl, pc_rtx);
287
288 stack_vars_num++;
289 }
290
291 /* Make the decls associated with luid's X and Y conflict. */
292
293 static void
294 add_stack_var_conflict (size_t x, size_t y)
295 {
296 struct stack_var *a = &stack_vars[x];
297 struct stack_var *b = &stack_vars[y];
298 if (!a->conflicts)
299 a->conflicts = BITMAP_ALLOC (NULL);
300 if (!b->conflicts)
301 b->conflicts = BITMAP_ALLOC (NULL);
302 bitmap_set_bit (a->conflicts, y);
303 bitmap_set_bit (b->conflicts, x);
304 }
305
306 /* Check whether the decls associated with luid's X and Y conflict. */
307
308 static bool
309 stack_var_conflict_p (size_t x, size_t y)
310 {
311 struct stack_var *a = &stack_vars[x];
312 struct stack_var *b = &stack_vars[y];
313 if (!a->conflicts || !b->conflicts)
314 return false;
315 return bitmap_bit_p (a->conflicts, y);
316 }
317
318 /* Returns true if TYPE is or contains a union type. */
319
320 static bool
321 aggregate_contains_union_type (tree type)
322 {
323 tree field;
324
325 if (TREE_CODE (type) == UNION_TYPE
326 || TREE_CODE (type) == QUAL_UNION_TYPE)
327 return true;
328 if (TREE_CODE (type) == ARRAY_TYPE)
329 return aggregate_contains_union_type (TREE_TYPE (type));
330 if (TREE_CODE (type) != RECORD_TYPE)
331 return false;
332
333 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
334 if (TREE_CODE (field) == FIELD_DECL)
335 if (aggregate_contains_union_type (TREE_TYPE (field)))
336 return true;
337
338 return false;
339 }
340
341 /* A subroutine of expand_used_vars. If two variables X and Y have alias
342 sets that do not conflict, then do add a conflict for these variables
343 in the interference graph. We also need to make sure to add conflicts
344 for union containing structures. Else RTL alias analysis comes along
345 and due to type based aliasing rules decides that for two overlapping
346 union temporaries { short s; int i; } accesses to the same mem through
347 different types may not alias and happily reorders stores across
348 life-time boundaries of the temporaries (See PR25654).
349 We also have to mind MEM_IN_STRUCT_P and MEM_SCALAR_P. */
350
351 static void
352 add_alias_set_conflicts (void)
353 {
354 size_t i, j, n = stack_vars_num;
355
356 for (i = 0; i < n; ++i)
357 {
358 tree type_i = TREE_TYPE (stack_vars[i].decl);
359 bool aggr_i = AGGREGATE_TYPE_P (type_i);
360 bool contains_union;
361
362 contains_union = aggregate_contains_union_type (type_i);
363 for (j = 0; j < i; ++j)
364 {
365 tree type_j = TREE_TYPE (stack_vars[j].decl);
366 bool aggr_j = AGGREGATE_TYPE_P (type_j);
367 if (aggr_i != aggr_j
368 /* Either the objects conflict by means of type based
369 aliasing rules, or we need to add a conflict. */
370 || !objects_must_conflict_p (type_i, type_j)
371 /* In case the types do not conflict ensure that access
372 to elements will conflict. In case of unions we have
373 to be careful as type based aliasing rules may say
374 access to the same memory does not conflict. So play
375 safe and add a conflict in this case. */
376 || contains_union)
377 add_stack_var_conflict (i, j);
378 }
379 }
380 }
381
382 /* A subroutine of partition_stack_vars. A comparison function for qsort,
383 sorting an array of indices by the properties of the object. */
384
385 static int
386 stack_var_cmp (const void *a, const void *b)
387 {
388 size_t ia = *(const size_t *)a;
389 size_t ib = *(const size_t *)b;
390 unsigned int aligna = stack_vars[ia].alignb;
391 unsigned int alignb = stack_vars[ib].alignb;
392 HOST_WIDE_INT sizea = stack_vars[ia].size;
393 HOST_WIDE_INT sizeb = stack_vars[ib].size;
394 tree decla = stack_vars[ia].decl;
395 tree declb = stack_vars[ib].decl;
396 bool largea, largeb;
397 unsigned int uida, uidb;
398
399 /* Primary compare on "large" alignment. Large comes first. */
400 largea = (aligna * BITS_PER_UNIT > MAX_SUPPORTED_STACK_ALIGNMENT);
401 largeb = (alignb * BITS_PER_UNIT > MAX_SUPPORTED_STACK_ALIGNMENT);
402 if (largea != largeb)
403 return (int)largeb - (int)largea;
404
405 /* Secondary compare on size, decreasing */
406 if (sizea < sizeb)
407 return -1;
408 if (sizea > sizeb)
409 return 1;
410
411 /* Tertiary compare on true alignment, decreasing. */
412 if (aligna < alignb)
413 return -1;
414 if (aligna > alignb)
415 return 1;
416
417 /* Final compare on ID for sort stability, increasing.
418 Two SSA names are compared by their version, SSA names come before
419 non-SSA names, and two normal decls are compared by their DECL_UID. */
420 if (TREE_CODE (decla) == SSA_NAME)
421 {
422 if (TREE_CODE (declb) == SSA_NAME)
423 uida = SSA_NAME_VERSION (decla), uidb = SSA_NAME_VERSION (declb);
424 else
425 return -1;
426 }
427 else if (TREE_CODE (declb) == SSA_NAME)
428 return 1;
429 else
430 uida = DECL_UID (decla), uidb = DECL_UID (declb);
431 if (uida < uidb)
432 return 1;
433 if (uida > uidb)
434 return -1;
435 return 0;
436 }
437
438
439 /* If the points-to solution *PI points to variables that are in a partition
440 together with other variables add all partition members to the pointed-to
441 variables bitmap. */
442
443 static void
444 add_partitioned_vars_to_ptset (struct pt_solution *pt,
445 struct pointer_map_t *decls_to_partitions,
446 struct pointer_set_t *visited, bitmap temp)
447 {
448 bitmap_iterator bi;
449 unsigned i;
450 bitmap *part;
451
452 if (pt->anything
453 || pt->vars == NULL
454 /* The pointed-to vars bitmap is shared, it is enough to
455 visit it once. */
456 || pointer_set_insert(visited, pt->vars))
457 return;
458
459 bitmap_clear (temp);
460
461 /* By using a temporary bitmap to store all members of the partitions
462 we have to add we make sure to visit each of the partitions only
463 once. */
464 EXECUTE_IF_SET_IN_BITMAP (pt->vars, 0, i, bi)
465 if ((!temp
466 || !bitmap_bit_p (temp, i))
467 && (part = (bitmap *) pointer_map_contains (decls_to_partitions,
468 (void *)(size_t) i)))
469 bitmap_ior_into (temp, *part);
470 if (!bitmap_empty_p (temp))
471 bitmap_ior_into (pt->vars, temp);
472 }
473
474 /* Update points-to sets based on partition info, so we can use them on RTL.
475 The bitmaps representing stack partitions will be saved until expand,
476 where partitioned decls used as bases in memory expressions will be
477 rewritten. */
478
479 static void
480 update_alias_info_with_stack_vars (void)
481 {
482 struct pointer_map_t *decls_to_partitions = NULL;
483 size_t i, j;
484 tree var = NULL_TREE;
485
486 for (i = 0; i < stack_vars_num; i++)
487 {
488 bitmap part = NULL;
489 tree name;
490 struct ptr_info_def *pi;
491
492 /* Not interested in partitions with single variable. */
493 if (stack_vars[i].representative != i
494 || stack_vars[i].next == EOC)
495 continue;
496
497 if (!decls_to_partitions)
498 {
499 decls_to_partitions = pointer_map_create ();
500 cfun->gimple_df->decls_to_pointers = pointer_map_create ();
501 }
502
503 /* Create an SSA_NAME that points to the partition for use
504 as base during alias-oracle queries on RTL for bases that
505 have been partitioned. */
506 if (var == NULL_TREE)
507 var = create_tmp_var (ptr_type_node, NULL);
508 name = make_ssa_name (var, NULL);
509
510 /* Create bitmaps representing partitions. They will be used for
511 points-to sets later, so use GGC alloc. */
512 part = BITMAP_GGC_ALLOC ();
513 for (j = i; j != EOC; j = stack_vars[j].next)
514 {
515 tree decl = stack_vars[j].decl;
516 unsigned int uid = DECL_PT_UID (decl);
517 /* We should never end up partitioning SSA names (though they
518 may end up on the stack). Neither should we allocate stack
519 space to something that is unused and thus unreferenced, except
520 for -O0 where we are preserving even unreferenced variables. */
521 gcc_assert (DECL_P (decl)
522 && (!optimize
523 || referenced_var_lookup (cfun, DECL_UID (decl))));
524 bitmap_set_bit (part, uid);
525 *((bitmap *) pointer_map_insert (decls_to_partitions,
526 (void *)(size_t) uid)) = part;
527 *((tree *) pointer_map_insert (cfun->gimple_df->decls_to_pointers,
528 decl)) = name;
529 }
530
531 /* Make the SSA name point to all partition members. */
532 pi = get_ptr_info (name);
533 pt_solution_set (&pi->pt, part, false, false);
534 }
535
536 /* Make all points-to sets that contain one member of a partition
537 contain all members of the partition. */
538 if (decls_to_partitions)
539 {
540 unsigned i;
541 struct pointer_set_t *visited = pointer_set_create ();
542 bitmap temp = BITMAP_ALLOC (NULL);
543
544 for (i = 1; i < num_ssa_names; i++)
545 {
546 tree name = ssa_name (i);
547 struct ptr_info_def *pi;
548
549 if (name
550 && POINTER_TYPE_P (TREE_TYPE (name))
551 && ((pi = SSA_NAME_PTR_INFO (name)) != NULL))
552 add_partitioned_vars_to_ptset (&pi->pt, decls_to_partitions,
553 visited, temp);
554 }
555
556 add_partitioned_vars_to_ptset (&cfun->gimple_df->escaped,
557 decls_to_partitions, visited, temp);
558
559 pointer_set_destroy (visited);
560 pointer_map_destroy (decls_to_partitions);
561 BITMAP_FREE (temp);
562 }
563 }
564
565 /* A subroutine of partition_stack_vars. The UNION portion of a UNION/FIND
566 partitioning algorithm. Partitions A and B are known to be non-conflicting.
567 Merge them into a single partition A.
568
569 At the same time, add OFFSET to all variables in partition B. At the end
570 of the partitioning process we've have a nice block easy to lay out within
571 the stack frame. */
572
573 static void
574 union_stack_vars (size_t a, size_t b, HOST_WIDE_INT offset)
575 {
576 size_t i, last;
577 struct stack_var *vb = &stack_vars[b];
578 bitmap_iterator bi;
579 unsigned u;
580
581 /* Update each element of partition B with the given offset,
582 and merge them into partition A. */
583 for (last = i = b; i != EOC; last = i, i = stack_vars[i].next)
584 {
585 stack_vars[i].offset += offset;
586 stack_vars[i].representative = a;
587 }
588 stack_vars[last].next = stack_vars[a].next;
589 stack_vars[a].next = b;
590
591 /* Update the required alignment of partition A to account for B. */
592 if (stack_vars[a].alignb < stack_vars[b].alignb)
593 stack_vars[a].alignb = stack_vars[b].alignb;
594
595 /* Update the interference graph and merge the conflicts. */
596 if (vb->conflicts)
597 {
598 EXECUTE_IF_SET_IN_BITMAP (vb->conflicts, 0, u, bi)
599 add_stack_var_conflict (a, stack_vars[u].representative);
600 BITMAP_FREE (vb->conflicts);
601 }
602 }
603
604 /* A subroutine of expand_used_vars. Binpack the variables into
605 partitions constrained by the interference graph. The overall
606 algorithm used is as follows:
607
608 Sort the objects by size.
609 For each object A {
610 S = size(A)
611 O = 0
612 loop {
613 Look for the largest non-conflicting object B with size <= S.
614 UNION (A, B)
615 offset(B) = O
616 O += size(B)
617 S -= size(B)
618 }
619 }
620 */
621
622 static void
623 partition_stack_vars (void)
624 {
625 size_t si, sj, n = stack_vars_num;
626
627 stack_vars_sorted = XNEWVEC (size_t, stack_vars_num);
628 for (si = 0; si < n; ++si)
629 stack_vars_sorted[si] = si;
630
631 if (n == 1)
632 return;
633
634 qsort (stack_vars_sorted, n, sizeof (size_t), stack_var_cmp);
635
636 for (si = 0; si < n; ++si)
637 {
638 size_t i = stack_vars_sorted[si];
639 HOST_WIDE_INT isize = stack_vars[i].size;
640 unsigned int ialign = stack_vars[i].alignb;
641 HOST_WIDE_INT offset = 0;
642
643 for (sj = si; sj-- > 0; )
644 {
645 size_t j = stack_vars_sorted[sj];
646 HOST_WIDE_INT jsize = stack_vars[j].size;
647 unsigned int jalign = stack_vars[j].alignb;
648
649 /* Ignore objects that aren't partition representatives. */
650 if (stack_vars[j].representative != j)
651 continue;
652
653 /* Ignore objects too large for the remaining space. */
654 if (isize < jsize)
655 continue;
656
657 /* Ignore conflicting objects. */
658 if (stack_var_conflict_p (i, j))
659 continue;
660
661 /* Do not mix objects of "small" (supported) alignment
662 and "large" (unsupported) alignment. */
663 if ((ialign * BITS_PER_UNIT <= MAX_SUPPORTED_STACK_ALIGNMENT)
664 != (jalign * BITS_PER_UNIT <= MAX_SUPPORTED_STACK_ALIGNMENT))
665 continue;
666
667 /* Refine the remaining space check to include alignment. */
668 if (offset & (jalign - 1))
669 {
670 HOST_WIDE_INT toff = offset;
671 toff += jalign - 1;
672 toff &= -(HOST_WIDE_INT)jalign;
673 if (isize - (toff - offset) < jsize)
674 continue;
675
676 isize -= toff - offset;
677 offset = toff;
678 }
679
680 /* UNION the objects, placing J at OFFSET. */
681 union_stack_vars (i, j, offset);
682
683 isize -= jsize;
684 if (isize == 0)
685 break;
686 }
687 }
688
689 update_alias_info_with_stack_vars ();
690 }
691
692 /* A debugging aid for expand_used_vars. Dump the generated partitions. */
693
694 static void
695 dump_stack_var_partition (void)
696 {
697 size_t si, i, j, n = stack_vars_num;
698
699 for (si = 0; si < n; ++si)
700 {
701 i = stack_vars_sorted[si];
702
703 /* Skip variables that aren't partition representatives, for now. */
704 if (stack_vars[i].representative != i)
705 continue;
706
707 fprintf (dump_file, "Partition %lu: size " HOST_WIDE_INT_PRINT_DEC
708 " align %u\n", (unsigned long) i, stack_vars[i].size,
709 stack_vars[i].alignb);
710
711 for (j = i; j != EOC; j = stack_vars[j].next)
712 {
713 fputc ('\t', dump_file);
714 print_generic_expr (dump_file, stack_vars[j].decl, dump_flags);
715 fprintf (dump_file, ", offset " HOST_WIDE_INT_PRINT_DEC "\n",
716 stack_vars[j].offset);
717 }
718 }
719 }
720
721 /* Assign rtl to DECL at BASE + OFFSET. */
722
723 static void
724 expand_one_stack_var_at (tree decl, rtx base, unsigned base_align,
725 HOST_WIDE_INT offset)
726 {
727 unsigned align;
728 rtx x;
729
730 /* If this fails, we've overflowed the stack frame. Error nicely? */
731 gcc_assert (offset == trunc_int_for_mode (offset, Pmode));
732
733 x = plus_constant (base, offset);
734 x = gen_rtx_MEM (DECL_MODE (SSAVAR (decl)), x);
735
736 if (TREE_CODE (decl) != SSA_NAME)
737 {
738 /* Set alignment we actually gave this decl if it isn't an SSA name.
739 If it is we generate stack slots only accidentally so it isn't as
740 important, we'll simply use the alignment that is already set. */
741 if (base == virtual_stack_vars_rtx)
742 offset -= frame_phase;
743 align = offset & -offset;
744 align *= BITS_PER_UNIT;
745 if (align == 0 || align > base_align)
746 align = base_align;
747
748 /* One would think that we could assert that we're not decreasing
749 alignment here, but (at least) the i386 port does exactly this
750 via the MINIMUM_ALIGNMENT hook. */
751
752 DECL_ALIGN (decl) = align;
753 DECL_USER_ALIGN (decl) = 0;
754 }
755
756 set_mem_attributes (x, SSAVAR (decl), true);
757 set_rtl (decl, x);
758 }
759
760 /* A subroutine of expand_used_vars. Give each partition representative
761 a unique location within the stack frame. Update each partition member
762 with that location. */
763
764 static void
765 expand_stack_vars (bool (*pred) (tree))
766 {
767 size_t si, i, j, n = stack_vars_num;
768 HOST_WIDE_INT large_size = 0, large_alloc = 0;
769 rtx large_base = NULL;
770 unsigned large_align = 0;
771 tree decl;
772
773 /* Determine if there are any variables requiring "large" alignment.
