move many gc hashtab to hash_table
[gcc.git] / gcc / cfgloop.c
1 /* Natural loop discovery code for GNU compiler.
2 Copyright (C) 2000-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl.h"
25 #include "function.h"
26 #include "basic-block.h"
27 #include "cfgloop.h"
28 #include "diagnostic-core.h"
29 #include "flags.h"
30 #include "tree.h"
31 #include "hash-set.h"
32 #include "tree-ssa-alias.h"
33 #include "internal-fn.h"
34 #include "gimple-expr.h"
35 #include "is-a.h"
36 #include "gimple.h"
37 #include "gimple-iterator.h"
38 #include "gimple-ssa.h"
39 #include "dumpfile.h"
40
41 static void flow_loops_cfg_dump (FILE *);
42 \f
43 /* Dump loop related CFG information. */
44
45 static void
46 flow_loops_cfg_dump (FILE *file)
47 {
48 basic_block bb;
49
50 if (!file)
51 return;
52
53 FOR_EACH_BB_FN (bb, cfun)
54 {
55 edge succ;
56 edge_iterator ei;
57
58 fprintf (file, ";; %d succs { ", bb->index);
59 FOR_EACH_EDGE (succ, ei, bb->succs)
60 fprintf (file, "%d ", succ->dest->index);
61 fprintf (file, "}\n");
62 }
63 }
64
65 /* Return nonzero if the nodes of LOOP are a subset of OUTER. */
66
67 bool
68 flow_loop_nested_p (const struct loop *outer, const struct loop *loop)
69 {
70 unsigned odepth = loop_depth (outer);
71
72 return (loop_depth (loop) > odepth
73 && (*loop->superloops)[odepth] == outer);
74 }
75
76 /* Returns the loop such that LOOP is nested DEPTH (indexed from zero)
77 loops within LOOP. */
78
79 struct loop *
80 superloop_at_depth (struct loop *loop, unsigned depth)
81 {
82 unsigned ldepth = loop_depth (loop);
83
84 gcc_assert (depth <= ldepth);
85
86 if (depth == ldepth)
87 return loop;
88
89 return (*loop->superloops)[depth];
90 }
91
92 /* Returns the list of the latch edges of LOOP. */
93
94 static vec<edge>
95 get_loop_latch_edges (const struct loop *loop)
96 {
97 edge_iterator ei;
98 edge e;
99 vec<edge> ret = vNULL;
100
101 FOR_EACH_EDGE (e, ei, loop->header->preds)
102 {
103 if (dominated_by_p (CDI_DOMINATORS, e->src, loop->header))
104 ret.safe_push (e);
105 }
106
107 return ret;
108 }
109
110 /* Dump the loop information specified by LOOP to the stream FILE
111 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
112
113 void
114 flow_loop_dump (const struct loop *loop, FILE *file,
115 void (*loop_dump_aux) (const struct loop *, FILE *, int),
116 int verbose)
117 {
118 basic_block *bbs;
119 unsigned i;
120 vec<edge> latches;
121 edge e;
122
123 if (! loop || ! loop->header)
124 return;
125
126 fprintf (file, ";;\n;; Loop %d\n", loop->num);
127
128 fprintf (file, ";; header %d, ", loop->header->index);
129 if (loop->latch)
130 fprintf (file, "latch %d\n", loop->latch->index);
131 else
132 {
133 fprintf (file, "multiple latches:");
134 latches = get_loop_latch_edges (loop);
135 FOR_EACH_VEC_ELT (latches, i, e)
136 fprintf (file, " %d", e->src->index);
137 latches.release ();
138 fprintf (file, "\n");
139 }
140
141 fprintf (file, ";; depth %d, outer %ld\n",
142 loop_depth (loop), (long) (loop_outer (loop)
143 ? loop_outer (loop)->num : -1));
144
145 fprintf (file, ";; nodes:");
146 bbs = get_loop_body (loop);
147 for (i = 0; i < loop->num_nodes; i++)
148 fprintf (file, " %d", bbs[i]->index);
149 free (bbs);
150 fprintf (file, "\n");
151
152 if (loop_dump_aux)
153 loop_dump_aux (loop, file, verbose);
154 }
155
156 /* Dump the loop information about loops to the stream FILE,
157 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
158
159 void
160 flow_loops_dump (FILE *file, void (*loop_dump_aux) (const struct loop *, FILE *, int), int verbose)
161 {
162 struct loop *loop;
163
164 if (!current_loops || ! file)
165 return;
166
167 fprintf (file, ";; %d loops found\n", number_of_loops (cfun));
168
169 FOR_EACH_LOOP (loop, LI_INCLUDE_ROOT)
170 {
171 flow_loop_dump (loop, file, loop_dump_aux, verbose);
172 }
173
174 if (verbose)
175 flow_loops_cfg_dump (file);
176 }
177
178 /* Free data allocated for LOOP. */
179
180 void
181 flow_loop_free (struct loop *loop)
182 {
183 struct loop_exit *exit, *next;
184
185 vec_free (loop->superloops);
186
187 /* Break the list of the loop exit records. They will be freed when the
188 corresponding edge is rescanned or removed, and this avoids
189 accessing the (already released) head of the list stored in the
190 loop structure. */
191 for (exit = loop->exits->next; exit != loop->exits; exit = next)
192 {
193 next = exit->next;
194 exit->next = exit;
195 exit->prev = exit;
196 }
197
198 ggc_free (loop->exits);
199 ggc_free (loop);
200 }
201
202 /* Free all the memory allocated for LOOPS. */
203
204 void
205 flow_loops_free (struct loops *loops)
206 {
207 if (loops->larray)
208 {
209 unsigned i;
210 loop_p loop;
211
212 /* Free the loop descriptors. */
213 FOR_EACH_VEC_SAFE_ELT (loops->larray, i, loop)
214 {
215 if (!loop)
216 continue;
217
218 flow_loop_free (loop);
219 }
220
221 vec_free (loops->larray);
222 }
223 }
224
225 /* Find the nodes contained within the LOOP with header HEADER.
