re PR tree-optimization/71477 (gcc ICE at -O3 on valid code on x86_64-linux-gnu with...
[gcc.git] / gcc / cfgloop.c
1 /* Natural loop discovery code for GNU compiler.
2 Copyright (C) 2000-2016 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "cfghooks.h"
28 #include "gimple-ssa.h"
29 #include "diagnostic-core.h"
30 #include "cfganal.h"
31 #include "cfgloop.h"
32 #include "gimple-iterator.h"
33 #include "dumpfile.h"
34
35 static void flow_loops_cfg_dump (FILE *);
36 \f
37 /* Dump loop related CFG information. */
38
39 static void
40 flow_loops_cfg_dump (FILE *file)
41 {
42 basic_block bb;
43
44 if (!file)
45 return;
46
47 FOR_EACH_BB_FN (bb, cfun)
48 {
49 edge succ;
50 edge_iterator ei;
51
52 fprintf (file, ";; %d succs { ", bb->index);
53 FOR_EACH_EDGE (succ, ei, bb->succs)
54 fprintf (file, "%d ", succ->dest->index);
55 fprintf (file, "}\n");
56 }
57 }
58
59 /* Return nonzero if the nodes of LOOP are a subset of OUTER. */
60
61 bool
62 flow_loop_nested_p (const struct loop *outer, const struct loop *loop)
63 {
64 unsigned odepth = loop_depth (outer);
65
66 return (loop_depth (loop) > odepth
67 && (*loop->superloops)[odepth] == outer);
68 }
69
70 /* Returns the loop such that LOOP is nested DEPTH (indexed from zero)
71 loops within LOOP. */
72
73 struct loop *
74 superloop_at_depth (struct loop *loop, unsigned depth)
75 {
76 unsigned ldepth = loop_depth (loop);
77
78 gcc_assert (depth <= ldepth);
79
80 if (depth == ldepth)
81 return loop;
82
83 return (*loop->superloops)[depth];
84 }
85
86 /* Returns the list of the latch edges of LOOP. */
87
88 static vec<edge>
89 get_loop_latch_edges (const struct loop *loop)
90 {
91 edge_iterator ei;
92 edge e;
93 vec<edge> ret = vNULL;
94
95 FOR_EACH_EDGE (e, ei, loop->header->preds)
96 {
97 if (dominated_by_p (CDI_DOMINATORS, e->src, loop->header))
98 ret.safe_push (e);
99 }
100
101 return ret;
102 }
103
104 /* Dump the loop information specified by LOOP to the stream FILE
105 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
106
107 void
108 flow_loop_dump (const struct loop *loop, FILE *file,
109 void (*loop_dump_aux) (const struct loop *, FILE *, int),
110 int verbose)
111 {
112 basic_block *bbs;
113 unsigned i;
114 vec<edge> latches;
115 edge e;
116
117 if (! loop || ! loop->header)
118 return;
119
120 fprintf (file, ";;\n;; Loop %d\n", loop->num);
121
122 fprintf (file, ";; header %d, ", loop->header->index);
123 if (loop->latch)
124 fprintf (file, "latch %d\n", loop->latch->index);
125 else
126 {
127 fprintf (file, "multiple latches:");
128 latches = get_loop_latch_edges (loop);
129 FOR_EACH_VEC_ELT (latches, i, e)
130 fprintf (file, " %d", e->src->index);
131 latches.release ();
132 fprintf (file, "\n");
133 }
134
135 fprintf (file, ";; depth %d, outer %ld\n",
136 loop_depth (loop), (long) (loop_outer (loop)
137 ? loop_outer (loop)->num : -1));
138
139 fprintf (file, ";; nodes:");
140 bbs = get_loop_body (loop);
141 for (i = 0; i < loop->num_nodes; i++)
142 fprintf (file, " %d", bbs[i]->index);
143 free (bbs);
144 fprintf (file, "\n");
145
146 if (loop_dump_aux)
147 loop_dump_aux (loop, file, verbose);
148 }
149
150 /* Dump the loop information about loops to the stream FILE,
151 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
152
153 void
154 flow_loops_dump (FILE *file, void (*loop_dump_aux) (const struct loop *, FILE *, int), int verbose)
155 {
156 struct loop *loop;
157
158 if (!current_loops || ! file)
159 return;
160
161 fprintf (file, ";; %d loops found\n", number_of_loops (cfun));
162
163 FOR_EACH_LOOP (loop, LI_INCLUDE_ROOT)
164 {
165 flow_loop_dump (loop, file, loop_dump_aux, verbose);
166 }
167
168 if (verbose)
169 flow_loops_cfg_dump (file);
170 }
171
172 /* Free data allocated for LOOP. */
173
174 void
175 flow_loop_free (struct loop *loop)
176 {
177 struct loop_exit *exit, *next;
178
179 vec_free (loop->superloops);
180
181 /* Break the list of the loop exit records. They will be freed when the
182 corresponding edge is rescanned or removed, and this avoids
183 accessing the (already released) head of the list stored in the
184 loop structure. */
185 for (exit = loop->exits->next; exit != loop->exits; exit = next)
186 {
187 next = exit->next;
188 exit->next = exit;
189 exit->prev = exit;
190 }
191
192 ggc_free (loop->exits);
193 ggc_free (loop);
194 }
195
196 /* Free all the memory allocated for LOOPS. */
197
198 void
199 flow_loops_free (struct loops *loops)
200 {
201 if (loops->larray)
202 {
203 unsigned i;
204 loop_p loop;
205
206 /* Free the loop descriptors. */
207 FOR_EACH_VEC_SAFE_ELT (loops->larray, i, loop)
208 {
209 if (!loop)
210 continue;
211
212 flow_loop_free (loop);
213 }
214
215 vec_free (loops->larray);
216 }
217 }
218
219 /* Find the nodes contained within the LOOP with header HEADER.