774 Since these are dynamically allocated, we only process these if
775 no predicate involved. */
776 large_align = stack_vars[stack_vars_sorted[0]].alignb * BITS_PER_UNIT;
777 if (pred == NULL && large_align > MAX_SUPPORTED_STACK_ALIGNMENT)
778 {
779 /* Find the total size of these variables. */
780 for (si = 0; si < n; ++si)
781 {
782 unsigned alignb;
783
784 i = stack_vars_sorted[si];
785 alignb = stack_vars[i].alignb;
786
787 /* Stop when we get to the first decl with "small" alignment. */
788 if (alignb * BITS_PER_UNIT <= MAX_SUPPORTED_STACK_ALIGNMENT)
789 break;
790
791 /* Skip variables that aren't partition representatives. */
792 if (stack_vars[i].representative != i)
793 continue;
794
795 /* Skip variables that have already had rtl assigned. See also
796 add_stack_var where we perpetrate this pc_rtx hack. */
797 decl = stack_vars[i].decl;
798 if ((TREE_CODE (decl) == SSA_NAME
799 ? SA.partition_to_pseudo[var_to_partition (SA.map, decl)]
800 : DECL_RTL (decl)) != pc_rtx)
801 continue;
802
803 large_size += alignb - 1;
804 large_size &= -(HOST_WIDE_INT)alignb;
805 large_size += stack_vars[i].size;
806 }
807
808 /* If there were any, allocate space. */
809 if (large_size > 0)
810 large_base = allocate_dynamic_stack_space (GEN_INT (large_size), 0,
811 large_align, true);
812 }
813
814 for (si = 0; si < n; ++si)
815 {
816 rtx base;
817 unsigned base_align, alignb;
818 HOST_WIDE_INT offset;
819
820 i = stack_vars_sorted[si];
821
822 /* Skip variables that aren't partition representatives, for now. */
823 if (stack_vars[i].representative != i)
824 continue;
825
826 /* Skip variables that have already had rtl assigned. See also
827 add_stack_var where we perpetrate this pc_rtx hack. */
828 decl = stack_vars[i].decl;
829 if ((TREE_CODE (decl) == SSA_NAME
830 ? SA.partition_to_pseudo[var_to_partition (SA.map, decl)]
831 : DECL_RTL (decl)) != pc_rtx)
832 continue;
833
834 /* Check the predicate to see whether this variable should be
835 allocated in this pass. */
836 if (pred && !pred (decl))
837 continue;
838
839 alignb = stack_vars[i].alignb;
840 if (alignb * BITS_PER_UNIT <= MAX_SUPPORTED_STACK_ALIGNMENT)
841 {
842 offset = alloc_stack_frame_space (stack_vars[i].size, alignb);
843 base = virtual_stack_vars_rtx;
844 base_align = crtl->max_used_stack_slot_alignment;
845 }
846 else
847 {
848 /* Large alignment is only processed in the last pass. */
849 if (pred)
850 continue;
851 gcc_assert (large_base != NULL);
852
853 large_alloc += alignb - 1;
854 large_alloc &= -(HOST_WIDE_INT)alignb;
855 offset = large_alloc;
856 large_alloc += stack_vars[i].size;
857
858 base = large_base;
859 base_align = large_align;
860 }
861
862 /* Create rtl for each variable based on their location within the
863 partition. */
864 for (j = i; j != EOC; j = stack_vars[j].next)
865 {
866 gcc_assert (stack_vars[j].offset <= stack_vars[i].size);
867 expand_one_stack_var_at (stack_vars[j].decl,
868 base, base_align,
869 stack_vars[j].offset + offset);
870 }
871 }
872
873 gcc_assert (large_alloc == large_size);
874 }
875
876 /* Take into account all sizes of partitions and reset DECL_RTLs. */
877 static HOST_WIDE_INT
878 account_stack_vars (void)
879 {
880 size_t si, j, i, n = stack_vars_num;
881 HOST_WIDE_INT size = 0;
882
883 for (si = 0; si < n; ++si)
884 {
885 i = stack_vars_sorted[si];
886
887 /* Skip variables that aren't partition representatives, for now. */
888 if (stack_vars[i].representative != i)
889 continue;
890
891 size += stack_vars[i].size;
892 for (j = i; j != EOC; j = stack_vars[j].next)
893 set_rtl (stack_vars[j].decl, NULL);
894 }
895 return size;
896 }
897
898 /* A subroutine of expand_one_var. Called to immediately assign rtl
899 to a variable to be allocated in the stack frame. */
900
901 static void
902 expand_one_stack_var (tree var)
903 {
904 HOST_WIDE_INT size, offset;
905 unsigned byte_align;
906
907 size = tree_low_cst (DECL_SIZE_UNIT (SSAVAR (var)), 1);
908 byte_align = get_decl_align_unit (SSAVAR (var));
909
910 /* We handle highly aligned variables in expand_stack_vars. */
911 gcc_assert (byte_align * BITS_PER_UNIT <= MAX_SUPPORTED_STACK_ALIGNMENT);
912
913 offset = alloc_stack_frame_space (size, byte_align);
914
915 expand_one_stack_var_at (var, virtual_stack_vars_rtx,
916 crtl->max_used_stack_slot_alignment, offset);
917 }
918
919 /* A subroutine of expand_one_var. Called to assign rtl to a VAR_DECL
920 that will reside in a hard register. */
921
922 static void
923 expand_one_hard_reg_var (tree var)
924 {
925 rest_of_decl_compilation (var, 0, 0);
926 }
927
928 /* A subroutine of expand_one_var. Called to assign rtl to a VAR_DECL
929 that will reside in a pseudo register. */
930
931 static void
932 expand_one_register_var (tree var)
933 {
934 tree decl = SSAVAR (var);
935 tree type = TREE_TYPE (decl);
936 enum machine_mode reg_mode = promote_decl_mode (decl, NULL);
937 rtx x = gen_reg_rtx (reg_mode);
938
939 set_rtl (var, x);
940
941 /* Note if the object is a user variable. */
942 if (!DECL_ARTIFICIAL (decl))
943 mark_user_reg (x);
944
945 if (POINTER_TYPE_P (type))
946 mark_reg_pointer (x, TYPE_ALIGN (TREE_TYPE (type)));
947 }
948
949 /* A subroutine of expand_one_var. Called to assign rtl to a VAR_DECL that
950 has some associated error, e.g. its type is error-mark. We just need
951 to pick something that won't crash the rest of the compiler. */
952
953 static void
954 expand_one_error_var (tree var)
955 {
956 enum machine_mode mode = DECL_MODE (var);
957 rtx x;
958
959 if (mode == BLKmode)
960 x = gen_rtx_MEM (BLKmode, const0_rtx);
961 else if (mode == VOIDmode)
962 x = const0_rtx;
963 else
964 x = gen_reg_rtx (mode);
965
966 SET_DECL_RTL (var, x);
967 }
968
969 /* A subroutine of expand_one_var. VAR is a variable that will be
970 allocated to the local stack frame. Return true if we wish to
971 add VAR to STACK_VARS so that it will be coalesced with other
972 variables. Return false to allocate VAR immediately.
973
974 This function is used to reduce the number of variables considered
975 for coalescing, which reduces the size of the quadratic problem. */
976
977 static bool
978 defer_stack_allocation (tree var, bool toplevel)
979 {
980 /* If stack protection is enabled, *all* stack variables must be deferred,
981 so that we can re-order the strings to the top of the frame. */
982 if (flag_stack_protect)
983 return true;
984
985 /* We handle "large" alignment via dynamic allocation. We want to handle
986 this extra complication in only one place, so defer them. */
987 if (DECL_ALIGN (var) > MAX_SUPPORTED_STACK_ALIGNMENT)
988 return true;
989
990 /* Variables in the outermost scope automatically conflict with
991 every other variable. The only reason to want to defer them
992 at all is that, after sorting, we can more efficiently pack
993 small variables in the stack frame. Continue to defer at -O2. */
994 if (toplevel && optimize < 2)
995 return false;
996
997 /* Without optimization, *most* variables are allocated from the
998 stack, which makes the quadratic problem large exactly when we
999 want compilation to proceed as quickly as possible. On the
1000 other hand, we don't want the function's stack frame size to
1001 get completely out of hand. So we avoid adding scalars and
1002 "small" aggregates to the list at all. */
1003 if (optimize == 0 && tree_low_cst (DECL_SIZE_UNIT (var), 1) < 32)
1004 return false;
1005
1006 return true;
1007 }
1008
1009 /* A subroutine of expand_used_vars. Expand one variable according to
1010 its flavor. Variables to be placed on the stack are not actually
1011 expanded yet, merely recorded.
1012 When REALLY_EXPAND is false, only add stack values to be allocated.
1013 Return stack usage this variable is supposed to take.
1014 */
1015
1016 static HOST_WIDE_INT
1017 expand_one_var (tree var, bool toplevel, bool really_expand)
1018 {
1019 unsigned int align = BITS_PER_UNIT;
1020 tree origvar = var;
1021
1022 var = SSAVAR (var);
1023
1024 if (TREE_TYPE (var) != error_mark_node && TREE_CODE (var) == VAR_DECL)
1025 {
1026 /* Because we don't know if VAR will be in register or on stack,
1027 we conservatively assume it will be on stack even if VAR is
1028 eventually put into register after RA pass. For non-automatic
1029 variables, which won't be on stack, we collect alignment of
1030 type and ignore user specified alignment. */
1031 if (TREE_STATIC (var) || DECL_EXTERNAL (var))
1032 align = MINIMUM_ALIGNMENT (TREE_TYPE (var),
1033 TYPE_MODE (TREE_TYPE (var)),
1034 TYPE_ALIGN (TREE_TYPE (var)));
1035 else if (DECL_HAS_VALUE_EXPR_P (var)
1036 || (DECL_RTL_SET_P (var) && MEM_P (DECL_RTL (var))))
1037 /* Don't consider debug only variables with DECL_HAS_VALUE_EXPR_P set
1038 or variables which were assigned a stack slot already by
1039 expand_one_stack_var_at - in the latter case DECL_ALIGN has been
1040 changed from the offset chosen to it. */
1041 align = crtl->stack_alignment_estimated;
1042 else
1043 align = MINIMUM_ALIGNMENT (var, DECL_MODE (var), DECL_ALIGN (var));
1044
1045 /* If the variable alignment is very large we'll dynamicaly allocate
1046 it, which means that in-frame portion is just a pointer. */
1047 if (align > MAX_SUPPORTED_STACK_ALIGNMENT)
1048 align = POINTER_SIZE;
1049 }
1050
1051 if (SUPPORTS_STACK_ALIGNMENT
1052 && crtl->stack_alignment_estimated < align)
1053 {
1054 /* stack_alignment_estimated shouldn't change after stack
1055 realign decision made */
1056 gcc_assert(!crtl->stack_realign_processed);
1057 crtl->stack_alignment_estimated = align;
1058 }
1059
1060 /* stack_alignment_needed > PREFERRED_STACK_BOUNDARY is permitted.
1061 So here we only make sure stack_alignment_needed >= align. */
1062 if (crtl->stack_alignment_needed < align)
1063 crtl->stack_alignment_needed = align;
1064 if (crtl->max_used_stack_slot_alignment < align)
1065 crtl->max_used_stack_slot_alignment = align;
1066
1067 if (TREE_CODE (origvar) == SSA_NAME)
1068 {
1069 gcc_assert (TREE_CODE (var) != VAR_DECL
1070 || (!DECL_EXTERNAL (var)
1071 && !DECL_HAS_VALUE_EXPR_P (var)
1072 && !TREE_STATIC (var)
1073 && TREE_TYPE (var) != error_mark_node
1074 && !DECL_HARD_REGISTER (var)
1075 && really_expand));
1076 }
1077 if (TREE_CODE (var) != VAR_DECL && TREE_CODE (origvar) != SSA_NAME)
1078 ;
1079 else if (DECL_EXTERNAL (var))
1080 ;
1081 else if (DECL_HAS_VALUE_EXPR_P (var))
1082 ;
1083 else if (TREE_STATIC (var))
1084 ;
1085 else if (TREE_CODE (origvar) != SSA_NAME && DECL_RTL_SET_P (var))
1086 ;
1087 else if (TREE_TYPE (var) == error_mark_node)
1088 {
1089 if (really_expand)
1090 expand_one_error_var (var);
1091 }
1092 else if (TREE_CODE (var) == VAR_DECL && DECL_HARD_REGISTER (var))
1093 {
1094 if (really_expand)
1095 expand_one_hard_reg_var (var);
1096 }
1097 else if (use_register_for_decl (var))
1098 {
1099 if (really_expand)
1100 expand_one_register_var (origvar);
1101 }
1102 else if (!host_integerp (DECL_SIZE_UNIT (var), 1))
1103 {
1104 if (really_expand)
1105 {
1106 error ("size of variable %q+D is too large", var);
1107 expand_one_error_var (var);
1108 }
1109 }
1110 else if (defer_stack_allocation (var, toplevel))
1111 add_stack_var (origvar);
1112 else
1113 {
1114 if (really_expand)
1115 expand_one_stack_var (origvar);
1116 return tree_low_cst (DECL_SIZE_UNIT (var), 1);
1117 }
1118 return 0;
1119 }
1120
1121 /* A subroutine of expand_used_vars. Walk down through the BLOCK tree
1122 expanding variables. Those variables that can be put into registers
1123 are allocated pseudos; those that can't are put on the stack.
1124
1125 TOPLEVEL is true if this is the outermost BLOCK. */
1126
1127 static void
1128 expand_used_vars_for_block (tree block, bool toplevel)
1129 {
1130 size_t i, j, old_sv_num, this_sv_num, new_sv_num;
1131 tree t;
1132
1133 old_sv_num = toplevel ? 0 : stack_vars_num;
1134
1135 /* Expand all variables at this level. */
1136 for (t = BLOCK_VARS (block); t ; t = DECL_CHAIN (t))
1137 if (TREE_USED (t))
1138 expand_one_var (t, toplevel, true);
1139
1140 this_sv_num = stack_vars_num;
1141
1142 /* Expand all variables at containing levels. */
1143 for (t = BLOCK_SUBBLOCKS (block); t ; t = BLOCK_CHAIN (t))
1144 expand_used_vars_for_block (t, false);
1145
1146 /* Since we do not track exact variable lifetimes (which is not even
1147 possible for variables whose address escapes), we mirror the block
1148 tree in the interference graph. Here we cause all variables at this
1149 level, and all sublevels, to conflict. */
1150 if (old_sv_num < this_sv_num)
1151 {
1152 new_sv_num = stack_vars_num;
1153
1154 for (i = old_sv_num; i < new_sv_num; ++i)
1155 for (j = i < this_sv_num ? i : this_sv_num; j-- > old_sv_num ;)
1156 add_stack_var_conflict (i, j);
1157 }
1158 }
1159
1160 /* A subroutine of expand_used_vars. Walk down through the BLOCK tree
1161 and clear TREE_USED on all local variables. */
1162
1163 static void
1164 clear_tree_used (tree block)
1165 {
1166 tree t;
1167
1168 for (t = BLOCK_VARS (block); t ; t = DECL_CHAIN (t))
1169 /* if (!TREE_STATIC (t) && !DECL_EXTERNAL (t)) */
1170 TREE_USED (t) = 0;
1171
1172 for (t = BLOCK_SUBBLOCKS (block); t ; t = BLOCK_CHAIN (t))
1173 clear_tree_used (t);
1174 }
1175
1176 /* Examine TYPE and determine a bit mask of the following features. */
1177
1178 #define SPCT_HAS_LARGE_CHAR_ARRAY 1
1179 #define SPCT_HAS_SMALL_CHAR_ARRAY 2
1180 #define SPCT_HAS_ARRAY 4
1181 #define SPCT_HAS_AGGREGATE 8
1182
1183 static unsigned int
1184 stack_protect_classify_type (tree type)
1185 {
1186 unsigned int ret = 0;
1187 tree t;
1188
1189 switch (TREE_CODE (type))
1190 {
1191 case ARRAY_TYPE:
1192 t = TYPE_MAIN_VARIANT (TREE_TYPE (type));
1193 if (t == char_type_node
1194 || t == signed_char_type_node
1195 || t == unsigned_char_type_node)
1196 {
1197 unsigned HOST_WIDE_INT max = PARAM_VALUE (PARAM_SSP_BUFFER_SIZE);
1198 unsigned HOST_WIDE_INT len;
1199
1200 if (!TYPE_SIZE_UNIT (type)
1201 || !host_integerp (TYPE_SIZE_UNIT (type), 1))
1202 len = max;
1203 else
1204 len = tree_low_cst (TYPE_SIZE_UNIT (type), 1);
1205
1206 if (len < max)
1207 ret = SPCT_HAS_SMALL_CHAR_ARRAY | SPCT_HAS_ARRAY;
1208 else
1209 ret = SPCT_HAS_LARGE_CHAR_ARRAY | SPCT_HAS_ARRAY;
1210 }
1211 else
1212 ret = SPCT_HAS_ARRAY;
1213 break;
1214
1215 case UNION_TYPE:
1216 case QUAL_UNION_TYPE:
1217 case RECORD_TYPE:
1218 ret = SPCT_HAS_AGGREGATE;
1219 for (t = TYPE_FIELDS (type); t ; t = TREE_CHAIN (t))
1220 if (TREE_CODE (t) == FIELD_DECL)
1221 ret |= stack_protect_classify_type (TREE_TYPE (t));
1222 break;
1223
1224 default:
1225 break;
1226 }
1227
1228 return ret;
1229 }
1230
1231 /* Return nonzero if DECL should be segregated into the "vulnerable" upper
1232 part of the local stack frame. Remember if we ever return nonzero for
1233 any variable in this function. The return value is the phase number in
1234 which the variable should be allocated. */
1235
1236 static int
1237 stack_protect_decl_phase (tree decl)
1238 {
1239 unsigned int bits = stack_protect_classify_type (TREE_TYPE (decl));
1240 int ret = 0;
1241
1242 if (bits & SPCT_HAS_SMALL_CHAR_ARRAY)
1243 has_short_buffer = true;
1244
1245 if (flag_stack_protect == 2)
1246 {
1247 if ((bits & (SPCT_HAS_SMALL_CHAR_ARRAY | SPCT_HAS_LARGE_CHAR_ARRAY))
1248 && !(bits & SPCT_HAS_AGGREGATE))
1249 ret = 1;
1250 else if (bits & SPCT_HAS_ARRAY)
1251 ret = 2;
1252 }
1253 else
1254 ret = (bits & SPCT_HAS_LARGE_CHAR_ARRAY) != 0;
1255
1256 if (ret)
1257 has_protected_decls = true;
1258
1259 return ret;
1260 }
1261
1262 /* Two helper routines that check for phase 1 and phase 2. These are used
1263 as callbacks for expand_stack_vars. */
1264
1265 static bool
1266 stack_protect_decl_phase_1 (tree decl)
1267 {
1268 return stack_protect_decl_phase (decl) == 1;
1269 }
1270
1271 static bool
1272 stack_protect_decl_phase_2 (tree decl)
1273 {
1274 return stack_protect_decl_phase (decl) == 2;
1275 }
1276
1277 /* Ensure that variables in different stack protection phases conflict
1278 so that they are not merged and share the same stack slot. */
1279
1280 static void
1281 add_stack_protection_conflicts (void)
1282 {
1283 size_t i, j, n = stack_vars_num;
1284 unsigned char *phase;
1285
1286 phase = XNEWVEC (unsigned char, n);
1287 for (i = 0; i < n; ++i)
1288 phase[i] = stack_protect_decl_phase (stack_vars[i].decl);
1289
1290 for (i = 0; i < n; ++i)
1291 {
1292 unsigned char ph_i = phase[i];
1293 for (j = 0; j < i; ++j)
1294 if (ph_i != phase[j])
1295 add_stack_var_conflict (i, j);
1296 }
1297
1298 XDELETEVEC (phase);
1299 }
1300
1301 /* Create a decl for the guard at the top of the stack frame. */
1302
1303 static void
1304 create_stack_guard (void)
1305 {
1306 tree guard = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
1307 VAR_DECL, NULL, ptr_type_node);
1308 TREE_THIS_VOLATILE (guard) = 1;
1309 TREE_USED (guard) = 1;
1310 expand_one_stack_var (guard);
1311 crtl->stack_protect_guard = guard;
1312 }
1313
1314 /* Prepare for expanding variables. */
1315 static void
1316 init_vars_expansion (void)
1317 {
1318 tree t;
1319 unsigned ix;
1320 /* Set TREE_USED on all variables in the local_decls. */
1321 FOR_EACH_LOCAL_DECL (cfun, ix, t)
1322 TREE_USED (t) = 1;
1323
1324 /* Clear TREE_USED on all variables associated with a block scope. */
1325 clear_tree_used (DECL_INITIAL (current_function_decl));
1326
1327 /* Initialize local stack smashing state. */
1328 has_protected_decls = false;
1329 has_short_buffer = false;
1330 }
1331
1332 /* Free up stack variable graph data. */
1333 static void
1334 fini_vars_expansion (void)
1335 {
1336 size_t i, n = stack_vars_num;
1337 for (i = 0; i < n; i++)
1338 BITMAP_FREE (stack_vars[i].conflicts);
1339 XDELETEVEC (stack_vars);
1340 XDELETEVEC (stack_vars_sorted);
1341 stack_vars = NULL;
1342 stack_vars_alloc = stack_vars_num = 0;
1343 }
1344
1345 /* Make a fair guess for the size of the stack frame of the function
1346 in NODE. This doesn't have to be exact, the result is only used in
1347 the inline heuristics. So we don't want to run the full stack var
1348 packing algorithm (which is quadratic in the number of stack vars).