226 Return the number of nodes within the loop. */
227
228 int
229 flow_loop_nodes_find (basic_block header, struct loop *loop)
230 {
231 vec<basic_block> stack = vNULL;
232 int num_nodes = 1;
233 edge latch;
234 edge_iterator latch_ei;
235
236 header->loop_father = loop;
237
238 FOR_EACH_EDGE (latch, latch_ei, loop->header->preds)
239 {
240 if (latch->src->loop_father == loop
241 || !dominated_by_p (CDI_DOMINATORS, latch->src, loop->header))
242 continue;
243
244 num_nodes++;
245 stack.safe_push (latch->src);
246 latch->src->loop_father = loop;
247
248 while (!stack.is_empty ())
249 {
250 basic_block node;
251 edge e;
252 edge_iterator ei;
253
254 node = stack.pop ();
255
256 FOR_EACH_EDGE (e, ei, node->preds)
257 {
258 basic_block ancestor = e->src;
259
260 if (ancestor->loop_father != loop)
261 {
262 ancestor->loop_father = loop;
263 num_nodes++;
264 stack.safe_push (ancestor);
265 }
266 }
267 }
268 }
269 stack.release ();
270
271 return num_nodes;
272 }
273
274 /* Records the vector of superloops of the loop LOOP, whose immediate
275 superloop is FATHER. */
276
277 static void
278 establish_preds (struct loop *loop, struct loop *father)
279 {
280 loop_p ploop;
281 unsigned depth = loop_depth (father) + 1;
282 unsigned i;
283
284 loop->superloops = 0;
285 vec_alloc (loop->superloops, depth);
286 FOR_EACH_VEC_SAFE_ELT (father->superloops, i, ploop)
287 loop->superloops->quick_push (ploop);
288 loop->superloops->quick_push (father);
289
290 for (ploop = loop->inner; ploop; ploop = ploop->next)
291 establish_preds (ploop, loop);
292 }
293
294 /* Add LOOP to the loop hierarchy tree where FATHER is father of the
295 added loop. If LOOP has some children, take care of that their
296 pred field will be initialized correctly. */
297
298 void
299 flow_loop_tree_node_add (struct loop *father, struct loop *loop)
300 {
301 loop->next = father->inner;
302 father->inner = loop;
303
304 establish_preds (loop, father);
305 }
306
307 /* Remove LOOP from the loop hierarchy tree. */
308
309 void
310 flow_loop_tree_node_remove (struct loop *loop)
311 {
312 struct loop *prev, *father;
313
314 father = loop_outer (loop);
315
316 /* Remove loop from the list of sons. */
317 if (father->inner == loop)
318 father->inner = loop->next;
319 else
320 {
321 for (prev = father->inner; prev->next != loop; prev = prev->next)
322 continue;
323 prev->next = loop->next;
324 }
325
326 loop->superloops = NULL;
327 }
328
329 /* Allocates and returns new loop structure. */
330
331 struct loop *
332 alloc_loop (void)
333 {
334 struct loop *loop = ggc_cleared_alloc<struct loop> ();
335
336 loop->exits = ggc_cleared_alloc<loop_exit> ();
337 loop->exits->next = loop->exits->prev = loop->exits;
338 loop->can_be_parallel = false;
339 loop->nb_iterations_upper_bound = 0;
340 loop->nb_iterations_estimate = 0;
341 return loop;
342 }
343
344 /* Initializes loops structure LOOPS, reserving place for NUM_LOOPS loops
345 (including the root of the loop tree). */
346
347 void
348 init_loops_structure (struct function *fn,
349 struct loops *loops, unsigned num_loops)
350 {
351 struct loop *root;
352
353 memset (loops, 0, sizeof *loops);
354 vec_alloc (loops->larray, num_loops);
355
356 /* Dummy loop containing whole function. */
357 root = alloc_loop ();
358 root->num_nodes = n_basic_blocks_for_fn (fn);
359 root->latch = EXIT_BLOCK_PTR_FOR_FN (fn);
360 root->header = ENTRY_BLOCK_PTR_FOR_FN (fn);
361 ENTRY_BLOCK_PTR_FOR_FN (fn)->loop_father = root;
362 EXIT_BLOCK_PTR_FOR_FN (fn)->loop_father = root;
363
364 loops->larray->quick_push (root);
365 loops->tree_root = root;
366 }
367
368 /* Returns whether HEADER is a loop header. */
369
370 bool
371 bb_loop_header_p (basic_block header)
372 {
373 edge_iterator ei;
374 edge e;
375
376 /* If we have an abnormal predecessor, do not consider the
377 loop (not worth the problems). */
378 if (bb_has_abnormal_pred (header))
379 return false;
380
381 /* Look for back edges where a predecessor is dominated
382 by this block. A natural loop has a single entry
383 node (header) that dominates all the nodes in the
384 loop. It also has single back edge to the header
385 from a latch node. */
386 FOR_EACH_EDGE (e, ei, header->preds)
387 {
388 basic_block latch = e->src;
389 if (latch != ENTRY_BLOCK_PTR_FOR_FN (cfun)
390 && dominated_by_p (CDI_DOMINATORS, latch, header))
391 return true;
392 }
393
394 return false;
395 }
396
397 /* Find all the natural loops in the function and save in LOOPS structure and
398 recalculate loop_father information in basic block structures.
399 If LOOPS is non-NULL then the loop structures for already recorded loops
400 will be re-used and their number will not change. We assume that no
401 stale loops exist in LOOPS.
402 When LOOPS is NULL it is allocated and re-built from scratch.
403 Return the built LOOPS structure. */
404
405 struct loops *
406 flow_loops_find (struct loops *loops)
407 {
408 bool from_scratch = (loops == NULL);
409 int *rc_order;
410 int b;
411 unsigned i;
412
413 /* Ensure that the dominators are computed. */
414 calculate_dominance_info (CDI_DOMINATORS);
415
416 if (!loops)
417 {
418 loops = ggc_cleared_alloc<struct loops> ();
419 init_loops_structure (cfun, loops, 1);
420 }
421
422 /* Ensure that loop exits were released. */
423 gcc_assert (loops->exits == NULL);
424
425 /* Taking care of this degenerate case makes the rest of
426 this code simpler. */
427 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
428 return loops;
429
430 /* The root loop node contains all basic-blocks. */
431 loops->tree_root->num_nodes = n_basic_blocks_for_fn (cfun);
432
433 /* Compute depth first search order of the CFG so that outer
434 natural loops will be found before inner natural loops. */
435 rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
436 pre_and_rev_post_order_compute (NULL, rc_order, false);
437
438 /* Gather all loop headers in reverse completion order and allocate
439 loop structures for loops that are not already present. */
440 auto_vec<loop_p> larray (loops->larray->length ());
441 for (b = 0; b < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; b++)
442 {
443 basic_block header = BASIC_BLOCK_FOR_FN (cfun, rc_order[b]);
444 if (bb_loop_header_p (header))
445 {
446 struct loop *loop;
447
448 /* The current active loop tree has valid loop-fathers for
449 header blocks. */
450 if (!from_scratch
451 && header->loop_father->header == header)
452 {
453 loop = header->loop_father;
454 /* If we found an existing loop remove it from the
455 loop tree. It is going to be inserted again
456 below. */
457 flow_loop_tree_node_remove (loop);
458 }
459 else
460 {
461 /* Otherwise allocate a new loop structure for the loop. */
462 loop = alloc_loop ();
463 /* ??? We could re-use unused loop slots here. */
464 loop->num = loops->larray->length ();
465 vec_safe_push (loops->larray, loop);
466 loop->header = header;
467
468 if (!from_scratch
469 && dump_file && (dump_flags & TDF_DETAILS))
470 fprintf (dump_file, "flow_loops_find: discovered new "
471 "loop %d with header %d\n",
472 loop->num, header->index);
473 }
474 /* Reset latch, we recompute it below. */
475 loop->latch = NULL;
476 larray.safe_push (loop);
477 }
478
479 /* Make blocks part of the loop root node at start. */
480 header->loop_father = loops->tree_root;
481 }
482
483 free (rc_order);
484
485 /* Now iterate over the loops found, insert them into the loop tree
486 and assign basic-block ownership. */
487 for (i = 0; i < larray.length (); ++i)
488 {
489 struct loop *loop = larray[i];
490 basic_block header = loop->header;
491 edge_iterator ei;
492 edge e;
493
494 flow_loop_tree_node_add (header->loop_father, loop);
495 loop->num_nodes = flow_loop_nodes_find (loop->header, loop);
496
497 /* Look for the latch for this header block, if it has just a
498 single one. */
499 FOR_EACH_EDGE (e, ei, header->preds)
500 {
501 basic_block latch = e->src;
502
503 if (flow_bb_inside_loop_p (loop, latch))
504 {
505 if (loop->latch != NULL)
506 {
507 /* More than one latch edge. */
508 loop->latch = NULL;
509 break;
510 }
511 loop->latch = latch;
512 }
513 }
514 }
515
516 return loops;
517 }
518
519 /* Ratio of frequencies of edges so that one of more latch edges is
520 considered to belong to inner loop with same header. */
521 #define HEAVY_EDGE_RATIO 8
522
523 /* Minimum number of samples for that we apply
524 find_subloop_latch_edge_by_profile heuristics. */
525 #define HEAVY_EDGE_MIN_SAMPLES 10
526
527 /* If the profile info is available, finds an edge in LATCHES that much more
528 frequent than the remaining edges. Returns such an edge, or NULL if we do
529 not find one.