220 Return the number of nodes within the loop. */
221
222 int
223 flow_loop_nodes_find (basic_block header, struct loop *loop)
224 {
225 vec<basic_block> stack = vNULL;
226 int num_nodes = 1;
227 edge latch;
228 edge_iterator latch_ei;
229
230 header->loop_father = loop;
231
232 FOR_EACH_EDGE (latch, latch_ei, loop->header->preds)
233 {
234 if (latch->src->loop_father == loop
235 || !dominated_by_p (CDI_DOMINATORS, latch->src, loop->header))
236 continue;
237
238 num_nodes++;
239 stack.safe_push (latch->src);
240 latch->src->loop_father = loop;
241
242 while (!stack.is_empty ())
243 {
244 basic_block node;
245 edge e;
246 edge_iterator ei;
247
248 node = stack.pop ();
249
250 FOR_EACH_EDGE (e, ei, node->preds)
251 {
252 basic_block ancestor = e->src;
253
254 if (ancestor->loop_father != loop)
255 {
256 ancestor->loop_father = loop;
257 num_nodes++;
258 stack.safe_push (ancestor);
259 }
260 }
261 }
262 }
263 stack.release ();
264
265 return num_nodes;
266 }
267
268 /* Records the vector of superloops of the loop LOOP, whose immediate
269 superloop is FATHER. */
270
271 static void
272 establish_preds (struct loop *loop, struct loop *father)
273 {
274 loop_p ploop;
275 unsigned depth = loop_depth (father) + 1;
276 unsigned i;
277
278 loop->superloops = 0;
279 vec_alloc (loop->superloops, depth);
280 FOR_EACH_VEC_SAFE_ELT (father->superloops, i, ploop)
281 loop->superloops->quick_push (ploop);
282 loop->superloops->quick_push (father);
283
284 for (ploop = loop->inner; ploop; ploop = ploop->next)
285 establish_preds (ploop, loop);
286 }
287
288 /* Add LOOP to the loop hierarchy tree where FATHER is father of the
289 added loop. If LOOP has some children, take care of that their
290 pred field will be initialized correctly. */
291
292 void
293 flow_loop_tree_node_add (struct loop *father, struct loop *loop)
294 {
295 loop->next = father->inner;
296 father->inner = loop;
297
298 establish_preds (loop, father);
299 }
300
301 /* Remove LOOP from the loop hierarchy tree. */
302
303 void
304 flow_loop_tree_node_remove (struct loop *loop)
305 {
306 struct loop *prev, *father;
307
308 father = loop_outer (loop);
309
310 /* Remove loop from the list of sons. */
311 if (father->inner == loop)
312 father->inner = loop->next;
313 else
314 {
315 for (prev = father->inner; prev->next != loop; prev = prev->next)
316 continue;
317 prev->next = loop->next;
318 }
319
320 loop->superloops = NULL;
321 }
322
323 /* Allocates and returns new loop structure. */
324
325 struct loop *
326 alloc_loop (void)
327 {
328 struct loop *loop = ggc_cleared_alloc<struct loop> ();
329
330 loop->exits = ggc_cleared_alloc<loop_exit> ();
331 loop->exits->next = loop->exits->prev = loop->exits;
332 loop->can_be_parallel = false;
333 loop->nb_iterations_upper_bound = 0;
334 loop->nb_iterations_likely_upper_bound = 0;
335 loop->nb_iterations_estimate = 0;
336 return loop;
337 }
338
339 /* Initializes loops structure LOOPS, reserving place for NUM_LOOPS loops
340 (including the root of the loop tree). */
341
342 void
343 init_loops_structure (struct function *fn,
344 struct loops *loops, unsigned num_loops)
345 {
346 struct loop *root;
347
348 memset (loops, 0, sizeof *loops);
349 vec_alloc (loops->larray, num_loops);
350
351 /* Dummy loop containing whole function. */
352 root = alloc_loop ();
353 root->num_nodes = n_basic_blocks_for_fn (fn);
354 root->latch = EXIT_BLOCK_PTR_FOR_FN (fn);
355 root->header = ENTRY_BLOCK_PTR_FOR_FN (fn);
356 ENTRY_BLOCK_PTR_FOR_FN (fn)->loop_father = root;
357 EXIT_BLOCK_PTR_FOR_FN (fn)->loop_father = root;
358
359 loops->larray->quick_push (root);
360 loops->tree_root = root;
361 }
362
363 /* Returns whether HEADER is a loop header. */
364
365 bool
366 bb_loop_header_p (basic_block header)
367 {
368 edge_iterator ei;
369 edge e;
370
371 /* If we have an abnormal predecessor, do not consider the
372 loop (not worth the problems). */
373 if (bb_has_abnormal_pred (header))
374 return false;
375
376 /* Look for back edges where a predecessor is dominated
377 by this block. A natural loop has a single entry
378 node (header) that dominates all the nodes in the
379 loop. It also has single back edge to the header
380 from a latch node. */
381 FOR_EACH_EDGE (e, ei, header->preds)
382 {
383 basic_block latch = e->src;
384 if (latch != ENTRY_BLOCK_PTR_FOR_FN (cfun)
385 && dominated_by_p (CDI_DOMINATORS, latch, header))
386 return true;
387 }
388
389 return false;
390 }
391
392 /* Find all the natural loops in the function and save in LOOPS structure and
393 recalculate loop_father information in basic block structures.
394 If LOOPS is non-NULL then the loop structures for already recorded loops
395 will be re-used and their number will not change. We assume that no
396 stale loops exist in LOOPS.
397 When LOOPS is NULL it is allocated and re-built from scratch.
398 Return the built LOOPS structure. */
399
400 struct loops *
401 flow_loops_find (struct loops *loops)
402 {
403 bool from_scratch = (loops == NULL);
404 int *rc_order;
405 int b;
406 unsigned i;
407
408 /* Ensure that the dominators are computed. */
409 calculate_dominance_info (CDI_DOMINATORS);
410
411 if (!loops)
412 {
413 loops = ggc_cleared_alloc<struct loops> ();
414 init_loops_structure (cfun, loops, 1);
415 }
416
417 /* Ensure that loop exits were released. */
418 gcc_assert (loops->exits == NULL);
419
420 /* Taking care of this degenerate case makes the rest of
421 this code simpler. */
422 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
423 return loops;
424
425 /* The root loop node contains all basic-blocks. */
426 loops->tree_root->num_nodes = n_basic_blocks_for_fn (cfun);
427
428 /* Compute depth first search order of the CFG so that outer
429 natural loops will be found before inner natural loops. */
430 rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
431 pre_and_rev_post_order_compute (NULL, rc_order, false);
432
433 /* Gather all loop headers in reverse completion order and allocate
434 loop structures for loops that are not already present. */
435 auto_vec<loop_p> larray (loops->larray->length ());
436 for (b = 0; b < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; b++)
437 {
438 basic_block header = BASIC_BLOCK_FOR_FN (cfun, rc_order[b]);
439 if (bb_loop_header_p (header))
440 {
441 struct loop *loop;
442
443 /* The current active loop tree has valid loop-fathers for
444 header blocks. */
445 if (!from_scratch
446 && header->loop_father->header == header)
447 {
448 loop = header->loop_father;
449 /* If we found an existing loop remove it from the
450 loop tree. It is going to be inserted again
451 below. */
452 flow_loop_tree_node_remove (loop);
453 }
454 else
455 {
456 /* Otherwise allocate a new loop structure for the loop. */
457 loop = alloc_loop ();
458 /* ??? We could re-use unused loop slots here. */
459 loop->num = loops->larray->length ();
460 vec_safe_push (loops->larray, loop);
461 loop->header = header;
462
463 if (!from_scratch
464 && dump_file && (dump_flags & TDF_DETAILS))
465 fprintf (dump_file, "flow_loops_find: discovered new "
466 "loop %d with header %d\n",
467 loop->num, header->index);
468 }
469 /* Reset latch, we recompute it below. */
470 loop->latch = NULL;
471 larray.safe_push (loop);
472 }
473
474 /* Make blocks part of the loop root node at start. */
475 header->loop_father = loops->tree_root;
476 }
477
478 free (rc_order);
479
480 /* Now iterate over the loops found, insert them into the loop tree
481 and assign basic-block ownership. */
482 for (i = 0; i < larray.length (); ++i)
483 {
484 struct loop *loop = larray[i];
485 basic_block header = loop->header;
486 edge_iterator ei;
487 edge e;
488
489 flow_loop_tree_node_add (header->loop_father, loop);
490 loop->num_nodes = flow_loop_nodes_find (loop->header, loop);
491
492 /* Look for the latch for this header block, if it has just a
493 single one. */
494 FOR_EACH_EDGE (e, ei, header->preds)
495 {
496 basic_block latch = e->src;
497
498 if (flow_bb_inside_loop_p (loop, latch))
499 {
500 if (loop->latch != NULL)
501 {
502 /* More than one latch edge. */
503 loop->latch = NULL;
504 break;
505 }
506 loop->latch = latch;
507 }
508 }
509 }
510
511 return loops;
512 }
513
514 /* Ratio of frequencies of edges so that one of more latch edges is
515 considered to belong to inner loop with same header. */
516 #define HEAVY_EDGE_RATIO 8
517
518 /* Minimum number of samples for that we apply
519 find_subloop_latch_edge_by_profile heuristics. */
520 #define HEAVY_EDGE_MIN_SAMPLES 10
521
522 /* If the profile info is available, finds an edge in LATCHES that much more
523 frequent than the remaining edges. Returns such an edge, or NULL if we do
524 not find one.
