cond.md (stzx_16): Use register_operand for operand 0.
[gcc.git] / gcc / cfgloop.c
1 /* Natural loop discovery code for GNU compiler.
2 Copyright (C) 2000-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl.h"
25 #include "function.h"
26 #include "basic-block.h"
27 #include "cfgloop.h"
28 #include "diagnostic-core.h"
29 #include "flags.h"
30 #include "tree.h"
31 #include "gimple.h"
32 #include "gimple-iterator.h"
33 #include "gimple-ssa.h"
34 #include "pointer-set.h"
35 #include "ggc.h"
36 #include "dumpfile.h"
37
38 static void flow_loops_cfg_dump (FILE *);
39 \f
40 /* Dump loop related CFG information. */
41
42 static void
43 flow_loops_cfg_dump (FILE *file)
44 {
45 basic_block bb;
46
47 if (!file)
48 return;
49
50 FOR_EACH_BB (bb)
51 {
52 edge succ;
53 edge_iterator ei;
54
55 fprintf (file, ";; %d succs { ", bb->index);
56 FOR_EACH_EDGE (succ, ei, bb->succs)
57 fprintf (file, "%d ", succ->dest->index);
58 fprintf (file, "}\n");
59 }
60 }
61
62 /* Return nonzero if the nodes of LOOP are a subset of OUTER. */
63
64 bool
65 flow_loop_nested_p (const struct loop *outer, const struct loop *loop)
66 {
67 unsigned odepth = loop_depth (outer);
68
69 return (loop_depth (loop) > odepth
70 && (*loop->superloops)[odepth] == outer);
71 }
72
73 /* Returns the loop such that LOOP is nested DEPTH (indexed from zero)
74 loops within LOOP. */
75
76 struct loop *
77 superloop_at_depth (struct loop *loop, unsigned depth)
78 {
79 unsigned ldepth = loop_depth (loop);
80
81 gcc_assert (depth <= ldepth);
82
83 if (depth == ldepth)
84 return loop;
85
86 return (*loop->superloops)[depth];
87 }
88
89 /* Returns the list of the latch edges of LOOP. */
90
91 static vec<edge>
92 get_loop_latch_edges (const struct loop *loop)
93 {
94 edge_iterator ei;
95 edge e;
96 vec<edge> ret = vNULL;
97
98 FOR_EACH_EDGE (e, ei, loop->header->preds)
99 {
100 if (dominated_by_p (CDI_DOMINATORS, e->src, loop->header))
101 ret.safe_push (e);
102 }
103
104 return ret;
105 }
106
107 /* Dump the loop information specified by LOOP to the stream FILE
108 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
109
110 void
111 flow_loop_dump (const struct loop *loop, FILE *file,
112 void (*loop_dump_aux) (const struct loop *, FILE *, int),
113 int verbose)
114 {
115 basic_block *bbs;
116 unsigned i;
117 vec<edge> latches;
118 edge e;
119
120 if (! loop || ! loop->header)
121 return;
122
123 fprintf (file, ";;\n;; Loop %d\n", loop->num);
124
125 fprintf (file, ";; header %d, ", loop->header->index);
126 if (loop->latch)
127 fprintf (file, "latch %d\n", loop->latch->index);
128 else
129 {
130 fprintf (file, "multiple latches:");
131 latches = get_loop_latch_edges (loop);
132 FOR_EACH_VEC_ELT (latches, i, e)
133 fprintf (file, " %d", e->src->index);
134 latches.release ();
135 fprintf (file, "\n");
136 }
137
138 fprintf (file, ";; depth %d, outer %ld\n",
139 loop_depth (loop), (long) (loop_outer (loop)
140 ? loop_outer (loop)->num : -1));
141
142 fprintf (file, ";; nodes:");
143 bbs = get_loop_body (loop);
144 for (i = 0; i < loop->num_nodes; i++)
145 fprintf (file, " %d", bbs[i]->index);
146 free (bbs);
147 fprintf (file, "\n");
148
149 if (loop_dump_aux)
150 loop_dump_aux (loop, file, verbose);
151 }
152
153 /* Dump the loop information about loops to the stream FILE,
154 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
155
156 void
157 flow_loops_dump (FILE *file, void (*loop_dump_aux) (const struct loop *, FILE *, int), int verbose)
158 {
159 struct loop *loop;
160
161 if (!current_loops || ! file)
162 return;
163
164 fprintf (file, ";; %d loops found\n", number_of_loops (cfun));
165
166 FOR_EACH_LOOP (loop, LI_INCLUDE_ROOT)
167 {
168 flow_loop_dump (loop, file, loop_dump_aux, verbose);
169 }
170
171 if (verbose)
172 flow_loops_cfg_dump (file);
173 }
174
175 /* Free data allocated for LOOP. */
176
177 void
178 flow_loop_free (struct loop *loop)
179 {
180 struct loop_exit *exit, *next;
181
182 vec_free (loop->superloops);
183
184 /* Break the list of the loop exit records. They will be freed when the
185 corresponding edge is rescanned or removed, and this avoids
186 accessing the (already released) head of the list stored in the
187 loop structure. */
188 for (exit = loop->exits->next; exit != loop->exits; exit = next)
189 {
190 next = exit->next;
191 exit->next = exit;
192 exit->prev = exit;
193 }
194
195 ggc_free (loop->exits);
196 ggc_free (loop);
197 }
198
199 /* Free all the memory allocated for LOOPS. */
200
201 void
202 flow_loops_free (struct loops *loops)
203 {
204 if (loops->larray)
205 {
206 unsigned i;
207 loop_p loop;
208
209 /* Free the loop descriptors. */
210 FOR_EACH_VEC_SAFE_ELT (loops->larray, i, loop)
211 {
212 if (!loop)
213 continue;
214
215 flow_loop_free (loop);
216 }
217
218 vec_free (loops->larray);
219 }
220 }
221
222 /* Find the nodes contained within the LOOP with header HEADER.