530
531 We do not use guessed profile here, only the measured one. The guessed
532 profile is usually too flat and unreliable for this (and it is mostly based
533 on the loop structure of the program, so it does not make much sense to
534 derive the loop structure from it). */
535
536 static edge
537 find_subloop_latch_edge_by_profile (vec<edge> latches)
538 {
539 unsigned i;
540 edge e, me = NULL;
541 gcov_type mcount = 0, tcount = 0;
542
543 FOR_EACH_VEC_ELT (latches, i, e)
544 {
545 if (e->count > mcount)
546 {
547 me = e;
548 mcount = e->count;
549 }
550 tcount += e->count;
551 }
552
553 if (tcount < HEAVY_EDGE_MIN_SAMPLES
554 || (tcount - mcount) * HEAVY_EDGE_RATIO > tcount)
555 return NULL;
556
557 if (dump_file)
558 fprintf (dump_file,
559 "Found latch edge %d -> %d using profile information.\n",
560 me->src->index, me->dest->index);
561 return me;
562 }
563
564 /* Among LATCHES, guesses a latch edge of LOOP corresponding to subloop, based
565 on the structure of induction variables. Returns this edge, or NULL if we
566 do not find any.
567
568 We are quite conservative, and look just for an obvious simple innermost
569 loop (which is the case where we would lose the most performance by not
570 disambiguating the loop). More precisely, we look for the following
571 situation: The source of the chosen latch edge dominates sources of all
572 the other latch edges. Additionally, the header does not contain a phi node
573 such that the argument from the chosen edge is equal to the argument from
574 another edge. */
575
576 static edge
577 find_subloop_latch_edge_by_ivs (struct loop *loop ATTRIBUTE_UNUSED, vec<edge> latches)
578 {
579 edge e, latch = latches[0];
580 unsigned i;
581 gimple phi;
582 gimple_stmt_iterator psi;
583 tree lop;
584 basic_block bb;
585
586 /* Find the candidate for the latch edge. */
587 for (i = 1; latches.iterate (i, &e); i++)
588 if (dominated_by_p (CDI_DOMINATORS, latch->src, e->src))
589 latch = e;
590
591 /* Verify that it dominates all the latch edges. */
592 FOR_EACH_VEC_ELT (latches, i, e)
593 if (!dominated_by_p (CDI_DOMINATORS, e->src, latch->src))
594 return NULL;
595
596 /* Check for a phi node that would deny that this is a latch edge of
597 a subloop. */
598 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
599 {
600 phi = gsi_stmt (psi);
601 lop = PHI_ARG_DEF_FROM_EDGE (phi, latch);
602
603 /* Ignore the values that are not changed inside the subloop. */
604 if (TREE_CODE (lop) != SSA_NAME
605 || SSA_NAME_DEF_STMT (lop) == phi)
606 continue;
607 bb = gimple_bb (SSA_NAME_DEF_STMT (lop));
608 if (!bb || !flow_bb_inside_loop_p (loop, bb))
609 continue;
610
611 FOR_EACH_VEC_ELT (latches, i, e)
612 if (e != latch
613 && PHI_ARG_DEF_FROM_EDGE (phi, e) == lop)
614 return NULL;
615 }
616
617 if (dump_file)
618 fprintf (dump_file,
619 "Found latch edge %d -> %d using iv structure.\n",
620 latch->src->index, latch->dest->index);
621 return latch;
622 }
623
624 /* If we can determine that one of the several latch edges of LOOP behaves
625 as a latch edge of a separate subloop, returns this edge. Otherwise
626 returns NULL. */
627
628 static edge
629 find_subloop_latch_edge (struct loop *loop)
630 {
631 vec<edge> latches = get_loop_latch_edges (loop);
632 edge latch = NULL;
633
634 if (latches.length () > 1)
635 {
636 latch = find_subloop_latch_edge_by_profile (latches);
637
638 if (!latch
639 /* We consider ivs to guess the latch edge only in SSA. Perhaps we
640 should use cfghook for this, but it is hard to imagine it would
641 be useful elsewhere. */
642 && current_ir_type () == IR_GIMPLE)
643 latch = find_subloop_latch_edge_by_ivs (loop, latches);
644 }
645
646 latches.release ();
647 return latch;
648 }
649
650 /* Callback for make_forwarder_block. Returns true if the edge E is marked
651 in the set MFB_REIS_SET. */
652
653 static hash_set<edge> *mfb_reis_set;
654 static bool
655 mfb_redirect_edges_in_set (edge e)
656 {
657 return mfb_reis_set->contains (e);
658 }
659
660 /* Creates a subloop of LOOP with latch edge LATCH. */
661
662 static void
663 form_subloop (struct loop *loop, edge latch)
664 {
665 edge_iterator ei;
666 edge e, new_entry;
667 struct loop *new_loop;
668
669 mfb_reis_set = new hash_set<edge>;
670 FOR_EACH_EDGE (e, ei, loop->header->preds)
671 {
672 if (e != latch)
673 mfb_reis_set->add (e);
674 }
675 new_entry = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
676 NULL);
677 delete mfb_reis_set;
678
679 loop->header = new_entry->src;
680
681 /* Find the blocks and subloops that belong to the new loop, and add it to
682 the appropriate place in the loop tree. */
683 new_loop = alloc_loop ();
684 new_loop->header = new_entry->dest;
685 new_loop->latch = latch->src;
686 add_loop (new_loop, loop);
687 }
688
689 /* Make all the latch edges of LOOP to go to a single forwarder block --
690 a new latch of LOOP. */
691
692 static void
693 merge_latch_edges (struct loop *loop)
694 {
695 vec<edge> latches = get_loop_latch_edges (loop);
696 edge latch, e;
697 unsigned i;
698
699 gcc_assert (latches.length () > 0);
700
701 if (latches.length () == 1)
702 loop->latch = latches[0]->src;
703 else
704 {
705 if (dump_file)
706 fprintf (dump_file, "Merged latch edges of loop %d\n", loop->num);
707
708 mfb_reis_set = new hash_set<edge>;
709 FOR_EACH_VEC_ELT (latches, i, e)
710 mfb_reis_set->add (e);
711 latch = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
712 NULL);
713 delete mfb_reis_set;
714
715 loop->header = latch->dest;
716 loop->latch = latch->src;
717 }
718
719 latches.release ();
720 }
721
722 /* LOOP may have several latch edges. Transform it into (possibly several)
723 loops with single latch edge. */
724
725 static void
726 disambiguate_multiple_latches (struct loop *loop)
727 {
728 edge e;
729
730 /* We eliminate the multiple latches by splitting the header to the forwarder
731 block F and the rest R, and redirecting the edges. There are two cases:
