i386.c (enum pta_flags): Move out of struct scope...
[gcc.git] / gcc / cfgloop.c
1 /* Natural loop discovery code for GNU compiler.
2 Copyright (C) 2000, 2001, 2003, 2004, 2005 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "hard-reg-set.h"
27 #include "obstack.h"
28 #include "function.h"
29 #include "basic-block.h"
30 #include "toplev.h"
31 #include "cfgloop.h"
32 #include "flags.h"
33 #include "tree.h"
34 #include "tree-flow.h"
35 #include "pointer-set.h"
36 #include "output.h"
37 #include "ggc.h"
38
39 static void flow_loops_cfg_dump (FILE *);
40 \f
41 /* Dump loop related CFG information. */
42
43 static void
44 flow_loops_cfg_dump (FILE *file)
45 {
46 basic_block bb;
47
48 if (!file)
49 return;
50
51 FOR_EACH_BB (bb)
52 {
53 edge succ;
54 edge_iterator ei;
55
56 fprintf (file, ";; %d succs { ", bb->index);
57 FOR_EACH_EDGE (succ, ei, bb->succs)
58 fprintf (file, "%d ", succ->dest->index);
59 fprintf (file, "}\n");
60 }
61 }
62
63 /* Return nonzero if the nodes of LOOP are a subset of OUTER. */
64
65 bool
66 flow_loop_nested_p (const struct loop *outer, const struct loop *loop)
67 {
68 unsigned odepth = loop_depth (outer);
69
70 return (loop_depth (loop) > odepth
71 && VEC_index (loop_p, loop->superloops, odepth) == outer);
72 }
73
74 /* Returns the loop such that LOOP is nested DEPTH (indexed from zero)
75 loops within LOOP. */
76
77 struct loop *
78 superloop_at_depth (struct loop *loop, unsigned depth)
79 {
80 unsigned ldepth = loop_depth (loop);
81
82 gcc_assert (depth <= ldepth);
83
84 if (depth == ldepth)
85 return loop;
86
87 return VEC_index (loop_p, loop->superloops, depth);
88 }
89
90 /* Returns the list of the latch edges of LOOP. */
91
92 static VEC (edge, heap) *
93 get_loop_latch_edges (const struct loop *loop)
94 {
95 edge_iterator ei;
96 edge e;
97 VEC (edge, heap) *ret = NULL;
98
99 FOR_EACH_EDGE (e, ei, loop->header->preds)
100 {
101 if (dominated_by_p (CDI_DOMINATORS, e->src, loop->header))
102 VEC_safe_push (edge, heap, ret, e);
103 }
104
105 return ret;
106 }
107
108 /* Dump the loop information specified by LOOP to the stream FILE
109 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
110
111 void
112 flow_loop_dump (const struct loop *loop, FILE *file,
113 void (*loop_dump_aux) (const struct loop *, FILE *, int),
114 int verbose)
115 {
116 basic_block *bbs;
117 unsigned i;
118 VEC (edge, heap) *latches;
119 edge e;
120
121 if (! loop || ! loop->header)
122 return;
123
124 fprintf (file, ";;\n;; Loop %d\n", loop->num);
125
126 fprintf (file, ";; header %d, ", loop->header->index);
127 if (loop->latch)
128 fprintf (file, "latch %d\n", loop->latch->index);
129 else
130 {
131 fprintf (file, "multiple latches:");
132 latches = get_loop_latch_edges (loop);
133 for (i = 0; VEC_iterate (edge, latches, i, e); i++)
134 fprintf (file, " %d", e->src->index);
135 VEC_free (edge, heap, latches);
136 fprintf (file, "\n");
137 }
138
139 fprintf (file, ";; depth %d, outer %ld\n",
140 loop_depth (loop), (long) (loop_outer (loop)
141 ? loop_outer (loop)->num : -1));
142
143 fprintf (file, ";; nodes:");
144 bbs = get_loop_body (loop);
145 for (i = 0; i < loop->num_nodes; i++)
146 fprintf (file, " %d", bbs[i]->index);
147 free (bbs);
148 fprintf (file, "\n");
149
150 if (loop_dump_aux)
151 loop_dump_aux (loop, file, verbose);
152 }
153
154 /* Dump the loop information about loops to the stream FILE,
155 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
156
157 void
158 flow_loops_dump (FILE *file, void (*loop_dump_aux) (const struct loop *, FILE *, int), int verbose)
159 {
160 loop_iterator li;
161 struct loop *loop;
162
163 if (!current_loops || ! file)
164 return;
165
166 fprintf (file, ";; %d loops found\n", number_of_loops ());
167
168 FOR_EACH_LOOP (li, loop, LI_INCLUDE_ROOT)
169 {
170 flow_loop_dump (loop, file, loop_dump_aux, verbose);
171 }
172
173 if (verbose)
174 flow_loops_cfg_dump (file);
175 }
176
177 /* Free data allocated for LOOP. */
178
179 void
180 flow_loop_free (struct loop *loop)
181 {
182 struct loop_exit *exit, *next;
183
184 VEC_free (loop_p, gc, loop->superloops);
185
186 /* Break the list of the loop exit records. They will be freed when the
187 corresponding edge is rescanned or removed, and this avoids
188 accessing the (already released) head of the list stored in the
189 loop structure. */
190 for (exit = loop->exits->next; exit != loop->exits; exit = next)
191 {
192 next = exit->next;
193 exit->next = exit;
194 exit->prev = exit;
195 }
196
197 ggc_free (loop->exits);
198 ggc_free (loop);
199 }
200
201 /* Free all the memory allocated for LOOPS. */
202
203 void
204 flow_loops_free (struct loops *loops)
205 {
206 if (loops->larray)
207 {
208 unsigned i;
209 loop_p loop;
210
211 /* Free the loop descriptors. */
212 for (i = 0; VEC_iterate (loop_p, loops->larray, i, loop); i++)
213 {
214 if (!loop)
215 continue;
216
217 flow_loop_free (loop);
218 }
219
220 VEC_free (loop_p, gc, loops->larray);
221 }
222 }
223
224 /* Find the nodes contained within the LOOP with header HEADER.
