d9b5774c006afcc2f5e9659f82bee5de19f05068
[gcc.git] / gcc / cfgexpand.c
1 /* A pass for lowering trees to RTL.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "basic-block.h"
29 #include "function.h"
30 #include "expr.h"
31 #include "langhooks.h"
32 #include "tree-flow.h"
33 #include "timevar.h"
34 #include "tree-dump.h"
35 #include "tree-pass.h"
36 #include "except.h"
37 #include "flags.h"
38 #include "diagnostic.h"
39 #include "toplev.h"
40 #include "debug.h"
41 #include "params.h"
42 #include "tree-inline.h"
43 #include "value-prof.h"
44 #include "target.h"
45 #include "ssaexpand.h"
46
47
48 /* This variable holds information helping the rewriting of SSA trees
49 into RTL. */
50 struct ssaexpand SA;
51
52 /* This variable holds the currently expanded gimple statement for purposes
53 of comminucating the profile info to the builtin expanders. */
54 gimple currently_expanding_gimple_stmt;
55
56 /* Return an expression tree corresponding to the RHS of GIMPLE
57 statement STMT. */
58
59 tree
60 gimple_assign_rhs_to_tree (gimple stmt)
61 {
62 tree t;
63 enum gimple_rhs_class grhs_class;
64
65 grhs_class = get_gimple_rhs_class (gimple_expr_code (stmt));
66
67 if (grhs_class == GIMPLE_BINARY_RHS)
68 t = build2 (gimple_assign_rhs_code (stmt),
69 TREE_TYPE (gimple_assign_lhs (stmt)),
70 gimple_assign_rhs1 (stmt),
71 gimple_assign_rhs2 (stmt));
72 else if (grhs_class == GIMPLE_UNARY_RHS)
73 t = build1 (gimple_assign_rhs_code (stmt),
74 TREE_TYPE (gimple_assign_lhs (stmt)),
75 gimple_assign_rhs1 (stmt));
76 else if (grhs_class == GIMPLE_SINGLE_RHS)
77 {
78 t = gimple_assign_rhs1 (stmt);
79 /* Avoid modifying this tree in place below. */
80 if (gimple_has_location (stmt) && CAN_HAVE_LOCATION_P (t)
81 && gimple_location (stmt) != EXPR_LOCATION (t))
82 t = copy_node (t);
83 }
84 else
85 gcc_unreachable ();
86
87 if (gimple_has_location (stmt) && CAN_HAVE_LOCATION_P (t))
88 SET_EXPR_LOCATION (t, gimple_location (stmt));
89
90 return t;
91 }
92
93
94 #ifndef STACK_ALIGNMENT_NEEDED
95 #define STACK_ALIGNMENT_NEEDED 1
96 #endif
97
98 #define SSAVAR(x) (TREE_CODE (x) == SSA_NAME ? SSA_NAME_VAR (x) : x)
99
100 /* Associate declaration T with storage space X. If T is no
101 SSA name this is exactly SET_DECL_RTL, otherwise make the
102 partition of T associated with X. */
103 static inline void
104 set_rtl (tree t, rtx x)
105 {
106 if (TREE_CODE (t) == SSA_NAME)
107 {
108 SA.partition_to_pseudo[var_to_partition (SA.map, t)] = x;
109 if (x && !MEM_P (x))
110 set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (t), x);
111 /* For the benefit of debug information at -O0 (where vartracking
112 doesn't run) record the place also in the base DECL if it's
113 a normal variable (not a parameter). */
114 if (x && x != pc_rtx && TREE_CODE (SSA_NAME_VAR (t)) == VAR_DECL)
115 {
116 tree var = SSA_NAME_VAR (t);
117 /* If we don't yet have something recorded, just record it now. */
118 if (!DECL_RTL_SET_P (var))
119 SET_DECL_RTL (var, x);
120 /* If we have it set alrady to "multiple places" don't
121 change this. */
122 else if (DECL_RTL (var) == pc_rtx)
123 ;
124 /* If we have something recorded and it's not the same place
125 as we want to record now, we have multiple partitions for the
126 same base variable, with different places. We can't just
127 randomly chose one, hence we have to say that we don't know.
128 This only happens with optimization, and there var-tracking
129 will figure out the right thing. */
130 else if (DECL_RTL (var) != x)
131 SET_DECL_RTL (var, pc_rtx);
132 }
133 }
134 else
135 SET_DECL_RTL (t, x);
136 }
137
138 /* This structure holds data relevant to one variable that will be
139 placed in a stack slot. */
140 struct stack_var
141 {
142 /* The Variable. */
143 tree decl;
144
145 /* The offset of the variable. During partitioning, this is the
146 offset relative to the partition. After partitioning, this
147 is relative to the stack frame. */
148 HOST_WIDE_INT offset;
149
150 /* Initially, the size of the variable. Later, the size of the partition,
151 if this variable becomes it's partition's representative. */
152 HOST_WIDE_INT size;
153
154 /* The *byte* alignment required for this variable. Or as, with the
155 size, the alignment for this partition. */
156 unsigned int alignb;
157
158 /* The partition representative. */
159 size_t representative;
160
161 /* The next stack variable in the partition, or EOC. */
162 size_t next;
163
164 /* The numbers of conflicting stack variables. */
165 bitmap conflicts;
166 };
167
168 #define EOC ((size_t)-1)
169
170 /* We have an array of such objects while deciding allocation. */
171 static struct stack_var *stack_vars;
172 static size_t stack_vars_alloc;
173 static size_t stack_vars_num;
174
175 /* An array of indices such that stack_vars[stack_vars_sorted[i]].size
176 is non-decreasing. */
177 static size_t *stack_vars_sorted;
178
179 /* The phase of the stack frame. This is the known misalignment of
180 virtual_stack_vars_rtx from PREFERRED_STACK_BOUNDARY. That is,
181 (frame_offset+frame_phase) % PREFERRED_STACK_BOUNDARY == 0. */
182 static int frame_phase;
183
184 /* Used during expand_used_vars to remember if we saw any decls for
185 which we'd like to enable stack smashing protection. */
186 static bool has_protected_decls;
187
188 /* Used during expand_used_vars. Remember if we say a character buffer
189 smaller than our cutoff threshold. Used for -Wstack-protector. */
190 static bool has_short_buffer;
191
192 /* Discover the byte alignment to use for DECL. Ignore alignment
193 we can't do with expected alignment of the stack boundary. */
194
195 static unsigned int
196 get_decl_align_unit (tree decl)
197 {
198 unsigned int align;
199
200 align = LOCAL_DECL_ALIGNMENT (decl);
201
202 if (align > MAX_SUPPORTED_STACK_ALIGNMENT)
203 align = MAX_SUPPORTED_STACK_ALIGNMENT;
204
205 if (SUPPORTS_STACK_ALIGNMENT)
206 {
207 if (crtl->stack_alignment_estimated < align)
208 {
209 gcc_assert(!crtl->stack_realign_processed);
210 crtl->stack_alignment_estimated = align;
211 }
212 }
213
214 /* stack_alignment_needed > PREFERRED_STACK_BOUNDARY is permitted.
215 So here we only make sure stack_alignment_needed >= align. */
216 if (crtl->stack_alignment_needed < align)
217 crtl->stack_alignment_needed = align;
218 if (crtl->max_used_stack_slot_alignment < align)
219 crtl->max_used_stack_slot_alignment = align;
220
221 return align / BITS_PER_UNIT;
222 }
223
224 /* Allocate SIZE bytes at byte alignment ALIGN from the stack frame.
225 Return the frame offset. */
226
227 static HOST_WIDE_INT
228 alloc_stack_frame_space (HOST_WIDE_INT size, HOST_WIDE_INT align)
229 {
230 HOST_WIDE_INT offset, new_frame_offset;
231
232 new_frame_offset = frame_offset;
233 if (FRAME_GROWS_DOWNWARD)
234 {
235 new_frame_offset -= size + frame_phase;
236 new_frame_offset &= -align;
237 new_frame_offset += frame_phase;
238 offset = new_frame_offset;
239 }
240 else
241 {
242 new_frame_offset -= frame_phase;
243 new_frame_offset += align - 1;
244 new_frame_offset &= -align;
245 new_frame_offset += frame_phase;
246 offset = new_frame_offset;
247 new_frame_offset += size;
248 }
249 frame_offset = new_frame_offset;
250
251 if (frame_offset_overflow (frame_offset, cfun->decl))
252 frame_offset = offset = 0;
253
254 return offset;
255 }
256
257 /* Accumulate DECL into STACK_VARS. */
258
259 static void
260 add_stack_var (tree decl)
261 {
262 if (stack_vars_num >= stack_vars_alloc)
263 {
264 if (stack_vars_alloc)
265 stack_vars_alloc = stack_vars_alloc * 3 / 2;
266 else
267 stack_vars_alloc = 32;
268 stack_vars
269 = XRESIZEVEC (struct stack_var, stack_vars, stack_vars_alloc);
270 }
271 stack_vars[stack_vars_num].decl = decl;
272 stack_vars[stack_vars_num].offset = 0;
273 stack_vars[stack_vars_num].size = tree_low_cst (DECL_SIZE_UNIT (SSAVAR (decl)), 1);
274 stack_vars[stack_vars_num].alignb = get_decl_align_unit (SSAVAR (decl));
275
276 /* All variables are initially in their own partition. */
277 stack_vars[stack_vars_num].representative = stack_vars_num;
278 stack_vars[stack_vars_num].next = EOC;
279
280 /* All variables initially conflict with no other. */
281 stack_vars[stack_vars_num].conflicts = NULL;
282
283 /* Ensure that this decl doesn't get put onto the list twice. */
284 set_rtl (decl, pc_rtx);
285
286 stack_vars_num++;
287 }
288
289 /* Make the decls associated with luid's X and Y conflict. */
290
291 static void
292 add_stack_var_conflict (size_t x, size_t y)
293 {
294 struct stack_var *a = &stack_vars[x];
295 struct stack_var *b = &stack_vars[y];
296 if (!a->conflicts)
297 a->conflicts = BITMAP_ALLOC (NULL);
298 if (!b->conflicts)
299 b->conflicts = BITMAP_ALLOC (NULL);
300 bitmap_set_bit (a->conflicts, y);
301 bitmap_set_bit (b->conflicts, x);
302 }
303
304 /* Check whether the decls associated with luid's X and Y conflict. */
305
306 static bool
307 stack_var_conflict_p (size_t x, size_t y)
308 {
309 struct stack_var *a = &stack_vars[x];
310 struct stack_var *b = &stack_vars[y];
311 if (!a->conflicts || !b->conflicts)
312 return false;
313 return bitmap_bit_p (a->conflicts, y);
314 }
315
316 /* Returns true if TYPE is or contains a union type. */
317
318 static bool
319 aggregate_contains_union_type (tree type)
320 {
321 tree field;
322
323 if (TREE_CODE (type) == UNION_TYPE
324 || TREE_CODE (type) == QUAL_UNION_TYPE)
325 return true;
326 if (TREE_CODE (type) == ARRAY_TYPE)
327 return aggregate_contains_union_type (TREE_TYPE (type));
328 if (TREE_CODE (type) != RECORD_TYPE)
329 return false;
330
331 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
332 if (TREE_CODE (field) == FIELD_DECL)
333 if (aggregate_contains_union_type (TREE_TYPE (field)))
334 return true;
335
336 return false;
337 }
338
339 /* A subroutine of expand_used_vars. If two variables X and Y have alias
340 sets that do not conflict, then do add a conflict for these variables
341 in the interference graph. We also need to make sure to add conflicts
342 for union containing structures. Else RTL alias analysis comes along
343 and due to type based aliasing rules decides that for two overlapping
344 union temporaries { short s; int i; } accesses to the same mem through
345 different types may not alias and happily reorders stores across
346 life-time boundaries of the temporaries (See PR25654).
347 We also have to mind MEM_IN_STRUCT_P and MEM_SCALAR_P. */
348
349 static void
350 add_alias_set_conflicts (void)
351 {
352 size_t i, j, n = stack_vars_num;
353
354 for (i = 0; i < n; ++i)
355 {
356 tree type_i = TREE_TYPE (stack_vars[i].decl);
357 bool aggr_i = AGGREGATE_TYPE_P (type_i);
358 bool contains_union;
359
360 contains_union = aggregate_contains_union_type (type_i);
361 for (j = 0; j < i; ++j)
362 {
363 tree type_j = TREE_TYPE (stack_vars[j].decl);
364 bool aggr_j = AGGREGATE_TYPE_P (type_j);
365 if (aggr_i != aggr_j
366 /* Either the objects conflict by means of type based
367 aliasing rules, or we need to add a conflict. */
368 || !objects_must_conflict_p (type_i, type_j)
369 /* In case the types do not conflict ensure that access
370 to elements will conflict. In case of unions we have
371 to be careful as type based aliasing rules may say
372 access to the same memory does not conflict. So play
373 safe and add a conflict in this case. */
374 || contains_union)
375 add_stack_var_conflict (i, j);
376 }
377 }
378 }
379
380 /* A subroutine of partition_stack_vars. A comparison function for qsort,
381 sorting an array of indices by the size and type of the object. */
382
383 static int
384 stack_var_size_cmp (const void *a, const void *b)
385 {
386 HOST_WIDE_INT sa = stack_vars[*(const size_t *)a].size;
387 HOST_WIDE_INT sb = stack_vars[*(const size_t *)b].size;
388 tree decla, declb;
389 unsigned int uida, uidb;
390
391 if (sa < sb)
392 return -1;
393 if (sa > sb)
394 return 1;
395 decla = stack_vars[*(const size_t *)a].decl;
396 declb = stack_vars[*(const size_t *)b].decl;
397 /* For stack variables of the same size use and id of the decls
398 to make the sort stable. Two SSA names are compared by their
399 version, SSA names come before non-SSA names, and two normal
400 decls are compared by their DECL_UID. */
401 if (TREE_CODE (decla) == SSA_NAME)
402 {
403 if (TREE_CODE (declb) == SSA_NAME)
404 uida = SSA_NAME_VERSION (decla), uidb = SSA_NAME_VERSION (declb);
405 else
406 return -1;
407 }
408 else if (TREE_CODE (declb) == SSA_NAME)
409 return 1;
410 else
411 uida = DECL_UID (decla), uidb = DECL_UID (declb);
412 if (uida < uidb)
413 return -1;
414 if (uida > uidb)
415 return 1;
416 return 0;
417 }
418
419
420 /* If the points-to solution *PI points to variables that are in a partition
421 together with other variables add all partition members to the pointed-to
422 variables bitmap. */
423
424 static void
425 add_partitioned_vars_to_ptset (struct pt_solution *pt,
426 struct pointer_map_t *decls_to_partitions,
427 struct pointer_set_t *visited, bitmap temp)
428 {
429 bitmap_iterator bi;
430 unsigned i;
431 bitmap *part;
432
433 if (pt->anything
434 || pt->vars == NULL
435 /* The pointed-to vars bitmap is shared, it is enough to
436 visit it once. */
437 || pointer_set_insert(visited, pt->vars))
438 return;
439
440 bitmap_clear (temp);
441
442 /* By using a temporary bitmap to store all members of the partitions
443 we have to add we make sure to visit each of the partitions only
444 once. */
445 EXECUTE_IF_SET_IN_BITMAP (pt->vars, 0, i, bi)
446 if ((!temp
447 || !bitmap_bit_p (temp, i))
448 && (part = (bitmap *) pointer_map_contains (decls_to_partitions,
449 (void *)(size_t) i)))
450 bitmap_ior_into (temp, *part);
451 if (!bitmap_empty_p (temp))
452 bitmap_ior_into (pt->vars, temp);
453 }
454
455 /* Update points-to sets based on partition info, so we can use them on RTL.
456 The bitmaps representing stack partitions will be saved until expand,
457 where partitioned decls used as bases in memory expressions will be
458 rewritten. */
459
460 static void
461 update_alias_info_with_stack_vars (void)
462 {
463 struct pointer_map_t *decls_to_partitions = NULL;
464 size_t i, j;
465 tree var = NULL_TREE;
466
467 for (i = 0; i < stack_vars_num; i++)
468 {
469 bitmap part = NULL;
470 tree name;
471 struct ptr_info_def *pi;
472
473 /* Not interested in partitions with single variable. */
474 if (stack_vars[i].representative != i
475 || stack_vars[i].next == EOC)
476 continue;
477
478 if (!decls_to_partitions)
479 {
480 decls_to_partitions = pointer_map_create ();
481 cfun->gimple_df->decls_to_pointers = pointer_map_create ();
482 }
483
484 /* Create an SSA_NAME that points to the partition for use
485 as base during alias-oracle queries on RTL for bases that
486 have been partitioned. */
487 if (var == NULL_TREE)
488 var = create_tmp_var (ptr_type_node, NULL);
489 name = make_ssa_name (var, NULL);
490
491 /* Create bitmaps representing partitions. They will be used for
492 points-to sets later, so use GGC alloc. */
493 part = BITMAP_GGC_ALLOC ();
494 for (j = i; j != EOC; j = stack_vars[j].next)
495 {
496 tree decl = stack_vars[j].decl;
497 unsigned int uid = DECL_UID (decl);
498 /* We should never end up partitioning SSA names (though they
499 may end up on the stack). Neither should we allocate stack
500 space to something that is unused and thus unreferenced. */
501 gcc_assert (DECL_P (decl)
502 && referenced_var_lookup (uid));
503 bitmap_set_bit (part, uid);
504 *((bitmap *) pointer_map_insert (decls_to_partitions,
505 (void *)(size_t) uid)) = part;
506 *((tree *) pointer_map_insert (cfun->gimple_df->decls_to_pointers,
507 decl)) = name;
508 }
509
510 /* Make the SSA name point to all partition members. */
511 pi = get_ptr_info (name);
512 pt_solution_set (&pi->pt, part);
513 }
514
515 /* Make all points-to sets that contain one member of a partition
516 contain all members of the partition. */
517 if (decls_to_partitions)
518 {
519 unsigned i;
520 struct pointer_set_t *visited = pointer_set_create ();
521 bitmap temp = BITMAP_ALLOC (NULL);
522
523 for (i = 1; i < num_ssa_names; i++)
524 {
525 tree name = ssa_name (i);
526 struct ptr_info_def *pi;
527
528 if (name
529 && POINTER_TYPE_P (TREE_TYPE (name))
530 && ((pi = SSA_NAME_PTR_INFO (name)) != NULL))
531 add_partitioned_vars_to_ptset (&pi->pt, decls_to_partitions,
532 visited, temp);
533 }
534
535 add_partitioned_vars_to_ptset (&cfun->gimple_df->escaped,
536 decls_to_partitions, visited, temp);
537 add_partitioned_vars_to_ptset (&cfun->gimple_df->callused,
538 decls_to_partitions, visited, temp);
539
540 pointer_set_destroy (visited);
541 pointer_map_destroy (decls_to_partitions);
542 BITMAP_FREE (temp);
543 }
544 }
545
546 /* A subroutine of partition_stack_vars. The UNION portion of a UNION/FIND
547 partitioning algorithm. Partitions A and B are known to be non-conflicting.