732
733 1) If there is a latch edge E that corresponds to a subloop (we guess
734 that based on profile -- if it is taken much more often than the
735 remaining edges; and on trees, using the information about induction
736 variables of the loops), we redirect E to R, all the remaining edges to
737 F, then rescan the loops and try again for the outer loop.
738 2) If there is no such edge, we redirect all latch edges to F, and the
739 entry edges to R, thus making F the single latch of the loop. */
740
741 if (dump_file)
742 fprintf (dump_file, "Disambiguating loop %d with multiple latches\n",
743 loop->num);
744
745 /* During latch merging, we may need to redirect the entry edges to a new
746 block. This would cause problems if the entry edge was the one from the
747 entry block. To avoid having to handle this case specially, split
748 such entry edge. */
749 e = find_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), loop->header);
750 if (e)
751 split_edge (e);
752
753 while (1)
754 {
755 e = find_subloop_latch_edge (loop);
756 if (!e)
757 break;
758
759 form_subloop (loop, e);
760 }
761
762 merge_latch_edges (loop);
763 }
764
765 /* Split loops with multiple latch edges. */
766
767 void
768 disambiguate_loops_with_multiple_latches (void)
769 {
770 struct loop *loop;
771
772 FOR_EACH_LOOP (loop, 0)
773 {
774 if (!loop->latch)
775 disambiguate_multiple_latches (loop);
776 }
777 }
778
779 /* Return nonzero if basic block BB belongs to LOOP. */
780 bool
781 flow_bb_inside_loop_p (const struct loop *loop, const_basic_block bb)
782 {
783 struct loop *source_loop;
784
785 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun)
786 || bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
787 return 0;
788
789 source_loop = bb->loop_father;
790 return loop == source_loop || flow_loop_nested_p (loop, source_loop);
791 }
792
793 /* Enumeration predicate for get_loop_body_with_size. */
794 static bool
795 glb_enum_p (const_basic_block bb, const void *glb_loop)
796 {
797 const struct loop *const loop = (const struct loop *) glb_loop;
798 return (bb != loop->header
799 && dominated_by_p (CDI_DOMINATORS, bb, loop->header));
800 }
801
802 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
803 order against direction of edges from latch. Specially, if
804 header != latch, latch is the 1-st block. LOOP cannot be the fake
805 loop tree root, and its size must be at most MAX_SIZE. The blocks
806 in the LOOP body are stored to BODY, and the size of the LOOP is
807 returned. */
808
809 unsigned
810 get_loop_body_with_size (const struct loop *loop, basic_block *body,
811 unsigned max_size)
812 {
813 return dfs_enumerate_from (loop->header, 1, glb_enum_p,
814 body, max_size, loop);
815 }
816
817 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
818 order against direction of edges from latch. Specially, if
819 header != latch, latch is the 1-st block. */
820
821 basic_block *
822 get_loop_body (const struct loop *loop)
823 {
824 basic_block *body, bb;
825 unsigned tv = 0;
826
827 gcc_assert (loop->num_nodes);
828
829 body = XNEWVEC (basic_block, loop->num_nodes);
830
831 if (loop->latch == EXIT_BLOCK_PTR_FOR_FN (cfun))
832 {
833 /* There may be blocks unreachable from EXIT_BLOCK, hence we need to
834 special-case the fake loop that contains the whole function. */
835 gcc_assert (loop->num_nodes == (unsigned) n_basic_blocks_for_fn (cfun));
836 body[tv++] = loop->header;
837 body[tv++] = EXIT_BLOCK_PTR_FOR_FN (cfun);
838 FOR_EACH_BB_FN (bb, cfun)
839 body[tv++] = bb;
840 }
841 else
842 tv = get_loop_body_with_size (loop, body, loop->num_nodes);
843
844 gcc_assert (tv == loop->num_nodes);
845 return body;
846 }
847
848 /* Fills dominance descendants inside LOOP of the basic block BB into
849 array TOVISIT from index *TV. */
850
851 static void
852 fill_sons_in_loop (const struct loop *loop, basic_block bb,
853 basic_block *tovisit, int *tv)
854 {
855 basic_block son, postpone = NULL;
856
857 tovisit[(*tv)++] = bb;
858 for (son = first_dom_son (CDI_DOMINATORS, bb);
859 son;
860 son = next_dom_son (CDI_DOMINATORS, son))
861 {
862 if (!flow_bb_inside_loop_p (loop, son))
863 continue;
864
865 if (dominated_by_p (CDI_DOMINATORS, loop->latch, son))
866 {
867 postpone = son;
868 continue;
869 }
870 fill_sons_in_loop (loop, son, tovisit, tv);
871 }
872
873 if (postpone)
874 fill_sons_in_loop (loop, postpone, tovisit, tv);
875 }
876
877 /* Gets body of a LOOP (that must be different from the outermost loop)
878 sorted by dominance relation. Additionally, if a basic block s dominates
879 the latch, then only blocks dominated by s are be after it. */
880
881 basic_block *
882 get_loop_body_in_dom_order (const struct loop *loop)
883 {
884 basic_block *tovisit;
885 int tv;
886
887 gcc_assert (loop->num_nodes);
888
889 tovisit = XNEWVEC (basic_block, loop->num_nodes);
890
891 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
892
893 tv = 0;
894 fill_sons_in_loop (loop, loop->header, tovisit, &tv);
895
896 gcc_assert (tv == (int) loop->num_nodes);
897
898 return tovisit;
899 }
900
901 /* Gets body of a LOOP sorted via provided BB_COMPARATOR. */
902
903 basic_block *
904 get_loop_body_in_custom_order (const struct loop *loop,
905 int (*bb_comparator) (const void *, const void *))
906 {
907 basic_block *bbs = get_loop_body (loop);
908
909 qsort (bbs, loop->num_nodes, sizeof (basic_block), bb_comparator);
910
911 return bbs;
912 }
913
914 /* Get body of a LOOP in breadth first sort order. */
915
916 basic_block *
917 get_loop_body_in_bfs_order (const struct loop *loop)
918 {
919 basic_block *blocks;
920 basic_block bb;
921 bitmap visited;
922 unsigned int i = 0;
923 unsigned int vc = 1;
924
925 gcc_assert (loop->num_nodes);
926 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
927
928 blocks = XNEWVEC (basic_block, loop->num_nodes);
929 visited = BITMAP_ALLOC (NULL);
930
931 bb = loop->header;
932 while (i < loop->num_nodes)
933 {
934 edge e;
935 edge_iterator ei;
936
937 if (bitmap_set_bit (visited, bb->index))
938 /* This basic block is now visited */
939 blocks[i++] = bb;
940
941 FOR_EACH_EDGE (e, ei, bb->succs)
942 {
943 if (flow_bb_inside_loop_p (loop, e->dest))
944 {
945 if (bitmap_set_bit (visited, e->dest->index))
946 blocks[i++] = e->dest;
947 }
948 }
949
950 gcc_assert (i >= vc);
951
952 bb = blocks[vc++];
953 }
954
955 BITMAP_FREE (visited);
956 return blocks;
957 }
958
959 /* Hash function for struct loop_exit. */
960
961 hashval_t
962 loop_exit_hasher::hash (loop_exit *exit)
963 {
964 return htab_hash_pointer (exit->e);
965 }
966
967 /* Equality function for struct loop_exit. Compares with edge. */
968
969 bool
970 loop_exit_hasher::equal (loop_exit *exit, edge e)
971 {
972 return exit->e == e;
973 }
974
975 /* Frees the list of loop exit descriptions EX. */
976
977 void
978 loop_exit_hasher::remove (loop_exit *exit)
979 {
980 loop_exit *next;
981 for (; exit; exit = next)
982 {
983 next = exit->next_e;
984
985 exit->next->prev = exit->prev;
986 exit->prev->next = exit->next;
987
988 ggc_free (exit);
989 }
990 }
991
992 /* Returns the list of records for E as an exit of a loop. */
993
994 static struct loop_exit *
995 get_exit_descriptions (edge e)
996 {
997 return current_loops->exits->find_with_hash (e, htab_hash_pointer (e));
998 }
999
1000 /* Updates the lists of loop exits in that E appears.