225 Return the number of nodes within the loop. */
226
227 int
228 flow_loop_nodes_find (basic_block header, struct loop *loop)
229 {
230 VEC (basic_block, heap) *stack = NULL;
231 int num_nodes = 1;
232 edge latch;
233 edge_iterator latch_ei;
234 unsigned depth = loop_depth (loop);
235
236 header->loop_father = loop;
237 header->loop_depth = depth;
238
239 FOR_EACH_EDGE (latch, latch_ei, loop->header->preds)
240 {
241 if (latch->src->loop_father == loop
242 || !dominated_by_p (CDI_DOMINATORS, latch->src, loop->header))
243 continue;
244
245 num_nodes++;
246 VEC_safe_push (basic_block, heap, stack, latch->src);
247 latch->src->loop_father = loop;
248 latch->src->loop_depth = depth;
249
250 while (!VEC_empty (basic_block, stack))
251 {
252 basic_block node;
253 edge e;
254 edge_iterator ei;
255
256 node = VEC_pop (basic_block, stack);
257
258 FOR_EACH_EDGE (e, ei, node->preds)
259 {
260 basic_block ancestor = e->src;
261
262 if (ancestor->loop_father != loop)
263 {
264 ancestor->loop_father = loop;
265 ancestor->loop_depth = depth;
266 num_nodes++;
267 VEC_safe_push (basic_block, heap, stack, ancestor);
268 }
269 }
270 }
271 }
272 VEC_free (basic_block, heap, stack);
273
274 return num_nodes;
275 }
276
277 /* Records the vector of superloops of the loop LOOP, whose immediate
278 superloop is FATHER. */
279
280 static void
281 establish_preds (struct loop *loop, struct loop *father)
282 {
283 loop_p ploop;
284 unsigned depth = loop_depth (father) + 1;
285 unsigned i;
286
287 /* Remember the current loop depth if it is the largest seen so far. */
288 cfun->max_loop_depth = MAX (cfun->max_loop_depth, (int) depth);
289
290 VEC_truncate (loop_p, loop->superloops, 0);
291 VEC_reserve (loop_p, gc, loop->superloops, depth);
292 for (i = 0; VEC_iterate (loop_p, father->superloops, i, ploop); i++)
293 VEC_quick_push (loop_p, loop->superloops, ploop);
294 VEC_quick_push (loop_p, loop->superloops, father);
295
296 for (ploop = loop->inner; ploop; ploop = ploop->next)
297 establish_preds (ploop, loop);
298 }
299
300 /* Add LOOP to the loop hierarchy tree where FATHER is father of the
301 added loop. If LOOP has some children, take care of that their
302 pred field will be initialized correctly. */
303
304 void
305 flow_loop_tree_node_add (struct loop *father, struct loop *loop)
306 {
307 loop->next = father->inner;
308 father->inner = loop;
309
310 establish_preds (loop, father);
311 }
312
313 /* Remove LOOP from the loop hierarchy tree. */
314
315 void
316 flow_loop_tree_node_remove (struct loop *loop)
317 {
318 struct loop *prev, *father;
319
320 father = loop_outer (loop);
321
322 /* Remove loop from the list of sons. */
323 if (father->inner == loop)
324 father->inner = loop->next;
325 else
326 {
327 for (prev = father->inner; prev->next != loop; prev = prev->next)
328 continue;
329 prev->next = loop->next;
330 }
331
332 VEC_truncate (loop_p, loop->superloops, 0);
333 }
334
335 /* Allocates and returns new loop structure. */
336
337 struct loop *
338 alloc_loop (void)
339 {
340 struct loop *loop = GGC_CNEW (struct loop);
341
342 loop->exits = GGC_CNEW (struct loop_exit);
343 loop->exits->next = loop->exits->prev = loop->exits;
344
345 return loop;
346 }
347
348 /* Find all the natural loops in the function and save in LOOPS structure and
349 recalculate loop_depth information in basic block structures.
350 Return the number of natural loops found. */
351
352 int
353 flow_loops_find (struct loops *loops)
354 {
355 int b;
356 int num_loops;
357 edge e;
358 sbitmap headers;
359 int *dfs_order;
360 int *rc_order;
361 basic_block header;
362 basic_block bb;
363 struct loop *root;
364
365 memset (loops, 0, sizeof *loops);
366
367 /* We are going to recount the maximum loop depth,
368 so throw away the last count. */
369 cfun->max_loop_depth = 0;
370
371 /* Taking care of this degenerate case makes the rest of
372 this code simpler. */
373 if (n_basic_blocks == NUM_FIXED_BLOCKS)
374 return 0;
375
376 dfs_order = NULL;
377 rc_order = NULL;
378
379 /* Ensure that the dominators are computed. */
380 calculate_dominance_info (CDI_DOMINATORS);
381
382 /* Count the number of loop headers. This should be the
383 same as the number of natural loops. */
384 headers = sbitmap_alloc (last_basic_block);
385 sbitmap_zero (headers);
386
387 num_loops = 0;
388 FOR_EACH_BB (header)
389 {
390 edge_iterator ei;
391
392 header->loop_depth = 0;
393
394 /* If we have an abnormal predecessor, do not consider the
395 loop (not worth the problems). */
396 FOR_EACH_EDGE (e, ei, header->preds)
397 if (e->flags & EDGE_ABNORMAL)
398 break;
399 if (e)
400 continue;
401
402 FOR_EACH_EDGE (e, ei, header->preds)
403 {
404 basic_block latch = e->src;
405
406 gcc_assert (!(e->flags & EDGE_ABNORMAL));
407
408 /* Look for back edges where a predecessor is dominated
409 by this block. A natural loop has a single entry
410 node (header) that dominates all the nodes in the
411 loop. It also has single back edge to the header
412 from a latch node. */
413 if (latch != ENTRY_BLOCK_PTR
414 && dominated_by_p (CDI_DOMINATORS, latch, header))
415 {
416 /* Shared headers should be eliminated by now. */
417 SET_BIT (headers, header->index);
418 num_loops++;
419 }
420 }
421 }
422
423 /* Allocate loop structures. */
424 loops->larray = VEC_alloc (loop_p, gc, num_loops + 1);
