re PR middle-end/41440 (SEG FAULT in CSE.C caused by bad RTL expansion)
[gcc.git] / gcc / cfgexpand.c
1 /* A pass for lowering trees to RTL.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "basic-block.h"
29 #include "function.h"
30 #include "expr.h"
31 #include "langhooks.h"
32 #include "tree-flow.h"
33 #include "timevar.h"
34 #include "tree-dump.h"
35 #include "tree-pass.h"
36 #include "except.h"
37 #include "flags.h"
38 #include "diagnostic.h"
39 #include "toplev.h"
40 #include "debug.h"
41 #include "params.h"
42 #include "tree-inline.h"
43 #include "value-prof.h"
44 #include "target.h"
45 #include "ssaexpand.h"
46
47
48 /* This variable holds information helping the rewriting of SSA trees
49 into RTL. */
50 struct ssaexpand SA;
51
52 /* Return an expression tree corresponding to the RHS of GIMPLE
53 statement STMT. */
54
55 tree
56 gimple_assign_rhs_to_tree (gimple stmt)
57 {
58 tree t;
59 enum gimple_rhs_class grhs_class;
60
61 grhs_class = get_gimple_rhs_class (gimple_expr_code (stmt));
62
63 if (grhs_class == GIMPLE_BINARY_RHS)
64 t = build2 (gimple_assign_rhs_code (stmt),
65 TREE_TYPE (gimple_assign_lhs (stmt)),
66 gimple_assign_rhs1 (stmt),
67 gimple_assign_rhs2 (stmt));
68 else if (grhs_class == GIMPLE_UNARY_RHS)
69 t = build1 (gimple_assign_rhs_code (stmt),
70 TREE_TYPE (gimple_assign_lhs (stmt)),
71 gimple_assign_rhs1 (stmt));
72 else if (grhs_class == GIMPLE_SINGLE_RHS)
73 {
74 t = gimple_assign_rhs1 (stmt);
75 /* Avoid modifying this tree in place below. */
76 if (gimple_has_location (stmt) && CAN_HAVE_LOCATION_P (t)
77 && gimple_location (stmt) != EXPR_LOCATION (t))
78 t = copy_node (t);
79 }
80 else
81 gcc_unreachable ();
82
83 if (gimple_has_location (stmt) && CAN_HAVE_LOCATION_P (t))
84 SET_EXPR_LOCATION (t, gimple_location (stmt));
85
86 return t;
87 }
88
89
90 /* Verify that there is exactly single jump instruction since last and attach
91 REG_BR_PROB note specifying probability.
92 ??? We really ought to pass the probability down to RTL expanders and let it
93 re-distribute it when the conditional expands into multiple conditionals.
94 This is however difficult to do. */
95 void
96 add_reg_br_prob_note (rtx last, int probability)
97 {
98 if (profile_status == PROFILE_ABSENT)
99 return;
100 for (last = NEXT_INSN (last); last && NEXT_INSN (last); last = NEXT_INSN (last))
101 if (JUMP_P (last))
102 {
103 /* It is common to emit condjump-around-jump sequence when we don't know
104 how to reverse the conditional. Special case this. */
105 if (!any_condjump_p (last)
106 || !JUMP_P (NEXT_INSN (last))
107 || !simplejump_p (NEXT_INSN (last))
108 || !NEXT_INSN (NEXT_INSN (last))
109 || !BARRIER_P (NEXT_INSN (NEXT_INSN (last)))
110 || !NEXT_INSN (NEXT_INSN (NEXT_INSN (last)))
111 || !LABEL_P (NEXT_INSN (NEXT_INSN (NEXT_INSN (last))))
112 || NEXT_INSN (NEXT_INSN (NEXT_INSN (NEXT_INSN (last)))))
113 goto failed;
114 gcc_assert (!find_reg_note (last, REG_BR_PROB, 0));
115 add_reg_note (last, REG_BR_PROB,
116 GEN_INT (REG_BR_PROB_BASE - probability));
117 return;
118 }
119 if (!last || !JUMP_P (last) || !any_condjump_p (last))
120 goto failed;
121 gcc_assert (!find_reg_note (last, REG_BR_PROB, 0));
122 add_reg_note (last, REG_BR_PROB, GEN_INT (probability));
123 return;
124 failed:
125 if (dump_file)
126 fprintf (dump_file, "Failed to add probability note\n");
127 }
128
129
130 #ifndef STACK_ALIGNMENT_NEEDED
131 #define STACK_ALIGNMENT_NEEDED 1
132 #endif
133
134 #define SSAVAR(x) (TREE_CODE (x) == SSA_NAME ? SSA_NAME_VAR (x) : x)
135
136 /* Associate declaration T with storage space X. If T is no
137 SSA name this is exactly SET_DECL_RTL, otherwise make the
138 partition of T associated with X. */
139 static inline void
140 set_rtl (tree t, rtx x)
141 {
142 if (TREE_CODE (t) == SSA_NAME)
143 {
144 SA.partition_to_pseudo[var_to_partition (SA.map, t)] = x;
145 if (x && !MEM_P (x))
146 set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (t), x);
147 /* For the benefit of debug information at -O0 (where vartracking
148 doesn't run) record the place also in the base DECL if it's
149 a normal variable (not a parameter). */
150 if (x && x != pc_rtx && TREE_CODE (SSA_NAME_VAR (t)) == VAR_DECL)
151 {
152 tree var = SSA_NAME_VAR (t);
153 /* If we don't yet have something recorded, just record it now. */
154 if (!DECL_RTL_SET_P (var))
155 SET_DECL_RTL (var, x);
156 /* If we have it set alrady to "multiple places" don't
157 change this. */
158 else if (DECL_RTL (var) == pc_rtx)
159 ;
160 /* If we have something recorded and it's not the same place
161 as we want to record now, we have multiple partitions for the
162 same base variable, with different places. We can't just
163 randomly chose one, hence we have to say that we don't know.
164 This only happens with optimization, and there var-tracking
165 will figure out the right thing. */
166 else if (DECL_RTL (var) != x)
167 SET_DECL_RTL (var, pc_rtx);
168 }
169 }
170 else
171 SET_DECL_RTL (t, x);
172 }
173
174 /* This structure holds data relevant to one variable that will be
175 placed in a stack slot. */
176 struct stack_var
177 {
178 /* The Variable. */
179 tree decl;
180
181 /* The offset of the variable. During partitioning, this is the
182 offset relative to the partition. After partitioning, this
183 is relative to the stack frame. */
184 HOST_WIDE_INT offset;
185
186 /* Initially, the size of the variable. Later, the size of the partition,
187 if this variable becomes it's partition's representative. */
188 HOST_WIDE_INT size;
189
190 /* The *byte* alignment required for this variable. Or as, with the
191 size, the alignment for this partition. */
192 unsigned int alignb;
193
194 /* The partition representative. */
195 size_t representative;
196
197 /* The next stack variable in the partition, or EOC. */
198 size_t next;
199 };
200
201 #define EOC ((size_t)-1)
202
203 /* We have an array of such objects while deciding allocation. */
204 static struct stack_var *stack_vars;
205 static size_t stack_vars_alloc;
206 static size_t stack_vars_num;
207
208 /* An array of indices such that stack_vars[stack_vars_sorted[i]].size
209 is non-decreasing. */
210 static size_t *stack_vars_sorted;
211
212 /* We have an interference graph between such objects. This graph
213 is lower triangular. */
214 static bool *stack_vars_conflict;
215 static size_t stack_vars_conflict_alloc;
216
217 /* The phase of the stack frame. This is the known misalignment of
218 virtual_stack_vars_rtx from PREFERRED_STACK_BOUNDARY. That is,
219 (frame_offset+frame_phase) % PREFERRED_STACK_BOUNDARY == 0. */
220 static int frame_phase;
221
222 /* Used during expand_used_vars to remember if we saw any decls for
223 which we'd like to enable stack smashing protection. */
224 static bool has_protected_decls;
225
226 /* Used during expand_used_vars. Remember if we say a character buffer
227 smaller than our cutoff threshold. Used for -Wstack-protector. */
228 static bool has_short_buffer;
229
230 /* Discover the byte alignment to use for DECL. Ignore alignment
231 we can't do with expected alignment of the stack boundary. */
232
233 static unsigned int
234 get_decl_align_unit (tree decl)
235 {
236 unsigned int align;
237
238 align = LOCAL_DECL_ALIGNMENT (decl);
239
240 if (align > MAX_SUPPORTED_STACK_ALIGNMENT)
241 align = MAX_SUPPORTED_STACK_ALIGNMENT;
242
243 if (SUPPORTS_STACK_ALIGNMENT)
244 {
245 if (crtl->stack_alignment_estimated < align)
246 {
247 gcc_assert(!crtl->stack_realign_processed);
248 crtl->stack_alignment_estimated = align;
249 }
250 }
251
252 /* stack_alignment_needed > PREFERRED_STACK_BOUNDARY is permitted.
253 So here we only make sure stack_alignment_needed >= align. */
254 if (crtl->stack_alignment_needed < align)
255 crtl->stack_alignment_needed = align;
256 if (crtl->max_used_stack_slot_alignment < align)
257 crtl->max_used_stack_slot_alignment = align;
258
259 return align / BITS_PER_UNIT;
260 }
261
262 /* Allocate SIZE bytes at byte alignment ALIGN from the stack frame.
263 Return the frame offset. */
264
265 static HOST_WIDE_INT
266 alloc_stack_frame_space (HOST_WIDE_INT size, HOST_WIDE_INT align)
267 {
268 HOST_WIDE_INT offset, new_frame_offset;
269
270 new_frame_offset = frame_offset;
271 if (FRAME_GROWS_DOWNWARD)
272 {
273 new_frame_offset -= size + frame_phase;
274 new_frame_offset &= -align;
275 new_frame_offset += frame_phase;
276 offset = new_frame_offset;
277 }
278 else
279 {
280 new_frame_offset -= frame_phase;
281 new_frame_offset += align - 1;
282 new_frame_offset &= -align;
283 new_frame_offset += frame_phase;
284 offset = new_frame_offset;
285 new_frame_offset += size;
286 }
287 frame_offset = new_frame_offset;
288
289 if (frame_offset_overflow (frame_offset, cfun->decl))
290 frame_offset = offset = 0;
291
292 return offset;
293 }
294
295 /* Accumulate DECL into STACK_VARS. */
296
297 static void
298 add_stack_var (tree decl)
299 {
300 if (stack_vars_num >= stack_vars_alloc)
301 {
302 if (stack_vars_alloc)
303 stack_vars_alloc = stack_vars_alloc * 3 / 2;
304 else
305 stack_vars_alloc = 32;
306 stack_vars
307 = XRESIZEVEC (struct stack_var, stack_vars, stack_vars_alloc);
308 }
309 stack_vars[stack_vars_num].decl = decl;
310 stack_vars[stack_vars_num].offset = 0;
311 stack_vars[stack_vars_num].size = tree_low_cst (DECL_SIZE_UNIT (SSAVAR (decl)), 1);
312 stack_vars[stack_vars_num].alignb = get_decl_align_unit (SSAVAR (decl));
313
314 /* All variables are initially in their own partition. */
315 stack_vars[stack_vars_num].representative = stack_vars_num;
316 stack_vars[stack_vars_num].next = EOC;
317
318 /* Ensure that this decl doesn't get put onto the list twice. */
319 set_rtl (decl, pc_rtx);
320
321 stack_vars_num++;
322 }
323
324 /* Compute the linear index of a lower-triangular coordinate (I, J). */
325
326 static size_t
327 triangular_index (size_t i, size_t j)
328 {
329 if (i < j)
330 {
331 size_t t;
332 t = i, i = j, j = t;
333 }
334 return (i * (i + 1)) / 2 + j;
335 }
336
337 /* Ensure that STACK_VARS_CONFLICT is large enough for N objects. */
338
339 static void
340 resize_stack_vars_conflict (size_t n)
341 {
342 size_t size = triangular_index (n-1, n-1) + 1;
343
344 if (size <= stack_vars_conflict_alloc)
345 return;
346
347 stack_vars_conflict = XRESIZEVEC (bool, stack_vars_conflict, size);
348 memset (stack_vars_conflict + stack_vars_conflict_alloc, 0,
349 (size - stack_vars_conflict_alloc) * sizeof (bool));
350 stack_vars_conflict_alloc = size;
351 }
352
353 /* Make the decls associated with luid's X and Y conflict. */
354
355 static void
356 add_stack_var_conflict (size_t x, size_t y)
357 {
358 size_t index = triangular_index (x, y);
359 gcc_assert (index < stack_vars_conflict_alloc);
360 stack_vars_conflict[index] = true;
361 }
362
363 /* Check whether the decls associated with luid's X and Y conflict. */
364
365 static bool
366 stack_var_conflict_p (size_t x, size_t y)
367 {
368 size_t index = triangular_index (x, y);
369 gcc_assert (index < stack_vars_conflict_alloc);
370 return stack_vars_conflict[index];
371 }
372
373 /* Returns true if TYPE is or contains a union type. */
374
375 static bool
376 aggregate_contains_union_type (tree type)
377 {
378 tree field;
379
380 if (TREE_CODE (type) == UNION_TYPE
381 || TREE_CODE (type) == QUAL_UNION_TYPE)
382 return true;
383 if (TREE_CODE (type) == ARRAY_TYPE)
384 return aggregate_contains_union_type (TREE_TYPE (type));
385 if (TREE_CODE (type) != RECORD_TYPE)
386 return false;
387
388 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
389 if (TREE_CODE (field) == FIELD_DECL)
390 if (aggregate_contains_union_type (TREE_TYPE (field)))
391 return true;
392
393 return false;
394 }
395
396 /* A subroutine of expand_used_vars. If two variables X and Y have alias
397 sets that do not conflict, then do add a conflict for these variables
398 in the interference graph. We also need to make sure to add conflicts
399 for union containing structures. Else RTL alias analysis comes along
400 and due to type based aliasing rules decides that for two overlapping
401 union temporaries { short s; int i; } accesses to the same mem through
402 different types may not alias and happily reorders stores across
403 life-time boundaries of the temporaries (See PR25654).
404 We also have to mind MEM_IN_STRUCT_P and MEM_SCALAR_P. */
405
406 static void
407 add_alias_set_conflicts (void)
408 {
409 size_t i, j, n = stack_vars_num;
410
411 for (i = 0; i < n; ++i)
412 {
413 tree type_i = TREE_TYPE (stack_vars[i].decl);
414 bool aggr_i = AGGREGATE_TYPE_P (type_i);
415 bool contains_union;
416
417 contains_union = aggregate_contains_union_type (type_i);
418 for (j = 0; j < i; ++j)
419 {
420 tree type_j = TREE_TYPE (stack_vars[j].decl);
421 bool aggr_j = AGGREGATE_TYPE_P (type_j);
422 if (aggr_i != aggr_j
423 /* Either the objects conflict by means of type based
424 aliasing rules, or we need to add a conflict. */
425 || !objects_must_conflict_p (type_i, type_j)
426 /* In case the types do not conflict ensure that access
427 to elements will conflict. In case of unions we have
428 to be careful as type based aliasing rules may say
429 access to the same memory does not conflict. So play
430 safe and add a conflict in this case. */
431 || contains_union)
432 add_stack_var_conflict (i, j);
433 }
434 }
435 }
436
437 /* A subroutine of partition_stack_vars. A comparison function for qsort,
438 sorting an array of indices by the size and type of the object. */
439
440 static int
441 stack_var_size_cmp (const void *a, const void *b)
442 {
443 HOST_WIDE_INT sa = stack_vars[*(const size_t *)a].size;
444 HOST_WIDE_INT sb = stack_vars[*(const size_t *)b].size;
445 tree decla, declb;
446 unsigned int uida, uidb;
447
448 if (sa < sb)
449 return -1;
450 if (sa > sb)
451 return 1;
452 decla = stack_vars[*(const size_t *)a].decl;
453 declb = stack_vars[*(const size_t *)b].decl;
454 /* For stack variables of the same size use and id of the decls
455 to make the sort stable. Two SSA names are compared by their
456 version, SSA names come before non-SSA names, and two normal
457 decls are compared by their DECL_UID. */
458 if (TREE_CODE (decla) == SSA_NAME)
459 {
460 if (TREE_CODE (declb) == SSA_NAME)
461 uida = SSA_NAME_VERSION (decla), uidb = SSA_NAME_VERSION (declb);
462 else
463 return -1;
464 }
465 else if (TREE_CODE (declb) == SSA_NAME)
466 return 1;
467 else
468 uida = DECL_UID (decla), uidb = DECL_UID (declb);
469 if (uida < uidb)
470 return -1;
471 if (uida > uidb)
472 return 1;
473 return 0;
474 }
475
476
477 /* If the points-to solution *PI points to variables that are in a partition
478 together with other variables add all partition members to the pointed-to
479 variables bitmap. */
480
481 static void
482 add_partitioned_vars_to_ptset (struct pt_solution *pt,
483 struct pointer_map_t *decls_to_partitions,
484 struct pointer_set_t *visited, bitmap temp)
485 {
486 bitmap_iterator bi;
487 unsigned i;
488 bitmap *part;
489
490 if (pt->anything
491 || pt->vars == NULL
492 /* The pointed-to vars bitmap is shared, it is enough to
493 visit it once. */
494 || pointer_set_insert(visited, pt->vars))
495 return;
496
497 bitmap_clear (temp);
498
499 /* By using a temporary bitmap to store all members of the partitions
500 we have to add we make sure to visit each of the partitions only
501 once. */
502 EXECUTE_IF_SET_IN_BITMAP (pt->vars, 0, i, bi)
503 if ((!temp
504 || !bitmap_bit_p (temp, i))
505 && (part = (bitmap *) pointer_map_contains (decls_to_partitions,
506 (void *)(size_t) i)))
507 bitmap_ior_into (temp, *part);
508 if (!bitmap_empty_p (temp))
509 bitmap_ior_into (pt->vars, temp);
510 }
511
512 /* Update points-to sets based on partition info, so we can use them on RTL.