1001 If REMOVED is true, E is being removed, and we
1002 just remove it from the lists of exits.
1003 If NEW_EDGE is true and E is not a loop exit, we
1004 do not try to remove it from loop exit lists. */
1005
1006 void
1007 rescan_loop_exit (edge e, bool new_edge, bool removed)
1008 {
1009 struct loop_exit *exits = NULL, *exit;
1010 struct loop *aloop, *cloop;
1011
1012 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1013 return;
1014
1015 if (!removed
1016 && e->src->loop_father != NULL
1017 && e->dest->loop_father != NULL
1018 && !flow_bb_inside_loop_p (e->src->loop_father, e->dest))
1019 {
1020 cloop = find_common_loop (e->src->loop_father, e->dest->loop_father);
1021 for (aloop = e->src->loop_father;
1022 aloop != cloop;
1023 aloop = loop_outer (aloop))
1024 {
1025 exit = ggc_alloc<loop_exit> ();
1026 exit->e = e;
1027
1028 exit->next = aloop->exits->next;
1029 exit->prev = aloop->exits;
1030 exit->next->prev = exit;
1031 exit->prev->next = exit;
1032
1033 exit->next_e = exits;
1034 exits = exit;
1035 }
1036 }
1037
1038 if (!exits && new_edge)
1039 return;
1040
1041 loop_exit **slot
1042 = current_loops->exits->find_slot_with_hash (e, htab_hash_pointer (e),
1043 exits ? INSERT : NO_INSERT);
1044 if (!slot)
1045 return;
1046
1047 if (exits)
1048 {
1049 if (*slot)
1050 loop_exit_hasher::remove (*slot);
1051 *slot = exits;
1052 }
1053 else
1054 current_loops->exits->clear_slot (slot);
1055 }
1056
1057 /* For each loop, record list of exit edges, and start maintaining these
1058 lists. */
1059
1060 void
1061 record_loop_exits (void)
1062 {
1063 basic_block bb;
1064 edge_iterator ei;
1065 edge e;
1066
1067 if (!current_loops)
1068 return;
1069
1070 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1071 return;
1072 loops_state_set (LOOPS_HAVE_RECORDED_EXITS);
1073
1074 gcc_assert (current_loops->exits == NULL);
1075 current_loops->exits
1076 = hash_table<loop_exit_hasher>::create_ggc (2 * number_of_loops (cfun));
1077
1078 FOR_EACH_BB_FN (bb, cfun)
1079 {
1080 FOR_EACH_EDGE (e, ei, bb->succs)
1081 {
1082 rescan_loop_exit (e, true, false);
1083 }
1084 }
1085 }
1086
1087 /* Dumps information about the exit in *SLOT to FILE.
1088 Callback for htab_traverse. */
1089
1090 int
1091 dump_recorded_exit (loop_exit **slot, FILE *file)
1092 {
1093 struct loop_exit *exit = *slot;
1094 unsigned n = 0;
1095 edge e = exit->e;
1096
1097 for (; exit != NULL; exit = exit->next_e)
1098 n++;
1099
1100 fprintf (file, "Edge %d->%d exits %u loops\n",
1101 e->src->index, e->dest->index, n);
1102
1103 return 1;
1104 }
1105
1106 /* Dumps the recorded exits of loops to FILE. */
1107
1108 extern void dump_recorded_exits (FILE *);
1109 void
1110 dump_recorded_exits (FILE *file)
1111 {
1112 if (!current_loops->exits)
1113 return;
1114 current_loops->exits->traverse<FILE *, dump_recorded_exit> (file);
1115 }
1116
1117 /* Releases lists of loop exits. */
1118
1119 void
1120 release_recorded_exits (void)
1121 {
1122 gcc_assert (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS));
1123 current_loops->exits->empty ();
1124 current_loops->exits = NULL;
1125 loops_state_clear (LOOPS_HAVE_RECORDED_EXITS);
1126 }
1127
1128 /* Returns the list of the exit edges of a LOOP. */
1129
1130 vec<edge>
1131 get_loop_exit_edges (const struct loop *loop)
1132 {
1133 vec<edge> edges = vNULL;
1134 edge e;
1135 unsigned i;
1136 basic_block *body;
1137 edge_iterator ei;
1138 struct loop_exit *exit;
1139
1140 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
1141
1142 /* If we maintain the lists of exits, use them. Otherwise we must
1143 scan the body of the loop. */
1144 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1145 {
1146 for (exit = loop->exits->next; exit->e; exit = exit->next)
1147 edges.safe_push (exit->e);
1148 }
1149 else
1150 {
1151 body = get_loop_body (loop);
1152 for (i = 0; i < loop->num_nodes; i++)
1153 FOR_EACH_EDGE (e, ei, body[i]->succs)
1154 {
1155 if (!flow_bb_inside_loop_p (loop, e->dest))
1156 edges.safe_push (e);
1157 }
1158 free (body);
1159 }
1160
1161 return edges;
1162 }
1163
1164 /* Counts the number of conditional branches inside LOOP. */
1165
1166 unsigned
1167 num_loop_branches (const struct loop *loop)
1168 {
1169 unsigned i, n;
1170 basic_block * body;
1171
1172 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
1173
1174 body = get_loop_body (loop);
1175 n = 0;
1176 for (i = 0; i < loop->num_nodes; i++)
1177 if (EDGE_COUNT (body[i]->succs) >= 2)
1178 n++;
1179 free (body);
1180
1181 return n;
1182 }
1183
1184 /* Adds basic block BB to LOOP. */
1185 void
1186 add_bb_to_loop (basic_block bb, struct loop *loop)
1187 {
1188 unsigned i;
1189 loop_p ploop;
1190 edge_iterator ei;
1191 edge e;
1192
1193 gcc_assert (bb->loop_father == NULL);
1194 bb->loop_father = loop;
1195 loop->num_nodes++;
1196 FOR_EACH_VEC_SAFE_ELT (loop->superloops, i, ploop)
1197 ploop->num_nodes++;
1198
1199 FOR_EACH_EDGE (e, ei, bb->succs)
1200 {
1201 rescan_loop_exit (e, true, false);
1202 }
1203 FOR_EACH_EDGE (e, ei, bb->preds)
1204 {
1205 rescan_loop_exit (e, true, false);
1206 }
1207 }
1208
1209 /* Remove basic block BB from loops. */
1210 void
1211 remove_bb_from_loops (basic_block bb)
1212 {
1213 unsigned i;
1214 struct loop *loop = bb->loop_father;
1215 loop_p ploop;
1216 edge_iterator ei;
1217 edge e;
1218
1219 gcc_assert (loop != NULL);
1220 loop->num_nodes--;
1221 FOR_EACH_VEC_SAFE_ELT (loop->superloops, i, ploop)
1222 ploop->num_nodes--;
1223 bb->loop_father = NULL;
1224
1225 FOR_EACH_EDGE (e, ei, bb->succs)
1226 {
1227 rescan_loop_exit (e, false, true);
1228 }
1229 FOR_EACH_EDGE (e, ei, bb->preds)
1230 {
1231 rescan_loop_exit (e, false, true);
1232 }
1233 }
1234
1235 /* Finds nearest common ancestor in loop tree for given loops. */
1236 struct loop *
1237 find_common_loop (struct loop *loop_s, struct loop *loop_d)
1238 {
1239 unsigned sdepth, ddepth;
1240
1241 if (!loop_s) return loop_d;
1242 if (!loop_d) return loop_s;
1243
1244 sdepth = loop_depth (loop_s);
1245 ddepth = loop_depth (loop_d);
1246
1247 if (sdepth < ddepth)
1248 loop_d = (*loop_d->superloops)[sdepth];
1249 else if (sdepth > ddepth)
1250 loop_s = (*loop_s->superloops)[ddepth];