548 Merge them into a single partition A.
549
550 At the same time, add OFFSET to all variables in partition B. At the end
551 of the partitioning process we've have a nice block easy to lay out within
552 the stack frame. */
553
554 static void
555 union_stack_vars (size_t a, size_t b, HOST_WIDE_INT offset)
556 {
557 size_t i, last;
558 struct stack_var *vb = &stack_vars[b];
559 bitmap_iterator bi;
560 unsigned u;
561
562 /* Update each element of partition B with the given offset,
563 and merge them into partition A. */
564 for (last = i = b; i != EOC; last = i, i = stack_vars[i].next)
565 {
566 stack_vars[i].offset += offset;
567 stack_vars[i].representative = a;
568 }
569 stack_vars[last].next = stack_vars[a].next;
570 stack_vars[a].next = b;
571
572 /* Update the required alignment of partition A to account for B. */
573 if (stack_vars[a].alignb < stack_vars[b].alignb)
574 stack_vars[a].alignb = stack_vars[b].alignb;
575
576 /* Update the interference graph and merge the conflicts. */
577 if (vb->conflicts)
578 {
579 EXECUTE_IF_SET_IN_BITMAP (vb->conflicts, 0, u, bi)
580 add_stack_var_conflict (a, stack_vars[u].representative);
581 BITMAP_FREE (vb->conflicts);
582 }
583 }
584
585 /* A subroutine of expand_used_vars. Binpack the variables into
586 partitions constrained by the interference graph. The overall
587 algorithm used is as follows:
588
589 Sort the objects by size.
590 For each object A {
591 S = size(A)
592 O = 0
593 loop {
594 Look for the largest non-conflicting object B with size <= S.
595 UNION (A, B)
596 offset(B) = O
597 O += size(B)
598 S -= size(B)
599 }
600 }
601 */
602
603 static void
604 partition_stack_vars (void)
605 {
606 size_t si, sj, n = stack_vars_num;
607
608 stack_vars_sorted = XNEWVEC (size_t, stack_vars_num);
609 for (si = 0; si < n; ++si)
610 stack_vars_sorted[si] = si;
611
612 if (n == 1)
613 return;
614
615 qsort (stack_vars_sorted, n, sizeof (size_t), stack_var_size_cmp);
616
617 for (si = 0; si < n; ++si)
618 {
619 size_t i = stack_vars_sorted[si];
620 HOST_WIDE_INT isize = stack_vars[i].size;
621 HOST_WIDE_INT offset = 0;
622
623 for (sj = si; sj-- > 0; )
624 {
625 size_t j = stack_vars_sorted[sj];
626 HOST_WIDE_INT jsize = stack_vars[j].size;
627 unsigned int jalign = stack_vars[j].alignb;
628
629 /* Ignore objects that aren't partition representatives. */
630 if (stack_vars[j].representative != j)
631 continue;
632
633 /* Ignore objects too large for the remaining space. */
634 if (isize < jsize)
635 continue;
636
637 /* Ignore conflicting objects. */
638 if (stack_var_conflict_p (i, j))
639 continue;
640
641 /* Refine the remaining space check to include alignment. */
642 if (offset & (jalign - 1))
643 {
644 HOST_WIDE_INT toff = offset;
645 toff += jalign - 1;
646 toff &= -(HOST_WIDE_INT)jalign;
647 if (isize - (toff - offset) < jsize)
648 continue;
649
650 isize -= toff - offset;
651 offset = toff;
652 }
653
654 /* UNION the objects, placing J at OFFSET. */
655 union_stack_vars (i, j, offset);
656
657 isize -= jsize;
658 if (isize == 0)
659 break;
660 }
661 }
662
663 if (optimize)
664 update_alias_info_with_stack_vars ();
665 }
666
667 /* A debugging aid for expand_used_vars. Dump the generated partitions. */
668
669 static void
670 dump_stack_var_partition (void)
671 {
672 size_t si, i, j, n = stack_vars_num;
673
674 for (si = 0; si < n; ++si)
675 {
676 i = stack_vars_sorted[si];
677
678 /* Skip variables that aren't partition representatives, for now. */
679 if (stack_vars[i].representative != i)
680 continue;
681
682 fprintf (dump_file, "Partition %lu: size " HOST_WIDE_INT_PRINT_DEC
683 " align %u\n", (unsigned long) i, stack_vars[i].size,
684 stack_vars[i].alignb);
685
686 for (j = i; j != EOC; j = stack_vars[j].next)
687 {
688 fputc ('\t', dump_file);
689 print_generic_expr (dump_file, stack_vars[j].decl, dump_flags);
690 fprintf (dump_file, ", offset " HOST_WIDE_INT_PRINT_DEC "\n",
691 stack_vars[j].offset);
692 }
693 }
694 }
695
696 /* Assign rtl to DECL at frame offset OFFSET. */
697
698 static void
699 expand_one_stack_var_at (tree decl, HOST_WIDE_INT offset)
700 {
701 /* Alignment is unsigned. */
702 unsigned HOST_WIDE_INT align;
703 rtx x;
704
705 /* If this fails, we've overflowed the stack frame. Error nicely? */
706 gcc_assert (offset == trunc_int_for_mode (offset, Pmode));
707
708 x = plus_constant (virtual_stack_vars_rtx, offset);
709 x = gen_rtx_MEM (DECL_MODE (SSAVAR (decl)), x);
710
711 if (TREE_CODE (decl) != SSA_NAME)
712 {
713 /* Set alignment we actually gave this decl if it isn't an SSA name.
714 If it is we generate stack slots only accidentally so it isn't as
715 important, we'll simply use the alignment that is already set. */
716 offset -= frame_phase;
717 align = offset & -offset;
718 align *= BITS_PER_UNIT;
719 if (align == 0)
720 align = STACK_BOUNDARY;
721 else if (align > MAX_SUPPORTED_STACK_ALIGNMENT)
722 align = MAX_SUPPORTED_STACK_ALIGNMENT;
723
724 DECL_ALIGN (decl) = align;
725 DECL_USER_ALIGN (decl) = 0;
726 }
727
728 set_mem_attributes (x, SSAVAR (decl), true);
729 set_rtl (decl, x);
730 }
731
732 /* A subroutine of expand_used_vars. Give each partition representative
733 a unique location within the stack frame. Update each partition member
734 with that location. */
735
736 static void
737 expand_stack_vars (bool (*pred) (tree))
738 {
739 size_t si, i, j, n = stack_vars_num;
740
741 for (si = 0; si < n; ++si)
742 {
743 HOST_WIDE_INT offset;
744
745 i = stack_vars_sorted[si];
746
747 /* Skip variables that aren't partition representatives, for now. */
748 if (stack_vars[i].representative != i)
749 continue;
750
751 /* Skip variables that have already had rtl assigned. See also
752 add_stack_var where we perpetrate this pc_rtx hack. */
753 if ((TREE_CODE (stack_vars[i].decl) == SSA_NAME
754 ? SA.partition_to_pseudo[var_to_partition (SA.map, stack_vars[i].decl)]
755 : DECL_RTL (stack_vars[i].decl)) != pc_rtx)
756 continue;
757
758 /* Check the predicate to see whether this variable should be
759 allocated in this pass. */
760 if (pred && !pred (stack_vars[i].decl))
761 continue;
762
763 offset = alloc_stack_frame_space (stack_vars[i].size,
764 stack_vars[i].alignb);
765
766 /* Create rtl for each variable based on their location within the
767 partition. */
768 for (j = i; j != EOC; j = stack_vars[j].next)
769 {
770 gcc_assert (stack_vars[j].offset <= stack_vars[i].size);
771 expand_one_stack_var_at (stack_vars[j].decl,
772 stack_vars[j].offset + offset);
773 }
774 }
775 }
776
777 /* Take into account all sizes of partitions and reset DECL_RTLs. */
778 static HOST_WIDE_INT
779 account_stack_vars (void)
780 {
781 size_t si, j, i, n = stack_vars_num;
782 HOST_WIDE_INT size = 0;
783
784 for (si = 0; si < n; ++si)
785 {
786 i = stack_vars_sorted[si];
787
788 /* Skip variables that aren't partition representatives, for now. */
789 if (stack_vars[i].representative != i)
790 continue;
791
792 size += stack_vars[i].size;
793 for (j = i; j != EOC; j = stack_vars[j].next)
794 set_rtl (stack_vars[j].decl, NULL);
795 }
796 return size;
797 }
798
799 /* A subroutine of expand_one_var. Called to immediately assign rtl
800 to a variable to be allocated in the stack frame. */
801
802 static void
803 expand_one_stack_var (tree var)
804 {
805 HOST_WIDE_INT size, offset, align;
806
807 size = tree_low_cst (DECL_SIZE_UNIT (SSAVAR (var)), 1);
808 align = get_decl_align_unit (SSAVAR (var));
809 offset = alloc_stack_frame_space (size, align);
810
811 expand_one_stack_var_at (var, offset);
812 }
813
814 /* A subroutine of expand_one_var. Called to assign rtl to a VAR_DECL
815 that will reside in a hard register. */
816
817 static void
818 expand_one_hard_reg_var (tree var)
819 {
820 rest_of_decl_compilation (var, 0, 0);
821 }
822
823 /* A subroutine of expand_one_var. Called to assign rtl to a VAR_DECL
824 that will reside in a pseudo register. */
825
826 static void
827 expand_one_register_var (tree var)
828 {
829 tree decl = SSAVAR (var);
830 tree type = TREE_TYPE (decl);
831 enum machine_mode reg_mode = promote_decl_mode (decl, NULL);
832 rtx x = gen_reg_rtx (reg_mode);
833
834 set_rtl (var, x);
835
836 /* Note if the object is a user variable. */
837 if (!DECL_ARTIFICIAL (decl))
838 mark_user_reg (x);
839
840 if (POINTER_TYPE_P (type))
841 mark_reg_pointer (x, TYPE_ALIGN (TREE_TYPE (type)));
842 }
843
844 /* A subroutine of expand_one_var. Called to assign rtl to a VAR_DECL that
845 has some associated error, e.g. its type is error-mark. We just need
846 to pick something that won't crash the rest of the compiler. */
847
848 static void
849 expand_one_error_var (tree var)
850 {
851 enum machine_mode mode = DECL_MODE (var);
852 rtx x;
853
854 if (mode == BLKmode)
855 x = gen_rtx_MEM (BLKmode, const0_rtx);
856 else if (mode == VOIDmode)
857 x = const0_rtx;
858 else
859 x = gen_reg_rtx (mode);
860
861 SET_DECL_RTL (var, x);
862 }
863
864 /* A subroutine of expand_one_var. VAR is a variable that will be
865 allocated to the local stack frame. Return true if we wish to
866 add VAR to STACK_VARS so that it will be coalesced with other
867 variables. Return false to allocate VAR immediately.
868
869 This function is used to reduce the number of variables considered
870 for coalescing, which reduces the size of the quadratic problem. */
871
872 static bool
873 defer_stack_allocation (tree var, bool toplevel)
874 {
875 /* If stack protection is enabled, *all* stack variables must be deferred,
876 so that we can re-order the strings to the top of the frame. */
877 if (flag_stack_protect)
878 return true;
879
880 /* Variables in the outermost scope automatically conflict with
881 every other variable. The only reason to want to defer them
882 at all is that, after sorting, we can more efficiently pack
883 small variables in the stack frame. Continue to defer at -O2. */
884 if (toplevel && optimize < 2)
885 return false;
886
887 /* Without optimization, *most* variables are allocated from the
888 stack, which makes the quadratic problem large exactly when we
889 want compilation to proceed as quickly as possible. On the
890 other hand, we don't want the function's stack frame size to
891 get completely out of hand. So we avoid adding scalars and
892 "small" aggregates to the list at all. */
893 if (optimize == 0 && tree_low_cst (DECL_SIZE_UNIT (var), 1) < 32)
894 return false;
895
896 return true;
897 }
898
899 /* A subroutine of expand_used_vars. Expand one variable according to
900 its flavor. Variables to be placed on the stack are not actually
901 expanded yet, merely recorded.
902 When REALLY_EXPAND is false, only add stack values to be allocated.
903 Return stack usage this variable is supposed to take.
904 */
905
906 static HOST_WIDE_INT
907 expand_one_var (tree var, bool toplevel, bool really_expand)
908 {
909 tree origvar = var;
910 var = SSAVAR (var);
911
912 if (SUPPORTS_STACK_ALIGNMENT
913 && TREE_TYPE (var) != error_mark_node
914 && TREE_CODE (var) == VAR_DECL)
915 {
916 unsigned int align;
917
918 /* Because we don't know if VAR will be in register or on stack,
919 we conservatively assume it will be on stack even if VAR is
920 eventually put into register after RA pass. For non-automatic
921 variables, which won't be on stack, we collect alignment of
922 type and ignore user specified alignment. */
923 if (TREE_STATIC (var) || DECL_EXTERNAL (var))
924 align = MINIMUM_ALIGNMENT (TREE_TYPE (var),
925 TYPE_MODE (TREE_TYPE (var)),
926 TYPE_ALIGN (TREE_TYPE (var)));
927 else
928 align = MINIMUM_ALIGNMENT (var, DECL_MODE (var), DECL_ALIGN (var));
929
930 if (crtl->stack_alignment_estimated < align)
931 {
932 /* stack_alignment_estimated shouldn't change after stack
933 realign decision made */
934 gcc_assert(!crtl->stack_realign_processed);
935 crtl->stack_alignment_estimated = align;
936 }
937 }
938
939 if (TREE_CODE (origvar) == SSA_NAME)
940 {
941 gcc_assert (TREE_CODE (var) != VAR_DECL
942 || (!DECL_EXTERNAL (var)
943 && !DECL_HAS_VALUE_EXPR_P (var)
944 && !TREE_STATIC (var)
945 && TREE_TYPE (var) != error_mark_node
946 && !DECL_HARD_REGISTER (var)
947 && really_expand));
948 }
949 if (TREE_CODE (var) != VAR_DECL && TREE_CODE (origvar) != SSA_NAME)
950 ;
951 else if (DECL_EXTERNAL (var))
952 ;
953 else if (DECL_HAS_VALUE_EXPR_P (var))
954 ;
955 else if (TREE_STATIC (var))
956 ;
957 else if (TREE_CODE (origvar) != SSA_NAME && DECL_RTL_SET_P (var))
958 ;
959 else if (TREE_TYPE (var) == error_mark_node)
960 {
961 if (really_expand)
962 expand_one_error_var (var);
963 }
964 else if (TREE_CODE (var) == VAR_DECL && DECL_HARD_REGISTER (var))
965 {
966 if (really_expand)
967 expand_one_hard_reg_var (var);
968 }
969 else if (use_register_for_decl (var))
970 {
971 if (really_expand)
972 expand_one_register_var (origvar);
973 }
974 else if (!host_integerp (DECL_SIZE_UNIT (var), 1))
975 {
976 if (really_expand)
977 {
978 error ("size of variable %q+D is too large", var);
979 expand_one_error_var (var);
980 }
981 }
982 else if (defer_stack_allocation (var, toplevel))
983 add_stack_var (origvar);
984 else
985 {
986 if (really_expand)
987 expand_one_stack_var (origvar);
988 return tree_low_cst (DECL_SIZE_UNIT (var), 1);
989 }
990 return 0;
991 }
992
993 /* A subroutine of expand_used_vars. Walk down through the BLOCK tree
994 expanding variables. Those variables that can be put into registers
995 are allocated pseudos; those that can't are put on the stack.