525
526 We do not use guessed profile here, only the measured one. The guessed
527 profile is usually too flat and unreliable for this (and it is mostly based
528 on the loop structure of the program, so it does not make much sense to
529 derive the loop structure from it). */
530
531 static edge
532 find_subloop_latch_edge_by_profile (vec<edge> latches)
533 {
534 unsigned i;
535 edge e, me = NULL;
536 gcov_type mcount = 0, tcount = 0;
537
538 FOR_EACH_VEC_ELT (latches, i, e)
539 {
540 if (e->count > mcount)
541 {
542 me = e;
543 mcount = e->count;
544 }
545 tcount += e->count;
546 }
547
548 if (tcount < HEAVY_EDGE_MIN_SAMPLES
549 || (tcount - mcount) * HEAVY_EDGE_RATIO > tcount)
550 return NULL;
551
552 if (dump_file)
553 fprintf (dump_file,
554 "Found latch edge %d -> %d using profile information.\n",
555 me->src->index, me->dest->index);
556 return me;
557 }
558
559 /* Among LATCHES, guesses a latch edge of LOOP corresponding to subloop, based
560 on the structure of induction variables. Returns this edge, or NULL if we
561 do not find any.
562
563 We are quite conservative, and look just for an obvious simple innermost
564 loop (which is the case where we would lose the most performance by not
565 disambiguating the loop). More precisely, we look for the following
566 situation: The source of the chosen latch edge dominates sources of all
567 the other latch edges. Additionally, the header does not contain a phi node
568 such that the argument from the chosen edge is equal to the argument from
569 another edge. */
570
571 static edge
572 find_subloop_latch_edge_by_ivs (struct loop *loop ATTRIBUTE_UNUSED, vec<edge> latches)
573 {
574 edge e, latch = latches[0];
575 unsigned i;
576 gphi *phi;
577 gphi_iterator psi;
578 tree lop;
579 basic_block bb;
580
581 /* Find the candidate for the latch edge. */
582 for (i = 1; latches.iterate (i, &e); i++)
583 if (dominated_by_p (CDI_DOMINATORS, latch->src, e->src))
584 latch = e;
585
586 /* Verify that it dominates all the latch edges. */
587 FOR_EACH_VEC_ELT (latches, i, e)
588 if (!dominated_by_p (CDI_DOMINATORS, e->src, latch->src))
589 return NULL;
590
591 /* Check for a phi node that would deny that this is a latch edge of
592 a subloop. */
593 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
594 {
595 phi = psi.phi ();
596 lop = PHI_ARG_DEF_FROM_EDGE (phi, latch);
597
598 /* Ignore the values that are not changed inside the subloop. */
599 if (TREE_CODE (lop) != SSA_NAME
600 || SSA_NAME_DEF_STMT (lop) == phi)
601 continue;
602 bb = gimple_bb (SSA_NAME_DEF_STMT (lop));
603 if (!bb || !flow_bb_inside_loop_p (loop, bb))
604 continue;
605
606 FOR_EACH_VEC_ELT (latches, i, e)
607 if (e != latch
608 && PHI_ARG_DEF_FROM_EDGE (phi, e) == lop)
609 return NULL;
610 }
611
612 if (dump_file)
613 fprintf (dump_file,
614 "Found latch edge %d -> %d using iv structure.\n",
615 latch->src->index, latch->dest->index);
616 return latch;
617 }
618
619 /* If we can determine that one of the several latch edges of LOOP behaves
620 as a latch edge of a separate subloop, returns this edge. Otherwise
621 returns NULL. */
622
623 static edge
624 find_subloop_latch_edge (struct loop *loop)
625 {
626 vec<edge> latches = get_loop_latch_edges (loop);
627 edge latch = NULL;
628
629 if (latches.length () > 1)
630 {
631 latch = find_subloop_latch_edge_by_profile (latches);
632
633 if (!latch
634 /* We consider ivs to guess the latch edge only in SSA. Perhaps we
635 should use cfghook for this, but it is hard to imagine it would
636 be useful elsewhere. */
637 && current_ir_type () == IR_GIMPLE)
638 latch = find_subloop_latch_edge_by_ivs (loop, latches);
639 }
640
641 latches.release ();
642 return latch;
643 }
644
645 /* Callback for make_forwarder_block. Returns true if the edge E is marked
646 in the set MFB_REIS_SET. */
647
648 static hash_set<edge> *mfb_reis_set;
649 static bool
650 mfb_redirect_edges_in_set (edge e)
651 {
652 return mfb_reis_set->contains (e);
653 }
654
655 /* Creates a subloop of LOOP with latch edge LATCH. */
656
657 static void
658 form_subloop (struct loop *loop, edge latch)
659 {
660 edge_iterator ei;
661 edge e, new_entry;
662 struct loop *new_loop;
663
664 mfb_reis_set = new hash_set<edge>;
665 FOR_EACH_EDGE (e, ei, loop->header->preds)
666 {
667 if (e != latch)
668 mfb_reis_set->add (e);
669 }
670 new_entry = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
671 NULL);
672 delete mfb_reis_set;
673
674 loop->header = new_entry->src;
675
676 /* Find the blocks and subloops that belong to the new loop, and add it to
677 the appropriate place in the loop tree. */
678 new_loop = alloc_loop ();
679 new_loop->header = new_entry->dest;
680 new_loop->latch = latch->src;
681 add_loop (new_loop, loop);
682 }
683
684 /* Make all the latch edges of LOOP to go to a single forwarder block --
685 a new latch of LOOP. */
686
687 static void
688 merge_latch_edges (struct loop *loop)
689 {
690 vec<edge> latches = get_loop_latch_edges (loop);
691 edge latch, e;
692 unsigned i;
693
694 gcc_assert (latches.length () > 0);
695
696 if (latches.length () == 1)
697 loop->latch = latches[0]->src;
698 else
699 {
700 if (dump_file)
701 fprintf (dump_file, "Merged latch edges of loop %d\n", loop->num);
702
703 mfb_reis_set = new hash_set<edge>;
704 FOR_EACH_VEC_ELT (latches, i, e)
705 mfb_reis_set->add (e);
706 latch = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
707 NULL);
708 delete mfb_reis_set;
709
710 loop->header = latch->dest;
711 loop->latch = latch->src;
712 }
713
714 latches.release ();
715 }
716
717 /* LOOP may have several latch edges. Transform it into (possibly several)
718 loops with single latch edge. */
719
720 static void
721 disambiguate_multiple_latches (struct loop *loop)
722 {
723 edge e;
724
725 /* We eliminate the multiple latches by splitting the header to the forwarder
726 block F and the rest R, and redirecting the edges. There are two cases:
727
728 1) If there is a latch edge E that corresponds to a subloop (we guess
729 that based on profile -- if it is taken much more often than the
730 remaining edges; and on trees, using the information about induction
731 variables of the loops), we redirect E to R, all the remaining edges to
732 F, then rescan the loops and try again for the outer loop.
733 2) If there is no such edge, we redirect all latch edges to F, and the
734 entry edges to R, thus making F the single latch of the loop. */
735
736 if (dump_file)
737 fprintf (dump_file, "Disambiguating loop %d with multiple latches\n",
738 loop->num);
739
740 /* During latch merging, we may need to redirect the entry edges to a new
741 block. This would cause problems if the entry edge was the one from the
742 entry block. To avoid having to handle this case specially, split
743 such entry edge. */
744 e = find_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), loop->header);
745 if (e)
746 split_edge (e);
747
748 while (1)
749 {
750 e = find_subloop_latch_edge (loop);
751 if (!e)
752 break;
753
754 form_subloop (loop, e);
755 }
756
757 merge_latch_edges (loop);
758 }
759
760 /* Split loops with multiple latch edges. */
761
762 void
763 disambiguate_loops_with_multiple_latches (void)
764 {
765 struct loop *loop;
766
767 FOR_EACH_LOOP (loop, 0)
768 {
769 if (!loop->latch)
770 disambiguate_multiple_latches (loop);
771 }
772 }
773
774 /* Return nonzero if basic block BB belongs to LOOP. */
775 bool
776 flow_bb_inside_loop_p (const struct loop *loop, const_basic_block bb)
777 {
778 struct loop *source_loop;
779
780 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun)
781 || bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
782 return 0;
783
784 source_loop = bb->loop_father;
785 return loop == source_loop || flow_loop_nested_p (loop, source_loop);
786 }
787
788 /* Enumeration predicate for get_loop_body_with_size. */
789 static bool
790 glb_enum_p (const_basic_block bb, const void *glb_loop)
791 {
792 const struct loop *const loop = (const struct loop *) glb_loop;
793 return (bb != loop->header
794 && dominated_by_p (CDI_DOMINATORS, bb, loop->header));
795 }
796
797 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
798 order against direction of edges from latch. Specially, if
799 header != latch, latch is the 1-st block. LOOP cannot be the fake
800 loop tree root, and its size must be at most MAX_SIZE. The blocks
801 in the LOOP body are stored to BODY, and the size of the LOOP is
802 returned. */
803
804 unsigned
805 get_loop_body_with_size (const struct loop *loop, basic_block *body,
806 unsigned max_size)
807 {
808 return dfs_enumerate_from (loop->header, 1, glb_enum_p,
809 body, max_size, loop);
810 }
811
812 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
813 order against direction of edges from latch. Specially, if
814 header != latch, latch is the 1-st block. */
815
816 basic_block *
817 get_loop_body (const struct loop *loop)
818 {
819 basic_block *body, bb;
820 unsigned tv = 0;
821
822 gcc_assert (loop->num_nodes);
823
824 body = XNEWVEC (basic_block, loop->num_nodes);
825
826 if (loop->latch == EXIT_BLOCK_PTR_FOR_FN (cfun))
827 {
828 /* There may be blocks unreachable from EXIT_BLOCK, hence we need to
829 special-case the fake loop that contains the whole function. */
830 gcc_assert (loop->num_nodes == (unsigned) n_basic_blocks_for_fn (cfun));
831 body[tv++] = loop->header;
832 body[tv++] = EXIT_BLOCK_PTR_FOR_FN (cfun);
833 FOR_EACH_BB_FN (bb, cfun)
834 body[tv++] = bb;
835 }
836 else
837 tv = get_loop_body_with_size (loop, body, loop->num_nodes);
838
839 gcc_assert (tv == loop->num_nodes);
840 return body;
841 }
842
843 /* Fills dominance descendants inside LOOP of the basic block BB into
844 array TOVISIT from index *TV. */
845
846 static void
847 fill_sons_in_loop (const struct loop *loop, basic_block bb,
848 basic_block *tovisit, int *tv)
849 {
850 basic_block son, postpone = NULL;
851
852 tovisit[(*tv)++] = bb;
853 for (son = first_dom_son (CDI_DOMINATORS, bb);
854 son;
855 son = next_dom_son (CDI_DOMINATORS, son))
856 {
857 if (!flow_bb_inside_loop_p (loop, son))
858 continue;
859
860 if (dominated_by_p (CDI_DOMINATORS, loop->latch, son))
861 {
862 postpone = son;
863 continue;
864 }
865 fill_sons_in_loop (loop, son, tovisit, tv);
866 }
867
868 if (postpone)
869 fill_sons_in_loop (loop, postpone, tovisit, tv);
870 }
871
872 /* Gets body of a LOOP (that must be different from the outermost loop)
873 sorted by dominance relation. Additionally, if a basic block s dominates
874 the latch, then only blocks dominated by s are be after it. */
875
876 basic_block *
877 get_loop_body_in_dom_order (const struct loop *loop)
878 {
879 basic_block *tovisit;
880 int tv;
881
882 gcc_assert (loop->num_nodes);
883
884 tovisit = XNEWVEC (basic_block, loop->num_nodes);
885
886 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
887
888 tv = 0;
889 fill_sons_in_loop (loop, loop->header, tovisit, &tv);
890
891 gcc_assert (tv == (int) loop->num_nodes);
892
893 return tovisit;
894 }
895
896 /* Gets body of a LOOP sorted via provided BB_COMPARATOR. */
897
898 basic_block *
899 get_loop_body_in_custom_order (const struct loop *loop,
900 int (*bb_comparator) (const void *, const void *))
901 {
902 basic_block *bbs = get_loop_body (loop);
903
904 qsort (bbs, loop->num_nodes, sizeof (basic_block), bb_comparator);
905
906 return bbs;
907 }
908
909 /* Get body of a LOOP in breadth first sort order. */
910
911 basic_block *
912 get_loop_body_in_bfs_order (const struct loop *loop)
913 {
914 basic_block *blocks;
915 basic_block bb;
916 bitmap visited;
917 unsigned int i = 1;
918 unsigned int vc = 0;
919
920 gcc_assert (loop->num_nodes);
921 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
922
923 blocks = XNEWVEC (basic_block, loop->num_nodes);
924 visited = BITMAP_ALLOC (NULL);
925 blocks[0] = loop->header;
926 bitmap_set_bit (visited, loop->header->index);
927 while (i < loop->num_nodes)
928 {
929 edge e;
930 edge_iterator ei;
931 gcc_assert (i > vc);
932 bb = blocks[vc++];
933
934 FOR_EACH_EDGE (e, ei, bb->succs)
935 {
936 if (flow_bb_inside_loop_p (loop, e->dest))
937 {
938 /* This bb is now visited. */
939 if (bitmap_set_bit (visited, e->dest->index))
940 blocks[i++] = e->dest;
941 }
942 }
943 }
944
945 BITMAP_FREE (visited);
946 return blocks;
947 }
948
949 /* Hash function for struct loop_exit. */
950
951 hashval_t
952 loop_exit_hasher::hash (loop_exit *exit)
953 {
954 return htab_hash_pointer (exit->e);
955 }
956
957 /* Equality function for struct loop_exit. Compares with edge. */
958
959 bool
960 loop_exit_hasher::equal (loop_exit *exit, edge e)
961 {
962 return exit->e == e;
963 }
964
965 /* Frees the list of loop exit descriptions EX. */
966
967 void
968 loop_exit_hasher::remove (loop_exit *exit)
969 {
970 loop_exit *next;
971 for (; exit; exit = next)
972 {
973 next = exit->next_e;
974
975 exit->next->prev = exit->prev;
976 exit->prev->next = exit->next;
977
978 ggc_free (exit);
979 }
980 }
981
982 /* Returns the list of records for E as an exit of a loop. */
983
984 static struct loop_exit *
985 get_exit_descriptions (edge e)
986 {
987 return current_loops->exits->find_with_hash (e, htab_hash_pointer (e));
988 }
989
990 /* Updates the lists of loop exits in that E appears.
991 If REMOVED is true, E is being removed, and we
992 just remove it from the lists of exits.