1251
1252 while (loop_s != loop_d)
1253 {
1254 loop_s = loop_outer (loop_s);
1255 loop_d = loop_outer (loop_d);
1256 }
1257 return loop_s;
1258 }
1259
1260 /* Removes LOOP from structures and frees its data. */
1261
1262 void
1263 delete_loop (struct loop *loop)
1264 {
1265 /* Remove the loop from structure. */
1266 flow_loop_tree_node_remove (loop);
1267
1268 /* Remove loop from loops array. */
1269 (*current_loops->larray)[loop->num] = NULL;
1270
1271 /* Free loop data. */
1272 flow_loop_free (loop);
1273 }
1274
1275 /* Cancels the LOOP; it must be innermost one. */
1276
1277 static void
1278 cancel_loop (struct loop *loop)
1279 {
1280 basic_block *bbs;
1281 unsigned i;
1282 struct loop *outer = loop_outer (loop);
1283
1284 gcc_assert (!loop->inner);
1285
1286 /* Move blocks up one level (they should be removed as soon as possible). */
1287 bbs = get_loop_body (loop);
1288 for (i = 0; i < loop->num_nodes; i++)
1289 bbs[i]->loop_father = outer;
1290
1291 free (bbs);
1292 delete_loop (loop);
1293 }
1294
1295 /* Cancels LOOP and all its subloops. */
1296 void
1297 cancel_loop_tree (struct loop *loop)
1298 {
1299 while (loop->inner)
1300 cancel_loop_tree (loop->inner);
1301 cancel_loop (loop);
1302 }
1303
1304 /* Checks that information about loops is correct
1305 -- sizes of loops are all right
1306 -- results of get_loop_body really belong to the loop
1307 -- loop header have just single entry edge and single latch edge
1308 -- loop latches have only single successor that is header of their loop
1309 -- irreducible loops are correctly marked
1310 -- the cached loop depth and loop father of each bb is correct
1311 */
1312 DEBUG_FUNCTION void
1313 verify_loop_structure (void)
1314 {
1315 unsigned *sizes, i, j;
1316 sbitmap irreds;
1317 basic_block bb, *bbs;
1318 struct loop *loop;
1319 int err = 0;
1320 edge e;
1321 unsigned num = number_of_loops (cfun);
1322 struct loop_exit *exit, *mexit;
1323 bool dom_available = dom_info_available_p (CDI_DOMINATORS);
1324 sbitmap visited;
1325
1326 if (loops_state_satisfies_p (LOOPS_NEED_FIXUP))
1327 {
1328 error ("loop verification on loop tree that needs fixup");
1329 err = 1;
1330 }
1331
1332 /* We need up-to-date dominators, compute or verify them. */
1333 if (!dom_available)
1334 calculate_dominance_info (CDI_DOMINATORS);
1335 else
1336 verify_dominators (CDI_DOMINATORS);
1337
1338 /* Check the headers. */
1339 FOR_EACH_BB_FN (bb, cfun)
1340 if (bb_loop_header_p (bb))
1341 {
1342 if (bb->loop_father->header == NULL)
1343 {
1344 error ("loop with header %d marked for removal", bb->index);
1345 err = 1;
1346 }
1347 else if (bb->loop_father->header != bb)
1348 {
1349 error ("loop with header %d not in loop tree", bb->index);
1350 err = 1;
1351 }
1352 }
1353 else if (bb->loop_father->header == bb)
1354 {
1355 error ("non-loop with header %d not marked for removal", bb->index);
1356 err = 1;
1357 }
1358
1359 /* Check the recorded loop father and sizes of loops. */
1360 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
1361 bitmap_clear (visited);
1362 bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
1363 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
1364 {
1365 unsigned n;
1366
1367 if (loop->header == NULL)
1368 {
1369 error ("removed loop %d in loop tree", loop->num);
1370 err = 1;
1371 continue;
1372 }
1373
1374 n = get_loop_body_with_size (loop, bbs, n_basic_blocks_for_fn (cfun));
1375 if (loop->num_nodes != n)
1376 {
1377 error ("size of loop %d should be %d, not %d",
1378 loop->num, n, loop->num_nodes);
1379 err = 1;
1380 }
1381
1382 for (j = 0; j < n; j++)
1383 {
1384 bb = bbs[j];
1385
1386 if (!flow_bb_inside_loop_p (loop, bb))
1387 {
1388 error ("bb %d does not belong to loop %d",
1389 bb->index, loop->num);
1390 err = 1;
1391 }
1392
1393 /* Ignore this block if it is in an inner loop. */
1394 if (bitmap_bit_p (visited, bb->index))
1395 continue;
1396 bitmap_set_bit (visited, bb->index);
1397
1398 if (bb->loop_father != loop)
1399 {
1400 error ("bb %d has father loop %d, should be loop %d",
1401 bb->index, bb->loop_father->num, loop->num);
1402 err = 1;
1403 }
1404 }
1405 }
1406 free (bbs);
1407 sbitmap_free (visited);
1408
1409 /* Check headers and latches. */
1410 FOR_EACH_LOOP (loop, 0)
1411 {
1412 i = loop->num;
1413 if (loop->header == NULL)
1414 continue;
1415 if (!bb_loop_header_p (loop->header))
1416 {
1417 error ("loop %d%'s header is not a loop header", i);
1418 err = 1;
1419 }
1420 if (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS)
1421 && EDGE_COUNT (loop->header->preds) != 2)
1422 {
1423 error ("loop %d%'s header does not have exactly 2 entries", i);
1424 err = 1;
1425 }
1426 if (loop->latch)
1427 {
1428 if (!find_edge (loop->latch, loop->header))
1429 {
1430 error ("loop %d%'s latch does not have an edge to its header", i);
1431 err = 1;
1432 }
1433 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, loop->header))
1434 {
1435 error ("loop %d%'s latch is not dominated by its header", i);
1436 err = 1;
1437 }
1438 }
1439 if (loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES))
1440 {
1441 if (!single_succ_p (loop->latch))
1442 {
1443 error ("loop %d%'s latch does not have exactly 1 successor", i);
1444 err = 1;
1445 }
1446 if (single_succ (loop->latch) != loop->header)
1447 {
1448 error ("loop %d%'s latch does not have header as successor", i);
1449 err = 1;
1450 }
1451 if (loop->latch->loop_father != loop)
1452 {
1453 error ("loop %d%'s latch does not belong directly to it", i);
1454 err = 1;
1455 }
1456 }
1457 if (loop->header->loop_father != loop)
1458 {
1459 error ("loop %d%'s header does not belong directly to it", i);
1460 err = 1;
1461 }
1462 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS)
1463 && (loop_latch_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP))
1464 {
1465 error ("loop %d%'s latch is marked as part of irreducible region", i);
1466 err = 1;
1467 }
1468 }
1469
1470 /* Check irreducible loops. */
1471 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
1472 {
1473 /* Record old info. */
1474 irreds = sbitmap_alloc (last_basic_block_for_fn (cfun));
1475 FOR_EACH_BB_FN (bb, cfun)
1476 {