425
426 /* Dummy loop containing whole function. */
427 root = alloc_loop ();
428 root->num_nodes = n_basic_blocks;
429 root->latch = EXIT_BLOCK_PTR;
430 root->header = ENTRY_BLOCK_PTR;
431 ENTRY_BLOCK_PTR->loop_father = root;
432 EXIT_BLOCK_PTR->loop_father = root;
433
434 VEC_quick_push (loop_p, loops->larray, root);
435 loops->tree_root = root;
436
437 /* Find and record information about all the natural loops
438 in the CFG. */
439 FOR_EACH_BB (bb)
440 bb->loop_father = loops->tree_root;
441
442 if (num_loops)
443 {
444 /* Compute depth first search order of the CFG so that outer
445 natural loops will be found before inner natural loops. */
446 dfs_order = XNEWVEC (int, n_basic_blocks);
447 rc_order = XNEWVEC (int, n_basic_blocks);
448 pre_and_rev_post_order_compute (dfs_order, rc_order, false);
449
450 num_loops = 1;
451
452 for (b = 0; b < n_basic_blocks - NUM_FIXED_BLOCKS; b++)
453 {
454 struct loop *loop;
455 edge_iterator ei;
456
457 /* Search the nodes of the CFG in reverse completion order
458 so that we can find outer loops first. */
459 if (!TEST_BIT (headers, rc_order[b]))
460 continue;
461
462 header = BASIC_BLOCK (rc_order[b]);
463
464 loop = alloc_loop ();
465 VEC_quick_push (loop_p, loops->larray, loop);
466
467 loop->header = header;
468 loop->num = num_loops;
469 num_loops++;
470
471 flow_loop_tree_node_add (header->loop_father, loop);
472 loop->num_nodes = flow_loop_nodes_find (loop->header, loop);
473
474 /* Look for the latch for this header block, if it has just a
475 single one. */
476 FOR_EACH_EDGE (e, ei, header->preds)
477 {
478 basic_block latch = e->src;
479
480 if (flow_bb_inside_loop_p (loop, latch))
481 {
482 if (loop->latch != NULL)
483 {
484 /* More than one latch edge. */
485 loop->latch = NULL;
486 break;
487 }
488 loop->latch = latch;
489 }
490 }
491 }
492
493 free (dfs_order);
494 free (rc_order);
495 }
496
497 sbitmap_free (headers);
498
499 loops->exits = NULL;
500 loops->state = 0;
501 return VEC_length (loop_p, loops->larray);
502 }
503
504 /* Ratio of frequencies of edges so that one of more latch edges is
505 considered to belong to inner loop with same header. */
506 #define HEAVY_EDGE_RATIO 8
507
508 /* Minimum number of samples for that we apply
509 find_subloop_latch_edge_by_profile heuristics. */
510 #define HEAVY_EDGE_MIN_SAMPLES 10
511
512 /* If the profile info is available, finds an edge in LATCHES that much more
513 frequent than the remaining edges. Returns such an edge, or NULL if we do
514 not find one.
515
516 We do not use guessed profile here, only the measured one. The guessed
517 profile is usually too flat and unreliable for this (and it is mostly based
518 on the loop structure of the program, so it does not make much sense to
519 derive the loop structure from it). */
520
521 static edge
522 find_subloop_latch_edge_by_profile (VEC (edge, heap) *latches)
523 {
524 unsigned i;
525 edge e, me = NULL;
526 gcov_type mcount = 0, tcount = 0;
527
528 for (i = 0; VEC_iterate (edge, latches, i, e); i++)
529 {
530 if (e->count > mcount)
531 {
532 me = e;
533 mcount = e->count;
534 }
535 tcount += e->count;
536 }
537
538 if (tcount < HEAVY_EDGE_MIN_SAMPLES
539 || (tcount - mcount) * HEAVY_EDGE_RATIO > tcount)
540 return NULL;
541
542 if (dump_file)
543 fprintf (dump_file,
544 "Found latch edge %d -> %d using profile information.\n",
545 me->src->index, me->dest->index);
546 return me;
547 }
548
549 /* Among LATCHES, guesses a latch edge of LOOP corresponding to subloop, based
550 on the structure of induction variables. Returns this edge, or NULL if we
551 do not find any.
552
553 We are quite conservative, and look just for an obvious simple innermost
554 loop (which is the case where we would lose the most performance by not
555 disambiguating the loop). More precisely, we look for the following
556 situation: The source of the chosen latch edge dominates sources of all
557 the other latch edges. Additionally, the header does not contain a phi node
558 such that the argument from the chosen edge is equal to the argument from
559 another edge. */
560
561 static edge
562 find_subloop_latch_edge_by_ivs (struct loop *loop, VEC (edge, heap) *latches)
563 {
564 edge e, latch = VEC_index (edge, latches, 0);
565 unsigned i;
566 tree phi, lop;
567 basic_block bb;
568
569 /* Find the candidate for the latch edge. */
570 for (i = 1; VEC_iterate (edge, latches, i, e); i++)
571 if (dominated_by_p (CDI_DOMINATORS, latch->src, e->src))
572 latch = e;
573
574 /* Verify that it dominates all the latch edges. */
575 for (i = 0; VEC_iterate (edge, latches, i, e); i++)
576 if (!dominated_by_p (CDI_DOMINATORS, e->src, latch->src))
577 return NULL;
578
579 /* Check for a phi node that would deny that this is a latch edge of
580 a subloop. */
581 for (phi = phi_nodes (loop->header); phi; phi = PHI_CHAIN (phi))
582 {
583 lop = PHI_ARG_DEF_FROM_EDGE (phi, latch);
584
585 /* Ignore the values that are not changed inside the subloop. */
586 if (TREE_CODE (lop) != SSA_NAME
587 || SSA_NAME_DEF_STMT (lop) == phi)
588 continue;
589 bb = bb_for_stmt (SSA_NAME_DEF_STMT (lop));
590 if (!bb || !flow_bb_inside_loop_p (loop, bb))
591 continue;
592
593 for (i = 0; VEC_iterate (edge, latches, i, e); i++)
594 if (e != latch
595 && PHI_ARG_DEF_FROM_EDGE (phi, e) == lop)
