exp_attr.adb, [...]: Minor reformatting.
[gcc.git] / gcc / cfgloop.c
1 /* Natural loop discovery code for GNU compiler.
2 Copyright (C) 2000-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "cfghooks.h"
28 #include "gimple-ssa.h"
29 #include "diagnostic-core.h"
30 #include "cfganal.h"
31 #include "cfgloop.h"
32 #include "gimple-iterator.h"
33 #include "dumpfile.h"
34
35 static void flow_loops_cfg_dump (FILE *);
36 \f
37 /* Dump loop related CFG information. */
38
39 static void
40 flow_loops_cfg_dump (FILE *file)
41 {
42 basic_block bb;
43
44 if (!file)
45 return;
46
47 FOR_EACH_BB_FN (bb, cfun)
48 {
49 edge succ;
50 edge_iterator ei;
51
52 fprintf (file, ";; %d succs { ", bb->index);
53 FOR_EACH_EDGE (succ, ei, bb->succs)
54 fprintf (file, "%d ", succ->dest->index);
55 fprintf (file, "}\n");
56 }
57 }
58
59 /* Return nonzero if the nodes of LOOP are a subset of OUTER. */
60
61 bool
62 flow_loop_nested_p (const struct loop *outer, const struct loop *loop)
63 {
64 unsigned odepth = loop_depth (outer);
65
66 return (loop_depth (loop) > odepth
67 && (*loop->superloops)[odepth] == outer);
68 }
69
70 /* Returns the loop such that LOOP is nested DEPTH (indexed from zero)
71 loops within LOOP. */
72
73 struct loop *
74 superloop_at_depth (struct loop *loop, unsigned depth)
75 {
76 unsigned ldepth = loop_depth (loop);
77
78 gcc_assert (depth <= ldepth);
79
80 if (depth == ldepth)
81 return loop;
82
83 return (*loop->superloops)[depth];
84 }
85
86 /* Returns the list of the latch edges of LOOP. */
87
88 static vec<edge>
89 get_loop_latch_edges (const struct loop *loop)
90 {
91 edge_iterator ei;
92 edge e;
93 vec<edge> ret = vNULL;
94
95 FOR_EACH_EDGE (e, ei, loop->header->preds)
96 {
97 if (dominated_by_p (CDI_DOMINATORS, e->src, loop->header))
98 ret.safe_push (e);
99 }
100
101 return ret;
102 }
103
104 /* Dump the loop information specified by LOOP to the stream FILE
105 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
106
107 void
108 flow_loop_dump (const struct loop *loop, FILE *file,
109 void (*loop_dump_aux) (const struct loop *, FILE *, int),
110 int verbose)
111 {
112 basic_block *bbs;
113 unsigned i;
114 vec<edge> latches;
115 edge e;
116
117 if (! loop || ! loop->header)
118 return;
119
120 fprintf (file, ";;\n;; Loop %d\n", loop->num);
121
122 fprintf (file, ";; header %d, ", loop->header->index);
123 if (loop->latch)
124 fprintf (file, "latch %d\n", loop->latch->index);
125 else
126 {
127 fprintf (file, "multiple latches:");
128 latches = get_loop_latch_edges (loop);
129 FOR_EACH_VEC_ELT (latches, i, e)
130 fprintf (file, " %d", e->src->index);
131 latches.release ();
132 fprintf (file, "\n");
133 }
134
135 fprintf (file, ";; depth %d, outer %ld\n",
136 loop_depth (loop), (long) (loop_outer (loop)
137 ? loop_outer (loop)->num : -1));
138
139 fprintf (file, ";; nodes:");
140 bbs = get_loop_body (loop);
141 for (i = 0; i < loop->num_nodes; i++)
142 fprintf (file, " %d", bbs[i]->index);
143 free (bbs);
144 fprintf (file, "\n");
145
146 if (loop_dump_aux)
147 loop_dump_aux (loop, file, verbose);
148 }
149
150 /* Dump the loop information about loops to the stream FILE,
151 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
152
153 void
154 flow_loops_dump (FILE *file, void (*loop_dump_aux) (const struct loop *, FILE *, int), int verbose)
155 {
156 struct loop *loop;
157
158 if (!current_loops || ! file)
159 return;
160
161 fprintf (file, ";; %d loops found\n", number_of_loops (cfun));
162
163 FOR_EACH_LOOP (loop, LI_INCLUDE_ROOT)
164 {
165 flow_loop_dump (loop, file, loop_dump_aux, verbose);
166 }
167
168 if (verbose)
169 flow_loops_cfg_dump (file);
170 }
171
172 /* Free data allocated for LOOP. */
173
174 void
175 flow_loop_free (struct loop *loop)
176 {
177 struct loop_exit *exit, *next;
178
179 vec_free (loop->superloops);
180
181 /* Break the list of the loop exit records. They will be freed when the
182 corresponding edge is rescanned or removed, and this avoids
183 accessing the (already released) head of the list stored in the
184 loop structure. */
185 for (exit = loop->exits->next; exit != loop->exits; exit = next)
186 {
187 next = exit->next;
188 exit->next = exit;
189 exit->prev = exit;
190 }
191
192 ggc_free (loop->exits);
193 ggc_free (loop);
194 }
195
196 /* Free all the memory allocated for LOOPS. */
197
198 void
199 flow_loops_free (struct loops *loops)
200 {
201 if (loops->larray)
202 {
203 unsigned i;
204 loop_p loop;
205
206 /* Free the loop descriptors. */
207 FOR_EACH_VEC_SAFE_ELT (loops->larray, i, loop)
208 {
209 if (!loop)
210 continue;
211
212 flow_loop_free (loop);
213 }
214
215 vec_free (loops->larray);
216 }
217 }
218
219 /* Find the nodes contained within the LOOP with header HEADER.
