tree-ssa-pre.c (do_regular_insertion): Add FIXME markers at points of potentially...
[gcc.git] / gcc / cfgloop.c
1 /* Natural loop discovery code for GNU compiler.
2 Copyright (C) 2000, 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2010
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "function.h"
27 #include "basic-block.h"
28 #include "cfgloop.h"
29 #include "diagnostic-core.h"
30 #include "flags.h"
31 #include "tree.h"
32 #include "tree-flow.h"
33 #include "pointer-set.h"
34 #include "ggc.h"
35 #include "dumpfile.h"
36
37 static void flow_loops_cfg_dump (FILE *);
38 \f
39 /* Dump loop related CFG information. */
40
41 static void
42 flow_loops_cfg_dump (FILE *file)
43 {
44 basic_block bb;
45
46 if (!file)
47 return;
48
49 FOR_EACH_BB (bb)
50 {
51 edge succ;
52 edge_iterator ei;
53
54 fprintf (file, ";; %d succs { ", bb->index);
55 FOR_EACH_EDGE (succ, ei, bb->succs)
56 fprintf (file, "%d ", succ->dest->index);
57 fprintf (file, "}\n");
58 }
59 }
60
61 /* Return nonzero if the nodes of LOOP are a subset of OUTER. */
62
63 bool
64 flow_loop_nested_p (const struct loop *outer, const struct loop *loop)
65 {
66 unsigned odepth = loop_depth (outer);
67
68 return (loop_depth (loop) > odepth
69 && VEC_index (loop_p, loop->superloops, odepth) == outer);
70 }
71
72 /* Returns the loop such that LOOP is nested DEPTH (indexed from zero)
73 loops within LOOP. */
74
75 struct loop *
76 superloop_at_depth (struct loop *loop, unsigned depth)
77 {
78 unsigned ldepth = loop_depth (loop);
79
80 gcc_assert (depth <= ldepth);
81
82 if (depth == ldepth)
83 return loop;
84
85 return VEC_index (loop_p, loop->superloops, depth);
86 }
87
88 /* Returns the list of the latch edges of LOOP. */
89
90 static VEC (edge, heap) *
91 get_loop_latch_edges (const struct loop *loop)
92 {
93 edge_iterator ei;
94 edge e;
95 VEC (edge, heap) *ret = NULL;
96
97 FOR_EACH_EDGE (e, ei, loop->header->preds)
98 {
99 if (dominated_by_p (CDI_DOMINATORS, e->src, loop->header))
100 VEC_safe_push (edge, heap, ret, e);
101 }
102
103 return ret;
104 }
105
106 /* Dump the loop information specified by LOOP to the stream FILE
107 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
108
109 void
110 flow_loop_dump (const struct loop *loop, FILE *file,
111 void (*loop_dump_aux) (const struct loop *, FILE *, int),
112 int verbose)
113 {
114 basic_block *bbs;
115 unsigned i;
116 VEC (edge, heap) *latches;
117 edge e;
118
119 if (! loop || ! loop->header)
120 return;
121
122 fprintf (file, ";;\n;; Loop %d\n", loop->num);
123
124 fprintf (file, ";; header %d, ", loop->header->index);
125 if (loop->latch)
126 fprintf (file, "latch %d\n", loop->latch->index);
127 else
128 {
129 fprintf (file, "multiple latches:");
130 latches = get_loop_latch_edges (loop);
131 FOR_EACH_VEC_ELT (edge, latches, i, e)
132 fprintf (file, " %d", e->src->index);
133 VEC_free (edge, heap, latches);
134 fprintf (file, "\n");
135 }
136
137 fprintf (file, ";; depth %d, outer %ld\n",
138 loop_depth (loop), (long) (loop_outer (loop)
139 ? loop_outer (loop)->num : -1));
140
141 fprintf (file, ";; nodes:");
142 bbs = get_loop_body (loop);
143 for (i = 0; i < loop->num_nodes; i++)
144 fprintf (file, " %d", bbs[i]->index);
145 free (bbs);
146 fprintf (file, "\n");
147
148 if (loop_dump_aux)
149 loop_dump_aux (loop, file, verbose);
150 }
151
152 /* Dump the loop information about loops to the stream FILE,
153 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
154
155 void
156 flow_loops_dump (FILE *file, void (*loop_dump_aux) (const struct loop *, FILE *, int), int verbose)
157 {
158 loop_iterator li;
159 struct loop *loop;
160
161 if (!current_loops || ! file)
162 return;
163
164 fprintf (file, ";; %d loops found\n", number_of_loops ());
165
166 FOR_EACH_LOOP (li, loop, LI_INCLUDE_ROOT)
167 {
168 flow_loop_dump (loop, file, loop_dump_aux, verbose);
169 }
170
171 if (verbose)
172 flow_loops_cfg_dump (file);
173 }
174
175 /* Free data allocated for LOOP. */
176
177 void
178 flow_loop_free (struct loop *loop)
179 {
180 struct loop_exit *exit, *next;
181
182 VEC_free (loop_p, gc, loop->superloops);
183
184 /* Break the list of the loop exit records. They will be freed when the
185 corresponding edge is rescanned or removed, and this avoids
186 accessing the (already released) head of the list stored in the
187 loop structure. */
188 for (exit = loop->exits->next; exit != loop->exits; exit = next)
189 {
190 next = exit->next;
191 exit->next = exit;
192 exit->prev = exit;
193 }
194
195 ggc_free (loop->exits);
196 ggc_free (loop);
197 }
198
199 /* Free all the memory allocated for LOOPS. */
200
201 void
202 flow_loops_free (struct loops *loops)
203 {
204 if (loops->larray)
205 {
206 unsigned i;
207 loop_p loop;
208
209 /* Free the loop descriptors. */
210 FOR_EACH_VEC_ELT (loop_p, loops->larray, i, loop)
211 {
212 if (!loop)
213 continue;
214
215 flow_loop_free (loop);
216 }
217
218 VEC_free (loop_p, gc, loops->larray);
219 }
220 }
221
222 /* Find the nodes contained within the LOOP with header HEADER.