596 return NULL;
597 }
598
599 if (dump_file)
600 fprintf (dump_file,
601 "Found latch edge %d -> %d using iv structure.\n",
602 latch->src->index, latch->dest->index);
603 return latch;
604 }
605
606 /* If we can determine that one of the several latch edges of LOOP behaves
607 as a latch edge of a separate subloop, returns this edge. Otherwise
608 returns NULL. */
609
610 static edge
611 find_subloop_latch_edge (struct loop *loop)
612 {
613 VEC (edge, heap) *latches = get_loop_latch_edges (loop);
614 edge latch = NULL;
615
616 if (VEC_length (edge, latches) > 1)
617 {
618 latch = find_subloop_latch_edge_by_profile (latches);
619
620 if (!latch
621 /* We consider ivs to guess the latch edge only in SSA. Perhaps we
622 should use cfghook for this, but it is hard to imagine it would
623 be useful elsewhere. */
624 && current_ir_type () == IR_GIMPLE)
625 latch = find_subloop_latch_edge_by_ivs (loop, latches);
626 }
627
628 VEC_free (edge, heap, latches);
629 return latch;
630 }
631
632 /* Callback for make_forwarder_block. Returns true if the edge E is marked
633 in the set MFB_REIS_SET. */
634
635 static struct pointer_set_t *mfb_reis_set;
636 static bool
637 mfb_redirect_edges_in_set (edge e)
638 {
639 return pointer_set_contains (mfb_reis_set, e);
640 }
641
642 /* Creates a subloop of LOOP with latch edge LATCH. */
643
644 static void
645 form_subloop (struct loop *loop, edge latch)
646 {
647 edge_iterator ei;
648 edge e, new_entry;
649 struct loop *new_loop;
650
651 mfb_reis_set = pointer_set_create ();
652 FOR_EACH_EDGE (e, ei, loop->header->preds)
653 {
654 if (e != latch)
655 pointer_set_insert (mfb_reis_set, e);
656 }
657 new_entry = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
658 NULL);
659 pointer_set_destroy (mfb_reis_set);
660
661 loop->header = new_entry->src;
662
663 /* Find the blocks and subloops that belong to the new loop, and add it to
664 the appropriate place in the loop tree. */
665 new_loop = alloc_loop ();
666 new_loop->header = new_entry->dest;
667 new_loop->latch = latch->src;
668 add_loop (new_loop, loop);
669 }
670
671 /* Make all the latch edges of LOOP to go to a single forwarder block --
672 a new latch of LOOP. */
673
674 static void
675 merge_latch_edges (struct loop *loop)
676 {
677 VEC (edge, heap) *latches = get_loop_latch_edges (loop);
678 edge latch, e;
679 unsigned i;
680
681 gcc_assert (VEC_length (edge, latches) > 0);
682
683 if (VEC_length (edge, latches) == 1)
684 loop->latch = VEC_index (edge, latches, 0)->src;
685 else
686 {
687 if (dump_file)
688 fprintf (dump_file, "Merged latch edges of loop %d\n", loop->num);
689
690 mfb_reis_set = pointer_set_create ();
691 for (i = 0; VEC_iterate (edge, latches, i, e); i++)
692 pointer_set_insert (mfb_reis_set, e);
693 latch = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
694 NULL);
695 pointer_set_destroy (mfb_reis_set);
696
697 loop->header = latch->dest;
698 loop->latch = latch->src;
699 }
700
701 VEC_free (edge, heap, latches);
702 }
703
704 /* LOOP may have several latch edges. Transform it into (possibly several)
705 loops with single latch edge. */
706
707 static void
708 disambiguate_multiple_latches (struct loop *loop)
709 {
710 edge e;
711
712 /* We eliminate the multiple latches by splitting the header to the forwarder
713 block F and the rest R, and redirecting the edges. There are two cases:
714
715 1) If there is a latch edge E that corresponds to a subloop (we guess
716 that based on profile -- if it is taken much more often than the
717 remaining edges; and on trees, using the information about induction
718 variables of the loops), we redirect E to R, all the remaining edges to
719 F, then rescan the loops and try again for the outer loop.
720 2) If there is no such edge, we redirect all latch edges to F, and the
721 entry edges to R, thus making F the single latch of the loop. */
722
723 if (dump_file)
724 fprintf (dump_file, "Disambiguating loop %d with multiple latches\n",
725 loop->num);
726
727 /* During latch merging, we may need to redirect the entry edges to a new
728 block. This would cause problems if the entry edge was the one from the
729 entry block. To avoid having to handle this case specially, split
730 such entry edge. */
731 e = find_edge (ENTRY_BLOCK_PTR, loop->header);
732 if (e)
733 split_edge (e);
734
735 while (1)
736 {
737 e = find_subloop_latch_edge (loop);
738 if (!e)
739 break;
740
741 form_subloop (loop, e);
742 }
743
744 merge_latch_edges (loop);
745 }
746
747 /* Split loops with multiple latch edges. */
748
749 void
750 disambiguate_loops_with_multiple_latches (void)
751 {
752 loop_iterator li;
753 struct loop *loop;
754
755 FOR_EACH_LOOP (li, loop, 0)
756 {
757 if (!loop->latch)
758 disambiguate_multiple_latches (loop);
759 }
760 }
761
762 /* Return nonzero if basic block BB belongs to LOOP. */
763 bool
764 flow_bb_inside_loop_p (const struct loop *loop, const basic_block bb)
765 {
766 struct loop *source_loop;
767
768 if (bb == ENTRY_BLOCK_PTR || bb == EXIT_BLOCK_PTR)
769 return 0;
770
771 source_loop = bb->loop_father;
772 return loop == source_loop || flow_loop_nested_p (loop, source_loop);
773 }
774
775 /* Enumeration predicate for get_loop_body_with_size. */
776 static bool
777 glb_enum_p (basic_block bb, void *glb_loop)