1349 Instead, we calculate the total size of all stack vars. This turns
1350 out to be a pretty fair estimate -- packing of stack vars doesn't
1351 happen very often. */
1352
1353 HOST_WIDE_INT
1354 estimated_stack_frame_size (struct cgraph_node *node)
1355 {
1356 HOST_WIDE_INT size = 0;
1357 size_t i;
1358 tree var;
1359 tree old_cur_fun_decl = current_function_decl;
1360 referenced_var_iterator rvi;
1361 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
1362
1363 current_function_decl = node->decl;
1364 push_cfun (fn);
1365
1366 gcc_checking_assert (gimple_referenced_vars (fn));
1367 FOR_EACH_REFERENCED_VAR (fn, var, rvi)
1368 size += expand_one_var (var, true, false);
1369
1370 if (stack_vars_num > 0)
1371 {
1372 /* Fake sorting the stack vars for account_stack_vars (). */
1373 stack_vars_sorted = XNEWVEC (size_t, stack_vars_num);
1374 for (i = 0; i < stack_vars_num; ++i)
1375 stack_vars_sorted[i] = i;
1376 size += account_stack_vars ();
1377 fini_vars_expansion ();
1378 }
1379 pop_cfun ();
1380 current_function_decl = old_cur_fun_decl;
1381 return size;
1382 }
1383
1384 /* Expand all variables used in the function. */
1385
1386 static void
1387 expand_used_vars (void)
1388 {
1389 tree var, outer_block = DECL_INITIAL (current_function_decl);
1390 VEC(tree,heap) *maybe_local_decls = NULL;
1391 unsigned i;
1392 unsigned len;
1393
1394 /* Compute the phase of the stack frame for this function. */
1395 {
1396 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
1397 int off = STARTING_FRAME_OFFSET % align;
1398 frame_phase = off ? align - off : 0;
1399 }
1400
1401 init_vars_expansion ();
1402
1403 for (i = 0; i < SA.map->num_partitions; i++)
1404 {
1405 tree var = partition_to_var (SA.map, i);
1406
1407 gcc_assert (is_gimple_reg (var));
1408 if (TREE_CODE (SSA_NAME_VAR (var)) == VAR_DECL)
1409 expand_one_var (var, true, true);
1410 else
1411 {
1412 /* This is a PARM_DECL or RESULT_DECL. For those partitions that
1413 contain the default def (representing the parm or result itself)
1414 we don't do anything here. But those which don't contain the
1415 default def (representing a temporary based on the parm/result)
1416 we need to allocate space just like for normal VAR_DECLs. */
1417 if (!bitmap_bit_p (SA.partition_has_default_def, i))
1418 {
1419 expand_one_var (var, true, true);
1420 gcc_assert (SA.partition_to_pseudo[i]);
1421 }
1422 }
1423 }
1424
1425 /* At this point all variables on the local_decls with TREE_USED
1426 set are not associated with any block scope. Lay them out. */
1427
1428 len = VEC_length (tree, cfun->local_decls);
1429 FOR_EACH_LOCAL_DECL (cfun, i, var)
1430 {
1431 bool expand_now = false;
1432
1433 /* Expanded above already. */
1434 if (is_gimple_reg (var))
1435 {
1436 TREE_USED (var) = 0;
1437 goto next;
1438 }
1439 /* We didn't set a block for static or extern because it's hard
1440 to tell the difference between a global variable (re)declared
1441 in a local scope, and one that's really declared there to
1442 begin with. And it doesn't really matter much, since we're
1443 not giving them stack space. Expand them now. */
1444 else if (TREE_STATIC (var) || DECL_EXTERNAL (var))
1445 expand_now = true;
1446
1447 /* If the variable is not associated with any block, then it
1448 was created by the optimizers, and could be live anywhere
1449 in the function. */
1450 else if (TREE_USED (var))
1451 expand_now = true;
1452
1453 /* Finally, mark all variables on the list as used. We'll use
1454 this in a moment when we expand those associated with scopes. */
1455 TREE_USED (var) = 1;
1456
1457 if (expand_now)
1458 expand_one_var (var, true, true);
1459
1460 next:
1461 if (DECL_ARTIFICIAL (var) && !DECL_IGNORED_P (var))
1462 {
1463 rtx rtl = DECL_RTL_IF_SET (var);
1464
1465 /* Keep artificial non-ignored vars in cfun->local_decls
1466 chain until instantiate_decls. */
1467 if (rtl && (MEM_P (rtl) || GET_CODE (rtl) == CONCAT))
1468 add_local_decl (cfun, var);
1469 else if (rtl == NULL_RTX)
1470 /* If rtl isn't set yet, which can happen e.g. with
1471 -fstack-protector, retry before returning from this
1472 function. */
1473 VEC_safe_push (tree, heap, maybe_local_decls, var);
1474 }
1475 }
1476
1477 /* We duplicated some of the decls in CFUN->LOCAL_DECLS.
1478
1479 +-----------------+-----------------+
1480 | ...processed... | ...duplicates...|
1481 +-----------------+-----------------+
1482 ^
1483 +-- LEN points here.
1484
1485 We just want the duplicates, as those are the artificial
1486 non-ignored vars that we want to keep until instantiate_decls.
1487 Move them down and truncate the array. */
1488 if (!VEC_empty (tree, cfun->local_decls))
1489 VEC_block_remove (tree, cfun->local_decls, 0, len);
1490
1491 /* At this point, all variables within the block tree with TREE_USED
1492 set are actually used by the optimized function. Lay them out. */
1493 expand_used_vars_for_block (outer_block, true);
1494
1495 if (stack_vars_num > 0)
1496 {
1497 /* Due to the way alias sets work, no variables with non-conflicting
1498 alias sets may be assigned the same address. Add conflicts to
1499 reflect this. */
1500 add_alias_set_conflicts ();
1501
1502 /* If stack protection is enabled, we don't share space between
1503 vulnerable data and non-vulnerable data. */
1504 if (flag_stack_protect)
1505 add_stack_protection_conflicts ();
1506
1507 /* Now that we have collected all stack variables, and have computed a
1508 minimal interference graph, attempt to save some stack space. */
1509 partition_stack_vars ();
1510 if (dump_file)
1511 dump_stack_var_partition ();
1512 }
1513
1514 /* There are several conditions under which we should create a
1515 stack guard: protect-all, alloca used, protected decls present. */
1516 if (flag_stack_protect == 2
1517 || (flag_stack_protect
1518 && (cfun->calls_alloca || has_protected_decls)))
1519 create_stack_guard ();
1520
1521 /* Assign rtl to each variable based on these partitions. */
1522 if (stack_vars_num > 0)
1523 {
1524 /* Reorder decls to be protected by iterating over the variables
1525 array multiple times, and allocating out of each phase in turn. */
1526 /* ??? We could probably integrate this into the qsort we did
1527 earlier, such that we naturally see these variables first,
1528 and thus naturally allocate things in the right order. */
1529 if (has_protected_decls)
1530 {
1531 /* Phase 1 contains only character arrays. */
1532 expand_stack_vars (stack_protect_decl_phase_1);
1533
1534 /* Phase 2 contains other kinds of arrays. */
1535 if (flag_stack_protect == 2)
1536 expand_stack_vars (stack_protect_decl_phase_2);
1537 }
1538
1539 expand_stack_vars (NULL);
1540
1541 fini_vars_expansion ();
1542 }
1543
1544 /* If there were any artificial non-ignored vars without rtl
1545 found earlier, see if deferred stack allocation hasn't assigned
1546 rtl to them. */
1547 FOR_EACH_VEC_ELT_REVERSE (tree, maybe_local_decls, i, var)
1548 {
1549 rtx rtl = DECL_RTL_IF_SET (var);
1550
1551 /* Keep artificial non-ignored vars in cfun->local_decls
1552 chain until instantiate_decls. */
1553 if (rtl && (MEM_P (rtl) || GET_CODE (rtl) == CONCAT))
1554 add_local_decl (cfun, var);
1555 }
1556 VEC_free (tree, heap, maybe_local_decls);
1557
1558 /* If the target requires that FRAME_OFFSET be aligned, do it. */
1559 if (STACK_ALIGNMENT_NEEDED)
1560 {
1561 HOST_WIDE_INT align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
1562 if (!FRAME_GROWS_DOWNWARD)
1563 frame_offset += align - 1;
1564 frame_offset &= -align;
1565 }
1566 }
1567
1568
1569 /* If we need to produce a detailed dump, print the tree representation
1570 for STMT to the dump file. SINCE is the last RTX after which the RTL
1571 generated for STMT should have been appended. */
1572
1573 static void
1574 maybe_dump_rtl_for_gimple_stmt (gimple stmt, rtx since)
1575 {
1576 if (dump_file && (dump_flags & TDF_DETAILS))
1577 {
1578 fprintf (dump_file, "\n;; ");
1579 print_gimple_stmt (dump_file, stmt, 0,
1580 TDF_SLIM | (dump_flags & TDF_LINENO));
1581 fprintf (dump_file, "\n");
1582
1583 print_rtl (dump_file, since ? NEXT_INSN (since) : since);
1584 }
1585 }
1586
1587 /* Maps the blocks that do not contain tree labels to rtx labels. */
1588
1589 static struct pointer_map_t *lab_rtx_for_bb;
1590
1591 /* Returns the label_rtx expression for a label starting basic block BB. */
1592
1593 static rtx
1594 label_rtx_for_bb (basic_block bb ATTRIBUTE_UNUSED)
1595 {
1596 gimple_stmt_iterator gsi;
1597 tree lab;
1598 gimple lab_stmt;
1599 void **elt;
1600
1601 if (bb->flags & BB_RTL)
1602 return block_label (bb);
1603
1604 elt = pointer_map_contains (lab_rtx_for_bb, bb);
1605 if (elt)
1606 return (rtx) *elt;
1607
1608 /* Find the tree label if it is present. */
1609
1610 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1611 {
1612 lab_stmt = gsi_stmt (gsi);
1613 if (gimple_code (lab_stmt) != GIMPLE_LABEL)
1614 break;
1615
1616 lab = gimple_label_label (lab_stmt);
1617 if (DECL_NONLOCAL (lab))
1618 break;
1619
1620 return label_rtx (lab);
1621 }
1622
1623 elt = pointer_map_insert (lab_rtx_for_bb, bb);
1624 *elt = gen_label_rtx ();
1625 return (rtx) *elt;
1626 }
1627
1628
1629 /* A subroutine of expand_gimple_cond. Given E, a fallthrough edge
1630 of a basic block where we just expanded the conditional at the end,
1631 possibly clean up the CFG and instruction sequence. LAST is the
1632 last instruction before the just emitted jump sequence. */
1633
1634 static void
1635 maybe_cleanup_end_of_block (edge e, rtx last)
1636 {
1637 /* Special case: when jumpif decides that the condition is
1638 trivial it emits an unconditional jump (and the necessary
1639 barrier). But we still have two edges, the fallthru one is
1640 wrong. purge_dead_edges would clean this up later. Unfortunately
1641 we have to insert insns (and split edges) before
1642 find_many_sub_basic_blocks and hence before purge_dead_edges.
1643 But splitting edges might create new blocks which depend on the
1644 fact that if there are two edges there's no barrier. So the
1645 barrier would get lost and verify_flow_info would ICE. Instead
1646 of auditing all edge splitters to care for the barrier (which
1647 normally isn't there in a cleaned CFG), fix it here. */
1648 if (BARRIER_P (get_last_insn ()))
1649 {
1650 rtx insn;
1651 remove_edge (e);
1652 /* Now, we have a single successor block, if we have insns to
1653 insert on the remaining edge we potentially will insert
1654 it at the end of this block (if the dest block isn't feasible)
1655 in order to avoid splitting the edge. This insertion will take
1656 place in front of the last jump. But we might have emitted
1657 multiple jumps (conditional and one unconditional) to the
1658 same destination. Inserting in front of the last one then
1659 is a problem. See PR 40021. We fix this by deleting all
1660 jumps except the last unconditional one. */
1661 insn = PREV_INSN (get_last_insn ());
1662 /* Make sure we have an unconditional jump. Otherwise we're
1663 confused. */
1664 gcc_assert (JUMP_P (insn) && !any_condjump_p (insn));
1665 for (insn = PREV_INSN (insn); insn != last;)
1666 {
1667 insn = PREV_INSN (insn);
1668 if (JUMP_P (NEXT_INSN (insn)))
1669 {
1670 if (!any_condjump_p (NEXT_INSN (insn)))
1671 {
1672 gcc_assert (BARRIER_P (NEXT_INSN (NEXT_INSN (insn))));
1673 delete_insn (NEXT_INSN (NEXT_INSN (insn)));
1674 }
1675 delete_insn (NEXT_INSN (insn));
1676 }
1677 }
1678 }
1679 }
1680
1681 /* A subroutine of expand_gimple_basic_block. Expand one GIMPLE_COND.
1682 Returns a new basic block if we've terminated the current basic
1683 block and created a new one. */
1684
1685 static basic_block
1686 expand_gimple_cond (basic_block bb, gimple stmt)
1687 {
1688 basic_block new_bb, dest;
1689 edge new_edge;
1690 edge true_edge;
1691 edge false_edge;
1692 rtx last2, last;
1693 enum tree_code code;
1694 tree op0, op1;
1695
1696 code = gimple_cond_code (stmt);
1697 op0 = gimple_cond_lhs (stmt);
1698 op1 = gimple_cond_rhs (stmt);
1699 /* We're sometimes presented with such code:
1700 D.123_1 = x < y;
1701 if (D.123_1 != 0)
1702 ...