513 The bitmaps representing stack partitions will be saved until expand,
514 where partitioned decls used as bases in memory expressions will be
515 rewritten. */
516
517 static void
518 update_alias_info_with_stack_vars (void)
519 {
520 struct pointer_map_t *decls_to_partitions = NULL;
521 size_t i, j;
522 tree var = NULL_TREE;
523
524 for (i = 0; i < stack_vars_num; i++)
525 {
526 bitmap part = NULL;
527 tree name;
528 struct ptr_info_def *pi;
529
530 /* Not interested in partitions with single variable. */
531 if (stack_vars[i].representative != i
532 || stack_vars[i].next == EOC)
533 continue;
534
535 if (!decls_to_partitions)
536 {
537 decls_to_partitions = pointer_map_create ();
538 cfun->gimple_df->decls_to_pointers = pointer_map_create ();
539 }
540
541 /* Create an SSA_NAME that points to the partition for use
542 as base during alias-oracle queries on RTL for bases that
543 have been partitioned. */
544 if (var == NULL_TREE)
545 var = create_tmp_var (ptr_type_node, NULL);
546 name = make_ssa_name (var, NULL);
547
548 /* Create bitmaps representing partitions. They will be used for
549 points-to sets later, so use GGC alloc. */
550 part = BITMAP_GGC_ALLOC ();
551 for (j = i; j != EOC; j = stack_vars[j].next)
552 {
553 tree decl = stack_vars[j].decl;
554 unsigned int uid = DECL_UID (decl);
555 /* We should never end up partitioning SSA names (though they
556 may end up on the stack). Neither should we allocate stack
557 space to something that is unused and thus unreferenced. */
558 gcc_assert (DECL_P (decl)
559 && referenced_var_lookup (uid));
560 bitmap_set_bit (part, uid);
561 *((bitmap *) pointer_map_insert (decls_to_partitions,
562 (void *)(size_t) uid)) = part;
563 *((tree *) pointer_map_insert (cfun->gimple_df->decls_to_pointers,
564 decl)) = name;
565 }
566
567 /* Make the SSA name point to all partition members. */
568 pi = get_ptr_info (name);
569 pt_solution_set (&pi->pt, part);
570 }
571
572 /* Make all points-to sets that contain one member of a partition
573 contain all members of the partition. */
574 if (decls_to_partitions)
575 {
576 unsigned i;
577 struct pointer_set_t *visited = pointer_set_create ();
578 bitmap temp = BITMAP_ALLOC (NULL);
579
580 for (i = 1; i < num_ssa_names; i++)
581 {
582 tree name = ssa_name (i);
583 struct ptr_info_def *pi;
584
585 if (name
586 && POINTER_TYPE_P (TREE_TYPE (name))
587 && ((pi = SSA_NAME_PTR_INFO (name)) != NULL))
588 add_partitioned_vars_to_ptset (&pi->pt, decls_to_partitions,
589 visited, temp);
590 }
591
592 add_partitioned_vars_to_ptset (&cfun->gimple_df->escaped,
593 decls_to_partitions, visited, temp);
594 add_partitioned_vars_to_ptset (&cfun->gimple_df->callused,
595 decls_to_partitions, visited, temp);
596
597 pointer_set_destroy (visited);
598 pointer_map_destroy (decls_to_partitions);
599 BITMAP_FREE (temp);
600 }
601 }
602
603 /* A subroutine of partition_stack_vars. The UNION portion of a UNION/FIND
604 partitioning algorithm. Partitions A and B are known to be non-conflicting.
605 Merge them into a single partition A.
606
607 At the same time, add OFFSET to all variables in partition B. At the end
608 of the partitioning process we've have a nice block easy to lay out within
609 the stack frame. */
610
611 static void
612 union_stack_vars (size_t a, size_t b, HOST_WIDE_INT offset)
613 {
614 size_t i, last;
615
616 /* Update each element of partition B with the given offset,
617 and merge them into partition A. */
618 for (last = i = b; i != EOC; last = i, i = stack_vars[i].next)
619 {
620 stack_vars[i].offset += offset;
621 stack_vars[i].representative = a;
622 }
623 stack_vars[last].next = stack_vars[a].next;
624 stack_vars[a].next = b;
625
626 /* Update the required alignment of partition A to account for B. */
627 if (stack_vars[a].alignb < stack_vars[b].alignb)
628 stack_vars[a].alignb = stack_vars[b].alignb;
629
630 /* Update the interference graph and merge the conflicts. */
631 for (last = stack_vars_num, i = 0; i < last; ++i)
632 if (stack_var_conflict_p (b, i))
633 add_stack_var_conflict (a, i);
634 }
635
636 /* A subroutine of expand_used_vars. Binpack the variables into
637 partitions constrained by the interference graph. The overall
638 algorithm used is as follows:
639
640 Sort the objects by size.
641 For each object A {
642 S = size(A)
643 O = 0
644 loop {
645 Look for the largest non-conflicting object B with size <= S.
646 UNION (A, B)
647 offset(B) = O
648 O += size(B)
649 S -= size(B)
650 }
651 }
652 */
653
654 static void
655 partition_stack_vars (void)
656 {
657 size_t si, sj, n = stack_vars_num;
658
659 stack_vars_sorted = XNEWVEC (size_t, stack_vars_num);
660 for (si = 0; si < n; ++si)
661 stack_vars_sorted[si] = si;
662
663 if (n == 1)
664 return;
665
666 qsort (stack_vars_sorted, n, sizeof (size_t), stack_var_size_cmp);
667
668 /* Special case: detect when all variables conflict, and thus we can't
669 do anything during the partitioning loop. It isn't uncommon (with
670 C code at least) to declare all variables at the top of the function,
671 and if we're not inlining, then all variables will be in the same scope.
672 Take advantage of very fast libc routines for this scan. */
673 gcc_assert (sizeof(bool) == sizeof(char));
674 if (memchr (stack_vars_conflict, false, stack_vars_conflict_alloc) == NULL)
675 return;
676
677 for (si = 0; si < n; ++si)
678 {
679 size_t i = stack_vars_sorted[si];
680 HOST_WIDE_INT isize = stack_vars[i].size;
681 HOST_WIDE_INT offset = 0;
682
683 for (sj = si; sj-- > 0; )
684 {
685 size_t j = stack_vars_sorted[sj];
686 HOST_WIDE_INT jsize = stack_vars[j].size;
687 unsigned int jalign = stack_vars[j].alignb;
688
689 /* Ignore objects that aren't partition representatives. */
690 if (stack_vars[j].representative != j)
691 continue;
692
693 /* Ignore objects too large for the remaining space. */
694 if (isize < jsize)
695 continue;
696
697 /* Ignore conflicting objects. */
698 if (stack_var_conflict_p (i, j))
699 continue;
700
701 /* Refine the remaining space check to include alignment. */
702 if (offset & (jalign - 1))
703 {
704 HOST_WIDE_INT toff = offset;
705 toff += jalign - 1;
706 toff &= -(HOST_WIDE_INT)jalign;
707 if (isize - (toff - offset) < jsize)
708 continue;
709
710 isize -= toff - offset;
711 offset = toff;
712 }
713
714 /* UNION the objects, placing J at OFFSET. */
715 union_stack_vars (i, j, offset);
716
717 isize -= jsize;
718 if (isize == 0)
719 break;
720 }
721 }
722
723 if (optimize)
724 update_alias_info_with_stack_vars ();
725 }
726
727 /* A debugging aid for expand_used_vars. Dump the generated partitions. */
728
729 static void
730 dump_stack_var_partition (void)
731 {
732 size_t si, i, j, n = stack_vars_num;
733
734 for (si = 0; si < n; ++si)
735 {
736 i = stack_vars_sorted[si];
737
738 /* Skip variables that aren't partition representatives, for now. */
739 if (stack_vars[i].representative != i)
740 continue;
741
742 fprintf (dump_file, "Partition %lu: size " HOST_WIDE_INT_PRINT_DEC
743 " align %u\n", (unsigned long) i, stack_vars[i].size,
744 stack_vars[i].alignb);
745
746 for (j = i; j != EOC; j = stack_vars[j].next)
747 {
748 fputc ('\t', dump_file);
749 print_generic_expr (dump_file, stack_vars[j].decl, dump_flags);
750 fprintf (dump_file, ", offset " HOST_WIDE_INT_PRINT_DEC "\n",
751 stack_vars[j].offset);
752 }
753 }
754 }
755
756 /* Assign rtl to DECL at frame offset OFFSET. */
757
758 static void
759 expand_one_stack_var_at (tree decl, HOST_WIDE_INT offset)
760 {
761 /* Alignment is unsigned. */
762 unsigned HOST_WIDE_INT align;
763 rtx x;
764
765 /* If this fails, we've overflowed the stack frame. Error nicely? */
766 gcc_assert (offset == trunc_int_for_mode (offset, Pmode));
767
768 x = plus_constant (virtual_stack_vars_rtx, offset);
769 x = gen_rtx_MEM (DECL_MODE (SSAVAR (decl)), x);
770
771 if (TREE_CODE (decl) != SSA_NAME)
772 {
773 /* Set alignment we actually gave this decl if it isn't an SSA name.
774 If it is we generate stack slots only accidentally so it isn't as
775 important, we'll simply use the alignment that is already set. */
776 offset -= frame_phase;
777 align = offset & -offset;
778 align *= BITS_PER_UNIT;
779 if (align == 0)
780 align = STACK_BOUNDARY;
781 else if (align > MAX_SUPPORTED_STACK_ALIGNMENT)
782 align = MAX_SUPPORTED_STACK_ALIGNMENT;
783
784 DECL_ALIGN (decl) = align;
785 DECL_USER_ALIGN (decl) = 0;
786 }
787
788 set_mem_attributes (x, SSAVAR (decl), true);
789 set_rtl (decl, x);
790 }
791
792 /* A subroutine of expand_used_vars. Give each partition representative
793 a unique location within the stack frame. Update each partition member
794 with that location. */
795
796 static void
797 expand_stack_vars (bool (*pred) (tree))
798 {
799 size_t si, i, j, n = stack_vars_num;
800
801 for (si = 0; si < n; ++si)
802 {
803 HOST_WIDE_INT offset;
804
805 i = stack_vars_sorted[si];
806
807 /* Skip variables that aren't partition representatives, for now. */
808 if (stack_vars[i].representative != i)
809 continue;
810
811 /* Skip variables that have already had rtl assigned. See also
812 add_stack_var where we perpetrate this pc_rtx hack. */
813 if ((TREE_CODE (stack_vars[i].decl) == SSA_NAME
814 ? SA.partition_to_pseudo[var_to_partition (SA.map, stack_vars[i].decl)]
815 : DECL_RTL (stack_vars[i].decl)) != pc_rtx)
816 continue;
817
818 /* Check the predicate to see whether this variable should be
819 allocated in this pass. */
820 if (pred && !pred (stack_vars[i].decl))
821 continue;
822
823 offset = alloc_stack_frame_space (stack_vars[i].size,
824 stack_vars[i].alignb);
825
826 /* Create rtl for each variable based on their location within the
827 partition. */
828 for (j = i; j != EOC; j = stack_vars[j].next)
829 {
830 gcc_assert (stack_vars[j].offset <= stack_vars[i].size);
831 expand_one_stack_var_at (stack_vars[j].decl,
832 stack_vars[j].offset + offset);
833 }
834 }
835 }
836
837 /* Take into account all sizes of partitions and reset DECL_RTLs. */
838 static HOST_WIDE_INT
839 account_stack_vars (void)
840 {
841 size_t si, j, i, n = stack_vars_num;
842 HOST_WIDE_INT size = 0;
843
844 for (si = 0; si < n; ++si)
845 {
846 i = stack_vars_sorted[si];
847
848 /* Skip variables that aren't partition representatives, for now. */
849 if (stack_vars[i].representative != i)
850 continue;
851
852 size += stack_vars[i].size;
853 for (j = i; j != EOC; j = stack_vars[j].next)
854 set_rtl (stack_vars[j].decl, NULL);
855 }
856 return size;
857 }
858
859 /* A subroutine of expand_one_var. Called to immediately assign rtl
860 to a variable to be allocated in the stack frame. */
861
862 static void
863 expand_one_stack_var (tree var)
864 {
865 HOST_WIDE_INT size, offset, align;
866
867 size = tree_low_cst (DECL_SIZE_UNIT (SSAVAR (var)), 1);
868 align = get_decl_align_unit (SSAVAR (var));
869 offset = alloc_stack_frame_space (size, align);
870
871 expand_one_stack_var_at (var, offset);
872 }
873
874 /* A subroutine of expand_one_var. Called to assign rtl to a VAR_DECL
875 that will reside in a hard register. */
876
877 static void
878 expand_one_hard_reg_var (tree var)
879 {
880 rest_of_decl_compilation (var, 0, 0);
881 }
882
883 /* A subroutine of expand_one_var. Called to assign rtl to a VAR_DECL
884 that will reside in a pseudo register. */
885
886 static void
887 expand_one_register_var (tree var)
888 {
889 tree decl = SSAVAR (var);
890 tree type = TREE_TYPE (decl);
891 enum machine_mode reg_mode = promote_decl_mode (decl, NULL);
892 rtx x = gen_reg_rtx (reg_mode);
893
894 set_rtl (var, x);
895
896 /* Note if the object is a user variable. */
897 if (!DECL_ARTIFICIAL (decl))
898 mark_user_reg (x);
899
900 if (POINTER_TYPE_P (type))
901 mark_reg_pointer (x, TYPE_ALIGN (TREE_TYPE (type)));
902 }
903
904 /* A subroutine of expand_one_var. Called to assign rtl to a VAR_DECL that
905 has some associated error, e.g. its type is error-mark. We just need
906 to pick something that won't crash the rest of the compiler. */
907
908 static void
909 expand_one_error_var (tree var)
910 {
911 enum machine_mode mode = DECL_MODE (var);
912 rtx x;
913
914 if (mode == BLKmode)
915 x = gen_rtx_MEM (BLKmode, const0_rtx);
916 else if (mode == VOIDmode)
917 x = const0_rtx;
918 else
919 x = gen_reg_rtx (mode);
920
921 SET_DECL_RTL (var, x);
922 }
923
924 /* A subroutine of expand_one_var. VAR is a variable that will be
925 allocated to the local stack frame. Return true if we wish to
926 add VAR to STACK_VARS so that it will be coalesced with other
927 variables. Return false to allocate VAR immediately.
928
929 This function is used to reduce the number of variables considered
930 for coalescing, which reduces the size of the quadratic problem. */
931
932 static bool
933 defer_stack_allocation (tree var, bool toplevel)
934 {
935 /* If stack protection is enabled, *all* stack variables must be deferred,
936 so that we can re-order the strings to the top of the frame. */
937 if (flag_stack_protect)
938 return true;
939
940 /* Variables in the outermost scope automatically conflict with
941 every other variable. The only reason to want to defer them
942 at all is that, after sorting, we can more efficiently pack
943 small variables in the stack frame. Continue to defer at -O2. */
944 if (toplevel && optimize < 2)
945 return false;
946
947 /* Without optimization, *most* variables are allocated from the
948 stack, which makes the quadratic problem large exactly when we
949 want compilation to proceed as quickly as possible. On the
950 other hand, we don't want the function's stack frame size to
951 get completely out of hand. So we avoid adding scalars and
952 "small" aggregates to the list at all. */
953 if (optimize == 0 && tree_low_cst (DECL_SIZE_UNIT (var), 1) < 32)
954 return false;
955
956 return true;
957 }
958
959 /* A subroutine of expand_used_vars. Expand one variable according to
960 its flavor. Variables to be placed on the stack are not actually
961 expanded yet, merely recorded.
962 When REALLY_EXPAND is false, only add stack values to be allocated.
963 Return stack usage this variable is supposed to take.
964 */
965
966 static HOST_WIDE_INT
967 expand_one_var (tree var, bool toplevel, bool really_expand)
968 {
969 tree origvar = var;
970 var = SSAVAR (var);
971
972 if (SUPPORTS_STACK_ALIGNMENT
973 && TREE_TYPE (var) != error_mark_node
974 && TREE_CODE (var) == VAR_DECL)
975 {
976 unsigned int align;
977
978 /* Because we don't know if VAR will be in register or on stack,
979 we conservatively assume it will be on stack even if VAR is
980 eventually put into register after RA pass. For non-automatic
981 variables, which won't be on stack, we collect alignment of
982 type and ignore user specified alignment. */
983 if (TREE_STATIC (var) || DECL_EXTERNAL (var))
984 align = MINIMUM_ALIGNMENT (TREE_TYPE (var),
985 TYPE_MODE (TREE_TYPE (var)),
986 TYPE_ALIGN (TREE_TYPE (var)));
987 else
988 align = MINIMUM_ALIGNMENT (var, DECL_MODE (var), DECL_ALIGN (var));
989
990 if (crtl->stack_alignment_estimated < align)
991 {
992 /* stack_alignment_estimated shouldn't change after stack
993 realign decision made */
994 gcc_assert(!crtl->stack_realign_processed);
995 crtl->stack_alignment_estimated = align;
996 }
997 }
998
999 if (TREE_CODE (origvar) == SSA_NAME)
1000 {
1001 gcc_assert (TREE_CODE (var) != VAR_DECL
1002 || (!DECL_EXTERNAL (var)
1003 && !DECL_HAS_VALUE_EXPR_P (var)
1004 && !TREE_STATIC (var)
1005 && TREE_TYPE (var) != error_mark_node
1006 && !DECL_HARD_REGISTER (var)
1007 && really_expand));
1008 }
1009 if (TREE_CODE (var) != VAR_DECL && TREE_CODE (origvar) != SSA_NAME)
1010 ;
1011 else if (DECL_EXTERNAL (var))
1012 ;
1013 else if (DECL_HAS_VALUE_EXPR_P (var))
1014 ;
1015 else if (TREE_STATIC (var))
1016 ;
1017 else if (TREE_CODE (origvar) != SSA_NAME && DECL_RTL_SET_P (var))
1018 ;
1019 else if (TREE_TYPE (var) == error_mark_node)
1020 {
1021 if (really_expand)
1022 expand_one_error_var (var);
1023 }
1024 else if (TREE_CODE (var) == VAR_DECL && DECL_HARD_REGISTER (var))
1025 {
1026 if (really_expand)
1027 expand_one_hard_reg_var (var);
1028 }
1029 else if (use_register_for_decl (var))
1030 {
1031 if (really_expand)
1032 expand_one_register_var (origvar);
1033 }
1034 else if (defer_stack_allocation (var, toplevel))
1035 add_stack_var (origvar);
1036 else
1037 {
1038 if (really_expand)
1039 expand_one_stack_var (origvar);
1040 return tree_low_cst (DECL_SIZE_UNIT (var), 1);
1041 }
1042 return 0;
1043 }
1044
1045 /* A subroutine of expand_used_vars. Walk down through the BLOCK tree
1046 expanding variables. Those variables that can be put into registers
1047 are allocated pseudos; those that can't are put on the stack.