996
997 TOPLEVEL is true if this is the outermost BLOCK. */
998
999 static void
1000 expand_used_vars_for_block (tree block, bool toplevel)
1001 {
1002 size_t i, j, old_sv_num, this_sv_num, new_sv_num;
1003 tree t;
1004
1005 old_sv_num = toplevel ? 0 : stack_vars_num;
1006
1007 /* Expand all variables at this level. */
1008 for (t = BLOCK_VARS (block); t ; t = TREE_CHAIN (t))
1009 if (TREE_USED (t))
1010 expand_one_var (t, toplevel, true);
1011
1012 this_sv_num = stack_vars_num;
1013
1014 /* Expand all variables at containing levels. */
1015 for (t = BLOCK_SUBBLOCKS (block); t ; t = BLOCK_CHAIN (t))
1016 expand_used_vars_for_block (t, false);
1017
1018 /* Since we do not track exact variable lifetimes (which is not even
1019 possible for variables whose address escapes), we mirror the block
1020 tree in the interference graph. Here we cause all variables at this
1021 level, and all sublevels, to conflict. */
1022 if (old_sv_num < this_sv_num)
1023 {
1024 new_sv_num = stack_vars_num;
1025
1026 for (i = old_sv_num; i < new_sv_num; ++i)
1027 for (j = i < this_sv_num ? i : this_sv_num; j-- > old_sv_num ;)
1028 add_stack_var_conflict (i, j);
1029 }
1030 }
1031
1032 /* A subroutine of expand_used_vars. Walk down through the BLOCK tree
1033 and clear TREE_USED on all local variables. */
1034
1035 static void
1036 clear_tree_used (tree block)
1037 {
1038 tree t;
1039
1040 for (t = BLOCK_VARS (block); t ; t = TREE_CHAIN (t))
1041 /* if (!TREE_STATIC (t) && !DECL_EXTERNAL (t)) */
1042 TREE_USED (t) = 0;
1043
1044 for (t = BLOCK_SUBBLOCKS (block); t ; t = BLOCK_CHAIN (t))
1045 clear_tree_used (t);
1046 }
1047
1048 /* Examine TYPE and determine a bit mask of the following features. */
1049
1050 #define SPCT_HAS_LARGE_CHAR_ARRAY 1
1051 #define SPCT_HAS_SMALL_CHAR_ARRAY 2
1052 #define SPCT_HAS_ARRAY 4
1053 #define SPCT_HAS_AGGREGATE 8
1054
1055 static unsigned int
1056 stack_protect_classify_type (tree type)
1057 {
1058 unsigned int ret = 0;
1059 tree t;
1060
1061 switch (TREE_CODE (type))
1062 {
1063 case ARRAY_TYPE:
1064 t = TYPE_MAIN_VARIANT (TREE_TYPE (type));
1065 if (t == char_type_node
1066 || t == signed_char_type_node
1067 || t == unsigned_char_type_node)
1068 {
1069 unsigned HOST_WIDE_INT max = PARAM_VALUE (PARAM_SSP_BUFFER_SIZE);
1070 unsigned HOST_WIDE_INT len;
1071
1072 if (!TYPE_SIZE_UNIT (type)
1073 || !host_integerp (TYPE_SIZE_UNIT (type), 1))
1074 len = max;
1075 else
1076 len = tree_low_cst (TYPE_SIZE_UNIT (type), 1);
1077
1078 if (len < max)
1079 ret = SPCT_HAS_SMALL_CHAR_ARRAY | SPCT_HAS_ARRAY;
1080 else
1081 ret = SPCT_HAS_LARGE_CHAR_ARRAY | SPCT_HAS_ARRAY;
1082 }
1083 else
1084 ret = SPCT_HAS_ARRAY;
1085 break;
1086
1087 case UNION_TYPE:
1088 case QUAL_UNION_TYPE:
1089 case RECORD_TYPE:
1090 ret = SPCT_HAS_AGGREGATE;
1091 for (t = TYPE_FIELDS (type); t ; t = TREE_CHAIN (t))
1092 if (TREE_CODE (t) == FIELD_DECL)
1093 ret |= stack_protect_classify_type (TREE_TYPE (t));
1094 break;
1095
1096 default:
1097 break;
1098 }
1099
1100 return ret;
1101 }
1102
1103 /* Return nonzero if DECL should be segregated into the "vulnerable" upper
1104 part of the local stack frame. Remember if we ever return nonzero for
1105 any variable in this function. The return value is the phase number in
1106 which the variable should be allocated. */
1107
1108 static int
1109 stack_protect_decl_phase (tree decl)
1110 {
1111 unsigned int bits = stack_protect_classify_type (TREE_TYPE (decl));
1112 int ret = 0;
1113
1114 if (bits & SPCT_HAS_SMALL_CHAR_ARRAY)
1115 has_short_buffer = true;
1116
1117 if (flag_stack_protect == 2)
1118 {
1119 if ((bits & (SPCT_HAS_SMALL_CHAR_ARRAY | SPCT_HAS_LARGE_CHAR_ARRAY))
1120 && !(bits & SPCT_HAS_AGGREGATE))
1121 ret = 1;
1122 else if (bits & SPCT_HAS_ARRAY)
1123 ret = 2;
1124 }
1125 else
1126 ret = (bits & SPCT_HAS_LARGE_CHAR_ARRAY) != 0;
1127
1128 if (ret)
1129 has_protected_decls = true;
1130
1131 return ret;
1132 }
1133
1134 /* Two helper routines that check for phase 1 and phase 2. These are used
1135 as callbacks for expand_stack_vars. */
1136
1137 static bool
1138 stack_protect_decl_phase_1 (tree decl)
1139 {
1140 return stack_protect_decl_phase (decl) == 1;
1141 }
1142
1143 static bool
1144 stack_protect_decl_phase_2 (tree decl)
1145 {
1146 return stack_protect_decl_phase (decl) == 2;
1147 }
1148
1149 /* Ensure that variables in different stack protection phases conflict
1150 so that they are not merged and share the same stack slot. */
1151
1152 static void
1153 add_stack_protection_conflicts (void)
1154 {
1155 size_t i, j, n = stack_vars_num;
1156 unsigned char *phase;
1157
1158 phase = XNEWVEC (unsigned char, n);
1159 for (i = 0; i < n; ++i)
1160 phase[i] = stack_protect_decl_phase (stack_vars[i].decl);
1161
1162 for (i = 0; i < n; ++i)
1163 {
1164 unsigned char ph_i = phase[i];
1165 for (j = 0; j < i; ++j)
1166 if (ph_i != phase[j])
1167 add_stack_var_conflict (i, j);
1168 }
1169
1170 XDELETEVEC (phase);
1171 }
1172
1173 /* Create a decl for the guard at the top of the stack frame. */
1174
1175 static void
1176 create_stack_guard (void)
1177 {
1178 tree guard = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
1179 VAR_DECL, NULL, ptr_type_node);
1180 TREE_THIS_VOLATILE (guard) = 1;
1181 TREE_USED (guard) = 1;
1182 expand_one_stack_var (guard);
1183 crtl->stack_protect_guard = guard;
1184 }
1185
1186 /* A subroutine of expand_used_vars. Walk down through the BLOCK tree
1187 expanding variables. Those variables that can be put into registers
1188 are allocated pseudos; those that can't are put on the stack.
1189
1190 TOPLEVEL is true if this is the outermost BLOCK. */
1191
1192 static HOST_WIDE_INT
1193 account_used_vars_for_block (tree block, bool toplevel)
1194 {
1195 tree t;
1196 HOST_WIDE_INT size = 0;
1197
1198 /* Expand all variables at this level. */
1199 for (t = BLOCK_VARS (block); t ; t = TREE_CHAIN (t))
1200 if (TREE_USED (t))
1201 size += expand_one_var (t, toplevel, false);
1202
1203 /* Expand all variables at containing levels. */
1204 for (t = BLOCK_SUBBLOCKS (block); t ; t = BLOCK_CHAIN (t))
1205 size += account_used_vars_for_block (t, false);
1206
1207 return size;
1208 }
1209
1210 /* Prepare for expanding variables. */
1211 static void
1212 init_vars_expansion (void)
1213 {
1214 tree t;
1215 /* Set TREE_USED on all variables in the local_decls. */
1216 for (t = cfun->local_decls; t; t = TREE_CHAIN (t))
1217 TREE_USED (TREE_VALUE (t)) = 1;
1218
1219 /* Clear TREE_USED on all variables associated with a block scope. */
1220 clear_tree_used (DECL_INITIAL (current_function_decl));
1221
1222 /* Initialize local stack smashing state. */
1223 has_protected_decls = false;
1224 has_short_buffer = false;
1225 }
1226
1227 /* Free up stack variable graph data. */
1228 static void
1229 fini_vars_expansion (void)
1230 {
1231 size_t i, n = stack_vars_num;
1232 for (i = 0; i < n; i++)
1233 BITMAP_FREE (stack_vars[i].conflicts);
1234 XDELETEVEC (stack_vars);
1235 XDELETEVEC (stack_vars_sorted);
1236 stack_vars = NULL;
1237 stack_vars_alloc = stack_vars_num = 0;
1238 }
1239
1240 /* Make a fair guess for the size of the stack frame of the current
1241 function. This doesn't have to be exact, the result is only used
1242 in the inline heuristics. So we don't want to run the full stack
1243 var packing algorithm (which is quadratic in the number of stack
1244 vars). Instead, we calculate the total size of all stack vars.
1245 This turns out to be a pretty fair estimate -- packing of stack
1246 vars doesn't happen very often. */
1247
1248 HOST_WIDE_INT
1249 estimated_stack_frame_size (void)
1250 {
1251 HOST_WIDE_INT size = 0;
1252 size_t i;
1253 tree t, outer_block = DECL_INITIAL (current_function_decl);
1254
1255 init_vars_expansion ();
1256
1257 for (t = cfun->local_decls; t; t = TREE_CHAIN (t))
1258 {
1259 tree var = TREE_VALUE (t);
1260
1261 if (TREE_USED (var))
1262 size += expand_one_var (var, true, false);
1263 TREE_USED (var) = 1;
1264 }
1265 size += account_used_vars_for_block (outer_block, true);
1266
1267 if (stack_vars_num > 0)
1268 {
1269 /* Fake sorting the stack vars for account_stack_vars (). */
1270 stack_vars_sorted = XNEWVEC (size_t, stack_vars_num);
1271 for (i = 0; i < stack_vars_num; ++i)
1272 stack_vars_sorted[i] = i;
1273 size += account_stack_vars ();
1274 fini_vars_expansion ();
1275 }
1276
1277 return size;
1278 }
1279
1280 /* Expand all variables used in the function. */
1281
1282 static void
1283 expand_used_vars (void)
1284 {
1285 tree t, next, outer_block = DECL_INITIAL (current_function_decl);
1286 unsigned i;
1287
1288 /* Compute the phase of the stack frame for this function. */
1289 {
1290 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
1291 int off = STARTING_FRAME_OFFSET % align;
1292 frame_phase = off ? align - off : 0;
1293 }
1294
1295 init_vars_expansion ();
1296
1297 for (i = 0; i < SA.map->num_partitions; i++)
1298 {
1299 tree var = partition_to_var (SA.map, i);
1300
1301 gcc_assert (is_gimple_reg (var));
1302 if (TREE_CODE (SSA_NAME_VAR (var)) == VAR_DECL)
1303 expand_one_var (var, true, true);
1304 else
1305 {
1306 /* This is a PARM_DECL or RESULT_DECL. For those partitions that
1307 contain the default def (representing the parm or result itself)
1308 we don't do anything here. But those which don't contain the
1309 default def (representing a temporary based on the parm/result)
1310 we need to allocate space just like for normal VAR_DECLs. */
1311 if (!bitmap_bit_p (SA.partition_has_default_def, i))
1312 {
1313 expand_one_var (var, true, true);
1314 gcc_assert (SA.partition_to_pseudo[i]);
1315 }
1316 }
1317 }
1318
1319 /* At this point all variables on the local_decls with TREE_USED
1320 set are not associated with any block scope. Lay them out. */
1321 t = cfun->local_decls;
1322 cfun->local_decls = NULL_TREE;
1323 for (; t; t = next)
1324 {
1325 tree var = TREE_VALUE (t);
1326 bool expand_now = false;
1327
1328 next = TREE_CHAIN (t);
1329
1330 /* Expanded above already. */
1331 if (is_gimple_reg (var))
1332 {
1333 TREE_USED (var) = 0;
1334 ggc_free (t);
1335 continue;
1336 }
1337 /* We didn't set a block for static or extern because it's hard
1338 to tell the difference between a global variable (re)declared
1339 in a local scope, and one that's really declared there to
1340 begin with. And it doesn't really matter much, since we're
1341 not giving them stack space. Expand them now. */
1342 else if (TREE_STATIC (var) || DECL_EXTERNAL (var))
1343 expand_now = true;
1344
1345 /* If the variable is not associated with any block, then it
1346 was created by the optimizers, and could be live anywhere
1347 in the function. */
1348 else if (TREE_USED (var))
1349 expand_now = true;
1350
1351 /* Finally, mark all variables on the list as used. We'll use
1352 this in a moment when we expand those associated with scopes. */
1353 TREE_USED (var) = 1;
1354
1355 if (expand_now)
1356 {
1357 expand_one_var (var, true, true);
1358 if (DECL_ARTIFICIAL (var) && !DECL_IGNORED_P (var))
1359 {
1360 rtx rtl = DECL_RTL_IF_SET (var);
1361
1362 /* Keep artificial non-ignored vars in cfun->local_decls
1363 chain until instantiate_decls. */
1364 if (rtl && (MEM_P (rtl) || GET_CODE (rtl) == CONCAT))
1365 {
1366 TREE_CHAIN (t) = cfun->local_decls;
1367 cfun->local_decls = t;
1368 continue;
1369 }
1370 }
1371 }
1372
1373 ggc_free (t);
1374 }
1375
1376 /* At this point, all variables within the block tree with TREE_USED
1377 set are actually used by the optimized function. Lay them out. */
1378 expand_used_vars_for_block (outer_block, true);
1379
1380 if (stack_vars_num > 0)
1381 {
1382 /* Due to the way alias sets work, no variables with non-conflicting
1383 alias sets may be assigned the same address. Add conflicts to
1384 reflect this. */
1385 add_alias_set_conflicts ();
1386
1387 /* If stack protection is enabled, we don't share space between
1388 vulnerable data and non-vulnerable data. */
1389 if (flag_stack_protect)
1390 add_stack_protection_conflicts ();
1391
1392 /* Now that we have collected all stack variables, and have computed a
1393 minimal interference graph, attempt to save some stack space. */
1394 partition_stack_vars ();
1395 if (dump_file)
1396 dump_stack_var_partition ();
1397 }
1398
1399 /* There are several conditions under which we should create a
1400 stack guard: protect-all, alloca used, protected decls present. */
1401 if (flag_stack_protect == 2
1402 || (flag_stack_protect
1403 && (cfun->calls_alloca || has_protected_decls)))
1404 create_stack_guard ();
1405
1406 /* Assign rtl to each variable based on these partitions. */
1407 if (stack_vars_num > 0)
1408 {
1409 /* Reorder decls to be protected by iterating over the variables
1410 array multiple times, and allocating out of each phase in turn. */
1411 /* ??? We could probably integrate this into the qsort we did
1412 earlier, such that we naturally see these variables first,
1413 and thus naturally allocate things in the right order. */
1414 if (has_protected_decls)
1415 {
1416 /* Phase 1 contains only character arrays. */
1417 expand_stack_vars (stack_protect_decl_phase_1);
1418
1419 /* Phase 2 contains other kinds of arrays. */
1420 if (flag_stack_protect == 2)
1421 expand_stack_vars (stack_protect_decl_phase_2);
1422 }
1423
1424 expand_stack_vars (NULL);
1425
1426 fini_vars_expansion ();
1427 }
1428
1429 /* If the target requires that FRAME_OFFSET be aligned, do it. */
1430 if (STACK_ALIGNMENT_NEEDED)
1431 {
1432 HOST_WIDE_INT align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
1433 if (!FRAME_GROWS_DOWNWARD)
1434 frame_offset += align - 1;
1435 frame_offset &= -align;
1436 }
1437 }
1438
1439
1440 /* If we need to produce a detailed dump, print the tree representation
1441 for STMT to the dump file. SINCE is the last RTX after which the RTL
1442 generated for STMT should have been appended. */
1443
1444 static void
1445 maybe_dump_rtl_for_gimple_stmt (gimple stmt, rtx since)
1446 {
1447 if (dump_file && (dump_flags & TDF_DETAILS))
1448 {
1449 fprintf (dump_file, "\n;; ");
1450 print_gimple_stmt (dump_file, stmt, 0,
1451 TDF_SLIM | (dump_flags & TDF_LINENO));
1452 fprintf (dump_file, "\n");
1453
1454 print_rtl (dump_file, since ? NEXT_INSN (since) : since);
1455 }
1456 }
1457
1458 /* Maps the blocks that do not contain tree labels to rtx labels. */
1459
1460 static struct pointer_map_t *lab_rtx_for_bb;
1461
1462 /* Returns the label_rtx expression for a label starting basic block BB. */
1463
1464 static rtx
1465 label_rtx_for_bb (basic_block bb ATTRIBUTE_UNUSED)
1466 {
1467 gimple_stmt_iterator gsi;
1468 tree lab;
1469 gimple lab_stmt;
1470 void **elt;
1471
1472 if (bb->flags & BB_RTL)
1473 return block_label (bb);
1474
1475 elt = pointer_map_contains (lab_rtx_for_bb, bb);
1476 if (elt)
1477 return (rtx) *elt;
1478
1479 /* Find the tree label if it is present. */
1480
1481 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1482 {
1483 lab_stmt = gsi_stmt (gsi);
1484 if (gimple_code (lab_stmt) != GIMPLE_LABEL)
1485 break;
1486
1487 lab = gimple_label_label (lab_stmt);
1488 if (DECL_NONLOCAL (lab))
1489 break;
1490
1491 return label_rtx (lab);
1492 }
1493
1494 elt = pointer_map_insert (lab_rtx_for_bb, bb);
1495 *elt = gen_label_rtx ();
1496 return (rtx) *elt;
1497 }
1498
1499
1500 /* A subroutine of expand_gimple_cond. Given E, a fallthrough edge
1501 of a basic block where we just expanded the conditional at the end,
1502 possibly clean up the CFG and instruction sequence. LAST is the
1503 last instruction before the just emitted jump sequence. */
1504
1505 static void
1506 maybe_cleanup_end_of_block (edge e, rtx last)
1507 {
1508 /* Special case: when jumpif decides that the condition is
1509 trivial it emits an unconditional jump (and the necessary
1510 barrier). But we still have two edges, the fallthru one is
1511 wrong. purge_dead_edges would clean this up later. Unfortunately
1512 we have to insert insns (and split edges) before
1513 find_many_sub_basic_blocks and hence before purge_dead_edges.