778 {
779 struct loop *loop = (struct loop *) glb_loop;
780 return (bb != loop->header
781 && dominated_by_p (CDI_DOMINATORS, bb, loop->header));
782 }
783
784 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
785 order against direction of edges from latch. Specially, if
786 header != latch, latch is the 1-st block. LOOP cannot be the fake
787 loop tree root, and its size must be at most MAX_SIZE. The blocks
788 in the LOOP body are stored to BODY, and the size of the LOOP is
789 returned. */
790
791 unsigned
792 get_loop_body_with_size (const struct loop *loop, basic_block *body,
793 unsigned max_size)
794 {
795 return dfs_enumerate_from (loop->header, 1, glb_enum_p,
796 body, max_size, (void *) loop);
797 }
798
799 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
800 order against direction of edges from latch. Specially, if
801 header != latch, latch is the 1-st block. */
802
803 basic_block *
804 get_loop_body (const struct loop *loop)
805 {
806 basic_block *body, bb;
807 unsigned tv = 0;
808
809 gcc_assert (loop->num_nodes);
810
811 body = XCNEWVEC (basic_block, loop->num_nodes);
812
813 if (loop->latch == EXIT_BLOCK_PTR)
814 {
815 /* There may be blocks unreachable from EXIT_BLOCK, hence we need to
816 special-case the fake loop that contains the whole function. */
817 gcc_assert (loop->num_nodes == (unsigned) n_basic_blocks);
818 body[tv++] = loop->header;
819 body[tv++] = EXIT_BLOCK_PTR;
820 FOR_EACH_BB (bb)
821 body[tv++] = bb;
822 }
823 else
824 tv = get_loop_body_with_size (loop, body, loop->num_nodes);
825
826 gcc_assert (tv == loop->num_nodes);
827 return body;
828 }
829
830 /* Fills dominance descendants inside LOOP of the basic block BB into
831 array TOVISIT from index *TV. */
832
833 static void
834 fill_sons_in_loop (const struct loop *loop, basic_block bb,
835 basic_block *tovisit, int *tv)
836 {
837 basic_block son, postpone = NULL;
838
839 tovisit[(*tv)++] = bb;
840 for (son = first_dom_son (CDI_DOMINATORS, bb);
841 son;
842 son = next_dom_son (CDI_DOMINATORS, son))
843 {
844 if (!flow_bb_inside_loop_p (loop, son))
845 continue;
846
847 if (dominated_by_p (CDI_DOMINATORS, loop->latch, son))
848 {
849 postpone = son;
850 continue;
851 }
852 fill_sons_in_loop (loop, son, tovisit, tv);
853 }
854
855 if (postpone)
856 fill_sons_in_loop (loop, postpone, tovisit, tv);
857 }
858
859 /* Gets body of a LOOP (that must be different from the outermost loop)
860 sorted by dominance relation. Additionally, if a basic block s dominates
861 the latch, then only blocks dominated by s are be after it. */
862
863 basic_block *
864 get_loop_body_in_dom_order (const struct loop *loop)
865 {
866 basic_block *tovisit;
867 int tv;
868
869 gcc_assert (loop->num_nodes);
870
871 tovisit = XCNEWVEC (basic_block, loop->num_nodes);
872
873 gcc_assert (loop->latch != EXIT_BLOCK_PTR);
874
875 tv = 0;
876 fill_sons_in_loop (loop, loop->header, tovisit, &tv);
877
878 gcc_assert (tv == (int) loop->num_nodes);
879
880 return tovisit;
881 }
882
883 /* Get body of a LOOP in breadth first sort order. */
884
885 basic_block *
886 get_loop_body_in_bfs_order (const struct loop *loop)
887 {
888 basic_block *blocks;
889 basic_block bb;
890 bitmap visited;
891 unsigned int i = 0;
892 unsigned int vc = 1;
893
894 gcc_assert (loop->num_nodes);
895 gcc_assert (loop->latch != EXIT_BLOCK_PTR);
896
897 blocks = XCNEWVEC (basic_block, loop->num_nodes);
898 visited = BITMAP_ALLOC (NULL);
899
900 bb = loop->header;
901 while (i < loop->num_nodes)
902 {
903 edge e;
904 edge_iterator ei;
905
906 if (!bitmap_bit_p (visited, bb->index))
907 {
908 /* This basic block is now visited */
909 bitmap_set_bit (visited, bb->index);
910 blocks[i++] = bb;
911 }
912
913 FOR_EACH_EDGE (e, ei, bb->succs)
914 {
915 if (flow_bb_inside_loop_p (loop, e->dest))
916 {
917 if (!bitmap_bit_p (visited, e->dest->index))
918 {
919 bitmap_set_bit (visited, e->dest->index);
920 blocks[i++] = e->dest;
921 }
922 }
923 }
924
925 gcc_assert (i >= vc);
926
927 bb = blocks[vc++];
928 }
929
930 BITMAP_FREE (visited);
931 return blocks;
932 }
933
934 /* Hash function for struct loop_exit. */
935
936 static hashval_t
937 loop_exit_hash (const void *ex)
938 {
939 struct loop_exit *exit = (struct loop_exit *) ex;
940
941 return htab_hash_pointer (exit->e);
942 }
943
944 /* Equality function for struct loop_exit. Compares with edge. */
945
946 static int
947 loop_exit_eq (const void *ex, const void *e)
948 {
949 struct loop_exit *exit = (struct loop_exit *) ex;
950
951 return exit->e == e;
952 }
953
954 /* Frees the list of loop exit descriptions EX. */
955
956 static void
957 loop_exit_free (void *ex)
958 {
959 struct loop_exit *exit = (struct loop_exit *) ex, *next;
960
961 for (; exit; exit = next)
962 {
963 next = exit->next_e;
964
965 exit->next->prev = exit->prev;
966 exit->prev->next = exit->next;
967
968 ggc_free (exit);
969 }
970 }
971
972 /* Returns the list of records for E as an exit of a loop. */
973
974 static struct loop_exit *
975 get_exit_descriptions (edge e)
976 {
977 return (struct loop_exit *) htab_find_with_hash (current_loops->exits, e,
978 htab_hash_pointer (e));
979 }
980
981 /* Updates the lists of loop exits in that E appears.
982 If REMOVED is true, E is being removed, and we
983 just remove it from the lists of exits.
