Improve verification of loop->latch in verify_loop_structure
[gcc.git] / gcc / cfgloop.c
1 /* Natural loop discovery code for GNU compiler.
2 Copyright (C) 2000-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "cfghooks.h"
28 #include "gimple-ssa.h"
29 #include "diagnostic-core.h"
30 #include "cfganal.h"
31 #include "cfgloop.h"
32 #include "gimple-iterator.h"
33 #include "dumpfile.h"
34
35 static void flow_loops_cfg_dump (FILE *);
36 \f
37 /* Dump loop related CFG information. */
38
39 static void
40 flow_loops_cfg_dump (FILE *file)
41 {
42 basic_block bb;
43
44 if (!file)
45 return;
46
47 FOR_EACH_BB_FN (bb, cfun)
48 {
49 edge succ;
50 edge_iterator ei;
51
52 fprintf (file, ";; %d succs { ", bb->index);
53 FOR_EACH_EDGE (succ, ei, bb->succs)
54 fprintf (file, "%d ", succ->dest->index);
55 fprintf (file, "}\n");
56 }
57 }
58
59 /* Return nonzero if the nodes of LOOP are a subset of OUTER. */
60
61 bool
62 flow_loop_nested_p (const struct loop *outer, const struct loop *loop)
63 {
64 unsigned odepth = loop_depth (outer);
65
66 return (loop_depth (loop) > odepth
67 && (*loop->superloops)[odepth] == outer);
68 }
69
70 /* Returns the loop such that LOOP is nested DEPTH (indexed from zero)
71 loops within LOOP. */
72
73 struct loop *
74 superloop_at_depth (struct loop *loop, unsigned depth)
75 {
76 unsigned ldepth = loop_depth (loop);
77
78 gcc_assert (depth <= ldepth);
79
80 if (depth == ldepth)
81 return loop;
82
83 return (*loop->superloops)[depth];
84 }
85
86 /* Returns the list of the latch edges of LOOP. */
87
88 static vec<edge>
89 get_loop_latch_edges (const struct loop *loop)
90 {
91 edge_iterator ei;
92 edge e;
93 vec<edge> ret = vNULL;
94
95 FOR_EACH_EDGE (e, ei, loop->header->preds)
96 {
97 if (dominated_by_p (CDI_DOMINATORS, e->src, loop->header))
98 ret.safe_push (e);
99 }
100
101 return ret;
102 }
103
104 /* Dump the loop information specified by LOOP to the stream FILE
105 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
106
107 void
108 flow_loop_dump (const struct loop *loop, FILE *file,
109 void (*loop_dump_aux) (const struct loop *, FILE *, int),
110 int verbose)
111 {
112 basic_block *bbs;
113 unsigned i;
114 vec<edge> latches;
115 edge e;
116
117 if (! loop || ! loop->header)
118 return;
119
120 fprintf (file, ";;\n;; Loop %d\n", loop->num);
121
122 fprintf (file, ";; header %d, ", loop->header->index);
123 if (loop->latch)
124 fprintf (file, "latch %d\n", loop->latch->index);
125 else
126 {
127 fprintf (file, "multiple latches:");
128 latches = get_loop_latch_edges (loop);
129 FOR_EACH_VEC_ELT (latches, i, e)
130 fprintf (file, " %d", e->src->index);
131 latches.release ();
132 fprintf (file, "\n");
133 }
134
135 fprintf (file, ";; depth %d, outer %ld\n",
136 loop_depth (loop), (long) (loop_outer (loop)
137 ? loop_outer (loop)->num : -1));
138
139 fprintf (file, ";; nodes:");
140 bbs = get_loop_body (loop);
141 for (i = 0; i < loop->num_nodes; i++)
142 fprintf (file, " %d", bbs[i]->index);
143 free (bbs);
144 fprintf (file, "\n");
145
146 if (loop_dump_aux)
147 loop_dump_aux (loop, file, verbose);
148 }
149
150 /* Dump the loop information about loops to the stream FILE,
151 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
152
153 void
154 flow_loops_dump (FILE *file, void (*loop_dump_aux) (const struct loop *, FILE *, int), int verbose)
155 {
156 struct loop *loop;
157
158 if (!current_loops || ! file)
159 return;
160
161 fprintf (file, ";; %d loops found\n", number_of_loops (cfun));
162
163 FOR_EACH_LOOP (loop, LI_INCLUDE_ROOT)
164 {
165 flow_loop_dump (loop, file, loop_dump_aux, verbose);
166 }
167
168 if (verbose)
169 flow_loops_cfg_dump (file);
170 }
171
172 /* Free data allocated for LOOP. */
173
174 void
175 flow_loop_free (struct loop *loop)
176 {
177 struct loop_exit *exit, *next;
178
179 vec_free (loop->superloops);
180
181 /* Break the list of the loop exit records. They will be freed when the
182 corresponding edge is rescanned or removed, and this avoids
183 accessing the (already released) head of the list stored in the
184 loop structure. */
185 for (exit = loop->exits->next; exit != loop->exits; exit = next)
186 {
187 next = exit->next;
188 exit->next = exit;
189 exit->prev = exit;
190 }
191
192 ggc_free (loop->exits);
193 ggc_free (loop);
194 }
195
196 /* Free all the memory allocated for LOOPS. */
197
198 void
199 flow_loops_free (struct loops *loops)
200 {
201 if (loops->larray)
202 {
203 unsigned i;
204 loop_p loop;
205
206 /* Free the loop descriptors. */
207 FOR_EACH_VEC_SAFE_ELT (loops->larray, i, loop)
208 {
209 if (!loop)
210 continue;
211
212 flow_loop_free (loop);
213 }
214
215 vec_free (loops->larray);
216 }
217 }
218
219 /* Find the nodes contained within the LOOP with header HEADER.