1048
1049 TOPLEVEL is true if this is the outermost BLOCK. */
1050
1051 static void
1052 expand_used_vars_for_block (tree block, bool toplevel)
1053 {
1054 size_t i, j, old_sv_num, this_sv_num, new_sv_num;
1055 tree t;
1056
1057 old_sv_num = toplevel ? 0 : stack_vars_num;
1058
1059 /* Expand all variables at this level. */
1060 for (t = BLOCK_VARS (block); t ; t = TREE_CHAIN (t))
1061 if (TREE_USED (t))
1062 expand_one_var (t, toplevel, true);
1063
1064 this_sv_num = stack_vars_num;
1065
1066 /* Expand all variables at containing levels. */
1067 for (t = BLOCK_SUBBLOCKS (block); t ; t = BLOCK_CHAIN (t))
1068 expand_used_vars_for_block (t, false);
1069
1070 /* Since we do not track exact variable lifetimes (which is not even
1071 possible for variables whose address escapes), we mirror the block
1072 tree in the interference graph. Here we cause all variables at this
1073 level, and all sublevels, to conflict. Do make certain that a
1074 variable conflicts with itself. */
1075 if (old_sv_num < this_sv_num)
1076 {
1077 new_sv_num = stack_vars_num;
1078 resize_stack_vars_conflict (new_sv_num);
1079
1080 for (i = old_sv_num; i < new_sv_num; ++i)
1081 for (j = i < this_sv_num ? i+1 : this_sv_num; j-- > old_sv_num ;)
1082 add_stack_var_conflict (i, j);
1083 }
1084 }
1085
1086 /* A subroutine of expand_used_vars. Walk down through the BLOCK tree
1087 and clear TREE_USED on all local variables. */
1088
1089 static void
1090 clear_tree_used (tree block)
1091 {
1092 tree t;
1093
1094 for (t = BLOCK_VARS (block); t ; t = TREE_CHAIN (t))
1095 /* if (!TREE_STATIC (t) && !DECL_EXTERNAL (t)) */
1096 TREE_USED (t) = 0;
1097
1098 for (t = BLOCK_SUBBLOCKS (block); t ; t = BLOCK_CHAIN (t))
1099 clear_tree_used (t);
1100 }
1101
1102 /* Examine TYPE and determine a bit mask of the following features. */
1103
1104 #define SPCT_HAS_LARGE_CHAR_ARRAY 1
1105 #define SPCT_HAS_SMALL_CHAR_ARRAY 2
1106 #define SPCT_HAS_ARRAY 4
1107 #define SPCT_HAS_AGGREGATE 8
1108
1109 static unsigned int
1110 stack_protect_classify_type (tree type)
1111 {
1112 unsigned int ret = 0;
1113 tree t;
1114
1115 switch (TREE_CODE (type))
1116 {
1117 case ARRAY_TYPE:
1118 t = TYPE_MAIN_VARIANT (TREE_TYPE (type));
1119 if (t == char_type_node
1120 || t == signed_char_type_node
1121 || t == unsigned_char_type_node)
1122 {
1123 unsigned HOST_WIDE_INT max = PARAM_VALUE (PARAM_SSP_BUFFER_SIZE);
1124 unsigned HOST_WIDE_INT len;
1125
1126 if (!TYPE_SIZE_UNIT (type)
1127 || !host_integerp (TYPE_SIZE_UNIT (type), 1))
1128 len = max;
1129 else
1130 len = tree_low_cst (TYPE_SIZE_UNIT (type), 1);
1131
1132 if (len < max)
1133 ret = SPCT_HAS_SMALL_CHAR_ARRAY | SPCT_HAS_ARRAY;
1134 else
1135 ret = SPCT_HAS_LARGE_CHAR_ARRAY | SPCT_HAS_ARRAY;
1136 }
1137 else
1138 ret = SPCT_HAS_ARRAY;
1139 break;
1140
1141 case UNION_TYPE:
1142 case QUAL_UNION_TYPE:
1143 case RECORD_TYPE:
1144 ret = SPCT_HAS_AGGREGATE;
1145 for (t = TYPE_FIELDS (type); t ; t = TREE_CHAIN (t))
1146 if (TREE_CODE (t) == FIELD_DECL)
1147 ret |= stack_protect_classify_type (TREE_TYPE (t));
1148 break;
1149
1150 default:
1151 break;
1152 }
1153
1154 return ret;
1155 }
1156
1157 /* Return nonzero if DECL should be segregated into the "vulnerable" upper
1158 part of the local stack frame. Remember if we ever return nonzero for
1159 any variable in this function. The return value is the phase number in
1160 which the variable should be allocated. */
1161
1162 static int
1163 stack_protect_decl_phase (tree decl)
1164 {
1165 unsigned int bits = stack_protect_classify_type (TREE_TYPE (decl));
1166 int ret = 0;
1167
1168 if (bits & SPCT_HAS_SMALL_CHAR_ARRAY)
1169 has_short_buffer = true;
1170
1171 if (flag_stack_protect == 2)
1172 {
1173 if ((bits & (SPCT_HAS_SMALL_CHAR_ARRAY | SPCT_HAS_LARGE_CHAR_ARRAY))
1174 && !(bits & SPCT_HAS_AGGREGATE))
1175 ret = 1;
1176 else if (bits & SPCT_HAS_ARRAY)
1177 ret = 2;
1178 }
1179 else
1180 ret = (bits & SPCT_HAS_LARGE_CHAR_ARRAY) != 0;
1181
1182 if (ret)
1183 has_protected_decls = true;
1184
1185 return ret;
1186 }
1187
1188 /* Two helper routines that check for phase 1 and phase 2. These are used
1189 as callbacks for expand_stack_vars. */
1190
1191 static bool
1192 stack_protect_decl_phase_1 (tree decl)
1193 {
1194 return stack_protect_decl_phase (decl) == 1;
1195 }
1196
1197 static bool
1198 stack_protect_decl_phase_2 (tree decl)
1199 {
1200 return stack_protect_decl_phase (decl) == 2;
1201 }
1202
1203 /* Ensure that variables in different stack protection phases conflict
1204 so that they are not merged and share the same stack slot. */
1205
1206 static void
1207 add_stack_protection_conflicts (void)
1208 {
1209 size_t i, j, n = stack_vars_num;
1210 unsigned char *phase;
1211
1212 phase = XNEWVEC (unsigned char, n);
1213 for (i = 0; i < n; ++i)
1214 phase[i] = stack_protect_decl_phase (stack_vars[i].decl);
1215
1216 for (i = 0; i < n; ++i)
1217 {
1218 unsigned char ph_i = phase[i];
1219 for (j = 0; j < i; ++j)
1220 if (ph_i != phase[j])
1221 add_stack_var_conflict (i, j);
1222 }
1223
1224 XDELETEVEC (phase);
1225 }
1226
1227 /* Create a decl for the guard at the top of the stack frame. */
1228
1229 static void
1230 create_stack_guard (void)
1231 {
1232 tree guard = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
1233 VAR_DECL, NULL, ptr_type_node);
1234 TREE_THIS_VOLATILE (guard) = 1;
1235 TREE_USED (guard) = 1;
1236 expand_one_stack_var (guard);
1237 crtl->stack_protect_guard = guard;
1238 }
1239
1240 /* A subroutine of expand_used_vars. Walk down through the BLOCK tree
1241 expanding variables. Those variables that can be put into registers
1242 are allocated pseudos; those that can't are put on the stack.
1243
1244 TOPLEVEL is true if this is the outermost BLOCK. */
1245
1246 static HOST_WIDE_INT
1247 account_used_vars_for_block (tree block, bool toplevel)
1248 {
1249 size_t i, j, old_sv_num, this_sv_num, new_sv_num;
1250 tree t;
1251 HOST_WIDE_INT size = 0;
1252
1253 old_sv_num = toplevel ? 0 : stack_vars_num;
1254
1255 /* Expand all variables at this level. */
1256 for (t = BLOCK_VARS (block); t ; t = TREE_CHAIN (t))
1257 if (TREE_USED (t))
1258 size += expand_one_var (t, toplevel, false);
1259
1260 this_sv_num = stack_vars_num;
1261
1262 /* Expand all variables at containing levels. */
1263 for (t = BLOCK_SUBBLOCKS (block); t ; t = BLOCK_CHAIN (t))
1264 size += account_used_vars_for_block (t, false);
1265
1266 /* Since we do not track exact variable lifetimes (which is not even
1267 possible for variables whose address escapes), we mirror the block
1268 tree in the interference graph. Here we cause all variables at this
1269 level, and all sublevels, to conflict. Do make certain that a
1270 variable conflicts with itself. */
1271 if (old_sv_num < this_sv_num)
1272 {
1273 new_sv_num = stack_vars_num;
1274 resize_stack_vars_conflict (new_sv_num);
1275
1276 for (i = old_sv_num; i < new_sv_num; ++i)
1277 for (j = i < this_sv_num ? i+1 : this_sv_num; j-- > old_sv_num ;)
1278 add_stack_var_conflict (i, j);
1279 }
1280 return size;
1281 }
1282
1283 /* Prepare for expanding variables. */
1284 static void
1285 init_vars_expansion (void)
1286 {
1287 tree t;
1288 /* Set TREE_USED on all variables in the local_decls. */
1289 for (t = cfun->local_decls; t; t = TREE_CHAIN (t))
1290 TREE_USED (TREE_VALUE (t)) = 1;
1291
1292 /* Clear TREE_USED on all variables associated with a block scope. */
1293 clear_tree_used (DECL_INITIAL (current_function_decl));
1294
1295 /* Initialize local stack smashing state. */
1296 has_protected_decls = false;
1297 has_short_buffer = false;
1298 }
1299
1300 /* Free up stack variable graph data. */
1301 static void
1302 fini_vars_expansion (void)
1303 {
1304 XDELETEVEC (stack_vars);
1305 XDELETEVEC (stack_vars_sorted);
1306 XDELETEVEC (stack_vars_conflict);
1307 stack_vars = NULL;
1308 stack_vars_alloc = stack_vars_num = 0;
1309 stack_vars_conflict = NULL;
1310 stack_vars_conflict_alloc = 0;
1311 }
1312
1313 /* Make a fair guess for the size of the stack frame of the current
1314 function. This doesn't have to be exact, the result is only used
1315 in the inline heuristics. So we don't want to run the full stack
1316 var packing algorithm (which is quadratic in the number of stack
1317 vars). Instead, we calculate the total size of all stack vars.
1318 This turns out to be a pretty fair estimate -- packing of stack
1319 vars doesn't happen very often. */
1320
1321 HOST_WIDE_INT
1322 estimated_stack_frame_size (void)
1323 {
1324 HOST_WIDE_INT size = 0;
1325 size_t i;
1326 tree t, outer_block = DECL_INITIAL (current_function_decl);
1327
1328 init_vars_expansion ();
1329
1330 for (t = cfun->local_decls; t; t = TREE_CHAIN (t))
1331 {
1332 tree var = TREE_VALUE (t);
1333
1334 if (TREE_USED (var))
1335 size += expand_one_var (var, true, false);
1336 TREE_USED (var) = 1;
1337 }
1338 size += account_used_vars_for_block (outer_block, true);
1339
1340 if (stack_vars_num > 0)
1341 {
1342 /* Fake sorting the stack vars for account_stack_vars (). */
1343 stack_vars_sorted = XNEWVEC (size_t, stack_vars_num);
1344 for (i = 0; i < stack_vars_num; ++i)
1345 stack_vars_sorted[i] = i;
1346 size += account_stack_vars ();
1347 fini_vars_expansion ();
1348 }
1349
1350 return size;
1351 }
1352
1353 /* Expand all variables used in the function. */
1354
1355 static void
1356 expand_used_vars (void)
1357 {
1358 tree t, next, outer_block = DECL_INITIAL (current_function_decl);
1359 unsigned i;
1360
1361 /* Compute the phase of the stack frame for this function. */
1362 {
1363 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
1364 int off = STARTING_FRAME_OFFSET % align;
1365 frame_phase = off ? align - off : 0;
1366 }
1367
1368 init_vars_expansion ();
1369
1370 for (i = 0; i < SA.map->num_partitions; i++)
1371 {
1372 tree var = partition_to_var (SA.map, i);
1373
1374 gcc_assert (is_gimple_reg (var));
1375 if (TREE_CODE (SSA_NAME_VAR (var)) == VAR_DECL)
1376 expand_one_var (var, true, true);
1377 else
1378 {
1379 /* This is a PARM_DECL or RESULT_DECL. For those partitions that
1380 contain the default def (representing the parm or result itself)
1381 we don't do anything here. But those which don't contain the
1382 default def (representing a temporary based on the parm/result)
1383 we need to allocate space just like for normal VAR_DECLs. */
1384 if (!bitmap_bit_p (SA.partition_has_default_def, i))
1385 {
1386 expand_one_var (var, true, true);
1387 gcc_assert (SA.partition_to_pseudo[i]);
1388 }
1389 }
1390 }
1391
1392 /* At this point all variables on the local_decls with TREE_USED
1393 set are not associated with any block scope. Lay them out. */
1394 t = cfun->local_decls;
1395 cfun->local_decls = NULL_TREE;
1396 for (; t; t = next)
1397 {
1398 tree var = TREE_VALUE (t);
1399 bool expand_now = false;
1400
1401 next = TREE_CHAIN (t);
1402
1403 /* Expanded above already. */
1404 if (is_gimple_reg (var))
1405 {
1406 TREE_USED (var) = 0;
1407 ggc_free (t);
1408 continue;
1409 }
1410 /* We didn't set a block for static or extern because it's hard
1411 to tell the difference between a global variable (re)declared
1412 in a local scope, and one that's really declared there to
1413 begin with. And it doesn't really matter much, since we're
1414 not giving them stack space. Expand them now. */
1415 else if (TREE_STATIC (var) || DECL_EXTERNAL (var))
1416 expand_now = true;
1417
1418 /* If the variable is not associated with any block, then it
1419 was created by the optimizers, and could be live anywhere
1420 in the function. */
1421 else if (TREE_USED (var))
1422 expand_now = true;
1423
1424 /* Finally, mark all variables on the list as used. We'll use
1425 this in a moment when we expand those associated with scopes. */
1426 TREE_USED (var) = 1;
1427
1428 if (expand_now)
1429 {
1430 expand_one_var (var, true, true);
1431 if (DECL_ARTIFICIAL (var) && !DECL_IGNORED_P (var))
1432 {
1433 rtx rtl = DECL_RTL_IF_SET (var);
1434
1435 /* Keep artificial non-ignored vars in cfun->local_decls
1436 chain until instantiate_decls. */
1437 if (rtl && (MEM_P (rtl) || GET_CODE (rtl) == CONCAT))
1438 {
1439 TREE_CHAIN (t) = cfun->local_decls;
1440 cfun->local_decls = t;
1441 continue;
1442 }
1443 }
1444 }
1445
1446 ggc_free (t);
1447 }
1448
1449 /* At this point, all variables within the block tree with TREE_USED
1450 set are actually used by the optimized function. Lay them out. */
1451 expand_used_vars_for_block (outer_block, true);
1452
1453 if (stack_vars_num > 0)
1454 {
1455 /* Due to the way alias sets work, no variables with non-conflicting
1456 alias sets may be assigned the same address. Add conflicts to
1457 reflect this. */
1458 add_alias_set_conflicts ();
1459
1460 /* If stack protection is enabled, we don't share space between
1461 vulnerable data and non-vulnerable data. */
1462 if (flag_stack_protect)
1463 add_stack_protection_conflicts ();
1464
1465 /* Now that we have collected all stack variables, and have computed a
1466 minimal interference graph, attempt to save some stack space. */
1467 partition_stack_vars ();
1468 if (dump_file)
1469 dump_stack_var_partition ();
1470 }
1471
1472 /* There are several conditions under which we should create a
1473 stack guard: protect-all, alloca used, protected decls present. */
1474 if (flag_stack_protect == 2
1475 || (flag_stack_protect
1476 && (cfun->calls_alloca || has_protected_decls)))
1477 create_stack_guard ();
1478
1479 /* Assign rtl to each variable based on these partitions. */
1480 if (stack_vars_num > 0)
1481 {
1482 /* Reorder decls to be protected by iterating over the variables
1483 array multiple times, and allocating out of each phase in turn. */
1484 /* ??? We could probably integrate this into the qsort we did
1485 earlier, such that we naturally see these variables first,
1486 and thus naturally allocate things in the right order. */
1487 if (has_protected_decls)
1488 {
1489 /* Phase 1 contains only character arrays. */
1490 expand_stack_vars (stack_protect_decl_phase_1);
1491
1492 /* Phase 2 contains other kinds of arrays. */
1493 if (flag_stack_protect == 2)
1494 expand_stack_vars (stack_protect_decl_phase_2);
1495 }
1496
1497 expand_stack_vars (NULL);
1498
1499 fini_vars_expansion ();
1500 }
1501
1502 /* If the target requires that FRAME_OFFSET be aligned, do it. */
1503 if (STACK_ALIGNMENT_NEEDED)
1504 {
1505 HOST_WIDE_INT align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
1506 if (!FRAME_GROWS_DOWNWARD)
1507 frame_offset += align - 1;
1508 frame_offset &= -align;
1509 }
1510 }
1511
1512
1513 /* If we need to produce a detailed dump, print the tree representation
1514 for STMT to the dump file. SINCE is the last RTX after which the RTL
1515 generated for STMT should have been appended. */
1516
1517 static void
1518 maybe_dump_rtl_for_gimple_stmt (gimple stmt, rtx since)
1519 {
1520 if (dump_file && (dump_flags & TDF_DETAILS))
1521 {
1522 fprintf (dump_file, "\n;; ");
1523 print_gimple_stmt (dump_file, stmt, 0,
1524 TDF_SLIM | (dump_flags & TDF_LINENO));
1525 fprintf (dump_file, "\n");
1526
1527 print_rtl (dump_file, since ? NEXT_INSN (since) : since);
1528 }
1529 }
1530
1531 /* Maps the blocks that do not contain tree labels to rtx labels. */
1532
1533 static struct pointer_map_t *lab_rtx_for_bb;
1534
1535 /* Returns the label_rtx expression for a label starting basic block BB. */
1536
1537 static rtx
1538 label_rtx_for_bb (basic_block bb ATTRIBUTE_UNUSED)
1539 {
1540 gimple_stmt_iterator gsi;
1541 tree lab;
1542 gimple lab_stmt;
1543 void **elt;
1544
1545 if (bb->flags & BB_RTL)
1546 return block_label (bb);
1547
1548 elt = pointer_map_contains (lab_rtx_for_bb, bb);
1549 if (elt)
1550 return (rtx) *elt;
1551
1552 /* Find the tree label if it is present. */
1553
1554 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1555 {
1556 lab_stmt = gsi_stmt (gsi);
1557 if (gimple_code (lab_stmt) != GIMPLE_LABEL)
1558 break;
1559
1560 lab = gimple_label_label (lab_stmt);
1561 if (DECL_NONLOCAL (lab))
1562 break;
1563
1564 return label_rtx (lab);
1565 }
1566
1567 elt = pointer_map_insert (lab_rtx_for_bb, bb);
1568 *elt = gen_label_rtx ();
1569 return (rtx) *elt;
1570 }
1571
1572
1573 /* A subroutine of expand_gimple_cond. Given E, a fallthrough edge
1574 of a basic block where we just expanded the conditional at the end,
1575 possibly clean up the CFG and instruction sequence. */
1576
1577 static void
1578 maybe_cleanup_end_of_block (edge e)
1579 {
1580 /* Special case: when jumpif decides that the condition is
1581 trivial it emits an unconditional jump (and the necessary
1582 barrier). But we still have two edges, the fallthru one is
1583 wrong. purge_dead_edges would clean this up later. Unfortunately
1584 we have to insert insns (and split edges) before
1585 find_many_sub_basic_blocks and hence before purge_dead_edges.