984 If NEW_EDGE is true and E is not a loop exit, we
985 do not try to remove it from loop exit lists. */
986
987 void
988 rescan_loop_exit (edge e, bool new_edge, bool removed)
989 {
990 void **slot;
991 struct loop_exit *exits = NULL, *exit;
992 struct loop *aloop, *cloop;
993
994 if ((current_loops->state & LOOPS_HAVE_RECORDED_EXITS) == 0)
995 return;
996
997 if (!removed
998 && e->src->loop_father != NULL
999 && e->dest->loop_father != NULL
1000 && !flow_bb_inside_loop_p (e->src->loop_father, e->dest))
1001 {
1002 cloop = find_common_loop (e->src->loop_father, e->dest->loop_father);
1003 for (aloop = e->src->loop_father;
1004 aloop != cloop;
1005 aloop = loop_outer (aloop))
1006 {
1007 exit = GGC_NEW (struct loop_exit);
1008 exit->e = e;
1009
1010 exit->next = aloop->exits->next;
1011 exit->prev = aloop->exits;
1012 exit->next->prev = exit;
1013 exit->prev->next = exit;
1014
1015 exit->next_e = exits;
1016 exits = exit;
1017 }
1018 }
1019
1020 if (!exits && new_edge)
1021 return;
1022
1023 slot = htab_find_slot_with_hash (current_loops->exits, e,
1024 htab_hash_pointer (e),
1025 exits ? INSERT : NO_INSERT);
1026 if (!slot)
1027 return;
1028
1029 if (exits)
1030 {
1031 if (*slot)
1032 loop_exit_free (*slot);
1033 *slot = exits;
1034 }
1035 else
1036 htab_clear_slot (current_loops->exits, slot);
1037 }
1038
1039 /* For each loop, record list of exit edges, and start maintaining these
1040 lists. */
1041
1042 void
1043 record_loop_exits (void)
1044 {
1045 basic_block bb;
1046 edge_iterator ei;
1047 edge e;
1048
1049 if (!current_loops)
1050 return;
1051
1052 if (current_loops->state & LOOPS_HAVE_RECORDED_EXITS)
1053 return;
1054 current_loops->state |= LOOPS_HAVE_RECORDED_EXITS;
1055
1056 gcc_assert (current_loops->exits == NULL);
1057 current_loops->exits = htab_create_alloc (2 * number_of_loops (),
1058 loop_exit_hash,
1059 loop_exit_eq,
1060 loop_exit_free,
1061 ggc_calloc, ggc_free);
1062
1063 FOR_EACH_BB (bb)
1064 {
1065 FOR_EACH_EDGE (e, ei, bb->succs)
1066 {
1067 rescan_loop_exit (e, true, false);
1068 }
1069 }
1070 }
1071
1072 /* Dumps information about the exit in *SLOT to FILE.
1073 Callback for htab_traverse. */
1074
1075 static int
1076 dump_recorded_exit (void **slot, void *file)
1077 {
1078 struct loop_exit *exit = (struct loop_exit *) *slot;
1079 unsigned n = 0;
1080 edge e = exit->e;
1081
1082 for (; exit != NULL; exit = exit->next_e)
1083 n++;
1084
1085 fprintf ((FILE*) file, "Edge %d->%d exits %u loops\n",
1086 e->src->index, e->dest->index, n);
1087
1088 return 1;
1089 }
1090
1091 /* Dumps the recorded exits of loops to FILE. */
1092
1093 extern void dump_recorded_exits (FILE *);
1094 void
1095 dump_recorded_exits (FILE *file)
1096 {
1097 if (!current_loops->exits)
1098 return;
1099 htab_traverse (current_loops->exits, dump_recorded_exit, file);
1100 }
1101
1102 /* Releases lists of loop exits. */
1103
1104 void
1105 release_recorded_exits (void)
1106 {
1107 gcc_assert (current_loops->state & LOOPS_HAVE_RECORDED_EXITS);
1108 htab_delete (current_loops->exits);
1109 current_loops->exits = NULL;
1110 current_loops->state &= ~LOOPS_HAVE_RECORDED_EXITS;
1111 }
1112
1113 /* Returns the list of the exit edges of a LOOP. */
1114
1115 VEC (edge, heap) *
1116 get_loop_exit_edges (const struct loop *loop)
1117 {
1118 VEC (edge, heap) *edges = NULL;
1119 edge e;
1120 unsigned i;
1121 basic_block *body;
1122 edge_iterator ei;
1123 struct loop_exit *exit;
1124
1125 gcc_assert (loop->latch != EXIT_BLOCK_PTR);
1126
1127 /* If we maintain the lists of exits, use them. Otherwise we must
1128 scan the body of the loop. */
1129 if (current_loops->state & LOOPS_HAVE_RECORDED_EXITS)
1130 {
1131 for (exit = loop->exits->next; exit->e; exit = exit->next)
1132 VEC_safe_push (edge, heap, edges, exit->e);
1133 }
1134 else
1135 {
1136 body = get_loop_body (loop);
1137 for (i = 0; i < loop->num_nodes; i++)
1138 FOR_EACH_EDGE (e, ei, body[i]->succs)
1139 {
1140 if (!flow_bb_inside_loop_p (loop, e->dest))
1141 VEC_safe_push (edge, heap, edges, e);
1142 }
1143 free (body);
1144 }
1145
1146 return edges;
1147 }
1148
1149 /* Counts the number of conditional branches inside LOOP. */
1150
1151 unsigned
1152 num_loop_branches (const struct loop *loop)
1153 {
1154 unsigned i, n;
1155 basic_block * body;
1156
1157 gcc_assert (loop->latch != EXIT_BLOCK_PTR);
1158
1159 body = get_loop_body (loop);
1160 n = 0;
1161 for (i = 0; i < loop->num_nodes; i++)
1162 if (EDGE_COUNT (body[i]->succs) >= 2)
1163 n++;
1164 free (body);
1165
1166 return n;
1167 }
1168
1169 /* Adds basic block BB to LOOP. */
1170 void
1171 add_bb_to_loop (basic_block bb, struct loop *loop)
1172 {
1173 unsigned i;
1174 loop_p ploop;
1175 edge_iterator ei;
1176 edge e;
1177
1178 gcc_assert (bb->loop_father == NULL);
1179 bb->loop_father = loop;
1180 bb->loop_depth = loop_depth (loop);
1181 loop->num_nodes++;
1182 for (i = 0; VEC_iterate (loop_p, loop->superloops, i, ploop); i++)
1183 ploop->num_nodes++;
1184
1185 FOR_EACH_EDGE (e, ei, bb->succs)
1186 {
1187 rescan_loop_exit (e, true, false);
1188 }
1189 FOR_EACH_EDGE (e, ei, bb->preds)
1190 {
1191 rescan_loop_exit (e, true, false);
1192 }
1193 }
1194