1477 edge_iterator ei;
1478 if (bb->flags & BB_IRREDUCIBLE_LOOP)
1479 bitmap_set_bit (irreds, bb->index);
1480 else
1481 bitmap_clear_bit (irreds, bb->index);
1482 FOR_EACH_EDGE (e, ei, bb->succs)
1483 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
1484 e->flags |= EDGE_ALL_FLAGS + 1;
1485 }
1486
1487 /* Recount it. */
1488 mark_irreducible_loops ();
1489
1490 /* Compare. */
1491 FOR_EACH_BB_FN (bb, cfun)
1492 {
1493 edge_iterator ei;
1494
1495 if ((bb->flags & BB_IRREDUCIBLE_LOOP)
1496 && !bitmap_bit_p (irreds, bb->index))
1497 {
1498 error ("basic block %d should be marked irreducible", bb->index);
1499 err = 1;
1500 }
1501 else if (!(bb->flags & BB_IRREDUCIBLE_LOOP)
1502 && bitmap_bit_p (irreds, bb->index))
1503 {
1504 error ("basic block %d should not be marked irreducible", bb->index);
1505 err = 1;
1506 }
1507 FOR_EACH_EDGE (e, ei, bb->succs)
1508 {
1509 if ((e->flags & EDGE_IRREDUCIBLE_LOOP)
1510 && !(e->flags & (EDGE_ALL_FLAGS + 1)))
1511 {
1512 error ("edge from %d to %d should be marked irreducible",
1513 e->src->index, e->dest->index);
1514 err = 1;
1515 }
1516 else if (!(e->flags & EDGE_IRREDUCIBLE_LOOP)
1517 && (e->flags & (EDGE_ALL_FLAGS + 1)))
1518 {
1519 error ("edge from %d to %d should not be marked irreducible",
1520 e->src->index, e->dest->index);
1521 err = 1;
1522 }
1523 e->flags &= ~(EDGE_ALL_FLAGS + 1);
1524 }
1525 }
1526 free (irreds);
1527 }
1528
1529 /* Check the recorded loop exits. */
1530 FOR_EACH_LOOP (loop, 0)
1531 {
1532 if (!loop->exits || loop->exits->e != NULL)
1533 {
1534 error ("corrupted head of the exits list of loop %d",
1535 loop->num);
1536 err = 1;
1537 }
1538 else
1539 {
1540 /* Check that the list forms a cycle, and all elements except
1541 for the head are nonnull. */
1542 for (mexit = loop->exits, exit = mexit->next, i = 0;
1543 exit->e && exit != mexit;
1544 exit = exit->next)
1545 {
1546 if (i++ & 1)
1547 mexit = mexit->next;
1548 }
1549
1550 if (exit != loop->exits)
1551 {
1552 error ("corrupted exits list of loop %d", loop->num);
1553 err = 1;
1554 }
1555 }
1556
1557 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1558 {
1559 if (loop->exits->next != loop->exits)
1560 {
1561 error ("nonempty exits list of loop %d, but exits are not recorded",
1562 loop->num);
1563 err = 1;
1564 }
1565 }
1566 }
1567
1568 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1569 {
1570 unsigned n_exits = 0, eloops;
1571
1572 sizes = XCNEWVEC (unsigned, num);
1573 memset (sizes, 0, sizeof (unsigned) * num);
1574 FOR_EACH_BB_FN (bb, cfun)
1575 {
1576 edge_iterator ei;
1577 if (bb->loop_father == current_loops->tree_root)
1578 continue;
1579 FOR_EACH_EDGE (e, ei, bb->succs)
1580 {
1581 if (flow_bb_inside_loop_p (bb->loop_father, e->dest))
1582 continue;
1583
1584 n_exits++;
1585 exit = get_exit_descriptions (e);
1586 if (!exit)
1587 {
1588 error ("exit %d->%d not recorded",
1589 e->src->index, e->dest->index);
1590 err = 1;
1591 }
1592 eloops = 0;
1593 for (; exit; exit = exit->next_e)
1594 eloops++;
1595
1596 for (loop = bb->loop_father;
1597 loop != e->dest->loop_father
1598 /* When a loop exit is also an entry edge which
1599 can happen when avoiding CFG manipulations
1600 then the last loop exited is the outer loop
1601 of the loop entered. */
1602 && loop != loop_outer (e->dest->loop_father);
1603 loop = loop_outer (loop))
1604 {
1605 eloops--;
1606 sizes[loop->num]++;
1607 }
1608
1609 if (eloops != 0)
1610 {
1611 error ("wrong list of exited loops for edge %d->%d",
1612 e->src->index, e->dest->index);
1613 err = 1;
1614 }
1615 }
1616 }
1617
1618 if (n_exits != current_loops->exits->elements ())
1619 {
1620 error ("too many loop exits recorded");
1621 err = 1;
1622 }
1623
1624 FOR_EACH_LOOP (loop, 0)
1625 {
1626 eloops = 0;
1627 for (exit = loop->exits->next; exit->e; exit = exit->next)
1628 eloops++;
1629 if (eloops != sizes[loop->num])
1630 {
1631 error ("%d exits recorded for loop %d (having %d exits)",
1632 eloops, loop->num, sizes[loop->num]);
1633 err = 1;
1634 }
1635 }
1636
1637 free (sizes);
1638 }
1639
1640 gcc_assert (!err);
1641
1642 if (!dom_available)
1643 free_dominance_info (CDI_DOMINATORS);
1644 }
1645
1646 /* Returns latch edge of LOOP. */
1647 edge
1648 loop_latch_edge (const struct loop *loop)
1649 {
1650 return find_edge (loop->latch, loop->header);
1651 }
1652
1653 /* Returns preheader edge of LOOP. */
1654 edge
1655 loop_preheader_edge (const struct loop *loop)
1656 {
1657 edge e;
1658 edge_iterator ei;
1659
1660 gcc_assert (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS));
1661
1662 FOR_EACH_EDGE (e, ei, loop->header->preds)
1663 if (e->src != loop->latch)
1664 break;
1665
1666 return e;
1667 }
1668
1669 /* Returns true if E is an exit of LOOP. */
1670
1671 bool
1672 loop_exit_edge_p (const struct loop *loop, const_edge e)
1673 {
1674 return (flow_bb_inside_loop_p (loop, e->src)
1675 && !flow_bb_inside_loop_p (loop, e->dest));
1676 }
1677
1678 /* Returns the single exit edge of LOOP, or NULL if LOOP has either no exit
1679 or more than one exit. If loops do not have the exits recorded, NULL
1680 is returned always. */
1681
1682 edge
1683 single_exit (const struct loop *loop)
1684 {
1685 struct loop_exit *exit = loop->exits->next;
1686
1687 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1688 return NULL;
1689
1690 if (exit->e && exit->next == loop->exits)
1691 return exit->e;
1692 else
1693 return NULL;
1694 }
1695
1696 /* Returns true when BB has an incoming edge exiting LOOP. */
1697
1698 bool
1699 loop_exits_to_bb_p (struct loop *loop, basic_block bb)
1700 {
1701 edge e;
1702 edge_iterator ei;
1703
1704 FOR_EACH_EDGE (e, ei, bb->preds)
1705 if (loop_exit_edge_p (loop, e))
1706 return true;
1707
1708 return false;
1709 }
1710
1711 /* Returns true when BB has an outgoing edge exiting LOOP. */
1712
1713 bool
1714 loop_exits_from_bb_p (struct loop *loop, basic_block bb)
1715 {
1716 edge e;
1717 edge_iterator ei;
1718
1719 FOR_EACH_EDGE (e, ei, bb->succs)
1720 if (loop_exit_edge_p (loop, e))
1721 return true;
1722
1723 return false;
1724 }
1725
1726 /* Return location corresponding to the loop control condition if possible. */
1727
1728 location_t