223 Return the number of nodes within the loop. */
224
225 int
226 flow_loop_nodes_find (basic_block header, struct loop *loop)
227 {
228 VEC (basic_block, heap) *stack = NULL;
229 int num_nodes = 1;
230 edge latch;
231 edge_iterator latch_ei;
232
233 header->loop_father = loop;
234
235 FOR_EACH_EDGE (latch, latch_ei, loop->header->preds)
236 {
237 if (latch->src->loop_father == loop
238 || !dominated_by_p (CDI_DOMINATORS, latch->src, loop->header))
239 continue;
240
241 num_nodes++;
242 VEC_safe_push (basic_block, heap, stack, latch->src);
243 latch->src->loop_father = loop;
244
245 while (!VEC_empty (basic_block, stack))
246 {
247 basic_block node;
248 edge e;
249 edge_iterator ei;
250
251 node = VEC_pop (basic_block, stack);
252
253 FOR_EACH_EDGE (e, ei, node->preds)
254 {
255 basic_block ancestor = e->src;
256
257 if (ancestor->loop_father != loop)
258 {
259 ancestor->loop_father = loop;
260 num_nodes++;
261 VEC_safe_push (basic_block, heap, stack, ancestor);
262 }
263 }
264 }
265 }
266 VEC_free (basic_block, heap, stack);
267
268 return num_nodes;
269 }
270
271 /* Records the vector of superloops of the loop LOOP, whose immediate
272 superloop is FATHER. */
273
274 static void
275 establish_preds (struct loop *loop, struct loop *father)
276 {
277 loop_p ploop;
278 unsigned depth = loop_depth (father) + 1;
279 unsigned i;
280
281 VEC_truncate (loop_p, loop->superloops, 0);
282 VEC_reserve (loop_p, gc, loop->superloops, depth);
283 FOR_EACH_VEC_ELT (loop_p, father->superloops, i, ploop)
284 VEC_quick_push (loop_p, loop->superloops, ploop);
285 VEC_quick_push (loop_p, loop->superloops, father);
286
287 for (ploop = loop->inner; ploop; ploop = ploop->next)
288 establish_preds (ploop, loop);
289 }
290
291 /* Add LOOP to the loop hierarchy tree where FATHER is father of the
292 added loop. If LOOP has some children, take care of that their
293 pred field will be initialized correctly. */
294
295 void
296 flow_loop_tree_node_add (struct loop *father, struct loop *loop)
297 {
298 loop->next = father->inner;
299 father->inner = loop;
300
301 establish_preds (loop, father);
302 }
303
304 /* Remove LOOP from the loop hierarchy tree. */
305
306 void
307 flow_loop_tree_node_remove (struct loop *loop)
308 {
309 struct loop *prev, *father;
310
311 father = loop_outer (loop);
312
313 /* Remove loop from the list of sons. */
314 if (father->inner == loop)
315 father->inner = loop->next;
316 else
317 {
318 for (prev = father->inner; prev->next != loop; prev = prev->next)
319 continue;
320 prev->next = loop->next;
321 }
322
323 VEC_truncate (loop_p, loop->superloops, 0);
324 }
325
326 /* Allocates and returns new loop structure. */
327
328 struct loop *
329 alloc_loop (void)
330 {
331 struct loop *loop = ggc_alloc_cleared_loop ();
332
333 loop->exits = ggc_alloc_cleared_loop_exit ();
334 loop->exits->next = loop->exits->prev = loop->exits;
335 loop->can_be_parallel = false;
336
337 return loop;
338 }
339
340 /* Initializes loops structure LOOPS, reserving place for NUM_LOOPS loops
341 (including the root of the loop tree). */
342
343 static void
344 init_loops_structure (struct loops *loops, unsigned num_loops)
345 {
346 struct loop *root;
347
348 memset (loops, 0, sizeof *loops);
349 loops->larray = VEC_alloc (loop_p, gc, num_loops);
350
351 /* Dummy loop containing whole function. */
352 root = alloc_loop ();
353 root->num_nodes = n_basic_blocks;
354 root->latch = EXIT_BLOCK_PTR;
355 root->header = ENTRY_BLOCK_PTR;
356 ENTRY_BLOCK_PTR->loop_father = root;
357 EXIT_BLOCK_PTR->loop_father = root;
358
359 VEC_quick_push (loop_p, loops->larray, root);
360 loops->tree_root = root;
361 }
362
363 /* Find all the natural loops in the function and save in LOOPS structure and
364 recalculate loop_father information in basic block structures.