1586 But splitting edges might create new blocks which depend on the
1587 fact that if there are two edges there's no barrier. So the
1588 barrier would get lost and verify_flow_info would ICE. Instead
1589 of auditing all edge splitters to care for the barrier (which
1590 normally isn't there in a cleaned CFG), fix it here. */
1591 if (BARRIER_P (get_last_insn ()))
1592 {
1593 basic_block bb = e->src;
1594 rtx insn;
1595 remove_edge (e);
1596 /* Now, we have a single successor block, if we have insns to
1597 insert on the remaining edge we potentially will insert
1598 it at the end of this block (if the dest block isn't feasible)
1599 in order to avoid splitting the edge. This insertion will take
1600 place in front of the last jump. But we might have emitted
1601 multiple jumps (conditional and one unconditional) to the
1602 same destination. Inserting in front of the last one then
1603 is a problem. See PR 40021. We fix this by deleting all
1604 jumps except the last unconditional one. */
1605 insn = PREV_INSN (get_last_insn ());
1606 /* Make sure we have an unconditional jump. Otherwise we're
1607 confused. */
1608 gcc_assert (JUMP_P (insn) && !any_condjump_p (insn));
1609 for (insn = PREV_INSN (insn); insn != BB_HEAD (bb);)
1610 {
1611 insn = PREV_INSN (insn);
1612 if (JUMP_P (NEXT_INSN (insn)))
1613 delete_insn (NEXT_INSN (insn));
1614 }
1615 }
1616 }
1617
1618 /* A subroutine of expand_gimple_basic_block. Expand one GIMPLE_COND.
1619 Returns a new basic block if we've terminated the current basic
1620 block and created a new one. */
1621
1622 static basic_block
1623 expand_gimple_cond (basic_block bb, gimple stmt)
1624 {
1625 basic_block new_bb, dest;
1626 edge new_edge;
1627 edge true_edge;
1628 edge false_edge;
1629 rtx last2, last;
1630 enum tree_code code;
1631 tree op0, op1;
1632
1633 code = gimple_cond_code (stmt);
1634 op0 = gimple_cond_lhs (stmt);
1635 op1 = gimple_cond_rhs (stmt);
1636 /* We're sometimes presented with such code:
1637 D.123_1 = x < y;
1638 if (D.123_1 != 0)
1639 ...
1640 This would expand to two comparisons which then later might
1641 be cleaned up by combine. But some pattern matchers like if-conversion
1642 work better when there's only one compare, so make up for this
1643 here as special exception if TER would have made the same change. */
1644 if (gimple_cond_single_var_p (stmt)
1645 && SA.values
1646 && TREE_CODE (op0) == SSA_NAME
1647 && bitmap_bit_p (SA.values, SSA_NAME_VERSION (op0)))
1648 {
1649 gimple second = SSA_NAME_DEF_STMT (op0);
1650 if (gimple_code (second) == GIMPLE_ASSIGN
1651 && TREE_CODE_CLASS (gimple_assign_rhs_code (second))
1652 == tcc_comparison)
1653 {
1654 code = gimple_assign_rhs_code (second);
1655 op0 = gimple_assign_rhs1 (second);
1656 op1 = gimple_assign_rhs2 (second);
1657 }
1658 }
1659
1660 last2 = last = get_last_insn ();
1661
1662 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1663 if (gimple_has_location (stmt))
1664 {
1665 set_curr_insn_source_location (gimple_location (stmt));
1666 set_curr_insn_block (gimple_block (stmt));
1667 }
1668
1669 /* These flags have no purpose in RTL land. */
1670 true_edge->flags &= ~EDGE_TRUE_VALUE;
1671 false_edge->flags &= ~EDGE_FALSE_VALUE;
1672
1673 /* We can either have a pure conditional jump with one fallthru edge or
1674 two-way jump that needs to be decomposed into two basic blocks. */
1675 if (false_edge->dest == bb->next_bb)
1676 {
1677 jumpif_1 (code, op0, op1, label_rtx_for_bb (true_edge->dest));
1678 add_reg_br_prob_note (last, true_edge->probability);
1679 maybe_dump_rtl_for_gimple_stmt (stmt, last);
1680 if (true_edge->goto_locus)
1681 {
1682 set_curr_insn_source_location (true_edge->goto_locus);
1683 set_curr_insn_block (true_edge->goto_block);
1684 true_edge->goto_locus = curr_insn_locator ();
1685 }
1686 true_edge->goto_block = NULL;
1687 false_edge->flags |= EDGE_FALLTHRU;
1688 maybe_cleanup_end_of_block (false_edge);
1689 return NULL;
1690 }
1691 if (true_edge->dest == bb->next_bb)
1692 {
1693 jumpifnot_1 (code, op0, op1, label_rtx_for_bb (false_edge->dest));
1694 add_reg_br_prob_note (last, false_edge->probability);
1695 maybe_dump_rtl_for_gimple_stmt (stmt, last);
1696 if (false_edge->goto_locus)
1697 {
1698 set_curr_insn_source_location (false_edge->goto_locus);
1699 set_curr_insn_block (false_edge->goto_block);
1700 false_edge->goto_locus = curr_insn_locator ();
1701 }
1702 false_edge->goto_block = NULL;
1703 true_edge->flags |= EDGE_FALLTHRU;
1704 maybe_cleanup_end_of_block (true_edge);
1705 return NULL;
1706 }
1707
1708 jumpif_1 (code, op0, op1, label_rtx_for_bb (true_edge->dest));
1709 add_reg_br_prob_note (last, true_edge->probability);
1710 last = get_last_insn ();
1711 if (false_edge->goto_locus)
1712 {
1713 set_curr_insn_source_location (false_edge->goto_locus);
1714 set_curr_insn_block (false_edge->goto_block);
1715 false_edge->goto_locus = curr_insn_locator ();
1716 }
1717 false_edge->goto_block = NULL;
1718 emit_jump (label_rtx_for_bb (false_edge->dest));
1719
1720 BB_END (bb) = last;
1721 if (BARRIER_P (BB_END (bb)))
1722 BB_END (bb) = PREV_INSN (BB_END (bb));
1723 update_bb_for_insn (bb);
1724
1725 new_bb = create_basic_block (NEXT_INSN (last), get_last_insn (), bb);
1726 dest = false_edge->dest;
1727 redirect_edge_succ (false_edge, new_bb);
1728 false_edge->flags |= EDGE_FALLTHRU;
1729 new_bb->count = false_edge->count;
1730 new_bb->frequency = EDGE_FREQUENCY (false_edge);
1731 new_edge = make_edge (new_bb, dest, 0);
1732 new_edge->probability = REG_BR_PROB_BASE;
1733 new_edge->count = new_bb->count;
1734 if (BARRIER_P (BB_END (new_bb)))
1735 BB_END (new_bb) = PREV_INSN (BB_END (new_bb));
1736 update_bb_for_insn (new_bb);
1737
1738 maybe_dump_rtl_for_gimple_stmt (stmt, last2);
1739
1740 if (true_edge->goto_locus)
1741 {
1742 set_curr_insn_source_location (true_edge->goto_locus);
1743 set_curr_insn_block (true_edge->goto_block);
1744 true_edge->goto_locus = curr_insn_locator ();
1745 }
1746 true_edge->goto_block = NULL;
1747
1748 return new_bb;
1749 }
1750
1751 /* A subroutine of expand_gimple_stmt_1, expanding one GIMPLE_CALL
1752 statement STMT. */
1753
1754 static void
1755 expand_call_stmt (gimple stmt)
1756 {
1757 tree exp;
1758 tree lhs = gimple_call_lhs (stmt);
1759 tree fndecl = gimple_call_fndecl (stmt);
1760 size_t i;
1761
1762 exp = build_vl_exp (CALL_EXPR, gimple_call_num_args (stmt) + 3);
1763
1764 CALL_EXPR_FN (exp) = gimple_call_fn (stmt);
1765 TREE_TYPE (exp) = gimple_call_return_type (stmt);
1766 CALL_EXPR_STATIC_CHAIN (exp) = gimple_call_chain (stmt);
1767
1768 for (i = 0; i < gimple_call_num_args (stmt); i++)
1769 CALL_EXPR_ARG (exp, i) = gimple_call_arg (stmt, i);
1770
1771 if (gimple_has_side_effects (stmt))
1772 TREE_SIDE_EFFECTS (exp) = 1;
1773
1774 if (gimple_call_nothrow_p (stmt))
1775 TREE_NOTHROW (exp) = 1;
1776
1777 CALL_EXPR_TAILCALL (exp) = gimple_call_tail_p (stmt);
1778 CALL_EXPR_RETURN_SLOT_OPT (exp) = gimple_call_return_slot_opt_p (stmt);
1779 CALL_FROM_THUNK_P (exp) = gimple_call_from_thunk_p (stmt);
1780 CALL_CANNOT_INLINE_P (exp) = gimple_call_cannot_inline_p (stmt);
1781 CALL_EXPR_VA_ARG_PACK (exp) = gimple_call_va_arg_pack_p (stmt);
1782 SET_EXPR_LOCATION (exp, gimple_location (stmt));
1783 TREE_BLOCK (exp) = gimple_block (stmt);
1784
1785 /* Record the original call statement, as it may be used
1786 to retrieve profile information during expansion. */
1787
1788 if (fndecl && DECL_BUILT_IN (fndecl))
1789 {
1790 tree_ann_common_t ann = get_tree_common_ann (exp);
1791 ann->stmt = stmt;
1792 }
1793
1794 if (lhs)
1795 expand_assignment (lhs, exp, false);
1796 else
1797 expand_expr_real_1 (exp, const0_rtx, VOIDmode, EXPAND_NORMAL, NULL);
1798 }
1799
1800 /* A subroutine of expand_gimple_stmt, expanding one gimple statement
1801 STMT that doesn't require special handling for outgoing edges. That
1802 is no tailcalls and no GIMPLE_COND. */
1803
1804 static void
1805 expand_gimple_stmt_1 (gimple stmt)
1806 {
1807 tree op0;
1808 switch (gimple_code (stmt))
1809 {
1810 case GIMPLE_GOTO:
1811 op0 = gimple_goto_dest (stmt);
1812 if (TREE_CODE (op0) == LABEL_DECL)
1813 expand_goto (op0);
1814 else
1815 expand_computed_goto (op0);
1816 break;
1817 case GIMPLE_LABEL:
1818 expand_label (gimple_label_label (stmt));
1819 break;
1820 case GIMPLE_NOP:
1821 case GIMPLE_PREDICT:
1822 break;
1823 case GIMPLE_SWITCH:
1824 expand_case (stmt);
1825 break;
1826 case GIMPLE_ASM:
1827 expand_asm_stmt (stmt);
1828 break;
1829 case GIMPLE_CALL:
1830 expand_call_stmt (stmt);
1831 break;
1832
1833 case GIMPLE_RETURN:
1834 op0 = gimple_return_retval (stmt);
1835
1836 if (op0 && op0 != error_mark_node)
1837 {
1838 tree result = DECL_RESULT (current_function_decl);
1839
1840 /* If we are not returning the current function's RESULT_DECL,
1841 build an assignment to it. */
1842 if (op0 != result)
1843 {
1844 /* I believe that a function's RESULT_DECL is unique. */
1845 gcc_assert (TREE_CODE (op0) != RESULT_DECL);
1846
1847 /* ??? We'd like to use simply expand_assignment here,
1848 but this fails if the value is of BLKmode but the return
1849 decl is a register. expand_return has special handling
1850 for this combination, which eventually should move
1851 to common code. See comments there. Until then, let's
1852 build a modify expression :-/ */
1853 op0 = build2 (MODIFY_EXPR, TREE_TYPE (result),
1854 result, op0);
1855 }
1856 }
1857 if (!op0)
1858 expand_null_return ();
1859 else
1860 expand_return (op0);
1861 break;
1862
1863 case GIMPLE_ASSIGN:
1864 {
1865 tree lhs = gimple_assign_lhs (stmt);
1866
1867 /* Tree expand used to fiddle with |= and &= of two bitfield
1868 COMPONENT_REFs here. This can't happen with gimple, the LHS
1869 of binary assigns must be a gimple reg. */
1870
1871 if (TREE_CODE (lhs) != SSA_NAME
1872 || get_gimple_rhs_class (gimple_expr_code (stmt))
1873 == GIMPLE_SINGLE_RHS)
1874 {
1875 tree rhs = gimple_assign_rhs1 (stmt);
1876 gcc_assert (get_gimple_rhs_class (gimple_expr_code (stmt))
1877 == GIMPLE_SINGLE_RHS);
1878 if (gimple_has_location (stmt) && CAN_HAVE_LOCATION_P (rhs))
1879 SET_EXPR_LOCATION (rhs, gimple_location (stmt));
1880 expand_assignment (lhs, rhs,
1881 gimple_assign_nontemporal_move_p (stmt));
1882 }
1883 else
1884 {
1885 rtx target, temp;
1886 bool nontemporal = gimple_assign_nontemporal_move_p (stmt);
1887 struct separate_ops ops;
1888 bool promoted = false;
1889
1890 target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
1891 if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
1892 promoted = true;
1893
1894 ops.code = gimple_assign_rhs_code (stmt);
1895 ops.type = TREE_TYPE (lhs);
1896 switch (get_gimple_rhs_class (gimple_expr_code (stmt)))
1897 {
1898 case GIMPLE_BINARY_RHS:
1899 ops.op1 = gimple_assign_rhs2 (stmt);
1900 /* Fallthru */
1901 case GIMPLE_UNARY_RHS:
1902 ops.op0 = gimple_assign_rhs1 (stmt);
1903 break;
1904 default:
1905 gcc_unreachable ();
1906 }
1907 ops.location = gimple_location (stmt);
1908
1909 /* If we want to use a nontemporal store, force the value to
1910 register first. If we store into a promoted register,
1911 don't directly expand to target. */
1912 temp = nontemporal || promoted ? NULL_RTX : target;
1913 temp = expand_expr_real_2 (&ops, temp, GET_MODE (target),
1914 EXPAND_NORMAL);
1915
1916 if (temp == target)
1917 ;
1918 else if (promoted)
1919 {
1920 int unsignedp = SUBREG_PROMOTED_UNSIGNED_P (target);
1921 /* If TEMP is a VOIDmode constant, use convert_modes to make
1922 sure that we properly convert it. */
1923 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
1924 {
1925 temp = convert_modes (GET_MODE (target),
1926 TYPE_MODE (ops.type),
1927 temp, unsignedp);
1928 temp = convert_modes (GET_MODE (SUBREG_REG (target)),
1929 GET_MODE (target), temp, unsignedp);
1930 }
1931
1932 convert_move (SUBREG_REG (target), temp, unsignedp);
1933 }
1934 else if (nontemporal && emit_storent_insn (target, temp))
1935 ;
1936 else
1937 {
1938 temp = force_operand (temp, target);
1939 if (temp != target)
1940 emit_move_insn (target, temp);
1941 }
1942 }
1943 }
1944 break;
1945
1946 default:
1947 gcc_unreachable ();
1948 }
1949 }
1950
1951 /* Expand one gimple statement STMT and return the last RTL instruction
1952 before any of the newly generated ones.