1703 This would expand to two comparisons which then later might
1704 be cleaned up by combine. But some pattern matchers like if-conversion
1705 work better when there's only one compare, so make up for this
1706 here as special exception if TER would have made the same change. */
1707 if (gimple_cond_single_var_p (stmt)
1708 && SA.values
1709 && TREE_CODE (op0) == SSA_NAME
1710 && bitmap_bit_p (SA.values, SSA_NAME_VERSION (op0)))
1711 {
1712 gimple second = SSA_NAME_DEF_STMT (op0);
1713 if (gimple_code (second) == GIMPLE_ASSIGN)
1714 {
1715 enum tree_code code2 = gimple_assign_rhs_code (second);
1716 if (TREE_CODE_CLASS (code2) == tcc_comparison)
1717 {
1718 code = code2;
1719 op0 = gimple_assign_rhs1 (second);
1720 op1 = gimple_assign_rhs2 (second);
1721 }
1722 /* If jumps are cheap turn some more codes into
1723 jumpy sequences. */
1724 else if (BRANCH_COST (optimize_insn_for_speed_p (), false) < 4)
1725 {
1726 if ((code2 == BIT_AND_EXPR
1727 && TYPE_PRECISION (TREE_TYPE (op0)) == 1
1728 && TREE_CODE (gimple_assign_rhs2 (second)) != INTEGER_CST)
1729 || code2 == TRUTH_AND_EXPR)
1730 {
1731 code = TRUTH_ANDIF_EXPR;
1732 op0 = gimple_assign_rhs1 (second);
1733 op1 = gimple_assign_rhs2 (second);
1734 }
1735 else if (code2 == BIT_IOR_EXPR || code2 == TRUTH_OR_EXPR)
1736 {
1737 code = TRUTH_ORIF_EXPR;
1738 op0 = gimple_assign_rhs1 (second);
1739 op1 = gimple_assign_rhs2 (second);
1740 }
1741 }
1742 }
1743 }
1744
1745 last2 = last = get_last_insn ();
1746
1747 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1748 set_curr_insn_source_location (gimple_location (stmt));
1749 set_curr_insn_block (gimple_block (stmt));
1750
1751 /* These flags have no purpose in RTL land. */
1752 true_edge->flags &= ~EDGE_TRUE_VALUE;
1753 false_edge->flags &= ~EDGE_FALSE_VALUE;
1754
1755 /* We can either have a pure conditional jump with one fallthru edge or
1756 two-way jump that needs to be decomposed into two basic blocks. */
1757 if (false_edge->dest == bb->next_bb)
1758 {
1759 jumpif_1 (code, op0, op1, label_rtx_for_bb (true_edge->dest),
1760 true_edge->probability);
1761 maybe_dump_rtl_for_gimple_stmt (stmt, last);
1762 if (true_edge->goto_locus)
1763 {
1764 set_curr_insn_source_location (true_edge->goto_locus);
1765 set_curr_insn_block (true_edge->goto_block);
1766 true_edge->goto_locus = curr_insn_locator ();
1767 }
1768 true_edge->goto_block = NULL;
1769 false_edge->flags |= EDGE_FALLTHRU;
1770 maybe_cleanup_end_of_block (false_edge, last);
1771 return NULL;
1772 }
1773 if (true_edge->dest == bb->next_bb)
1774 {
1775 jumpifnot_1 (code, op0, op1, label_rtx_for_bb (false_edge->dest),
1776 false_edge->probability);
1777 maybe_dump_rtl_for_gimple_stmt (stmt, last);
1778 if (false_edge->goto_locus)
1779 {
1780 set_curr_insn_source_location (false_edge->goto_locus);
1781 set_curr_insn_block (false_edge->goto_block);
1782 false_edge->goto_locus = curr_insn_locator ();
1783 }
1784 false_edge->goto_block = NULL;
1785 true_edge->flags |= EDGE_FALLTHRU;
1786 maybe_cleanup_end_of_block (true_edge, last);
1787 return NULL;
1788 }
1789
1790 jumpif_1 (code, op0, op1, label_rtx_for_bb (true_edge->dest),
1791 true_edge->probability);
1792 last = get_last_insn ();
1793 if (false_edge->goto_locus)
1794 {
1795 set_curr_insn_source_location (false_edge->goto_locus);
1796 set_curr_insn_block (false_edge->goto_block);
1797 false_edge->goto_locus = curr_insn_locator ();
1798 }
1799 false_edge->goto_block = NULL;
1800 emit_jump (label_rtx_for_bb (false_edge->dest));
1801
1802 BB_END (bb) = last;
1803 if (BARRIER_P (BB_END (bb)))
1804 BB_END (bb) = PREV_INSN (BB_END (bb));
1805 update_bb_for_insn (bb);
1806
1807 new_bb = create_basic_block (NEXT_INSN (last), get_last_insn (), bb);
1808 dest = false_edge->dest;
1809 redirect_edge_succ (false_edge, new_bb);
1810 false_edge->flags |= EDGE_FALLTHRU;
1811 new_bb->count = false_edge->count;
1812 new_bb->frequency = EDGE_FREQUENCY (false_edge);
1813 new_edge = make_edge (new_bb, dest, 0);
1814 new_edge->probability = REG_BR_PROB_BASE;
1815 new_edge->count = new_bb->count;
1816 if (BARRIER_P (BB_END (new_bb)))
1817 BB_END (new_bb) = PREV_INSN (BB_END (new_bb));
1818 update_bb_for_insn (new_bb);
1819
1820 maybe_dump_rtl_for_gimple_stmt (stmt, last2);
1821
1822 if (true_edge->goto_locus)
1823 {
1824 set_curr_insn_source_location (true_edge->goto_locus);
1825 set_curr_insn_block (true_edge->goto_block);
1826 true_edge->goto_locus = curr_insn_locator ();
1827 }
1828 true_edge->goto_block = NULL;
1829
1830 return new_bb;
1831 }
1832
1833 /* A subroutine of expand_gimple_stmt_1, expanding one GIMPLE_CALL
1834 statement STMT. */
1835
1836 static void
1837 expand_call_stmt (gimple stmt)
1838 {
1839 tree exp;
1840 tree lhs = gimple_call_lhs (stmt);
1841 size_t i;
1842 bool builtin_p;
1843 tree decl;
1844
1845 exp = build_vl_exp (CALL_EXPR, gimple_call_num_args (stmt) + 3);
1846
1847 CALL_EXPR_FN (exp) = gimple_call_fn (stmt);
1848 decl = gimple_call_fndecl (stmt);
1849 builtin_p = decl && DECL_BUILT_IN (decl);
1850
1851 TREE_TYPE (exp) = gimple_call_return_type (stmt);
1852 CALL_EXPR_STATIC_CHAIN (exp) = gimple_call_chain (stmt);
1853
1854 for (i = 0; i < gimple_call_num_args (stmt); i++)
1855 {
1856 tree arg = gimple_call_arg (stmt, i);
1857 gimple def;
1858 /* TER addresses into arguments of builtin functions so we have a
1859 chance to infer more correct alignment information. See PR39954. */
1860 if (builtin_p
1861 && TREE_CODE (arg) == SSA_NAME
1862 && (def = get_gimple_for_ssa_name (arg))
1863 && gimple_assign_rhs_code (def) == ADDR_EXPR)
1864 arg = gimple_assign_rhs1 (def);
1865 CALL_EXPR_ARG (exp, i) = arg;
1866 }
1867
1868 if (gimple_has_side_effects (stmt))
1869 TREE_SIDE_EFFECTS (exp) = 1;
1870
1871 if (gimple_call_nothrow_p (stmt))
1872 TREE_NOTHROW (exp) = 1;
1873
1874 CALL_EXPR_TAILCALL (exp) = gimple_call_tail_p (stmt);
1875 CALL_EXPR_RETURN_SLOT_OPT (exp) = gimple_call_return_slot_opt_p (stmt);
1876 CALL_FROM_THUNK_P (exp) = gimple_call_from_thunk_p (stmt);
1877 CALL_CANNOT_INLINE_P (exp) = gimple_call_cannot_inline_p (stmt);
1878 CALL_EXPR_VA_ARG_PACK (exp) = gimple_call_va_arg_pack_p (stmt);
1879 SET_EXPR_LOCATION (exp, gimple_location (stmt));
1880 TREE_BLOCK (exp) = gimple_block (stmt);
1881
1882 if (lhs)
1883 expand_assignment (lhs, exp, false);
1884 else
1885 expand_expr_real_1 (exp, const0_rtx, VOIDmode, EXPAND_NORMAL, NULL);
1886 }
1887
1888 /* A subroutine of expand_gimple_stmt, expanding one gimple statement
1889 STMT that doesn't require special handling for outgoing edges. That
1890 is no tailcalls and no GIMPLE_COND. */
1891
1892 static void
1893 expand_gimple_stmt_1 (gimple stmt)
1894 {
1895 tree op0;
1896
1897 set_curr_insn_source_location (gimple_location (stmt));
1898 set_curr_insn_block (gimple_block (stmt));
1899
1900 switch (gimple_code (stmt))
1901 {
1902 case GIMPLE_GOTO:
1903 op0 = gimple_goto_dest (stmt);
1904 if (TREE_CODE (op0) == LABEL_DECL)
1905 expand_goto (op0);
1906 else
1907 expand_computed_goto (op0);
1908 break;
1909 case GIMPLE_LABEL:
1910 expand_label (gimple_label_label (stmt));
1911 break;
1912 case GIMPLE_NOP:
1913 case GIMPLE_PREDICT:
1914 break;
1915 case GIMPLE_SWITCH:
1916 expand_case (stmt);
1917 break;
1918 case GIMPLE_ASM:
1919 expand_asm_stmt (stmt);
1920 break;
1921 case GIMPLE_CALL:
1922 expand_call_stmt (stmt);
1923 break;
1924
1925 case GIMPLE_RETURN:
1926 op0 = gimple_return_retval (stmt);
1927
1928 if (op0 && op0 != error_mark_node)
1929 {
1930 tree result = DECL_RESULT (current_function_decl);
1931
1932 /* If we are not returning the current function's RESULT_DECL,
1933 build an assignment to it. */
1934 if (op0 != result)
1935 {
1936 /* I believe that a function's RESULT_DECL is unique. */
1937 gcc_assert (TREE_CODE (op0) != RESULT_DECL);
1938
1939 /* ??? We'd like to use simply expand_assignment here,
1940 but this fails if the value is of BLKmode but the return
1941 decl is a register. expand_return has special handling
1942 for this combination, which eventually should move
1943 to common code. See comments there. Until then, let's
1944 build a modify expression :-/ */
1945 op0 = build2 (MODIFY_EXPR, TREE_TYPE (result),
1946 result, op0);
1947 }
1948 }
1949 if (!op0)
1950 expand_null_return ();
1951 else
1952 expand_return (op0);
1953 break;
1954
1955 case GIMPLE_ASSIGN:
1956 {
1957 tree lhs = gimple_assign_lhs (stmt);
1958
1959 /* Tree expand used to fiddle with |= and &= of two bitfield
1960 COMPONENT_REFs here. This can't happen with gimple, the LHS
1961 of binary assigns must be a gimple reg. */
1962
1963 if (TREE_CODE (lhs) != SSA_NAME
1964 || get_gimple_rhs_class (gimple_expr_code (stmt))
1965 == GIMPLE_SINGLE_RHS)
1966 {
1967 tree rhs = gimple_assign_rhs1 (stmt);
1968 gcc_assert (get_gimple_rhs_class (gimple_expr_code (stmt))
1969 == GIMPLE_SINGLE_RHS);
1970 if (gimple_has_location (stmt) && CAN_HAVE_LOCATION_P (rhs))
1971 SET_EXPR_LOCATION (rhs, gimple_location (stmt));
1972 expand_assignment (lhs, rhs,
1973 gimple_assign_nontemporal_move_p (stmt));
1974 }
1975 else
1976 {
1977 rtx target, temp;
1978 bool nontemporal = gimple_assign_nontemporal_move_p (stmt);
1979 struct separate_ops ops;
1980 bool promoted = false;
1981
1982 target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
1983 if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
1984 promoted = true;
1985
1986 ops.code = gimple_assign_rhs_code (stmt);
1987 ops.type = TREE_TYPE (lhs);
1988 switch (get_gimple_rhs_class (gimple_expr_code (stmt)))
1989 {
1990 case GIMPLE_TERNARY_RHS:
1991 ops.op2 = gimple_assign_rhs3 (stmt);
1992 /* Fallthru */
1993 case GIMPLE_BINARY_RHS:
1994 ops.op1 = gimple_assign_rhs2 (stmt);
1995 /* Fallthru */
1996 case GIMPLE_UNARY_RHS:
1997 ops.op0 = gimple_assign_rhs1 (stmt);
1998 break;
1999 default:
2000 gcc_unreachable ();
2001 }
2002 ops.location = gimple_location (stmt);
2003
2004 /* If we want to use a nontemporal store, force the value to
2005 register first. If we store into a promoted register,
2006 don't directly expand to target. */
2007 temp = nontemporal || promoted ? NULL_RTX : target;
2008 temp = expand_expr_real_2 (&ops, temp, GET_MODE (target),
2009 EXPAND_NORMAL);
2010
2011 if (temp == target)
2012 ;
2013 else if (promoted)
2014 {
2015 int unsignedp = SUBREG_PROMOTED_UNSIGNED_P (target);
2016 /* If TEMP is a VOIDmode constant, use convert_modes to make
2017 sure that we properly convert it. */
2018 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
2019 {
2020 temp = convert_modes (GET_MODE (target),
2021 TYPE_MODE (ops.type),
2022 temp, unsignedp);
2023 temp = convert_modes (GET_MODE (SUBREG_REG (target)),
2024 GET_MODE (target), temp, unsignedp);
2025 }
2026
2027 convert_move (SUBREG_REG (target), temp, unsignedp);
2028 }
2029 else if (nontemporal && emit_storent_insn (target, temp))
2030 ;
2031 else
2032 {
2033 temp = force_operand (temp, target);
2034 if (temp != target)
2035 emit_move_insn (target, temp);
2036 }
2037 }
2038 }
2039 break;
2040
2041 default:
2042 gcc_unreachable ();
2043 }
2044 }
2045
2046 /* Expand one gimple statement STMT and return the last RTL instruction
2047 before any of the newly generated ones.
2048
2049 In addition to generating the necessary RTL instructions this also
2050 sets REG_EH_REGION notes if necessary and sets the current source
2051 location for diagnostics. */
2052
2053 static rtx
2054 expand_gimple_stmt (gimple stmt)
2055 {
2056 location_t saved_location = input_location;
2057 rtx last = get_last_insn ();
2058 int lp_nr;
2059
2060 gcc_assert (cfun);
2061
2062 /* We need to save and restore the current source location so that errors
2063 discovered during expansion are emitted with the right location. But
2064 it would be better if the diagnostic routines used the source location
2065 embedded in the tree nodes rather than globals. */
2066 if (gimple_has_location (stmt))
2067 input_location = gimple_location (stmt);
2068
2069 expand_gimple_stmt_1 (stmt);
2070
2071 /* Free any temporaries used to evaluate this statement. */
2072 free_temp_slots ();
2073
2074 input_location = saved_location;
2075
2076 /* Mark all insns that may trap. */
2077 lp_nr = lookup_stmt_eh_lp (stmt);
2078 if (lp_nr)
2079 {
2080 rtx insn;
2081 for (insn = next_real_insn (last); insn;
2082 insn = next_real_insn (insn))
2083 {
2084 if (! find_reg_note (insn, REG_EH_REGION, NULL_RTX)
2085 /* If we want exceptions for non-call insns, any
2086 may_trap_p instruction may throw. */
2087 && GET_CODE (PATTERN (insn)) != CLOBBER
2088 && GET_CODE (PATTERN (insn)) != USE
2089 && insn_could_throw_p (insn))
2090 make_reg_eh_region_note (insn, 0, lp_nr);
2091 }
2092 }
2093
2094 return last;
2095 }
2096
2097 /* A subroutine of expand_gimple_basic_block. Expand one GIMPLE_CALL
2098 that has CALL_EXPR_TAILCALL set. Returns non-null if we actually
2099 generated a tail call (something that might be denied by the ABI
2100 rules governing the call; see calls.c).
2101
2102 Sets CAN_FALLTHRU if we generated a *conditional* tail call, and
2103 can still reach the rest of BB. The case here is __builtin_sqrt,
2104 where the NaN result goes through the external function (with a
2105 tailcall) and the normal result happens via a sqrt instruction. */
2106
2107 static basic_block
2108 expand_gimple_tailcall (basic_block bb, gimple stmt, bool *can_fallthru)
2109 {
2110 rtx last2, last;
2111 edge e;
2112 edge_iterator ei;
2113 int probability;
2114 gcov_type count;
2115
2116 last2 = last = expand_gimple_stmt (stmt);
2117
2118 for (last = NEXT_INSN (last); last; last = NEXT_INSN (last))
2119 if (CALL_P (last) && SIBLING_CALL_P (last))
2120 goto found;
2121
2122 maybe_dump_rtl_for_gimple_stmt (stmt, last2);
2123
2124 *can_fallthru = true;
2125 return NULL;
2126
2127 found:
2128 /* ??? Wouldn't it be better to just reset any pending stack adjust?
2129 Any instructions emitted here are about to be deleted. */
2130 do_pending_stack_adjust ();
2131
2132 /* Remove any non-eh, non-abnormal edges that don't go to exit. */
2133 /* ??? I.e. the fallthrough edge. HOWEVER! If there were to be
2134 EH or abnormal edges, we shouldn't have created a tail call in
2135 the first place. So it seems to me we should just be removing
2136 all edges here, or redirecting the existing fallthru edge to
2137 the exit block. */
2138
2139 probability = 0;
2140 count = 0;
2141
2142 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
2143 {
2144 if (!(e->flags & (EDGE_ABNORMAL | EDGE_EH)))
2145 {
2146 if (e->dest != EXIT_BLOCK_PTR)
2147 {
2148 e->dest->count -= e->count;
2149 e->dest->frequency -= EDGE_FREQUENCY (e);
2150 if (e->dest->count < 0)
2151 e->dest->count = 0;
2152 if (e->dest->frequency < 0)
2153 e->dest->frequency = 0;
2154 }
2155 count += e->count;
2156 probability += e->probability;
2157 remove_edge (e);
2158 }
2159 else
2160 ei_next (&ei);
2161 }
2162
2163 /* This is somewhat ugly: the call_expr expander often emits instructions
2164 after the sibcall (to perform the function return). These confuse the
2165 find_many_sub_basic_blocks code, so we need to get rid of these. */
2166 last = NEXT_INSN (last);
2167 gcc_assert (BARRIER_P (last));
2168
2169 *can_fallthru = false;
2170 while (NEXT_INSN (last))
2171 {
2172 /* For instance an sqrt builtin expander expands if with
2173 sibcall in the then and label for `else`. */
2174 if (LABEL_P (NEXT_INSN (last)))
2175 {
2176 *can_fallthru = true;
2177 break;
2178 }
2179 delete_insn (NEXT_INSN (last));
2180 }
2181
2182 e = make_edge (bb, EXIT_BLOCK_PTR, EDGE_ABNORMAL | EDGE_SIBCALL);
2183 e->probability += probability;
2184 e->count += count;
2185 BB_END (bb) = last;
2186 update_bb_for_insn (bb);
2187
2188 if (NEXT_INSN (last))
2189 {
2190 bb = create_basic_block (NEXT_INSN (last), get_last_insn (), bb);
2191
2192 last = BB_END (bb);
2193 if (BARRIER_P (last))
2194 BB_END (bb) = PREV_INSN (last);
2195 }
2196
2197 maybe_dump_rtl_for_gimple_stmt (stmt, last2);
2198
2199 return bb;
2200 }
2201
2202 /* Return the difference between the floor and the truncated result of
2203 a signed division by OP1 with remainder MOD. */
2204 static rtx
2205 floor_sdiv_adjust (enum machine_mode mode, rtx mod, rtx op1)
2206 {
2207 /* (mod != 0 ? (op1 / mod < 0 ? -1 : 0) : 0) */
2208 return gen_rtx_IF_THEN_ELSE
2209 (mode, gen_rtx_NE (BImode, mod, const0_rtx),
2210 gen_rtx_IF_THEN_ELSE
2211 (mode, gen_rtx_LT (BImode,
2212 gen_rtx_DIV (mode, op1, mod),
2213 const0_rtx),
2214 constm1_rtx, const0_rtx),
2215 const0_rtx);
2216 }
2217
2218 /* Return the difference between the ceil and the truncated result of
2219 a signed division by OP1 with remainder MOD. */
2220 static rtx
2221 ceil_sdiv_adjust (enum machine_mode mode, rtx mod, rtx op1)
2222 {
2223 /* (mod != 0 ? (op1 / mod > 0 ? 1 : 0) : 0) */
2224 return gen_rtx_IF_THEN_ELSE