220 Return the number of nodes within the loop. */
221
222 int
223 flow_loop_nodes_find (basic_block header, struct loop *loop)
224 {
225 vec<basic_block> stack = vNULL;
226 int num_nodes = 1;
227 edge latch;
228 edge_iterator latch_ei;
229
230 header->loop_father = loop;
231
232 FOR_EACH_EDGE (latch, latch_ei, loop->header->preds)
233 {
234 if (latch->src->loop_father == loop
235 || !dominated_by_p (CDI_DOMINATORS, latch->src, loop->header))
236 continue;
237
238 num_nodes++;
239 stack.safe_push (latch->src);
240 latch->src->loop_father = loop;
241
242 while (!stack.is_empty ())
243 {
244 basic_block node;
245 edge e;
246 edge_iterator ei;
247
248 node = stack.pop ();
249
250 FOR_EACH_EDGE (e, ei, node->preds)
251 {
252 basic_block ancestor = e->src;
253
254 if (ancestor->loop_father != loop)
255 {
256 ancestor->loop_father = loop;
257 num_nodes++;
258 stack.safe_push (ancestor);
259 }
260 }
261 }
262 }
263 stack.release ();
264
265 return num_nodes;
266 }
267
268 /* Records the vector of superloops of the loop LOOP, whose immediate
269 superloop is FATHER. */
270
271 static void
272 establish_preds (struct loop *loop, struct loop *father)
273 {
274 loop_p ploop;
275 unsigned depth = loop_depth (father) + 1;
276 unsigned i;
277
278 loop->superloops = 0;
279 vec_alloc (loop->superloops, depth);
280 FOR_EACH_VEC_SAFE_ELT (father->superloops, i, ploop)
281 loop->superloops->quick_push (ploop);
282 loop->superloops->quick_push (father);
283
284 for (ploop = loop->inner; ploop; ploop = ploop->next)
285 establish_preds (ploop, loop);
286 }
287
288 /* Add LOOP to the loop hierarchy tree where FATHER is father of the
289 added loop. If LOOP has some children, take care of that their
290 pred field will be initialized correctly. */
291
292 void
293 flow_loop_tree_node_add (struct loop *father, struct loop *loop)
294 {
295 loop->next = father->inner;
296 father->inner = loop;
297
298 establish_preds (loop, father);
299 }
300
301 /* Remove LOOP from the loop hierarchy tree. */
302
303 void
304 flow_loop_tree_node_remove (struct loop *loop)
305 {
306 struct loop *prev, *father;
307
308 father = loop_outer (loop);
309
310 /* Remove loop from the list of sons. */
311 if (father->inner == loop)
312 father->inner = loop->next;
313 else
314 {
315 for (prev = father->inner; prev->next != loop; prev = prev->next)
316 continue;
317 prev->next = loop->next;
318 }
319
320 loop->superloops = NULL;
321 }
322
323 /* Allocates and returns new loop structure. */
324
325 struct loop *
326 alloc_loop (void)
327 {
328 struct loop *loop = ggc_cleared_alloc<struct loop> ();
329
330 loop->exits = ggc_cleared_alloc<loop_exit> ();
331 loop->exits->next = loop->exits->prev = loop->exits;
332 loop->can_be_parallel = false;
333 loop->nb_iterations_upper_bound = 0;
334 loop->nb_iterations_estimate = 0;
335 return loop;
336 }
337
338 /* Initializes loops structure LOOPS, reserving place for NUM_LOOPS loops
339 (including the root of the loop tree). */
340
341 void
342 init_loops_structure (struct function *fn,
343 struct loops *loops, unsigned num_loops)
344 {
345 struct loop *root;
346
347 memset (loops, 0, sizeof *loops);
348 vec_alloc (loops->larray, num_loops);
349
350 /* Dummy loop containing whole function. */
351 root = alloc_loop ();
352 root->num_nodes = n_basic_blocks_for_fn (fn);
353 root->latch = EXIT_BLOCK_PTR_FOR_FN (fn);
354 root->header = ENTRY_BLOCK_PTR_FOR_FN (fn);
355 ENTRY_BLOCK_PTR_FOR_FN (fn)->loop_father = root;
356 EXIT_BLOCK_PTR_FOR_FN (fn)->loop_father = root;
357
358 loops->larray->quick_push (root);
359 loops->tree_root = root;
360 }
361
362 /* Returns whether HEADER is a loop header. */
363
364 bool
365 bb_loop_header_p (basic_block header)
366 {
367 edge_iterator ei;
368 edge e;
369
370 /* If we have an abnormal predecessor, do not consider the
371 loop (not worth the problems). */
372 if (bb_has_abnormal_pred (header))
373 return false;
374
375 /* Look for back edges where a predecessor is dominated
376 by this block. A natural loop has a single entry
377 node (header) that dominates all the nodes in the
378 loop. It also has single back edge to the header
379 from a latch node. */
380 FOR_EACH_EDGE (e, ei, header->preds)
381 {
382 basic_block latch = e->src;
383 if (latch != ENTRY_BLOCK_PTR_FOR_FN (cfun)
384 && dominated_by_p (CDI_DOMINATORS, latch, header))
385 return true;
386 }
387
388 return false;
389 }
390
391 /* Find all the natural loops in the function and save in LOOPS structure and
392 recalculate loop_father information in basic block structures.
393 If LOOPS is non-NULL then the loop structures for already recorded loops
394 will be re-used and their number will not change. We assume that no
395 stale loops exist in LOOPS.
396 When LOOPS is NULL it is allocated and re-built from scratch.
397 Return the built LOOPS structure. */
398
399 struct loops *
400 flow_loops_find (struct loops *loops)
401 {
402 bool from_scratch = (loops == NULL);
403 int *rc_order;
404 int b;
405 unsigned i;
406
407 /* Ensure that the dominators are computed. */
408 calculate_dominance_info (CDI_DOMINATORS);
409
410 if (!loops)
411 {
412 loops = ggc_cleared_alloc<struct loops> ();
413 init_loops_structure (cfun, loops, 1);
414 }
415
416 /* Ensure that loop exits were released. */
417 gcc_assert (loops->exits == NULL);
418
419 /* Taking care of this degenerate case makes the rest of
420 this code simpler. */
421 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
422 return loops;
423
424 /* The root loop node contains all basic-blocks. */
425 loops->tree_root->num_nodes = n_basic_blocks_for_fn (cfun);
426
427 /* Compute depth first search order of the CFG so that outer
428 natural loops will be found before inner natural loops. */
429 rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
430 pre_and_rev_post_order_compute (NULL, rc_order, false);
431
432 /* Gather all loop headers in reverse completion order and allocate
433 loop structures for loops that are not already present. */
434 auto_vec<loop_p> larray (loops->larray->length ());
435 for (b = 0; b < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; b++)
436 {
437 basic_block header = BASIC_BLOCK_FOR_FN (cfun, rc_order[b]);
438 if (bb_loop_header_p (header))
439 {
440 struct loop *loop;
441
442 /* The current active loop tree has valid loop-fathers for
443 header blocks. */
444 if (!from_scratch
445 && header->loop_father->header == header)
446 {
447 loop = header->loop_father;
448 /* If we found an existing loop remove it from the
449 loop tree. It is going to be inserted again
450 below. */
451 flow_loop_tree_node_remove (loop);
452 }
453 else
454 {
455 /* Otherwise allocate a new loop structure for the loop. */
456 loop = alloc_loop ();
457 /* ??? We could re-use unused loop slots here. */
458 loop->num = loops->larray->length ();
459 vec_safe_push (loops->larray, loop);
460 loop->header = header;
461
462 if (!from_scratch
463 && dump_file && (dump_flags & TDF_DETAILS))
464 fprintf (dump_file, "flow_loops_find: discovered new "
465 "loop %d with header %d\n",
466 loop->num, header->index);
467 }
468 /* Reset latch, we recompute it below. */
469 loop->latch = NULL;
470 larray.safe_push (loop);
471 }
472
473 /* Make blocks part of the loop root node at start. */
474 header->loop_father = loops->tree_root;
475 }
476
477 free (rc_order);
478
479 /* Now iterate over the loops found, insert them into the loop tree
480 and assign basic-block ownership. */
481 for (i = 0; i < larray.length (); ++i)
482 {
483 struct loop *loop = larray[i];
484 basic_block header = loop->header;
485 edge_iterator ei;
486 edge e;
487
488 flow_loop_tree_node_add (header->loop_father, loop);
489 loop->num_nodes = flow_loop_nodes_find (loop->header, loop);
490
491 /* Look for the latch for this header block, if it has just a
492 single one. */
493 FOR_EACH_EDGE (e, ei, header->preds)
494 {
495 basic_block latch = e->src;
496
497 if (flow_bb_inside_loop_p (loop, latch))
498 {
499 if (loop->latch != NULL)
500 {
501 /* More than one latch edge. */
502 loop->latch = NULL;
503 break;
504 }
505 loop->latch = latch;
506 }
507 }
508 }
509
510 return loops;
511 }
512
513 /* Ratio of frequencies of edges so that one of more latch edges is
514 considered to belong to inner loop with same header. */
515 #define HEAVY_EDGE_RATIO 8
516
517 /* Minimum number of samples for that we apply
518 find_subloop_latch_edge_by_profile heuristics. */
519 #define HEAVY_EDGE_MIN_SAMPLES 10
520
521 /* If the profile info is available, finds an edge in LATCHES that much more
522 frequent than the remaining edges. Returns such an edge, or NULL if we do
523 not find one.