1953
1954 In addition to generating the necessary RTL instructions this also
1955 sets REG_EH_REGION notes if necessary and sets the current source
1956 location for diagnostics. */
1957
1958 static rtx
1959 expand_gimple_stmt (gimple stmt)
1960 {
1961 int lp_nr = 0;
1962 rtx last = NULL;
1963 location_t saved_location = input_location;
1964
1965 last = get_last_insn ();
1966
1967 /* If this is an expression of some kind and it has an associated line
1968 number, then emit the line number before expanding the expression.
1969
1970 We need to save and restore the file and line information so that
1971 errors discovered during expansion are emitted with the right
1972 information. It would be better of the diagnostic routines
1973 used the file/line information embedded in the tree nodes rather
1974 than globals. */
1975 gcc_assert (cfun);
1976
1977 if (gimple_has_location (stmt))
1978 {
1979 input_location = gimple_location (stmt);
1980 set_curr_insn_source_location (input_location);
1981
1982 /* Record where the insns produced belong. */
1983 set_curr_insn_block (gimple_block (stmt));
1984 }
1985
1986 expand_gimple_stmt_1 (stmt);
1987 /* Free any temporaries used to evaluate this statement. */
1988 free_temp_slots ();
1989
1990 input_location = saved_location;
1991
1992 /* Mark all insns that may trap. */
1993 lp_nr = lookup_stmt_eh_lp (stmt);
1994 if (lp_nr)
1995 {
1996 rtx insn;
1997 for (insn = next_real_insn (last); insn;
1998 insn = next_real_insn (insn))
1999 {
2000 if (! find_reg_note (insn, REG_EH_REGION, NULL_RTX)
2001 /* If we want exceptions for non-call insns, any
2002 may_trap_p instruction may throw. */
2003 && GET_CODE (PATTERN (insn)) != CLOBBER
2004 && GET_CODE (PATTERN (insn)) != USE
2005 && insn_could_throw_p (insn))
2006 make_reg_eh_region_note (insn, 0, lp_nr);
2007 }
2008 }
2009
2010 return last;
2011 }
2012
2013 /* A subroutine of expand_gimple_basic_block. Expand one GIMPLE_CALL
2014 that has CALL_EXPR_TAILCALL set. Returns non-null if we actually
2015 generated a tail call (something that might be denied by the ABI
2016 rules governing the call; see calls.c).
2017
2018 Sets CAN_FALLTHRU if we generated a *conditional* tail call, and
2019 can still reach the rest of BB. The case here is __builtin_sqrt,
2020 where the NaN result goes through the external function (with a
2021 tailcall) and the normal result happens via a sqrt instruction. */
2022
2023 static basic_block
2024 expand_gimple_tailcall (basic_block bb, gimple stmt, bool *can_fallthru)
2025 {
2026 rtx last2, last;
2027 edge e;
2028 edge_iterator ei;
2029 int probability;
2030 gcov_type count;
2031
2032 last2 = last = expand_gimple_stmt (stmt);
2033
2034 for (last = NEXT_INSN (last); last; last = NEXT_INSN (last))
2035 if (CALL_P (last) && SIBLING_CALL_P (last))
2036 goto found;
2037
2038 maybe_dump_rtl_for_gimple_stmt (stmt, last2);
2039
2040 *can_fallthru = true;
2041 return NULL;
2042
2043 found:
2044 /* ??? Wouldn't it be better to just reset any pending stack adjust?
2045 Any instructions emitted here are about to be deleted. */
2046 do_pending_stack_adjust ();
2047
2048 /* Remove any non-eh, non-abnormal edges that don't go to exit. */
2049 /* ??? I.e. the fallthrough edge. HOWEVER! If there were to be
2050 EH or abnormal edges, we shouldn't have created a tail call in
2051 the first place. So it seems to me we should just be removing
2052 all edges here, or redirecting the existing fallthru edge to
2053 the exit block. */
2054
2055 probability = 0;
2056 count = 0;
2057
2058 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
2059 {
2060 if (!(e->flags & (EDGE_ABNORMAL | EDGE_EH)))
2061 {
2062 if (e->dest != EXIT_BLOCK_PTR)
2063 {
2064 e->dest->count -= e->count;
2065 e->dest->frequency -= EDGE_FREQUENCY (e);
2066 if (e->dest->count < 0)
2067 e->dest->count = 0;
2068 if (e->dest->frequency < 0)
2069 e->dest->frequency = 0;
2070 }
2071 count += e->count;
2072 probability += e->probability;
2073 remove_edge (e);
2074 }
2075 else
2076 ei_next (&ei);
2077 }
2078
2079 /* This is somewhat ugly: the call_expr expander often emits instructions
2080 after the sibcall (to perform the function return). These confuse the
2081 find_many_sub_basic_blocks code, so we need to get rid of these. */
2082 last = NEXT_INSN (last);
2083 gcc_assert (BARRIER_P (last));
2084
2085 *can_fallthru = false;
2086 while (NEXT_INSN (last))
2087 {
2088 /* For instance an sqrt builtin expander expands if with
2089 sibcall in the then and label for `else`. */
2090 if (LABEL_P (NEXT_INSN (last)))
2091 {
2092 *can_fallthru = true;
2093 break;
2094 }
2095 delete_insn (NEXT_INSN (last));
2096 }
2097
2098 e = make_edge (bb, EXIT_BLOCK_PTR, EDGE_ABNORMAL | EDGE_SIBCALL);
2099 e->probability += probability;
2100 e->count += count;
2101 BB_END (bb) = last;
2102 update_bb_for_insn (bb);
2103
2104 if (NEXT_INSN (last))
2105 {
2106 bb = create_basic_block (NEXT_INSN (last), get_last_insn (), bb);
2107
2108 last = BB_END (bb);
2109 if (BARRIER_P (last))
2110 BB_END (bb) = PREV_INSN (last);
2111 }
2112
2113 maybe_dump_rtl_for_gimple_stmt (stmt, last2);
2114
2115 return bb;
2116 }
2117
2118 /* Return the difference between the floor and the truncated result of
2119 a signed division by OP1 with remainder MOD. */
2120 static rtx
2121 floor_sdiv_adjust (enum machine_mode mode, rtx mod, rtx op1)
2122 {
2123 /* (mod != 0 ? (op1 / mod < 0 ? -1 : 0) : 0) */
2124 return gen_rtx_IF_THEN_ELSE
2125 (mode, gen_rtx_NE (BImode, mod, const0_rtx),
2126 gen_rtx_IF_THEN_ELSE
2127 (mode, gen_rtx_LT (BImode,
2128 gen_rtx_DIV (mode, op1, mod),
2129 const0_rtx),
2130 constm1_rtx, const0_rtx),
2131 const0_rtx);
2132 }
2133
2134 /* Return the difference between the ceil and the truncated result of
2135 a signed division by OP1 with remainder MOD. */
2136 static rtx
2137 ceil_sdiv_adjust (enum machine_mode mode, rtx mod, rtx op1)
2138 {
2139 /* (mod != 0 ? (op1 / mod > 0 ? 1 : 0) : 0) */
2140 return gen_rtx_IF_THEN_ELSE
2141 (mode, gen_rtx_NE (BImode, mod, const0_rtx),
2142 gen_rtx_IF_THEN_ELSE
2143 (mode, gen_rtx_GT (BImode,
2144 gen_rtx_DIV (mode, op1, mod),
2145 const0_rtx),
2146 const1_rtx, const0_rtx),
2147 const0_rtx);
2148 }
2149
2150 /* Return the difference between the ceil and the truncated result of
2151 an unsigned division by OP1 with remainder MOD. */
2152 static rtx
2153 ceil_udiv_adjust (enum machine_mode mode, rtx mod, rtx op1 ATTRIBUTE_UNUSED)
2154 {
2155 /* (mod != 0 ? 1 : 0) */
2156 return gen_rtx_IF_THEN_ELSE
2157 (mode, gen_rtx_NE (BImode, mod, const0_rtx),
2158 const1_rtx, const0_rtx);
2159 }
2160
2161 /* Return the difference between the rounded and the truncated result
2162 of a signed division by OP1 with remainder MOD. Halfway cases are
2163 rounded away from zero, rather than to the nearest even number. */
2164 static rtx
2165 round_sdiv_adjust (enum machine_mode mode, rtx mod, rtx op1)
2166 {
2167 /* (abs (mod) >= abs (op1) - abs (mod)
2168 ? (op1 / mod > 0 ? 1 : -1)
2169 : 0) */
2170 return gen_rtx_IF_THEN_ELSE
2171 (mode, gen_rtx_GE (BImode, gen_rtx_ABS (mode, mod),
2172 gen_rtx_MINUS (mode,
2173 gen_rtx_ABS (mode, op1),
2174 gen_rtx_ABS (mode, mod))),
2175 gen_rtx_IF_THEN_ELSE
2176 (mode, gen_rtx_GT (BImode,
2177 gen_rtx_DIV (mode, op1, mod),
2178 const0_rtx),
2179 const1_rtx, constm1_rtx),
2180 const0_rtx);
2181 }
2182
2183 /* Return the difference between the rounded and the truncated result
2184 of a unsigned division by OP1 with remainder MOD. Halfway cases
2185 are rounded away from zero, rather than to the nearest even
2186 number. */
2187 static rtx
2188 round_udiv_adjust (enum machine_mode mode, rtx mod, rtx op1)
2189 {
2190 /* (mod >= op1 - mod ? 1 : 0) */
2191 return gen_rtx_IF_THEN_ELSE
2192 (mode, gen_rtx_GE (BImode, mod,
2193 gen_rtx_MINUS (mode, op1, mod)),
2194 const1_rtx, const0_rtx);
2195 }
2196
2197 /* Convert X to MODE, that must be Pmode or ptr_mode, without emitting
2198 any rtl. */
2199
2200 static rtx
2201 convert_debug_memory_address (enum machine_mode mode, rtx x)
2202 {
2203 enum machine_mode xmode = GET_MODE (x);
2204
2205 #ifndef POINTERS_EXTEND_UNSIGNED
2206 gcc_assert (mode == Pmode);
2207 gcc_assert (xmode == mode || xmode == VOIDmode);
2208 #else
2209 gcc_assert (mode == Pmode || mode == ptr_mode);
2210
2211 if (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode)
2212 return x;
2213
2214 if (GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (xmode))
2215 x = simplify_gen_subreg (mode, x, xmode,
2216 subreg_lowpart_offset
2217 (mode, xmode));
2218 else if (POINTERS_EXTEND_UNSIGNED > 0)
2219 x = gen_rtx_ZERO_EXTEND (mode, x);
2220 else if (!POINTERS_EXTEND_UNSIGNED)
2221 x = gen_rtx_SIGN_EXTEND (mode, x);
2222 else
2223 gcc_unreachable ();
2224 #endif /* POINTERS_EXTEND_UNSIGNED */
2225
2226 return x;
2227 }
2228
2229 /* Return an RTX equivalent to the value of the tree expression
2230 EXP. */
2231
2232 static rtx
2233 expand_debug_expr (tree exp)
2234 {
2235 rtx op0 = NULL_RTX, op1 = NULL_RTX, op2 = NULL_RTX;
2236 enum machine_mode mode = TYPE_MODE (TREE_TYPE (exp));
2237 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
2238 addr_space_t as;
2239 enum machine_mode address_mode;
2240 enum machine_mode pointer_mode;
2241
2242 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
2243 {
2244 case tcc_expression:
2245 switch (TREE_CODE (exp))
2246 {
2247 case COND_EXPR:
2248 goto ternary;
2249
2250 case TRUTH_ANDIF_EXPR:
2251 case TRUTH_ORIF_EXPR:
2252 case TRUTH_AND_EXPR:
2253 case TRUTH_OR_EXPR:
2254 case TRUTH_XOR_EXPR:
2255 goto binary;
2256
2257 case TRUTH_NOT_EXPR:
2258 goto unary;
2259
2260 default:
2261 break;
2262 }
2263 break;
2264
2265 ternary:
2266 op2 = expand_debug_expr (TREE_OPERAND (exp, 2));
2267 if (!op2)
2268 return NULL_RTX;
2269 /* Fall through. */
2270
2271 binary:
2272 case tcc_binary:
2273 case tcc_comparison:
2274 op1 = expand_debug_expr (TREE_OPERAND (exp, 1));
2275 if (!op1)
2276 return NULL_RTX;
2277 /* Fall through. */
2278
2279 unary:
2280 case tcc_unary:
2281 op0 = expand_debug_expr (TREE_OPERAND (exp, 0));
2282 if (!op0)
2283 return NULL_RTX;
2284 break;
2285
2286 case tcc_type:
2287 case tcc_statement:
2288 gcc_unreachable ();
2289
2290 case tcc_constant:
2291 case tcc_exceptional:
2292 case tcc_declaration:
2293 case tcc_reference:
2294 case tcc_vl_exp:
2295 break;
2296 }
2297
2298 switch (TREE_CODE (exp))
2299 {
2300 case STRING_CST:
2301 if (!lookup_constant_def (exp))
2302 {
2303 if (strlen (TREE_STRING_POINTER (exp)) + 1
2304 != (size_t) TREE_STRING_LENGTH (exp))
2305 return NULL_RTX;
2306 op0 = gen_rtx_CONST_STRING (Pmode, TREE_STRING_POINTER (exp));
2307 op0 = gen_rtx_MEM (BLKmode, op0);
2308 set_mem_attributes (op0, exp, 0);
2309 return op0;
2310 }
2311 /* Fall through... */
2312
2313 case INTEGER_CST:
2314 case REAL_CST:
2315 case FIXED_CST:
2316 op0 = expand_expr (exp, NULL_RTX, mode, EXPAND_INITIALIZER);
2317 return op0;
2318
2319 case COMPLEX_CST:
2320 gcc_assert (COMPLEX_MODE_P (mode));
2321 op0 = expand_debug_expr (TREE_REALPART (exp));
2322 op1 = expand_debug_expr (TREE_IMAGPART (exp));
2323 return gen_rtx_CONCAT (mode, op0, op1);
2324
2325 case DEBUG_EXPR_DECL:
2326 op0 = DECL_RTL_IF_SET (exp);
2327
2328 if (op0)
2329 return op0;
2330
2331 op0 = gen_rtx_DEBUG_EXPR (mode);
2332 DEBUG_EXPR_TREE_DECL (op0) = exp;
2333 SET_DECL_RTL (exp, op0);
2334
2335 return op0;
2336
2337 case VAR_DECL:
2338 case PARM_DECL:
2339 case FUNCTION_DECL:
2340 case LABEL_DECL:
2341 case CONST_DECL:
2342 case RESULT_DECL:
2343 op0 = DECL_RTL_IF_SET (exp);
2344
2345 /* This decl was probably optimized away. */
2346 if (!op0)
2347 {
2348 if (TREE_CODE (exp) != VAR_DECL
2349 || DECL_EXTERNAL (exp)
2350 || !TREE_STATIC (exp)
2351 || !DECL_NAME (exp)
2352 || DECL_HARD_REGISTER (exp)
2353 || mode == VOIDmode)
2354 return NULL;
2355
2356 op0 = DECL_RTL (exp);
2357 SET_DECL_RTL (exp, NULL);
2358 if (!MEM_P (op0)
2359 || GET_CODE (XEXP (op0, 0)) != SYMBOL_REF
2360 || SYMBOL_REF_DECL (XEXP (op0, 0)) != exp)
2361 return NULL;
2362 }
2363 else
2364 op0 = copy_rtx (op0);
2365
2366 if (GET_MODE (op0) == BLKmode)
2367 {
2368 gcc_assert (MEM_P (op0));
2369 op0 = adjust_address_nv (op0, mode, 0);
2370 return op0;
2371 }
2372
2373 /* Fall through. */
2374
2375 adjust_mode:
2376 case PAREN_EXPR:
2377 case NOP_EXPR:
2378 case CONVERT_EXPR:
2379 {
2380 enum machine_mode inner_mode = GET_MODE (op0);
2381
2382 if (mode == inner_mode)
2383 return op0;
2384
2385 if (inner_mode == VOIDmode)
2386 {
2387 inner_mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)));
2388 if (mode == inner_mode)
2389 return op0;
2390 }
2391
2392 if (FLOAT_MODE_P (mode) && FLOAT_MODE_P (inner_mode))
2393 {
2394 if (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (inner_mode))
2395 op0 = simplify_gen_subreg (mode, op0, inner_mode, 0);
2396 else if (GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (inner_mode))