220 Return the number of nodes within the loop. */
221
222 int
223 flow_loop_nodes_find (basic_block header, struct loop *loop)
224 {
225 vec<basic_block> stack = vNULL;
226 int num_nodes = 1;
227 edge latch;
228 edge_iterator latch_ei;
229
230 header->loop_father = loop;
231
232 FOR_EACH_EDGE (latch, latch_ei, loop->header->preds)
233 {
234 if (latch->src->loop_father == loop
235 || !dominated_by_p (CDI_DOMINATORS, latch->src, loop->header))
236 continue;
237
238 num_nodes++;
239 stack.safe_push (latch->src);
240 latch->src->loop_father = loop;
241
242 while (!stack.is_empty ())
243 {
244 basic_block node;
245 edge e;
246 edge_iterator ei;
247
248 node = stack.pop ();
249
250 FOR_EACH_EDGE (e, ei, node->preds)
251 {
252 basic_block ancestor = e->src;
253
254 if (ancestor->loop_father != loop)
255 {
256 ancestor->loop_father = loop;
257 num_nodes++;
258 stack.safe_push (ancestor);
259 }
260 }
261 }
262 }
263 stack.release ();
264
265 return num_nodes;
266 }
267
268 /* Records the vector of superloops of the loop LOOP, whose immediate
269 superloop is FATHER. */
270
271 static void
272 establish_preds (struct loop *loop, struct loop *father)
273 {
274 loop_p ploop;
275 unsigned depth = loop_depth (father) + 1;
276 unsigned i;
277
278 loop->superloops = 0;
279 vec_alloc (loop->superloops, depth);
280 FOR_EACH_VEC_SAFE_ELT (father->superloops, i, ploop)
281 loop->superloops->quick_push (ploop);
282 loop->superloops->quick_push (father);
283
284 for (ploop = loop->inner; ploop; ploop = ploop->next)
285 establish_preds (ploop, loop);
286 }
287
288 /* Add LOOP to the loop hierarchy tree where FATHER is father of the
289 added loop. If LOOP has some children, take care of that their
290 pred field will be initialized correctly. */
291
292 void
293 flow_loop_tree_node_add (struct loop *father, struct loop *loop)
294 {
295 loop->next = father->inner;
296 father->inner = loop;
297
298 establish_preds (loop, father);
299 }
300
301 /* Remove LOOP from the loop hierarchy tree. */
302
303 void
304 flow_loop_tree_node_remove (struct loop *loop)
305 {
306 struct loop *prev, *father;
307
308 father = loop_outer (loop);
309
310 /* Remove loop from the list of sons. */
311 if (father->inner == loop)
312 father->inner = loop->next;
313 else
314 {
315 for (prev = father->inner; prev->next != loop; prev = prev->next)
316 continue;
317 prev->next = loop->next;
318 }
319
320 loop->superloops = NULL;
321 }
322
323 /* Allocates and returns new loop structure. */
324
325 struct loop *
326 alloc_loop (void)
327 {
328 struct loop *loop = ggc_cleared_alloc<struct loop> ();
329
330 loop->exits = ggc_cleared_alloc<loop_exit> ();
331 loop->exits->next = loop->exits->prev = loop->exits;
332 loop->can_be_parallel = false;
333 loop->nb_iterations_upper_bound = 0;
334 loop->nb_iterations_estimate = 0;
335 return loop;
336 }
337
338 /* Initializes loops structure LOOPS, reserving place for NUM_LOOPS loops
339 (including the root of the loop tree). */
340
341 void
342 init_loops_structure (struct function *fn,
343 struct loops *loops, unsigned num_loops)
344 {
345 struct loop *root;
346
347 memset (loops, 0, sizeof *loops);
348 vec_alloc (loops->larray, num_loops);
349
350 /* Dummy loop containing whole function. */
351 root = alloc_loop ();
352 root->num_nodes = n_basic_blocks_for_fn (fn);
353 root->latch = EXIT_BLOCK_PTR_FOR_FN (fn);
354 root->header = ENTRY_BLOCK_PTR_FOR_FN (fn);
355 ENTRY_BLOCK_PTR_FOR_FN (fn)->loop_father = root;
356 EXIT_BLOCK_PTR_FOR_FN (fn)->loop_father = root;
357
358 loops->larray->quick_push (root);
359 loops->tree_root = root;
360 }
361
362 /* Returns whether HEADER is a loop header. */
363
364 bool
365 bb_loop_header_p (basic_block header)
366 {
367 edge_iterator ei;
368 edge e;
369
370 /* If we have an abnormal predecessor, do not consider the
371 loop (not worth the problems). */
372 if (bb_has_abnormal_pred (header))
373 return false;
374
375 /* Look for back edges where a predecessor is dominated
376 by this block. A natural loop has a single entry
377 node (header) that dominates all the nodes in the
378 loop. It also has single back edge to the header
379 from a latch node. */
380 FOR_EACH_EDGE (e, ei, header->preds)
381 {
382 basic_block latch = e->src;
383 if (latch != ENTRY_BLOCK_PTR_FOR_FN (cfun)
384 && dominated_by_p (CDI_DOMINATORS, latch, header))
385 return true;
386 }
387
388 return false;
389 }
390
391 /* Return the latch block for this header block, if it has just a single one.
392 Otherwise, return NULL. */
393
394 basic_block
395 find_single_latch (struct loop* loop)
396 {
397 basic_block header = loop->header;
398 edge_iterator ei;
399 edge e;
400 basic_block latch = NULL;
401
402 FOR_EACH_EDGE (e, ei, header->preds)
403 {
404 basic_block cand = e->src;
405 if (!flow_bb_inside_loop_p (loop, cand))
406 continue;
407
408 if (latch != NULL)
409 /* More than one latch edge. */
410 return NULL;
411
412 latch = cand;
413 }
414
415 return latch;
416 }
417
418 /* Find all the natural loops in the function and save in LOOPS structure and
419 recalculate loop_father information in basic block structures.
420 If LOOPS is non-NULL then the loop structures for already recorded loops
421 will be re-used and their number will not change. We assume that no
422 stale loops exist in LOOPS.
423 When LOOPS is NULL it is allocated and re-built from scratch.
424 Return the built LOOPS structure. */
425
426 struct loops *
427 flow_loops_find (struct loops *loops)
428 {
429 bool from_scratch = (loops == NULL);
430 int *rc_order;
431 int b;
432 unsigned i;
433
434 /* Ensure that the dominators are computed. */
435 calculate_dominance_info (CDI_DOMINATORS);
436
437 if (!loops)
438 {
439 loops = ggc_cleared_alloc<struct loops> ();
440 init_loops_structure (cfun, loops, 1);
441 }
442
443 /* Ensure that loop exits were released. */
444 gcc_assert (loops->exits == NULL);
445
446 /* Taking care of this degenerate case makes the rest of
447 this code simpler. */
448 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
449 return loops;
450
451 /* The root loop node contains all basic-blocks. */
452 loops->tree_root->num_nodes = n_basic_blocks_for_fn (cfun);
453
454 /* Compute depth first search order of the CFG so that outer
455 natural loops will be found before inner natural loops. */
456 rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
457 pre_and_rev_post_order_compute (NULL, rc_order, false);
458
459 /* Gather all loop headers in reverse completion order and allocate
460 loop structures for loops that are not already present. */
461 auto_vec<loop_p> larray (loops->larray->length ());
462 for (b = 0; b < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; b++)
463 {
464 basic_block header = BASIC_BLOCK_FOR_FN (cfun, rc_order[b]);
465 if (bb_loop_header_p (header))
466 {
467 struct loop *loop;
468
469 /* The current active loop tree has valid loop-fathers for
470 header blocks. */
471 if (!from_scratch
472 && header->loop_father->header == header)
473 {
474 loop = header->loop_father;
475 /* If we found an existing loop remove it from the
476 loop tree. It is going to be inserted again
477 below. */
478 flow_loop_tree_node_remove (loop);
479 }
480 else
481 {
482 /* Otherwise allocate a new loop structure for the loop. */
483 loop = alloc_loop ();
484 /* ??? We could re-use unused loop slots here. */
485 loop->num = loops->larray->length ();
486 vec_safe_push (loops->larray, loop);
487 loop->header = header;
488
489 if (!from_scratch
490 && dump_file && (dump_flags & TDF_DETAILS))
491 fprintf (dump_file, "flow_loops_find: discovered new "
492 "loop %d with header %d\n",
493 loop->num, header->index);
494 }
495 /* Reset latch, we recompute it below. */
496 loop->latch = NULL;
497 larray.safe_push (loop);
498 }
499
500 /* Make blocks part of the loop root node at start. */
501 header->loop_father = loops->tree_root;
502 }
503
504 free (rc_order);
505
506 /* Now iterate over the loops found, insert them into the loop tree
507 and assign basic-block ownership. */
508 for (i = 0; i < larray.length (); ++i)
509 {
510 struct loop *loop = larray[i];
511 basic_block header = loop->header;
512
513 flow_loop_tree_node_add (header->loop_father, loop);
514 loop->num_nodes = flow_loop_nodes_find (loop->header, loop);
515 loop->latch = find_single_latch (loop);
516 }
517
518 return loops;
519 }
520
521 /* Ratio of frequencies of edges so that one of more latch edges is
522 considered to belong to inner loop with same header. */
523 #define HEAVY_EDGE_RATIO 8
524
525 /* Minimum number of samples for that we apply
526 find_subloop_latch_edge_by_profile heuristics. */
527 #define HEAVY_EDGE_MIN_SAMPLES 10
528
529 /* If the profile info is available, finds an edge in LATCHES that much more
530 frequent than the remaining edges. Returns such an edge, or NULL if we do
531 not find one.