223 Return the number of nodes within the loop. */
224
225 int
226 flow_loop_nodes_find (basic_block header, struct loop *loop)
227 {
228 vec<basic_block> stack = vNULL;
229 int num_nodes = 1;
230 edge latch;
231 edge_iterator latch_ei;
232
233 header->loop_father = loop;
234
235 FOR_EACH_EDGE (latch, latch_ei, loop->header->preds)
236 {
237 if (latch->src->loop_father == loop
238 || !dominated_by_p (CDI_DOMINATORS, latch->src, loop->header))
239 continue;
240
241 num_nodes++;
242 stack.safe_push (latch->src);
243 latch->src->loop_father = loop;
244
245 while (!stack.is_empty ())
246 {
247 basic_block node;
248 edge e;
249 edge_iterator ei;
250
251 node = stack.pop ();
252
253 FOR_EACH_EDGE (e, ei, node->preds)
254 {
255 basic_block ancestor = e->src;
256
257 if (ancestor->loop_father != loop)
258 {
259 ancestor->loop_father = loop;
260 num_nodes++;
261 stack.safe_push (ancestor);
262 }
263 }
264 }
265 }
266 stack.release ();
267
268 return num_nodes;
269 }
270
271 /* Records the vector of superloops of the loop LOOP, whose immediate
272 superloop is FATHER. */
273
274 static void
275 establish_preds (struct loop *loop, struct loop *father)
276 {
277 loop_p ploop;
278 unsigned depth = loop_depth (father) + 1;
279 unsigned i;
280
281 loop->superloops = 0;
282 vec_alloc (loop->superloops, depth);
283 FOR_EACH_VEC_SAFE_ELT (father->superloops, i, ploop)
284 loop->superloops->quick_push (ploop);
285 loop->superloops->quick_push (father);
286
287 for (ploop = loop->inner; ploop; ploop = ploop->next)
288 establish_preds (ploop, loop);
289 }
290
291 /* Add LOOP to the loop hierarchy tree where FATHER is father of the
292 added loop. If LOOP has some children, take care of that their
293 pred field will be initialized correctly. */
294
295 void
296 flow_loop_tree_node_add (struct loop *father, struct loop *loop)
297 {
298 loop->next = father->inner;
299 father->inner = loop;
300
301 establish_preds (loop, father);
302 }
303
304 /* Remove LOOP from the loop hierarchy tree. */
305
306 void
307 flow_loop_tree_node_remove (struct loop *loop)
308 {
309 struct loop *prev, *father;
310
311 father = loop_outer (loop);
312
313 /* Remove loop from the list of sons. */
314 if (father->inner == loop)
315 father->inner = loop->next;
316 else
317 {
318 for (prev = father->inner; prev->next != loop; prev = prev->next)
319 continue;
320 prev->next = loop->next;
321 }
322
323 loop->superloops = NULL;
324 }
325
326 /* Allocates and returns new loop structure. */
327
328 struct loop *
329 alloc_loop (void)
330 {
331 struct loop *loop = ggc_alloc_cleared_loop ();
332
333 loop->exits = ggc_alloc_cleared_loop_exit ();
334 loop->exits->next = loop->exits->prev = loop->exits;
335 loop->can_be_parallel = false;
336
337 return loop;
338 }
339
340 /* Initializes loops structure LOOPS, reserving place for NUM_LOOPS loops
341 (including the root of the loop tree). */
342
343 void
344 init_loops_structure (struct function *fn,
345 struct loops *loops, unsigned num_loops)
346 {
347 struct loop *root;
348
349 memset (loops, 0, sizeof *loops);
350 vec_alloc (loops->larray, num_loops);
351
352 /* Dummy loop containing whole function. */
353 root = alloc_loop ();
354 root->num_nodes = n_basic_blocks_for_fn (fn);
355 root->latch = EXIT_BLOCK_PTR_FOR_FN (fn);
356 root->header = ENTRY_BLOCK_PTR_FOR_FN (fn);
357 ENTRY_BLOCK_PTR_FOR_FN (fn)->loop_father = root;
358 EXIT_BLOCK_PTR_FOR_FN (fn)->loop_father = root;
359
360 loops->larray->quick_push (root);
361 loops->tree_root = root;
362 }
363
364 /* Returns whether HEADER is a loop header. */
365
366 bool
367 bb_loop_header_p (basic_block header)
368 {
369 edge_iterator ei;
370 edge e;
371
372 /* If we have an abnormal predecessor, do not consider the
373 loop (not worth the problems). */
374 if (bb_has_abnormal_pred (header))
375 return false;
376
377 /* Look for back edges where a predecessor is dominated
378 by this block. A natural loop has a single entry
379 node (header) that dominates all the nodes in the
380 loop. It also has single back edge to the header
381 from a latch node. */
382 FOR_EACH_EDGE (e, ei, header->preds)
383 {
384 basic_block latch = e->src;
385 if (latch != ENTRY_BLOCK_PTR_FOR_FN (cfun)
386 && dominated_by_p (CDI_DOMINATORS, latch, header))
387 return true;
388 }
389
390 return false;
391 }
392
393 /* Find all the natural loops in the function and save in LOOPS structure and
394 recalculate loop_father information in basic block structures.
395 If LOOPS is non-NULL then the loop structures for already recorded loops
396 will be re-used and their number will not change. We assume that no
397 stale loops exist in LOOPS.
398 When LOOPS is NULL it is allocated and re-built from scratch.
399 Return the built LOOPS structure. */
400
401 struct loops *
402 flow_loops_find (struct loops *loops)
403 {
404 bool from_scratch = (loops == NULL);
405 int *rc_order;
406 int b;
407 unsigned i;
408
409 /* Ensure that the dominators are computed. */
410 calculate_dominance_info (CDI_DOMINATORS);
411
412 if (!loops)
413 {
414 loops = ggc_alloc_cleared_loops ();
415 init_loops_structure (cfun, loops, 1);
416 }
417
418 /* Ensure that loop exits were released. */
419 gcc_assert (loops->exits == NULL);
420
421 /* Taking care of this degenerate case makes the rest of
422 this code simpler. */
423 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
424 return loops;
425
426 /* The root loop node contains all basic-blocks. */
427 loops->tree_root->num_nodes = n_basic_blocks_for_fn (cfun);
428
429 /* Compute depth first search order of the CFG so that outer
430 natural loops will be found before inner natural loops. */
431 rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
432 pre_and_rev_post_order_compute (NULL, rc_order, false);
433
434 /* Gather all loop headers in reverse completion order and allocate
435 loop structures for loops that are not already present. */
436 auto_vec<loop_p> larray (loops->larray->length ());
437 for (b = 0; b < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; b++)
438 {
439 basic_block header = BASIC_BLOCK (rc_order[b]);
440 if (bb_loop_header_p (header))
441 {
442 struct loop *loop;
443
444 /* The current active loop tree has valid loop-fathers for
445 header blocks. */
446 if (!from_scratch
447 && header->loop_father->header == header)
448 {
449 loop = header->loop_father;
450 /* If we found an existing loop remove it from the
451 loop tree. It is going to be inserted again
452 below. */
453 flow_loop_tree_node_remove (loop);
454 }
455 else
456 {
457 /* Otherwise allocate a new loop structure for the loop. */
458 loop = alloc_loop ();
459 /* ??? We could re-use unused loop slots here. */
460 loop->num = loops->larray->length ();
461 vec_safe_push (loops->larray, loop);
462 loop->header = header;
463
464 if (!from_scratch
465 && dump_file && (dump_flags & TDF_DETAILS))
466 fprintf (dump_file, "flow_loops_find: discovered new "
467 "loop %d with header %d\n",
468 loop->num, header->index);
469 }
470 /* Reset latch, we recompute it below. */
471 loop->latch = NULL;
472 larray.safe_push (loop);
473 }
474
475 /* Make blocks part of the loop root node at start. */
476 header->loop_father = loops->tree_root;
477 }
478
479 free (rc_order);
480
481 /* Now iterate over the loops found, insert them into the loop tree
482 and assign basic-block ownership. */
483 for (i = 0; i < larray.length (); ++i)
484 {
485 struct loop *loop = larray[i];
486 basic_block header = loop->header;
487 edge_iterator ei;
488 edge e;
489
490 flow_loop_tree_node_add (header->loop_father, loop);
491 loop->num_nodes = flow_loop_nodes_find (loop->header, loop);
492
493 /* Look for the latch for this header block, if it has just a
494 single one. */
495 FOR_EACH_EDGE (e, ei, header->preds)
496 {
497 basic_block latch = e->src;
498
499 if (flow_bb_inside_loop_p (loop, latch))
500 {
501 if (loop->latch != NULL)
502 {
503 /* More than one latch edge. */
504 loop->latch = NULL;
505 break;
506 }
507 loop->latch = latch;
508 }
509 }
510 }
511
512 return loops;
513 }
514
515 /* Ratio of frequencies of edges so that one of more latch edges is
516 considered to belong to inner loop with same header. */
517 #define HEAVY_EDGE_RATIO 8
518
519 /* Minimum number of samples for that we apply
520 find_subloop_latch_edge_by_profile heuristics. */
521 #define HEAVY_EDGE_MIN_SAMPLES 10
522
523 /* If the profile info is available, finds an edge in LATCHES that much more
524 frequent than the remaining edges. Returns such an edge, or NULL if we do
525 not find one.