1514 But splitting edges might create new blocks which depend on the
1515 fact that if there are two edges there's no barrier. So the
1516 barrier would get lost and verify_flow_info would ICE. Instead
1517 of auditing all edge splitters to care for the barrier (which
1518 normally isn't there in a cleaned CFG), fix it here. */
1519 if (BARRIER_P (get_last_insn ()))
1520 {
1521 rtx insn;
1522 remove_edge (e);
1523 /* Now, we have a single successor block, if we have insns to
1524 insert on the remaining edge we potentially will insert
1525 it at the end of this block (if the dest block isn't feasible)
1526 in order to avoid splitting the edge. This insertion will take
1527 place in front of the last jump. But we might have emitted
1528 multiple jumps (conditional and one unconditional) to the
1529 same destination. Inserting in front of the last one then
1530 is a problem. See PR 40021. We fix this by deleting all
1531 jumps except the last unconditional one. */
1532 insn = PREV_INSN (get_last_insn ());
1533 /* Make sure we have an unconditional jump. Otherwise we're
1534 confused. */
1535 gcc_assert (JUMP_P (insn) && !any_condjump_p (insn));
1536 for (insn = PREV_INSN (insn); insn != last;)
1537 {
1538 insn = PREV_INSN (insn);
1539 if (JUMP_P (NEXT_INSN (insn)))
1540 delete_insn (NEXT_INSN (insn));
1541 }
1542 }
1543 }
1544
1545 /* A subroutine of expand_gimple_basic_block. Expand one GIMPLE_COND.
1546 Returns a new basic block if we've terminated the current basic
1547 block and created a new one. */
1548
1549 static basic_block
1550 expand_gimple_cond (basic_block bb, gimple stmt)
1551 {
1552 basic_block new_bb, dest;
1553 edge new_edge;
1554 edge true_edge;
1555 edge false_edge;
1556 rtx last2, last;
1557 enum tree_code code;
1558 tree op0, op1;
1559
1560 code = gimple_cond_code (stmt);
1561 op0 = gimple_cond_lhs (stmt);
1562 op1 = gimple_cond_rhs (stmt);
1563 /* We're sometimes presented with such code:
1564 D.123_1 = x < y;
1565 if (D.123_1 != 0)
1566 ...
1567 This would expand to two comparisons which then later might
1568 be cleaned up by combine. But some pattern matchers like if-conversion
1569 work better when there's only one compare, so make up for this
1570 here as special exception if TER would have made the same change. */
1571 if (gimple_cond_single_var_p (stmt)
1572 && SA.values
1573 && TREE_CODE (op0) == SSA_NAME
1574 && bitmap_bit_p (SA.values, SSA_NAME_VERSION (op0)))
1575 {
1576 gimple second = SSA_NAME_DEF_STMT (op0);
1577 if (gimple_code (second) == GIMPLE_ASSIGN)
1578 {
1579 enum tree_code code2 = gimple_assign_rhs_code (second);
1580 if (TREE_CODE_CLASS (code2) == tcc_comparison)
1581 {
1582 code = code2;
1583 op0 = gimple_assign_rhs1 (second);
1584 op1 = gimple_assign_rhs2 (second);
1585 }
1586 /* If jumps are cheap turn some more codes into
1587 jumpy sequences. */
1588 else if (BRANCH_COST (optimize_insn_for_speed_p (), false) < 4)
1589 {
1590 if ((code2 == BIT_AND_EXPR
1591 && TYPE_PRECISION (TREE_TYPE (op0)) == 1
1592 && TREE_CODE (gimple_assign_rhs2 (second)) != INTEGER_CST)
1593 || code2 == TRUTH_AND_EXPR)
1594 {
1595 code = TRUTH_ANDIF_EXPR;
1596 op0 = gimple_assign_rhs1 (second);
1597 op1 = gimple_assign_rhs2 (second);
1598 }
1599 else if (code2 == BIT_IOR_EXPR || code2 == TRUTH_OR_EXPR)
1600 {
1601 code = TRUTH_ORIF_EXPR;
1602 op0 = gimple_assign_rhs1 (second);
1603 op1 = gimple_assign_rhs2 (second);
1604 }
1605 }
1606 }
1607 }
1608
1609 last2 = last = get_last_insn ();
1610
1611 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1612 if (gimple_has_location (stmt))
1613 {
1614 set_curr_insn_source_location (gimple_location (stmt));
1615 set_curr_insn_block (gimple_block (stmt));
1616 }
1617
1618 /* These flags have no purpose in RTL land. */
1619 true_edge->flags &= ~EDGE_TRUE_VALUE;
1620 false_edge->flags &= ~EDGE_FALSE_VALUE;
1621
1622 /* We can either have a pure conditional jump with one fallthru edge or
1623 two-way jump that needs to be decomposed into two basic blocks. */
1624 if (false_edge->dest == bb->next_bb)
1625 {
1626 jumpif_1 (code, op0, op1, label_rtx_for_bb (true_edge->dest),
1627 true_edge->probability);
1628 maybe_dump_rtl_for_gimple_stmt (stmt, last);
1629 if (true_edge->goto_locus)
1630 {
1631 set_curr_insn_source_location (true_edge->goto_locus);
1632 set_curr_insn_block (true_edge->goto_block);
1633 true_edge->goto_locus = curr_insn_locator ();
1634 }
1635 true_edge->goto_block = NULL;
1636 false_edge->flags |= EDGE_FALLTHRU;
1637 maybe_cleanup_end_of_block (false_edge, last);
1638 return NULL;
1639 }
1640 if (true_edge->dest == bb->next_bb)
1641 {
1642 jumpifnot_1 (code, op0, op1, label_rtx_for_bb (false_edge->dest),
1643 false_edge->probability);
1644 maybe_dump_rtl_for_gimple_stmt (stmt, last);
1645 if (false_edge->goto_locus)
1646 {
1647 set_curr_insn_source_location (false_edge->goto_locus);
1648 set_curr_insn_block (false_edge->goto_block);
1649 false_edge->goto_locus = curr_insn_locator ();
1650 }
1651 false_edge->goto_block = NULL;
1652 true_edge->flags |= EDGE_FALLTHRU;
1653 maybe_cleanup_end_of_block (true_edge, last);
1654 return NULL;
1655 }
1656
1657 jumpif_1 (code, op0, op1, label_rtx_for_bb (true_edge->dest),
1658 true_edge->probability);
1659 last = get_last_insn ();
1660 if (false_edge->goto_locus)
1661 {
1662 set_curr_insn_source_location (false_edge->goto_locus);
1663 set_curr_insn_block (false_edge->goto_block);
1664 false_edge->goto_locus = curr_insn_locator ();
1665 }
1666 false_edge->goto_block = NULL;
1667 emit_jump (label_rtx_for_bb (false_edge->dest));
1668
1669 BB_END (bb) = last;
1670 if (BARRIER_P (BB_END (bb)))
1671 BB_END (bb) = PREV_INSN (BB_END (bb));
1672 update_bb_for_insn (bb);
1673
1674 new_bb = create_basic_block (NEXT_INSN (last), get_last_insn (), bb);
1675 dest = false_edge->dest;
1676 redirect_edge_succ (false_edge, new_bb);
1677 false_edge->flags |= EDGE_FALLTHRU;
1678 new_bb->count = false_edge->count;
1679 new_bb->frequency = EDGE_FREQUENCY (false_edge);
1680 new_edge = make_edge (new_bb, dest, 0);
1681 new_edge->probability = REG_BR_PROB_BASE;
1682 new_edge->count = new_bb->count;
1683 if (BARRIER_P (BB_END (new_bb)))
1684 BB_END (new_bb) = PREV_INSN (BB_END (new_bb));
1685 update_bb_for_insn (new_bb);
1686
1687 maybe_dump_rtl_for_gimple_stmt (stmt, last2);
1688
1689 if (true_edge->goto_locus)
1690 {
1691 set_curr_insn_source_location (true_edge->goto_locus);
1692 set_curr_insn_block (true_edge->goto_block);
1693 true_edge->goto_locus = curr_insn_locator ();
1694 }
1695 true_edge->goto_block = NULL;
1696
1697 return new_bb;
1698 }
1699
1700 /* A subroutine of expand_gimple_stmt_1, expanding one GIMPLE_CALL
1701 statement STMT. */
1702
1703 static void
1704 expand_call_stmt (gimple stmt)
1705 {
1706 tree exp;
1707 tree lhs = gimple_call_lhs (stmt);
1708 size_t i;
1709 bool builtin_p;
1710 tree decl;
1711
1712 exp = build_vl_exp (CALL_EXPR, gimple_call_num_args (stmt) + 3);
1713
1714 CALL_EXPR_FN (exp) = gimple_call_fn (stmt);
1715 decl = gimple_call_fndecl (stmt);
1716 builtin_p = decl && DECL_BUILT_IN (decl);
1717
1718 TREE_TYPE (exp) = gimple_call_return_type (stmt);
1719 CALL_EXPR_STATIC_CHAIN (exp) = gimple_call_chain (stmt);
1720
1721 for (i = 0; i < gimple_call_num_args (stmt); i++)
1722 {
1723 tree arg = gimple_call_arg (stmt, i);
1724 gimple def;
1725 /* TER addresses into arguments of builtin functions so we have a
1726 chance to infer more correct alignment information. See PR39954. */
1727 if (builtin_p
1728 && TREE_CODE (arg) == SSA_NAME
1729 && (def = get_gimple_for_ssa_name (arg))
1730 && gimple_assign_rhs_code (def) == ADDR_EXPR)
1731 arg = gimple_assign_rhs1 (def);
1732 CALL_EXPR_ARG (exp, i) = arg;
1733 }
1734
1735 if (gimple_has_side_effects (stmt))
1736 TREE_SIDE_EFFECTS (exp) = 1;
1737
1738 if (gimple_call_nothrow_p (stmt))
1739 TREE_NOTHROW (exp) = 1;
1740
1741 CALL_EXPR_TAILCALL (exp) = gimple_call_tail_p (stmt);
1742 CALL_EXPR_RETURN_SLOT_OPT (exp) = gimple_call_return_slot_opt_p (stmt);
1743 CALL_FROM_THUNK_P (exp) = gimple_call_from_thunk_p (stmt);
1744 CALL_CANNOT_INLINE_P (exp) = gimple_call_cannot_inline_p (stmt);
1745 CALL_EXPR_VA_ARG_PACK (exp) = gimple_call_va_arg_pack_p (stmt);
1746 SET_EXPR_LOCATION (exp, gimple_location (stmt));
1747 TREE_BLOCK (exp) = gimple_block (stmt);
1748
1749 if (lhs)
1750 expand_assignment (lhs, exp, false);
1751 else
1752 expand_expr_real_1 (exp, const0_rtx, VOIDmode, EXPAND_NORMAL, NULL);
1753 }
1754
1755 /* A subroutine of expand_gimple_stmt, expanding one gimple statement
1756 STMT that doesn't require special handling for outgoing edges. That
1757 is no tailcalls and no GIMPLE_COND. */
1758
1759 static void
1760 expand_gimple_stmt_1 (gimple stmt)
1761 {
1762 tree op0;
1763 switch (gimple_code (stmt))
1764 {
1765 case GIMPLE_GOTO:
1766 op0 = gimple_goto_dest (stmt);
1767 if (TREE_CODE (op0) == LABEL_DECL)
1768 expand_goto (op0);
1769 else
1770 expand_computed_goto (op0);
1771 break;
1772 case GIMPLE_LABEL:
1773 expand_label (gimple_label_label (stmt));
1774 break;
1775 case GIMPLE_NOP:
1776 case GIMPLE_PREDICT:
1777 break;
1778 case GIMPLE_SWITCH:
1779 expand_case (stmt);
1780 break;
1781 case GIMPLE_ASM:
1782 expand_asm_stmt (stmt);
1783 break;
1784 case GIMPLE_CALL:
1785 expand_call_stmt (stmt);
1786 break;
1787
1788 case GIMPLE_RETURN:
1789 op0 = gimple_return_retval (stmt);
1790
1791 if (op0 && op0 != error_mark_node)
1792 {
1793 tree result = DECL_RESULT (current_function_decl);
1794
1795 /* If we are not returning the current function's RESULT_DECL,
1796 build an assignment to it. */
1797 if (op0 != result)
1798 {
1799 /* I believe that a function's RESULT_DECL is unique. */
1800 gcc_assert (TREE_CODE (op0) != RESULT_DECL);
1801
1802 /* ??? We'd like to use simply expand_assignment here,
1803 but this fails if the value is of BLKmode but the return
1804 decl is a register. expand_return has special handling
1805 for this combination, which eventually should move
1806 to common code. See comments there. Until then, let's
1807 build a modify expression :-/ */
1808 op0 = build2 (MODIFY_EXPR, TREE_TYPE (result),
1809 result, op0);
1810 }
1811 }
1812 if (!op0)
1813 expand_null_return ();
1814 else
1815 expand_return (op0);
1816 break;
1817
1818 case GIMPLE_ASSIGN:
1819 {
1820 tree lhs = gimple_assign_lhs (stmt);
1821
1822 /* Tree expand used to fiddle with |= and &= of two bitfield
1823 COMPONENT_REFs here. This can't happen with gimple, the LHS
1824 of binary assigns must be a gimple reg. */
1825
1826 if (TREE_CODE (lhs) != SSA_NAME
1827 || get_gimple_rhs_class (gimple_expr_code (stmt))
1828 == GIMPLE_SINGLE_RHS)
1829 {
1830 tree rhs = gimple_assign_rhs1 (stmt);
1831 gcc_assert (get_gimple_rhs_class (gimple_expr_code (stmt))
1832 == GIMPLE_SINGLE_RHS);
1833 if (gimple_has_location (stmt) && CAN_HAVE_LOCATION_P (rhs))
1834 SET_EXPR_LOCATION (rhs, gimple_location (stmt));
1835 expand_assignment (lhs, rhs,
1836 gimple_assign_nontemporal_move_p (stmt));
1837 }
1838 else
1839 {
1840 rtx target, temp;
1841 bool nontemporal = gimple_assign_nontemporal_move_p (stmt);
1842 struct separate_ops ops;
1843 bool promoted = false;
1844
1845 target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
1846 if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
1847 promoted = true;
1848
1849 ops.code = gimple_assign_rhs_code (stmt);
1850 ops.type = TREE_TYPE (lhs);
1851 switch (get_gimple_rhs_class (gimple_expr_code (stmt)))
1852 {
1853 case GIMPLE_BINARY_RHS:
1854 ops.op1 = gimple_assign_rhs2 (stmt);
1855 /* Fallthru */
1856 case GIMPLE_UNARY_RHS:
1857 ops.op0 = gimple_assign_rhs1 (stmt);
1858 break;
1859 default:
1860 gcc_unreachable ();
1861 }
1862 ops.location = gimple_location (stmt);
1863
1864 /* If we want to use a nontemporal store, force the value to
1865 register first. If we store into a promoted register,
1866 don't directly expand to target. */
1867 temp = nontemporal || promoted ? NULL_RTX : target;
1868 temp = expand_expr_real_2 (&ops, temp, GET_MODE (target),
1869 EXPAND_NORMAL);
1870
1871 if (temp == target)
1872 ;
1873 else if (promoted)
1874 {
1875 int unsignedp = SUBREG_PROMOTED_UNSIGNED_P (target);
1876 /* If TEMP is a VOIDmode constant, use convert_modes to make
1877 sure that we properly convert it. */
1878 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
1879 {
1880 temp = convert_modes (GET_MODE (target),
1881 TYPE_MODE (ops.type),
1882 temp, unsignedp);
1883 temp = convert_modes (GET_MODE (SUBREG_REG (target)),
1884 GET_MODE (target), temp, unsignedp);
1885 }
1886
1887 convert_move (SUBREG_REG (target), temp, unsignedp);
1888 }
1889 else if (nontemporal && emit_storent_insn (target, temp))
1890 ;
1891 else
1892 {
1893 temp = force_operand (temp, target);
1894 if (temp != target)
1895 emit_move_insn (target, temp);
1896 }
1897 }
1898 }
1899 break;
1900
1901 default:
1902 gcc_unreachable ();
1903 }
1904 }
1905
1906 /* Expand one gimple statement STMT and return the last RTL instruction
1907 before any of the newly generated ones.
1908
1909 In addition to generating the necessary RTL instructions this also
1910 sets REG_EH_REGION notes if necessary and sets the current source
1911 location for diagnostics. */
1912
1913 static rtx
1914 expand_gimple_stmt (gimple stmt)
1915 {
1916 int lp_nr = 0;
1917 rtx last = NULL;
1918 location_t saved_location = input_location;
1919
1920 last = get_last_insn ();
1921
1922 /* If this is an expression of some kind and it has an associated line
1923 number, then emit the line number before expanding the expression.
1924
1925 We need to save and restore the file and line information so that
1926 errors discovered during expansion are emitted with the right
1927 information. It would be better of the diagnostic routines
1928 used the file/line information embedded in the tree nodes rather
1929 than globals. */
1930 gcc_assert (cfun);
1931
1932 if (gimple_has_location (stmt))
1933 {
1934 input_location = gimple_location (stmt);
1935 set_curr_insn_source_location (input_location);
1936
1937 /* Record where the insns produced belong. */
1938 set_curr_insn_block (gimple_block (stmt));
1939 }
1940
1941 expand_gimple_stmt_1 (stmt);
1942 /* Free any temporaries used to evaluate this statement. */
1943 free_temp_slots ();
1944
1945 input_location = saved_location;
1946
1947 /* Mark all insns that may trap. */
1948 lp_nr = lookup_stmt_eh_lp (stmt);
1949 if (lp_nr)
1950 {
1951 rtx insn;
1952 for (insn = next_real_insn (last); insn;
1953 insn = next_real_insn (insn))
1954 {
1955 if (! find_reg_note (insn, REG_EH_REGION, NULL_RTX)
1956 /* If we want exceptions for non-call insns, any
1957 may_trap_p instruction may throw. */
1958 && GET_CODE (PATTERN (insn)) != CLOBBER
1959 && GET_CODE (PATTERN (insn)) != USE
1960 && insn_could_throw_p (insn))
1961 make_reg_eh_region_note (insn, 0, lp_nr);
1962 }
1963 }
1964
1965 return last;
1966 }
1967
1968 /* A subroutine of expand_gimple_basic_block. Expand one GIMPLE_CALL
1969 that has CALL_EXPR_TAILCALL set. Returns non-null if we actually
1970 generated a tail call (something that might be denied by the ABI
1971 rules governing the call; see calls.c).