993 If NEW_EDGE is true and E is not a loop exit, we
994 do not try to remove it from loop exit lists. */
995
996 void
997 rescan_loop_exit (edge e, bool new_edge, bool removed)
998 {
999 struct loop_exit *exits = NULL, *exit;
1000 struct loop *aloop, *cloop;
1001
1002 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1003 return;
1004
1005 if (!removed
1006 && e->src->loop_father != NULL
1007 && e->dest->loop_father != NULL
1008 && !flow_bb_inside_loop_p (e->src->loop_father, e->dest))
1009 {
1010 cloop = find_common_loop (e->src->loop_father, e->dest->loop_father);
1011 for (aloop = e->src->loop_father;
1012 aloop != cloop;
1013 aloop = loop_outer (aloop))
1014 {
1015 exit = ggc_alloc<loop_exit> ();
1016 exit->e = e;
1017
1018 exit->next = aloop->exits->next;
1019 exit->prev = aloop->exits;
1020 exit->next->prev = exit;
1021 exit->prev->next = exit;
1022
1023 exit->next_e = exits;
1024 exits = exit;
1025 }
1026 }
1027
1028 if (!exits && new_edge)
1029 return;
1030
1031 loop_exit **slot
1032 = current_loops->exits->find_slot_with_hash (e, htab_hash_pointer (e),
1033 exits ? INSERT : NO_INSERT);
1034 if (!slot)
1035 return;
1036
1037 if (exits)
1038 {
1039 if (*slot)
1040 loop_exit_hasher::remove (*slot);
1041 *slot = exits;
1042 }
1043 else
1044 current_loops->exits->clear_slot (slot);
1045 }
1046
1047 /* For each loop, record list of exit edges, and start maintaining these
1048 lists. */
1049
1050 void
1051 record_loop_exits (void)
1052 {
1053 basic_block bb;
1054 edge_iterator ei;
1055 edge e;
1056
1057 if (!current_loops)
1058 return;
1059
1060 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1061 return;
1062 loops_state_set (LOOPS_HAVE_RECORDED_EXITS);
1063
1064 gcc_assert (current_loops->exits == NULL);
1065 current_loops->exits
1066 = hash_table<loop_exit_hasher>::create_ggc (2 * number_of_loops (cfun));
1067
1068 FOR_EACH_BB_FN (bb, cfun)
1069 {
1070 FOR_EACH_EDGE (e, ei, bb->succs)
1071 {
1072 rescan_loop_exit (e, true, false);
1073 }
1074 }
1075 }
1076
1077 /* Dumps information about the exit in *SLOT to FILE.
1078 Callback for htab_traverse. */
1079
1080 int
1081 dump_recorded_exit (loop_exit **slot, FILE *file)
1082 {
1083 struct loop_exit *exit = *slot;
1084 unsigned n = 0;
1085 edge e = exit->e;
1086
1087 for (; exit != NULL; exit = exit->next_e)
1088 n++;
1089
1090 fprintf (file, "Edge %d->%d exits %u loops\n",
1091 e->src->index, e->dest->index, n);
1092
1093 return 1;
1094 }
1095
1096 /* Dumps the recorded exits of loops to FILE. */
1097
1098 extern void dump_recorded_exits (FILE *);
1099 void
1100 dump_recorded_exits (FILE *file)
1101 {
1102 if (!current_loops->exits)
1103 return;
1104 current_loops->exits->traverse<FILE *, dump_recorded_exit> (file);
1105 }
1106
1107 /* Releases lists of loop exits. */
1108
1109 void
1110 release_recorded_exits (function *fn)
1111 {
1112 gcc_assert (loops_state_satisfies_p (fn, LOOPS_HAVE_RECORDED_EXITS));
1113 loops_for_fn (fn)->exits->empty ();
1114 loops_for_fn (fn)->exits = NULL;
1115 loops_state_clear (fn, LOOPS_HAVE_RECORDED_EXITS);
1116 }
1117
1118 /* Returns the list of the exit edges of a LOOP. */
1119
1120 vec<edge>
1121 get_loop_exit_edges (const struct loop *loop)
1122 {
1123 vec<edge> edges = vNULL;
1124 edge e;
1125 unsigned i;
1126 basic_block *body;
1127 edge_iterator ei;
1128 struct loop_exit *exit;
1129
1130 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
1131
1132 /* If we maintain the lists of exits, use them. Otherwise we must
1133 scan the body of the loop. */
1134 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1135 {
1136 for (exit = loop->exits->next; exit->e; exit = exit->next)
1137 edges.safe_push (exit->e);
1138 }
1139 else
1140 {
1141 body = get_loop_body (loop);
1142 for (i = 0; i < loop->num_nodes; i++)
1143 FOR_EACH_EDGE (e, ei, body[i]->succs)
1144 {
1145 if (!flow_bb_inside_loop_p (loop, e->dest))
1146 edges.safe_push (e);
1147 }
1148 free (body);
1149 }
1150
1151 return edges;
1152 }
1153
1154 /* Counts the number of conditional branches inside LOOP. */
1155
1156 unsigned
1157 num_loop_branches (const struct loop *loop)
1158 {
1159 unsigned i, n;
1160 basic_block * body;
1161
1162 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
1163
1164 body = get_loop_body (loop);
1165 n = 0;
1166 for (i = 0; i < loop->num_nodes; i++)
1167 if (EDGE_COUNT (body[i]->succs) >= 2)
1168 n++;
1169 free (body);
1170
1171 return n;
1172 }
1173
1174 /* Adds basic block BB to LOOP. */
1175 void
1176 add_bb_to_loop (basic_block bb, struct loop *loop)
1177 {
1178 unsigned i;
1179 loop_p ploop;
1180 edge_iterator ei;
1181 edge e;
1182
1183 gcc_assert (bb->loop_father == NULL);
1184 bb->loop_father = loop;
1185 loop->num_nodes++;
1186 FOR_EACH_VEC_SAFE_ELT (loop->superloops, i, ploop)
1187 ploop->num_nodes++;
1188
1189 FOR_EACH_EDGE (e, ei, bb->succs)
1190 {
1191 rescan_loop_exit (e, true, false);
1192 }
1193 FOR_EACH_EDGE (e, ei, bb->preds)
1194 {
1195 rescan_loop_exit (e, true, false);
1196 }
1197 }
1198
1199 /* Remove basic block BB from loops. */
1200 void
1201 remove_bb_from_loops (basic_block bb)
1202 {
1203 unsigned i;
1204 struct loop *loop = bb->loop_father;
1205 loop_p ploop;
1206 edge_iterator ei;
1207 edge e;
1208
1209 gcc_assert (loop != NULL);
1210 loop->num_nodes--;
1211 FOR_EACH_VEC_SAFE_ELT (loop->superloops, i, ploop)
1212 ploop->num_nodes--;
1213 bb->loop_father = NULL;
1214
1215 FOR_EACH_EDGE (e, ei, bb->succs)
1216 {
1217 rescan_loop_exit (e, false, true);
1218 }
1219 FOR_EACH_EDGE (e, ei, bb->preds)
1220 {
1221 rescan_loop_exit (e, false, true);
1222 }
1223 }
1224
1225 /* Finds nearest common ancestor in loop tree for given loops. */
1226 struct loop *
1227 find_common_loop (struct loop *loop_s, struct loop *loop_d)
1228 {
1229 unsigned sdepth, ddepth;
1230
1231 if (!loop_s) return loop_d;
1232 if (!loop_d) return loop_s;
1233
1234 sdepth = loop_depth (loop_s);
1235 ddepth = loop_depth (loop_d);
1236
1237 if (sdepth < ddepth)
1238 loop_d = (*loop_d->superloops)[sdepth];
1239 else if (sdepth > ddepth)
1240 loop_s = (*loop_s->superloops)[ddepth];
1241
1242 while (loop_s != loop_d)
1243 {
1244 loop_s = loop_outer (loop_s);
1245 loop_d = loop_outer (loop_d);
1246 }
1247 return loop_s;
1248 }
1249
1250 /* Removes LOOP from structures and frees its data. */
1251
1252 void
1253 delete_loop (struct loop *loop)
1254 {
1255 /* Remove the loop from structure. */
1256 flow_loop_tree_node_remove (loop);
1257
1258 /* Remove loop from loops array. */
1259 (*current_loops->larray)[loop->num] = NULL;
1260
1261 /* Free loop data. */
1262 flow_loop_free (loop);
1263 }
1264
1265 /* Cancels the LOOP; it must be innermost one. */
1266
1267 static void
1268 cancel_loop (struct loop *loop)
1269 {
1270 basic_block *bbs;
1271 unsigned i;
1272 struct loop *outer = loop_outer (loop);
1273