1195 /* Remove basic block BB from loops. */
1196 void
1197 remove_bb_from_loops (basic_block bb)
1198 {
1199 int i;
1200 struct loop *loop = bb->loop_father;
1201 loop_p ploop;
1202 edge_iterator ei;
1203 edge e;
1204
1205 gcc_assert (loop != NULL);
1206 loop->num_nodes--;
1207 for (i = 0; VEC_iterate (loop_p, loop->superloops, i, ploop); i++)
1208 ploop->num_nodes--;
1209 bb->loop_father = NULL;
1210 bb->loop_depth = 0;
1211
1212 FOR_EACH_EDGE (e, ei, bb->succs)
1213 {
1214 rescan_loop_exit (e, false, true);
1215 }
1216 FOR_EACH_EDGE (e, ei, bb->preds)
1217 {
1218 rescan_loop_exit (e, false, true);
1219 }
1220 }
1221
1222 /* Finds nearest common ancestor in loop tree for given loops. */
1223 struct loop *
1224 find_common_loop (struct loop *loop_s, struct loop *loop_d)
1225 {
1226 unsigned sdepth, ddepth;
1227
1228 if (!loop_s) return loop_d;
1229 if (!loop_d) return loop_s;
1230
1231 sdepth = loop_depth (loop_s);
1232 ddepth = loop_depth (loop_d);
1233
1234 if (sdepth < ddepth)
1235 loop_d = VEC_index (loop_p, loop_d->superloops, sdepth);
1236 else if (sdepth > ddepth)
1237 loop_s = VEC_index (loop_p, loop_s->superloops, ddepth);
1238
1239 while (loop_s != loop_d)
1240 {
1241 loop_s = loop_outer (loop_s);
1242 loop_d = loop_outer (loop_d);
1243 }
1244 return loop_s;
1245 }
1246
1247 /* Removes LOOP from structures and frees its data. */
1248
1249 void
1250 delete_loop (struct loop *loop)
1251 {
1252 /* Remove the loop from structure. */
1253 flow_loop_tree_node_remove (loop);
1254
1255 /* Remove loop from loops array. */
1256 VEC_replace (loop_p, current_loops->larray, loop->num, NULL);
1257
1258 /* Free loop data. */
1259 flow_loop_free (loop);
1260 }
1261
1262 /* Cancels the LOOP; it must be innermost one. */
1263
1264 static void
1265 cancel_loop (struct loop *loop)
1266 {
1267 basic_block *bbs;
1268 unsigned i;
1269 struct loop *outer = loop_outer (loop);
1270
1271 gcc_assert (!loop->inner);
1272
1273 /* Move blocks up one level (they should be removed as soon as possible). */
1274 bbs = get_loop_body (loop);
1275 for (i = 0; i < loop->num_nodes; i++)
1276 bbs[i]->loop_father = outer;
1277
1278 delete_loop (loop);
1279 }
1280
1281 /* Cancels LOOP and all its subloops. */
1282 void
1283 cancel_loop_tree (struct loop *loop)
1284 {
1285 while (loop->inner)
1286 cancel_loop_tree (loop->inner);
1287 cancel_loop (loop);
1288 }
1289
1290 /* Checks that information about loops is correct
1291 -- sizes of loops are all right
1292 -- results of get_loop_body really belong to the loop
1293 -- loop header have just single entry edge and single latch edge
1294 -- loop latches have only single successor that is header of their loop
1295 -- irreducible loops are correctly marked
1296 */
1297 void
1298 verify_loop_structure (void)
1299 {
1300 unsigned *sizes, i, j;
1301 sbitmap irreds;
1302 basic_block *bbs, bb;
1303 struct loop *loop;
1304 int err = 0;
1305 edge e;
1306 unsigned num = number_of_loops ();
1307 loop_iterator li;
1308 struct loop_exit *exit, *mexit;
1309
1310 /* Check sizes. */
1311 sizes = XCNEWVEC (unsigned, num);
1312 sizes[0] = 2;
1313
1314 FOR_EACH_BB (bb)
1315 for (loop = bb->loop_father; loop; loop = loop_outer (loop))
1316 sizes[loop->num]++;
1317
1318 FOR_EACH_LOOP (li, loop, LI_INCLUDE_ROOT)
1319 {
1320 i = loop->num;
1321
1322 if (loop->num_nodes != sizes[i])
1323 {
1324 error ("size of loop %d should be %d, not %d",
1325 i, sizes[i], loop->num_nodes);
1326 err = 1;
1327 }
1328 }
1329
1330 /* Check get_loop_body. */
1331 FOR_EACH_LOOP (li, loop, 0)
1332 {
1333 bbs = get_loop_body (loop);
1334
1335 for (j = 0; j < loop->num_nodes; j++)
1336 if (!flow_bb_inside_loop_p (loop, bbs[j]))
1337 {
1338 error ("bb %d do not belong to loop %d",
1339 bbs[j]->index, loop->num);
1340 err = 1;
1341 }
1342 free (bbs);
1343 }
1344
1345 /* Check headers and latches. */
1346 FOR_EACH_LOOP (li, loop, 0)
1347 {
1348 i = loop->num;
1349
1350 if ((current_loops->state & LOOPS_HAVE_PREHEADERS)
1351 && EDGE_COUNT (loop->header->preds) != 2)
1352 {
1353 error ("loop %d's header does not have exactly 2 entries", i);
1354 err = 1;
1355 }
1356 if (current_loops->state & LOOPS_HAVE_SIMPLE_LATCHES)
1357 {
1358 if (!single_succ_p (loop->latch))
1359 {
1360 error ("loop %d's latch does not have exactly 1 successor", i);
1361 err = 1;
1362 }
1363 if (single_succ (loop->latch) != loop->header)
1364 {
1365 error ("loop %d's latch does not have header as successor", i);
1366 err = 1;
1367 }
1368 if (loop->latch->loop_father != loop)
1369 {
1370 error ("loop %d's latch does not belong directly to it", i);
1371 err = 1;
1372 }
1373 }
1374 if (loop->header->loop_father != loop)
1375 {
1376 error ("loop %d's header does not belong directly to it", i);
1377 err = 1;
1378 }
1379 if ((current_loops->state & LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS)
1380 && (loop_latch_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP))
1381 {
1382 error ("loop %d's latch is marked as part of irreducible region", i);
1383 err = 1;
1384 }
1385 }
1386
1387 /* Check irreducible loops. */
1388 if (current_loops->state & LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS)