526
527 We do not use guessed profile here, only the measured one. The guessed
528 profile is usually too flat and unreliable for this (and it is mostly based
529 on the loop structure of the program, so it does not make much sense to
530 derive the loop structure from it). */
531
532 static edge
533 find_subloop_latch_edge_by_profile (vec<edge> latches)
534 {
535 unsigned i;
536 edge e, me = NULL;
537 gcov_type mcount = 0, tcount = 0;
538
539 FOR_EACH_VEC_ELT (latches, i, e)
540 {
541 if (e->count > mcount)
542 {
543 me = e;
544 mcount = e->count;
545 }
546 tcount += e->count;
547 }
548
549 if (tcount < HEAVY_EDGE_MIN_SAMPLES
550 || (tcount - mcount) * HEAVY_EDGE_RATIO > tcount)
551 return NULL;
552
553 if (dump_file)
554 fprintf (dump_file,
555 "Found latch edge %d -> %d using profile information.\n",
556 me->src->index, me->dest->index);
557 return me;
558 }
559
560 /* Among LATCHES, guesses a latch edge of LOOP corresponding to subloop, based
561 on the structure of induction variables. Returns this edge, or NULL if we
562 do not find any.
563
564 We are quite conservative, and look just for an obvious simple innermost
565 loop (which is the case where we would lose the most performance by not
566 disambiguating the loop). More precisely, we look for the following
567 situation: The source of the chosen latch edge dominates sources of all
568 the other latch edges. Additionally, the header does not contain a phi node
569 such that the argument from the chosen edge is equal to the argument from
570 another edge. */
571
572 static edge
573 find_subloop_latch_edge_by_ivs (struct loop *loop ATTRIBUTE_UNUSED, vec<edge> latches)
574 {
575 edge e, latch = latches[0];
576 unsigned i;
577 gimple phi;
578 gimple_stmt_iterator psi;
579 tree lop;
580 basic_block bb;
581
582 /* Find the candidate for the latch edge. */
583 for (i = 1; latches.iterate (i, &e); i++)
584 if (dominated_by_p (CDI_DOMINATORS, latch->src, e->src))
585 latch = e;
586
587 /* Verify that it dominates all the latch edges. */
588 FOR_EACH_VEC_ELT (latches, i, e)
589 if (!dominated_by_p (CDI_DOMINATORS, e->src, latch->src))
590 return NULL;
591
592 /* Check for a phi node that would deny that this is a latch edge of
593 a subloop. */
594 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
595 {
596 phi = gsi_stmt (psi);
597 lop = PHI_ARG_DEF_FROM_EDGE (phi, latch);
598
599 /* Ignore the values that are not changed inside the subloop. */
600 if (TREE_CODE (lop) != SSA_NAME
601 || SSA_NAME_DEF_STMT (lop) == phi)
602 continue;
603 bb = gimple_bb (SSA_NAME_DEF_STMT (lop));
604 if (!bb || !flow_bb_inside_loop_p (loop, bb))
605 continue;
606
607 FOR_EACH_VEC_ELT (latches, i, e)
608 if (e != latch
609 && PHI_ARG_DEF_FROM_EDGE (phi, e) == lop)
610 return NULL;
611 }
612
613 if (dump_file)
614 fprintf (dump_file,
615 "Found latch edge %d -> %d using iv structure.\n",
616 latch->src->index, latch->dest->index);
617 return latch;
618 }
619
620 /* If we can determine that one of the several latch edges of LOOP behaves
621 as a latch edge of a separate subloop, returns this edge. Otherwise
622 returns NULL. */
623
624 static edge
625 find_subloop_latch_edge (struct loop *loop)
626 {
627 vec<edge> latches = get_loop_latch_edges (loop);
628 edge latch = NULL;
629
630 if (latches.length () > 1)
631 {
632 latch = find_subloop_latch_edge_by_profile (latches);
633
634 if (!latch
635 /* We consider ivs to guess the latch edge only in SSA. Perhaps we
636 should use cfghook for this, but it is hard to imagine it would
637 be useful elsewhere. */
638 && current_ir_type () == IR_GIMPLE)
639 latch = find_subloop_latch_edge_by_ivs (loop, latches);
640 }
641
642 latches.release ();
643 return latch;
644 }
645
646 /* Callback for make_forwarder_block. Returns true if the edge E is marked
647 in the set MFB_REIS_SET. */
648
649 static struct pointer_set_t *mfb_reis_set;
650 static bool
651 mfb_redirect_edges_in_set (edge e)
652 {
653 return pointer_set_contains (mfb_reis_set, e);
654 }
655
656 /* Creates a subloop of LOOP with latch edge LATCH. */
657
658 static void
659 form_subloop (struct loop *loop, edge latch)
660 {
661 edge_iterator ei;
662 edge e, new_entry;
663 struct loop *new_loop;
664
665 mfb_reis_set = pointer_set_create ();
666 FOR_EACH_EDGE (e, ei, loop->header->preds)
667 {
668 if (e != latch)
669 pointer_set_insert (mfb_reis_set, e);
670 }
671 new_entry = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
672 NULL);
673 pointer_set_destroy (mfb_reis_set);
674
675 loop->header = new_entry->src;
676
677 /* Find the blocks and subloops that belong to the new loop, and add it to
678 the appropriate place in the loop tree. */
679 new_loop = alloc_loop ();
680 new_loop->header = new_entry->dest;
681 new_loop->latch = latch->src;
682 add_loop (new_loop, loop);
683 }
684
685 /* Make all the latch edges of LOOP to go to a single forwarder block --
686 a new latch of LOOP. */
687
688 static void
689 merge_latch_edges (struct loop *loop)
690 {
691 vec<edge> latches = get_loop_latch_edges (loop);
692 edge latch, e;
693 unsigned i;
694
695 gcc_assert (latches.length () > 0);
696
697 if (latches.length () == 1)
698 loop->latch = latches[0]->src;
699 else
700 {
701 if (dump_file)
702 fprintf (dump_file, "Merged latch edges of loop %d\n", loop->num);
703
704 mfb_reis_set = pointer_set_create ();
705 FOR_EACH_VEC_ELT (latches, i, e)
706 pointer_set_insert (mfb_reis_set, e);
707 latch = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
708 NULL);
709 pointer_set_destroy (mfb_reis_set);
710
711 loop->header = latch->dest;
712 loop->latch = latch->src;
713 }
714
715 latches.release ();
716 }
717
718 /* LOOP may have several latch edges. Transform it into (possibly several)
719 loops with single latch edge. */
720
721 static void
722 disambiguate_multiple_latches (struct loop *loop)
723 {
724 edge e;
725
726 /* We eliminate the multiple latches by splitting the header to the forwarder
727 block F and the rest R, and redirecting the edges. There are two cases:
728
729 1) If there is a latch edge E that corresponds to a subloop (we guess
730 that based on profile -- if it is taken much more often than the
731 remaining edges; and on trees, using the information about induction
732 variables of the loops), we redirect E to R, all the remaining edges to
733 F, then rescan the loops and try again for the outer loop.
734 2) If there is no such edge, we redirect all latch edges to F, and the
735 entry edges to R, thus making F the single latch of the loop. */
736
737 if (dump_file)
738 fprintf (dump_file, "Disambiguating loop %d with multiple latches\n",
739 loop->num);
740
741 /* During latch merging, we may need to redirect the entry edges to a new
742 block. This would cause problems if the entry edge was the one from the
743 entry block. To avoid having to handle this case specially, split
744 such entry edge. */
745 e = find_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), loop->header);
746 if (e)
747 split_edge (e);
748
749 while (1)
750 {
751 e = find_subloop_latch_edge (loop);
752 if (!e)
753 break;
754
755 form_subloop (loop, e);
756 }
757
758 merge_latch_edges (loop);
759 }
760
761 /* Split loops with multiple latch edges. */
762
763 void
764 disambiguate_loops_with_multiple_latches (void)
765 {
766 struct loop *loop;
767
768 FOR_EACH_LOOP (loop, 0)
769 {
770 if (!loop->latch)
771 disambiguate_multiple_latches (loop);
772 }
773 }
774
775 /* Return nonzero if basic block BB belongs to LOOP. */
776 bool
777 flow_bb_inside_loop_p (const struct loop *loop, const_basic_block bb)
778 {
779 struct loop *source_loop;
780
781 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun)
782 || bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
783 return 0;
784
785 source_loop = bb->loop_father;
786 return loop == source_loop || flow_loop_nested_p (loop, source_loop);
787 }
788
789 /* Enumeration predicate for get_loop_body_with_size. */
790 static bool
791 glb_enum_p (const_basic_block bb, const void *glb_loop)
792 {
793 const struct loop *const loop = (const struct loop *) glb_loop;
794 return (bb != loop->header
795 && dominated_by_p (CDI_DOMINATORS, bb, loop->header));
796 }
797
798 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
799 order against direction of edges from latch. Specially, if
800 header != latch, latch is the 1-st block. LOOP cannot be the fake
801 loop tree root, and its size must be at most MAX_SIZE. The blocks
802 in the LOOP body are stored to BODY, and the size of the LOOP is
803 returned. */
804
805 unsigned
806 get_loop_body_with_size (const struct loop *loop, basic_block *body,
807 unsigned max_size)
808 {
809 return dfs_enumerate_from (loop->header, 1, glb_enum_p,
810 body, max_size, loop);
811 }
812
813 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
814 order against direction of edges from latch. Specially, if
815 header != latch, latch is the 1-st block. */
816
817 basic_block *
818 get_loop_body (const struct loop *loop)
819 {
820 basic_block *body, bb;
821 unsigned tv = 0;
822
823 gcc_assert (loop->num_nodes);
824
825 body = XNEWVEC (basic_block, loop->num_nodes);
826
827 if (loop->latch == EXIT_BLOCK_PTR_FOR_FN (cfun))
828 {
829 /* There may be blocks unreachable from EXIT_BLOCK, hence we need to
830 special-case the fake loop that contains the whole function. */
831 gcc_assert (loop->num_nodes == (unsigned) n_basic_blocks_for_fn (cfun));
832 body[tv++] = loop->header;
833 body[tv++] = EXIT_BLOCK_PTR_FOR_FN (cfun);
834 FOR_EACH_BB (bb)
835 body[tv++] = bb;
836 }
837 else
838 tv = get_loop_body_with_size (loop, body, loop->num_nodes);
839
840 gcc_assert (tv == loop->num_nodes);
841 return body;
842 }
843
844 /* Fills dominance descendants inside LOOP of the basic block BB into
845 array TOVISIT from index *TV. */
846
847 static void
848 fill_sons_in_loop (const struct loop *loop, basic_block bb,
849 basic_block *tovisit, int *tv)
850 {
851 basic_block son, postpone = NULL;
852
853 tovisit[(*tv)++] = bb;
854 for (son = first_dom_son (CDI_DOMINATORS, bb);
855 son;
856 son = next_dom_son (CDI_DOMINATORS, son))
857 {
858 if (!flow_bb_inside_loop_p (loop, son))
859 continue;
860
861 if (dominated_by_p (CDI_DOMINATORS, loop->latch, son))
862 {
863 postpone = son;
864 continue;
865 }
866 fill_sons_in_loop (loop, son, tovisit, tv);
867 }
868
869 if (postpone)
870 fill_sons_in_loop (loop, postpone, tovisit, tv);
871 }
872
873 /* Gets body of a LOOP (that must be different from the outermost loop)
874 sorted by dominance relation. Additionally, if a basic block s dominates
875 the latch, then only blocks dominated by s are be after it. */
876
877 basic_block *
878 get_loop_body_in_dom_order (const struct loop *loop)
879 {
880 basic_block *tovisit;
881 int tv;
882
883 gcc_assert (loop->num_nodes);
884
885 tovisit = XNEWVEC (basic_block, loop->num_nodes);
886
887 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
888
889 tv = 0;
890 fill_sons_in_loop (loop, loop->header, tovisit, &tv);
891
892 gcc_assert (tv == (int) loop->num_nodes);
893
894 return tovisit;
895 }
896
897 /* Gets body of a LOOP sorted via provided BB_COMPARATOR. */
898
899 basic_block *
900 get_loop_body_in_custom_order (const struct loop *loop,
901 int (*bb_comparator) (const void *, const void *))
902 {
903 basic_block *bbs = get_loop_body (loop);
904
905 qsort (bbs, loop->num_nodes, sizeof (basic_block), bb_comparator);
906
907 return bbs;
908 }
909
910 /* Get body of a LOOP in breadth first sort order. */
911
912 basic_block *
913 get_loop_body_in_bfs_order (const struct loop *loop)
914 {
915 basic_block *blocks;
916 basic_block bb;
917 bitmap visited;
918 unsigned int i = 0;
919 unsigned int vc = 1;
920
921 gcc_assert (loop->num_nodes);
922 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
923
924 blocks = XNEWVEC (basic_block, loop->num_nodes);
925 visited = BITMAP_ALLOC (NULL);
926
927 bb = loop->header;
928 while (i < loop->num_nodes)
929 {
930 edge e;
931 edge_iterator ei;
932
933 if (bitmap_set_bit (visited, bb->index))
934 /* This basic block is now visited */
935 blocks[i++] = bb;
936
937 FOR_EACH_EDGE (e, ei, bb->succs)
938 {
939 if (flow_bb_inside_loop_p (loop, e->dest))
940 {
941 if (bitmap_set_bit (visited, e->dest->index))
942 blocks[i++] = e->dest;
943 }
944 }
945
946 gcc_assert (i >= vc);
947
948 bb = blocks[vc++];
949 }
950
951 BITMAP_FREE (visited);
952 return blocks;
953 }
954
955 /* Hash function for struct loop_exit. */
956
957 static hashval_t
958 loop_exit_hash (const void *ex)
959 {
960 const struct loop_exit *const exit = (const struct loop_exit *) ex;
961
962 return htab_hash_pointer (exit->e);
963 }
964
965 /* Equality function for struct loop_exit. Compares with edge. */
966
967 static int
968 loop_exit_eq (const void *ex, const void *e)
969 {
970 const struct loop_exit *const exit = (const struct loop_exit *) ex;
971
972 return exit->e == e;
973 }
974
975 /* Frees the list of loop exit descriptions EX. */
976
977 static void
978 loop_exit_free (void *ex)
979 {
980 struct loop_exit *exit = (struct loop_exit *) ex, *next;
981
982 for (; exit; exit = next)
983 {
984 next = exit->next_e;
985
986 exit->next->prev = exit->prev;
987 exit->prev->next = exit->next;
988
989 ggc_free (exit);
990 }
991 }
992
993 /* Returns the list of records for E as an exit of a loop. */
994
995 static struct loop_exit *
996 get_exit_descriptions (edge e)
997 {
998 return (struct loop_exit *) htab_find_with_hash (current_loops->exits, e,
999 htab_hash_pointer (e));
1000 }
1001
1002 /* Updates the lists of loop exits in that E appears.