1274 gcc_assert (!loop->inner);
1275
1276 /* Move blocks up one level (they should be removed as soon as possible). */
1277 bbs = get_loop_body (loop);
1278 for (i = 0; i < loop->num_nodes; i++)
1279 bbs[i]->loop_father = outer;
1280
1281 free (bbs);
1282 delete_loop (loop);
1283 }
1284
1285 /* Cancels LOOP and all its subloops. */
1286 void
1287 cancel_loop_tree (struct loop *loop)
1288 {
1289 while (loop->inner)
1290 cancel_loop_tree (loop->inner);
1291 cancel_loop (loop);
1292 }
1293
1294 /* Checks that information about loops is correct
1295 -- sizes of loops are all right
1296 -- results of get_loop_body really belong to the loop
1297 -- loop header have just single entry edge and single latch edge
1298 -- loop latches have only single successor that is header of their loop
1299 -- irreducible loops are correctly marked
1300 -- the cached loop depth and loop father of each bb is correct
1301 */
1302 DEBUG_FUNCTION void
1303 verify_loop_structure (void)
1304 {
1305 unsigned *sizes, i, j;
1306 sbitmap irreds;
1307 basic_block bb, *bbs;
1308 struct loop *loop;
1309 int err = 0;
1310 edge e;
1311 unsigned num = number_of_loops (cfun);
1312 struct loop_exit *exit, *mexit;
1313 bool dom_available = dom_info_available_p (CDI_DOMINATORS);
1314 sbitmap visited;
1315
1316 if (loops_state_satisfies_p (LOOPS_NEED_FIXUP))
1317 {
1318 error ("loop verification on loop tree that needs fixup");
1319 err = 1;
1320 }
1321
1322 /* We need up-to-date dominators, compute or verify them. */
1323 if (!dom_available)
1324 calculate_dominance_info (CDI_DOMINATORS);
1325 else
1326 verify_dominators (CDI_DOMINATORS);
1327
1328 /* Check the loop tree root. */
1329 if (current_loops->tree_root->header != ENTRY_BLOCK_PTR_FOR_FN (cfun)
1330 || current_loops->tree_root->latch != EXIT_BLOCK_PTR_FOR_FN (cfun)
1331 || (current_loops->tree_root->num_nodes
1332 != (unsigned) n_basic_blocks_for_fn (cfun)))
1333 {
1334 error ("corrupt loop tree root");
1335 err = 1;
1336 }
1337
1338 /* Check the headers. */
1339 FOR_EACH_BB_FN (bb, cfun)
1340 if (bb_loop_header_p (bb))
1341 {
1342 if (bb->loop_father->header == NULL)
1343 {
1344 error ("loop with header %d marked for removal", bb->index);
1345 err = 1;
1346 }
1347 else if (bb->loop_father->header != bb)
1348 {
1349 error ("loop with header %d not in loop tree", bb->index);
1350 err = 1;
1351 }
1352 }
1353 else if (bb->loop_father->header == bb)
1354 {
1355 error ("non-loop with header %d not marked for removal", bb->index);
1356 err = 1;
1357 }
1358
1359 /* Check the recorded loop father and sizes of loops. */
1360 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
1361 bitmap_clear (visited);
1362 bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
1363 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
1364 {
1365 unsigned n;
1366
1367 if (loop->header == NULL)
1368 {
1369 error ("removed loop %d in loop tree", loop->num);
1370 err = 1;
1371 continue;
1372 }
1373
1374 n = get_loop_body_with_size (loop, bbs, n_basic_blocks_for_fn (cfun));
1375 if (loop->num_nodes != n)
1376 {
1377 error ("size of loop %d should be %d, not %d",
1378 loop->num, n, loop->num_nodes);
1379 err = 1;
1380 }
1381
1382 for (j = 0; j < n; j++)
1383 {
1384 bb = bbs[j];
1385
1386 if (!flow_bb_inside_loop_p (loop, bb))
1387 {
1388 error ("bb %d does not belong to loop %d",
1389 bb->index, loop->num);
1390 err = 1;
1391 }
1392
1393 /* Ignore this block if it is in an inner loop. */
1394 if (bitmap_bit_p (visited, bb->index))
1395 continue;
1396 bitmap_set_bit (visited, bb->index);
1397
1398 if (bb->loop_father != loop)
1399 {
1400 error ("bb %d has father loop %d, should be loop %d",
1401 bb->index, bb->loop_father->num, loop->num);
1402 err = 1;
1403 }
1404 }
1405 }
1406 free (bbs);
1407 sbitmap_free (visited);
1408
1409 /* Check headers and latches. */
1410 FOR_EACH_LOOP (loop, 0)
1411 {
1412 i = loop->num;
1413 if (loop->header == NULL)
1414 continue;
1415 if (!bb_loop_header_p (loop->header))
1416 {
1417 error ("loop %d%'s header is not a loop header", i);
1418 err = 1;
1419 }
1420 if (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS)
1421 && EDGE_COUNT (loop->header->preds) != 2)
1422 {
1423 error ("loop %d%'s header does not have exactly 2 entries", i);
1424 err = 1;
1425 }
1426 if (loop->latch)
1427 {
1428 if (!find_edge (loop->latch, loop->header))
1429 {
1430 error ("loop %d%'s latch does not have an edge to its header", i);
1431 err = 1;
1432 }
1433 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, loop->header))
1434 {
1435 error ("loop %d%'s latch is not dominated by its header", i);
1436 err = 1;
1437 }
1438 }
1439 if (loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES))
1440 {
1441 if (!single_succ_p (loop->latch))
1442 {
1443 error ("loop %d%'s latch does not have exactly 1 successor", i);
1444 err = 1;
1445 }
1446 if (single_succ (loop->latch) != loop->header)
1447 {
1448 error ("loop %d%'s latch does not have header as successor", i);
1449 err = 1;
1450 }
1451 if (loop->latch->loop_father != loop)
1452 {
1453 error ("loop %d%'s latch does not belong directly to it", i);
1454 err = 1;
1455 }
1456 }
1457 if (loop->header->loop_father != loop)
1458 {
1459 error ("loop %d%'s header does not belong directly to it", i);
1460 err = 1;
1461 }
1462 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS)
1463 && (loop_latch_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP))
1464 {
1465 error ("loop %d%'s latch is marked as part of irreducible region", i);
1466 err = 1;
1467 }
1468 }
1469
1470 /* Check irreducible loops. */
1471 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
1472 {
1473 /* Record old info. */
1474 irreds = sbitmap_alloc (last_basic_block_for_fn (cfun));
1475 FOR_EACH_BB_FN (bb, cfun)
1476 {
1477 edge_iterator ei;
1478 if (bb->flags & BB_IRREDUCIBLE_LOOP)
1479 bitmap_set_bit (irreds, bb->index);
1480 else
1481 bitmap_clear_bit (irreds, bb->index);
1482 FOR_EACH_EDGE (e, ei, bb->succs)
1483 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
1484 e->flags |= EDGE_ALL_FLAGS + 1;
1485 }
1486
1487 /* Recount it. */
1488 mark_irreducible_loops ();
1489
1490 /* Compare. */
1491 FOR_EACH_BB_FN (bb, cfun)
1492 {
1493 edge_iterator ei;
1494
1495 if ((bb->flags & BB_IRREDUCIBLE_LOOP)
1496 && !bitmap_bit_p (irreds, bb->index))
1497 {
1498 error ("basic block %d should be marked irreducible", bb->index);
1499 err = 1;
1500 }
1501 else if (!(bb->flags & BB_IRREDUCIBLE_LOOP)
1502 && bitmap_bit_p (irreds, bb->index))
1503 {
1504 error ("basic block %d should not be marked irreducible", bb->index);
1505 err = 1;
1506 }
1507 FOR_EACH_EDGE (e, ei, bb->succs)
1508 {
1509 if ((e->flags & EDGE_IRREDUCIBLE_LOOP)
1510 && !(e->flags & (EDGE_ALL_FLAGS + 1)))
1511 {
1512 error ("edge from %d to %d should be marked irreducible",