2225 (mode, gen_rtx_NE (BImode, mod, const0_rtx),
2226 gen_rtx_IF_THEN_ELSE
2227 (mode, gen_rtx_GT (BImode,
2228 gen_rtx_DIV (mode, op1, mod),
2229 const0_rtx),
2230 const1_rtx, const0_rtx),
2231 const0_rtx);
2232 }
2233
2234 /* Return the difference between the ceil and the truncated result of
2235 an unsigned division by OP1 with remainder MOD. */
2236 static rtx
2237 ceil_udiv_adjust (enum machine_mode mode, rtx mod, rtx op1 ATTRIBUTE_UNUSED)
2238 {
2239 /* (mod != 0 ? 1 : 0) */
2240 return gen_rtx_IF_THEN_ELSE
2241 (mode, gen_rtx_NE (BImode, mod, const0_rtx),
2242 const1_rtx, const0_rtx);
2243 }
2244
2245 /* Return the difference between the rounded and the truncated result
2246 of a signed division by OP1 with remainder MOD. Halfway cases are
2247 rounded away from zero, rather than to the nearest even number. */
2248 static rtx
2249 round_sdiv_adjust (enum machine_mode mode, rtx mod, rtx op1)
2250 {
2251 /* (abs (mod) >= abs (op1) - abs (mod)
2252 ? (op1 / mod > 0 ? 1 : -1)
2253 : 0) */
2254 return gen_rtx_IF_THEN_ELSE
2255 (mode, gen_rtx_GE (BImode, gen_rtx_ABS (mode, mod),
2256 gen_rtx_MINUS (mode,
2257 gen_rtx_ABS (mode, op1),
2258 gen_rtx_ABS (mode, mod))),
2259 gen_rtx_IF_THEN_ELSE
2260 (mode, gen_rtx_GT (BImode,
2261 gen_rtx_DIV (mode, op1, mod),
2262 const0_rtx),
2263 const1_rtx, constm1_rtx),
2264 const0_rtx);
2265 }
2266
2267 /* Return the difference between the rounded and the truncated result
2268 of a unsigned division by OP1 with remainder MOD. Halfway cases
2269 are rounded away from zero, rather than to the nearest even
2270 number. */
2271 static rtx
2272 round_udiv_adjust (enum machine_mode mode, rtx mod, rtx op1)
2273 {
2274 /* (mod >= op1 - mod ? 1 : 0) */
2275 return gen_rtx_IF_THEN_ELSE
2276 (mode, gen_rtx_GE (BImode, mod,
2277 gen_rtx_MINUS (mode, op1, mod)),
2278 const1_rtx, const0_rtx);
2279 }
2280
2281 /* Convert X to MODE, that must be Pmode or ptr_mode, without emitting
2282 any rtl. */
2283
2284 static rtx
2285 convert_debug_memory_address (enum machine_mode mode, rtx x,
2286 addr_space_t as)
2287 {
2288 enum machine_mode xmode = GET_MODE (x);
2289
2290 #ifndef POINTERS_EXTEND_UNSIGNED
2291 gcc_assert (mode == Pmode
2292 || mode == targetm.addr_space.address_mode (as));
2293 gcc_assert (xmode == mode || xmode == VOIDmode);
2294 #else
2295 rtx temp;
2296 enum machine_mode address_mode = targetm.addr_space.address_mode (as);
2297 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
2298
2299 gcc_assert (mode == address_mode || mode == pointer_mode);
2300
2301 if (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode)
2302 return x;
2303
2304 if (GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (xmode))
2305 x = simplify_gen_subreg (mode, x, xmode,
2306 subreg_lowpart_offset
2307 (mode, xmode));
2308 else if (POINTERS_EXTEND_UNSIGNED > 0)
2309 x = gen_rtx_ZERO_EXTEND (mode, x);
2310 else if (!POINTERS_EXTEND_UNSIGNED)
2311 x = gen_rtx_SIGN_EXTEND (mode, x);
2312 else
2313 {
2314 switch (GET_CODE (x))
2315 {
2316 case SUBREG:
2317 if ((SUBREG_PROMOTED_VAR_P (x)
2318 || (REG_P (SUBREG_REG (x)) && REG_POINTER (SUBREG_REG (x)))
2319 || (GET_CODE (SUBREG_REG (x)) == PLUS
2320 && REG_P (XEXP (SUBREG_REG (x), 0))
2321 && REG_POINTER (XEXP (SUBREG_REG (x), 0))
2322 && CONST_INT_P (XEXP (SUBREG_REG (x), 1))))
2323 && GET_MODE (SUBREG_REG (x)) == mode)
2324 return SUBREG_REG (x);
2325 break;
2326 case LABEL_REF:
2327 temp = gen_rtx_LABEL_REF (mode, XEXP (x, 0));
2328 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
2329 return temp;
2330 case SYMBOL_REF:
2331 temp = shallow_copy_rtx (x);
2332 PUT_MODE (temp, mode);
2333 return temp;
2334 case CONST:
2335 temp = convert_debug_memory_address (mode, XEXP (x, 0), as);
2336 if (temp)
2337 temp = gen_rtx_CONST (mode, temp);
2338 return temp;
2339 case PLUS:
2340 case MINUS:
2341 if (CONST_INT_P (XEXP (x, 1)))
2342 {
2343 temp = convert_debug_memory_address (mode, XEXP (x, 0), as);
2344 if (temp)
2345 return gen_rtx_fmt_ee (GET_CODE (x), mode, temp, XEXP (x, 1));
2346 }
2347 break;
2348 default:
2349 break;
2350 }
2351 /* Don't know how to express ptr_extend as operation in debug info. */
2352 return NULL;
2353 }
2354 #endif /* POINTERS_EXTEND_UNSIGNED */
2355
2356 return x;
2357 }
2358
2359 /* Return an RTX equivalent to the value of the tree expression
2360 EXP. */
2361
2362 static rtx
2363 expand_debug_expr (tree exp)
2364 {
2365 rtx op0 = NULL_RTX, op1 = NULL_RTX, op2 = NULL_RTX;
2366 enum machine_mode mode = TYPE_MODE (TREE_TYPE (exp));
2367 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
2368 addr_space_t as;
2369
2370 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
2371 {
2372 case tcc_expression:
2373 switch (TREE_CODE (exp))
2374 {
2375 case COND_EXPR:
2376 case DOT_PROD_EXPR:
2377 case WIDEN_MULT_PLUS_EXPR:
2378 case WIDEN_MULT_MINUS_EXPR:
2379 case FMA_EXPR:
2380 goto ternary;
2381
2382 case TRUTH_ANDIF_EXPR:
2383 case TRUTH_ORIF_EXPR:
2384 case TRUTH_AND_EXPR:
2385 case TRUTH_OR_EXPR:
2386 case TRUTH_XOR_EXPR:
2387 goto binary;
2388
2389 case TRUTH_NOT_EXPR:
2390 goto unary;
2391
2392 default:
2393 break;
2394 }
2395 break;
2396
2397 ternary:
2398 op2 = expand_debug_expr (TREE_OPERAND (exp, 2));
2399 if (!op2)
2400 return NULL_RTX;
2401 /* Fall through. */
2402
2403 binary:
2404 case tcc_binary:
2405 case tcc_comparison:
2406 op1 = expand_debug_expr (TREE_OPERAND (exp, 1));
2407 if (!op1)
2408 return NULL_RTX;
2409 /* Fall through. */
2410
2411 unary:
2412 case tcc_unary:
2413 op0 = expand_debug_expr (TREE_OPERAND (exp, 0));
2414 if (!op0)
2415 return NULL_RTX;
2416 break;
2417
2418 case tcc_type:
2419 case tcc_statement:
2420 gcc_unreachable ();
2421
2422 case tcc_constant:
2423 case tcc_exceptional:
2424 case tcc_declaration:
2425 case tcc_reference:
2426 case tcc_vl_exp:
2427 break;
2428 }
2429
2430 switch (TREE_CODE (exp))
2431 {
2432 case STRING_CST:
2433 if (!lookup_constant_def (exp))
2434 {
2435 if (strlen (TREE_STRING_POINTER (exp)) + 1
2436 != (size_t) TREE_STRING_LENGTH (exp))
2437 return NULL_RTX;
2438 op0 = gen_rtx_CONST_STRING (Pmode, TREE_STRING_POINTER (exp));
2439 op0 = gen_rtx_MEM (BLKmode, op0);
2440 set_mem_attributes (op0, exp, 0);
2441 return op0;
2442 }
2443 /* Fall through... */
2444
2445 case INTEGER_CST:
2446 case REAL_CST:
2447 case FIXED_CST:
2448 op0 = expand_expr (exp, NULL_RTX, mode, EXPAND_INITIALIZER);
2449 return op0;
2450
2451 case COMPLEX_CST:
2452 gcc_assert (COMPLEX_MODE_P (mode));
2453 op0 = expand_debug_expr (TREE_REALPART (exp));
2454 op1 = expand_debug_expr (TREE_IMAGPART (exp));
2455 return gen_rtx_CONCAT (mode, op0, op1);
2456
2457 case DEBUG_EXPR_DECL:
2458 op0 = DECL_RTL_IF_SET (exp);
2459
2460 if (op0)
2461 return op0;
2462
2463 op0 = gen_rtx_DEBUG_EXPR (mode);
2464 DEBUG_EXPR_TREE_DECL (op0) = exp;
2465 SET_DECL_RTL (exp, op0);
2466
2467 return op0;
2468
2469 case VAR_DECL:
2470 case PARM_DECL:
2471 case FUNCTION_DECL:
2472 case LABEL_DECL:
2473 case CONST_DECL:
2474 case RESULT_DECL:
2475 op0 = DECL_RTL_IF_SET (exp);
2476
2477 /* This decl was probably optimized away. */
2478 if (!op0)
2479 {
2480 if (TREE_CODE (exp) != VAR_DECL
2481 || DECL_EXTERNAL (exp)
2482 || !TREE_STATIC (exp)
2483 || !DECL_NAME (exp)
2484 || DECL_HARD_REGISTER (exp)
2485 || mode == VOIDmode)
2486 return NULL;
2487
2488 op0 = make_decl_rtl_for_debug (exp);
2489 if (!MEM_P (op0)
2490 || GET_CODE (XEXP (op0, 0)) != SYMBOL_REF
2491 || SYMBOL_REF_DECL (XEXP (op0, 0)) != exp)
2492 return NULL;
2493 }
2494 else
2495 op0 = copy_rtx (op0);
2496
2497 if (GET_MODE (op0) == BLKmode
2498 /* If op0 is not BLKmode, but BLKmode is, adjust_mode
2499 below would ICE. While it is likely a FE bug,
2500 try to be robust here. See PR43166. */
2501 || mode == BLKmode
2502 || (mode == VOIDmode && GET_MODE (op0) != VOIDmode))
2503 {
2504 gcc_assert (MEM_P (op0));
2505 op0 = adjust_address_nv (op0, mode, 0);
2506 return op0;
2507 }
2508
2509 /* Fall through. */
2510
2511 adjust_mode:
2512 case PAREN_EXPR:
2513 case NOP_EXPR:
2514 case CONVERT_EXPR:
2515 {
2516 enum machine_mode inner_mode = GET_MODE (op0);
2517
2518 if (mode == inner_mode)
2519 return op0;
2520
2521 if (inner_mode == VOIDmode)
2522 {
2523 if (TREE_CODE (exp) == SSA_NAME)
2524 inner_mode = TYPE_MODE (TREE_TYPE (exp));
2525 else
2526 inner_mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)));
2527 if (mode == inner_mode)
2528 return op0;
2529 }
2530
2531 if (FLOAT_MODE_P (mode) && FLOAT_MODE_P (inner_mode))
2532 {
2533 if (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (inner_mode))
2534 op0 = simplify_gen_subreg (mode, op0, inner_mode, 0);
2535 else if (GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (inner_mode))
2536 op0 = simplify_gen_unary (FLOAT_TRUNCATE, mode, op0, inner_mode);
2537 else
2538 op0 = simplify_gen_unary (FLOAT_EXTEND, mode, op0, inner_mode);
2539 }
2540 else if (FLOAT_MODE_P (mode))
2541 {
2542 gcc_assert (TREE_CODE (exp) != SSA_NAME);
2543 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))))
2544 op0 = simplify_gen_unary (UNSIGNED_FLOAT, mode, op0, inner_mode);
2545 else
2546 op0 = simplify_gen_unary (FLOAT, mode, op0, inner_mode);
2547 }
2548 else if (FLOAT_MODE_P (inner_mode))
2549 {
2550 if (unsignedp)
2551 op0 = simplify_gen_unary (UNSIGNED_FIX, mode, op0, inner_mode);
2552 else
2553 op0 = simplify_gen_unary (FIX, mode, op0, inner_mode);
2554 }
2555 else if (CONSTANT_P (op0)
2556 || GET_MODE_BITSIZE (mode) <= GET_MODE_BITSIZE (inner_mode))
2557 op0 = simplify_gen_subreg (mode, op0, inner_mode,
2558 subreg_lowpart_offset (mode,
2559 inner_mode));
2560 else if (TREE_CODE_CLASS (TREE_CODE (exp)) == tcc_unary
2561 ? TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0)))
2562 : unsignedp)
2563 op0 = gen_rtx_ZERO_EXTEND (mode, op0);
2564 else
2565 op0 = gen_rtx_SIGN_EXTEND (mode, op0);
2566
2567 return op0;
2568 }
2569
2570 case MEM_REF:
2571 if (!is_gimple_mem_ref_addr (TREE_OPERAND (exp, 0)))
2572 {
2573 tree newexp = fold_binary (MEM_REF, TREE_TYPE (exp),
2574 TREE_OPERAND (exp, 0),
2575 TREE_OPERAND (exp, 1));
2576 if (newexp)
2577 return expand_debug_expr (newexp);
2578 }
2579 /* FALLTHROUGH */
2580 case INDIRECT_REF:
2581 op0 = expand_debug_expr (TREE_OPERAND (exp, 0));
2582 if (!op0)
2583 return NULL;
2584
2585 if (TREE_CODE (exp) == MEM_REF)
2586 {
2587 if (GET_CODE (op0) == DEBUG_IMPLICIT_PTR
2588 || (GET_CODE (op0) == PLUS
2589 && GET_CODE (XEXP (op0, 0)) == DEBUG_IMPLICIT_PTR))
2590 /* (mem (debug_implicit_ptr)) might confuse aliasing.
2591 Instead just use get_inner_reference. */
2592 goto component_ref;
2593
2594 op1 = expand_debug_expr (TREE_OPERAND (exp, 1));
2595 if (!op1 || !CONST_INT_P (op1))
2596 return NULL;
2597
2598 op0 = plus_constant (op0, INTVAL (op1));
2599 }
2600
2601 if (POINTER_TYPE_P (TREE_TYPE (exp)))
2602 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp)));
2603 else
2604 as = ADDR_SPACE_GENERIC;
2605
2606 op0 = convert_debug_memory_address (targetm.addr_space.address_mode (as),
2607 op0, as);
2608 if (op0 == NULL_RTX)
2609 return NULL;
2610
2611 op0 = gen_rtx_MEM (mode, op0);
2612 set_mem_attributes (op0, exp, 0);
2613 if (TREE_CODE (exp) == MEM_REF
2614 && !is_gimple_mem_ref_addr (TREE_OPERAND (exp, 0)))
2615 set_mem_expr (op0, NULL_TREE);
2616 set_mem_addr_space (op0, as);
2617
2618 return op0;
2619
2620 case TARGET_MEM_REF:
2621 if (TREE_CODE (TMR_BASE (exp)) == ADDR_EXPR
2622 && !DECL_RTL_SET_P (TREE_OPERAND (TMR_BASE (exp), 0)))
2623 return NULL;
2624
2625 op0 = expand_debug_expr
2626 (tree_mem_ref_addr (build_pointer_type (TREE_TYPE (exp)), exp));
2627 if (!op0)
2628 return NULL;
2629
2630 if (POINTER_TYPE_P (TREE_TYPE (exp)))
2631 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp)));
2632 else
2633 as = ADDR_SPACE_GENERIC;
2634
2635 op0 = convert_debug_memory_address (targetm.addr_space.address_mode (as),
2636 op0, as);
2637 if (op0 == NULL_RTX)
2638 return NULL;
2639
2640 op0 = gen_rtx_MEM (mode, op0);
2641
2642 set_mem_attributes (op0, exp, 0);
2643 set_mem_addr_space (op0, as);
2644
2645 return op0;
2646
2647 component_ref:
2648 case ARRAY_REF:
2649 case ARRAY_RANGE_REF:
2650 case COMPONENT_REF:
2651 case BIT_FIELD_REF:
2652 case REALPART_EXPR:
2653 case IMAGPART_EXPR:
2654 case VIEW_CONVERT_EXPR:
2655 {
2656 enum machine_mode mode1;
2657 HOST_WIDE_INT bitsize, bitpos;
2658 tree offset;
2659 int volatilep = 0;
2660 tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
2661 &mode1, &unsignedp, &volatilep, false);
2662 rtx orig_op0;
2663
2664 if (bitsize == 0)
2665 return NULL;
2666
2667 orig_op0 = op0 = expand_debug_expr (tem);
2668
2669 if (!op0)
2670 return NULL;
2671
2672 if (offset)
2673 {
2674 enum machine_mode addrmode, offmode;
2675
2676 if (!MEM_P (op0))
2677 return NULL;
2678
2679 op0 = XEXP (op0, 0);
2680 addrmode = GET_MODE (op0);
2681 if (addrmode == VOIDmode)
2682 addrmode = Pmode;
2683
2684 op1 = expand_debug_expr (offset);
2685 if (!op1)
2686 return NULL;
2687
2688 offmode = GET_MODE (op1);
2689 if (offmode == VOIDmode)
2690 offmode = TYPE_MODE (TREE_TYPE (offset));
2691
2692 if (addrmode != offmode)
2693 op1 = simplify_gen_subreg (addrmode, op1, offmode,
2694 subreg_lowpart_offset (addrmode,
2695 offmode));
2696
2697 /* Don't use offset_address here, we don't need a
2698 recognizable address, and we don't want to generate
2699 code. */
2700 op0 = gen_rtx_MEM (mode, gen_rtx_PLUS (addrmode, op0, op1));
2701 }
2702
2703 if (MEM_P (op0))
2704 {
2705 if (mode1 == VOIDmode)
2706 /* Bitfield. */
2707 mode1 = smallest_mode_for_size (bitsize, MODE_INT);
2708 if (bitpos >= BITS_PER_UNIT)
2709 {
2710 op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
2711 bitpos %= BITS_PER_UNIT;
2712 }
2713 else if (bitpos < 0)
2714 {
2715 HOST_WIDE_INT units
2716 = (-bitpos + BITS_PER_UNIT - 1) / BITS_PER_UNIT;
2717 op0 = adjust_address_nv (op0, mode1, units);
2718 bitpos += units * BITS_PER_UNIT;
2719 }
2720 else if (bitpos == 0 && bitsize == GET_MODE_BITSIZE (mode))
2721 op0 = adjust_address_nv (op0, mode, 0);
2722 else if (GET_MODE (op0) != mode1)
2723 op0 = adjust_address_nv (op0, mode1, 0);
2724 else
2725 op0 = copy_rtx (op0);
2726 if (op0 == orig_op0)
2727 op0 = shallow_copy_rtx (op0);
2728 set_mem_attributes (op0, exp, 0);
2729 }
2730
2731 if (bitpos == 0 && mode == GET_MODE (op0))
2732 return op0;
2733
2734 if (bitpos < 0)
2735 return NULL;
2736
2737 if (GET_MODE (op0) == BLKmode)
2738 return NULL;
2739
2740 if ((bitpos % BITS_PER_UNIT) == 0
2741 && bitsize == GET_MODE_BITSIZE (mode1))
2742 {
2743 enum machine_mode opmode = GET_MODE (op0);
2744
2745 if (opmode == VOIDmode)
2746 opmode = TYPE_MODE (TREE_TYPE (tem));
2747
2748 /* This condition may hold if we're expanding the address
2749 right past the end of an array that turned out not to
2750 be addressable (i.e., the address was only computed in
2751 debug stmts). The gen_subreg below would rightfully
2752 crash, and the address doesn't really exist, so just
2753 drop it. */
2754 if (bitpos >= GET_MODE_BITSIZE (opmode))
2755 return NULL;
2756
2757 if ((bitpos % GET_MODE_BITSIZE (mode)) == 0)
2758 return simplify_gen_subreg (mode, op0, opmode,
2759 bitpos / BITS_PER_UNIT);
2760 }
2761
2762 return simplify_gen_ternary (SCALAR_INT_MODE_P (GET_MODE (op0))
2763 && TYPE_UNSIGNED (TREE_TYPE (exp))
2764 ? SIGN_EXTRACT
2765 : ZERO_EXTRACT, mode,
2766 GET_MODE (op0) != VOIDmode
2767 ? GET_MODE (op0)
2768 : TYPE_MODE (TREE_TYPE (tem)),
2769 op0, GEN_INT (bitsize), GEN_INT (bitpos));
2770 }
2771
2772 case ABS_EXPR:
2773 return gen_rtx_ABS (mode, op0);
2774
2775 case NEGATE_EXPR:
2776 return gen_rtx_NEG (mode, op0);
2777
2778 case BIT_NOT_EXPR:
2779 return gen_rtx_NOT (mode, op0);
2780
2781 case FLOAT_EXPR:
2782 if (unsignedp)
2783 return gen_rtx_UNSIGNED_FLOAT (mode, op0);
2784 else
2785 return gen_rtx_FLOAT (mode, op0);
2786
2787 case FIX_TRUNC_EXPR:
2788 if (unsignedp)
2789 return gen_rtx_UNSIGNED_FIX (mode, op0);
2790 else
2791 return gen_rtx_FIX (mode, op0);
2792
2793 case POINTER_PLUS_EXPR:
2794 /* For the rare target where pointers are not the same size as
2795 size_t, we need to check for mis-matched modes and correct
2796 the addend. */
2797 if (op0 && op1
2798 && GET_MODE (op0) != VOIDmode && GET_MODE (op1) != VOIDmode
2799 && GET_MODE (op0) != GET_MODE (op1))
2800 {
2801 if (GET_MODE_BITSIZE (GET_MODE (op0)) < GET_MODE_BITSIZE (GET_MODE (op1)))
2802 op1 = gen_rtx_TRUNCATE (GET_MODE (op0), op1);
2803 else
2804 /* We always sign-extend, regardless of the signedness of
2805 the operand, because the operand is always unsigned
2806 here even if the original C expression is signed. */
2807 op1 = gen_rtx_SIGN_EXTEND (GET_MODE (op0), op1);
2808 }
2809 /* Fall through. */
2810 case PLUS_EXPR:
2811 return gen_rtx_PLUS (mode, op0, op1);
2812
2813 case MINUS_EXPR:
2814 return gen_rtx_MINUS (mode, op0, op1);
2815
2816 case MULT_EXPR:
2817 return gen_rtx_MULT (mode, op0, op1);
2818
2819 case RDIV_EXPR:
2820 case TRUNC_DIV_EXPR:
2821 case EXACT_DIV_EXPR:
2822 if (unsignedp)
2823 return gen_rtx_UDIV (mode, op0, op1);
2824 else
2825 return gen_rtx_DIV (mode, op0, op1);
2826
2827 case TRUNC_MOD_EXPR:
2828 if (unsignedp)
2829 return gen_rtx_UMOD (mode, op0, op1);
2830 else
2831 return gen_rtx_MOD (mode, op0, op1);
2832
2833 case FLOOR_DIV_EXPR:
2834 if (unsignedp)
2835 return gen_rtx_UDIV (mode, op0, op1);
2836 else
2837 {
2838 rtx div = gen_rtx_DIV (mode, op0, op1);
2839 rtx mod = gen_rtx_MOD (mode, op0, op1);
2840 rtx adj = floor_sdiv_adjust (mode, mod, op1);
2841 return gen_rtx_PLUS (mode, div, adj);
2842 }
2843
2844 case FLOOR_MOD_EXPR:
2845 if (unsignedp)
2846 return gen_rtx_UMOD (mode, op0, op1);
2847 else
2848 {
2849 rtx mod = gen_rtx_MOD (mode, op0, op1);
2850 rtx adj = floor_sdiv_adjust (mode, mod, op1);
2851 adj = gen_rtx_NEG (mode, gen_rtx_MULT (mode, adj, op1));
2852 return gen_rtx_PLUS (mode, mod, adj);
2853 }
2854
2855 case CEIL_DIV_EXPR:
2856 if (unsignedp)
2857 {
2858 rtx div = gen_rtx_UDIV (mode, op0, op1);
2859 rtx mod = gen_rtx_UMOD (mode, op0, op1);
2860 rtx adj = ceil_udiv_adjust (mode, mod, op1);
2861 return gen_rtx_PLUS (mode, div, adj);
2862 }
2863 else
2864 {
2865 rtx div = gen_rtx_DIV (mode, op0, op1);
2866 rtx mod = gen_rtx_MOD (mode, op0, op1);
2867 rtx adj = ceil_sdiv_adjust (mode, mod, op1);
2868 return gen_rtx_PLUS (mode, div, adj);
2869 }
2870
2871 case CEIL_MOD_EXPR:
2872 if (unsignedp)
2873 {
2874 rtx mod = gen_rtx_UMOD (mode, op0, op1);
2875 rtx adj = ceil_udiv_adjust (mode, mod, op1);
2876 adj = gen_rtx_NEG (mode, gen_rtx_MULT (mode, adj, op1));
2877 return gen_rtx_PLUS (mode, mod, adj);
2878 }
2879 else
2880 {
2881 rtx mod = gen_rtx_MOD (mode, op0, op1);
2882 rtx adj = ceil_sdiv_adjust (mode, mod, op1);
2883 adj = gen_rtx_NEG (mode, gen_rtx_MULT (mode, adj, op1));
2884 return gen_rtx_PLUS (mode, mod, adj);
2885 }
2886
2887 case ROUND_DIV_EXPR:
2888 if (unsignedp)
2889 {
2890 rtx div = gen_rtx_UDIV (mode, op0, op1);
2891 rtx mod = gen_rtx_UMOD (mode, op0, op1);
2892 rtx adj = round_udiv_adjust (mode, mod, op1);
2893 return gen_rtx_PLUS (mode, div, adj);
2894 }
2895 else
2896 {
2897 rtx div = gen_rtx_DIV (mode, op0, op1);
2898 rtx mod = gen_rtx_MOD (mode, op0, op1);
2899 rtx adj = round_sdiv_adjust (mode, mod, op1);
2900 return gen_rtx_PLUS (mode, div, adj);
2901 }
2902
2903 case ROUND_MOD_EXPR:
2904 if (unsignedp)
2905 {
2906 rtx mod = gen_rtx_UMOD (mode, op0, op1);
2907 rtx adj = round_udiv_adjust (mode, mod, op1);
2908 adj = gen_rtx_NEG (mode, gen_rtx_MULT (mode, adj, op1));
2909 return gen_rtx_PLUS (mode, mod, adj);
2910 }
2911 else
2912 {
2913 rtx mod = gen_rtx_MOD (mode, op0, op1);
2914 rtx adj = round_sdiv_adjust (mode, mod, op1);
2915 adj = gen_rtx_NEG (mode, gen_rtx_MULT (mode, adj, op1));
2916 return gen_rtx_PLUS (mode, mod, adj);
2917 }
2918
2919 case LSHIFT_EXPR:
2920 return gen_rtx_ASHIFT (mode, op0, op1);
2921
2922 case RSHIFT_EXPR:
2923 if (unsignedp)
2924 return gen_rtx_LSHIFTRT (mode, op0, op1);
2925 else
2926 return gen_rtx_ASHIFTRT (mode, op0, op1);
2927
2928 case LROTATE_EXPR:
2929 return gen_rtx_ROTATE (mode, op0, op1);
2930
2931 case RROTATE_EXPR:
2932 return gen_rtx_ROTATERT (mode, op0, op1);
2933
2934 case MIN_EXPR:
2935 if (unsignedp)
2936 return gen_rtx_UMIN (mode, op0, op1);
2937 else
2938 return gen_rtx_SMIN (mode, op0, op1);
2939
2940 case MAX_EXPR:
2941 if (unsignedp)
2942 return gen_rtx_UMAX (mode, op0, op1);
2943 else
2944 return gen_rtx_SMAX (mode, op0, op1);
2945
2946 case BIT_AND_EXPR:
2947 case TRUTH_AND_EXPR:
2948 return gen_rtx_AND (mode, op0, op1);
2949
2950 case BIT_IOR_EXPR:
2951 case TRUTH_OR_EXPR:
2952 return gen_rtx_IOR (mode, op0, op1);
2953
2954 case BIT_XOR_EXPR:
2955 case TRUTH_XOR_EXPR:
2956 return gen_rtx_XOR (mode, op0, op1);
2957
2958 case TRUTH_ANDIF_EXPR:
2959 return gen_rtx_IF_THEN_ELSE (mode, op0, op1, const0_rtx);
2960
2961 case TRUTH_ORIF_EXPR:
2962 return gen_rtx_IF_THEN_ELSE (mode, op0, const_true_rtx, op1);
2963
2964 case TRUTH_NOT_EXPR:
2965 return gen_rtx_EQ (mode, op0, const0_rtx);
2966
2967 case LT_EXPR:
2968 if (unsignedp)
2969 return gen_rtx_LTU (mode, op0, op1);
2970 else
2971 return gen_rtx_LT (mode, op0, op1);
2972
2973 case LE_EXPR:
2974 if (unsignedp)
2975 return gen_rtx_LEU (mode, op0, op1);
2976 else
2977 return gen_rtx_LE (mode, op0, op1);
2978
2979 case GT_EXPR:
2980 if (unsignedp)
2981 return gen_rtx_GTU (mode, op0, op1);
2982 else
2983 return gen_rtx_GT (mode, op0, op1);
2984
2985 case GE_EXPR:
2986 if (unsignedp)
2987 return gen_rtx_GEU (mode, op0, op1);
2988 else
2989 return gen_rtx_GE (mode, op0, op1);
2990
2991 case EQ_EXPR:
2992 return gen_rtx_EQ (mode, op0, op1);
2993
2994 case NE_EXPR:
2995 return gen_rtx_NE (mode, op0, op1);
2996
2997 case UNORDERED_EXPR:
2998 return gen_rtx_UNORDERED (mode, op0, op1);
2999
3000 case ORDERED_EXPR:
3001 return gen_rtx_ORDERED (mode, op0, op1);
3002
3003 case UNLT_EXPR:
3004 return gen_rtx_UNLT (mode, op0, op1);
3005
3006 case UNLE_EXPR:
3007 return gen_rtx_UNLE (mode, op0, op1);
3008
3009 case UNGT_EXPR:
3010 return gen_rtx_UNGT (mode, op0, op1);
3011
3012 case UNGE_EXPR:
3013 return gen_rtx_UNGE (mode, op0, op1);
3014
3015 case UNEQ_EXPR:
3016 return gen_rtx_UNEQ (mode, op0, op1);
3017
3018 case LTGT_EXPR:
3019 return gen_rtx_LTGT (mode, op0, op1);
3020
3021 case COND_EXPR:
3022 return gen_rtx_IF_THEN_ELSE (mode, op0, op1, op2);
3023
3024 case COMPLEX_EXPR:
3025 gcc_assert (COMPLEX_MODE_P (mode));
3026 if (GET_MODE (op0) == VOIDmode)
3027 op0 = gen_rtx_CONST (GET_MODE_INNER (mode), op0);
3028 if (GET_MODE (op1) == VOIDmode)
3029 op1 = gen_rtx_CONST (GET_MODE_INNER (mode), op1);
3030 return gen_rtx_CONCAT (mode, op0, op1);
3031
3032 case CONJ_EXPR:
3033 if (GET_CODE (op0) == CONCAT)
3034 return gen_rtx_CONCAT (mode, XEXP (op0, 0),
3035 gen_rtx_NEG (GET_MODE_INNER (mode),
3036 XEXP (op0, 1)));
3037 else
3038 {
3039 enum machine_mode imode = GET_MODE_INNER (mode);
3040 rtx re, im;
3041
3042 if (MEM_P (op0))
3043 {
3044 re = adjust_address_nv (op0, imode, 0);
3045 im = adjust_address_nv (op0, imode, GET_MODE_SIZE (imode));
3046 }
3047 else
3048 {
3049 enum machine_mode ifmode = int_mode_for_mode (mode);
3050 enum machine_mode ihmode = int_mode_for_mode (imode);
3051 rtx halfsize;
3052 if (ifmode == BLKmode || ihmode == BLKmode)
3053 return NULL;
3054 halfsize = GEN_INT (GET_MODE_BITSIZE (ihmode));
3055 re = op0;
3056 if (mode != ifmode)
3057 re = gen_rtx_SUBREG (ifmode, re, 0);
3058 re = gen_rtx_ZERO_EXTRACT (ihmode, re, halfsize, const0_rtx);
3059 if (imode != ihmode)
3060 re = gen_rtx_SUBREG (imode, re, 0);
3061 im = copy_rtx (op0);
3062 if (mode != ifmode)
3063 im = gen_rtx_SUBREG (ifmode, im, 0);
3064 im = gen_rtx_ZERO_EXTRACT (ihmode, im, halfsize, halfsize);
3065 if (imode != ihmode)
3066 im = gen_rtx_SUBREG (imode, im, 0);
3067 }
3068 im = gen_rtx_NEG (imode, im);
3069 return gen_rtx_CONCAT (mode, re, im);
3070 }
3071
3072 case ADDR_EXPR:
3073 op0 = expand_debug_expr (TREE_OPERAND (exp, 0));
3074 if (!op0 || !MEM_P (op0))
3075 {
3076 if ((TREE_CODE (TREE_OPERAND (exp, 0)) == VAR_DECL
3077 || TREE_CODE (TREE_OPERAND (exp, 0)) == PARM_DECL
3078 || TREE_CODE (TREE_OPERAND (exp, 0)) == RESULT_DECL)
3079 && !TREE_ADDRESSABLE (TREE_OPERAND (exp, 0)))
3080 return gen_rtx_DEBUG_IMPLICIT_PTR (mode, TREE_OPERAND (exp, 0));
3081
3082 if (handled_component_p (TREE_OPERAND (exp, 0)))
3083 {
3084 HOST_WIDE_INT bitoffset, bitsize, maxsize;
3085 tree decl
3086 = get_ref_base_and_extent (TREE_OPERAND (exp, 0),
3087 &bitoffset, &bitsize, &maxsize);
3088 if ((TREE_CODE (decl) == VAR_DECL
3089 || TREE_CODE (decl) == PARM_DECL
3090 || TREE_CODE (decl) == RESULT_DECL)
3091 && !TREE_ADDRESSABLE (decl)
3092 && (bitoffset % BITS_PER_UNIT) == 0
3093 && bitsize > 0
3094 && bitsize == maxsize)
3095 return plus_constant (gen_rtx_DEBUG_IMPLICIT_PTR (mode, decl),
3096 bitoffset / BITS_PER_UNIT);
3097 }
3098
3099 return NULL;
3100 }
3101
3102 as = TYPE_ADDR_SPACE (TREE_TYPE (exp));
3103 op0 = convert_debug_memory_address (mode, XEXP (op0, 0), as);
3104
3105 return op0;
3106
3107 case VECTOR_CST:
3108 exp = build_constructor_from_list (TREE_TYPE (exp),
3109 TREE_VECTOR_CST_ELTS (exp));
3110 /* Fall through. */
3111
3112 case CONSTRUCTOR:
3113 if (TREE_CODE (TREE_TYPE (exp)) == VECTOR_TYPE)
3114 {
3115 unsigned i;
3116 tree val;
3117
3118 op0 = gen_rtx_CONCATN
3119 (mode, rtvec_alloc (TYPE_VECTOR_SUBPARTS (TREE_TYPE (exp))));
3120
3121 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), i, val)
3122 {
3123 op1 = expand_debug_expr (val);
3124 if (!op1)
3125 return NULL;
3126 XVECEXP (op0, 0, i) = op1;
3127 }
3128
3129 if (i < TYPE_VECTOR_SUBPARTS (TREE_TYPE (exp)))
3130 {
3131 op1 = expand_debug_expr
3132 (build_zero_cst (TREE_TYPE (TREE_TYPE (exp))));
3133
3134 if (!op1)
3135 return NULL;
3136
3137 for (; i < TYPE_VECTOR_SUBPARTS (TREE_TYPE (exp)); i++)
3138 XVECEXP (op0, 0, i) = op1;
3139 }
3140
3141 return op0;
3142 }
3143 else
3144 goto flag_unsupported;
3145
3146 case CALL_EXPR:
3147 /* ??? Maybe handle some builtins? */
3148 return NULL;
3149
3150 case SSA_NAME:
3151 {
3152 gimple g = get_gimple_for_ssa_name (exp);
3153 if (g)
3154 {
3155 op0 = expand_debug_expr (gimple_assign_rhs_to_tree (g));
3156 if (!op0)
3157 return NULL;
3158 }
3159 else
3160 {
3161 int part = var_to_partition (SA.map, exp);
3162
3163 if (part == NO_PARTITION)
3164 {
3165 /* If this is a reference to an incoming value of parameter
3166 that is never used in the code or where the incoming
3167 value is never used in the code, use PARM_DECL's
3168 DECL_RTL if set. */
3169 if (SSA_NAME_IS_DEFAULT_DEF (exp)
3170 && TREE_CODE (SSA_NAME_VAR (exp)) == PARM_DECL)
3171 {
3172 rtx incoming = DECL_INCOMING_RTL (SSA_NAME_VAR (exp));
3173 if (incoming
3174 && GET_MODE (incoming) != BLKmode
3175 && ((REG_P (incoming) && HARD_REGISTER_P (incoming))
3176 || (MEM_P (incoming)
3177 && REG_P (XEXP (incoming, 0))
3178 && HARD_REGISTER_P (XEXP (incoming, 0)))))
3179 {
3180 op0 = gen_rtx_ENTRY_VALUE (GET_MODE (incoming));
3181 ENTRY_VALUE_EXP (op0) = incoming;
3182 goto adjust_mode;
3183 }
3184 op0 = expand_debug_expr (SSA_NAME_VAR (exp));
3185 if (!op0)
3186 return NULL;
3187 goto adjust_mode;
3188 }
3189 return NULL;
3190 }
3191
3192 gcc_assert (part >= 0 && (unsigned)part < SA.map->num_partitions);
3193
3194 op0 = copy_rtx (SA.partition_to_pseudo[part]);
3195 }
3196 goto adjust_mode;
3197 }
3198
3199 case ERROR_MARK:
3200 return NULL;
3201
3202 /* Vector stuff. For most of the codes we don't have rtl codes. */
3203 case REALIGN_LOAD_EXPR:
3204 case REDUC_MAX_EXPR:
3205 case REDUC_MIN_EXPR:
3206 case REDUC_PLUS_EXPR:
3207 case VEC_COND_EXPR:
3208 case VEC_EXTRACT_EVEN_EXPR:
3209 case VEC_EXTRACT_ODD_EXPR:
3210 case VEC_INTERLEAVE_HIGH_EXPR:
3211 case VEC_INTERLEAVE_LOW_EXPR:
3212 case VEC_LSHIFT_EXPR:
3213 case VEC_PACK_FIX_TRUNC_EXPR:
3214 case VEC_PACK_SAT_EXPR:
3215 case VEC_PACK_TRUNC_EXPR:
3216 case VEC_RSHIFT_EXPR:
3217 case VEC_UNPACK_FLOAT_HI_EXPR:
3218 case VEC_UNPACK_FLOAT_LO_EXPR:
3219 case VEC_UNPACK_HI_EXPR:
3220 case VEC_UNPACK_LO_EXPR:
3221 case VEC_WIDEN_MULT_HI_EXPR:
3222 case VEC_WIDEN_MULT_LO_EXPR:
3223 return NULL;
3224
3225 /* Misc codes. */
3226 case ADDR_SPACE_CONVERT_EXPR:
3227 case FIXED_CONVERT_EXPR:
3228 case OBJ_TYPE_REF:
3229 case WITH_SIZE_EXPR:
3230 return NULL;
3231
3232 case DOT_PROD_EXPR:
3233 if (SCALAR_INT_MODE_P (GET_MODE (op0))
3234 && SCALAR_INT_MODE_P (mode))
3235 {
3236 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))))
3237 op0 = gen_rtx_ZERO_EXTEND (mode, op0);
3238 else
3239 op0 = gen_rtx_SIGN_EXTEND (mode, op0);
3240 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 1))))
3241 op1 = gen_rtx_ZERO_EXTEND (mode, op1);
3242 else
3243 op1 = gen_rtx_SIGN_EXTEND (mode, op1);
3244 op0 = gen_rtx_MULT (mode, op0, op1);
3245 return gen_rtx_PLUS (mode, op0, op2);
3246 }
3247 return NULL;
3248
3249 case WIDEN_MULT_EXPR:
3250 case WIDEN_MULT_PLUS_EXPR:
3251 case WIDEN_MULT_MINUS_EXPR:
3252 if (SCALAR_INT_MODE_P (GET_MODE (op0))
3253 && SCALAR_INT_MODE_P (mode))
3254 {
3255 enum machine_mode inner_mode = GET_MODE (op0);
3256 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))))
3257 op0 = simplify_gen_unary (ZERO_EXTEND, mode, op0, inner_mode);
3258 else
3259 op0 = simplify_gen_unary (SIGN_EXTEND, mode, op0, inner_mode);
3260 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 1))))
3261 op1 = simplify_gen_unary (ZERO_EXTEND, mode, op1, inner_mode);
3262 else
3263 op1 = simplify_gen_unary (SIGN_EXTEND, mode, op1, inner_mode);
3264 op0 = gen_rtx_MULT (mode, op0, op1);
3265 if (TREE_CODE (exp) == WIDEN_MULT_EXPR)
3266 return op0;
3267 else if (TREE_CODE (exp) == WIDEN_MULT_PLUS_EXPR)
3268 return gen_rtx_PLUS (mode, op0, op2);
3269 else
3270 return gen_rtx_MINUS (mode, op2, op0);
3271 }
3272 return NULL;
3273
3274 case WIDEN_SUM_EXPR:
3275 if (SCALAR_INT_MODE_P (GET_MODE (op0))
3276 && SCALAR_INT_MODE_P (mode))
3277 {
3278 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))))
3279 op0 = gen_rtx_ZERO_EXTEND (mode, op0);
3280 else
3281 op0 = gen_rtx_SIGN_EXTEND (mode, op0);
3282 return gen_rtx_PLUS (mode, op0, op1);
3283 }
3284 return NULL;
3285
3286 case FMA_EXPR:
3287 return gen_rtx_FMA (mode, op0, op1, op2);
3288
3289 default:
3290 flag_unsupported:
3291 #ifdef ENABLE_CHECKING
3292 debug_tree (exp);
3293 gcc_unreachable ();
3294 #else
3295 return NULL;
3296 #endif
3297 }
3298 }
3299
3300 /* Expand the _LOCs in debug insns. We run this after expanding all
3301 regular insns, so that any variables referenced in the function
3302 will have their DECL_RTLs set. */
3303
3304 static void
3305 expand_debug_locations (void)
3306 {
3307 rtx insn;
3308 rtx last = get_last_insn ();
3309 int save_strict_alias = flag_strict_aliasing;
3310
3311 /* New alias sets while setting up memory attributes cause
3312 -fcompare-debug failures, even though it doesn't bring about any
3313 codegen changes. */
3314 flag_strict_aliasing = 0;
3315
3316 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3317 if (DEBUG_INSN_P (insn))
3318 {
3319 tree value = (tree)INSN_VAR_LOCATION_LOC (insn);
3320 rtx val;
3321 enum machine_mode mode;
3322
3323 if (value == NULL_TREE)
3324 val = NULL_RTX;
3325 else
3326 {
3327 val = expand_debug_expr (value);
3328 gcc_assert (last == get_last_insn ());
3329 }
3330
3331 if (!val)
3332 val = gen_rtx_UNKNOWN_VAR_LOC ();
3333 else
3334 {
3335 mode = GET_MODE (INSN_VAR_LOCATION (insn));
3336
3337 gcc_assert (mode == GET_MODE (val)
3338 || (GET_MODE (val) == VOIDmode
3339 && (CONST_INT_P (val)
3340 || GET_CODE (val) == CONST_FIXED
3341 || GET_CODE (val) == CONST_DOUBLE
3342 || GET_CODE (val) == LABEL_REF)));
3343 }
3344
3345 INSN_VAR_LOCATION_LOC (insn) = val;
3346 }
3347
3348 flag_strict_aliasing = save_strict_alias;
3349 }
3350
3351 /* Expand basic block BB from GIMPLE trees to RTL. */
3352
3353 static basic_block
3354 expand_gimple_basic_block (basic_block bb)
3355 {
3356 gimple_stmt_iterator gsi;
3357 gimple_seq stmts;
3358 gimple stmt = NULL;
3359 rtx note, last;
3360 edge e;
3361 edge_iterator ei;
3362 void **elt;
3363
3364 if (dump_file)
3365 fprintf (dump_file, "\n;; Generating RTL for gimple basic block %d\n",
3366 bb->index);
3367
3368 /* Note that since we are now transitioning from GIMPLE to RTL, we
3369 cannot use the gsi_*_bb() routines because they expect the basic
3370 block to be in GIMPLE, instead of RTL. Therefore, we need to
3371 access the BB sequence directly. */
3372 stmts = bb_seq (bb);
3373 bb->il.gimple = NULL;
3374 rtl_profile_for_bb (bb);
3375 init_rtl_bb_info (bb);
3376 bb->flags |= BB_RTL;
3377
3378 /* Remove the RETURN_EXPR if we may fall though to the exit
3379 instead. */
3380 gsi = gsi_last (stmts);
3381 if (!gsi_end_p (gsi)
3382 && gimple_code (gsi_stmt (gsi)) == GIMPLE_RETURN)
3383 {
3384 gimple ret_stmt = gsi_stmt (gsi);
3385
3386 gcc_assert (single_succ_p (bb));
3387 gcc_assert (single_succ (bb) == EXIT_BLOCK_PTR);
3388
3389 if (bb->next_bb == EXIT_BLOCK_PTR
3390 && !gimple_return_retval (ret_stmt))
3391 {
3392 gsi_remove (&gsi, false);
3393 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
3394 }
3395 }
3396
3397 gsi = gsi_start (stmts);
3398 if (!gsi_end_p (gsi))
3399 {
3400 stmt = gsi_stmt (gsi);
3401 if (gimple_code (stmt) != GIMPLE_LABEL)
3402 stmt = NULL;
3403 }
3404
3405 elt = pointer_map_contains (lab_rtx_for_bb, bb);
3406
3407 if (stmt || elt)
3408 {
3409 last = get_last_insn ();
3410
3411 if (stmt)
3412 {
3413 expand_gimple_stmt (stmt);
3414 gsi_next (&gsi);
3415 }
3416
3417 if (elt)
3418 emit_label ((rtx) *elt);
3419
3420 /* Java emits line number notes in the top of labels.