1003 If REMOVED is true, E is being removed, and we
1004 just remove it from the lists of exits.
1005 If NEW_EDGE is true and E is not a loop exit, we
1006 do not try to remove it from loop exit lists. */
1007
1008 void
1009 rescan_loop_exit (edge e, bool new_edge, bool removed)
1010 {
1011 void **slot;
1012 struct loop_exit *exits = NULL, *exit;
1013 struct loop *aloop, *cloop;
1014
1015 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1016 return;
1017
1018 if (!removed
1019 && e->src->loop_father != NULL
1020 && e->dest->loop_father != NULL
1021 && !flow_bb_inside_loop_p (e->src->loop_father, e->dest))
1022 {
1023 cloop = find_common_loop (e->src->loop_father, e->dest->loop_father);
1024 for (aloop = e->src->loop_father;
1025 aloop != cloop;
1026 aloop = loop_outer (aloop))
1027 {
1028 exit = ggc_alloc_loop_exit ();
1029 exit->e = e;
1030
1031 exit->next = aloop->exits->next;
1032 exit->prev = aloop->exits;
1033 exit->next->prev = exit;
1034 exit->prev->next = exit;
1035
1036 exit->next_e = exits;
1037 exits = exit;
1038 }
1039 }
1040
1041 if (!exits && new_edge)
1042 return;
1043
1044 slot = htab_find_slot_with_hash (current_loops->exits, e,
1045 htab_hash_pointer (e),
1046 exits ? INSERT : NO_INSERT);
1047 if (!slot)
1048 return;
1049
1050 if (exits)
1051 {
1052 if (*slot)
1053 loop_exit_free (*slot);
1054 *slot = exits;
1055 }
1056 else
1057 htab_clear_slot (current_loops->exits, slot);
1058 }
1059
1060 /* For each loop, record list of exit edges, and start maintaining these
1061 lists. */
1062
1063 void
1064 record_loop_exits (void)
1065 {
1066 basic_block bb;
1067 edge_iterator ei;
1068 edge e;
1069
1070 if (!current_loops)
1071 return;
1072
1073 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1074 return;
1075 loops_state_set (LOOPS_HAVE_RECORDED_EXITS);
1076
1077 gcc_assert (current_loops->exits == NULL);
1078 current_loops->exits = htab_create_ggc (2 * number_of_loops (cfun),
1079 loop_exit_hash, loop_exit_eq,
1080 loop_exit_free);
1081
1082 FOR_EACH_BB (bb)
1083 {
1084 FOR_EACH_EDGE (e, ei, bb->succs)
1085 {
1086 rescan_loop_exit (e, true, false);
1087 }
1088 }
1089 }
1090
1091 /* Dumps information about the exit in *SLOT to FILE.
1092 Callback for htab_traverse. */
1093
1094 static int
1095 dump_recorded_exit (void **slot, void *file)
1096 {
1097 struct loop_exit *exit = (struct loop_exit *) *slot;
1098 unsigned n = 0;
1099 edge e = exit->e;
1100
1101 for (; exit != NULL; exit = exit->next_e)
1102 n++;
1103
1104 fprintf ((FILE*) file, "Edge %d->%d exits %u loops\n",
1105 e->src->index, e->dest->index, n);
1106
1107 return 1;
1108 }
1109
1110 /* Dumps the recorded exits of loops to FILE. */
1111
1112 extern void dump_recorded_exits (FILE *);
1113 void
1114 dump_recorded_exits (FILE *file)
1115 {
1116 if (!current_loops->exits)
1117 return;
1118 htab_traverse (current_loops->exits, dump_recorded_exit, file);
1119 }
1120
1121 /* Releases lists of loop exits. */
1122
1123 void
1124 release_recorded_exits (void)
1125 {
1126 gcc_assert (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS));
1127 htab_delete (current_loops->exits);
1128 current_loops->exits = NULL;
1129 loops_state_clear (LOOPS_HAVE_RECORDED_EXITS);
1130 }
1131
1132 /* Returns the list of the exit edges of a LOOP. */
1133
1134 vec<edge>
1135 get_loop_exit_edges (const struct loop *loop)
1136 {
1137 vec<edge> edges = vNULL;
1138 edge e;
1139 unsigned i;
1140 basic_block *body;
1141 edge_iterator ei;
1142 struct loop_exit *exit;
1143
1144 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
1145
1146 /* If we maintain the lists of exits, use them. Otherwise we must
1147 scan the body of the loop. */
1148 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1149 {
1150 for (exit = loop->exits->next; exit->e; exit = exit->next)
1151 edges.safe_push (exit->e);
1152 }
1153 else
1154 {
1155 body = get_loop_body (loop);
1156 for (i = 0; i < loop->num_nodes; i++)
1157 FOR_EACH_EDGE (e, ei, body[i]->succs)
1158 {
1159 if (!flow_bb_inside_loop_p (loop, e->dest))
1160 edges.safe_push (e);
1161 }
1162 free (body);
1163 }
1164
1165 return edges;
1166 }
1167
1168 /* Counts the number of conditional branches inside LOOP. */
1169
1170 unsigned
1171 num_loop_branches (const struct loop *loop)
1172 {
1173 unsigned i, n;
1174 basic_block * body;
1175
1176 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
1177
1178 body = get_loop_body (loop);
1179 n = 0;
1180 for (i = 0; i < loop->num_nodes; i++)
1181 if (EDGE_COUNT (body[i]->succs) >= 2)
1182 n++;
1183 free (body);
1184
1185 return n;
1186 }
1187
1188 /* Adds basic block BB to LOOP. */
1189 void
1190 add_bb_to_loop (basic_block bb, struct loop *loop)
1191 {
1192 unsigned i;
1193 loop_p ploop;
1194 edge_iterator ei;
1195 edge e;
1196
1197 gcc_assert (bb->loop_father == NULL);
1198 bb->loop_father = loop;
1199 loop->num_nodes++;
1200 FOR_EACH_VEC_SAFE_ELT (loop->superloops, i, ploop)
1201 ploop->num_nodes++;
1202
1203 FOR_EACH_EDGE (e, ei, bb->succs)
1204 {
1205 rescan_loop_exit (e, true, false);
1206 }
1207 FOR_EACH_EDGE (e, ei, bb->preds)
1208 {
1209 rescan_loop_exit (e, true, false);
1210 }
1211 }
1212
1213 /* Remove basic block BB from loops. */
1214 void
1215 remove_bb_from_loops (basic_block bb)
1216 {
1217 unsigned i;
1218 struct loop *loop = bb->loop_father;
1219 loop_p ploop;
1220 edge_iterator ei;
1221 edge e;
1222
1223 gcc_assert (loop != NULL);
1224 loop->num_nodes--;
1225 FOR_EACH_VEC_SAFE_ELT (loop->superloops, i, ploop)
1226 ploop->num_nodes--;
1227 bb->loop_father = NULL;
1228
1229 FOR_EACH_EDGE (e, ei, bb->succs)
1230 {
1231 rescan_loop_exit (e, false, true);
1232 }
1233 FOR_EACH_EDGE (e, ei, bb->preds)
1234 {
1235 rescan_loop_exit (e, false, true);
1236 }
1237 }
1238
1239 /* Finds nearest common ancestor in loop tree for given loops. */
1240 struct loop *
1241 find_common_loop (struct loop *loop_s, struct loop *loop_d)
1242 {
1243 unsigned sdepth, ddepth;
1244
1245 if (!loop_s) return loop_d;
1246 if (!loop_d) return loop_s;
1247
1248 sdepth = loop_depth (loop_s);
1249 ddepth = loop_depth (loop_d);
1250