1972
1973 Sets CAN_FALLTHRU if we generated a *conditional* tail call, and
1974 can still reach the rest of BB. The case here is __builtin_sqrt,
1975 where the NaN result goes through the external function (with a
1976 tailcall) and the normal result happens via a sqrt instruction. */
1977
1978 static basic_block
1979 expand_gimple_tailcall (basic_block bb, gimple stmt, bool *can_fallthru)
1980 {
1981 rtx last2, last;
1982 edge e;
1983 edge_iterator ei;
1984 int probability;
1985 gcov_type count;
1986
1987 last2 = last = expand_gimple_stmt (stmt);
1988
1989 for (last = NEXT_INSN (last); last; last = NEXT_INSN (last))
1990 if (CALL_P (last) && SIBLING_CALL_P (last))
1991 goto found;
1992
1993 maybe_dump_rtl_for_gimple_stmt (stmt, last2);
1994
1995 *can_fallthru = true;
1996 return NULL;
1997
1998 found:
1999 /* ??? Wouldn't it be better to just reset any pending stack adjust?
2000 Any instructions emitted here are about to be deleted. */
2001 do_pending_stack_adjust ();
2002
2003 /* Remove any non-eh, non-abnormal edges that don't go to exit. */
2004 /* ??? I.e. the fallthrough edge. HOWEVER! If there were to be
2005 EH or abnormal edges, we shouldn't have created a tail call in
2006 the first place. So it seems to me we should just be removing
2007 all edges here, or redirecting the existing fallthru edge to
2008 the exit block. */
2009
2010 probability = 0;
2011 count = 0;
2012
2013 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
2014 {
2015 if (!(e->flags & (EDGE_ABNORMAL | EDGE_EH)))
2016 {
2017 if (e->dest != EXIT_BLOCK_PTR)
2018 {
2019 e->dest->count -= e->count;
2020 e->dest->frequency -= EDGE_FREQUENCY (e);
2021 if (e->dest->count < 0)
2022 e->dest->count = 0;
2023 if (e->dest->frequency < 0)
2024 e->dest->frequency = 0;
2025 }
2026 count += e->count;
2027 probability += e->probability;
2028 remove_edge (e);
2029 }
2030 else
2031 ei_next (&ei);
2032 }
2033
2034 /* This is somewhat ugly: the call_expr expander often emits instructions
2035 after the sibcall (to perform the function return). These confuse the
2036 find_many_sub_basic_blocks code, so we need to get rid of these. */
2037 last = NEXT_INSN (last);
2038 gcc_assert (BARRIER_P (last));
2039
2040 *can_fallthru = false;
2041 while (NEXT_INSN (last))
2042 {
2043 /* For instance an sqrt builtin expander expands if with
2044 sibcall in the then and label for `else`. */
2045 if (LABEL_P (NEXT_INSN (last)))
2046 {
2047 *can_fallthru = true;
2048 break;
2049 }
2050 delete_insn (NEXT_INSN (last));
2051 }
2052
2053 e = make_edge (bb, EXIT_BLOCK_PTR, EDGE_ABNORMAL | EDGE_SIBCALL);
2054 e->probability += probability;
2055 e->count += count;
2056 BB_END (bb) = last;
2057 update_bb_for_insn (bb);
2058
2059 if (NEXT_INSN (last))
2060 {
2061 bb = create_basic_block (NEXT_INSN (last), get_last_insn (), bb);
2062
2063 last = BB_END (bb);
2064 if (BARRIER_P (last))
2065 BB_END (bb) = PREV_INSN (last);
2066 }
2067
2068 maybe_dump_rtl_for_gimple_stmt (stmt, last2);
2069
2070 return bb;
2071 }
2072
2073 /* Return the difference between the floor and the truncated result of
2074 a signed division by OP1 with remainder MOD. */
2075 static rtx
2076 floor_sdiv_adjust (enum machine_mode mode, rtx mod, rtx op1)
2077 {
2078 /* (mod != 0 ? (op1 / mod < 0 ? -1 : 0) : 0) */
2079 return gen_rtx_IF_THEN_ELSE
2080 (mode, gen_rtx_NE (BImode, mod, const0_rtx),
2081 gen_rtx_IF_THEN_ELSE
2082 (mode, gen_rtx_LT (BImode,
2083 gen_rtx_DIV (mode, op1, mod),
2084 const0_rtx),
2085 constm1_rtx, const0_rtx),
2086 const0_rtx);
2087 }
2088
2089 /* Return the difference between the ceil and the truncated result of
2090 a signed division by OP1 with remainder MOD. */
2091 static rtx
2092 ceil_sdiv_adjust (enum machine_mode mode, rtx mod, rtx op1)
2093 {
2094 /* (mod != 0 ? (op1 / mod > 0 ? 1 : 0) : 0) */
2095 return gen_rtx_IF_THEN_ELSE
2096 (mode, gen_rtx_NE (BImode, mod, const0_rtx),
2097 gen_rtx_IF_THEN_ELSE
2098 (mode, gen_rtx_GT (BImode,
2099 gen_rtx_DIV (mode, op1, mod),
2100 const0_rtx),
2101 const1_rtx, const0_rtx),
2102 const0_rtx);
2103 }
2104
2105 /* Return the difference between the ceil and the truncated result of
2106 an unsigned division by OP1 with remainder MOD. */
2107 static rtx
2108 ceil_udiv_adjust (enum machine_mode mode, rtx mod, rtx op1 ATTRIBUTE_UNUSED)
2109 {
2110 /* (mod != 0 ? 1 : 0) */
2111 return gen_rtx_IF_THEN_ELSE
2112 (mode, gen_rtx_NE (BImode, mod, const0_rtx),
2113 const1_rtx, const0_rtx);
2114 }
2115
2116 /* Return the difference between the rounded and the truncated result
2117 of a signed division by OP1 with remainder MOD. Halfway cases are
2118 rounded away from zero, rather than to the nearest even number. */
2119 static rtx
2120 round_sdiv_adjust (enum machine_mode mode, rtx mod, rtx op1)
2121 {
2122 /* (abs (mod) >= abs (op1) - abs (mod)
2123 ? (op1 / mod > 0 ? 1 : -1)
2124 : 0) */
2125 return gen_rtx_IF_THEN_ELSE
2126 (mode, gen_rtx_GE (BImode, gen_rtx_ABS (mode, mod),
2127 gen_rtx_MINUS (mode,
2128 gen_rtx_ABS (mode, op1),
2129 gen_rtx_ABS (mode, mod))),
2130 gen_rtx_IF_THEN_ELSE
2131 (mode, gen_rtx_GT (BImode,
2132 gen_rtx_DIV (mode, op1, mod),
2133 const0_rtx),
2134 const1_rtx, constm1_rtx),
2135 const0_rtx);
2136 }
2137
2138 /* Return the difference between the rounded and the truncated result
2139 of a unsigned division by OP1 with remainder MOD. Halfway cases
2140 are rounded away from zero, rather than to the nearest even
2141 number. */
2142 static rtx
2143 round_udiv_adjust (enum machine_mode mode, rtx mod, rtx op1)
2144 {
2145 /* (mod >= op1 - mod ? 1 : 0) */
2146 return gen_rtx_IF_THEN_ELSE
2147 (mode, gen_rtx_GE (BImode, mod,
2148 gen_rtx_MINUS (mode, op1, mod)),
2149 const1_rtx, const0_rtx);
2150 }
2151
2152 /* Convert X to MODE, that must be Pmode or ptr_mode, without emitting
2153 any rtl. */
2154
2155 static rtx
2156 convert_debug_memory_address (enum machine_mode mode, rtx x)
2157 {
2158 enum machine_mode xmode = GET_MODE (x);
2159
2160 #ifndef POINTERS_EXTEND_UNSIGNED
2161 gcc_assert (mode == Pmode);
2162 gcc_assert (xmode == mode || xmode == VOIDmode);
2163 #else
2164 gcc_assert (mode == Pmode || mode == ptr_mode);
2165
2166 if (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode)
2167 return x;
2168
2169 if (GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (xmode))
2170 x = simplify_gen_subreg (mode, x, xmode,
2171 subreg_lowpart_offset
2172 (mode, xmode));
2173 else if (POINTERS_EXTEND_UNSIGNED > 0)
2174 x = gen_rtx_ZERO_EXTEND (mode, x);
2175 else if (!POINTERS_EXTEND_UNSIGNED)
2176 x = gen_rtx_SIGN_EXTEND (mode, x);
2177 else
2178 gcc_unreachable ();
2179 #endif /* POINTERS_EXTEND_UNSIGNED */
2180
2181 return x;
2182 }
2183
2184 /* Return an RTX equivalent to the value of the tree expression
2185 EXP. */
2186
2187 static rtx
2188 expand_debug_expr (tree exp)
2189 {
2190 rtx op0 = NULL_RTX, op1 = NULL_RTX, op2 = NULL_RTX;
2191 enum machine_mode mode = TYPE_MODE (TREE_TYPE (exp));
2192 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
2193 addr_space_t as;
2194 enum machine_mode address_mode;
2195
2196 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
2197 {
2198 case tcc_expression:
2199 switch (TREE_CODE (exp))
2200 {
2201 case COND_EXPR:
2202 goto ternary;
2203
2204 case TRUTH_ANDIF_EXPR:
2205 case TRUTH_ORIF_EXPR:
2206 case TRUTH_AND_EXPR:
2207 case TRUTH_OR_EXPR:
2208 case TRUTH_XOR_EXPR:
2209 goto binary;
2210
2211 case TRUTH_NOT_EXPR:
2212 goto unary;
2213
2214 default:
2215 break;
2216 }
2217 break;
2218
2219 ternary:
2220 op2 = expand_debug_expr (TREE_OPERAND (exp, 2));
2221 if (!op2)
2222 return NULL_RTX;
2223 /* Fall through. */
2224
2225 binary:
2226 case tcc_binary:
2227 case tcc_comparison:
2228 op1 = expand_debug_expr (TREE_OPERAND (exp, 1));
2229 if (!op1)
2230 return NULL_RTX;
2231 /* Fall through. */
2232
2233 unary:
2234 case tcc_unary:
2235 op0 = expand_debug_expr (TREE_OPERAND (exp, 0));
2236 if (!op0)
2237 return NULL_RTX;
2238 break;
2239
2240 case tcc_type:
2241 case tcc_statement:
2242 gcc_unreachable ();
2243
2244 case tcc_constant:
2245 case tcc_exceptional:
2246 case tcc_declaration:
2247 case tcc_reference:
2248 case tcc_vl_exp:
2249 break;
2250 }
2251
2252 switch (TREE_CODE (exp))
2253 {
2254 case STRING_CST:
2255 if (!lookup_constant_def (exp))
2256 {
2257 if (strlen (TREE_STRING_POINTER (exp)) + 1
2258 != (size_t) TREE_STRING_LENGTH (exp))
2259 return NULL_RTX;
2260 op0 = gen_rtx_CONST_STRING (Pmode, TREE_STRING_POINTER (exp));
2261 op0 = gen_rtx_MEM (BLKmode, op0);
2262 set_mem_attributes (op0, exp, 0);
2263 return op0;
2264 }
2265 /* Fall through... */
2266
2267 case INTEGER_CST:
2268 case REAL_CST:
2269 case FIXED_CST:
2270 op0 = expand_expr (exp, NULL_RTX, mode, EXPAND_INITIALIZER);
2271 return op0;
2272
2273 case COMPLEX_CST:
2274 gcc_assert (COMPLEX_MODE_P (mode));
2275 op0 = expand_debug_expr (TREE_REALPART (exp));
2276 op1 = expand_debug_expr (TREE_IMAGPART (exp));
2277 return gen_rtx_CONCAT (mode, op0, op1);
2278
2279 case DEBUG_EXPR_DECL:
2280 op0 = DECL_RTL_IF_SET (exp);
2281
2282 if (op0)
2283 return op0;
2284
2285 op0 = gen_rtx_DEBUG_EXPR (mode);
2286 DEBUG_EXPR_TREE_DECL (op0) = exp;
2287 SET_DECL_RTL (exp, op0);
2288
2289 return op0;
2290
2291 case VAR_DECL:
2292 case PARM_DECL:
2293 case FUNCTION_DECL:
2294 case LABEL_DECL:
2295 case CONST_DECL:
2296 case RESULT_DECL:
2297 op0 = DECL_RTL_IF_SET (exp);
2298
2299 /* This decl was probably optimized away. */
2300 if (!op0)
2301 {
2302 if (TREE_CODE (exp) != VAR_DECL
2303 || DECL_EXTERNAL (exp)
2304 || !TREE_STATIC (exp)
2305 || !DECL_NAME (exp)
2306 || DECL_HARD_REGISTER (exp)
2307 || mode == VOIDmode)
2308 return NULL;
2309
2310 op0 = DECL_RTL (exp);
2311 SET_DECL_RTL (exp, NULL);
2312 if (!MEM_P (op0)
2313 || GET_CODE (XEXP (op0, 0)) != SYMBOL_REF
2314 || SYMBOL_REF_DECL (XEXP (op0, 0)) != exp)
2315 return NULL;
2316 }
2317 else
2318 op0 = copy_rtx (op0);
2319
2320 if (GET_MODE (op0) == BLKmode)
2321 {
2322 gcc_assert (MEM_P (op0));
2323 op0 = adjust_address_nv (op0, mode, 0);
2324 return op0;
2325 }
2326
2327 /* Fall through. */
2328
2329 adjust_mode:
2330 case PAREN_EXPR:
2331 case NOP_EXPR:
2332 case CONVERT_EXPR:
2333 {
2334 enum machine_mode inner_mode = GET_MODE (op0);
2335
2336 if (mode == inner_mode)
2337 return op0;
2338
2339 if (inner_mode == VOIDmode)
2340 {
2341 if (TREE_CODE (exp) == SSA_NAME)
2342 inner_mode = TYPE_MODE (TREE_TYPE (exp));
2343 else
2344 inner_mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)));
2345 if (mode == inner_mode)
2346 return op0;
2347 }
2348
2349 if (FLOAT_MODE_P (mode) && FLOAT_MODE_P (inner_mode))
2350 {
2351 if (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (inner_mode))
2352 op0 = simplify_gen_subreg (mode, op0, inner_mode, 0);
2353 else if (GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (inner_mode))
2354 op0 = simplify_gen_unary (FLOAT_TRUNCATE, mode, op0, inner_mode);
2355 else
2356 op0 = simplify_gen_unary (FLOAT_EXTEND, mode, op0, inner_mode);
2357 }
2358 else if (FLOAT_MODE_P (mode))
2359 {
2360 gcc_assert (TREE_CODE (exp) != SSA_NAME);
2361 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))))
2362 op0 = simplify_gen_unary (UNSIGNED_FLOAT, mode, op0, inner_mode);
2363 else
2364 op0 = simplify_gen_unary (FLOAT, mode, op0, inner_mode);
2365 }
2366 else if (FLOAT_MODE_P (inner_mode))
2367 {
2368 if (unsignedp)
2369 op0 = simplify_gen_unary (UNSIGNED_FIX, mode, op0, inner_mode);
2370 else
2371 op0 = simplify_gen_unary (FIX, mode, op0, inner_mode);
2372 }
2373 else if (CONSTANT_P (op0)
2374 || GET_MODE_BITSIZE (mode) <= GET_MODE_BITSIZE (inner_mode))
2375 op0 = simplify_gen_subreg (mode, op0, inner_mode,
2376 subreg_lowpart_offset (mode,
2377 inner_mode));
2378 else if (unsignedp)
2379 op0 = gen_rtx_ZERO_EXTEND (mode, op0);
2380 else
2381 op0 = gen_rtx_SIGN_EXTEND (mode, op0);
2382
2383 return op0;
2384 }
2385
2386 case INDIRECT_REF:
2387 case ALIGN_INDIRECT_REF:
2388 case MISALIGNED_INDIRECT_REF:
2389 op0 = expand_debug_expr (TREE_OPERAND (exp, 0));
2390 if (!op0)
2391 return NULL;
2392
2393 if (POINTER_TYPE_P (TREE_TYPE (exp)))
2394 {
2395 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp)));
2396 address_mode = targetm.addr_space.address_mode (as);
2397 }
2398 else
2399 {
2400 as = ADDR_SPACE_GENERIC;
2401 address_mode = Pmode;
2402 }
2403
2404 if (TREE_CODE (exp) == ALIGN_INDIRECT_REF)
2405 {
2406 int align = TYPE_ALIGN_UNIT (TREE_TYPE (exp));
2407 op0 = gen_rtx_AND (address_mode, op0, GEN_INT (-align));
2408 }
2409
2410 op0 = gen_rtx_MEM (mode, op0);
2411
2412 set_mem_attributes (op0, exp, 0);
2413 set_mem_addr_space (op0, as);
2414
2415 return op0;
2416
2417 case TARGET_MEM_REF:
2418 if (TMR_SYMBOL (exp) && !DECL_RTL_SET_P (TMR_SYMBOL (exp)))
2419 return NULL;
2420
2421 op0 = expand_debug_expr
2422 (tree_mem_ref_addr (build_pointer_type (TREE_TYPE (exp)), exp));
2423 if (!op0)
2424 return NULL;
2425
2426 as = TYPE_ADDR_SPACE (TREE_TYPE (exp));
2427
2428 op0 = gen_rtx_MEM (mode, op0);
2429
2430 set_mem_attributes (op0, exp, 0);
2431 set_mem_addr_space (op0, as);
2432
2433 return op0;
2434
2435 case ARRAY_REF:
2436 case ARRAY_RANGE_REF:
2437 case COMPONENT_REF:
2438 case BIT_FIELD_REF:
2439 case REALPART_EXPR:
2440 case IMAGPART_EXPR:
2441 case VIEW_CONVERT_EXPR:
2442 {
2443 enum machine_mode mode1;
2444 HOST_WIDE_INT bitsize, bitpos;
2445 tree offset;
2446 int volatilep = 0;
2447 tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
2448 &mode1, &unsignedp, &volatilep, false);
2449 rtx orig_op0;
2450
2451 if (bitsize == 0)
2452 return NULL;
2453
2454 orig_op0 = op0 = expand_debug_expr (tem);
2455
2456 if (!op0)
2457 return NULL;
2458
2459 if (offset)
2460 {
2461 enum machine_mode addrmode, offmode;
2462
2463 gcc_assert (MEM_P (op0));
2464
2465 op0 = XEXP (op0, 0);
2466 addrmode = GET_MODE (op0);
2467 if (addrmode == VOIDmode)
2468 addrmode = Pmode;
2469
2470 op1 = expand_debug_expr (offset);
2471 if (!op1)
2472 return NULL;
2473
2474 offmode = GET_MODE (op1);
2475 if (offmode == VOIDmode)
2476 offmode = TYPE_MODE (TREE_TYPE (offset));
2477
2478 if (addrmode != offmode)
2479 op1 = simplify_gen_subreg (addrmode, op1, offmode,
2480 subreg_lowpart_offset (addrmode,
2481 offmode));
2482
2483 /* Don't use offset_address here, we don't need a
2484 recognizable address, and we don't want to generate
2485 code. */
2486 op0 = gen_rtx_MEM (mode, gen_rtx_PLUS (addrmode, op0, op1));
2487 }
2488
2489 if (MEM_P (op0))
2490 {
2491 if (mode1 == VOIDmode)
2492 /* Bitfield. */
2493 mode1 = smallest_mode_for_size (bitsize, MODE_INT);
2494 if (bitpos >= BITS_PER_UNIT)
2495 {