524
525 We do not use guessed profile here, only the measured one. The guessed
526 profile is usually too flat and unreliable for this (and it is mostly based
527 on the loop structure of the program, so it does not make much sense to
528 derive the loop structure from it). */
529
530 static edge
531 find_subloop_latch_edge_by_profile (vec<edge> latches)
532 {
533 unsigned i;
534 edge e, me = NULL;
535 gcov_type mcount = 0, tcount = 0;
536
537 FOR_EACH_VEC_ELT (latches, i, e)
538 {
539 if (e->count > mcount)
540 {
541 me = e;
542 mcount = e->count;
543 }
544 tcount += e->count;
545 }
546
547 if (tcount < HEAVY_EDGE_MIN_SAMPLES
548 || (tcount - mcount) * HEAVY_EDGE_RATIO > tcount)
549 return NULL;
550
551 if (dump_file)
552 fprintf (dump_file,
553 "Found latch edge %d -> %d using profile information.\n",
554 me->src->index, me->dest->index);
555 return me;
556 }
557
558 /* Among LATCHES, guesses a latch edge of LOOP corresponding to subloop, based
559 on the structure of induction variables. Returns this edge, or NULL if we
560 do not find any.
561
562 We are quite conservative, and look just for an obvious simple innermost
563 loop (which is the case where we would lose the most performance by not
564 disambiguating the loop). More precisely, we look for the following
565 situation: The source of the chosen latch edge dominates sources of all
566 the other latch edges. Additionally, the header does not contain a phi node
567 such that the argument from the chosen edge is equal to the argument from
568 another edge. */
569
570 static edge
571 find_subloop_latch_edge_by_ivs (struct loop *loop ATTRIBUTE_UNUSED, vec<edge> latches)
572 {
573 edge e, latch = latches[0];
574 unsigned i;
575 gphi *phi;
576 gphi_iterator psi;
577 tree lop;
578 basic_block bb;
579
580 /* Find the candidate for the latch edge. */
581 for (i = 1; latches.iterate (i, &e); i++)
582 if (dominated_by_p (CDI_DOMINATORS, latch->src, e->src))
583 latch = e;
584
585 /* Verify that it dominates all the latch edges. */
586 FOR_EACH_VEC_ELT (latches, i, e)
587 if (!dominated_by_p (CDI_DOMINATORS, e->src, latch->src))
588 return NULL;
589
590 /* Check for a phi node that would deny that this is a latch edge of
591 a subloop. */
592 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
593 {
594 phi = psi.phi ();
595 lop = PHI_ARG_DEF_FROM_EDGE (phi, latch);
596
597 /* Ignore the values that are not changed inside the subloop. */
598 if (TREE_CODE (lop) != SSA_NAME
599 || SSA_NAME_DEF_STMT (lop) == phi)
600 continue;
601 bb = gimple_bb (SSA_NAME_DEF_STMT (lop));
602 if (!bb || !flow_bb_inside_loop_p (loop, bb))
603 continue;
604
605 FOR_EACH_VEC_ELT (latches, i, e)
606 if (e != latch
607 && PHI_ARG_DEF_FROM_EDGE (phi, e) == lop)
608 return NULL;
609 }
610
611 if (dump_file)
612 fprintf (dump_file,
613 "Found latch edge %d -> %d using iv structure.\n",
614 latch->src->index, latch->dest->index);
615 return latch;
616 }
617
618 /* If we can determine that one of the several latch edges of LOOP behaves
619 as a latch edge of a separate subloop, returns this edge. Otherwise
620 returns NULL. */
621
622 static edge
623 find_subloop_latch_edge (struct loop *loop)
624 {
625 vec<edge> latches = get_loop_latch_edges (loop);
626 edge latch = NULL;
627
628 if (latches.length () > 1)
629 {
630 latch = find_subloop_latch_edge_by_profile (latches);
631
632 if (!latch
633 /* We consider ivs to guess the latch edge only in SSA. Perhaps we
634 should use cfghook for this, but it is hard to imagine it would
635 be useful elsewhere. */
636 && current_ir_type () == IR_GIMPLE)
637 latch = find_subloop_latch_edge_by_ivs (loop, latches);
638 }
639
640 latches.release ();
641 return latch;
642 }
643
644 /* Callback for make_forwarder_block. Returns true if the edge E is marked
645 in the set MFB_REIS_SET. */
646
647 static hash_set<edge> *mfb_reis_set;
648 static bool
649 mfb_redirect_edges_in_set (edge e)
650 {
651 return mfb_reis_set->contains (e);
652 }
653
654 /* Creates a subloop of LOOP with latch edge LATCH. */
655
656 static void
657 form_subloop (struct loop *loop, edge latch)
658 {
659 edge_iterator ei;
660 edge e, new_entry;
661 struct loop *new_loop;
662
663 mfb_reis_set = new hash_set<edge>;
664 FOR_EACH_EDGE (e, ei, loop->header->preds)
665 {
666 if (e != latch)
667 mfb_reis_set->add (e);
668 }
669 new_entry = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
670 NULL);
671 delete mfb_reis_set;
672
673 loop->header = new_entry->src;
674
675 /* Find the blocks and subloops that belong to the new loop, and add it to
676 the appropriate place in the loop tree. */
677 new_loop = alloc_loop ();
678 new_loop->header = new_entry->dest;
679 new_loop->latch = latch->src;
680 add_loop (new_loop, loop);
681 }
682
683 /* Make all the latch edges of LOOP to go to a single forwarder block --
684 a new latch of LOOP. */
685
686 static void
687 merge_latch_edges (struct loop *loop)
688 {
689 vec<edge> latches = get_loop_latch_edges (loop);
690 edge latch, e;
691 unsigned i;
692
693 gcc_assert (latches.length () > 0);
694
695 if (latches.length () == 1)
696 loop->latch = latches[0]->src;
697 else
698 {
699 if (dump_file)
700 fprintf (dump_file, "Merged latch edges of loop %d\n", loop->num);
701
702 mfb_reis_set = new hash_set<edge>;
703 FOR_EACH_VEC_ELT (latches, i, e)
704 mfb_reis_set->add (e);
705 latch = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
706 NULL);
707 delete mfb_reis_set;
708
709 loop->header = latch->dest;
710 loop->latch = latch->src;
711 }
712
713 latches.release ();
714 }
715
716 /* LOOP may have several latch edges. Transform it into (possibly several)
717 loops with single latch edge. */
718
719 static void
720 disambiguate_multiple_latches (struct loop *loop)
721 {
722 edge e;
723
724 /* We eliminate the multiple latches by splitting the header to the forwarder
725 block F and the rest R, and redirecting the edges. There are two cases:
726
727 1) If there is a latch edge E that corresponds to a subloop (we guess
728 that based on profile -- if it is taken much more often than the
729 remaining edges; and on trees, using the information about induction
730 variables of the loops), we redirect E to R, all the remaining edges to
731 F, then rescan the loops and try again for the outer loop.
732 2) If there is no such edge, we redirect all latch edges to F, and the
733 entry edges to R, thus making F the single latch of the loop. */
734
735 if (dump_file)
736 fprintf (dump_file, "Disambiguating loop %d with multiple latches\n",
737 loop->num);
738
739 /* During latch merging, we may need to redirect the entry edges to a new
740 block. This would cause problems if the entry edge was the one from the
741 entry block. To avoid having to handle this case specially, split
742 such entry edge. */
743 e = find_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), loop->header);
744 if (e)
745 split_edge (e);
746
747 while (1)
748 {
749 e = find_subloop_latch_edge (loop);
750 if (!e)
751 break;
752
753 form_subloop (loop, e);
754 }
755
756 merge_latch_edges (loop);
757 }
758
759 /* Split loops with multiple latch edges. */
760
761 void
762 disambiguate_loops_with_multiple_latches (void)
763 {
764 struct loop *loop;
765
766 FOR_EACH_LOOP (loop, 0)
767 {
768 if (!loop->latch)
769 disambiguate_multiple_latches (loop);
770 }
771 }
772
773 /* Return nonzero if basic block BB belongs to LOOP. */
774 bool
775 flow_bb_inside_loop_p (const struct loop *loop, const_basic_block bb)
776 {
777 struct loop *source_loop;
778
779 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun)
780 || bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
781 return 0;
782
783 source_loop = bb->loop_father;
784 return loop == source_loop || flow_loop_nested_p (loop, source_loop);
785 }
786
787 /* Enumeration predicate for get_loop_body_with_size. */
788 static bool
789 glb_enum_p (const_basic_block bb, const void *glb_loop)
790 {
791 const struct loop *const loop = (const struct loop *) glb_loop;
792 return (bb != loop->header
793 && dominated_by_p (CDI_DOMINATORS, bb, loop->header));
794 }
795
796 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
797 order against direction of edges from latch. Specially, if
798 header != latch, latch is the 1-st block. LOOP cannot be the fake
799 loop tree root, and its size must be at most MAX_SIZE. The blocks
800 in the LOOP body are stored to BODY, and the size of the LOOP is
801 returned. */
802
803 unsigned
804 get_loop_body_with_size (const struct loop *loop, basic_block *body,
805 unsigned max_size)
806 {
807 return dfs_enumerate_from (loop->header, 1, glb_enum_p,
808 body, max_size, loop);
809 }
810
811 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
812 order against direction of edges from latch. Specially, if
813 header != latch, latch is the 1-st block. */
814
815 basic_block *
816 get_loop_body (const struct loop *loop)
817 {
818 basic_block *body, bb;
819 unsigned tv = 0;
820
821 gcc_assert (loop->num_nodes);
822
823 body = XNEWVEC (basic_block, loop->num_nodes);
824
825 if (loop->latch == EXIT_BLOCK_PTR_FOR_FN (cfun))
826 {
827 /* There may be blocks unreachable from EXIT_BLOCK, hence we need to
828 special-case the fake loop that contains the whole function. */
829 gcc_assert (loop->num_nodes == (unsigned) n_basic_blocks_for_fn (cfun));
830 body[tv++] = loop->header;
831 body[tv++] = EXIT_BLOCK_PTR_FOR_FN (cfun);
832 FOR_EACH_BB_FN (bb, cfun)
833 body[tv++] = bb;
834 }
835 else
836 tv = get_loop_body_with_size (loop, body, loop->num_nodes);
837
838 gcc_assert (tv == loop->num_nodes);
839 return body;
840 }
841
842 /* Fills dominance descendants inside LOOP of the basic block BB into
843 array TOVISIT from index *TV. */
844
845 static void
846 fill_sons_in_loop (const struct loop *loop, basic_block bb,
847 basic_block *tovisit, int *tv)
848 {
849 basic_block son, postpone = NULL;
850
851 tovisit[(*tv)++] = bb;
852 for (son = first_dom_son (CDI_DOMINATORS, bb);
853 son;
854 son = next_dom_son (CDI_DOMINATORS, son))
855 {
856 if (!flow_bb_inside_loop_p (loop, son))
857 continue;
858
859 if (dominated_by_p (CDI_DOMINATORS, loop->latch, son))
860 {
861 postpone = son;
862 continue;
863 }
864 fill_sons_in_loop (loop, son, tovisit, tv);
865 }
866
867 if (postpone)
868 fill_sons_in_loop (loop, postpone, tovisit, tv);
869 }
870
871 /* Gets body of a LOOP (that must be different from the outermost loop)
872 sorted by dominance relation. Additionally, if a basic block s dominates
873 the latch, then only blocks dominated by s are be after it. */
874
875 basic_block *
876 get_loop_body_in_dom_order (const struct loop *loop)
877 {
878 basic_block *tovisit;
879 int tv;
880
881 gcc_assert (loop->num_nodes);
882
883 tovisit = XNEWVEC (basic_block, loop->num_nodes);
884
885 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
886
887 tv = 0;
888 fill_sons_in_loop (loop, loop->header, tovisit, &tv);
889
890 gcc_assert (tv == (int) loop->num_nodes);
891
892 return tovisit;
893 }
894
895 /* Gets body of a LOOP sorted via provided BB_COMPARATOR. */
896
897 basic_block *
898 get_loop_body_in_custom_order (const struct loop *loop,
899 int (*bb_comparator) (const void *, const void *))
900 {
901 basic_block *bbs = get_loop_body (loop);
902
903 qsort (bbs, loop->num_nodes, sizeof (basic_block), bb_comparator);
904
905 return bbs;
906 }
907
908 /* Get body of a LOOP in breadth first sort order. */
909
910 basic_block *
911 get_loop_body_in_bfs_order (const struct loop *loop)
912 {
913 basic_block *blocks;
914 basic_block bb;
915 bitmap visited;
916 unsigned int i = 0;
917 unsigned int vc = 1;
918
919 gcc_assert (loop->num_nodes);
920 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
921
922 blocks = XNEWVEC (basic_block, loop->num_nodes);
923 visited = BITMAP_ALLOC (NULL);
924
925 bb = loop->header;
926 while (i < loop->num_nodes)
927 {
928 edge e;
929 edge_iterator ei;
930
931 if (bitmap_set_bit (visited, bb->index))
932 /* This basic block is now visited */
933 blocks[i++] = bb;
934
935 FOR_EACH_EDGE (e, ei, bb->succs)
936 {
937 if (flow_bb_inside_loop_p (loop, e->dest))
938 {
939 if (bitmap_set_bit (visited, e->dest->index))
940 blocks[i++] = e->dest;
941 }
942 }
943
944 gcc_assert (i > vc);
945
946 bb = blocks[vc++];
947 }
948
949 BITMAP_FREE (visited);
950 return blocks;
951 }
952
953 /* Hash function for struct loop_exit. */
954
955 hashval_t
956 loop_exit_hasher::hash (loop_exit *exit)
957 {
958 return htab_hash_pointer (exit->e);
959 }
960
961 /* Equality function for struct loop_exit. Compares with edge. */
962
963 bool
964 loop_exit_hasher::equal (loop_exit *exit, edge e)
965 {
966 return exit->e == e;
967 }
968
969 /* Frees the list of loop exit descriptions EX. */
970
971 void
972 loop_exit_hasher::remove (loop_exit *exit)
973 {
974 loop_exit *next;
975 for (; exit; exit = next)
976 {
977 next = exit->next_e;
978
979 exit->next->prev = exit->prev;
980 exit->prev->next = exit->next;
981
982 ggc_free (exit);
983 }
984 }
985
986 /* Returns the list of records for E as an exit of a loop. */
987
988 static struct loop_exit *
989 get_exit_descriptions (edge e)
990 {
991 return current_loops->exits->find_with_hash (e, htab_hash_pointer (e));
992 }
993
994 /* Updates the lists of loop exits in that E appears.
995 If REMOVED is true, E is being removed, and we
996 just remove it from the lists of exits.