532
533 We do not use guessed profile here, only the measured one. The guessed
534 profile is usually too flat and unreliable for this (and it is mostly based
535 on the loop structure of the program, so it does not make much sense to
536 derive the loop structure from it). */
537
538 static edge
539 find_subloop_latch_edge_by_profile (vec<edge> latches)
540 {
541 unsigned i;
542 edge e, me = NULL;
543 gcov_type mcount = 0, tcount = 0;
544
545 FOR_EACH_VEC_ELT (latches, i, e)
546 {
547 if (e->count > mcount)
548 {
549 me = e;
550 mcount = e->count;
551 }
552 tcount += e->count;
553 }
554
555 if (tcount < HEAVY_EDGE_MIN_SAMPLES
556 || (tcount - mcount) * HEAVY_EDGE_RATIO > tcount)
557 return NULL;
558
559 if (dump_file)
560 fprintf (dump_file,
561 "Found latch edge %d -> %d using profile information.\n",
562 me->src->index, me->dest->index);
563 return me;
564 }
565
566 /* Among LATCHES, guesses a latch edge of LOOP corresponding to subloop, based
567 on the structure of induction variables. Returns this edge, or NULL if we
568 do not find any.
569
570 We are quite conservative, and look just for an obvious simple innermost
571 loop (which is the case where we would lose the most performance by not
572 disambiguating the loop). More precisely, we look for the following
573 situation: The source of the chosen latch edge dominates sources of all
574 the other latch edges. Additionally, the header does not contain a phi node
575 such that the argument from the chosen edge is equal to the argument from
576 another edge. */
577
578 static edge
579 find_subloop_latch_edge_by_ivs (struct loop *loop ATTRIBUTE_UNUSED, vec<edge> latches)
580 {
581 edge e, latch = latches[0];
582 unsigned i;
583 gphi *phi;
584 gphi_iterator psi;
585 tree lop;
586 basic_block bb;
587
588 /* Find the candidate for the latch edge. */
589 for (i = 1; latches.iterate (i, &e); i++)
590 if (dominated_by_p (CDI_DOMINATORS, latch->src, e->src))
591 latch = e;
592
593 /* Verify that it dominates all the latch edges. */
594 FOR_EACH_VEC_ELT (latches, i, e)
595 if (!dominated_by_p (CDI_DOMINATORS, e->src, latch->src))
596 return NULL;
597
598 /* Check for a phi node that would deny that this is a latch edge of
599 a subloop. */
600 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
601 {
602 phi = psi.phi ();
603 lop = PHI_ARG_DEF_FROM_EDGE (phi, latch);
604
605 /* Ignore the values that are not changed inside the subloop. */
606 if (TREE_CODE (lop) != SSA_NAME
607 || SSA_NAME_DEF_STMT (lop) == phi)
608 continue;
609 bb = gimple_bb (SSA_NAME_DEF_STMT (lop));
610 if (!bb || !flow_bb_inside_loop_p (loop, bb))
611 continue;
612
613 FOR_EACH_VEC_ELT (latches, i, e)
614 if (e != latch
615 && PHI_ARG_DEF_FROM_EDGE (phi, e) == lop)
616 return NULL;
617 }
618
619 if (dump_file)
620 fprintf (dump_file,
621 "Found latch edge %d -> %d using iv structure.\n",
622 latch->src->index, latch->dest->index);
623 return latch;
624 }
625
626 /* If we can determine that one of the several latch edges of LOOP behaves
627 as a latch edge of a separate subloop, returns this edge. Otherwise
628 returns NULL. */
629
630 static edge
631 find_subloop_latch_edge (struct loop *loop)
632 {
633 vec<edge> latches = get_loop_latch_edges (loop);
634 edge latch = NULL;
635
636 if (latches.length () > 1)
637 {
638 latch = find_subloop_latch_edge_by_profile (latches);
639
640 if (!latch
641 /* We consider ivs to guess the latch edge only in SSA. Perhaps we
642 should use cfghook for this, but it is hard to imagine it would
643 be useful elsewhere. */
644 && current_ir_type () == IR_GIMPLE)
645 latch = find_subloop_latch_edge_by_ivs (loop, latches);
646 }
647
648 latches.release ();
649 return latch;
650 }
651
652 /* Callback for make_forwarder_block. Returns true if the edge E is marked
653 in the set MFB_REIS_SET. */
654
655 static hash_set<edge> *mfb_reis_set;
656 static bool
657 mfb_redirect_edges_in_set (edge e)
658 {
659 return mfb_reis_set->contains (e);
660 }
661
662 /* Creates a subloop of LOOP with latch edge LATCH. */
663
664 static void
665 form_subloop (struct loop *loop, edge latch)
666 {
667 edge_iterator ei;
668 edge e, new_entry;
669 struct loop *new_loop;
670
671 mfb_reis_set = new hash_set<edge>;
672 FOR_EACH_EDGE (e, ei, loop->header->preds)
673 {
674 if (e != latch)
675 mfb_reis_set->add (e);
676 }
677 new_entry = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
678 NULL);
679 delete mfb_reis_set;
680
681 loop->header = new_entry->src;
682
683 /* Find the blocks and subloops that belong to the new loop, and add it to
684 the appropriate place in the loop tree. */
685 new_loop = alloc_loop ();
686 new_loop->header = new_entry->dest;
687 new_loop->latch = latch->src;
688 add_loop (new_loop, loop);
689 }
690
691 /* Make all the latch edges of LOOP to go to a single forwarder block --
692 a new latch of LOOP. */
693
694 static void
695 merge_latch_edges (struct loop *loop)
696 {
697 vec<edge> latches = get_loop_latch_edges (loop);
698 edge latch, e;
699 unsigned i;
700
701 gcc_assert (latches.length () > 0);
702
703 if (latches.length () == 1)
704 loop->latch = latches[0]->src;
705 else
706 {
707 if (dump_file)
708 fprintf (dump_file, "Merged latch edges of loop %d\n", loop->num);
709
710 mfb_reis_set = new hash_set<edge>;
711 FOR_EACH_VEC_ELT (latches, i, e)
712 mfb_reis_set->add (e);
713 latch = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
714 NULL);
715 delete mfb_reis_set;
716
717 loop->header = latch->dest;
718 loop->latch = latch->src;
719 }
720
721 latches.release ();
722 }
723
724 /* LOOP may have several latch edges. Transform it into (possibly several)
725 loops with single latch edge. */
726
727 static void
728 disambiguate_multiple_latches (struct loop *loop)
729 {
730 edge e;
731
732 /* We eliminate the multiple latches by splitting the header to the forwarder
733 block F and the rest R, and redirecting the edges. There are two cases:
734
735 1) If there is a latch edge E that corresponds to a subloop (we guess
736 that based on profile -- if it is taken much more often than the
737 remaining edges; and on trees, using the information about induction
738 variables of the loops), we redirect E to R, all the remaining edges to
739 F, then rescan the loops and try again for the outer loop.
740 2) If there is no such edge, we redirect all latch edges to F, and the
741 entry edges to R, thus making F the single latch of the loop. */
742
743 if (dump_file)
744 fprintf (dump_file, "Disambiguating loop %d with multiple latches\n",
745 loop->num);
746
747 /* During latch merging, we may need to redirect the entry edges to a new
748 block. This would cause problems if the entry edge was the one from the
749 entry block. To avoid having to handle this case specially, split
750 such entry edge. */
751 e = find_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), loop->header);
752 if (e)
753 split_edge (e);
754
755 while (1)
756 {
757 e = find_subloop_latch_edge (loop);
758 if (!e)
759 break;
760
761 form_subloop (loop, e);
762 }
763
764 merge_latch_edges (loop);
765 }
766
767 /* Split loops with multiple latch edges. */
768
769 void
770 disambiguate_loops_with_multiple_latches (void)
771 {
772 struct loop *loop;
773
774 FOR_EACH_LOOP (loop, 0)
775 {
776 if (!loop->latch)
777 disambiguate_multiple_latches (loop);
778 }
779 }
780
781 /* Return nonzero if basic block BB belongs to LOOP. */
782 bool
783 flow_bb_inside_loop_p (const struct loop *loop, const_basic_block bb)
784 {
785 struct loop *source_loop;
786
787 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun)
788 || bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
789 return 0;
790
791 source_loop = bb->loop_father;
792 return loop == source_loop || flow_loop_nested_p (loop, source_loop);
793 }
794
795 /* Enumeration predicate for get_loop_body_with_size. */
796 static bool
797 glb_enum_p (const_basic_block bb, const void *glb_loop)
798 {
799 const struct loop *const loop = (const struct loop *) glb_loop;
800 return (bb != loop->header
801 && dominated_by_p (CDI_DOMINATORS, bb, loop->header));
802 }
803
804 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
805 order against direction of edges from latch. Specially, if
806 header != latch, latch is the 1-st block. LOOP cannot be the fake
807 loop tree root, and its size must be at most MAX_SIZE. The blocks
808 in the LOOP body are stored to BODY, and the size of the LOOP is
809 returned. */
810
811 unsigned
812 get_loop_body_with_size (const struct loop *loop, basic_block *body,
813 unsigned max_size)
814 {
815 return dfs_enumerate_from (loop->header, 1, glb_enum_p,
816 body, max_size, loop);
817 }
818
819 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
820 order against direction of edges from latch. Specially, if
821 header != latch, latch is the 1-st block. */
822
823 basic_block *
824 get_loop_body (const struct loop *loop)
825 {
826 basic_block *body, bb;
827 unsigned tv = 0;
828
829 gcc_assert (loop->num_nodes);
830
831 body = XNEWVEC (basic_block, loop->num_nodes);
832
833 if (loop->latch == EXIT_BLOCK_PTR_FOR_FN (cfun))
834 {
835 /* There may be blocks unreachable from EXIT_BLOCK, hence we need to
836 special-case the fake loop that contains the whole function. */
837 gcc_assert (loop->num_nodes == (unsigned) n_basic_blocks_for_fn (cfun));
838 body[tv++] = loop->header;
839 body[tv++] = EXIT_BLOCK_PTR_FOR_FN (cfun);
840 FOR_EACH_BB_FN (bb, cfun)
841 body[tv++] = bb;
842 }
843 else
844 tv = get_loop_body_with_size (loop, body, loop->num_nodes);
845
846 gcc_assert (tv == loop->num_nodes);
847 return body;
848 }
849
850 /* Fills dominance descendants inside LOOP of the basic block BB into
851 array TOVISIT from index *TV. */
852
853 static void
854 fill_sons_in_loop (const struct loop *loop, basic_block bb,
855 basic_block *tovisit, int *tv)
856 {
857 basic_block son, postpone = NULL;
858
859 tovisit[(*tv)++] = bb;
860 for (son = first_dom_son (CDI_DOMINATORS, bb);
861 son;
862 son = next_dom_son (CDI_DOMINATORS, son))
863 {
864 if (!flow_bb_inside_loop_p (loop, son))
865 continue;
866
867 if (dominated_by_p (CDI_DOMINATORS, loop->latch, son))
868 {
869 postpone = son;
870 continue;
871 }
872 fill_sons_in_loop (loop, son, tovisit, tv);
873 }
874
875 if (postpone)
876 fill_sons_in_loop (loop, postpone, tovisit, tv);
877 }
878
879 /* Gets body of a LOOP (that must be different from the outermost loop)
880 sorted by dominance relation. Additionally, if a basic block s dominates
881 the latch, then only blocks dominated by s are be after it. */
882
883 basic_block *
884 get_loop_body_in_dom_order (const struct loop *loop)
885 {
886 basic_block *tovisit;
887 int tv;
888
889 gcc_assert (loop->num_nodes);
890
891 tovisit = XNEWVEC (basic_block, loop->num_nodes);
892
893 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
894
895 tv = 0;
896 fill_sons_in_loop (loop, loop->header, tovisit, &tv);
897
898 gcc_assert (tv == (int) loop->num_nodes);
899
900 return tovisit;
901 }
902
903 /* Gets body of a LOOP sorted via provided BB_COMPARATOR. */
904
905 basic_block *
906 get_loop_body_in_custom_order (const struct loop *loop,
907 int (*bb_comparator) (const void *, const void *))
908 {
909 basic_block *bbs = get_loop_body (loop);
910
911 qsort (bbs, loop->num_nodes, sizeof (basic_block), bb_comparator);
912
913 return bbs;
914 }
915
916 /* Get body of a LOOP in breadth first sort order. */
917
918 basic_block *
919 get_loop_body_in_bfs_order (const struct loop *loop)
920 {
921 basic_block *blocks;
922 basic_block bb;
923 bitmap visited;
924 unsigned int i = 1;
925 unsigned int vc = 0;
926
927 gcc_assert (loop->num_nodes);
928 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
929
930 blocks = XNEWVEC (basic_block, loop->num_nodes);
931 visited = BITMAP_ALLOC (NULL);
932 blocks[0] = loop->header;
933 bitmap_set_bit (visited, loop->header->index);
934 while (i < loop->num_nodes)
935 {
936 edge e;
937 edge_iterator ei;
938 gcc_assert (i > vc);
939 bb = blocks[vc++];
940
941 FOR_EACH_EDGE (e, ei, bb->succs)
942 {
943 if (flow_bb_inside_loop_p (loop, e->dest))
944 {
945 /* This bb is now visited. */
946 if (bitmap_set_bit (visited, e->dest->index))
947 blocks[i++] = e->dest;
948 }
949 }
950 }
951
952 BITMAP_FREE (visited);
953 return blocks;
954 }
955
956 /* Hash function for struct loop_exit. */
957
958 hashval_t
959 loop_exit_hasher::hash (loop_exit *exit)
960 {
961 return htab_hash_pointer (exit->e);
962 }
963
964 /* Equality function for struct loop_exit. Compares with edge. */
965
966 bool
967 loop_exit_hasher::equal (loop_exit *exit, edge e)
968 {
969 return exit->e == e;
970 }
971
972 /* Frees the list of loop exit descriptions EX. */
973
974 void
975 loop_exit_hasher::remove (loop_exit *exit)
976 {
977 loop_exit *next;
978 for (; exit; exit = next)
979 {
980 next = exit->next_e;
981
982 exit->next->prev = exit->prev;
983 exit->prev->next = exit->next;
984
985 ggc_free (exit);
986 }
987 }
988
989 /* Returns the list of records for E as an exit of a loop. */
990
991 static struct loop_exit *
992 get_exit_descriptions (edge e)
993 {
994 return current_loops->exits->find_with_hash (e, htab_hash_pointer (e));
995 }
996
997 /* Updates the lists of loop exits in that E appears.
998 If REMOVED is true, E is being removed, and we
999 just remove it from the lists of exits.