2496 op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
2497 bitpos %= BITS_PER_UNIT;
2498 }
2499 else if (bitpos < 0)
2500 {
2501 HOST_WIDE_INT units
2502 = (-bitpos + BITS_PER_UNIT - 1) / BITS_PER_UNIT;
2503 op0 = adjust_address_nv (op0, mode1, units);
2504 bitpos += units * BITS_PER_UNIT;
2505 }
2506 else if (bitpos == 0 && bitsize == GET_MODE_BITSIZE (mode))
2507 op0 = adjust_address_nv (op0, mode, 0);
2508 else if (GET_MODE (op0) != mode1)
2509 op0 = adjust_address_nv (op0, mode1, 0);
2510 else
2511 op0 = copy_rtx (op0);
2512 if (op0 == orig_op0)
2513 op0 = shallow_copy_rtx (op0);
2514 set_mem_attributes (op0, exp, 0);
2515 }
2516
2517 if (bitpos == 0 && mode == GET_MODE (op0))
2518 return op0;
2519
2520 if (bitpos < 0)
2521 return NULL;
2522
2523 if ((bitpos % BITS_PER_UNIT) == 0
2524 && bitsize == GET_MODE_BITSIZE (mode1))
2525 {
2526 enum machine_mode opmode = GET_MODE (op0);
2527
2528 gcc_assert (opmode != BLKmode);
2529
2530 if (opmode == VOIDmode)
2531 opmode = mode1;
2532
2533 /* This condition may hold if we're expanding the address
2534 right past the end of an array that turned out not to
2535 be addressable (i.e., the address was only computed in
2536 debug stmts). The gen_subreg below would rightfully
2537 crash, and the address doesn't really exist, so just
2538 drop it. */
2539 if (bitpos >= GET_MODE_BITSIZE (opmode))
2540 return NULL;
2541
2542 return simplify_gen_subreg (mode, op0, opmode,
2543 bitpos / BITS_PER_UNIT);
2544 }
2545
2546 return simplify_gen_ternary (SCALAR_INT_MODE_P (GET_MODE (op0))
2547 && TYPE_UNSIGNED (TREE_TYPE (exp))
2548 ? SIGN_EXTRACT
2549 : ZERO_EXTRACT, mode,
2550 GET_MODE (op0) != VOIDmode
2551 ? GET_MODE (op0) : mode1,
2552 op0, GEN_INT (bitsize), GEN_INT (bitpos));
2553 }
2554
2555 case ABS_EXPR:
2556 return gen_rtx_ABS (mode, op0);
2557
2558 case NEGATE_EXPR:
2559 return gen_rtx_NEG (mode, op0);
2560
2561 case BIT_NOT_EXPR:
2562 return gen_rtx_NOT (mode, op0);
2563
2564 case FLOAT_EXPR:
2565 if (unsignedp)
2566 return gen_rtx_UNSIGNED_FLOAT (mode, op0);
2567 else
2568 return gen_rtx_FLOAT (mode, op0);
2569
2570 case FIX_TRUNC_EXPR:
2571 if (unsignedp)
2572 return gen_rtx_UNSIGNED_FIX (mode, op0);
2573 else
2574 return gen_rtx_FIX (mode, op0);
2575
2576 case POINTER_PLUS_EXPR:
2577 case PLUS_EXPR:
2578 return gen_rtx_PLUS (mode, op0, op1);
2579
2580 case MINUS_EXPR:
2581 return gen_rtx_MINUS (mode, op0, op1);
2582
2583 case MULT_EXPR:
2584 return gen_rtx_MULT (mode, op0, op1);
2585
2586 case RDIV_EXPR:
2587 case TRUNC_DIV_EXPR:
2588 case EXACT_DIV_EXPR:
2589 if (unsignedp)
2590 return gen_rtx_UDIV (mode, op0, op1);
2591 else
2592 return gen_rtx_DIV (mode, op0, op1);
2593
2594 case TRUNC_MOD_EXPR:
2595 if (unsignedp)
2596 return gen_rtx_UMOD (mode, op0, op1);
2597 else
2598 return gen_rtx_MOD (mode, op0, op1);
2599
2600 case FLOOR_DIV_EXPR:
2601 if (unsignedp)
2602 return gen_rtx_UDIV (mode, op0, op1);
2603 else
2604 {
2605 rtx div = gen_rtx_DIV (mode, op0, op1);
2606 rtx mod = gen_rtx_MOD (mode, op0, op1);
2607 rtx adj = floor_sdiv_adjust (mode, mod, op1);
2608 return gen_rtx_PLUS (mode, div, adj);
2609 }
2610
2611 case FLOOR_MOD_EXPR:
2612 if (unsignedp)
2613 return gen_rtx_UMOD (mode, op0, op1);
2614 else
2615 {
2616 rtx mod = gen_rtx_MOD (mode, op0, op1);
2617 rtx adj = floor_sdiv_adjust (mode, mod, op1);
2618 adj = gen_rtx_NEG (mode, gen_rtx_MULT (mode, adj, op1));
2619 return gen_rtx_PLUS (mode, mod, adj);
2620 }
2621
2622 case CEIL_DIV_EXPR:
2623 if (unsignedp)
2624 {
2625 rtx div = gen_rtx_UDIV (mode, op0, op1);
2626 rtx mod = gen_rtx_UMOD (mode, op0, op1);
2627 rtx adj = ceil_udiv_adjust (mode, mod, op1);
2628 return gen_rtx_PLUS (mode, div, adj);
2629 }
2630 else
2631 {
2632 rtx div = gen_rtx_DIV (mode, op0, op1);
2633 rtx mod = gen_rtx_MOD (mode, op0, op1);
2634 rtx adj = ceil_sdiv_adjust (mode, mod, op1);
2635 return gen_rtx_PLUS (mode, div, adj);
2636 }
2637
2638 case CEIL_MOD_EXPR:
2639 if (unsignedp)
2640 {
2641 rtx mod = gen_rtx_UMOD (mode, op0, op1);
2642 rtx adj = ceil_udiv_adjust (mode, mod, op1);
2643 adj = gen_rtx_NEG (mode, gen_rtx_MULT (mode, adj, op1));
2644 return gen_rtx_PLUS (mode, mod, adj);
2645 }
2646 else
2647 {
2648 rtx mod = gen_rtx_MOD (mode, op0, op1);
2649 rtx adj = ceil_sdiv_adjust (mode, mod, op1);
2650 adj = gen_rtx_NEG (mode, gen_rtx_MULT (mode, adj, op1));
2651 return gen_rtx_PLUS (mode, mod, adj);
2652 }
2653
2654 case ROUND_DIV_EXPR:
2655 if (unsignedp)
2656 {
2657 rtx div = gen_rtx_UDIV (mode, op0, op1);
2658 rtx mod = gen_rtx_UMOD (mode, op0, op1);
2659 rtx adj = round_udiv_adjust (mode, mod, op1);
2660 return gen_rtx_PLUS (mode, div, adj);
2661 }
2662 else
2663 {
2664 rtx div = gen_rtx_DIV (mode, op0, op1);
2665 rtx mod = gen_rtx_MOD (mode, op0, op1);
2666 rtx adj = round_sdiv_adjust (mode, mod, op1);
2667 return gen_rtx_PLUS (mode, div, adj);
2668 }
2669
2670 case ROUND_MOD_EXPR:
2671 if (unsignedp)
2672 {
2673 rtx mod = gen_rtx_UMOD (mode, op0, op1);
2674 rtx adj = round_udiv_adjust (mode, mod, op1);
2675 adj = gen_rtx_NEG (mode, gen_rtx_MULT (mode, adj, op1));
2676 return gen_rtx_PLUS (mode, mod, adj);
2677 }
2678 else
2679 {
2680 rtx mod = gen_rtx_MOD (mode, op0, op1);
2681 rtx adj = round_sdiv_adjust (mode, mod, op1);
2682 adj = gen_rtx_NEG (mode, gen_rtx_MULT (mode, adj, op1));
2683 return gen_rtx_PLUS (mode, mod, adj);
2684 }
2685
2686 case LSHIFT_EXPR:
2687 return gen_rtx_ASHIFT (mode, op0, op1);
2688
2689 case RSHIFT_EXPR:
2690 if (unsignedp)
2691 return gen_rtx_LSHIFTRT (mode, op0, op1);
2692 else
2693 return gen_rtx_ASHIFTRT (mode, op0, op1);
2694
2695 case LROTATE_EXPR:
2696 return gen_rtx_ROTATE (mode, op0, op1);
2697
2698 case RROTATE_EXPR:
2699 return gen_rtx_ROTATERT (mode, op0, op1);
2700
2701 case MIN_EXPR:
2702 if (unsignedp)
2703 return gen_rtx_UMIN (mode, op0, op1);
2704 else
2705 return gen_rtx_SMIN (mode, op0, op1);
2706
2707 case MAX_EXPR:
2708 if (unsignedp)
2709 return gen_rtx_UMAX (mode, op0, op1);
2710 else
2711 return gen_rtx_SMAX (mode, op0, op1);
2712
2713 case BIT_AND_EXPR:
2714 case TRUTH_AND_EXPR:
2715 return gen_rtx_AND (mode, op0, op1);
2716
2717 case BIT_IOR_EXPR:
2718 case TRUTH_OR_EXPR:
2719 return gen_rtx_IOR (mode, op0, op1);
2720
2721 case BIT_XOR_EXPR:
2722 case TRUTH_XOR_EXPR:
2723 return gen_rtx_XOR (mode, op0, op1);
2724
2725 case TRUTH_ANDIF_EXPR:
2726 return gen_rtx_IF_THEN_ELSE (mode, op0, op1, const0_rtx);
2727
2728 case TRUTH_ORIF_EXPR:
2729 return gen_rtx_IF_THEN_ELSE (mode, op0, const_true_rtx, op1);
2730
2731 case TRUTH_NOT_EXPR:
2732 return gen_rtx_EQ (mode, op0, const0_rtx);
2733
2734 case LT_EXPR:
2735 if (unsignedp)
2736 return gen_rtx_LTU (mode, op0, op1);
2737 else
2738 return gen_rtx_LT (mode, op0, op1);
2739
2740 case LE_EXPR:
2741 if (unsignedp)
2742 return gen_rtx_LEU (mode, op0, op1);
2743 else
2744 return gen_rtx_LE (mode, op0, op1);
2745
2746 case GT_EXPR:
2747 if (unsignedp)
2748 return gen_rtx_GTU (mode, op0, op1);
2749 else
2750 return gen_rtx_GT (mode, op0, op1);
2751
2752 case GE_EXPR:
2753 if (unsignedp)
2754 return gen_rtx_GEU (mode, op0, op1);
2755 else
2756 return gen_rtx_GE (mode, op0, op1);
2757
2758 case EQ_EXPR:
2759 return gen_rtx_EQ (mode, op0, op1);
2760
2761 case NE_EXPR:
2762 return gen_rtx_NE (mode, op0, op1);
2763
2764 case UNORDERED_EXPR:
2765 return gen_rtx_UNORDERED (mode, op0, op1);
2766
2767 case ORDERED_EXPR:
2768 return gen_rtx_ORDERED (mode, op0, op1);
2769
2770 case UNLT_EXPR:
2771 return gen_rtx_UNLT (mode, op0, op1);
2772
2773 case UNLE_EXPR:
2774 return gen_rtx_UNLE (mode, op0, op1);
2775
2776 case UNGT_EXPR:
2777 return gen_rtx_UNGT (mode, op0, op1);
2778
2779 case UNGE_EXPR:
2780 return gen_rtx_UNGE (mode, op0, op1);
2781
2782 case UNEQ_EXPR:
2783 return gen_rtx_UNEQ (mode, op0, op1);
2784
2785 case LTGT_EXPR:
2786 return gen_rtx_LTGT (mode, op0, op1);
2787
2788 case COND_EXPR:
2789 return gen_rtx_IF_THEN_ELSE (mode, op0, op1, op2);
2790
2791 case COMPLEX_EXPR:
2792 gcc_assert (COMPLEX_MODE_P (mode));
2793 if (GET_MODE (op0) == VOIDmode)
2794 op0 = gen_rtx_CONST (GET_MODE_INNER (mode), op0);
2795 if (GET_MODE (op1) == VOIDmode)
2796 op1 = gen_rtx_CONST (GET_MODE_INNER (mode), op1);
2797 return gen_rtx_CONCAT (mode, op0, op1);
2798
2799 case CONJ_EXPR:
2800 if (GET_CODE (op0) == CONCAT)
2801 return gen_rtx_CONCAT (mode, XEXP (op0, 0),
2802 gen_rtx_NEG (GET_MODE_INNER (mode),
2803 XEXP (op0, 1)));
2804 else
2805 {
2806 enum machine_mode imode = GET_MODE_INNER (mode);
2807 rtx re, im;
2808
2809 if (MEM_P (op0))
2810 {
2811 re = adjust_address_nv (op0, imode, 0);
2812 im = adjust_address_nv (op0, imode, GET_MODE_SIZE (imode));
2813 }
2814 else
2815 {
2816 enum machine_mode ifmode = int_mode_for_mode (mode);
2817 enum machine_mode ihmode = int_mode_for_mode (imode);
2818 rtx halfsize;
2819 if (ifmode == BLKmode || ihmode == BLKmode)
2820 return NULL;
2821 halfsize = GEN_INT (GET_MODE_BITSIZE (ihmode));
2822 re = op0;
2823 if (mode != ifmode)
2824 re = gen_rtx_SUBREG (ifmode, re, 0);
2825 re = gen_rtx_ZERO_EXTRACT (ihmode, re, halfsize, const0_rtx);
2826 if (imode != ihmode)
2827 re = gen_rtx_SUBREG (imode, re, 0);
2828 im = copy_rtx (op0);
2829 if (mode != ifmode)
2830 im = gen_rtx_SUBREG (ifmode, im, 0);
2831 im = gen_rtx_ZERO_EXTRACT (ihmode, im, halfsize, halfsize);
2832 if (imode != ihmode)
2833 im = gen_rtx_SUBREG (imode, im, 0);
2834 }
2835 im = gen_rtx_NEG (imode, im);
2836 return gen_rtx_CONCAT (mode, re, im);
2837 }
2838
2839 case ADDR_EXPR:
2840 op0 = expand_debug_expr (TREE_OPERAND (exp, 0));
2841 if (!op0 || !MEM_P (op0))
2842 return NULL;
2843
2844 op0 = convert_debug_memory_address (mode, XEXP (op0, 0));
2845
2846 return op0;
2847
2848 case VECTOR_CST:
2849 exp = build_constructor_from_list (TREE_TYPE (exp),
2850 TREE_VECTOR_CST_ELTS (exp));
2851 /* Fall through. */
2852
2853 case CONSTRUCTOR:
2854 if (TREE_CODE (TREE_TYPE (exp)) == VECTOR_TYPE)
2855 {
2856 unsigned i;
2857 tree val;
2858
2859 op0 = gen_rtx_CONCATN
2860 (mode, rtvec_alloc (TYPE_VECTOR_SUBPARTS (TREE_TYPE (exp))));
2861
2862 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), i, val)
2863 {
2864 op1 = expand_debug_expr (val);
2865 if (!op1)
2866 return NULL;
2867 XVECEXP (op0, 0, i) = op1;
2868 }
2869
2870 if (i < TYPE_VECTOR_SUBPARTS (TREE_TYPE (exp)))
2871 {
2872 op1 = expand_debug_expr
2873 (fold_convert (TREE_TYPE (TREE_TYPE (exp)), integer_zero_node));
2874
2875 if (!op1)
2876 return NULL;
2877
2878 for (; i < TYPE_VECTOR_SUBPARTS (TREE_TYPE (exp)); i++)
2879 XVECEXP (op0, 0, i) = op1;
2880 }
2881
2882 return op0;
2883 }
2884 else
2885 goto flag_unsupported;
2886
2887 case CALL_EXPR:
2888 /* ??? Maybe handle some builtins? */
2889 return NULL;
2890
2891 case SSA_NAME:
2892 {
2893 gimple g = get_gimple_for_ssa_name (exp);
2894 if (g)
2895 {
2896 op0 = expand_debug_expr (gimple_assign_rhs_to_tree (g));
2897 if (!op0)
2898 return NULL;
2899 }
2900 else
2901 {
2902 int part = var_to_partition (SA.map, exp);
2903
2904 if (part == NO_PARTITION)
2905 return NULL;
2906
2907 gcc_assert (part >= 0 && (unsigned)part < SA.map->num_partitions);
2908
2909 op0 = SA.partition_to_pseudo[part];
2910 }
2911 goto adjust_mode;
2912 }
2913
2914 case ERROR_MARK:
2915 return NULL;
2916
2917 default:
2918 flag_unsupported:
2919 #ifdef ENABLE_CHECKING
2920 debug_tree (exp);
2921 gcc_unreachable ();
2922 #else
2923 return NULL;
2924 #endif
2925 }
2926 }
2927
2928 /* Expand the _LOCs in debug insns. We run this after expanding all
2929 regular insns, so that any variables referenced in the function
2930 will have their DECL_RTLs set. */
2931
2932 static void
2933 expand_debug_locations (void)
2934 {
2935 rtx insn;
2936 rtx last = get_last_insn ();
2937 int save_strict_alias = flag_strict_aliasing;
2938
2939 /* New alias sets while setting up memory attributes cause
2940 -fcompare-debug failures, even though it doesn't bring about any
2941 codegen changes. */
2942 flag_strict_aliasing = 0;
2943
2944 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2945 if (DEBUG_INSN_P (insn))
2946 {
2947 tree value = (tree)INSN_VAR_LOCATION_LOC (insn);
2948 rtx val;
2949 enum machine_mode mode;
2950
2951 if (value == NULL_TREE)
2952 val = NULL_RTX;
2953 else
2954 {
2955 val = expand_debug_expr (value);
2956 gcc_assert (last == get_last_insn ());
2957 }
2958
2959 if (!val)
2960 val = gen_rtx_UNKNOWN_VAR_LOC ();
2961 else
2962 {
2963 mode = GET_MODE (INSN_VAR_LOCATION (insn));
2964
2965 gcc_assert (mode == GET_MODE (val)
2966 || (GET_MODE (val) == VOIDmode
2967 && (CONST_INT_P (val)
2968 || GET_CODE (val) == CONST_FIXED
2969 || GET_CODE (val) == CONST_DOUBLE
2970 || GET_CODE (val) == LABEL_REF)));
2971 }
2972
2973 INSN_VAR_LOCATION_LOC (insn) = val;
2974 }
2975
2976 flag_strict_aliasing = save_strict_alias;
2977 }
2978
2979 /* Expand basic block BB from GIMPLE trees to RTL. */
2980
2981 static basic_block
2982 expand_gimple_basic_block (basic_block bb)
2983 {
2984 gimple_stmt_iterator gsi;
2985 gimple_seq stmts;
2986 gimple stmt = NULL;
2987 rtx note, last;
2988 edge e;
2989 edge_iterator ei;
2990 void **elt;
2991
2992 if (dump_file)
2993 fprintf (dump_file, "\n;; Generating RTL for gimple basic block %d\n",
2994 bb->index);
2995
2996 /* Note that since we are now transitioning from GIMPLE to RTL, we
2997 cannot use the gsi_*_bb() routines because they expect the basic
2998 block to be in GIMPLE, instead of RTL. Therefore, we need to
2999 access the BB sequence directly. */
3000 stmts = bb_seq (bb);
3001 bb->il.gimple = NULL;
3002 rtl_profile_for_bb (bb);
3003 init_rtl_bb_info (bb);
3004 bb->flags |= BB_RTL;
3005
3006 /* Remove the RETURN_EXPR if we may fall though to the exit
3007 instead. */
3008 gsi = gsi_last (stmts);
3009 if (!gsi_end_p (gsi)
3010 && gimple_code (gsi_stmt (gsi)) == GIMPLE_RETURN)
3011 {
3012 gimple ret_stmt = gsi_stmt (gsi);
3013
3014 gcc_assert (single_succ_p (bb));
3015 gcc_assert (single_succ (bb) == EXIT_BLOCK_PTR);
3016
3017 if (bb->next_bb == EXIT_BLOCK_PTR
3018 && !gimple_return_retval (ret_stmt))
3019 {
3020 gsi_remove (&gsi, false);
3021 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
3022 }
3023 }
3024
3025 gsi = gsi_start (stmts);
3026 if (!gsi_end_p (gsi))
3027 {
3028 stmt = gsi_stmt (gsi);
3029 if (gimple_code (stmt) != GIMPLE_LABEL)
3030 stmt = NULL;
3031 }
3032
3033 elt = pointer_map_contains (lab_rtx_for_bb, bb);
3034
3035 if (stmt || elt)
3036 {
3037 last = get_last_insn ();
3038
3039 if (stmt)
3040 {
3041 expand_gimple_stmt (stmt);
3042 gsi_next (&gsi);
3043 }
3044
3045 if (elt)
3046 emit_label ((rtx) *elt);
3047
3048 /* Java emits line number notes in the top of labels.