3421 ??? Make this go away once line number notes are obsoleted. */
3422 BB_HEAD (bb) = NEXT_INSN (last);
3423 if (NOTE_P (BB_HEAD (bb)))
3424 BB_HEAD (bb) = NEXT_INSN (BB_HEAD (bb));
3425 note = emit_note_after (NOTE_INSN_BASIC_BLOCK, BB_HEAD (bb));
3426
3427 maybe_dump_rtl_for_gimple_stmt (stmt, last);
3428 }
3429 else
3430 note = BB_HEAD (bb) = emit_note (NOTE_INSN_BASIC_BLOCK);
3431
3432 NOTE_BASIC_BLOCK (note) = bb;
3433
3434 for (; !gsi_end_p (gsi); gsi_next (&gsi))
3435 {
3436 basic_block new_bb;
3437
3438 stmt = gsi_stmt (gsi);
3439
3440 /* If this statement is a non-debug one, and we generate debug
3441 insns, then this one might be the last real use of a TERed
3442 SSA_NAME, but where there are still some debug uses further
3443 down. Expanding the current SSA name in such further debug
3444 uses by their RHS might lead to wrong debug info, as coalescing
3445 might make the operands of such RHS be placed into the same
3446 pseudo as something else. Like so:
3447 a_1 = a_0 + 1; // Assume a_1 is TERed and a_0 is dead
3448 use(a_1);
3449 a_2 = ...
3450 #DEBUG ... => a_1
3451 As a_0 and a_2 don't overlap in lifetime, assume they are coalesced.
3452 If we now would expand a_1 by it's RHS (a_0 + 1) in the debug use,
3453 the write to a_2 would actually have clobbered the place which
3454 formerly held a_0.
3455
3456 So, instead of that, we recognize the situation, and generate
3457 debug temporaries at the last real use of TERed SSA names:
3458 a_1 = a_0 + 1;
3459 #DEBUG #D1 => a_1
3460 use(a_1);
3461 a_2 = ...
3462 #DEBUG ... => #D1
3463 */
3464 if (MAY_HAVE_DEBUG_INSNS
3465 && SA.values
3466 && !is_gimple_debug (stmt))
3467 {
3468 ssa_op_iter iter;
3469 tree op;
3470 gimple def;
3471
3472 location_t sloc = get_curr_insn_source_location ();
3473 tree sblock = get_curr_insn_block ();
3474
3475 /* Look for SSA names that have their last use here (TERed
3476 names always have only one real use). */
3477 FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_USE)
3478 if ((def = get_gimple_for_ssa_name (op)))
3479 {
3480 imm_use_iterator imm_iter;
3481 use_operand_p use_p;
3482 bool have_debug_uses = false;
3483
3484 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, op)
3485 {
3486 if (gimple_debug_bind_p (USE_STMT (use_p)))
3487 {
3488 have_debug_uses = true;
3489 break;
3490 }
3491 }
3492
3493 if (have_debug_uses)
3494 {
3495 /* OP is a TERed SSA name, with DEF it's defining
3496 statement, and where OP is used in further debug
3497 instructions. Generate a debug temporary, and
3498 replace all uses of OP in debug insns with that
3499 temporary. */
3500 gimple debugstmt;
3501 tree value = gimple_assign_rhs_to_tree (def);
3502 tree vexpr = make_node (DEBUG_EXPR_DECL);
3503 rtx val;
3504 enum machine_mode mode;
3505
3506 set_curr_insn_source_location (gimple_location (def));
3507 set_curr_insn_block (gimple_block (def));
3508
3509 DECL_ARTIFICIAL (vexpr) = 1;
3510 TREE_TYPE (vexpr) = TREE_TYPE (value);
3511 if (DECL_P (value))
3512 mode = DECL_MODE (value);
3513 else
3514 mode = TYPE_MODE (TREE_TYPE (value));
3515 DECL_MODE (vexpr) = mode;
3516
3517 val = gen_rtx_VAR_LOCATION
3518 (mode, vexpr, (rtx)value, VAR_INIT_STATUS_INITIALIZED);
3519
3520 emit_debug_insn (val);
3521
3522 FOR_EACH_IMM_USE_STMT (debugstmt, imm_iter, op)
3523 {
3524 if (!gimple_debug_bind_p (debugstmt))
3525 continue;
3526
3527 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
3528 SET_USE (use_p, vexpr);
3529
3530 update_stmt (debugstmt);
3531 }
3532 }
3533 }
3534 set_curr_insn_source_location (sloc);
3535 set_curr_insn_block (sblock);
3536 }
3537
3538 currently_expanding_gimple_stmt = stmt;
3539
3540 /* Expand this statement, then evaluate the resulting RTL and
3541 fixup the CFG accordingly. */
3542 if (gimple_code (stmt) == GIMPLE_COND)
3543 {
3544 new_bb = expand_gimple_cond (bb, stmt);
3545 if (new_bb)
3546 return new_bb;
3547 }
3548 else if (gimple_debug_bind_p (stmt))
3549 {
3550 location_t sloc = get_curr_insn_source_location ();
3551 tree sblock = get_curr_insn_block ();
3552 gimple_stmt_iterator nsi = gsi;
3553
3554 for (;;)
3555 {
3556 tree var = gimple_debug_bind_get_var (stmt);
3557 tree value;
3558 rtx val;
3559 enum machine_mode mode;
3560
3561 if (gimple_debug_bind_has_value_p (stmt))
3562 value = gimple_debug_bind_get_value (stmt);
3563 else
3564 value = NULL_TREE;
3565
3566 last = get_last_insn ();
3567
3568 set_curr_insn_source_location (gimple_location (stmt));
3569 set_curr_insn_block (gimple_block (stmt));
3570
3571 if (DECL_P (var))
3572 mode = DECL_MODE (var);
3573 else
3574 mode = TYPE_MODE (TREE_TYPE (var));
3575
3576 val = gen_rtx_VAR_LOCATION
3577 (mode, var, (rtx)value, VAR_INIT_STATUS_INITIALIZED);
3578
3579 emit_debug_insn (val);
3580
3581 if (dump_file && (dump_flags & TDF_DETAILS))
3582 {
3583 /* We can't dump the insn with a TREE where an RTX
3584 is expected. */
3585 PAT_VAR_LOCATION_LOC (val) = const0_rtx;
3586 maybe_dump_rtl_for_gimple_stmt (stmt, last);
3587 PAT_VAR_LOCATION_LOC (val) = (rtx)value;
3588 }
3589
3590 /* In order not to generate too many debug temporaries,
3591 we delink all uses of debug statements we already expanded.
3592 Therefore debug statements between definition and real
3593 use of TERed SSA names will continue to use the SSA name,
3594 and not be replaced with debug temps. */
3595 delink_stmt_imm_use (stmt);
3596
3597 gsi = nsi;
3598 gsi_next (&nsi);
3599 if (gsi_end_p (nsi))
3600 break;
3601 stmt = gsi_stmt (nsi);
3602 if (!gimple_debug_bind_p (stmt))
3603 break;
3604 }
3605
3606 set_curr_insn_source_location (sloc);
3607 set_curr_insn_block (sblock);
3608 }
3609 else
3610 {
3611 if (is_gimple_call (stmt) && gimple_call_tail_p (stmt))
3612 {
3613 bool can_fallthru;
3614 new_bb = expand_gimple_tailcall (bb, stmt, &can_fallthru);
3615 if (new_bb)
3616 {
3617 if (can_fallthru)
3618 bb = new_bb;
3619 else
3620 return new_bb;
3621 }
3622 }
3623 else
3624 {
3625 def_operand_p def_p;
3626 def_p = SINGLE_SSA_DEF_OPERAND (stmt, SSA_OP_DEF);
3627
3628 if (def_p != NULL)
3629 {
3630 /* Ignore this stmt if it is in the list of
3631 replaceable expressions. */
3632 if (SA.values
3633 && bitmap_bit_p (SA.values,
3634 SSA_NAME_VERSION (DEF_FROM_PTR (def_p))))
3635 continue;
3636 }
3637 last = expand_gimple_stmt (stmt);
3638 maybe_dump_rtl_for_gimple_stmt (stmt, last);
3639 }
3640 }
3641 }
3642
3643 currently_expanding_gimple_stmt = NULL;
3644
3645 /* Expand implicit goto and convert goto_locus. */
3646 FOR_EACH_EDGE (e, ei, bb->succs)
3647 {
3648 if (e->goto_locus && e->goto_block)
3649 {
3650 set_curr_insn_source_location (e->goto_locus);
3651 set_curr_insn_block (e->goto_block);
3652 e->goto_locus = curr_insn_locator ();
3653 }
3654 e->goto_block = NULL;
3655 if ((e->flags & EDGE_FALLTHRU) && e->dest != bb->next_bb)
3656 {
3657 emit_jump (label_rtx_for_bb (e->dest));
3658 e->flags &= ~EDGE_FALLTHRU;
3659 }
3660 }
3661
3662 /* Expanded RTL can create a jump in the last instruction of block.
3663 This later might be assumed to be a jump to successor and break edge insertion.
3664 We need to insert dummy move to prevent this. PR41440. */
3665 if (single_succ_p (bb)
3666 && (single_succ_edge (bb)->flags & EDGE_FALLTHRU)
3667 && (last = get_last_insn ())
3668 && JUMP_P (last))
3669 {
3670 rtx dummy = gen_reg_rtx (SImode);
3671 emit_insn_after_noloc (gen_move_insn (dummy, dummy), last, NULL);
3672 }
3673
3674 do_pending_stack_adjust ();
3675
3676 /* Find the block tail. The last insn in the block is the insn
3677 before a barrier and/or table jump insn. */
3678 last = get_last_insn ();
3679 if (BARRIER_P (last))
3680 last = PREV_INSN (last);
3681 if (JUMP_TABLE_DATA_P (last))
3682 last = PREV_INSN (PREV_INSN (last));
3683 BB_END (bb) = last;
3684
3685 update_bb_for_insn (bb);
3686
3687 return bb;
3688 }
3689
3690
3691 /* Create a basic block for initialization code. */
3692
3693 static basic_block
3694 construct_init_block (void)
3695 {
3696 basic_block init_block, first_block;
3697 edge e = NULL;
3698 int flags;
3699
3700 /* Multiple entry points not supported yet. */
3701 gcc_assert (EDGE_COUNT (ENTRY_BLOCK_PTR->succs) == 1);
3702 init_rtl_bb_info (ENTRY_BLOCK_PTR);
3703 init_rtl_bb_info (EXIT_BLOCK_PTR);
3704 ENTRY_BLOCK_PTR->flags |= BB_RTL;
3705 EXIT_BLOCK_PTR->flags |= BB_RTL;
3706
3707 e = EDGE_SUCC (ENTRY_BLOCK_PTR, 0);
3708
3709 /* When entry edge points to first basic block, we don't need jump,
3710 otherwise we have to jump into proper target. */
3711 if (e && e->dest != ENTRY_BLOCK_PTR->next_bb)
3712 {
3713 tree label = gimple_block_label (e->dest);
3714
3715 emit_jump (label_rtx (label));
3716 flags = 0;
3717 }
3718 else
3719 flags = EDGE_FALLTHRU;
3720
3721 init_block = create_basic_block (NEXT_INSN (get_insns ()),
3722 get_last_insn (),
3723 ENTRY_BLOCK_PTR);
3724 init_block->frequency = ENTRY_BLOCK_PTR->frequency;
3725 init_block->count = ENTRY_BLOCK_PTR->count;
3726 if (e)
3727 {
3728 first_block = e->dest;
3729 redirect_edge_succ (e, init_block);
3730 e = make_edge (init_block, first_block, flags);
3731 }
3732 else
3733 e = make_edge (init_block, EXIT_BLOCK_PTR, EDGE_FALLTHRU);
3734 e->probability = REG_BR_PROB_BASE;
3735 e->count = ENTRY_BLOCK_PTR->count;
3736
3737 update_bb_for_insn (init_block);
3738 return init_block;
3739 }
3740
3741 /* For each lexical block, set BLOCK_NUMBER to the depth at which it is
3742 found in the block tree. */
3743
3744 static void
3745 set_block_levels (tree block, int level)
3746 {
3747 while (block)
3748 {
3749 BLOCK_NUMBER (block) = level;
3750 set_block_levels (BLOCK_SUBBLOCKS (block), level + 1);
3751 block = BLOCK_CHAIN (block);
3752 }
3753 }
3754
3755 /* Create a block containing landing pads and similar stuff. */
3756
3757 static void
3758 construct_exit_block (void)
3759 {
3760 rtx head = get_last_insn ();
3761 rtx end;
3762 basic_block exit_block;
3763 edge e, e2;
3764 unsigned ix;
3765 edge_iterator ei;
3766 rtx orig_end = BB_END (EXIT_BLOCK_PTR->prev_bb);
3767
3768 rtl_profile_for_bb (EXIT_BLOCK_PTR);
3769
3770 /* Make sure the locus is set to the end of the function, so that
3771 epilogue line numbers and warnings are set properly. */
3772 if (cfun->function_end_locus != UNKNOWN_LOCATION)
3773 input_location = cfun->function_end_locus;
3774
3775 /* The following insns belong to the top scope. */
3776 set_curr_insn_block (DECL_INITIAL (current_function_decl));
3777
3778 /* Generate rtl for function exit. */
3779 expand_function_end ();
3780
3781 end = get_last_insn ();
3782 if (head == end)
3783 return;
3784 /* While emitting the function end we could move end of the last basic block.