2397 op0 = simplify_gen_unary (FLOAT_TRUNCATE, mode, op0, inner_mode);
2398 else
2399 op0 = simplify_gen_unary (FLOAT_EXTEND, mode, op0, inner_mode);
2400 }
2401 else if (FLOAT_MODE_P (mode))
2402 {
2403 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))))
2404 op0 = simplify_gen_unary (UNSIGNED_FLOAT, mode, op0, inner_mode);
2405 else
2406 op0 = simplify_gen_unary (FLOAT, mode, op0, inner_mode);
2407 }
2408 else if (FLOAT_MODE_P (inner_mode))
2409 {
2410 if (unsignedp)
2411 op0 = simplify_gen_unary (UNSIGNED_FIX, mode, op0, inner_mode);
2412 else
2413 op0 = simplify_gen_unary (FIX, mode, op0, inner_mode);
2414 }
2415 else if (CONSTANT_P (op0)
2416 || GET_MODE_BITSIZE (mode) <= GET_MODE_BITSIZE (inner_mode))
2417 op0 = simplify_gen_subreg (mode, op0, inner_mode,
2418 subreg_lowpart_offset (mode,
2419 inner_mode));
2420 else if (unsignedp)
2421 op0 = gen_rtx_ZERO_EXTEND (mode, op0);
2422 else
2423 op0 = gen_rtx_SIGN_EXTEND (mode, op0);
2424
2425 return op0;
2426 }
2427
2428 case INDIRECT_REF:
2429 case ALIGN_INDIRECT_REF:
2430 case MISALIGNED_INDIRECT_REF:
2431 op0 = expand_debug_expr (TREE_OPERAND (exp, 0));
2432 if (!op0)
2433 return NULL;
2434
2435 if (POINTER_TYPE_P (TREE_TYPE (exp)))
2436 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp)));
2437 else
2438 as = ADDR_SPACE_GENERIC;
2439
2440 address_mode = targetm.addr_space.address_mode (as);
2441 pointer_mode = targetm.addr_space.pointer_mode (as);
2442
2443 gcc_assert (GET_MODE (op0) == address_mode
2444 || GET_MODE (op0) == pointer_mode
2445 || GET_CODE (op0) == CONST_INT
2446 || GET_CODE (op0) == CONST_DOUBLE);
2447
2448 if (TREE_CODE (exp) == ALIGN_INDIRECT_REF)
2449 {
2450 int align = TYPE_ALIGN_UNIT (TREE_TYPE (exp));
2451 op0 = gen_rtx_AND (address_mode, op0, GEN_INT (-align));
2452 }
2453
2454 op0 = gen_rtx_MEM (mode, op0);
2455
2456 set_mem_attributes (op0, exp, 0);
2457 set_mem_addr_space (op0, as);
2458
2459 return op0;
2460
2461 case TARGET_MEM_REF:
2462 if (TMR_SYMBOL (exp) && !DECL_RTL_SET_P (TMR_SYMBOL (exp)))
2463 return NULL;
2464
2465 op0 = expand_debug_expr
2466 (tree_mem_ref_addr (build_pointer_type (TREE_TYPE (exp)),
2467 exp));
2468 if (!op0)
2469 return NULL;
2470
2471 as = TYPE_ADDR_SPACE (TREE_TYPE (exp));
2472 address_mode = targetm.addr_space.address_mode (as);
2473 pointer_mode = targetm.addr_space.pointer_mode (as);
2474
2475 gcc_assert (GET_MODE (op0) == address_mode
2476 || GET_MODE (op0) == pointer_mode
2477 || GET_CODE (op0) == CONST_INT
2478 || GET_CODE (op0) == CONST_DOUBLE);
2479
2480 op0 = gen_rtx_MEM (mode, op0);
2481
2482 set_mem_attributes (op0, exp, 0);
2483 set_mem_addr_space (op0, as);
2484
2485 return op0;
2486
2487 case ARRAY_REF:
2488 case ARRAY_RANGE_REF:
2489 case COMPONENT_REF:
2490 case BIT_FIELD_REF:
2491 case REALPART_EXPR:
2492 case IMAGPART_EXPR:
2493 case VIEW_CONVERT_EXPR:
2494 {
2495 enum machine_mode mode1;
2496 HOST_WIDE_INT bitsize, bitpos;
2497 tree offset;
2498 int volatilep = 0;
2499 tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
2500 &mode1, &unsignedp, &volatilep, false);
2501 rtx orig_op0;
2502
2503 if (bitsize == 0)
2504 return NULL;
2505
2506 orig_op0 = op0 = expand_debug_expr (tem);
2507
2508 if (!op0)
2509 return NULL;
2510
2511 if (offset)
2512 {
2513 enum machine_mode addrmode, offmode;
2514
2515 gcc_assert (MEM_P (op0));
2516
2517 op0 = XEXP (op0, 0);
2518 addrmode = GET_MODE (op0);
2519 if (addrmode == VOIDmode)
2520 addrmode = Pmode;
2521
2522 op1 = expand_debug_expr (offset);
2523 if (!op1)
2524 return NULL;
2525
2526 offmode = GET_MODE (op1);
2527 if (offmode == VOIDmode)
2528 offmode = TYPE_MODE (TREE_TYPE (offset));
2529
2530 if (addrmode != offmode)
2531 op1 = simplify_gen_subreg (addrmode, op1, offmode,
2532 subreg_lowpart_offset (addrmode,
2533 offmode));
2534
2535 /* Don't use offset_address here, we don't need a
2536 recognizable address, and we don't want to generate
2537 code. */
2538 op0 = gen_rtx_MEM (mode, gen_rtx_PLUS (addrmode, op0, op1));
2539 }
2540
2541 if (MEM_P (op0))
2542 {
2543 if (mode1 == VOIDmode)
2544 /* Bitfield. */
2545 mode1 = smallest_mode_for_size (bitsize, MODE_INT);
2546 if (bitpos >= BITS_PER_UNIT)
2547 {
2548 op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
2549 bitpos %= BITS_PER_UNIT;
2550 }
2551 else if (bitpos < 0)
2552 {
2553 HOST_WIDE_INT units
2554 = (-bitpos + BITS_PER_UNIT - 1) / BITS_PER_UNIT;
2555 op0 = adjust_address_nv (op0, mode1, units);
2556 bitpos += units * BITS_PER_UNIT;
2557 }
2558 else if (bitpos == 0 && bitsize == GET_MODE_BITSIZE (mode))
2559 op0 = adjust_address_nv (op0, mode, 0);
2560 else if (GET_MODE (op0) != mode1)
2561 op0 = adjust_address_nv (op0, mode1, 0);
2562 else
2563 op0 = copy_rtx (op0);
2564 if (op0 == orig_op0)
2565 op0 = shallow_copy_rtx (op0);
2566 set_mem_attributes (op0, exp, 0);
2567 }
2568
2569 if (bitpos == 0 && mode == GET_MODE (op0))
2570 return op0;
2571
2572 if (bitpos < 0)
2573 return NULL;
2574
2575 if ((bitpos % BITS_PER_UNIT) == 0
2576 && bitsize == GET_MODE_BITSIZE (mode1))
2577 {
2578 enum machine_mode opmode = GET_MODE (op0);
2579
2580 gcc_assert (opmode != BLKmode);
2581
2582 if (opmode == VOIDmode)
2583 opmode = mode1;
2584
2585 /* This condition may hold if we're expanding the address
2586 right past the end of an array that turned out not to
2587 be addressable (i.e., the address was only computed in
2588 debug stmts). The gen_subreg below would rightfully
2589 crash, and the address doesn't really exist, so just
2590 drop it. */
2591 if (bitpos >= GET_MODE_BITSIZE (opmode))
2592 return NULL;
2593
2594 return simplify_gen_subreg (mode, op0, opmode,
2595 bitpos / BITS_PER_UNIT);
2596 }
2597
2598 return simplify_gen_ternary (SCALAR_INT_MODE_P (GET_MODE (op0))
2599 && TYPE_UNSIGNED (TREE_TYPE (exp))
2600 ? SIGN_EXTRACT
2601 : ZERO_EXTRACT, mode,
2602 GET_MODE (op0) != VOIDmode
2603 ? GET_MODE (op0) : mode1,
2604 op0, GEN_INT (bitsize), GEN_INT (bitpos));
2605 }
2606
2607 case ABS_EXPR:
2608 return gen_rtx_ABS (mode, op0);
2609
2610 case NEGATE_EXPR:
2611 return gen_rtx_NEG (mode, op0);
2612
2613 case BIT_NOT_EXPR:
2614 return gen_rtx_NOT (mode, op0);
2615
2616 case FLOAT_EXPR:
2617 if (unsignedp)
2618 return gen_rtx_UNSIGNED_FLOAT (mode, op0);
2619 else
2620 return gen_rtx_FLOAT (mode, op0);
2621
2622 case FIX_TRUNC_EXPR:
2623 if (unsignedp)
2624 return gen_rtx_UNSIGNED_FIX (mode, op0);
2625 else
2626 return gen_rtx_FIX (mode, op0);
2627
2628 case POINTER_PLUS_EXPR:
2629 case PLUS_EXPR:
2630 return gen_rtx_PLUS (mode, op0, op1);
2631
2632 case MINUS_EXPR:
2633 return gen_rtx_MINUS (mode, op0, op1);
2634
2635 case MULT_EXPR:
2636 return gen_rtx_MULT (mode, op0, op1);
2637
2638 case RDIV_EXPR:
2639 case TRUNC_DIV_EXPR:
2640 case EXACT_DIV_EXPR:
2641 if (unsignedp)
2642 return gen_rtx_UDIV (mode, op0, op1);
2643 else
2644 return gen_rtx_DIV (mode, op0, op1);
2645
2646 case TRUNC_MOD_EXPR:
2647 if (unsignedp)
2648 return gen_rtx_UMOD (mode, op0, op1);
2649 else
2650 return gen_rtx_MOD (mode, op0, op1);
2651
2652 case FLOOR_DIV_EXPR:
2653 if (unsignedp)
2654 return gen_rtx_UDIV (mode, op0, op1);
2655 else
2656 {
2657 rtx div = gen_rtx_DIV (mode, op0, op1);
2658 rtx mod = gen_rtx_MOD (mode, op0, op1);
2659 rtx adj = floor_sdiv_adjust (mode, mod, op1);
2660 return gen_rtx_PLUS (mode, div, adj);
2661 }
2662
2663 case FLOOR_MOD_EXPR:
2664 if (unsignedp)
2665 return gen_rtx_UMOD (mode, op0, op1);
2666 else
2667 {
2668 rtx mod = gen_rtx_MOD (mode, op0, op1);
2669 rtx adj = floor_sdiv_adjust (mode, mod, op1);
2670 adj = gen_rtx_NEG (mode, gen_rtx_MULT (mode, adj, op1));
2671 return gen_rtx_PLUS (mode, mod, adj);
2672 }
2673
2674 case CEIL_DIV_EXPR:
2675 if (unsignedp)
2676 {
2677 rtx div = gen_rtx_UDIV (mode, op0, op1);
2678 rtx mod = gen_rtx_UMOD (mode, op0, op1);
2679 rtx adj = ceil_udiv_adjust (mode, mod, op1);
2680 return gen_rtx_PLUS (mode, div, adj);
2681 }
2682 else
2683 {
2684 rtx div = gen_rtx_DIV (mode, op0, op1);
2685 rtx mod = gen_rtx_MOD (mode, op0, op1);
2686 rtx adj = ceil_sdiv_adjust (mode, mod, op1);
2687 return gen_rtx_PLUS (mode, div, adj);
2688 }
2689
2690 case CEIL_MOD_EXPR:
2691 if (unsignedp)
2692 {
2693 rtx mod = gen_rtx_UMOD (mode, op0, op1);
2694 rtx adj = ceil_udiv_adjust (mode, mod, op1);
2695 adj = gen_rtx_NEG (mode, gen_rtx_MULT (mode, adj, op1));
2696 return gen_rtx_PLUS (mode, mod, adj);
2697 }
2698 else
2699 {
2700 rtx mod = gen_rtx_MOD (mode, op0, op1);
2701 rtx adj = ceil_sdiv_adjust (mode, mod, op1);
2702 adj = gen_rtx_NEG (mode, gen_rtx_MULT (mode, adj, op1));
2703 return gen_rtx_PLUS (mode, mod, adj);
2704 }
2705
2706 case ROUND_DIV_EXPR:
2707 if (unsignedp)
2708 {
2709 rtx div = gen_rtx_UDIV (mode, op0, op1);
2710 rtx mod = gen_rtx_UMOD (mode, op0, op1);
2711 rtx adj = round_udiv_adjust (mode, mod, op1);
2712 return gen_rtx_PLUS (mode, div, adj);
2713 }
2714 else
2715 {
2716 rtx div = gen_rtx_DIV (mode, op0, op1);
2717 rtx mod = gen_rtx_MOD (mode, op0, op1);
2718 rtx adj = round_sdiv_adjust (mode, mod, op1);
2719 return gen_rtx_PLUS (mode, div, adj);
2720 }
2721
2722 case ROUND_MOD_EXPR:
2723 if (unsignedp)
2724 {
2725 rtx mod = gen_rtx_UMOD (mode, op0, op1);
2726 rtx adj = round_udiv_adjust (mode, mod, op1);
2727 adj = gen_rtx_NEG (mode, gen_rtx_MULT (mode, adj, op1));
2728 return gen_rtx_PLUS (mode, mod, adj);
2729 }
2730 else
2731 {
2732 rtx mod = gen_rtx_MOD (mode, op0, op1);
2733 rtx adj = round_sdiv_adjust (mode, mod, op1);
2734 adj = gen_rtx_NEG (mode, gen_rtx_MULT (mode, adj, op1));
2735 return gen_rtx_PLUS (mode, mod, adj);
2736 }
2737
2738 case LSHIFT_EXPR:
2739 return gen_rtx_ASHIFT (mode, op0, op1);
2740
2741 case RSHIFT_EXPR:
2742 if (unsignedp)
2743 return gen_rtx_LSHIFTRT (mode, op0, op1);
2744 else
2745 return gen_rtx_ASHIFTRT (mode, op0, op1);
2746
2747 case LROTATE_EXPR:
2748 return gen_rtx_ROTATE (mode, op0, op1);
2749
2750 case RROTATE_EXPR:
2751 return gen_rtx_ROTATERT (mode, op0, op1);
2752
2753 case MIN_EXPR:
2754 if (unsignedp)
2755 return gen_rtx_UMIN (mode, op0, op1);
2756 else
2757 return gen_rtx_SMIN (mode, op0, op1);
2758
2759 case MAX_EXPR:
2760 if (unsignedp)
2761 return gen_rtx_UMAX (mode, op0, op1);
2762 else
2763 return gen_rtx_SMAX (mode, op0, op1);
2764
2765 case BIT_AND_EXPR:
2766 case TRUTH_AND_EXPR:
2767 return gen_rtx_AND (mode, op0, op1);
2768
2769 case BIT_IOR_EXPR:
2770 case TRUTH_OR_EXPR:
2771 return gen_rtx_IOR (mode, op0, op1);
2772
2773 case BIT_XOR_EXPR:
2774 case TRUTH_XOR_EXPR:
2775 return gen_rtx_XOR (mode, op0, op1);
2776
2777 case TRUTH_ANDIF_EXPR:
2778 return gen_rtx_IF_THEN_ELSE (mode, op0, op1, const0_rtx);
2779
2780 case TRUTH_ORIF_EXPR:
2781 return gen_rtx_IF_THEN_ELSE (mode, op0, const_true_rtx, op1);
2782
2783 case TRUTH_NOT_EXPR:
2784 return gen_rtx_EQ (mode, op0, const0_rtx);
2785
2786 case LT_EXPR:
2787 if (unsignedp)
2788 return gen_rtx_LTU (mode, op0, op1);
2789 else
2790 return gen_rtx_LT (mode, op0, op1);
2791
2792 case LE_EXPR:
2793 if (unsignedp)
2794 return gen_rtx_LEU (mode, op0, op1);
2795 else
2796 return gen_rtx_LE (mode, op0, op1);
2797
2798 case GT_EXPR:
2799 if (unsignedp)
2800 return gen_rtx_GTU (mode, op0, op1);
2801 else
2802 return gen_rtx_GT (mode, op0, op1);
2803
2804 case GE_EXPR:
2805 if (unsignedp)
2806 return gen_rtx_GEU (mode, op0, op1);
2807 else
2808 return gen_rtx_GE (mode, op0, op1);
2809
2810 case EQ_EXPR:
2811 return gen_rtx_EQ (mode, op0, op1);
2812
2813 case NE_EXPR:
2814 return gen_rtx_NE (mode, op0, op1);
2815
2816 case UNORDERED_EXPR:
2817 return gen_rtx_UNORDERED (mode, op0, op1);
2818
2819 case ORDERED_EXPR:
2820 return gen_rtx_ORDERED (mode, op0, op1);
2821
2822 case UNLT_EXPR:
2823 return gen_rtx_UNLT (mode, op0, op1);
2824
2825 case UNLE_EXPR:
2826 return gen_rtx_UNLE (mode, op0, op1);
2827
2828 case UNGT_EXPR:
2829 return gen_rtx_UNGT (mode, op0, op1);
2830
2831 case UNGE_EXPR:
2832 return gen_rtx_UNGE (mode, op0, op1);
2833
2834 case UNEQ_EXPR:
2835 return gen_rtx_UNEQ (mode, op0, op1);
2836
2837 case LTGT_EXPR:
2838 return gen_rtx_LTGT (mode, op0, op1);
2839
2840 case COND_EXPR:
2841 return gen_rtx_IF_THEN_ELSE (mode, op0, op1, op2);
2842
2843 case COMPLEX_EXPR:
2844 gcc_assert (COMPLEX_MODE_P (mode));
2845 if (GET_MODE (op0) == VOIDmode)
2846 op0 = gen_rtx_CONST (GET_MODE_INNER (mode), op0);
2847 if (GET_MODE (op1) == VOIDmode)
2848 op1 = gen_rtx_CONST (GET_MODE_INNER (mode), op1);
2849 return gen_rtx_CONCAT (mode, op0, op1);
2850
2851 case CONJ_EXPR:
2852 if (GET_CODE (op0) == CONCAT)
2853 return gen_rtx_CONCAT (mode, XEXP (op0, 0),
2854 gen_rtx_NEG (GET_MODE_INNER (mode),
2855 XEXP (op0, 1)));
2856 else
2857 {
2858 enum machine_mode imode = GET_MODE_INNER (mode);
2859 rtx re, im;
2860
2861 if (MEM_P (op0))
2862 {
2863 re = adjust_address_nv (op0, imode, 0);
2864 im = adjust_address_nv (op0, imode, GET_MODE_SIZE (imode));
2865 }
2866 else
2867 {