997 If NEW_EDGE is true and E is not a loop exit, we
998 do not try to remove it from loop exit lists. */
999
1000 void
1001 rescan_loop_exit (edge e, bool new_edge, bool removed)
1002 {
1003 struct loop_exit *exits = NULL, *exit;
1004 struct loop *aloop, *cloop;
1005
1006 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1007 return;
1008
1009 if (!removed
1010 && e->src->loop_father != NULL
1011 && e->dest->loop_father != NULL
1012 && !flow_bb_inside_loop_p (e->src->loop_father, e->dest))
1013 {
1014 cloop = find_common_loop (e->src->loop_father, e->dest->loop_father);
1015 for (aloop = e->src->loop_father;
1016 aloop != cloop;
1017 aloop = loop_outer (aloop))
1018 {
1019 exit = ggc_alloc<loop_exit> ();
1020 exit->e = e;
1021
1022 exit->next = aloop->exits->next;
1023 exit->prev = aloop->exits;
1024 exit->next->prev = exit;
1025 exit->prev->next = exit;
1026
1027 exit->next_e = exits;
1028 exits = exit;
1029 }
1030 }
1031
1032 if (!exits && new_edge)
1033 return;
1034
1035 loop_exit **slot
1036 = current_loops->exits->find_slot_with_hash (e, htab_hash_pointer (e),
1037 exits ? INSERT : NO_INSERT);
1038 if (!slot)
1039 return;
1040
1041 if (exits)
1042 {
1043 if (*slot)
1044 loop_exit_hasher::remove (*slot);
1045 *slot = exits;
1046 }
1047 else
1048 current_loops->exits->clear_slot (slot);
1049 }
1050
1051 /* For each loop, record list of exit edges, and start maintaining these
1052 lists. */
1053
1054 void
1055 record_loop_exits (void)
1056 {
1057 basic_block bb;
1058 edge_iterator ei;
1059 edge e;
1060
1061 if (!current_loops)
1062 return;
1063
1064 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1065 return;
1066 loops_state_set (LOOPS_HAVE_RECORDED_EXITS);
1067
1068 gcc_assert (current_loops->exits == NULL);
1069 current_loops->exits
1070 = hash_table<loop_exit_hasher>::create_ggc (2 * number_of_loops (cfun));
1071
1072 FOR_EACH_BB_FN (bb, cfun)
1073 {
1074 FOR_EACH_EDGE (e, ei, bb->succs)
1075 {
1076 rescan_loop_exit (e, true, false);
1077 }
1078 }
1079 }
1080
1081 /* Dumps information about the exit in *SLOT to FILE.
1082 Callback for htab_traverse. */
1083
1084 int
1085 dump_recorded_exit (loop_exit **slot, FILE *file)
1086 {
1087 struct loop_exit *exit = *slot;
1088 unsigned n = 0;
1089 edge e = exit->e;
1090
1091 for (; exit != NULL; exit = exit->next_e)
1092 n++;
1093
1094 fprintf (file, "Edge %d->%d exits %u loops\n",
1095 e->src->index, e->dest->index, n);
1096
1097 return 1;
1098 }
1099
1100 /* Dumps the recorded exits of loops to FILE. */
1101
1102 extern void dump_recorded_exits (FILE *);
1103 void
1104 dump_recorded_exits (FILE *file)
1105 {
1106 if (!current_loops->exits)
1107 return;
1108 current_loops->exits->traverse<FILE *, dump_recorded_exit> (file);
1109 }
1110
1111 /* Releases lists of loop exits. */
1112
1113 void
1114 release_recorded_exits (function *fn)
1115 {
1116 gcc_assert (loops_state_satisfies_p (fn, LOOPS_HAVE_RECORDED_EXITS));
1117 loops_for_fn (fn)->exits->empty ();
1118 loops_for_fn (fn)->exits = NULL;
1119 loops_state_clear (fn, LOOPS_HAVE_RECORDED_EXITS);
1120 }
1121
1122 /* Returns the list of the exit edges of a LOOP. */
1123
1124 vec<edge>
1125 get_loop_exit_edges (const struct loop *loop)
1126 {
1127 vec<edge> edges = vNULL;
1128 edge e;
1129 unsigned i;
1130 basic_block *body;
1131 edge_iterator ei;
1132 struct loop_exit *exit;
1133
1134 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
1135
1136 /* If we maintain the lists of exits, use them. Otherwise we must
1137 scan the body of the loop. */
1138 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1139 {
1140 for (exit = loop->exits->next; exit->e; exit = exit->next)
1141 edges.safe_push (exit->e);
1142 }
1143 else
1144 {
1145 body = get_loop_body (loop);
1146 for (i = 0; i < loop->num_nodes; i++)
1147 FOR_EACH_EDGE (e, ei, body[i]->succs)
1148 {
1149 if (!flow_bb_inside_loop_p (loop, e->dest))
1150 edges.safe_push (e);
1151 }
1152 free (body);
1153 }
1154
1155 return edges;
1156 }
1157
1158 /* Counts the number of conditional branches inside LOOP. */
1159
1160 unsigned
1161 num_loop_branches (const struct loop *loop)
1162 {
1163 unsigned i, n;
1164 basic_block * body;
1165
1166 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
1167
1168 body = get_loop_body (loop);
1169 n = 0;
1170 for (i = 0; i < loop->num_nodes; i++)
1171 if (EDGE_COUNT (body[i]->succs) >= 2)
1172 n++;
1173 free (body);
1174
1175 return n;
1176 }
1177
1178 /* Adds basic block BB to LOOP. */
1179 void
1180 add_bb_to_loop (basic_block bb, struct loop *loop)
1181 {
1182 unsigned i;
1183 loop_p ploop;
1184 edge_iterator ei;
1185 edge e;
1186
1187 gcc_assert (bb->loop_father == NULL);
1188 bb->loop_father = loop;
1189 loop->num_nodes++;
1190 FOR_EACH_VEC_SAFE_ELT (loop->superloops, i, ploop)
1191 ploop->num_nodes++;
1192
1193 FOR_EACH_EDGE (e, ei, bb->succs)
1194 {
1195 rescan_loop_exit (e, true, false);
1196 }
1197 FOR_EACH_EDGE (e, ei, bb->preds)
1198 {
1199 rescan_loop_exit (e, true, false);
1200 }
1201 }
1202
1203 /* Remove basic block BB from loops. */
1204 void
1205 remove_bb_from_loops (basic_block bb)
1206 {
1207 unsigned i;
1208 struct loop *loop = bb->loop_father;
1209 loop_p ploop;
1210 edge_iterator ei;
1211 edge e;
1212
1213 gcc_assert (loop != NULL);
1214 loop->num_nodes--;
1215 FOR_EACH_VEC_SAFE_ELT (loop->superloops, i, ploop)
1216 ploop->num_nodes--;
1217 bb->loop_father = NULL;
1218
1219 FOR_EACH_EDGE (e, ei, bb->succs)
1220 {
1221 rescan_loop_exit (e, false, true);
1222 }
1223 FOR_EACH_EDGE (e, ei, bb->preds)
1224 {
1225 rescan_loop_exit (e, false, true);
1226 }
1227 }
1228
1229 /* Finds nearest common ancestor in loop tree for given loops. */
1230 struct loop *
1231 find_common_loop (struct loop *loop_s, struct loop *loop_d)
1232 {
1233 unsigned sdepth, ddepth;
1234
1235 if (!loop_s) return loop_d;
1236 if (!loop_d) return loop_s;
1237
1238 sdepth = loop_depth (loop_s);
1239 ddepth = loop_depth (loop_d);
1240
1241 if (sdepth < ddepth)
1242 loop_d = (*loop_d->superloops)[sdepth];
1243 else if (sdepth > ddepth)
1244 loop_s = (*loop_s->superloops)[ddepth];
1245
1246 while (loop_s != loop_d)
1247 {
1248 loop_s = loop_outer (loop_s);
1249 loop_d = loop_outer (loop_d);
1250 }
1251 return loop_s;
1252 }
1253