1000 If NEW_EDGE is true and E is not a loop exit, we
1001 do not try to remove it from loop exit lists. */
1002
1003 void
1004 rescan_loop_exit (edge e, bool new_edge, bool removed)
1005 {
1006 struct loop_exit *exits = NULL, *exit;
1007 struct loop *aloop, *cloop;
1008
1009 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1010 return;
1011
1012 if (!removed
1013 && e->src->loop_father != NULL
1014 && e->dest->loop_father != NULL
1015 && !flow_bb_inside_loop_p (e->src->loop_father, e->dest))
1016 {
1017 cloop = find_common_loop (e->src->loop_father, e->dest->loop_father);
1018 for (aloop = e->src->loop_father;
1019 aloop != cloop;
1020 aloop = loop_outer (aloop))
1021 {
1022 exit = ggc_alloc<loop_exit> ();
1023 exit->e = e;
1024
1025 exit->next = aloop->exits->next;
1026 exit->prev = aloop->exits;
1027 exit->next->prev = exit;
1028 exit->prev->next = exit;
1029
1030 exit->next_e = exits;
1031 exits = exit;
1032 }
1033 }
1034
1035 if (!exits && new_edge)
1036 return;
1037
1038 loop_exit **slot
1039 = current_loops->exits->find_slot_with_hash (e, htab_hash_pointer (e),
1040 exits ? INSERT : NO_INSERT);
1041 if (!slot)
1042 return;
1043
1044 if (exits)
1045 {
1046 if (*slot)
1047 loop_exit_hasher::remove (*slot);
1048 *slot = exits;
1049 }
1050 else
1051 current_loops->exits->clear_slot (slot);
1052 }
1053
1054 /* For each loop, record list of exit edges, and start maintaining these
1055 lists. */
1056
1057 void
1058 record_loop_exits (void)
1059 {
1060 basic_block bb;
1061 edge_iterator ei;
1062 edge e;
1063
1064 if (!current_loops)
1065 return;
1066
1067 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1068 return;
1069 loops_state_set (LOOPS_HAVE_RECORDED_EXITS);
1070
1071 gcc_assert (current_loops->exits == NULL);
1072 current_loops->exits
1073 = hash_table<loop_exit_hasher>::create_ggc (2 * number_of_loops (cfun));
1074
1075 FOR_EACH_BB_FN (bb, cfun)
1076 {
1077 FOR_EACH_EDGE (e, ei, bb->succs)
1078 {
1079 rescan_loop_exit (e, true, false);
1080 }
1081 }
1082 }
1083
1084 /* Dumps information about the exit in *SLOT to FILE.
1085 Callback for htab_traverse. */
1086
1087 int
1088 dump_recorded_exit (loop_exit **slot, FILE *file)
1089 {
1090 struct loop_exit *exit = *slot;
1091 unsigned n = 0;
1092 edge e = exit->e;
1093
1094 for (; exit != NULL; exit = exit->next_e)
1095 n++;
1096
1097 fprintf (file, "Edge %d->%d exits %u loops\n",
1098 e->src->index, e->dest->index, n);
1099
1100 return 1;
1101 }
1102
1103 /* Dumps the recorded exits of loops to FILE. */
1104
1105 extern void dump_recorded_exits (FILE *);
1106 void
1107 dump_recorded_exits (FILE *file)
1108 {
1109 if (!current_loops->exits)
1110 return;
1111 current_loops->exits->traverse<FILE *, dump_recorded_exit> (file);
1112 }
1113
1114 /* Releases lists of loop exits. */
1115
1116 void
1117 release_recorded_exits (function *fn)
1118 {
1119 gcc_assert (loops_state_satisfies_p (fn, LOOPS_HAVE_RECORDED_EXITS));
1120 loops_for_fn (fn)->exits->empty ();
1121 loops_for_fn (fn)->exits = NULL;
1122 loops_state_clear (fn, LOOPS_HAVE_RECORDED_EXITS);
1123 }
1124
1125 /* Returns the list of the exit edges of a LOOP. */
1126
1127 vec<edge>
1128 get_loop_exit_edges (const struct loop *loop)
1129 {
1130 vec<edge> edges = vNULL;
1131 edge e;
1132 unsigned i;
1133 basic_block *body;
1134 edge_iterator ei;
1135 struct loop_exit *exit;
1136
1137 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
1138
1139 /* If we maintain the lists of exits, use them. Otherwise we must
1140 scan the body of the loop. */
1141 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1142 {
1143 for (exit = loop->exits->next; exit->e; exit = exit->next)
1144 edges.safe_push (exit->e);
1145 }
1146 else
1147 {
1148 body = get_loop_body (loop);
1149 for (i = 0; i < loop->num_nodes; i++)
1150 FOR_EACH_EDGE (e, ei, body[i]->succs)
1151 {
1152 if (!flow_bb_inside_loop_p (loop, e->dest))
1153 edges.safe_push (e);
1154 }
1155 free (body);
1156 }
1157
1158 return edges;
1159 }
1160
1161 /* Counts the number of conditional branches inside LOOP. */
1162
1163 unsigned
1164 num_loop_branches (const struct loop *loop)
1165 {
1166 unsigned i, n;
1167 basic_block * body;
1168
1169 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
1170
1171 body = get_loop_body (loop);
1172 n = 0;
1173 for (i = 0; i < loop->num_nodes; i++)
1174 if (EDGE_COUNT (body[i]->succs) >= 2)
1175 n++;
1176 free (body);
1177
1178 return n;
1179 }
1180
1181 /* Adds basic block BB to LOOP. */
1182 void
1183 add_bb_to_loop (basic_block bb, struct loop *loop)
1184 {
1185 unsigned i;
1186 loop_p ploop;
1187 edge_iterator ei;
1188 edge e;
1189
1190 gcc_assert (bb->loop_father == NULL);
1191 bb->loop_father = loop;
1192 loop->num_nodes++;
1193 FOR_EACH_VEC_SAFE_ELT (loop->superloops, i, ploop)
1194 ploop->num_nodes++;
1195
1196 FOR_EACH_EDGE (e, ei, bb->succs)
1197 {
1198 rescan_loop_exit (e, true, false);
1199 }
1200 FOR_EACH_EDGE (e, ei, bb->preds)
1201 {
1202 rescan_loop_exit (e, true, false);
1203 }
1204 }
1205
1206 /* Remove basic block BB from loops. */
1207 void
1208 remove_bb_from_loops (basic_block bb)
1209 {
1210 unsigned i;
1211 struct loop *loop = bb->loop_father;
1212 loop_p ploop;
1213 edge_iterator ei;
1214 edge e;
1215
1216 gcc_assert (loop != NULL);
1217 loop->num_nodes--;
1218 FOR_EACH_VEC_SAFE_ELT (loop->superloops, i, ploop)
1219 ploop->num_nodes--;
1220 bb->loop_father = NULL;
1221
1222 FOR_EACH_EDGE (e, ei, bb->succs)
1223 {
1224 rescan_loop_exit (e, false, true);
1225 }
1226 FOR_EACH_EDGE (e, ei, bb->preds)
1227 {
1228 rescan_loop_exit (e, false, true);
1229 }
1230 }
1231
1232 /* Finds nearest common ancestor in loop tree for given loops. */
1233 struct loop *
1234 find_common_loop (struct loop *loop_s, struct loop *loop_d)
1235 {
1236 unsigned sdepth, ddepth;
1237
1238 if (!loop_s) return loop_d;
1239 if (!loop_d) return loop_s;
1240
1241 sdepth = loop_depth (loop_s);
1242 ddepth = loop_depth (loop_d);
1243
1244 if (sdepth < ddepth)
1245 loop_d = (*loop_d->superloops)[sdepth];
1246 else if (sdepth > ddepth)
1247 loop_s = (*loop_s->superloops)[ddepth];
1248
1249 while (loop_s != loop_d)
1250 {
1251 loop_s = loop_outer (loop_s);
1252 loop_d = loop_outer (loop_d);
1253 }
1254 return loop_s;
1255 }
1256
1257 /* Removes LOOP from structures and frees its data. */
1258
1259 void
1260 delete_loop (struct loop *loop)
1261 {