2868 enum machine_mode ifmode = int_mode_for_mode (mode);
2869 enum machine_mode ihmode = int_mode_for_mode (imode);
2870 rtx halfsize;
2871 if (ifmode == BLKmode || ihmode == BLKmode)
2872 return NULL;
2873 halfsize = GEN_INT (GET_MODE_BITSIZE (ihmode));
2874 re = op0;
2875 if (mode != ifmode)
2876 re = gen_rtx_SUBREG (ifmode, re, 0);
2877 re = gen_rtx_ZERO_EXTRACT (ihmode, re, halfsize, const0_rtx);
2878 if (imode != ihmode)
2879 re = gen_rtx_SUBREG (imode, re, 0);
2880 im = copy_rtx (op0);
2881 if (mode != ifmode)
2882 im = gen_rtx_SUBREG (ifmode, im, 0);
2883 im = gen_rtx_ZERO_EXTRACT (ihmode, im, halfsize, halfsize);
2884 if (imode != ihmode)
2885 im = gen_rtx_SUBREG (imode, im, 0);
2886 }
2887 im = gen_rtx_NEG (imode, im);
2888 return gen_rtx_CONCAT (mode, re, im);
2889 }
2890
2891 case ADDR_EXPR:
2892 op0 = expand_debug_expr (TREE_OPERAND (exp, 0));
2893 if (!op0 || !MEM_P (op0))
2894 return NULL;
2895
2896 op0 = convert_debug_memory_address (mode, XEXP (op0, 0));
2897
2898 return op0;
2899
2900 case VECTOR_CST:
2901 exp = build_constructor_from_list (TREE_TYPE (exp),
2902 TREE_VECTOR_CST_ELTS (exp));
2903 /* Fall through. */
2904
2905 case CONSTRUCTOR:
2906 if (TREE_CODE (TREE_TYPE (exp)) == VECTOR_TYPE)
2907 {
2908 unsigned i;
2909 tree val;
2910
2911 op0 = gen_rtx_CONCATN
2912 (mode, rtvec_alloc (TYPE_VECTOR_SUBPARTS (TREE_TYPE (exp))));
2913
2914 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), i, val)
2915 {
2916 op1 = expand_debug_expr (val);
2917 if (!op1)
2918 return NULL;
2919 XVECEXP (op0, 0, i) = op1;
2920 }
2921
2922 if (i < TYPE_VECTOR_SUBPARTS (TREE_TYPE (exp)))
2923 {
2924 op1 = expand_debug_expr
2925 (fold_convert (TREE_TYPE (TREE_TYPE (exp)), integer_zero_node));
2926
2927 if (!op1)
2928 return NULL;
2929
2930 for (; i < TYPE_VECTOR_SUBPARTS (TREE_TYPE (exp)); i++)
2931 XVECEXP (op0, 0, i) = op1;
2932 }
2933
2934 return op0;
2935 }
2936 else
2937 goto flag_unsupported;
2938
2939 case CALL_EXPR:
2940 /* ??? Maybe handle some builtins? */
2941 return NULL;
2942
2943 case SSA_NAME:
2944 {
2945 int part = var_to_partition (SA.map, exp);
2946
2947 if (part == NO_PARTITION)
2948 return NULL;
2949
2950 gcc_assert (part >= 0 && (unsigned)part < SA.map->num_partitions);
2951
2952 op0 = SA.partition_to_pseudo[part];
2953 goto adjust_mode;
2954 }
2955
2956 case ERROR_MARK:
2957 return NULL;
2958
2959 default:
2960 flag_unsupported:
2961 #ifdef ENABLE_CHECKING
2962 debug_tree (exp);
2963 gcc_unreachable ();
2964 #else
2965 return NULL;
2966 #endif
2967 }
2968 }
2969
2970 /* Expand the _LOCs in debug insns. We run this after expanding all
2971 regular insns, so that any variables referenced in the function
2972 will have their DECL_RTLs set. */
2973
2974 static void
2975 expand_debug_locations (void)
2976 {
2977 rtx insn;
2978 rtx last = get_last_insn ();
2979 int save_strict_alias = flag_strict_aliasing;
2980
2981 /* New alias sets while setting up memory attributes cause
2982 -fcompare-debug failures, even though it doesn't bring about any
2983 codegen changes. */
2984 flag_strict_aliasing = 0;
2985
2986 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2987 if (DEBUG_INSN_P (insn))
2988 {
2989 tree value = (tree)INSN_VAR_LOCATION_LOC (insn);
2990 rtx val;
2991 enum machine_mode mode;
2992
2993 if (value == NULL_TREE)
2994 val = NULL_RTX;
2995 else
2996 {
2997 val = expand_debug_expr (value);
2998 gcc_assert (last == get_last_insn ());
2999 }
3000
3001 if (!val)
3002 val = gen_rtx_UNKNOWN_VAR_LOC ();
3003 else
3004 {
3005 mode = GET_MODE (INSN_VAR_LOCATION (insn));
3006
3007 gcc_assert (mode == GET_MODE (val)
3008 || (GET_MODE (val) == VOIDmode
3009 && (CONST_INT_P (val)
3010 || GET_CODE (val) == CONST_FIXED
3011 || GET_CODE (val) == CONST_DOUBLE
3012 || GET_CODE (val) == LABEL_REF)));
3013 }
3014
3015 INSN_VAR_LOCATION_LOC (insn) = val;
3016 }
3017
3018 flag_strict_aliasing = save_strict_alias;
3019 }
3020
3021 /* Expand basic block BB from GIMPLE trees to RTL. */
3022
3023 static basic_block
3024 expand_gimple_basic_block (basic_block bb)
3025 {
3026 gimple_stmt_iterator gsi;
3027 gimple_seq stmts;
3028 gimple stmt = NULL;
3029 rtx note, last;
3030 edge e;
3031 edge_iterator ei;
3032 void **elt;
3033
3034 if (dump_file)
3035 fprintf (dump_file, "\n;; Generating RTL for gimple basic block %d\n",
3036 bb->index);
3037
3038 /* Note that since we are now transitioning from GIMPLE to RTL, we
3039 cannot use the gsi_*_bb() routines because they expect the basic
3040 block to be in GIMPLE, instead of RTL. Therefore, we need to
3041 access the BB sequence directly. */
3042 stmts = bb_seq (bb);
3043 bb->il.gimple = NULL;
3044 rtl_profile_for_bb (bb);
3045 init_rtl_bb_info (bb);
3046 bb->flags |= BB_RTL;
3047
3048 /* Remove the RETURN_EXPR if we may fall though to the exit
3049 instead. */
3050 gsi = gsi_last (stmts);
3051 if (!gsi_end_p (gsi)
3052 && gimple_code (gsi_stmt (gsi)) == GIMPLE_RETURN)
3053 {
3054 gimple ret_stmt = gsi_stmt (gsi);
3055
3056 gcc_assert (single_succ_p (bb));
3057 gcc_assert (single_succ (bb) == EXIT_BLOCK_PTR);
3058
3059 if (bb->next_bb == EXIT_BLOCK_PTR
3060 && !gimple_return_retval (ret_stmt))
3061 {
3062 gsi_remove (&gsi, false);
3063 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
3064 }
3065 }
3066
3067 gsi = gsi_start (stmts);
3068 if (!gsi_end_p (gsi))
3069 {
3070 stmt = gsi_stmt (gsi);
3071 if (gimple_code (stmt) != GIMPLE_LABEL)
3072 stmt = NULL;
3073 }
3074
3075 elt = pointer_map_contains (lab_rtx_for_bb, bb);
3076
3077 if (stmt || elt)
3078 {
3079 last = get_last_insn ();
3080
3081 if (stmt)
3082 {
3083 expand_gimple_stmt (stmt);
3084 gsi_next (&gsi);
3085 }
3086
3087 if (elt)
3088 emit_label ((rtx) *elt);
3089
3090 /* Java emits line number notes in the top of labels.
3091 ??? Make this go away once line number notes are obsoleted. */
3092 BB_HEAD (bb) = NEXT_INSN (last);
3093 if (NOTE_P (BB_HEAD (bb)))
3094 BB_HEAD (bb) = NEXT_INSN (BB_HEAD (bb));
3095 note = emit_note_after (NOTE_INSN_BASIC_BLOCK, BB_HEAD (bb));
3096
3097 maybe_dump_rtl_for_gimple_stmt (stmt, last);
3098 }
3099 else
3100 note = BB_HEAD (bb) = emit_note (NOTE_INSN_BASIC_BLOCK);
3101
3102 NOTE_BASIC_BLOCK (note) = bb;
3103
3104 for (; !gsi_end_p (gsi); gsi_next (&gsi))
3105 {
3106 basic_block new_bb;
3107
3108 stmt = gsi_stmt (gsi);
3109
3110 /* Expand this statement, then evaluate the resulting RTL and
3111 fixup the CFG accordingly. */
3112 if (gimple_code (stmt) == GIMPLE_COND)
3113 {
3114 new_bb = expand_gimple_cond (bb, stmt);
3115 if (new_bb)
3116 return new_bb;
3117 }
3118 else if (gimple_debug_bind_p (stmt))
3119 {
3120 location_t sloc = get_curr_insn_source_location ();
3121 tree sblock = get_curr_insn_block ();
3122 gimple_stmt_iterator nsi = gsi;
3123
3124 for (;;)
3125 {
3126 tree var = gimple_debug_bind_get_var (stmt);
3127 tree value;
3128 rtx val;
3129 enum machine_mode mode;
3130
3131 if (gimple_debug_bind_has_value_p (stmt))
3132 value = gimple_debug_bind_get_value (stmt);
3133 else
3134 value = NULL_TREE;
3135
3136 last = get_last_insn ();
3137
3138 set_curr_insn_source_location (gimple_location (stmt));
3139 set_curr_insn_block (gimple_block (stmt));
3140
3141 if (DECL_P (var))
3142 mode = DECL_MODE (var);
3143 else
3144 mode = TYPE_MODE (TREE_TYPE (var));
3145
3146 val = gen_rtx_VAR_LOCATION
3147 (mode, var, (rtx)value, VAR_INIT_STATUS_INITIALIZED);
3148
3149 val = emit_debug_insn (val);
3150
3151 if (dump_file && (dump_flags & TDF_DETAILS))
3152 {
3153 /* We can't dump the insn with a TREE where an RTX
3154 is expected. */
3155 INSN_VAR_LOCATION_LOC (val) = const0_rtx;
3156 maybe_dump_rtl_for_gimple_stmt (stmt, last);
3157 INSN_VAR_LOCATION_LOC (val) = (rtx)value;
3158 }
3159
3160 gsi = nsi;
3161 gsi_next (&nsi);
3162 if (gsi_end_p (nsi))
3163 break;
3164 stmt = gsi_stmt (nsi);
3165 if (!gimple_debug_bind_p (stmt))
3166 break;
3167 }
3168
3169 set_curr_insn_source_location (sloc);
3170 set_curr_insn_block (sblock);
3171 }
3172 else
3173 {
3174 if (is_gimple_call (stmt) && gimple_call_tail_p (stmt))
3175 {
3176 bool can_fallthru;
3177 new_bb = expand_gimple_tailcall (bb, stmt, &can_fallthru);
3178 if (new_bb)
3179 {
3180 if (can_fallthru)
3181 bb = new_bb;
3182 else
3183 return new_bb;
3184 }
3185 }
3186 else
3187 {
3188 def_operand_p def_p;
3189 def_p = SINGLE_SSA_DEF_OPERAND (stmt, SSA_OP_DEF);
3190
3191 if (def_p != NULL)
3192 {
3193 /* Ignore this stmt if it is in the list of
3194 replaceable expressions. */
3195 if (SA.values
3196 && bitmap_bit_p (SA.values,
3197 SSA_NAME_VERSION (DEF_FROM_PTR (def_p))))
3198 continue;
3199 }
3200 last = expand_gimple_stmt (stmt);
3201 maybe_dump_rtl_for_gimple_stmt (stmt, last);
3202 }
3203 }
3204 }
3205
3206 /* Expand implicit goto and convert goto_locus. */
3207 FOR_EACH_EDGE (e, ei, bb->succs)
3208 {
3209 if (e->goto_locus && e->goto_block)
3210 {
3211 set_curr_insn_source_location (e->goto_locus);
3212 set_curr_insn_block (e->goto_block);
3213 e->goto_locus = curr_insn_locator ();
3214 }
3215 e->goto_block = NULL;
3216 if ((e->flags & EDGE_FALLTHRU) && e->dest != bb->next_bb)
3217 {
3218 emit_jump (label_rtx_for_bb (e->dest));
3219 e->flags &= ~EDGE_FALLTHRU;
3220 }
3221 }
3222
3223 /* Expanded RTL can create a jump in the last instruction of block.
3224 This later might be assumed to be a jump to successor and break edge insertion.
3225 We need to insert dummy move to prevent this. PR41440. */
3226 if (single_succ_p (bb)
3227 && (single_succ_edge (bb)->flags & EDGE_FALLTHRU)
3228 && (last = get_last_insn ())
3229 && JUMP_P (last))
3230 {
3231 rtx dummy = gen_reg_rtx (SImode);
3232 emit_insn_after_noloc (gen_move_insn (dummy, dummy), last, NULL);
3233 }
3234
3235 do_pending_stack_adjust ();
3236
3237 /* Find the block tail. The last insn in the block is the insn
3238 before a barrier and/or table jump insn. */
3239 last = get_last_insn ();
3240 if (BARRIER_P (last))
3241 last = PREV_INSN (last);
3242 if (JUMP_TABLE_DATA_P (last))
3243 last = PREV_INSN (PREV_INSN (last));
3244 BB_END (bb) = last;
3245
3246 update_bb_for_insn (bb);
3247
3248 return bb;
3249 }
3250
3251
3252 /* Create a basic block for initialization code. */
3253
3254 static basic_block
3255 construct_init_block (void)
3256 {
3257 basic_block init_block, first_block;
3258 edge e = NULL;
3259 int flags;
3260
3261 /* Multiple entry points not supported yet. */
3262 gcc_assert (EDGE_COUNT (ENTRY_BLOCK_PTR->succs) == 1);
3263 init_rtl_bb_info (ENTRY_BLOCK_PTR);
3264 init_rtl_bb_info (EXIT_BLOCK_PTR);
3265 ENTRY_BLOCK_PTR->flags |= BB_RTL;
3266 EXIT_BLOCK_PTR->flags |= BB_RTL;
3267
3268 e = EDGE_SUCC (ENTRY_BLOCK_PTR, 0);
3269
3270 /* When entry edge points to first basic block, we don't need jump,
3271 otherwise we have to jump into proper target. */
3272 if (e && e->dest != ENTRY_BLOCK_PTR->next_bb)
3273 {
3274 tree label = gimple_block_label (e->dest);
3275
3276 emit_jump (label_rtx (label));
3277 flags = 0;
3278 }
3279 else
3280 flags = EDGE_FALLTHRU;
3281
3282 init_block = create_basic_block (NEXT_INSN (get_insns ()),
3283 get_last_insn (),
3284 ENTRY_BLOCK_PTR);
3285 init_block->frequency = ENTRY_BLOCK_PTR->frequency;
3286 init_block->count = ENTRY_BLOCK_PTR->count;
3287 if (e)
3288 {
3289 first_block = e->dest;
3290 redirect_edge_succ (e, init_block);
3291 e = make_edge (init_block, first_block, flags);
3292 }
3293 else
3294 e = make_edge (init_block, EXIT_BLOCK_PTR, EDGE_FALLTHRU);
3295 e->probability = REG_BR_PROB_BASE;
3296 e->count = ENTRY_BLOCK_PTR->count;
3297
3298 update_bb_for_insn (init_block);
3299 return init_block;
3300 }
3301
3302 /* For each lexical block, set BLOCK_NUMBER to the depth at which it is
3303 found in the block tree. */
3304
3305 static void
3306 set_block_levels (tree block, int level)
3307 {
3308 while (block)
3309 {
3310 BLOCK_NUMBER (block) = level;
3311 set_block_levels (BLOCK_SUBBLOCKS (block), level + 1);
3312 block = BLOCK_CHAIN (block);
3313 }
3314 }
3315
3316 /* Create a block containing landing pads and similar stuff. */
3317
3318 static void
3319 construct_exit_block (void)
3320 {
3321 rtx head = get_last_insn ();
3322 rtx end;
3323 basic_block exit_block;
3324 edge e, e2;
3325 unsigned ix;
3326 edge_iterator ei;
3327 rtx orig_end = BB_END (EXIT_BLOCK_PTR->prev_bb);
3328
3329 rtl_profile_for_bb (EXIT_BLOCK_PTR);
3330
3331 /* Make sure the locus is set to the end of the function, so that
3332 epilogue line numbers and warnings are set properly. */
3333 if (cfun->function_end_locus != UNKNOWN_LOCATION)
3334 input_location = cfun->function_end_locus;
3335
3336 /* The following insns belong to the top scope. */
3337 set_curr_insn_block (DECL_INITIAL (current_function_decl));
3338
3339 /* Generate rtl for function exit. */
3340 expand_function_end ();
3341
3342 end = get_last_insn ();
3343 if (head == end)
3344 return;
3345 /* While emitting the function end we could move end of the last basic block.