1254 /* Removes LOOP from structures and frees its data. */
1255
1256 void
1257 delete_loop (struct loop *loop)
1258 {
1259 /* Remove the loop from structure. */
1260 flow_loop_tree_node_remove (loop);
1261
1262 /* Remove loop from loops array. */
1263 (*current_loops->larray)[loop->num] = NULL;
1264
1265 /* Free loop data. */
1266 flow_loop_free (loop);
1267 }
1268
1269 /* Cancels the LOOP; it must be innermost one. */
1270
1271 static void
1272 cancel_loop (struct loop *loop)
1273 {
1274 basic_block *bbs;
1275 unsigned i;
1276 struct loop *outer = loop_outer (loop);
1277
1278 gcc_assert (!loop->inner);
1279
1280 /* Move blocks up one level (they should be removed as soon as possible). */
1281 bbs = get_loop_body (loop);
1282 for (i = 0; i < loop->num_nodes; i++)
1283 bbs[i]->loop_father = outer;
1284
1285 free (bbs);
1286 delete_loop (loop);
1287 }
1288
1289 /* Cancels LOOP and all its subloops. */
1290 void
1291 cancel_loop_tree (struct loop *loop)
1292 {
1293 while (loop->inner)
1294 cancel_loop_tree (loop->inner);
1295 cancel_loop (loop);
1296 }
1297
1298 /* Checks that information about loops is correct
1299 -- sizes of loops are all right
1300 -- results of get_loop_body really belong to the loop
1301 -- loop header have just single entry edge and single latch edge
1302 -- loop latches have only single successor that is header of their loop
1303 -- irreducible loops are correctly marked
1304 -- the cached loop depth and loop father of each bb is correct
1305 */
1306 DEBUG_FUNCTION void
1307 verify_loop_structure (void)
1308 {
1309 unsigned *sizes, i, j;
1310 sbitmap irreds;
1311 basic_block bb, *bbs;
1312 struct loop *loop;
1313 int err = 0;
1314 edge e;
1315 unsigned num = number_of_loops (cfun);
1316 struct loop_exit *exit, *mexit;
1317 bool dom_available = dom_info_available_p (CDI_DOMINATORS);
1318 sbitmap visited;
1319
1320 if (loops_state_satisfies_p (LOOPS_NEED_FIXUP))
1321 {
1322 error ("loop verification on loop tree that needs fixup");
1323 err = 1;
1324 }
1325
1326 /* We need up-to-date dominators, compute or verify them. */
1327 if (!dom_available)
1328 calculate_dominance_info (CDI_DOMINATORS);
1329 else
1330 verify_dominators (CDI_DOMINATORS);
1331
1332 /* Check the loop tree root. */
1333 if (current_loops->tree_root->header != ENTRY_BLOCK_PTR_FOR_FN (cfun)
1334 || current_loops->tree_root->latch != EXIT_BLOCK_PTR_FOR_FN (cfun)
1335 || (current_loops->tree_root->num_nodes
1336 != (unsigned) n_basic_blocks_for_fn (cfun)))
1337 {
1338 error ("corrupt loop tree root");
1339 err = 1;
1340 }
1341
1342 /* Check the headers. */
1343 FOR_EACH_BB_FN (bb, cfun)
1344 if (bb_loop_header_p (bb))
1345 {
1346 if (bb->loop_father->header == NULL)
1347 {
1348 error ("loop with header %d marked for removal", bb->index);
1349 err = 1;
1350 }
1351 else if (bb->loop_father->header != bb)
1352 {
1353 error ("loop with header %d not in loop tree", bb->index);
1354 err = 1;
1355 }
1356 }
1357 else if (bb->loop_father->header == bb)
1358 {
1359 error ("non-loop with header %d not marked for removal", bb->index);
1360 err = 1;
1361 }
1362
1363 /* Check the recorded loop father and sizes of loops. */
1364 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
1365 bitmap_clear (visited);
1366 bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
1367 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
1368 {
1369 unsigned n;
1370
1371 if (loop->header == NULL)
1372 {
1373 error ("removed loop %d in loop tree", loop->num);
1374 err = 1;
1375 continue;
1376 }
1377
1378 n = get_loop_body_with_size (loop, bbs, n_basic_blocks_for_fn (cfun));
1379 if (loop->num_nodes != n)
1380 {
1381 error ("size of loop %d should be %d, not %d",
1382 loop->num, n, loop->num_nodes);
1383 err = 1;
1384 }
1385
1386 for (j = 0; j < n; j++)
1387 {
1388 bb = bbs[j];
1389
1390 if (!flow_bb_inside_loop_p (loop, bb))
1391 {
1392 error ("bb %d does not belong to loop %d",
1393 bb->index, loop->num);
1394 err = 1;
1395 }
1396
1397 /* Ignore this block if it is in an inner loop. */
1398 if (bitmap_bit_p (visited, bb->index))
1399 continue;
1400 bitmap_set_bit (visited, bb->index);
1401
1402 if (bb->loop_father != loop)
1403 {
1404 error ("bb %d has father loop %d, should be loop %d",
1405 bb->index, bb->loop_father->num, loop->num);
1406 err = 1;
1407 }
1408 }
1409 }
1410 free (bbs);
1411 sbitmap_free (visited);
1412
1413 /* Check headers and latches. */
1414 FOR_EACH_LOOP (loop, 0)
1415 {
1416 i = loop->num;
1417 if (loop->header == NULL)
1418 continue;
1419 if (!bb_loop_header_p (loop->header))
1420 {
1421 error ("loop %d%'s header is not a loop header", i);
1422 err = 1;
1423 }
1424 if (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS)
1425 && EDGE_COUNT (loop->header->preds) != 2)
1426 {
1427 error ("loop %d%'s header does not have exactly 2 entries", i);
1428 err = 1;
1429 }
1430 if (loop->latch)
1431 {
1432 if (!find_edge (loop->latch, loop->header))
1433 {
1434 error ("loop %d%'s latch does not have an edge to its header", i);
1435 err = 1;
1436 }
1437 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, loop->header))
1438 {
1439 error ("loop %d%'s latch is not dominated by its header", i);
1440 err = 1;
1441 }
1442 }
1443 if (loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES))
1444 {
1445 if (!single_succ_p (loop->latch))
1446 {
1447 error ("loop %d%'s latch does not have exactly 1 successor", i);
1448 err = 1;
1449 }
1450 if (single_succ (loop->latch) != loop->header)
1451 {
1452 error ("loop %d%'s latch does not have header as successor", i);
1453 err = 1;
1454 }
1455 if (loop->latch->loop_father != loop)
1456 {
1457 error ("loop %d%'s latch does not belong directly to it", i);
1458 err = 1;
1459 }
1460 }
1461 if (loop->header->loop_father != loop)
1462 {
1463 error ("loop %d%'s header does not belong directly to it", i);
1464 err = 1;
1465 }
1466 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS)
1467 && (loop_latch_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP))
1468 {
1469 error ("loop %d%'s latch is marked as part of irreducible region", i);
1470 err = 1;
1471 }
1472 }
1473
1474 /* Check irreducible loops. */
1475 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
1476 {
1477 /* Record old info. */