1513 e->src->index, e->dest->index);
1514 err = 1;
1515 }
1516 else if (!(e->flags & EDGE_IRREDUCIBLE_LOOP)
1517 && (e->flags & (EDGE_ALL_FLAGS + 1)))
1518 {
1519 error ("edge from %d to %d should not be marked irreducible",
1520 e->src->index, e->dest->index);
1521 err = 1;
1522 }
1523 e->flags &= ~(EDGE_ALL_FLAGS + 1);
1524 }
1525 }
1526 free (irreds);
1527 }
1528
1529 /* Check the recorded loop exits. */
1530 FOR_EACH_LOOP (loop, 0)
1531 {
1532 if (!loop->exits || loop->exits->e != NULL)
1533 {
1534 error ("corrupted head of the exits list of loop %d",
1535 loop->num);
1536 err = 1;
1537 }
1538 else
1539 {
1540 /* Check that the list forms a cycle, and all elements except
1541 for the head are nonnull. */
1542 for (mexit = loop->exits, exit = mexit->next, i = 0;
1543 exit->e && exit != mexit;
1544 exit = exit->next)
1545 {
1546 if (i++ & 1)
1547 mexit = mexit->next;
1548 }
1549
1550 if (exit != loop->exits)
1551 {
1552 error ("corrupted exits list of loop %d", loop->num);
1553 err = 1;
1554 }
1555 }
1556
1557 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1558 {
1559 if (loop->exits->next != loop->exits)
1560 {
1561 error ("nonempty exits list of loop %d, but exits are not recorded",
1562 loop->num);
1563 err = 1;
1564 }
1565 }
1566 }
1567
1568 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1569 {
1570 unsigned n_exits = 0, eloops;
1571
1572 sizes = XCNEWVEC (unsigned, num);
1573 memset (sizes, 0, sizeof (unsigned) * num);
1574 FOR_EACH_BB_FN (bb, cfun)
1575 {
1576 edge_iterator ei;
1577 if (bb->loop_father == current_loops->tree_root)
1578 continue;
1579 FOR_EACH_EDGE (e, ei, bb->succs)
1580 {
1581 if (flow_bb_inside_loop_p (bb->loop_father, e->dest))
1582 continue;
1583
1584 n_exits++;
1585 exit = get_exit_descriptions (e);
1586 if (!exit)
1587 {
1588 error ("exit %d->%d not recorded",
1589 e->src->index, e->dest->index);
1590 err = 1;
1591 }
1592 eloops = 0;
1593 for (; exit; exit = exit->next_e)
1594 eloops++;
1595
1596 for (loop = bb->loop_father;
1597 loop != e->dest->loop_father
1598 /* When a loop exit is also an entry edge which
1599 can happen when avoiding CFG manipulations
1600 then the last loop exited is the outer loop
1601 of the loop entered. */
1602 && loop != loop_outer (e->dest->loop_father);
1603 loop = loop_outer (loop))
1604 {
1605 eloops--;
1606 sizes[loop->num]++;
1607 }
1608
1609 if (eloops != 0)
1610 {
1611 error ("wrong list of exited loops for edge %d->%d",
1612 e->src->index, e->dest->index);
1613 err = 1;
1614 }
1615 }
1616 }
1617
1618 if (n_exits != current_loops->exits->elements ())
1619 {
1620 error ("too many loop exits recorded");
1621 err = 1;
1622 }
1623
1624 FOR_EACH_LOOP (loop, 0)
1625 {
1626 eloops = 0;
1627 for (exit = loop->exits->next; exit->e; exit = exit->next)
1628 eloops++;
1629 if (eloops != sizes[loop->num])
1630 {
1631 error ("%d exits recorded for loop %d (having %d exits)",
1632 eloops, loop->num, sizes[loop->num]);
1633 err = 1;
1634 }
1635 }
1636
1637 free (sizes);
1638 }
1639
1640 gcc_assert (!err);
1641
1642 if (!dom_available)
1643 free_dominance_info (CDI_DOMINATORS);
1644 }
1645
1646 /* Returns latch edge of LOOP. */
1647 edge
1648 loop_latch_edge (const struct loop *loop)
1649 {
1650 return find_edge (loop->latch, loop->header);
1651 }
1652
1653 /* Returns preheader edge of LOOP. */
1654 edge
1655 loop_preheader_edge (const struct loop *loop)
1656 {
1657 edge e;
1658 edge_iterator ei;
1659
1660 gcc_assert (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS));
1661
1662 FOR_EACH_EDGE (e, ei, loop->header->preds)
1663 if (e->src != loop->latch)
1664 break;
1665
1666 return e;
1667 }
1668
1669 /* Returns true if E is an exit of LOOP. */
1670
1671 bool
1672 loop_exit_edge_p (const struct loop *loop, const_edge e)
1673 {
1674 return (flow_bb_inside_loop_p (loop, e->src)
1675 && !flow_bb_inside_loop_p (loop, e->dest));
1676 }
1677
1678 /* Returns the single exit edge of LOOP, or NULL if LOOP has either no exit
1679 or more than one exit. If loops do not have the exits recorded, NULL
1680 is returned always. */
1681
1682 edge
1683 single_exit (const struct loop *loop)
1684 {
1685 struct loop_exit *exit = loop->exits->next;
1686
1687 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1688 return NULL;
1689
1690 if (exit->e && exit->next == loop->exits)
1691 return exit->e;
1692 else
1693 return NULL;
1694 }
1695
1696 /* Returns true when BB has an incoming edge exiting LOOP. */
1697
1698 bool
1699 loop_exits_to_bb_p (struct loop *loop, basic_block bb)
1700 {
1701 edge e;
1702 edge_iterator ei;
1703
1704 FOR_EACH_EDGE (e, ei, bb->preds)
1705 if (loop_exit_edge_p (loop, e))
1706 return true;
1707
1708 return false;
1709 }
1710
1711 /* Returns true when BB has an outgoing edge exiting LOOP. */
1712
1713 bool
1714 loop_exits_from_bb_p (struct loop *loop, basic_block bb)
1715 {
1716 edge e;
1717 edge_iterator ei;
1718
1719 FOR_EACH_EDGE (e, ei, bb->succs)
1720 if (loop_exit_edge_p (loop, e))
1721 return true;
1722
1723 return false;
1724 }
1725
1726 /* Return location corresponding to the loop control condition if possible. */
1727
1728 location_t
1729 get_loop_location (struct loop *loop)
1730 {
1731 rtx_insn *insn = NULL;
1732 struct niter_desc *desc = NULL;
1733 edge exit;
1734
1735 /* For a for or while loop, we would like to return the location
1736 of the for or while statement, if possible. To do this, look
1737 for the branch guarding the loop back-edge. */
1738
1739 /* If this is a simple loop with an in_edge, then the loop control
1740 branch is typically at the end of its source. */
1741 desc = get_simple_loop_desc (loop);
1742 if (desc->in_edge)
1743 {
1744 FOR_BB_INSNS_REVERSE (desc->in_edge->src, insn)
1745 {
1746 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1747 return INSN_LOCATION (insn);
1748 }
1749 }
1750 /* If loop has a single exit, then the loop control branch
1751 must be at the end of its source. */
1752 if ((exit = single_exit (loop)))
1753 {
1754 FOR_BB_INSNS_REVERSE (exit->src, insn)
1755 {
1756 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1757 return INSN_LOCATION (insn);
1758 }
1759 }
1760 /* Next check the latch, to see if it is non-empty. */
1761 FOR_BB_INSNS_REVERSE (loop->latch, insn)
1762 {
1763 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1764 return INSN_LOCATION (insn);
1765 }
1766 /* Finally, if none of the above identifies the loop control branch,
1767 return the first location in the loop header. */
1768 FOR_BB_INSNS (loop->header, insn)
1769 {
1770 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1771 return INSN_LOCATION (insn);
1772 }
1773 /* If all else fails, simply return the current function location. */
1774 return DECL_SOURCE_LOCATION (current_function_decl);
1775 }
1776
1777 /* Records that every statement in LOOP is executed I_BOUND times.