1262 /* Remove the loop from structure. */
1263 flow_loop_tree_node_remove (loop);
1264
1265 /* Remove loop from loops array. */
1266 (*current_loops->larray)[loop->num] = NULL;
1267
1268 /* Free loop data. */
1269 flow_loop_free (loop);
1270 }
1271
1272 /* Cancels the LOOP; it must be innermost one. */
1273
1274 static void
1275 cancel_loop (struct loop *loop)
1276 {
1277 basic_block *bbs;
1278 unsigned i;
1279 struct loop *outer = loop_outer (loop);
1280
1281 gcc_assert (!loop->inner);
1282
1283 /* Move blocks up one level (they should be removed as soon as possible). */
1284 bbs = get_loop_body (loop);
1285 for (i = 0; i < loop->num_nodes; i++)
1286 bbs[i]->loop_father = outer;
1287
1288 free (bbs);
1289 delete_loop (loop);
1290 }
1291
1292 /* Cancels LOOP and all its subloops. */
1293 void
1294 cancel_loop_tree (struct loop *loop)
1295 {
1296 while (loop->inner)
1297 cancel_loop_tree (loop->inner);
1298 cancel_loop (loop);
1299 }
1300
1301 /* Checks that information about loops is correct
1302 -- sizes of loops are all right
1303 -- results of get_loop_body really belong to the loop
1304 -- loop header have just single entry edge and single latch edge
1305 -- loop latches have only single successor that is header of their loop
1306 -- irreducible loops are correctly marked
1307 -- the cached loop depth and loop father of each bb is correct
1308 */
1309 DEBUG_FUNCTION void
1310 verify_loop_structure (void)
1311 {
1312 unsigned *sizes, i, j;
1313 sbitmap irreds;
1314 basic_block bb, *bbs;
1315 struct loop *loop;
1316 int err = 0;
1317 edge e;
1318 unsigned num = number_of_loops (cfun);
1319 struct loop_exit *exit, *mexit;
1320 bool dom_available = dom_info_available_p (CDI_DOMINATORS);
1321 sbitmap visited;
1322
1323 if (loops_state_satisfies_p (LOOPS_NEED_FIXUP))
1324 {
1325 error ("loop verification on loop tree that needs fixup");
1326 err = 1;
1327 }
1328
1329 /* We need up-to-date dominators, compute or verify them. */
1330 if (!dom_available)
1331 calculate_dominance_info (CDI_DOMINATORS);
1332 else
1333 verify_dominators (CDI_DOMINATORS);
1334
1335 /* Check the loop tree root. */
1336 if (current_loops->tree_root->header != ENTRY_BLOCK_PTR_FOR_FN (cfun)
1337 || current_loops->tree_root->latch != EXIT_BLOCK_PTR_FOR_FN (cfun)
1338 || (current_loops->tree_root->num_nodes
1339 != (unsigned) n_basic_blocks_for_fn (cfun)))
1340 {
1341 error ("corrupt loop tree root");
1342 err = 1;
1343 }
1344
1345 /* Check the headers. */
1346 FOR_EACH_BB_FN (bb, cfun)
1347 if (bb_loop_header_p (bb))
1348 {
1349 if (bb->loop_father->header == NULL)
1350 {
1351 error ("loop with header %d marked for removal", bb->index);
1352 err = 1;
1353 }
1354 else if (bb->loop_father->header != bb)
1355 {
1356 error ("loop with header %d not in loop tree", bb->index);
1357 err = 1;
1358 }
1359 }
1360 else if (bb->loop_father->header == bb)
1361 {
1362 error ("non-loop with header %d not marked for removal", bb->index);
1363 err = 1;
1364 }
1365
1366 /* Check the recorded loop father and sizes of loops. */
1367 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
1368 bitmap_clear (visited);
1369 bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
1370 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
1371 {
1372 unsigned n;
1373
1374 if (loop->header == NULL)
1375 {
1376 error ("removed loop %d in loop tree", loop->num);
1377 err = 1;
1378 continue;
1379 }
1380
1381 n = get_loop_body_with_size (loop, bbs, n_basic_blocks_for_fn (cfun));
1382 if (loop->num_nodes != n)
1383 {
1384 error ("size of loop %d should be %d, not %d",
1385 loop->num, n, loop->num_nodes);
1386 err = 1;
1387 }
1388
1389 for (j = 0; j < n; j++)
1390 {
1391 bb = bbs[j];
1392
1393 if (!flow_bb_inside_loop_p (loop, bb))
1394 {
1395 error ("bb %d does not belong to loop %d",
1396 bb->index, loop->num);
1397 err = 1;
1398 }
1399
1400 /* Ignore this block if it is in an inner loop. */
1401 if (bitmap_bit_p (visited, bb->index))
1402 continue;
1403 bitmap_set_bit (visited, bb->index);
1404
1405 if (bb->loop_father != loop)
1406 {
1407 error ("bb %d has father loop %d, should be loop %d",
1408 bb->index, bb->loop_father->num, loop->num);
1409 err = 1;
1410 }
1411 }
1412 }
1413 free (bbs);
1414 sbitmap_free (visited);
1415
1416 /* Check headers and latches. */
1417 FOR_EACH_LOOP (loop, 0)
1418 {
1419 i = loop->num;
1420 if (loop->header == NULL)
1421 continue;
1422 if (!bb_loop_header_p (loop->header))
1423 {
1424 error ("loop %d%'s header is not a loop header", i);
1425 err = 1;
1426 }
1427 if (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS)
1428 && EDGE_COUNT (loop->header->preds) != 2)
1429 {
1430 error ("loop %d%'s header does not have exactly 2 entries", i);
1431 err = 1;
1432 }
1433 if (loop->latch)
1434 {
1435 if (!find_edge (loop->latch, loop->header))
1436 {
1437 error ("loop %d%'s latch does not have an edge to its header", i);
1438 err = 1;
1439 }
1440 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, loop->header))
1441 {
1442 error ("loop %d%'s latch is not dominated by its header", i);
1443 err = 1;
1444 }
1445 if (find_single_latch (loop) == NULL)
1446 {
1447 error ("loop %d%'s latch is is not the only latch", i);
1448 err = 1;
1449 }
1450 }
1451 else
1452 {
1453 if (loops_state_satisfies_p (LOOPS_MAY_HAVE_MULTIPLE_LATCHES))
1454 {
1455 if (find_single_latch (loop) != NULL)
1456 {
1457 error ("loop %d%'s latch is missing", i);
1458 err = 1;
1459 }
1460 }
1461 else
1462 {
1463 error ("loop %d%'s latch is missing, and loops may not have"
1464 " multiple latches", i);
1465 err = 1;
1466 }
1467 }
1468 if (loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES))
1469 {
1470 if (!single_succ_p (loop->latch))
1471 {
1472 error ("loop %d%'s latch does not have exactly 1 successor", i);
1473 err = 1;
1474 }
1475 if (single_succ (loop->latch) != loop->header)
1476 {
1477 error ("loop %d%'s latch does not have header as successor", i);
1478 err = 1;
1479 }
1480 if (loop->latch->loop_father != loop)
1481 {
1482 error ("loop %d%'s latch does not belong directly to it", i);
1483 err = 1;
1484 }
1485 }
1486 if (loop->header->loop_father != loop)
1487 {
1488 error ("loop %d%'s header does not belong directly to it", i);
1489 err = 1;
1490 }
1491 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS)
1492 && (loop_latch_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP))