1251 if (sdepth < ddepth)
1252 loop_d = (*loop_d->superloops)[sdepth];
1253 else if (sdepth > ddepth)
1254 loop_s = (*loop_s->superloops)[ddepth];
1255
1256 while (loop_s != loop_d)
1257 {
1258 loop_s = loop_outer (loop_s);
1259 loop_d = loop_outer (loop_d);
1260 }
1261 return loop_s;
1262 }
1263
1264 /* Removes LOOP from structures and frees its data. */
1265
1266 void
1267 delete_loop (struct loop *loop)
1268 {
1269 /* Remove the loop from structure. */
1270 flow_loop_tree_node_remove (loop);
1271
1272 /* Remove loop from loops array. */
1273 (*current_loops->larray)[loop->num] = NULL;
1274
1275 /* Free loop data. */
1276 flow_loop_free (loop);
1277 }
1278
1279 /* Cancels the LOOP; it must be innermost one. */
1280
1281 static void
1282 cancel_loop (struct loop *loop)
1283 {
1284 basic_block *bbs;
1285 unsigned i;
1286 struct loop *outer = loop_outer (loop);
1287
1288 gcc_assert (!loop->inner);
1289
1290 /* Move blocks up one level (they should be removed as soon as possible). */
1291 bbs = get_loop_body (loop);
1292 for (i = 0; i < loop->num_nodes; i++)
1293 bbs[i]->loop_father = outer;
1294
1295 free (bbs);
1296 delete_loop (loop);
1297 }
1298
1299 /* Cancels LOOP and all its subloops. */
1300 void
1301 cancel_loop_tree (struct loop *loop)
1302 {
1303 while (loop->inner)
1304 cancel_loop_tree (loop->inner);
1305 cancel_loop (loop);
1306 }
1307
1308 /* Checks that information about loops is correct
1309 -- sizes of loops are all right
1310 -- results of get_loop_body really belong to the loop
1311 -- loop header have just single entry edge and single latch edge
1312 -- loop latches have only single successor that is header of their loop
1313 -- irreducible loops are correctly marked
1314 -- the cached loop depth and loop father of each bb is correct
1315 */
1316 DEBUG_FUNCTION void
1317 verify_loop_structure (void)
1318 {
1319 unsigned *sizes, i, j;
1320 sbitmap irreds;
1321 basic_block bb, *bbs;
1322 struct loop *loop;
1323 int err = 0;
1324 edge e;
1325 unsigned num = number_of_loops (cfun);
1326 struct loop_exit *exit, *mexit;
1327 bool dom_available = dom_info_available_p (CDI_DOMINATORS);
1328 sbitmap visited;
1329
1330 if (loops_state_satisfies_p (LOOPS_NEED_FIXUP))
1331 {
1332 error ("loop verification on loop tree that needs fixup");
1333 err = 1;
1334 }
1335
1336 /* We need up-to-date dominators, compute or verify them. */
1337 if (!dom_available)
1338 calculate_dominance_info (CDI_DOMINATORS);
1339 else
1340 verify_dominators (CDI_DOMINATORS);
1341
1342 /* Check the headers. */
1343 FOR_EACH_BB (bb)
1344 if (bb_loop_header_p (bb))
1345 {
1346 if (bb->loop_father->header == NULL)
1347 {
1348 error ("loop with header %d marked for removal", bb->index);
1349 err = 1;
1350 }
1351 else if (bb->loop_father->header != bb)
1352 {
1353 error ("loop with header %d not in loop tree", bb->index);
1354 err = 1;
1355 }
1356 }
1357 else if (bb->loop_father->header == bb)
1358 {
1359 error ("non-loop with header %d not marked for removal", bb->index);
1360 err = 1;
1361 }
1362
1363 /* Check the recorded loop father and sizes of loops. */
1364 visited = sbitmap_alloc (last_basic_block);
1365 bitmap_clear (visited);
1366 bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
1367 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
1368 {
1369 unsigned n;
1370
1371 if (loop->header == NULL)
1372 {
1373 error ("removed loop %d in loop tree", loop->num);
1374 err = 1;
1375 continue;
1376 }
1377
1378 n = get_loop_body_with_size (loop, bbs, n_basic_blocks_for_fn (cfun));
1379 if (loop->num_nodes != n)
1380 {
1381 error ("size of loop %d should be %d, not %d",
1382 loop->num, n, loop->num_nodes);
1383 err = 1;
1384 }
1385
1386 for (j = 0; j < n; j++)
1387 {
1388 bb = bbs[j];
1389
1390 if (!flow_bb_inside_loop_p (loop, bb))
1391 {
1392 error ("bb %d does not belong to loop %d",
1393 bb->index, loop->num);
1394 err = 1;
1395 }
1396
1397 /* Ignore this block if it is in an inner loop. */
1398 if (bitmap_bit_p (visited, bb->index))
1399 continue;
1400 bitmap_set_bit (visited, bb->index);
1401
1402 if (bb->loop_father != loop)
1403 {
1404 error ("bb %d has father loop %d, should be loop %d",
1405 bb->index, bb->loop_father->num, loop->num);
1406 err = 1;
1407 }
1408 }
1409 }
1410 free (bbs);
1411 sbitmap_free (visited);
1412
1413 /* Check headers and latches. */
1414 FOR_EACH_LOOP (loop, 0)
1415 {
1416 i = loop->num;
1417 if (loop->header == NULL)
1418 continue;
1419 if (!bb_loop_header_p (loop->header))
1420 {
1421 error ("loop %d%'s header is not a loop header", i);
1422 err = 1;
1423 }
1424 if (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS)
1425 && EDGE_COUNT (loop->header->preds) != 2)
1426 {
1427 error ("loop %d%'s header does not have exactly 2 entries", i);
1428 err = 1;
1429 }
1430 if (loop->latch)
1431 {
1432 if (!find_edge (loop->latch, loop->header))
1433 {
1434 error ("loop %d%'s latch does not have an edge to its header", i);
1435 err = 1;
1436 }
1437 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, loop->header))
1438 {
1439 error ("loop %d%'s latch is not dominated by its header", i);
1440 err = 1;
1441 }
1442 }
1443 if (loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES))
1444 {
1445 if (!single_succ_p (loop->latch))
1446 {
1447 error ("loop %d%'s latch does not have exactly 1 successor", i);
1448 err = 1;
1449 }
1450 if (single_succ (loop->latch) != loop->header)
1451 {
1452 error ("loop %d%'s latch does not have header as successor", i);
1453 err = 1;
1454 }
1455 if (loop->latch->loop_father != loop)
1456 {
1457 error ("loop %d%'s latch does not belong directly to it", i);
1458 err = 1;
1459 }
1460 }
1461 if (loop->header->loop_father != loop)
1462 {
1463 error ("loop %d%'s header does not belong directly to it", i);
1464 err = 1;
1465 }
1466 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS)
1467 && (loop_latch_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP))
1468 {
1469 error ("loop %d%'s latch is marked as part of irreducible region", i);
1470 err = 1;
1471 }
1472 }
1473
1474 /* Check irreducible loops. */