1778 REALISTIC is true if I_BOUND is expected to be close to the real number
1779 of iterations. UPPER is true if we are sure the loop iterates at most
1780 I_BOUND times. */
1781
1782 void
1783 record_niter_bound (struct loop *loop, const widest_int &i_bound,
1784 bool realistic, bool upper)
1785 {
1786 /* Update the bounds only when there is no previous estimation, or when the
1787 current estimation is smaller. */
1788 if (upper
1789 && (!loop->any_upper_bound
1790 || wi::ltu_p (i_bound, loop->nb_iterations_upper_bound)))
1791 {
1792 loop->any_upper_bound = true;
1793 loop->nb_iterations_upper_bound = i_bound;
1794 if (!loop->any_likely_upper_bound)
1795 {
1796 loop->any_likely_upper_bound = true;
1797 loop->nb_iterations_likely_upper_bound = i_bound;
1798 }
1799 }
1800 if (realistic
1801 && (!loop->any_estimate
1802 || wi::ltu_p (i_bound, loop->nb_iterations_estimate)))
1803 {
1804 loop->any_estimate = true;
1805 loop->nb_iterations_estimate = i_bound;
1806 }
1807 if (!realistic
1808 && (!loop->any_likely_upper_bound
1809 || wi::ltu_p (i_bound, loop->nb_iterations_likely_upper_bound)))
1810 {
1811 loop->any_likely_upper_bound = true;
1812 loop->nb_iterations_likely_upper_bound = i_bound;
1813 }
1814
1815 /* If an upper bound is smaller than the realistic estimate of the
1816 number of iterations, use the upper bound instead. */
1817 if (loop->any_upper_bound
1818 && loop->any_estimate
1819 && wi::ltu_p (loop->nb_iterations_upper_bound,
1820 loop->nb_iterations_estimate))
1821 loop->nb_iterations_estimate = loop->nb_iterations_upper_bound;
1822 if (loop->any_upper_bound
1823 && loop->any_likely_upper_bound
1824 && wi::ltu_p (loop->nb_iterations_upper_bound,
1825 loop->nb_iterations_likely_upper_bound))
1826 loop->nb_iterations_likely_upper_bound = loop->nb_iterations_upper_bound;
1827 }
1828
1829 /* Similar to get_estimated_loop_iterations, but returns the estimate only
1830 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
1831 on the number of iterations of LOOP could not be derived, returns -1. */
1832
1833 HOST_WIDE_INT
1834 get_estimated_loop_iterations_int (struct loop *loop)
1835 {
1836 widest_int nit;
1837 HOST_WIDE_INT hwi_nit;
1838
1839 if (!get_estimated_loop_iterations (loop, &nit))
1840 return -1;
1841
1842 if (!wi::fits_shwi_p (nit))
1843 return -1;
1844 hwi_nit = nit.to_shwi ();
1845
1846 return hwi_nit < 0 ? -1 : hwi_nit;
1847 }
1848
1849 /* Returns an upper bound on the number of executions of statements
1850 in the LOOP. For statements before the loop exit, this exceeds
1851 the number of execution of the latch by one. */
1852
1853 HOST_WIDE_INT
1854 max_stmt_executions_int (struct loop *loop)
1855 {
1856 HOST_WIDE_INT nit = get_max_loop_iterations_int (loop);
1857 HOST_WIDE_INT snit;
1858
1859 if (nit == -1)
1860 return -1;
1861
1862 snit = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) nit + 1);
1863
1864 /* If the computation overflows, return -1. */
1865 return snit < 0 ? -1 : snit;
1866 }
1867
1868 /* Returns an likely upper bound on the number of executions of statements
1869 in the LOOP. For statements before the loop exit, this exceeds
1870 the number of execution of the latch by one. */
1871
1872 HOST_WIDE_INT
1873 likely_max_stmt_executions_int (struct loop *loop)
1874 {
1875 HOST_WIDE_INT nit = get_likely_max_loop_iterations_int (loop);
1876 HOST_WIDE_INT snit;
1877
1878 if (nit == -1)
1879 return -1;
1880
1881 snit = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) nit + 1);
1882
1883 /* If the computation overflows, return -1. */
1884 return snit < 0 ? -1 : snit;
1885 }
1886
1887 /* Sets NIT to the estimated number of executions of the latch of the
1888 LOOP. If we have no reliable estimate, the function returns false, otherwise
1889 returns true. */
1890
1891 bool
1892 get_estimated_loop_iterations (struct loop *loop, widest_int *nit)
1893 {
1894 /* Even if the bound is not recorded, possibly we can derrive one from
1895 profile. */
1896 if (!loop->any_estimate)
1897 {
1898 if (loop->header->count)
1899 {
1900 *nit = gcov_type_to_wide_int
1901 (expected_loop_iterations_unbounded (loop) + 1);
1902 return true;
1903 }
1904 return false;
1905 }
1906
1907 *nit = loop->nb_iterations_estimate;
1908 return true;
1909 }
1910
1911 /* Sets NIT to an upper bound for the maximum number of executions of the
1912 latch of the LOOP. If we have no reliable estimate, the function returns
1913 false, otherwise returns true. */
1914
1915 bool
1916 get_max_loop_iterations (struct loop *loop, widest_int *nit)
1917 {
1918 if (!loop->any_upper_bound)
1919 return false;
1920
1921 *nit = loop->nb_iterations_upper_bound;
1922 return true;
1923 }
1924
1925 /* Similar to get_max_loop_iterations, but returns the estimate only
1926 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
1927 on the number of iterations of LOOP could not be derived, returns -1. */
1928
1929 HOST_WIDE_INT
1930 get_max_loop_iterations_int (struct loop *loop)
1931 {
1932 widest_int nit;
1933 HOST_WIDE_INT hwi_nit;
1934
1935 if (!get_max_loop_iterations (loop, &nit))
1936 return -1;
1937
1938 if (!wi::fits_shwi_p (nit))
1939 return -1;
1940 hwi_nit = nit.to_shwi ();
1941
1942 return hwi_nit < 0 ? -1 : hwi_nit;
1943 }
1944
1945 /* Sets NIT to an upper bound for the maximum number of executions of the
1946 latch of the LOOP. If we have no reliable estimate, the function returns
1947 false, otherwise returns true. */
1948
1949 bool
1950 get_likely_max_loop_iterations (struct loop *loop, widest_int *nit)
1951 {
1952 if (!loop->any_likely_upper_bound)
1953 return false;
1954
1955 *nit = loop->nb_iterations_likely_upper_bound;
1956 return true;
1957 }
1958
1959 /* Similar to get_max_loop_iterations, but returns the estimate only
1960 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
1961 on the number of iterations of LOOP could not be derived, returns -1. */
1962
1963 HOST_WIDE_INT
1964 get_likely_max_loop_iterations_int (struct loop *loop)
1965 {
1966 widest_int nit;
1967 HOST_WIDE_INT hwi_nit;
1968
1969 if (!get_likely_max_loop_iterations (loop, &nit))
1970 return -1;
1971
1972 if (!wi::fits_shwi_p (nit))
1973 return -1;
1974 hwi_nit = nit.to_shwi ();
1975
1976 return hwi_nit < 0 ? -1 : hwi_nit;
1977 }
1978
1979 /* Returns the loop depth of the loop BB belongs to. */
1980
1981 int
1982 bb_loop_depth (const_basic_block bb)
1983 {
1984 return bb->loop_father ? loop_depth (bb->loop_father) : 0;
1985 }
1986
1987 /* Marks LOOP for removal and sets LOOPS_NEED_FIXUP. */
1988
1989 void
1990 mark_loop_for_removal (loop_p loop)
1991 {
1992 if (loop->header == NULL)
1993 return;
1994 loop->former_header = loop->header;
1995 loop->header = NULL;
1996 loop->latch = NULL;
1997 loops_state_set (LOOPS_NEED_FIXUP);
1998 }