1493 {
1494 error ("loop %d%'s latch is marked as part of irreducible region", i);
1495 err = 1;
1496 }
1497 }
1498
1499 /* Check irreducible loops. */
1500 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
1501 {
1502 /* Record old info. */
1503 irreds = sbitmap_alloc (last_basic_block_for_fn (cfun));
1504 FOR_EACH_BB_FN (bb, cfun)
1505 {
1506 edge_iterator ei;
1507 if (bb->flags & BB_IRREDUCIBLE_LOOP)
1508 bitmap_set_bit (irreds, bb->index);
1509 else
1510 bitmap_clear_bit (irreds, bb->index);
1511 FOR_EACH_EDGE (e, ei, bb->succs)
1512 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
1513 e->flags |= EDGE_ALL_FLAGS + 1;
1514 }
1515
1516 /* Recount it. */
1517 mark_irreducible_loops ();
1518
1519 /* Compare. */
1520 FOR_EACH_BB_FN (bb, cfun)
1521 {
1522 edge_iterator ei;
1523
1524 if ((bb->flags & BB_IRREDUCIBLE_LOOP)
1525 && !bitmap_bit_p (irreds, bb->index))
1526 {
1527 error ("basic block %d should be marked irreducible", bb->index);
1528 err = 1;
1529 }
1530 else if (!(bb->flags & BB_IRREDUCIBLE_LOOP)
1531 && bitmap_bit_p (irreds, bb->index))
1532 {
1533 error ("basic block %d should not be marked irreducible", bb->index);
1534 err = 1;
1535 }
1536 FOR_EACH_EDGE (e, ei, bb->succs)
1537 {
1538 if ((e->flags & EDGE_IRREDUCIBLE_LOOP)
1539 && !(e->flags & (EDGE_ALL_FLAGS + 1)))
1540 {
1541 error ("edge from %d to %d should be marked irreducible",
1542 e->src->index, e->dest->index);
1543 err = 1;
1544 }
1545 else if (!(e->flags & EDGE_IRREDUCIBLE_LOOP)
1546 && (e->flags & (EDGE_ALL_FLAGS + 1)))
1547 {
1548 error ("edge from %d to %d should not be marked irreducible",
1549 e->src->index, e->dest->index);
1550 err = 1;
1551 }
1552 e->flags &= ~(EDGE_ALL_FLAGS + 1);
1553 }
1554 }
1555 free (irreds);
1556 }
1557
1558 /* Check the recorded loop exits. */
1559 FOR_EACH_LOOP (loop, 0)
1560 {
1561 if (!loop->exits || loop->exits->e != NULL)
1562 {
1563 error ("corrupted head of the exits list of loop %d",
1564 loop->num);
1565 err = 1;
1566 }
1567 else
1568 {
1569 /* Check that the list forms a cycle, and all elements except
1570 for the head are nonnull. */
1571 for (mexit = loop->exits, exit = mexit->next, i = 0;
1572 exit->e && exit != mexit;
1573 exit = exit->next)
1574 {
1575 if (i++ & 1)
1576 mexit = mexit->next;
1577 }
1578
1579 if (exit != loop->exits)
1580 {
1581 error ("corrupted exits list of loop %d", loop->num);
1582 err = 1;
1583 }
1584 }
1585
1586 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1587 {
1588 if (loop->exits->next != loop->exits)
1589 {
1590 error ("nonempty exits list of loop %d, but exits are not recorded",
1591 loop->num);
1592 err = 1;
1593 }
1594 }
1595 }
1596
1597 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1598 {
1599 unsigned n_exits = 0, eloops;
1600
1601 sizes = XCNEWVEC (unsigned, num);
1602 memset (sizes, 0, sizeof (unsigned) * num);
1603 FOR_EACH_BB_FN (bb, cfun)
1604 {
1605 edge_iterator ei;
1606 if (bb->loop_father == current_loops->tree_root)
1607 continue;
1608 FOR_EACH_EDGE (e, ei, bb->succs)
1609 {
1610 if (flow_bb_inside_loop_p (bb->loop_father, e->dest))
1611 continue;
1612
1613 n_exits++;
1614 exit = get_exit_descriptions (e);
1615 if (!exit)
1616 {
1617 error ("exit %d->%d not recorded",
1618 e->src->index, e->dest->index);
1619 err = 1;
1620 }
1621 eloops = 0;
1622 for (; exit; exit = exit->next_e)
1623 eloops++;
1624
1625 for (loop = bb->loop_father;
1626 loop != e->dest->loop_father
1627 /* When a loop exit is also an entry edge which
1628 can happen when avoiding CFG manipulations
1629 then the last loop exited is the outer loop
1630 of the loop entered. */
1631 && loop != loop_outer (e->dest->loop_father);
1632 loop = loop_outer (loop))
1633 {
1634 eloops--;
1635 sizes[loop->num]++;
1636 }
1637
1638 if (eloops != 0)
1639 {
1640 error ("wrong list of exited loops for edge %d->%d",
1641 e->src->index, e->dest->index);
1642 err = 1;
1643 }
1644 }
1645 }
1646
1647 if (n_exits != current_loops->exits->elements ())
1648 {
1649 error ("too many loop exits recorded");
1650 err = 1;
1651 }
1652
1653 FOR_EACH_LOOP (loop, 0)
1654 {
1655 eloops = 0;
1656 for (exit = loop->exits->next; exit->e; exit = exit->next)
1657 eloops++;
1658 if (eloops != sizes[loop->num])
1659 {
1660 error ("%d exits recorded for loop %d (having %d exits)",
1661 eloops, loop->num, sizes[loop->num]);
1662 err = 1;
1663 }
1664 }
1665
1666 free (sizes);
1667 }
1668
1669 gcc_assert (!err);
1670
1671 if (!dom_available)
1672 free_dominance_info (CDI_DOMINATORS);
1673 }
1674
1675 /* Returns latch edge of LOOP. */
1676 edge
1677 loop_latch_edge (const struct loop *loop)
1678 {
1679 return find_edge (loop->latch, loop->header);
1680 }
1681
1682 /* Returns preheader edge of LOOP. */
1683 edge
1684 loop_preheader_edge (const struct loop *loop)
1685 {
1686 edge e;
1687 edge_iterator ei;
1688
1689 gcc_assert (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS));
1690
1691 FOR_EACH_EDGE (e, ei, loop->header->preds)
1692 if (e->src != loop->latch)
1693 break;
1694
1695 return e;
1696 }
1697
1698 /* Returns true if E is an exit of LOOP. */
1699
1700 bool
1701 loop_exit_edge_p (const struct loop *loop, const_edge e)
1702 {
1703 return (flow_bb_inside_loop_p (loop, e->src)
1704 && !flow_bb_inside_loop_p (loop, e->dest));
1705 }
1706
1707 /* Returns the single exit edge of LOOP, or NULL if LOOP has either no exit
1708 or more than one exit. If loops do not have the exits recorded, NULL
1709 is returned always. */
1710
1711 edge
1712 single_exit (const struct loop *loop)
1713 {
1714 struct loop_exit *exit = loop->exits->next;
1715
1716 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1717 return NULL;
1718
1719 if (exit->e && exit->next == loop->exits)
1720 return exit->e;
1721 else
1722 return NULL;
1723 }
1724
1725 /* Returns true when BB has an incoming edge exiting LOOP. */
1726
1727 bool
1728 loop_exits_to_bb_p (struct loop *loop, basic_block bb)
1729 {
1730 edge e;
1731 edge_iterator ei;
1732
1733 FOR_EACH_EDGE (e, ei, bb->preds)
1734 if (loop_exit_edge_p (loop, e))
1735 return true;
1736
1737 return false;
1738 }
1739
1740 /* Returns true when BB has an outgoing edge exiting LOOP. */
1741
1742 bool
1743 loop_exits_from_bb_p (struct loop *loop, basic_block bb)
1744 {
1745 edge e;
1746 edge_iterator ei;
1747
1748 FOR_EACH_EDGE (e, ei, bb->succs)
1749 if (loop_exit_edge_p (loop, e))