1475 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
1476 {
1477 /* Record old info. */
1478 irreds = sbitmap_alloc (last_basic_block);
1479 FOR_EACH_BB (bb)
1480 {
1481 edge_iterator ei;
1482 if (bb->flags & BB_IRREDUCIBLE_LOOP)
1483 bitmap_set_bit (irreds, bb->index);
1484 else
1485 bitmap_clear_bit (irreds, bb->index);
1486 FOR_EACH_EDGE (e, ei, bb->succs)
1487 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
1488 e->flags |= EDGE_ALL_FLAGS + 1;
1489 }
1490
1491 /* Recount it. */
1492 mark_irreducible_loops ();
1493
1494 /* Compare. */
1495 FOR_EACH_BB (bb)
1496 {
1497 edge_iterator ei;
1498
1499 if ((bb->flags & BB_IRREDUCIBLE_LOOP)
1500 && !bitmap_bit_p (irreds, bb->index))
1501 {
1502 error ("basic block %d should be marked irreducible", bb->index);
1503 err = 1;
1504 }
1505 else if (!(bb->flags & BB_IRREDUCIBLE_LOOP)
1506 && bitmap_bit_p (irreds, bb->index))
1507 {
1508 error ("basic block %d should not be marked irreducible", bb->index);
1509 err = 1;
1510 }
1511 FOR_EACH_EDGE (e, ei, bb->succs)
1512 {
1513 if ((e->flags & EDGE_IRREDUCIBLE_LOOP)
1514 && !(e->flags & (EDGE_ALL_FLAGS + 1)))
1515 {
1516 error ("edge from %d to %d should be marked irreducible",
1517 e->src->index, e->dest->index);
1518 err = 1;
1519 }
1520 else if (!(e->flags & EDGE_IRREDUCIBLE_LOOP)
1521 && (e->flags & (EDGE_ALL_FLAGS + 1)))
1522 {
1523 error ("edge from %d to %d should not be marked irreducible",
1524 e->src->index, e->dest->index);
1525 err = 1;
1526 }
1527 e->flags &= ~(EDGE_ALL_FLAGS + 1);
1528 }
1529 }
1530 free (irreds);
1531 }
1532
1533 /* Check the recorded loop exits. */
1534 FOR_EACH_LOOP (loop, 0)
1535 {
1536 if (!loop->exits || loop->exits->e != NULL)
1537 {
1538 error ("corrupted head of the exits list of loop %d",
1539 loop->num);
1540 err = 1;
1541 }
1542 else
1543 {
1544 /* Check that the list forms a cycle, and all elements except
1545 for the head are nonnull. */
1546 for (mexit = loop->exits, exit = mexit->next, i = 0;
1547 exit->e && exit != mexit;
1548 exit = exit->next)
1549 {
1550 if (i++ & 1)
1551 mexit = mexit->next;
1552 }
1553
1554 if (exit != loop->exits)
1555 {
1556 error ("corrupted exits list of loop %d", loop->num);
1557 err = 1;
1558 }
1559 }
1560
1561 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1562 {
1563 if (loop->exits->next != loop->exits)
1564 {
1565 error ("nonempty exits list of loop %d, but exits are not recorded",
1566 loop->num);
1567 err = 1;
1568 }
1569 }
1570 }
1571
1572 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1573 {
1574 unsigned n_exits = 0, eloops;
1575
1576 sizes = XCNEWVEC (unsigned, num);
1577 memset (sizes, 0, sizeof (unsigned) * num);
1578 FOR_EACH_BB (bb)
1579 {
1580 edge_iterator ei;
1581 if (bb->loop_father == current_loops->tree_root)
1582 continue;
1583 FOR_EACH_EDGE (e, ei, bb->succs)
1584 {
1585 if (flow_bb_inside_loop_p (bb->loop_father, e->dest))
1586 continue;
1587
1588 n_exits++;
1589 exit = get_exit_descriptions (e);
1590 if (!exit)
1591 {
1592 error ("exit %d->%d not recorded",
1593 e->src->index, e->dest->index);
1594 err = 1;
1595 }
1596 eloops = 0;
1597 for (; exit; exit = exit->next_e)
1598 eloops++;
1599
1600 for (loop = bb->loop_father;
1601 loop != e->dest->loop_father
1602 /* When a loop exit is also an entry edge which
1603 can happen when avoiding CFG manipulations
1604 then the last loop exited is the outer loop
1605 of the loop entered. */
1606 && loop != loop_outer (e->dest->loop_father);
1607 loop = loop_outer (loop))
1608 {
1609 eloops--;
1610 sizes[loop->num]++;
1611 }
1612
1613 if (eloops != 0)
1614 {
1615 error ("wrong list of exited loops for edge %d->%d",
1616 e->src->index, e->dest->index);
1617 err = 1;
1618 }
1619 }
1620 }
1621
1622 if (n_exits != htab_elements (current_loops->exits))
1623 {
1624 error ("too many loop exits recorded");
1625 err = 1;
1626 }
1627
1628 FOR_EACH_LOOP (loop, 0)
1629 {
1630 eloops = 0;
1631 for (exit = loop->exits->next; exit->e; exit = exit->next)
1632 eloops++;
1633 if (eloops != sizes[loop->num])
1634 {
1635 error ("%d exits recorded for loop %d (having %d exits)",
1636 eloops, loop->num, sizes[loop->num]);
1637 err = 1;
1638 }
1639 }
1640
1641 free (sizes);
1642 }
1643
1644 gcc_assert (!err);
1645
1646 if (!dom_available)
1647 free_dominance_info (CDI_DOMINATORS);
1648 }
1649
1650 /* Returns latch edge of LOOP. */
1651 edge
1652 loop_latch_edge (const struct loop *loop)
1653 {
1654 return find_edge (loop->latch, loop->header);
1655 }
1656
1657 /* Returns preheader edge of LOOP. */
1658 edge
1659 loop_preheader_edge (const struct loop *loop)
1660 {
1661 edge e;
1662 edge_iterator ei;
1663
1664 gcc_assert (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS));
1665
1666 FOR_EACH_EDGE (e, ei, loop->header->preds)
1667 if (e->src != loop->latch)
1668 break;
1669
1670 return e;
1671 }
1672
1673 /* Returns true if E is an exit of LOOP. */
1674
1675 bool
1676 loop_exit_edge_p (const struct loop *loop, const_edge e)
1677 {
1678 return (flow_bb_inside_loop_p (loop, e->src)
1679 && !flow_bb_inside_loop_p (loop, e->dest));
1680 }
1681
1682 /* Returns the single exit edge of LOOP, or NULL if LOOP has either no exit
1683 or more than one exit. If loops do not have the exits recorded, NULL
1684 is returned always. */
1685
1686 edge
1687 single_exit (const struct loop *loop)
1688 {
1689 struct loop_exit *exit = loop->exits->next;
1690
1691 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1692 return NULL;
1693
1694 if (exit->e && exit->next == loop->exits)
1695 return exit->e;
1696 else
1697 return NULL;
1698 }
1699
1700 /* Returns true when BB has an incoming edge exiting LOOP. */
1701
1702 bool
1703 loop_exits_to_bb_p (struct loop *loop, basic_block bb)
1704 {
1705 edge e;
1706 edge_iterator ei;
1707
1708 FOR_EACH_EDGE (e, ei, bb->preds)
1709 if (loop_exit_edge_p (loop, e))
1710 return true;
1711
1712 return false;
1713 }
1714
1715 /* Returns true when BB has an outgoing edge exiting LOOP. */
1716
1717 bool
1718 loop_exits_from_bb_p (struct loop *loop, basic_block bb)
1719 {
1720 edge e;
1721 edge_iterator ei;
1722