3049 ??? Make this go away once line number notes are obsoleted. */
3050 BB_HEAD (bb) = NEXT_INSN (last);
3051 if (NOTE_P (BB_HEAD (bb)))
3052 BB_HEAD (bb) = NEXT_INSN (BB_HEAD (bb));
3053 note = emit_note_after (NOTE_INSN_BASIC_BLOCK, BB_HEAD (bb));
3054
3055 maybe_dump_rtl_for_gimple_stmt (stmt, last);
3056 }
3057 else
3058 note = BB_HEAD (bb) = emit_note (NOTE_INSN_BASIC_BLOCK);
3059
3060 NOTE_BASIC_BLOCK (note) = bb;
3061
3062 for (; !gsi_end_p (gsi); gsi_next (&gsi))
3063 {
3064 basic_block new_bb;
3065
3066 stmt = gsi_stmt (gsi);
3067
3068 /* If this statement is a non-debug one, and we generate debug
3069 insns, then this one might be the last real use of a TERed
3070 SSA_NAME, but where there are still some debug uses further
3071 down. Expanding the current SSA name in such further debug
3072 uses by their RHS might lead to wrong debug info, as coalescing
3073 might make the operands of such RHS be placed into the same
3074 pseudo as something else. Like so:
3075 a_1 = a_0 + 1; // Assume a_1 is TERed and a_0 is dead
3076 use(a_1);
3077 a_2 = ...
3078 #DEBUG ... => a_1
3079 As a_0 and a_2 don't overlap in lifetime, assume they are coalesced.
3080 If we now would expand a_1 by it's RHS (a_0 + 1) in the debug use,
3081 the write to a_2 would actually have clobbered the place which
3082 formerly held a_0.
3083
3084 So, instead of that, we recognize the situation, and generate
3085 debug temporaries at the last real use of TERed SSA names:
3086 a_1 = a_0 + 1;
3087 #DEBUG #D1 => a_1
3088 use(a_1);
3089 a_2 = ...
3090 #DEBUG ... => #D1
3091 */
3092 if (MAY_HAVE_DEBUG_INSNS
3093 && SA.values
3094 && !is_gimple_debug (stmt))
3095 {
3096 ssa_op_iter iter;
3097 tree op;
3098 gimple def;
3099
3100 location_t sloc = get_curr_insn_source_location ();
3101 tree sblock = get_curr_insn_block ();
3102
3103 /* Look for SSA names that have their last use here (TERed
3104 names always have only one real use). */
3105 FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_USE)
3106 if ((def = get_gimple_for_ssa_name (op)))
3107 {
3108 imm_use_iterator imm_iter;
3109 use_operand_p use_p;
3110 bool have_debug_uses = false;
3111
3112 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, op)
3113 {
3114 if (gimple_debug_bind_p (USE_STMT (use_p)))
3115 {
3116 have_debug_uses = true;
3117 break;
3118 }
3119 }
3120
3121 if (have_debug_uses)
3122 {
3123 /* OP is a TERed SSA name, with DEF it's defining
3124 statement, and where OP is used in further debug
3125 instructions. Generate a debug temporary, and
3126 replace all uses of OP in debug insns with that
3127 temporary. */
3128 gimple debugstmt;
3129 tree value = gimple_assign_rhs_to_tree (def);
3130 tree vexpr = make_node (DEBUG_EXPR_DECL);
3131 rtx val;
3132 enum machine_mode mode;
3133
3134 set_curr_insn_source_location (gimple_location (def));
3135 set_curr_insn_block (gimple_block (def));
3136
3137 DECL_ARTIFICIAL (vexpr) = 1;
3138 TREE_TYPE (vexpr) = TREE_TYPE (value);
3139 if (DECL_P (value))
3140 mode = DECL_MODE (value);
3141 else
3142 mode = TYPE_MODE (TREE_TYPE (value));
3143 DECL_MODE (vexpr) = mode;
3144
3145 val = gen_rtx_VAR_LOCATION
3146 (mode, vexpr, (rtx)value, VAR_INIT_STATUS_INITIALIZED);
3147
3148 val = emit_debug_insn (val);
3149
3150 FOR_EACH_IMM_USE_STMT (debugstmt, imm_iter, op)
3151 {
3152 if (!gimple_debug_bind_p (debugstmt))
3153 continue;
3154
3155 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
3156 SET_USE (use_p, vexpr);
3157
3158 update_stmt (debugstmt);
3159 }
3160 }
3161 }
3162 set_curr_insn_source_location (sloc);
3163 set_curr_insn_block (sblock);
3164 }
3165
3166 currently_expanding_gimple_stmt = stmt;
3167
3168 /* Expand this statement, then evaluate the resulting RTL and
3169 fixup the CFG accordingly. */
3170 if (gimple_code (stmt) == GIMPLE_COND)
3171 {
3172 new_bb = expand_gimple_cond (bb, stmt);
3173 if (new_bb)
3174 return new_bb;
3175 }
3176 else if (gimple_debug_bind_p (stmt))
3177 {
3178 location_t sloc = get_curr_insn_source_location ();
3179 tree sblock = get_curr_insn_block ();
3180 gimple_stmt_iterator nsi = gsi;
3181
3182 for (;;)
3183 {
3184 tree var = gimple_debug_bind_get_var (stmt);
3185 tree value;
3186 rtx val;
3187 enum machine_mode mode;
3188
3189 if (gimple_debug_bind_has_value_p (stmt))
3190 value = gimple_debug_bind_get_value (stmt);
3191 else
3192 value = NULL_TREE;
3193
3194 last = get_last_insn ();
3195
3196 set_curr_insn_source_location (gimple_location (stmt));
3197 set_curr_insn_block (gimple_block (stmt));
3198
3199 if (DECL_P (var))
3200 mode = DECL_MODE (var);
3201 else
3202 mode = TYPE_MODE (TREE_TYPE (var));
3203
3204 val = gen_rtx_VAR_LOCATION
3205 (mode, var, (rtx)value, VAR_INIT_STATUS_INITIALIZED);
3206
3207 val = emit_debug_insn (val);
3208
3209 if (dump_file && (dump_flags & TDF_DETAILS))
3210 {
3211 /* We can't dump the insn with a TREE where an RTX
3212 is expected. */
3213 INSN_VAR_LOCATION_LOC (val) = const0_rtx;
3214 maybe_dump_rtl_for_gimple_stmt (stmt, last);
3215 INSN_VAR_LOCATION_LOC (val) = (rtx)value;
3216 }
3217
3218 /* In order not to generate too many debug temporaries,
3219 we delink all uses of debug statements we already expanded.
3220 Therefore debug statements between definition and real
3221 use of TERed SSA names will continue to use the SSA name,
3222 and not be replaced with debug temps. */
3223 delink_stmt_imm_use (stmt);
3224
3225 gsi = nsi;
3226 gsi_next (&nsi);
3227 if (gsi_end_p (nsi))
3228 break;
3229 stmt = gsi_stmt (nsi);
3230 if (!gimple_debug_bind_p (stmt))
3231 break;
3232 }
3233
3234 set_curr_insn_source_location (sloc);
3235 set_curr_insn_block (sblock);
3236 }
3237 else
3238 {
3239 if (is_gimple_call (stmt) && gimple_call_tail_p (stmt))
3240 {
3241 bool can_fallthru;
3242 new_bb = expand_gimple_tailcall (bb, stmt, &can_fallthru);
3243 if (new_bb)
3244 {
3245 if (can_fallthru)
3246 bb = new_bb;
3247 else
3248 return new_bb;
3249 }
3250 }
3251 else
3252 {
3253 def_operand_p def_p;
3254 def_p = SINGLE_SSA_DEF_OPERAND (stmt, SSA_OP_DEF);
3255
3256 if (def_p != NULL)
3257 {
3258 /* Ignore this stmt if it is in the list of
3259 replaceable expressions. */
3260 if (SA.values
3261 && bitmap_bit_p (SA.values,
3262 SSA_NAME_VERSION (DEF_FROM_PTR (def_p))))
3263 continue;
3264 }
3265 last = expand_gimple_stmt (stmt);
3266 maybe_dump_rtl_for_gimple_stmt (stmt, last);
3267 }
3268 }
3269 }
3270
3271 currently_expanding_gimple_stmt = NULL;
3272
3273 /* Expand implicit goto and convert goto_locus. */
3274 FOR_EACH_EDGE (e, ei, bb->succs)
3275 {
3276 if (e->goto_locus && e->goto_block)
3277 {
3278 set_curr_insn_source_location (e->goto_locus);
3279 set_curr_insn_block (e->goto_block);
3280 e->goto_locus = curr_insn_locator ();
3281 }
3282 e->goto_block = NULL;
3283 if ((e->flags & EDGE_FALLTHRU) && e->dest != bb->next_bb)
3284 {
3285 emit_jump (label_rtx_for_bb (e->dest));
3286 e->flags &= ~EDGE_FALLTHRU;
3287 }
3288 }
3289
3290 /* Expanded RTL can create a jump in the last instruction of block.
3291 This later might be assumed to be a jump to successor and break edge insertion.
3292 We need to insert dummy move to prevent this. PR41440. */
3293 if (single_succ_p (bb)
3294 && (single_succ_edge (bb)->flags & EDGE_FALLTHRU)
3295 && (last = get_last_insn ())
3296 && JUMP_P (last))
3297 {
3298 rtx dummy = gen_reg_rtx (SImode);
3299 emit_insn_after_noloc (gen_move_insn (dummy, dummy), last, NULL);
3300 }
3301
3302 do_pending_stack_adjust ();
3303
3304 /* Find the block tail. The last insn in the block is the insn
3305 before a barrier and/or table jump insn. */
3306 last = get_last_insn ();
3307 if (BARRIER_P (last))
3308 last = PREV_INSN (last);
3309 if (JUMP_TABLE_DATA_P (last))
3310 last = PREV_INSN (PREV_INSN (last));
3311 BB_END (bb) = last;
3312
3313 update_bb_for_insn (bb);
3314
3315 return bb;
3316 }
3317
3318
3319 /* Create a basic block for initialization code. */
3320
3321 static basic_block
3322 construct_init_block (void)
3323 {
3324 basic_block init_block, first_block;
3325 edge e = NULL;
3326 int flags;
3327
3328 /* Multiple entry points not supported yet. */
3329 gcc_assert (EDGE_COUNT (ENTRY_BLOCK_PTR->succs) == 1);
3330 init_rtl_bb_info (ENTRY_BLOCK_PTR);
3331 init_rtl_bb_info (EXIT_BLOCK_PTR);
3332 ENTRY_BLOCK_PTR->flags |= BB_RTL;
3333 EXIT_BLOCK_PTR->flags |= BB_RTL;
3334
3335 e = EDGE_SUCC (ENTRY_BLOCK_PTR, 0);
3336
3337 /* When entry edge points to first basic block, we don't need jump,
3338 otherwise we have to jump into proper target. */
3339 if (e && e->dest != ENTRY_BLOCK_PTR->next_bb)
3340 {
3341 tree label = gimple_block_label (e->dest);
3342
3343 emit_jump (label_rtx (label));
3344 flags = 0;
3345 }
3346 else
3347 flags = EDGE_FALLTHRU;
3348
3349 init_block = create_basic_block (NEXT_INSN (get_insns ()),
3350 get_last_insn (),
3351 ENTRY_BLOCK_PTR);
3352 init_block->frequency = ENTRY_BLOCK_PTR->frequency;
3353 init_block->count = ENTRY_BLOCK_PTR->count;
3354 if (e)
3355 {
3356 first_block = e->dest;
3357 redirect_edge_succ (e, init_block);
3358 e = make_edge (init_block, first_block, flags);
3359 }
3360 else
3361 e = make_edge (init_block, EXIT_BLOCK_PTR, EDGE_FALLTHRU);
3362 e->probability = REG_BR_PROB_BASE;
3363 e->count = ENTRY_BLOCK_PTR->count;
3364
3365 update_bb_for_insn (init_block);
3366 return init_block;
3367 }
3368
3369 /* For each lexical block, set BLOCK_NUMBER to the depth at which it is
3370 found in the block tree. */
3371
3372 static void
3373 set_block_levels (tree block, int level)
3374 {
3375 while (block)
3376 {
3377 BLOCK_NUMBER (block) = level;
3378 set_block_levels (BLOCK_SUBBLOCKS (block), level + 1);
3379 block = BLOCK_CHAIN (block);
3380 }
3381 }
3382
3383 /* Create a block containing landing pads and similar stuff. */
3384
3385 static void
3386 construct_exit_block (void)
3387 {
3388 rtx head = get_last_insn ();
3389 rtx end;
3390 basic_block exit_block;
3391 edge e, e2;
3392 unsigned ix;
3393 edge_iterator ei;
3394 rtx orig_end = BB_END (EXIT_BLOCK_PTR->prev_bb);
3395
3396 rtl_profile_for_bb (EXIT_BLOCK_PTR);
3397
3398 /* Make sure the locus is set to the end of the function, so that
3399 epilogue line numbers and warnings are set properly. */
3400 if (cfun->function_end_locus != UNKNOWN_LOCATION)
3401 input_location = cfun->function_end_locus;
3402
3403 /* The following insns belong to the top scope. */
3404 set_curr_insn_block (DECL_INITIAL (current_function_decl));
3405
3406 /* Generate rtl for function exit. */
3407 expand_function_end ();
3408
3409 end = get_last_insn ();
3410 if (head == end)
3411 return;
3412 /* While emitting the function end we could move end of the last basic block.