1729 get_loop_location (struct loop *loop)
1730 {
1731 rtx_insn *insn = NULL;
1732 struct niter_desc *desc = NULL;
1733 edge exit;
1734
1735 /* For a for or while loop, we would like to return the location
1736 of the for or while statement, if possible. To do this, look
1737 for the branch guarding the loop back-edge. */
1738
1739 /* If this is a simple loop with an in_edge, then the loop control
1740 branch is typically at the end of its source. */
1741 desc = get_simple_loop_desc (loop);
1742 if (desc->in_edge)
1743 {
1744 FOR_BB_INSNS_REVERSE (desc->in_edge->src, insn)
1745 {
1746 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1747 return INSN_LOCATION (insn);
1748 }
1749 }
1750 /* If loop has a single exit, then the loop control branch
1751 must be at the end of its source. */
1752 if ((exit = single_exit (loop)))
1753 {
1754 FOR_BB_INSNS_REVERSE (exit->src, insn)
1755 {
1756 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1757 return INSN_LOCATION (insn);
1758 }
1759 }
1760 /* Next check the latch, to see if it is non-empty. */
1761 FOR_BB_INSNS_REVERSE (loop->latch, insn)
1762 {
1763 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1764 return INSN_LOCATION (insn);
1765 }
1766 /* Finally, if none of the above identifies the loop control branch,
1767 return the first location in the loop header. */
1768 FOR_BB_INSNS (loop->header, insn)
1769 {
1770 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1771 return INSN_LOCATION (insn);
1772 }
1773 /* If all else fails, simply return the current function location. */
1774 return DECL_SOURCE_LOCATION (current_function_decl);
1775 }
1776
1777 /* Records that every statement in LOOP is executed I_BOUND times.
1778 REALISTIC is true if I_BOUND is expected to be close to the real number
1779 of iterations. UPPER is true if we are sure the loop iterates at most
1780 I_BOUND times. */
1781
1782 void
1783 record_niter_bound (struct loop *loop, const widest_int &i_bound,
1784 bool realistic, bool upper)
1785 {
1786 /* Update the bounds only when there is no previous estimation, or when the
1787 current estimation is smaller. */
1788 if (upper
1789 && (!loop->any_upper_bound
1790 || wi::ltu_p (i_bound, loop->nb_iterations_upper_bound)))
1791 {
1792 loop->any_upper_bound = true;
1793 loop->nb_iterations_upper_bound = i_bound;
1794 }
1795 if (realistic
1796 && (!loop->any_estimate
1797 || wi::ltu_p (i_bound, loop->nb_iterations_estimate)))
1798 {
1799 loop->any_estimate = true;
1800 loop->nb_iterations_estimate = i_bound;
1801 }
1802
1803 /* If an upper bound is smaller than the realistic estimate of the
1804 number of iterations, use the upper bound instead. */
1805 if (loop->any_upper_bound
1806 && loop->any_estimate
1807 && wi::ltu_p (loop->nb_iterations_upper_bound,
1808 loop->nb_iterations_estimate))
1809 loop->nb_iterations_estimate = loop->nb_iterations_upper_bound;
1810 }
1811
1812 /* Similar to get_estimated_loop_iterations, but returns the estimate only
1813 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
1814 on the number of iterations of LOOP could not be derived, returns -1. */
1815
1816 HOST_WIDE_INT
1817 get_estimated_loop_iterations_int (struct loop *loop)
1818 {
1819 widest_int nit;
1820 HOST_WIDE_INT hwi_nit;
1821
1822 if (!get_estimated_loop_iterations (loop, &nit))
1823 return -1;
1824
1825 if (!wi::fits_shwi_p (nit))
1826 return -1;
1827 hwi_nit = nit.to_shwi ();
1828
1829 return hwi_nit < 0 ? -1 : hwi_nit;
1830 }
1831
1832 /* Returns an upper bound on the number of executions of statements
1833 in the LOOP. For statements before the loop exit, this exceeds
1834 the number of execution of the latch by one. */
1835
1836 HOST_WIDE_INT
1837 max_stmt_executions_int (struct loop *loop)
1838 {
1839 HOST_WIDE_INT nit = get_max_loop_iterations_int (loop);
1840 HOST_WIDE_INT snit;
1841
1842 if (nit == -1)
1843 return -1;
1844
1845 snit = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) nit + 1);
1846
1847 /* If the computation overflows, return -1. */
1848 return snit < 0 ? -1 : snit;
1849 }
1850
1851 /* Sets NIT to the estimated number of executions of the latch of the
1852 LOOP. If we have no reliable estimate, the function returns false, otherwise
1853 returns true. */
1854
1855 bool
1856 get_estimated_loop_iterations (struct loop *loop, widest_int *nit)
1857 {
1858 /* Even if the bound is not recorded, possibly we can derrive one from
1859 profile. */
1860 if (!loop->any_estimate)
1861 {
1862 if (loop->header->count)
1863 {
1864 *nit = gcov_type_to_wide_int
1865 (expected_loop_iterations_unbounded (loop) + 1);
1866 return true;
1867 }
1868 return false;
1869 }
1870
1871 *nit = loop->nb_iterations_estimate;
1872 return true;
1873 }
1874
1875 /* Sets NIT to an upper bound for the maximum number of executions of the
1876 latch of the LOOP. If we have no reliable estimate, the function returns
1877 false, otherwise returns true. */
1878
1879 bool
1880 get_max_loop_iterations (struct loop *loop, widest_int *nit)
1881 {
1882 if (!loop->any_upper_bound)
1883 return false;
1884
1885 *nit = loop->nb_iterations_upper_bound;
1886 return true;
1887 }
1888
1889 /* Similar to get_max_loop_iterations, but returns the estimate only
1890 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
1891 on the number of iterations of LOOP could not be derived, returns -1. */
1892
1893 HOST_WIDE_INT
1894 get_max_loop_iterations_int (struct loop *loop)
1895 {
1896 widest_int nit;
1897 HOST_WIDE_INT hwi_nit;
1898
1899 if (!get_max_loop_iterations (loop, &nit))
1900 return -1;
1901
1902 if (!wi::fits_shwi_p (nit))
1903 return -1;
1904 hwi_nit = nit.to_shwi ();
1905
1906 return hwi_nit < 0 ? -1 : hwi_nit;
1907 }
1908
1909 /* Returns the loop depth of the loop BB belongs to. */
1910
1911 int
1912 bb_loop_depth (const_basic_block bb)
1913 {
1914 return bb->loop_father ? loop_depth (bb->loop_father) : 0;
1915 }
1916
1917 /* Marks LOOP for removal and sets LOOPS_NEED_FIXUP. */
1918
1919 void
1920 mark_loop_for_removal (loop_p loop)
1921 {
1922 loop->former_header = loop->header;
1923 loop->header = NULL;
1924 loop->latch = NULL;
1925 loops_state_set (LOOPS_NEED_FIXUP);
1926 }
1927