1723 FOR_EACH_EDGE (e, ei, bb->succs)
1724 if (loop_exit_edge_p (loop, e))
1725 return true;
1726
1727 return false;
1728 }
1729
1730 /* Return location corresponding to the loop control condition if possible. */
1731
1732 location_t
1733 get_loop_location (struct loop *loop)
1734 {
1735 rtx insn = NULL;
1736 struct niter_desc *desc = NULL;
1737 edge exit;
1738
1739 /* For a for or while loop, we would like to return the location
1740 of the for or while statement, if possible. To do this, look
1741 for the branch guarding the loop back-edge. */
1742
1743 /* If this is a simple loop with an in_edge, then the loop control
1744 branch is typically at the end of its source. */
1745 desc = get_simple_loop_desc (loop);
1746 if (desc->in_edge)
1747 {
1748 FOR_BB_INSNS_REVERSE (desc->in_edge->src, insn)
1749 {
1750 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1751 return INSN_LOCATION (insn);
1752 }
1753 }
1754 /* If loop has a single exit, then the loop control branch
1755 must be at the end of its source. */
1756 if ((exit = single_exit (loop)))
1757 {
1758 FOR_BB_INSNS_REVERSE (exit->src, insn)
1759 {
1760 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1761 return INSN_LOCATION (insn);
1762 }
1763 }
1764 /* Next check the latch, to see if it is non-empty. */
1765 FOR_BB_INSNS_REVERSE (loop->latch, insn)
1766 {
1767 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1768 return INSN_LOCATION (insn);
1769 }
1770 /* Finally, if none of the above identifies the loop control branch,
1771 return the first location in the loop header. */
1772 FOR_BB_INSNS (loop->header, insn)
1773 {
1774 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1775 return INSN_LOCATION (insn);
1776 }
1777 /* If all else fails, simply return the current function location. */
1778 return DECL_SOURCE_LOCATION (current_function_decl);
1779 }
1780
1781 /* Records that every statement in LOOP is executed I_BOUND times.
1782 REALISTIC is true if I_BOUND is expected to be close to the real number
1783 of iterations. UPPER is true if we are sure the loop iterates at most
1784 I_BOUND times. */
1785
1786 void
1787 record_niter_bound (struct loop *loop, double_int i_bound, bool realistic,
1788 bool upper)
1789 {
1790 /* Update the bounds only when there is no previous estimation, or when the
1791 current estimation is smaller. */
1792 if (upper
1793 && (!loop->any_upper_bound
1794 || i_bound.ult (loop->nb_iterations_upper_bound)))
1795 {
1796 loop->any_upper_bound = true;
1797 loop->nb_iterations_upper_bound = i_bound;
1798 }
1799 if (realistic
1800 && (!loop->any_estimate
1801 || i_bound.ult (loop->nb_iterations_estimate)))
1802 {
1803 loop->any_estimate = true;
1804 loop->nb_iterations_estimate = i_bound;
1805 }
1806
1807 /* If an upper bound is smaller than the realistic estimate of the
1808 number of iterations, use the upper bound instead. */
1809 if (loop->any_upper_bound
1810 && loop->any_estimate
1811 && loop->nb_iterations_upper_bound.ult (loop->nb_iterations_estimate))
1812 loop->nb_iterations_estimate = loop->nb_iterations_upper_bound;
1813 }
1814
1815 /* Similar to get_estimated_loop_iterations, but returns the estimate only
1816 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
1817 on the number of iterations of LOOP could not be derived, returns -1. */
1818
1819 HOST_WIDE_INT
1820 get_estimated_loop_iterations_int (struct loop *loop)
1821 {
1822 double_int nit;
1823 HOST_WIDE_INT hwi_nit;
1824
1825 if (!get_estimated_loop_iterations (loop, &nit))
1826 return -1;
1827
1828 if (!nit.fits_shwi ())
1829 return -1;
1830 hwi_nit = nit.to_shwi ();
1831
1832 return hwi_nit < 0 ? -1 : hwi_nit;
1833 }
1834
1835 /* Returns an upper bound on the number of executions of statements
1836 in the LOOP. For statements before the loop exit, this exceeds
1837 the number of execution of the latch by one. */
1838
1839 HOST_WIDE_INT
1840 max_stmt_executions_int (struct loop *loop)
1841 {
1842 HOST_WIDE_INT nit = get_max_loop_iterations_int (loop);
1843 HOST_WIDE_INT snit;
1844
1845 if (nit == -1)
1846 return -1;
1847
1848 snit = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) nit + 1);
1849
1850 /* If the computation overflows, return -1. */
1851 return snit < 0 ? -1 : snit;
1852 }
1853
1854 /* Sets NIT to the estimated number of executions of the latch of the
1855 LOOP. If we have no reliable estimate, the function returns false, otherwise
1856 returns true. */
1857
1858 bool
1859 get_estimated_loop_iterations (struct loop *loop, double_int *nit)
1860 {
1861 /* Even if the bound is not recorded, possibly we can derrive one from
1862 profile. */
1863 if (!loop->any_estimate)
1864 {
1865 if (loop->header->count)
1866 {
1867 *nit = gcov_type_to_double_int
1868 (expected_loop_iterations_unbounded (loop) + 1);
1869 return true;
1870 }
1871 return false;
1872 }
1873
1874 *nit = loop->nb_iterations_estimate;
1875 return true;
1876 }
1877
1878 /* Sets NIT to an upper bound for the maximum number of executions of the
1879 latch of the LOOP. If we have no reliable estimate, the function returns
1880 false, otherwise returns true. */
1881
1882 bool
1883 get_max_loop_iterations (struct loop *loop, double_int *nit)
1884 {
1885 if (!loop->any_upper_bound)
1886 return false;
1887
1888 *nit = loop->nb_iterations_upper_bound;
1889 return true;
1890 }
1891
1892 /* Similar to get_max_loop_iterations, but returns the estimate only
1893 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
1894 on the number of iterations of LOOP could not be derived, returns -1. */
1895
1896 HOST_WIDE_INT
1897 get_max_loop_iterations_int (struct loop *loop)
1898 {
1899 double_int nit;
1900 HOST_WIDE_INT hwi_nit;
1901
1902 if (!get_max_loop_iterations (loop, &nit))
1903 return -1;
1904
1905 if (!nit.fits_shwi ())
1906 return -1;
1907 hwi_nit = nit.to_shwi ();
1908
1909 return hwi_nit < 0 ? -1 : hwi_nit;
1910 }
1911
1912 /* Returns the loop depth of the loop BB belongs to. */
1913
1914 int
1915 bb_loop_depth (const_basic_block bb)
1916 {
1917 return bb->loop_father ? loop_depth (bb->loop_father) : 0;
1918 }