3413 */
3414 BB_END (EXIT_BLOCK_PTR->prev_bb) = orig_end;
3415 while (NEXT_INSN (head) && NOTE_P (NEXT_INSN (head)))
3416 head = NEXT_INSN (head);
3417 exit_block = create_basic_block (NEXT_INSN (head), end,
3418 EXIT_BLOCK_PTR->prev_bb);
3419 exit_block->frequency = EXIT_BLOCK_PTR->frequency;
3420 exit_block->count = EXIT_BLOCK_PTR->count;
3421
3422 ix = 0;
3423 while (ix < EDGE_COUNT (EXIT_BLOCK_PTR->preds))
3424 {
3425 e = EDGE_PRED (EXIT_BLOCK_PTR, ix);
3426 if (!(e->flags & EDGE_ABNORMAL))
3427 redirect_edge_succ (e, exit_block);
3428 else
3429 ix++;
3430 }
3431
3432 e = make_edge (exit_block, EXIT_BLOCK_PTR, EDGE_FALLTHRU);
3433 e->probability = REG_BR_PROB_BASE;
3434 e->count = EXIT_BLOCK_PTR->count;
3435 FOR_EACH_EDGE (e2, ei, EXIT_BLOCK_PTR->preds)
3436 if (e2 != e)
3437 {
3438 e->count -= e2->count;
3439 exit_block->count -= e2->count;
3440 exit_block->frequency -= EDGE_FREQUENCY (e2);
3441 }
3442 if (e->count < 0)
3443 e->count = 0;
3444 if (exit_block->count < 0)
3445 exit_block->count = 0;
3446 if (exit_block->frequency < 0)
3447 exit_block->frequency = 0;
3448 update_bb_for_insn (exit_block);
3449 }
3450
3451 /* Helper function for discover_nonconstant_array_refs.
3452 Look for ARRAY_REF nodes with non-constant indexes and mark them
3453 addressable. */
3454
3455 static tree
3456 discover_nonconstant_array_refs_r (tree * tp, int *walk_subtrees,
3457 void *data ATTRIBUTE_UNUSED)
3458 {
3459 tree t = *tp;
3460
3461 if (IS_TYPE_OR_DECL_P (t))
3462 *walk_subtrees = 0;
3463 else if (TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
3464 {
3465 while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
3466 && is_gimple_min_invariant (TREE_OPERAND (t, 1))
3467 && (!TREE_OPERAND (t, 2)
3468 || is_gimple_min_invariant (TREE_OPERAND (t, 2))))
3469 || (TREE_CODE (t) == COMPONENT_REF
3470 && (!TREE_OPERAND (t,2)
3471 || is_gimple_min_invariant (TREE_OPERAND (t, 2))))
3472 || TREE_CODE (t) == BIT_FIELD_REF
3473 || TREE_CODE (t) == REALPART_EXPR
3474 || TREE_CODE (t) == IMAGPART_EXPR
3475 || TREE_CODE (t) == VIEW_CONVERT_EXPR
3476 || CONVERT_EXPR_P (t))
3477 t = TREE_OPERAND (t, 0);
3478
3479 if (TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
3480 {
3481 t = get_base_address (t);
3482 if (t && DECL_P (t)
3483 && DECL_MODE (t) != BLKmode)
3484 TREE_ADDRESSABLE (t) = 1;
3485 }
3486
3487 *walk_subtrees = 0;
3488 }
3489
3490 return NULL_TREE;
3491 }
3492
3493 /* RTL expansion is not able to compile array references with variable
3494 offsets for arrays stored in single register. Discover such
3495 expressions and mark variables as addressable to avoid this
3496 scenario. */
3497
3498 static void
3499 discover_nonconstant_array_refs (void)
3500 {
3501 basic_block bb;
3502 gimple_stmt_iterator gsi;
3503
3504 FOR_EACH_BB (bb)
3505 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3506 {
3507 gimple stmt = gsi_stmt (gsi);
3508 walk_gimple_op (stmt, discover_nonconstant_array_refs_r, NULL);
3509 }
3510 }
3511
3512 /* This function sets crtl->args.internal_arg_pointer to a virtual
3513 register if DRAP is needed. Local register allocator will replace
3514 virtual_incoming_args_rtx with the virtual register. */
3515
3516 static void
3517 expand_stack_alignment (void)
3518 {
3519 rtx drap_rtx;
3520 unsigned int preferred_stack_boundary;
3521
3522 if (! SUPPORTS_STACK_ALIGNMENT)
3523 return;
3524
3525 if (cfun->calls_alloca
3526 || cfun->has_nonlocal_label
3527 || crtl->has_nonlocal_goto)
3528 crtl->need_drap = true;
3529
3530 /* Call update_stack_boundary here again to update incoming stack
3531 boundary. It may set incoming stack alignment to a different
3532 value after RTL expansion. TARGET_FUNCTION_OK_FOR_SIBCALL may
3533 use the minimum incoming stack alignment to check if it is OK
3534 to perform sibcall optimization since sibcall optimization will
3535 only align the outgoing stack to incoming stack boundary. */
3536 if (targetm.calls.update_stack_boundary)
3537 targetm.calls.update_stack_boundary ();
3538
3539 /* The incoming stack frame has to be aligned at least at
3540 parm_stack_boundary. */
3541 gcc_assert (crtl->parm_stack_boundary <= INCOMING_STACK_BOUNDARY);
3542
3543 /* Update crtl->stack_alignment_estimated and use it later to align
3544 stack. We check PREFERRED_STACK_BOUNDARY if there may be non-call
3545 exceptions since callgraph doesn't collect incoming stack alignment
3546 in this case. */
3547 if (flag_non_call_exceptions
3548 && PREFERRED_STACK_BOUNDARY > crtl->preferred_stack_boundary)
3549 preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
3550 else
3551 preferred_stack_boundary = crtl->preferred_stack_boundary;
3552 if (preferred_stack_boundary > crtl->stack_alignment_estimated)
3553 crtl->stack_alignment_estimated = preferred_stack_boundary;
3554 if (preferred_stack_boundary > crtl->stack_alignment_needed)
3555 crtl->stack_alignment_needed = preferred_stack_boundary;
3556
3557 gcc_assert (crtl->stack_alignment_needed
3558 <= crtl->stack_alignment_estimated);
3559
3560 crtl->stack_realign_needed
3561 = INCOMING_STACK_BOUNDARY < crtl->stack_alignment_estimated;
3562 crtl->stack_realign_tried = crtl->stack_realign_needed;
3563
3564 crtl->stack_realign_processed = true;
3565
3566 /* Target has to redefine TARGET_GET_DRAP_RTX to support stack
3567 alignment. */
3568 gcc_assert (targetm.calls.get_drap_rtx != NULL);
3569 drap_rtx = targetm.calls.get_drap_rtx ();
3570
3571 /* stack_realign_drap and drap_rtx must match. */
3572 gcc_assert ((stack_realign_drap != 0) == (drap_rtx != NULL));
3573
3574 /* Do nothing if NULL is returned, which means DRAP is not needed. */
3575 if (NULL != drap_rtx)
3576 {
3577 crtl->args.internal_arg_pointer = drap_rtx;
3578
3579 /* Call fixup_tail_calls to clean up REG_EQUIV note if DRAP is
3580 needed. */
3581 fixup_tail_calls ();
3582 }
3583 }
3584
3585 /* Translate the intermediate representation contained in the CFG
3586 from GIMPLE trees to RTL.
3587
3588 We do conversion per basic block and preserve/update the tree CFG.
3589 This implies we have to do some magic as the CFG can simultaneously
3590 consist of basic blocks containing RTL and GIMPLE trees. This can
3591 confuse the CFG hooks, so be careful to not manipulate CFG during
3592 the expansion. */
3593
3594 static unsigned int
3595 gimple_expand_cfg (void)
3596 {
3597 basic_block bb, init_block;
3598 sbitmap blocks;
3599 edge_iterator ei;
3600 edge e;
3601 unsigned i;
3602
3603 rewrite_out_of_ssa (&SA);
3604 SA.partition_to_pseudo = (rtx *)xcalloc (SA.map->num_partitions,
3605 sizeof (rtx));
3606
3607 /* Some backends want to know that we are expanding to RTL. */
3608 currently_expanding_to_rtl = 1;
3609
3610 rtl_profile_for_bb (ENTRY_BLOCK_PTR);
3611
3612 insn_locators_alloc ();
3613 if (!DECL_IS_BUILTIN (current_function_decl))
3614 {
3615 /* Eventually, all FEs should explicitly set function_start_locus. */
3616 if (cfun->function_start_locus == UNKNOWN_LOCATION)
3617 set_curr_insn_source_location
3618 (DECL_SOURCE_LOCATION (current_function_decl));
3619 else
3620 set_curr_insn_source_location (cfun->function_start_locus);
3621 }
3622 set_curr_insn_block (DECL_INITIAL (current_function_decl));
3623 prologue_locator = curr_insn_locator ();
3624
3625 /* Make sure first insn is a note even if we don't want linenums.
3626 This makes sure the first insn will never be deleted.
3627 Also, final expects a note to appear there. */
3628 emit_note (NOTE_INSN_DELETED);
3629
3630 /* Mark arrays indexed with non-constant indices with TREE_ADDRESSABLE. */
3631 discover_nonconstant_array_refs ();
3632
3633 targetm.expand_to_rtl_hook ();
3634 crtl->stack_alignment_needed = STACK_BOUNDARY;
3635 crtl->max_used_stack_slot_alignment = STACK_BOUNDARY;
3636 crtl->stack_alignment_estimated = 0;
3637 crtl->preferred_stack_boundary = STACK_BOUNDARY;
3638 cfun->cfg->max_jumptable_ents = 0;
3639
3640
3641 /* Expand the variables recorded during gimple lowering. */
3642 expand_used_vars ();
3643
3644 /* Honor stack protection warnings. */
3645 if (warn_stack_protect)
3646 {
3647 if (cfun->calls_alloca)
3648 warning (OPT_Wstack_protector,
3649 "not protecting local variables: variable length buffer");
3650 if (has_short_buffer && !crtl->stack_protect_guard)
3651 warning (OPT_Wstack_protector,
3652 "not protecting function: no buffer at least %d bytes long",
3653 (int) PARAM_VALUE (PARAM_SSP_BUFFER_SIZE));
3654 }
3655
3656 /* Set up parameters and prepare for return, for the function. */
3657 expand_function_start (current_function_decl);
3658
3659 /* Now that we also have the parameter RTXs, copy them over to our
3660 partitions. */
3661 for (i = 0; i < SA.map->num_partitions; i++)
3662 {
3663 tree var = SSA_NAME_VAR (partition_to_var (SA.map, i));
3664
3665 if (TREE_CODE (var) != VAR_DECL
3666 && !SA.partition_to_pseudo[i])
3667 SA.partition_to_pseudo[i] = DECL_RTL_IF_SET (var);
3668 gcc_assert (SA.partition_to_pseudo[i]);
3669
3670 /* If this decl was marked as living in multiple places, reset
3671 this now to NULL. */
3672 if (DECL_RTL_IF_SET (var) == pc_rtx)
3673 SET_DECL_RTL (var, NULL);
3674
3675 /* Some RTL parts really want to look at DECL_RTL(x) when x
3676 was a decl marked in REG_ATTR or MEM_ATTR. We could use
3677 SET_DECL_RTL here making this available, but that would mean
3678 to select one of the potentially many RTLs for one DECL. Instead
3679 of doing that we simply reset the MEM_EXPR of the RTL in question,
3680 then nobody can get at it and hence nobody can call DECL_RTL on it. */
3681 if (!DECL_RTL_SET_P (var))
3682 {
3683 if (MEM_P (SA.partition_to_pseudo[i]))
3684 set_mem_expr (SA.partition_to_pseudo[i], NULL);
3685 }
3686 }
3687
3688 /* If this function is `main', emit a call to `__main'
3689 to run global initializers, etc. */
3690 if (DECL_NAME (current_function_decl)
3691 && MAIN_NAME_P (DECL_NAME (current_function_decl))
3692 && DECL_FILE_SCOPE_P (current_function_decl))
3693 expand_main_function ();
3694
3695 /* Initialize the stack_protect_guard field. This must happen after the
3696 call to __main (if any) so that the external decl is initialized. */
3697 if (crtl->stack_protect_guard)
3698 stack_protect_prologue ();
3699
3700 expand_phi_nodes (&SA);
3701
3702 /* Register rtl specific functions for cfg. */
3703 rtl_register_cfg_hooks ();
3704
3705 init_block = construct_init_block ();
3706
3707 /* Clear EDGE_EXECUTABLE on the entry edge(s). It is cleaned from the
3708 remaining edges later. */
3709 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
3710 e->flags &= ~EDGE_EXECUTABLE;
3711
3712 lab_rtx_for_bb = pointer_map_create ();
3713 FOR_BB_BETWEEN (bb, init_block->next_bb, EXIT_BLOCK_PTR, next_bb)
3714 bb = expand_gimple_basic_block (bb);
3715
3716 if (MAY_HAVE_DEBUG_INSNS)
3717 expand_debug_locations ();
3718
3719 execute_free_datastructures ();
3720 finish_out_of_ssa (&SA);
3721
3722 /* We are no longer in SSA form. */
3723 cfun->gimple_df->in_ssa_p = false;
3724
3725 /* Expansion is used by optimization passes too, set maybe_hot_insn_p
3726 conservatively to true until they are all profile aware. */
3727 pointer_map_destroy (lab_rtx_for_bb);
3728 free_histograms ();
3729
3730 construct_exit_block ();
3731 set_curr_insn_block (DECL_INITIAL (current_function_decl));
3732 insn_locators_finalize ();
3733
3734 /* Zap the tree EH table. */
3735 set_eh_throw_stmt_table (cfun, NULL);
3736
3737 rebuild_jump_labels (get_insns ());
3738
3739 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
3740 {
3741 edge e;
3742 edge_iterator ei;
3743 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
3744 {
3745 if (e->insns.r)
3746 commit_one_edge_insertion (e);
3747 else
3748 ei_next (&ei);
3749 }
3750 }
3751
3752 /* We're done expanding trees to RTL. */
3753 currently_expanding_to_rtl = 0;
3754
3755 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb, EXIT_BLOCK_PTR, next_bb)
3756 {
3757 edge e;
3758 edge_iterator ei;
3759 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
3760 {
3761 /* Clear EDGE_EXECUTABLE. This flag is never used in the backend. */
3762 e->flags &= ~EDGE_EXECUTABLE;
3763
3764 /* At the moment not all abnormal edges match the RTL
3765 representation. It is safe to remove them here as
3766 find_many_sub_basic_blocks will rediscover them.
3767 In the future we should get this fixed properly. */
3768 if ((e->flags & EDGE_ABNORMAL)
3769 && !(e->flags & EDGE_SIBCALL))
3770 remove_edge (e);
3771 else
3772 ei_next (&ei);
3773 }
3774 }
3775
3776 blocks = sbitmap_alloc (last_basic_block);
3777 sbitmap_ones (blocks);
3778 find_many_sub_basic_blocks (blocks);
3779 sbitmap_free (blocks);
3780 purge_all_dead_edges ();
3781
3782 compact_blocks ();
3783
3784 expand_stack_alignment ();
3785
3786 #ifdef ENABLE_CHECKING
3787 verify_flow_info ();
3788 #endif
3789
3790 /* There's no need to defer outputting this function any more; we
3791 know we want to output it. */
3792 DECL_DEFER_OUTPUT (current_function_decl) = 0;
3793
3794 /* Now that we're done expanding trees to RTL, we shouldn't have any
3795 more CONCATs anywhere. */
3796 generating_concat_p = 0;
3797
3798 if (dump_file)
3799 {
3800 fprintf (dump_file,
3801 "\n\n;;\n;; Full RTL generated for this function:\n;;\n");
3802 /* And the pass manager will dump RTL for us. */
3803 }
3804
3805 /* If we're emitting a nested function, make sure its parent gets
3806 emitted as well. Doing otherwise confuses debug info. */
3807 {
3808 tree parent;
3809 for (parent = DECL_CONTEXT (current_function_decl);
3810 parent != NULL_TREE;
3811 parent = get_containing_scope (parent))
3812 if (TREE_CODE (parent) == FUNCTION_DECL)
3813 TREE_SYMBOL_REFERENCED (DECL_ASSEMBLER_NAME (parent)) = 1;
3814 }
3815
3816 /* We are now committed to emitting code for this function. Do any
3817 preparation, such as emitting abstract debug info for the inline
3818 before it gets mangled by optimization. */
3819 if (cgraph_function_possibly_inlined_p (current_function_decl))
3820 (*debug_hooks->outlining_inline_function) (current_function_decl);
3821
3822 TREE_ASM_WRITTEN (current_function_decl) = 1;
3823
3824 /* After expanding, the return labels are no longer needed. */
3825 return_label = NULL;
3826 naked_return_label = NULL;
3827 /* Tag the blocks with a depth number so that change_scope can find
3828 the common parent easily. */
3829 set_block_levels (DECL_INITIAL (cfun->decl), 0);
3830 default_rtl_profile ();
3831 return 0;
3832 }
3833
3834 struct rtl_opt_pass pass_expand =
3835 {
3836 {
3837 RTL_PASS,
3838 "expand", /* name */
3839 NULL, /* gate */
3840 gimple_expand_cfg, /* execute */
3841 NULL, /* sub */
3842 NULL, /* next */
3843 0, /* static_pass_number */
3844 TV_EXPAND, /* tv_id */
3845 PROP_ssa | PROP_gimple_leh | PROP_cfg
3846 | PROP_gimple_lcx, /* properties_required */
3847 PROP_rtl, /* properties_provided */
3848 PROP_ssa | PROP_trees, /* properties_destroyed */
3849 TODO_verify_ssa | TODO_verify_flow
3850 | TODO_verify_stmts, /* todo_flags_start */
3851 TODO_dump_func
3852 | TODO_ggc_collect /* todo_flags_finish */
3853 }
3854 };