1750 return true;
1751
1752 return false;
1753 }
1754
1755 /* Return location corresponding to the loop control condition if possible. */
1756
1757 location_t
1758 get_loop_location (struct loop *loop)
1759 {
1760 rtx_insn *insn = NULL;
1761 struct niter_desc *desc = NULL;
1762 edge exit;
1763
1764 /* For a for or while loop, we would like to return the location
1765 of the for or while statement, if possible. To do this, look
1766 for the branch guarding the loop back-edge. */
1767
1768 /* If this is a simple loop with an in_edge, then the loop control
1769 branch is typically at the end of its source. */
1770 desc = get_simple_loop_desc (loop);
1771 if (desc->in_edge)
1772 {
1773 FOR_BB_INSNS_REVERSE (desc->in_edge->src, insn)
1774 {
1775 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1776 return INSN_LOCATION (insn);
1777 }
1778 }
1779 /* If loop has a single exit, then the loop control branch
1780 must be at the end of its source. */
1781 if ((exit = single_exit (loop)))
1782 {
1783 FOR_BB_INSNS_REVERSE (exit->src, insn)
1784 {
1785 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1786 return INSN_LOCATION (insn);
1787 }
1788 }
1789 /* Next check the latch, to see if it is non-empty. */
1790 FOR_BB_INSNS_REVERSE (loop->latch, insn)
1791 {
1792 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1793 return INSN_LOCATION (insn);
1794 }
1795 /* Finally, if none of the above identifies the loop control branch,
1796 return the first location in the loop header. */
1797 FOR_BB_INSNS (loop->header, insn)
1798 {
1799 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1800 return INSN_LOCATION (insn);
1801 }
1802 /* If all else fails, simply return the current function location. */
1803 return DECL_SOURCE_LOCATION (current_function_decl);
1804 }
1805
1806 /* Records that every statement in LOOP is executed I_BOUND times.
1807 REALISTIC is true if I_BOUND is expected to be close to the real number
1808 of iterations. UPPER is true if we are sure the loop iterates at most
1809 I_BOUND times. */
1810
1811 void
1812 record_niter_bound (struct loop *loop, const widest_int &i_bound,
1813 bool realistic, bool upper)
1814 {
1815 /* Update the bounds only when there is no previous estimation, or when the
1816 current estimation is smaller. */
1817 if (upper
1818 && (!loop->any_upper_bound
1819 || wi::ltu_p (i_bound, loop->nb_iterations_upper_bound)))
1820 {
1821 loop->any_upper_bound = true;
1822 loop->nb_iterations_upper_bound = i_bound;
1823 }
1824 if (realistic
1825 && (!loop->any_estimate
1826 || wi::ltu_p (i_bound, loop->nb_iterations_estimate)))
1827 {
1828 loop->any_estimate = true;
1829 loop->nb_iterations_estimate = i_bound;
1830 }
1831
1832 /* If an upper bound is smaller than the realistic estimate of the
1833 number of iterations, use the upper bound instead. */
1834 if (loop->any_upper_bound
1835 && loop->any_estimate
1836 && wi::ltu_p (loop->nb_iterations_upper_bound,
1837 loop->nb_iterations_estimate))
1838 loop->nb_iterations_estimate = loop->nb_iterations_upper_bound;
1839 }
1840
1841 /* Similar to get_estimated_loop_iterations, but returns the estimate only
1842 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
1843 on the number of iterations of LOOP could not be derived, returns -1. */
1844
1845 HOST_WIDE_INT
1846 get_estimated_loop_iterations_int (struct loop *loop)
1847 {
1848 widest_int nit;
1849 HOST_WIDE_INT hwi_nit;
1850
1851 if (!get_estimated_loop_iterations (loop, &nit))
1852 return -1;
1853
1854 if (!wi::fits_shwi_p (nit))
1855 return -1;
1856 hwi_nit = nit.to_shwi ();
1857
1858 return hwi_nit < 0 ? -1 : hwi_nit;
1859 }
1860
1861 /* Returns an upper bound on the number of executions of statements
1862 in the LOOP. For statements before the loop exit, this exceeds
1863 the number of execution of the latch by one. */
1864
1865 HOST_WIDE_INT
1866 max_stmt_executions_int (struct loop *loop)
1867 {
1868 HOST_WIDE_INT nit = get_max_loop_iterations_int (loop);
1869 HOST_WIDE_INT snit;
1870
1871 if (nit == -1)
1872 return -1;
1873
1874 snit = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) nit + 1);
1875
1876 /* If the computation overflows, return -1. */
1877 return snit < 0 ? -1 : snit;
1878 }
1879
1880 /* Sets NIT to the estimated number of executions of the latch of the
1881 LOOP. If we have no reliable estimate, the function returns false, otherwise
1882 returns true. */
1883
1884 bool
1885 get_estimated_loop_iterations (struct loop *loop, widest_int *nit)
1886 {
1887 /* Even if the bound is not recorded, possibly we can derrive one from
1888 profile. */
1889 if (!loop->any_estimate)
1890 {
1891 if (loop->header->count)
1892 {
1893 *nit = gcov_type_to_wide_int
1894 (expected_loop_iterations_unbounded (loop) + 1);
1895 return true;
1896 }
1897 return false;
1898 }
1899
1900 *nit = loop->nb_iterations_estimate;
1901 return true;
1902 }
1903
1904 /* Sets NIT to an upper bound for the maximum number of executions of the
1905 latch of the LOOP. If we have no reliable estimate, the function returns
1906 false, otherwise returns true. */
1907
1908 bool
1909 get_max_loop_iterations (struct loop *loop, widest_int *nit)
1910 {
1911 if (!loop->any_upper_bound)
1912 return false;
1913
1914 *nit = loop->nb_iterations_upper_bound;
1915 return true;
1916 }
1917
1918 /* Similar to get_max_loop_iterations, but returns the estimate only
1919 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
1920 on the number of iterations of LOOP could not be derived, returns -1. */
1921
1922 HOST_WIDE_INT
1923 get_max_loop_iterations_int (struct loop *loop)
1924 {
1925 widest_int nit;
1926 HOST_WIDE_INT hwi_nit;
1927
1928 if (!get_max_loop_iterations (loop, &nit))
1929 return -1;
1930
1931 if (!wi::fits_shwi_p (nit))
1932 return -1;
1933 hwi_nit = nit.to_shwi ();
1934
1935 return hwi_nit < 0 ? -1 : hwi_nit;
1936 }
1937
1938 /* Returns the loop depth of the loop BB belongs to. */
1939
1940 int
1941 bb_loop_depth (const_basic_block bb)
1942 {
1943 return bb->loop_father ? loop_depth (bb->loop_father) : 0;
1944 }
1945
1946 /* Marks LOOP for removal and sets LOOPS_NEED_FIXUP. */
1947
1948 void
1949 mark_loop_for_removal (loop_p loop)
1950 {
1951 if (loop->header == NULL)
1952 return;
1953 loop->former_header = loop->header;
1954 loop->header = NULL;
1955 loop->latch = NULL;
1956 loops_state_set (LOOPS_NEED_FIXUP);
1957 }