1478 irreds = sbitmap_alloc (last_basic_block_for_fn (cfun));
1479 FOR_EACH_BB_FN (bb, cfun)
1480 {
1481 edge_iterator ei;
1482 if (bb->flags & BB_IRREDUCIBLE_LOOP)
1483 bitmap_set_bit (irreds, bb->index);
1484 else
1485 bitmap_clear_bit (irreds, bb->index);
1486 FOR_EACH_EDGE (e, ei, bb->succs)
1487 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
1488 e->flags |= EDGE_ALL_FLAGS + 1;
1489 }
1490
1491 /* Recount it. */
1492 mark_irreducible_loops ();
1493
1494 /* Compare. */
1495 FOR_EACH_BB_FN (bb, cfun)
1496 {
1497 edge_iterator ei;
1498
1499 if ((bb->flags & BB_IRREDUCIBLE_LOOP)
1500 && !bitmap_bit_p (irreds, bb->index))
1501 {
1502 error ("basic block %d should be marked irreducible", bb->index);
1503 err = 1;
1504 }
1505 else if (!(bb->flags & BB_IRREDUCIBLE_LOOP)
1506 && bitmap_bit_p (irreds, bb->index))
1507 {
1508 error ("basic block %d should not be marked irreducible", bb->index);
1509 err = 1;
1510 }
1511 FOR_EACH_EDGE (e, ei, bb->succs)
1512 {
1513 if ((e->flags & EDGE_IRREDUCIBLE_LOOP)
1514 && !(e->flags & (EDGE_ALL_FLAGS + 1)))
1515 {
1516 error ("edge from %d to %d should be marked irreducible",
1517 e->src->index, e->dest->index);
1518 err = 1;
1519 }
1520 else if (!(e->flags & EDGE_IRREDUCIBLE_LOOP)
1521 && (e->flags & (EDGE_ALL_FLAGS + 1)))
1522 {
1523 error ("edge from %d to %d should not be marked irreducible",
1524 e->src->index, e->dest->index);
1525 err = 1;
1526 }
1527 e->flags &= ~(EDGE_ALL_FLAGS + 1);
1528 }
1529 }
1530 free (irreds);
1531 }
1532
1533 /* Check the recorded loop exits. */
1534 FOR_EACH_LOOP (loop, 0)
1535 {
1536 if (!loop->exits || loop->exits->e != NULL)
1537 {
1538 error ("corrupted head of the exits list of loop %d",
1539 loop->num);
1540 err = 1;
1541 }
1542 else
1543 {
1544 /* Check that the list forms a cycle, and all elements except
1545 for the head are nonnull. */
1546 for (mexit = loop->exits, exit = mexit->next, i = 0;
1547 exit->e && exit != mexit;
1548 exit = exit->next)
1549 {
1550 if (i++ & 1)
1551 mexit = mexit->next;
1552 }
1553
1554 if (exit != loop->exits)
1555 {
1556 error ("corrupted exits list of loop %d", loop->num);
1557 err = 1;
1558 }
1559 }
1560
1561 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1562 {
1563 if (loop->exits->next != loop->exits)
1564 {
1565 error ("nonempty exits list of loop %d, but exits are not recorded",
1566 loop->num);
1567 err = 1;
1568 }
1569 }
1570 }
1571
1572 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1573 {
1574 unsigned n_exits = 0, eloops;
1575
1576 sizes = XCNEWVEC (unsigned, num);
1577 memset (sizes, 0, sizeof (unsigned) * num);
1578 FOR_EACH_BB_FN (bb, cfun)
1579 {
1580 edge_iterator ei;
1581 if (bb->loop_father == current_loops->tree_root)
1582 continue;
1583 FOR_EACH_EDGE (e, ei, bb->succs)
1584 {
1585 if (flow_bb_inside_loop_p (bb->loop_father, e->dest))
1586 continue;
1587
1588 n_exits++;
1589 exit = get_exit_descriptions (e);
1590 if (!exit)
1591 {
1592 error ("exit %d->%d not recorded",
1593 e->src->index, e->dest->index);
1594 err = 1;
1595 }
1596 eloops = 0;
1597 for (; exit; exit = exit->next_e)
1598 eloops++;
1599
1600 for (loop = bb->loop_father;
1601 loop != e->dest->loop_father
1602 /* When a loop exit is also an entry edge which
1603 can happen when avoiding CFG manipulations
1604 then the last loop exited is the outer loop
1605 of the loop entered. */
1606 && loop != loop_outer (e->dest->loop_father);
1607 loop = loop_outer (loop))
1608 {
1609 eloops--;
1610 sizes[loop->num]++;
1611 }
1612
1613 if (eloops != 0)
1614 {
1615 error ("wrong list of exited loops for edge %d->%d",
1616 e->src->index, e->dest->index);
1617 err = 1;
1618 }
1619 }
1620 }
1621
1622 if (n_exits != current_loops->exits->elements ())
1623 {
1624 error ("too many loop exits recorded");
1625 err = 1;
1626 }
1627
1628 FOR_EACH_LOOP (loop, 0)
1629 {
1630 eloops = 0;
1631 for (exit = loop->exits->next; exit->e; exit = exit->next)
1632 eloops++;
1633 if (eloops != sizes[loop->num])
1634 {
1635 error ("%d exits recorded for loop %d (having %d exits)",
1636 eloops, loop->num, sizes[loop->num]);
1637 err = 1;
1638 }
1639 }
1640
1641 free (sizes);
1642 }
1643
1644 gcc_assert (!err);
1645
1646 if (!dom_available)
1647 free_dominance_info (CDI_DOMINATORS);
1648 }
1649
1650 /* Returns latch edge of LOOP. */
1651 edge
1652 loop_latch_edge (const struct loop *loop)
1653 {
1654 return find_edge (loop->latch, loop->header);
1655 }
1656
1657 /* Returns preheader edge of LOOP. */
1658 edge
1659 loop_preheader_edge (const struct loop *loop)
1660 {
1661 edge e;
1662 edge_iterator ei;
1663
1664 gcc_assert (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS));
1665
1666 FOR_EACH_EDGE (e, ei, loop->header->preds)
1667 if (e->src != loop->latch)
1668 break;
1669
1670 return e;
1671 }
1672
1673 /* Returns true if E is an exit of LOOP. */
1674
1675 bool
1676 loop_exit_edge_p (const struct loop *loop, const_edge e)
1677 {
1678 return (flow_bb_inside_loop_p (loop, e->src)
1679 && !flow_bb_inside_loop_p (loop, e->dest));
1680 }
1681
1682 /* Returns the single exit edge of LOOP, or NULL if LOOP has either no exit
1683 or more than one exit. If loops do not have the exits recorded, NULL
1684 is returned always. */
1685
1686 edge
1687 single_exit (const struct loop *loop)
1688 {
1689 struct loop_exit *exit = loop->exits->next;
1690
1691 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1692 return NULL;
1693
1694 if (exit->e && exit->next == loop->exits)
1695 return exit->e;
1696 else
1697 return NULL;
1698 }
1699
1700 /* Returns true when BB has an incoming edge exiting LOOP. */
1701
1702 bool
1703 loop_exits_to_bb_p (struct loop *loop, basic_block bb)
1704 {
1705 edge e;
1706 edge_iterator ei;
1707
1708 FOR_EACH_EDGE (e, ei, bb->preds)
1709 if (loop_exit_edge_p (loop, e))
1710 return true;
1711
1712 return false;
1713 }
1714
1715 /* Returns true when BB has an outgoing edge exiting LOOP. */
1716
1717 bool
1718 loop_exits_from_bb_p (struct loop *loop, basic_block bb)
1719 {
1720 edge e;
1721 edge_iterator ei;
1722
1723 FOR_EACH_EDGE (e, ei, bb->succs)
1724 if (loop_exit_edge_p (loop, e))
1725 return true;
1726
1727 return false;
1728 }
1729
1730 /* Return location corresponding to the loop control condition if possible. */