3785 */
3786 BB_END (EXIT_BLOCK_PTR->prev_bb) = orig_end;
3787 while (NEXT_INSN (head) && NOTE_P (NEXT_INSN (head)))
3788 head = NEXT_INSN (head);
3789 exit_block = create_basic_block (NEXT_INSN (head), end,
3790 EXIT_BLOCK_PTR->prev_bb);
3791 exit_block->frequency = EXIT_BLOCK_PTR->frequency;
3792 exit_block->count = EXIT_BLOCK_PTR->count;
3793
3794 ix = 0;
3795 while (ix < EDGE_COUNT (EXIT_BLOCK_PTR->preds))
3796 {
3797 e = EDGE_PRED (EXIT_BLOCK_PTR, ix);
3798 if (!(e->flags & EDGE_ABNORMAL))
3799 redirect_edge_succ (e, exit_block);
3800 else
3801 ix++;
3802 }
3803
3804 e = make_edge (exit_block, EXIT_BLOCK_PTR, EDGE_FALLTHRU);
3805 e->probability = REG_BR_PROB_BASE;
3806 e->count = EXIT_BLOCK_PTR->count;
3807 FOR_EACH_EDGE (e2, ei, EXIT_BLOCK_PTR->preds)
3808 if (e2 != e)
3809 {
3810 e->count -= e2->count;
3811 exit_block->count -= e2->count;
3812 exit_block->frequency -= EDGE_FREQUENCY (e2);
3813 }
3814 if (e->count < 0)
3815 e->count = 0;
3816 if (exit_block->count < 0)
3817 exit_block->count = 0;
3818 if (exit_block->frequency < 0)
3819 exit_block->frequency = 0;
3820 update_bb_for_insn (exit_block);
3821 }
3822
3823 /* Helper function for discover_nonconstant_array_refs.
3824 Look for ARRAY_REF nodes with non-constant indexes and mark them
3825 addressable. */
3826
3827 static tree
3828 discover_nonconstant_array_refs_r (tree * tp, int *walk_subtrees,
3829 void *data ATTRIBUTE_UNUSED)
3830 {
3831 tree t = *tp;
3832
3833 if (IS_TYPE_OR_DECL_P (t))
3834 *walk_subtrees = 0;
3835 else if (TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
3836 {
3837 while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
3838 && is_gimple_min_invariant (TREE_OPERAND (t, 1))
3839 && (!TREE_OPERAND (t, 2)
3840 || is_gimple_min_invariant (TREE_OPERAND (t, 2))))
3841 || (TREE_CODE (t) == COMPONENT_REF
3842 && (!TREE_OPERAND (t,2)
3843 || is_gimple_min_invariant (TREE_OPERAND (t, 2))))
3844 || TREE_CODE (t) == BIT_FIELD_REF
3845 || TREE_CODE (t) == REALPART_EXPR
3846 || TREE_CODE (t) == IMAGPART_EXPR
3847 || TREE_CODE (t) == VIEW_CONVERT_EXPR
3848 || CONVERT_EXPR_P (t))
3849 t = TREE_OPERAND (t, 0);
3850
3851 if (TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
3852 {
3853 t = get_base_address (t);
3854 if (t && DECL_P (t)
3855 && DECL_MODE (t) != BLKmode)
3856 TREE_ADDRESSABLE (t) = 1;
3857 }
3858
3859 *walk_subtrees = 0;
3860 }
3861
3862 return NULL_TREE;
3863 }
3864
3865 /* RTL expansion is not able to compile array references with variable
3866 offsets for arrays stored in single register. Discover such
3867 expressions and mark variables as addressable to avoid this
3868 scenario. */
3869
3870 static void
3871 discover_nonconstant_array_refs (void)
3872 {
3873 basic_block bb;
3874 gimple_stmt_iterator gsi;
3875
3876 FOR_EACH_BB (bb)
3877 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3878 {
3879 gimple stmt = gsi_stmt (gsi);
3880 if (!is_gimple_debug (stmt))
3881 walk_gimple_op (stmt, discover_nonconstant_array_refs_r, NULL);
3882 }
3883 }
3884
3885 /* This function sets crtl->args.internal_arg_pointer to a virtual
3886 register if DRAP is needed. Local register allocator will replace
3887 virtual_incoming_args_rtx with the virtual register. */
3888
3889 static void
3890 expand_stack_alignment (void)
3891 {
3892 rtx drap_rtx;
3893 unsigned int preferred_stack_boundary;
3894
3895 if (! SUPPORTS_STACK_ALIGNMENT)
3896 return;
3897
3898 if (cfun->calls_alloca
3899 || cfun->has_nonlocal_label
3900 || crtl->has_nonlocal_goto)
3901 crtl->need_drap = true;
3902
3903 /* Call update_stack_boundary here again to update incoming stack
3904 boundary. It may set incoming stack alignment to a different
3905 value after RTL expansion. TARGET_FUNCTION_OK_FOR_SIBCALL may
3906 use the minimum incoming stack alignment to check if it is OK
3907 to perform sibcall optimization since sibcall optimization will
3908 only align the outgoing stack to incoming stack boundary. */
3909 if (targetm.calls.update_stack_boundary)
3910 targetm.calls.update_stack_boundary ();
3911
3912 /* The incoming stack frame has to be aligned at least at
3913 parm_stack_boundary. */
3914 gcc_assert (crtl->parm_stack_boundary <= INCOMING_STACK_BOUNDARY);
3915
3916 /* Update crtl->stack_alignment_estimated and use it later to align
3917 stack. We check PREFERRED_STACK_BOUNDARY if there may be non-call
3918 exceptions since callgraph doesn't collect incoming stack alignment
3919 in this case. */
3920 if (cfun->can_throw_non_call_exceptions
3921 && PREFERRED_STACK_BOUNDARY > crtl->preferred_stack_boundary)
3922 preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
3923 else
3924 preferred_stack_boundary = crtl->preferred_stack_boundary;
3925 if (preferred_stack_boundary > crtl->stack_alignment_estimated)
3926 crtl->stack_alignment_estimated = preferred_stack_boundary;
3927 if (preferred_stack_boundary > crtl->stack_alignment_needed)
3928 crtl->stack_alignment_needed = preferred_stack_boundary;
3929
3930 gcc_assert (crtl->stack_alignment_needed
3931 <= crtl->stack_alignment_estimated);
3932
3933 crtl->stack_realign_needed
3934 = INCOMING_STACK_BOUNDARY < crtl->stack_alignment_estimated;
3935 crtl->stack_realign_tried = crtl->stack_realign_needed;
3936
3937 crtl->stack_realign_processed = true;
3938
3939 /* Target has to redefine TARGET_GET_DRAP_RTX to support stack
3940 alignment. */
3941 gcc_assert (targetm.calls.get_drap_rtx != NULL);
3942 drap_rtx = targetm.calls.get_drap_rtx ();
3943
3944 /* stack_realign_drap and drap_rtx must match. */
3945 gcc_assert ((stack_realign_drap != 0) == (drap_rtx != NULL));
3946
3947 /* Do nothing if NULL is returned, which means DRAP is not needed. */
3948 if (NULL != drap_rtx)
3949 {
3950 crtl->args.internal_arg_pointer = drap_rtx;
3951
3952 /* Call fixup_tail_calls to clean up REG_EQUIV note if DRAP is
3953 needed. */
3954 fixup_tail_calls ();
3955 }
3956 }
3957
3958 /* Translate the intermediate representation contained in the CFG
3959 from GIMPLE trees to RTL.
3960
3961 We do conversion per basic block and preserve/update the tree CFG.
3962 This implies we have to do some magic as the CFG can simultaneously
3963 consist of basic blocks containing RTL and GIMPLE trees. This can
3964 confuse the CFG hooks, so be careful to not manipulate CFG during
3965 the expansion. */
3966
3967 static unsigned int
3968 gimple_expand_cfg (void)
3969 {
3970 basic_block bb, init_block;
3971 sbitmap blocks;
3972 edge_iterator ei;
3973 edge e;
3974 rtx var_seq;
3975 unsigned i;
3976
3977 timevar_push (TV_OUT_OF_SSA);
3978 rewrite_out_of_ssa (&SA);
3979 timevar_pop (TV_OUT_OF_SSA);
3980 SA.partition_to_pseudo = (rtx *)xcalloc (SA.map->num_partitions,
3981 sizeof (rtx));
3982
3983 /* Some backends want to know that we are expanding to RTL. */
3984 currently_expanding_to_rtl = 1;
3985
3986 rtl_profile_for_bb (ENTRY_BLOCK_PTR);
3987
3988 insn_locators_alloc ();
3989 if (!DECL_IS_BUILTIN (current_function_decl))
3990 {
3991 /* Eventually, all FEs should explicitly set function_start_locus. */
3992 if (cfun->function_start_locus == UNKNOWN_LOCATION)
3993 set_curr_insn_source_location
3994 (DECL_SOURCE_LOCATION (current_function_decl));
3995 else
3996 set_curr_insn_source_location (cfun->function_start_locus);
3997 }
3998 else
3999 set_curr_insn_source_location (UNKNOWN_LOCATION);
4000 set_curr_insn_block (DECL_INITIAL (current_function_decl));
4001 prologue_locator = curr_insn_locator ();
4002
4003 #ifdef INSN_SCHEDULING
4004 init_sched_attrs ();
4005 #endif
4006
4007 /* Make sure first insn is a note even if we don't want linenums.
4008 This makes sure the first insn will never be deleted.
4009 Also, final expects a note to appear there. */
4010 emit_note (NOTE_INSN_DELETED);
4011
4012 /* Mark arrays indexed with non-constant indices with TREE_ADDRESSABLE. */
4013 discover_nonconstant_array_refs ();
4014
4015 targetm.expand_to_rtl_hook ();
4016 crtl->stack_alignment_needed = STACK_BOUNDARY;
4017 crtl->max_used_stack_slot_alignment = STACK_BOUNDARY;
4018 crtl->stack_alignment_estimated = 0;
4019 crtl->preferred_stack_boundary = STACK_BOUNDARY;
4020 cfun->cfg->max_jumptable_ents = 0;
4021
4022 /* Resovle the function section. Some targets, like ARM EABI rely on knowledge
4023 of the function section at exapnsion time to predict distance of calls. */
4024 resolve_unique_section (current_function_decl, 0, flag_function_sections);
4025
4026 /* Expand the variables recorded during gimple lowering. */
4027 timevar_push (TV_VAR_EXPAND);
4028 start_sequence ();
4029
4030 expand_used_vars ();
4031
4032 var_seq = get_insns ();
4033 end_sequence ();
4034 timevar_pop (TV_VAR_EXPAND);
4035
4036 /* Honor stack protection warnings. */
4037 if (warn_stack_protect)
4038 {
4039 if (cfun->calls_alloca)
4040 warning (OPT_Wstack_protector,
4041 "stack protector not protecting local variables: "
4042 "variable length buffer");
4043 if (has_short_buffer && !crtl->stack_protect_guard)
4044 warning (OPT_Wstack_protector,
4045 "stack protector not protecting function: "
4046 "all local arrays are less than %d bytes long",
4047 (int) PARAM_VALUE (PARAM_SSP_BUFFER_SIZE));
4048 }
4049
4050 /* Set up parameters and prepare for return, for the function. */
4051 expand_function_start (current_function_decl);
4052
4053 /* If we emitted any instructions for setting up the variables,
4054 emit them before the FUNCTION_START note. */
4055 if (var_seq)
4056 {
4057 emit_insn_before (var_seq, parm_birth_insn);
4058
4059 /* In expand_function_end we'll insert the alloca save/restore
4060 before parm_birth_insn. We've just insertted an alloca call.
4061 Adjust the pointer to match. */
4062 parm_birth_insn = var_seq;
4063 }
4064
4065 /* Now that we also have the parameter RTXs, copy them over to our
4066 partitions. */
4067 for (i = 0; i < SA.map->num_partitions; i++)
4068 {
4069 tree var = SSA_NAME_VAR (partition_to_var (SA.map, i));
4070
4071 if (TREE_CODE (var) != VAR_DECL
4072 && !SA.partition_to_pseudo[i])
4073 SA.partition_to_pseudo[i] = DECL_RTL_IF_SET (var);
4074 gcc_assert (SA.partition_to_pseudo[i]);
4075
4076 /* If this decl was marked as living in multiple places, reset
4077 this now to NULL. */
4078 if (DECL_RTL_IF_SET (var) == pc_rtx)
4079 SET_DECL_RTL (var, NULL);
4080
4081 /* Some RTL parts really want to look at DECL_RTL(x) when x
4082 was a decl marked in REG_ATTR or MEM_ATTR. We could use
4083 SET_DECL_RTL here making this available, but that would mean
4084 to select one of the potentially many RTLs for one DECL. Instead
4085 of doing that we simply reset the MEM_EXPR of the RTL in question,
4086 then nobody can get at it and hence nobody can call DECL_RTL on it. */
4087 if (!DECL_RTL_SET_P (var))
4088 {
4089 if (MEM_P (SA.partition_to_pseudo[i]))
4090 set_mem_expr (SA.partition_to_pseudo[i], NULL);
4091 }
4092 }
4093
4094 /* If this function is `main', emit a call to `__main'
4095 to run global initializers, etc. */
4096 if (DECL_NAME (current_function_decl)
4097 && MAIN_NAME_P (DECL_NAME (current_function_decl))
4098 && DECL_FILE_SCOPE_P (current_function_decl))
4099 expand_main_function ();
4100
4101 /* Initialize the stack_protect_guard field. This must happen after the
4102 call to __main (if any) so that the external decl is initialized. */
4103 if (crtl->stack_protect_guard)
4104 stack_protect_prologue ();
4105
4106 expand_phi_nodes (&SA);
4107
4108 /* Register rtl specific functions for cfg. */
4109 rtl_register_cfg_hooks ();
4110
4111 init_block = construct_init_block ();
4112
4113 /* Clear EDGE_EXECUTABLE on the entry edge(s). It is cleaned from the
4114 remaining edges later. */
4115 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
4116 e->flags &= ~EDGE_EXECUTABLE;
4117
4118 lab_rtx_for_bb = pointer_map_create ();
4119 FOR_BB_BETWEEN (bb, init_block->next_bb, EXIT_BLOCK_PTR, next_bb)
4120 bb = expand_gimple_basic_block (bb);
4121
4122 if (MAY_HAVE_DEBUG_INSNS)
4123 expand_debug_locations ();
4124
4125 execute_free_datastructures ();
4126 timevar_push (TV_OUT_OF_SSA);
4127 finish_out_of_ssa (&SA);
4128 timevar_pop (TV_OUT_OF_SSA);
4129
4130 timevar_push (TV_POST_EXPAND);
4131 /* We are no longer in SSA form. */
4132 cfun->gimple_df->in_ssa_p = false;
4133
4134 /* Expansion is used by optimization passes too, set maybe_hot_insn_p
4135 conservatively to true until they are all profile aware. */
4136 pointer_map_destroy (lab_rtx_for_bb);
4137 free_histograms ();
4138
4139 construct_exit_block ();
4140 set_curr_insn_block (DECL_INITIAL (current_function_decl));
4141 insn_locators_finalize ();
4142
4143 /* Zap the tree EH table. */
4144 set_eh_throw_stmt_table (cfun, NULL);
4145
4146 rebuild_jump_labels (get_insns ());
4147
4148 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
4149 {
4150 edge e;
4151 edge_iterator ei;
4152 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
4153 {
4154 if (e->insns.r)
4155 {
4156 /* Avoid putting insns before parm_birth_insn. */
4157 if (e->src == ENTRY_BLOCK_PTR
4158 && single_succ_p (ENTRY_BLOCK_PTR)
4159 && parm_birth_insn)
4160 {
4161 rtx insns = e->insns.r;
4162 e->insns.r = NULL_RTX;
4163 emit_insn_after_noloc (insns, parm_birth_insn, e->dest);
4164 }
4165 else
4166 commit_one_edge_insertion (e);
4167 }
4168 else
4169 ei_next (&ei);
4170 }
4171 }
4172
4173 /* We're done expanding trees to RTL. */
4174 currently_expanding_to_rtl = 0;
4175
4176 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb, EXIT_BLOCK_PTR, next_bb)
4177 {
4178 edge e;
4179 edge_iterator ei;
4180 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
4181 {
4182 /* Clear EDGE_EXECUTABLE. This flag is never used in the backend. */
4183 e->flags &= ~EDGE_EXECUTABLE;
4184
4185 /* At the moment not all abnormal edges match the RTL
4186 representation. It is safe to remove them here as
4187 find_many_sub_basic_blocks will rediscover them.
4188 In the future we should get this fixed properly. */
4189 if ((e->flags & EDGE_ABNORMAL)
4190 && !(e->flags & EDGE_SIBCALL))
4191 remove_edge (e);
4192 else
4193 ei_next (&ei);
4194 }
4195 }
4196
4197 blocks = sbitmap_alloc (last_basic_block);
4198 sbitmap_ones (blocks);
4199 find_many_sub_basic_blocks (blocks);
4200 sbitmap_free (blocks);
4201 purge_all_dead_edges ();
4202
4203 compact_blocks ();
4204
4205 expand_stack_alignment ();
4206
4207 #ifdef ENABLE_CHECKING
4208 verify_flow_info ();
4209 #endif
4210
4211 /* There's no need to defer outputting this function any more; we
4212 know we want to output it. */
4213 DECL_DEFER_OUTPUT (current_function_decl) = 0;
4214
4215 /* Now that we're done expanding trees to RTL, we shouldn't have any
4216 more CONCATs anywhere. */
4217 generating_concat_p = 0;
4218
4219 if (dump_file)
4220 {
4221 fprintf (dump_file,
4222 "\n\n;;\n;; Full RTL generated for this function:\n;;\n");
4223 /* And the pass manager will dump RTL for us. */
4224 }
4225
4226 /* If we're emitting a nested function, make sure its parent gets
4227 emitted as well. Doing otherwise confuses debug info. */
4228 {
4229 tree parent;
4230 for (parent = DECL_CONTEXT (current_function_decl);
4231 parent != NULL_TREE;
4232 parent = get_containing_scope (parent))
4233 if (TREE_CODE (parent) == FUNCTION_DECL)
4234 TREE_SYMBOL_REFERENCED (DECL_ASSEMBLER_NAME (parent)) = 1;
4235 }
4236
4237 /* We are now committed to emitting code for this function. Do any
4238 preparation, such as emitting abstract debug info for the inline
4239 before it gets mangled by optimization. */
4240 if (cgraph_function_possibly_inlined_p (current_function_decl))
4241 (*debug_hooks->outlining_inline_function) (current_function_decl);
4242
4243 TREE_ASM_WRITTEN (current_function_decl) = 1;
4244
4245 /* After expanding, the return labels are no longer needed. */
4246 return_label = NULL;
4247 naked_return_label = NULL;
4248 /* Tag the blocks with a depth number so that change_scope can find
4249 the common parent easily. */
4250 set_block_levels (DECL_INITIAL (cfun->decl), 0);
4251 default_rtl_profile ();
4252 timevar_pop (TV_POST_EXPAND);
4253 return 0;
4254 }
4255
4256 struct rtl_opt_pass pass_expand =
4257 {
4258 {
4259 RTL_PASS,
4260 "expand", /* name */
4261 NULL, /* gate */
4262 gimple_expand_cfg, /* execute */
4263 NULL, /* sub */
4264 NULL, /* next */
4265 0, /* static_pass_number */
4266 TV_EXPAND, /* tv_id */
4267 PROP_ssa | PROP_gimple_leh | PROP_cfg
4268 | PROP_gimple_lcx, /* properties_required */
4269 PROP_rtl, /* properties_provided */
4270 PROP_ssa | PROP_trees, /* properties_destroyed */
4271 TODO_verify_ssa | TODO_verify_flow
4272 | TODO_verify_stmts, /* todo_flags_start */
4273 TODO_dump_func
4274 | TODO_ggc_collect /* todo_flags_finish */
4275 }
4276 };