1389 {
1390 /* Record old info. */
1391 irreds = sbitmap_alloc (last_basic_block);
1392 FOR_EACH_BB (bb)
1393 {
1394 edge_iterator ei;
1395 if (bb->flags & BB_IRREDUCIBLE_LOOP)
1396 SET_BIT (irreds, bb->index);
1397 else
1398 RESET_BIT (irreds, bb->index);
1399 FOR_EACH_EDGE (e, ei, bb->succs)
1400 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
1401 e->flags |= EDGE_ALL_FLAGS + 1;
1402 }
1403
1404 /* Recount it. */
1405 mark_irreducible_loops ();
1406
1407 /* Compare. */
1408 FOR_EACH_BB (bb)
1409 {
1410 edge_iterator ei;
1411
1412 if ((bb->flags & BB_IRREDUCIBLE_LOOP)
1413 && !TEST_BIT (irreds, bb->index))
1414 {
1415 error ("basic block %d should be marked irreducible", bb->index);
1416 err = 1;
1417 }
1418 else if (!(bb->flags & BB_IRREDUCIBLE_LOOP)
1419 && TEST_BIT (irreds, bb->index))
1420 {
1421 error ("basic block %d should not be marked irreducible", bb->index);
1422 err = 1;
1423 }
1424 FOR_EACH_EDGE (e, ei, bb->succs)
1425 {
1426 if ((e->flags & EDGE_IRREDUCIBLE_LOOP)
1427 && !(e->flags & (EDGE_ALL_FLAGS + 1)))
1428 {
1429 error ("edge from %d to %d should be marked irreducible",
1430 e->src->index, e->dest->index);
1431 err = 1;
1432 }
1433 else if (!(e->flags & EDGE_IRREDUCIBLE_LOOP)
1434 && (e->flags & (EDGE_ALL_FLAGS + 1)))
1435 {
1436 error ("edge from %d to %d should not be marked irreducible",
1437 e->src->index, e->dest->index);
1438 err = 1;
1439 }
1440 e->flags &= ~(EDGE_ALL_FLAGS + 1);
1441 }
1442 }
1443 free (irreds);
1444 }
1445
1446 /* Check the recorded loop exits. */
1447 FOR_EACH_LOOP (li, loop, 0)
1448 {
1449 if (!loop->exits || loop->exits->e != NULL)
1450 {
1451 error ("corrupted head of the exits list of loop %d",
1452 loop->num);
1453 err = 1;
1454 }
1455 else
1456 {
1457 /* Check that the list forms a cycle, and all elements except
1458 for the head are nonnull. */
1459 for (mexit = loop->exits, exit = mexit->next, i = 0;
1460 exit->e && exit != mexit;
1461 exit = exit->next)
1462 {
1463 if (i++ & 1)
1464 mexit = mexit->next;
1465 }
1466
1467 if (exit != loop->exits)
1468 {
1469 error ("corrupted exits list of loop %d", loop->num);
1470 err = 1;
1471 }
1472 }
1473
1474 if ((current_loops->state & LOOPS_HAVE_RECORDED_EXITS) == 0)
1475 {
1476 if (loop->exits->next != loop->exits)
1477 {
1478 error ("nonempty exits list of loop %d, but exits are not recorded",
1479 loop->num);
1480 err = 1;
1481 }
1482 }
1483 }
1484
1485 if (current_loops->state & LOOPS_HAVE_RECORDED_EXITS)
1486 {
1487 unsigned n_exits = 0, eloops;
1488
1489 memset (sizes, 0, sizeof (unsigned) * num);
1490 FOR_EACH_BB (bb)
1491 {
1492 edge_iterator ei;
1493 if (bb->loop_father == current_loops->tree_root)
1494 continue;
1495 FOR_EACH_EDGE (e, ei, bb->succs)
1496 {
1497 if (flow_bb_inside_loop_p (bb->loop_father, e->dest))
1498 continue;
1499
1500 n_exits++;
1501 exit = get_exit_descriptions (e);
1502 if (!exit)
1503 {
1504 error ("Exit %d->%d not recorded",
1505 e->src->index, e->dest->index);
1506 err = 1;
1507 }
1508 eloops = 0;
1509 for (; exit; exit = exit->next_e)
1510 eloops++;
1511
1512 for (loop = bb->loop_father;
1513 loop != e->dest->loop_father;
1514 loop = loop_outer (loop))
1515 {
1516 eloops--;
1517 sizes[loop->num]++;
1518 }
1519
1520 if (eloops != 0)
1521 {
1522 error ("Wrong list of exited loops for edge %d->%d",
1523 e->src->index, e->dest->index);
1524 err = 1;
1525 }
1526 }
1527 }
1528
1529 if (n_exits != htab_elements (current_loops->exits))
1530 {
1531 error ("Too many loop exits recorded");
1532 err = 1;
1533 }
1534
1535 FOR_EACH_LOOP (li, loop, 0)
1536 {
1537 eloops = 0;
1538 for (exit = loop->exits->next; exit->e; exit = exit->next)
1539 eloops++;
1540 if (eloops != sizes[loop->num])
1541 {
1542 error ("%d exits recorded for loop %d (having %d exits)",
1543 eloops, loop->num, sizes[loop->num]);
1544 err = 1;
1545 }
1546 }
1547 }
1548
1549 gcc_assert (!err);
1550
1551 free (sizes);
1552 }
1553
1554 /* Returns latch edge of LOOP. */
1555 edge
1556 loop_latch_edge (const struct loop *loop)
1557 {
1558 return find_edge (loop->latch, loop->header);
1559 }
1560
1561 /* Returns preheader edge of LOOP. */
1562 edge
1563 loop_preheader_edge (const struct loop *loop)
1564 {
1565 edge e;
1566 edge_iterator ei;
1567
1568 gcc_assert ((current_loops->state & LOOPS_HAVE_PREHEADERS) != 0);
1569
1570 FOR_EACH_EDGE (e, ei, loop->header->preds)
1571 if (e->src != loop->latch)
1572 break;
1573
1574 return e;
1575 }
1576
1577 /* Returns true if E is an exit of LOOP. */
1578
1579 bool
1580 loop_exit_edge_p (const struct loop *loop, edge e)
1581 {
1582 return (flow_bb_inside_loop_p (loop, e->src)
1583 && !flow_bb_inside_loop_p (loop, e->dest));
1584 }
1585
1586 /* Returns the single exit edge of LOOP, or NULL if LOOP has either no exit
1587 or more than one exit. If loops do not have the exits recorded, NULL
1588 is returned always. */
1589
1590 edge
1591 single_exit (const struct loop *loop)
1592 {
1593 struct loop_exit *exit = loop->exits->next;
1594
1595 if ((current_loops->state & LOOPS_HAVE_RECORDED_EXITS) == 0)
1596 return NULL;
1597
1598 if (exit->e && exit->next == loop->exits)
1599 return exit->e;
1600 else
1601 return NULL;
1602 }