3346 */
3347 BB_END (EXIT_BLOCK_PTR->prev_bb) = orig_end;
3348 while (NEXT_INSN (head) && NOTE_P (NEXT_INSN (head)))
3349 head = NEXT_INSN (head);
3350 exit_block = create_basic_block (NEXT_INSN (head), end,
3351 EXIT_BLOCK_PTR->prev_bb);
3352 exit_block->frequency = EXIT_BLOCK_PTR->frequency;
3353 exit_block->count = EXIT_BLOCK_PTR->count;
3354
3355 ix = 0;
3356 while (ix < EDGE_COUNT (EXIT_BLOCK_PTR->preds))
3357 {
3358 e = EDGE_PRED (EXIT_BLOCK_PTR, ix);
3359 if (!(e->flags & EDGE_ABNORMAL))
3360 redirect_edge_succ (e, exit_block);
3361 else
3362 ix++;
3363 }
3364
3365 e = make_edge (exit_block, EXIT_BLOCK_PTR, EDGE_FALLTHRU);
3366 e->probability = REG_BR_PROB_BASE;
3367 e->count = EXIT_BLOCK_PTR->count;
3368 FOR_EACH_EDGE (e2, ei, EXIT_BLOCK_PTR->preds)
3369 if (e2 != e)
3370 {
3371 e->count -= e2->count;
3372 exit_block->count -= e2->count;
3373 exit_block->frequency -= EDGE_FREQUENCY (e2);
3374 }
3375 if (e->count < 0)
3376 e->count = 0;
3377 if (exit_block->count < 0)
3378 exit_block->count = 0;
3379 if (exit_block->frequency < 0)
3380 exit_block->frequency = 0;
3381 update_bb_for_insn (exit_block);
3382 }
3383
3384 /* Helper function for discover_nonconstant_array_refs.
3385 Look for ARRAY_REF nodes with non-constant indexes and mark them
3386 addressable. */
3387
3388 static tree
3389 discover_nonconstant_array_refs_r (tree * tp, int *walk_subtrees,
3390 void *data ATTRIBUTE_UNUSED)
3391 {
3392 tree t = *tp;
3393
3394 if (IS_TYPE_OR_DECL_P (t))
3395 *walk_subtrees = 0;
3396 else if (TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
3397 {
3398 while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
3399 && is_gimple_min_invariant (TREE_OPERAND (t, 1))
3400 && (!TREE_OPERAND (t, 2)
3401 || is_gimple_min_invariant (TREE_OPERAND (t, 2))))
3402 || (TREE_CODE (t) == COMPONENT_REF
3403 && (!TREE_OPERAND (t,2)
3404 || is_gimple_min_invariant (TREE_OPERAND (t, 2))))
3405 || TREE_CODE (t) == BIT_FIELD_REF
3406 || TREE_CODE (t) == REALPART_EXPR
3407 || TREE_CODE (t) == IMAGPART_EXPR
3408 || TREE_CODE (t) == VIEW_CONVERT_EXPR
3409 || CONVERT_EXPR_P (t))
3410 t = TREE_OPERAND (t, 0);
3411
3412 if (TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
3413 {
3414 t = get_base_address (t);
3415 if (t && DECL_P (t)
3416 && DECL_MODE (t) != BLKmode)
3417 TREE_ADDRESSABLE (t) = 1;
3418 }
3419
3420 *walk_subtrees = 0;
3421 }
3422
3423 return NULL_TREE;
3424 }
3425
3426 /* RTL expansion is not able to compile array references with variable
3427 offsets for arrays stored in single register. Discover such
3428 expressions and mark variables as addressable to avoid this
3429 scenario. */
3430
3431 static void
3432 discover_nonconstant_array_refs (void)
3433 {
3434 basic_block bb;
3435 gimple_stmt_iterator gsi;
3436
3437 FOR_EACH_BB (bb)
3438 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3439 {
3440 gimple stmt = gsi_stmt (gsi);
3441 walk_gimple_op (stmt, discover_nonconstant_array_refs_r, NULL);
3442 }
3443 }
3444
3445 /* This function sets crtl->args.internal_arg_pointer to a virtual
3446 register if DRAP is needed. Local register allocator will replace
3447 virtual_incoming_args_rtx with the virtual register. */
3448
3449 static void
3450 expand_stack_alignment (void)
3451 {
3452 rtx drap_rtx;
3453 unsigned int preferred_stack_boundary;
3454
3455 if (! SUPPORTS_STACK_ALIGNMENT)
3456 return;
3457
3458 if (cfun->calls_alloca
3459 || cfun->has_nonlocal_label
3460 || crtl->has_nonlocal_goto)
3461 crtl->need_drap = true;
3462
3463 /* Call update_stack_boundary here again to update incoming stack
3464 boundary. It may set incoming stack alignment to a different
3465 value after RTL expansion. TARGET_FUNCTION_OK_FOR_SIBCALL may
3466 use the minimum incoming stack alignment to check if it is OK
3467 to perform sibcall optimization since sibcall optimization will
3468 only align the outgoing stack to incoming stack boundary. */
3469 if (targetm.calls.update_stack_boundary)
3470 targetm.calls.update_stack_boundary ();
3471
3472 /* The incoming stack frame has to be aligned at least at
3473 parm_stack_boundary. */
3474 gcc_assert (crtl->parm_stack_boundary <= INCOMING_STACK_BOUNDARY);
3475
3476 /* Update crtl->stack_alignment_estimated and use it later to align
3477 stack. We check PREFERRED_STACK_BOUNDARY if there may be non-call
3478 exceptions since callgraph doesn't collect incoming stack alignment
3479 in this case. */
3480 if (flag_non_call_exceptions
3481 && PREFERRED_STACK_BOUNDARY > crtl->preferred_stack_boundary)
3482 preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
3483 else
3484 preferred_stack_boundary = crtl->preferred_stack_boundary;
3485 if (preferred_stack_boundary > crtl->stack_alignment_estimated)
3486 crtl->stack_alignment_estimated = preferred_stack_boundary;
3487 if (preferred_stack_boundary > crtl->stack_alignment_needed)
3488 crtl->stack_alignment_needed = preferred_stack_boundary;
3489
3490 gcc_assert (crtl->stack_alignment_needed
3491 <= crtl->stack_alignment_estimated);
3492
3493 crtl->stack_realign_needed
3494 = INCOMING_STACK_BOUNDARY < crtl->stack_alignment_estimated;
3495 crtl->stack_realign_tried = crtl->stack_realign_needed;
3496
3497 crtl->stack_realign_processed = true;
3498
3499 /* Target has to redefine TARGET_GET_DRAP_RTX to support stack
3500 alignment. */
3501 gcc_assert (targetm.calls.get_drap_rtx != NULL);
3502 drap_rtx = targetm.calls.get_drap_rtx ();
3503
3504 /* stack_realign_drap and drap_rtx must match. */
3505 gcc_assert ((stack_realign_drap != 0) == (drap_rtx != NULL));
3506
3507 /* Do nothing if NULL is returned, which means DRAP is not needed. */
3508 if (NULL != drap_rtx)
3509 {
3510 crtl->args.internal_arg_pointer = drap_rtx;
3511
3512 /* Call fixup_tail_calls to clean up REG_EQUIV note if DRAP is
3513 needed. */
3514 fixup_tail_calls ();
3515 }
3516 }
3517
3518 /* Translate the intermediate representation contained in the CFG
3519 from GIMPLE trees to RTL.
3520
3521 We do conversion per basic block and preserve/update the tree CFG.
3522 This implies we have to do some magic as the CFG can simultaneously
3523 consist of basic blocks containing RTL and GIMPLE trees. This can
3524 confuse the CFG hooks, so be careful to not manipulate CFG during
3525 the expansion. */
3526
3527 static unsigned int
3528 gimple_expand_cfg (void)
3529 {
3530 basic_block bb, init_block;
3531 sbitmap blocks;
3532 edge_iterator ei;
3533 edge e;
3534 unsigned i;
3535
3536 rewrite_out_of_ssa (&SA);
3537 SA.partition_to_pseudo = (rtx *)xcalloc (SA.map->num_partitions,
3538 sizeof (rtx));
3539
3540 /* Some backends want to know that we are expanding to RTL. */
3541 currently_expanding_to_rtl = 1;
3542
3543 rtl_profile_for_bb (ENTRY_BLOCK_PTR);
3544
3545 insn_locators_alloc ();
3546 if (!DECL_IS_BUILTIN (current_function_decl))
3547 {
3548 /* Eventually, all FEs should explicitly set function_start_locus. */
3549 if (cfun->function_start_locus == UNKNOWN_LOCATION)
3550 set_curr_insn_source_location
3551 (DECL_SOURCE_LOCATION (current_function_decl));
3552 else
3553 set_curr_insn_source_location (cfun->function_start_locus);
3554 }
3555 set_curr_insn_block (DECL_INITIAL (current_function_decl));
3556 prologue_locator = curr_insn_locator ();
3557
3558 /* Make sure first insn is a note even if we don't want linenums.
3559 This makes sure the first insn will never be deleted.
3560 Also, final expects a note to appear there. */
3561 emit_note (NOTE_INSN_DELETED);
3562
3563 /* Mark arrays indexed with non-constant indices with TREE_ADDRESSABLE. */
3564 discover_nonconstant_array_refs ();
3565
3566 targetm.expand_to_rtl_hook ();
3567 crtl->stack_alignment_needed = STACK_BOUNDARY;
3568 crtl->max_used_stack_slot_alignment = STACK_BOUNDARY;
3569 crtl->stack_alignment_estimated = 0;
3570 crtl->preferred_stack_boundary = STACK_BOUNDARY;
3571 cfun->cfg->max_jumptable_ents = 0;
3572
3573
3574 /* Expand the variables recorded during gimple lowering. */
3575 expand_used_vars ();
3576
3577 /* Honor stack protection warnings. */
3578 if (warn_stack_protect)
3579 {
3580 if (cfun->calls_alloca)
3581 warning (OPT_Wstack_protector,
3582 "not protecting local variables: variable length buffer");
3583 if (has_short_buffer && !crtl->stack_protect_guard)
3584 warning (OPT_Wstack_protector,
3585 "not protecting function: no buffer at least %d bytes long",
3586 (int) PARAM_VALUE (PARAM_SSP_BUFFER_SIZE));
3587 }
3588
3589 /* Set up parameters and prepare for return, for the function. */
3590 expand_function_start (current_function_decl);
3591
3592 /* Now that we also have the parameter RTXs, copy them over to our
3593 partitions. */
3594 for (i = 0; i < SA.map->num_partitions; i++)
3595 {
3596 tree var = SSA_NAME_VAR (partition_to_var (SA.map, i));
3597
3598 if (TREE_CODE (var) != VAR_DECL
3599 && !SA.partition_to_pseudo[i])
3600 SA.partition_to_pseudo[i] = DECL_RTL_IF_SET (var);
3601 gcc_assert (SA.partition_to_pseudo[i]);
3602
3603 /* If this decl was marked as living in multiple places, reset
3604 this now to NULL. */
3605 if (DECL_RTL_IF_SET (var) == pc_rtx)
3606 SET_DECL_RTL (var, NULL);
3607
3608 /* Some RTL parts really want to look at DECL_RTL(x) when x
3609 was a decl marked in REG_ATTR or MEM_ATTR. We could use
3610 SET_DECL_RTL here making this available, but that would mean
3611 to select one of the potentially many RTLs for one DECL. Instead
3612 of doing that we simply reset the MEM_EXPR of the RTL in question,
3613 then nobody can get at it and hence nobody can call DECL_RTL on it. */
3614 if (!DECL_RTL_SET_P (var))
3615 {
3616 if (MEM_P (SA.partition_to_pseudo[i]))
3617 set_mem_expr (SA.partition_to_pseudo[i], NULL);
3618 }
3619 }
3620
3621 /* If this function is `main', emit a call to `__main'
3622 to run global initializers, etc. */
3623 if (DECL_NAME (current_function_decl)
3624 && MAIN_NAME_P (DECL_NAME (current_function_decl))
3625 && DECL_FILE_SCOPE_P (current_function_decl))
3626 expand_main_function ();
3627
3628 /* Initialize the stack_protect_guard field. This must happen after the
3629 call to __main (if any) so that the external decl is initialized. */
3630 if (crtl->stack_protect_guard)
3631 stack_protect_prologue ();
3632
3633 expand_phi_nodes (&SA);
3634
3635 /* Register rtl specific functions for cfg. */
3636 rtl_register_cfg_hooks ();
3637
3638 init_block = construct_init_block ();
3639
3640 /* Clear EDGE_EXECUTABLE on the entry edge(s). It is cleaned from the
3641 remaining edges later. */
3642 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
3643 e->flags &= ~EDGE_EXECUTABLE;
3644
3645 lab_rtx_for_bb = pointer_map_create ();
3646 FOR_BB_BETWEEN (bb, init_block->next_bb, EXIT_BLOCK_PTR, next_bb)
3647 bb = expand_gimple_basic_block (bb);
3648
3649 if (MAY_HAVE_DEBUG_INSNS)
3650 expand_debug_locations ();
3651
3652 execute_free_datastructures ();
3653 finish_out_of_ssa (&SA);
3654
3655 /* Expansion is used by optimization passes too, set maybe_hot_insn_p
3656 conservatively to true until they are all profile aware. */
3657 pointer_map_destroy (lab_rtx_for_bb);
3658 free_histograms ();
3659
3660 construct_exit_block ();
3661 set_curr_insn_block (DECL_INITIAL (current_function_decl));
3662 insn_locators_finalize ();
3663
3664 /* Zap the tree EH table. */
3665 set_eh_throw_stmt_table (cfun, NULL);
3666
3667 rebuild_jump_labels (get_insns ());
3668
3669 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
3670 {
3671 edge e;
3672 edge_iterator ei;
3673 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
3674 {
3675 if (e->insns.r)
3676 commit_one_edge_insertion (e);
3677 else
3678 ei_next (&ei);
3679 }
3680 }
3681
3682 /* We're done expanding trees to RTL. */
3683 currently_expanding_to_rtl = 0;
3684
3685 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb, EXIT_BLOCK_PTR, next_bb)
3686 {
3687 edge e;
3688 edge_iterator ei;
3689 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
3690 {
3691 /* Clear EDGE_EXECUTABLE. This flag is never used in the backend. */
3692 e->flags &= ~EDGE_EXECUTABLE;
3693
3694 /* At the moment not all abnormal edges match the RTL
3695 representation. It is safe to remove them here as
3696 find_many_sub_basic_blocks will rediscover them.
3697 In the future we should get this fixed properly. */
3698 if ((e->flags & EDGE_ABNORMAL)
3699 && !(e->flags & EDGE_SIBCALL))
3700 remove_edge (e);
3701 else
3702 ei_next (&ei);
3703 }
3704 }
3705
3706 blocks = sbitmap_alloc (last_basic_block);
3707 sbitmap_ones (blocks);
3708 find_many_sub_basic_blocks (blocks);
3709 sbitmap_free (blocks);
3710 purge_all_dead_edges ();
3711
3712 compact_blocks ();
3713
3714 expand_stack_alignment ();
3715
3716 #ifdef ENABLE_CHECKING
3717 verify_flow_info ();
3718 #endif
3719
3720 /* There's no need to defer outputting this function any more; we
3721 know we want to output it. */
3722 DECL_DEFER_OUTPUT (current_function_decl) = 0;
3723
3724 /* Now that we're done expanding trees to RTL, we shouldn't have any
3725 more CONCATs anywhere. */
3726 generating_concat_p = 0;
3727
3728 if (dump_file)
3729 {
3730 fprintf (dump_file,
3731 "\n\n;;\n;; Full RTL generated for this function:\n;;\n");
3732 /* And the pass manager will dump RTL for us. */
3733 }
3734
3735 /* If we're emitting a nested function, make sure its parent gets
3736 emitted as well. Doing otherwise confuses debug info. */
3737 {
3738 tree parent;
3739 for (parent = DECL_CONTEXT (current_function_decl);
3740 parent != NULL_TREE;
3741 parent = get_containing_scope (parent))
3742 if (TREE_CODE (parent) == FUNCTION_DECL)
3743 TREE_SYMBOL_REFERENCED (DECL_ASSEMBLER_NAME (parent)) = 1;
3744 }
3745
3746 /* We are now committed to emitting code for this function. Do any
3747 preparation, such as emitting abstract debug info for the inline
3748 before it gets mangled by optimization. */
3749 if (cgraph_function_possibly_inlined_p (current_function_decl))
3750 (*debug_hooks->outlining_inline_function) (current_function_decl);
3751
3752 TREE_ASM_WRITTEN (current_function_decl) = 1;
3753
3754 /* After expanding, the return labels are no longer needed. */
3755 return_label = NULL;
3756 naked_return_label = NULL;
3757 /* Tag the blocks with a depth number so that change_scope can find
3758 the common parent easily. */
3759 set_block_levels (DECL_INITIAL (cfun->decl), 0);
3760 default_rtl_profile ();
3761 return 0;
3762 }
3763
3764 struct rtl_opt_pass pass_expand =
3765 {
3766 {
3767 RTL_PASS,
3768 "expand", /* name */
3769 NULL, /* gate */
3770 gimple_expand_cfg, /* execute */
3771 NULL, /* sub */
3772 NULL, /* next */
3773 0, /* static_pass_number */
3774 TV_EXPAND, /* tv_id */
3775 PROP_ssa | PROP_gimple_leh | PROP_cfg,/* properties_required */
3776 PROP_rtl, /* properties_provided */
3777 PROP_ssa | PROP_trees, /* properties_destroyed */
3778 TODO_verify_ssa | TODO_verify_flow
3779 | TODO_verify_stmts, /* todo_flags_start */
3780 TODO_dump_func
3781 | TODO_ggc_collect /* todo_flags_finish */
3782 }
3783 };