1731
1732 location_t
1733 get_loop_location (struct loop *loop)
1734 {
1735 rtx_insn *insn = NULL;
1736 struct niter_desc *desc = NULL;
1737 edge exit;
1738
1739 /* For a for or while loop, we would like to return the location
1740 of the for or while statement, if possible. To do this, look
1741 for the branch guarding the loop back-edge. */
1742
1743 /* If this is a simple loop with an in_edge, then the loop control
1744 branch is typically at the end of its source. */
1745 desc = get_simple_loop_desc (loop);
1746 if (desc->in_edge)
1747 {
1748 FOR_BB_INSNS_REVERSE (desc->in_edge->src, insn)
1749 {
1750 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1751 return INSN_LOCATION (insn);
1752 }
1753 }
1754 /* If loop has a single exit, then the loop control branch
1755 must be at the end of its source. */
1756 if ((exit = single_exit (loop)))
1757 {
1758 FOR_BB_INSNS_REVERSE (exit->src, insn)
1759 {
1760 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1761 return INSN_LOCATION (insn);
1762 }
1763 }
1764 /* Next check the latch, to see if it is non-empty. */
1765 FOR_BB_INSNS_REVERSE (loop->latch, insn)
1766 {
1767 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1768 return INSN_LOCATION (insn);
1769 }
1770 /* Finally, if none of the above identifies the loop control branch,
1771 return the first location in the loop header. */
1772 FOR_BB_INSNS (loop->header, insn)
1773 {
1774 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1775 return INSN_LOCATION (insn);
1776 }
1777 /* If all else fails, simply return the current function location. */
1778 return DECL_SOURCE_LOCATION (current_function_decl);
1779 }
1780
1781 /* Records that every statement in LOOP is executed I_BOUND times.
1782 REALISTIC is true if I_BOUND is expected to be close to the real number
1783 of iterations. UPPER is true if we are sure the loop iterates at most
1784 I_BOUND times. */
1785
1786 void
1787 record_niter_bound (struct loop *loop, const widest_int &i_bound,
1788 bool realistic, bool upper)
1789 {
1790 /* Update the bounds only when there is no previous estimation, or when the
1791 current estimation is smaller. */
1792 if (upper
1793 && (!loop->any_upper_bound
1794 || wi::ltu_p (i_bound, loop->nb_iterations_upper_bound)))
1795 {
1796 loop->any_upper_bound = true;
1797 loop->nb_iterations_upper_bound = i_bound;
1798 }
1799 if (realistic
1800 && (!loop->any_estimate
1801 || wi::ltu_p (i_bound, loop->nb_iterations_estimate)))
1802 {
1803 loop->any_estimate = true;
1804 loop->nb_iterations_estimate = i_bound;
1805 }
1806
1807 /* If an upper bound is smaller than the realistic estimate of the
1808 number of iterations, use the upper bound instead. */
1809 if (loop->any_upper_bound
1810 && loop->any_estimate
1811 && wi::ltu_p (loop->nb_iterations_upper_bound,
1812 loop->nb_iterations_estimate))
1813 loop->nb_iterations_estimate = loop->nb_iterations_upper_bound;
1814 }
1815
1816 /* Similar to get_estimated_loop_iterations, but returns the estimate only
1817 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
1818 on the number of iterations of LOOP could not be derived, returns -1. */
1819
1820 HOST_WIDE_INT
1821 get_estimated_loop_iterations_int (struct loop *loop)
1822 {
1823 widest_int nit;
1824 HOST_WIDE_INT hwi_nit;
1825
1826 if (!get_estimated_loop_iterations (loop, &nit))
1827 return -1;
1828
1829 if (!wi::fits_shwi_p (nit))
1830 return -1;
1831 hwi_nit = nit.to_shwi ();
1832
1833 return hwi_nit < 0 ? -1 : hwi_nit;
1834 }
1835
1836 /* Returns an upper bound on the number of executions of statements
1837 in the LOOP. For statements before the loop exit, this exceeds
1838 the number of execution of the latch by one. */
1839
1840 HOST_WIDE_INT
1841 max_stmt_executions_int (struct loop *loop)
1842 {
1843 HOST_WIDE_INT nit = get_max_loop_iterations_int (loop);
1844 HOST_WIDE_INT snit;
1845
1846 if (nit == -1)
1847 return -1;
1848
1849 snit = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) nit + 1);
1850
1851 /* If the computation overflows, return -1. */
1852 return snit < 0 ? -1 : snit;
1853 }
1854
1855 /* Sets NIT to the estimated number of executions of the latch of the
1856 LOOP. If we have no reliable estimate, the function returns false, otherwise
1857 returns true. */
1858
1859 bool
1860 get_estimated_loop_iterations (struct loop *loop, widest_int *nit)
1861 {
1862 /* Even if the bound is not recorded, possibly we can derrive one from
1863 profile. */
1864 if (!loop->any_estimate)
1865 {
1866 if (loop->header->count)
1867 {
1868 *nit = gcov_type_to_wide_int
1869 (expected_loop_iterations_unbounded (loop) + 1);
1870 return true;
1871 }
1872 return false;
1873 }
1874
1875 *nit = loop->nb_iterations_estimate;
1876 return true;
1877 }
1878
1879 /* Sets NIT to an upper bound for the maximum number of executions of the
1880 latch of the LOOP. If we have no reliable estimate, the function returns
1881 false, otherwise returns true. */
1882
1883 bool
1884 get_max_loop_iterations (struct loop *loop, widest_int *nit)
1885 {
1886 if (!loop->any_upper_bound)
1887 return false;
1888
1889 *nit = loop->nb_iterations_upper_bound;
1890 return true;
1891 }
1892
1893 /* Similar to get_max_loop_iterations, but returns the estimate only
1894 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
1895 on the number of iterations of LOOP could not be derived, returns -1. */
1896
1897 HOST_WIDE_INT
1898 get_max_loop_iterations_int (struct loop *loop)
1899 {
1900 widest_int nit;
1901 HOST_WIDE_INT hwi_nit;
1902
1903 if (!get_max_loop_iterations (loop, &nit))
1904 return -1;
1905
1906 if (!wi::fits_shwi_p (nit))
1907 return -1;
1908 hwi_nit = nit.to_shwi ();
1909
1910 return hwi_nit < 0 ? -1 : hwi_nit;
1911 }
1912
1913 /* Returns the loop depth of the loop BB belongs to. */
1914
1915 int
1916 bb_loop_depth (const_basic_block bb)
1917 {
1918 return bb->loop_father ? loop_depth (bb->loop_father) : 0;
1919 }
1920
1921 /* Marks LOOP for removal and sets LOOPS_NEED_FIXUP. */
1922
1923 void
1924 mark_loop_for_removal (loop_p loop)
1925 {
1926 if (loop->header == NULL)
1927 return;
1928 loop->former_header = loop->header;
1929 loop->header = NULL;
1930 loop->latch = NULL;
1931 loops_state_set (LOOPS_NEED_FIXUP);
1932 }