365 Return the number of natural loops found. */
366
367 int
368 flow_loops_find (struct loops *loops)
369 {
370 int b;
371 int num_loops;
372 edge e;
373 sbitmap headers;
374 int *dfs_order;
375 int *rc_order;
376 basic_block header;
377 basic_block bb;
378
379 /* Ensure that the dominators are computed. */
380 calculate_dominance_info (CDI_DOMINATORS);
381
382 /* Taking care of this degenerate case makes the rest of
383 this code simpler. */
384 if (n_basic_blocks == NUM_FIXED_BLOCKS)
385 {
386 init_loops_structure (loops, 1);
387 return 1;
388 }
389
390 dfs_order = NULL;
391 rc_order = NULL;
392
393 /* Count the number of loop headers. This should be the
394 same as the number of natural loops. */
395 headers = sbitmap_alloc (last_basic_block);
396 sbitmap_zero (headers);
397
398 num_loops = 0;
399 FOR_EACH_BB (header)
400 {
401 edge_iterator ei;
402
403 /* If we have an abnormal predecessor, do not consider the
404 loop (not worth the problems). */
405 if (bb_has_abnormal_pred (header))
406 continue;
407
408 FOR_EACH_EDGE (e, ei, header->preds)
409 {
410 basic_block latch = e->src;
411
412 gcc_assert (!(e->flags & EDGE_ABNORMAL));
413
414 /* Look for back edges where a predecessor is dominated
415 by this block. A natural loop has a single entry
416 node (header) that dominates all the nodes in the
417 loop. It also has single back edge to the header
418 from a latch node. */
419 if (latch != ENTRY_BLOCK_PTR
420 && dominated_by_p (CDI_DOMINATORS, latch, header))
421 {
422 /* Shared headers should be eliminated by now. */
423 SET_BIT (headers, header->index);
424 num_loops++;
425 }
426 }
427 }
428
429 /* Allocate loop structures. */
430 init_loops_structure (loops, num_loops + 1);
431
432 /* Find and record information about all the natural loops
433 in the CFG. */
434 FOR_EACH_BB (bb)
435 bb->loop_father = loops->tree_root;
436
437 if (num_loops)
438 {
439 /* Compute depth first search order of the CFG so that outer
440 natural loops will be found before inner natural loops. */
441 dfs_order = XNEWVEC (int, n_basic_blocks);
442 rc_order = XNEWVEC (int, n_basic_blocks);
443 pre_and_rev_post_order_compute (dfs_order, rc_order, false);
444
445 num_loops = 1;
446
447 for (b = 0; b < n_basic_blocks - NUM_FIXED_BLOCKS; b++)
448 {
449 struct loop *loop;
450 edge_iterator ei;
451
452 /* Search the nodes of the CFG in reverse completion order
453 so that we can find outer loops first. */
454 if (!TEST_BIT (headers, rc_order[b]))
455 continue;
456
457 header = BASIC_BLOCK (rc_order[b]);
458
459 loop = alloc_loop ();
460 VEC_quick_push (loop_p, loops->larray, loop);
461
462 loop->header = header;
463 loop->num = num_loops;
464 num_loops++;
465
466 flow_loop_tree_node_add (header->loop_father, loop);
467 loop->num_nodes = flow_loop_nodes_find (loop->header, loop);
468
469 /* Look for the latch for this header block, if it has just a
470 single one. */
471 FOR_EACH_EDGE (e, ei, header->preds)
472 {
473 basic_block latch = e->src;
474
475 if (flow_bb_inside_loop_p (loop, latch))
476 {
477 if (loop->latch != NULL)
478 {
479 /* More than one latch edge. */
480 loop->latch = NULL;
481 break;
482 }
483 loop->latch = latch;
484 }
485 }
486 }
487
488 free (dfs_order);
489 free (rc_order);
490 }
491
492 sbitmap_free (headers);
493
494 loops->exits = NULL;
495 return VEC_length (loop_p, loops->larray);
496 }
497
498 /* Ratio of frequencies of edges so that one of more latch edges is
499 considered to belong to inner loop with same header. */
500 #define HEAVY_EDGE_RATIO 8
501
502 /* Minimum number of samples for that we apply
503 find_subloop_latch_edge_by_profile heuristics. */
504 #define HEAVY_EDGE_MIN_SAMPLES 10
505
506 /* If the profile info is available, finds an edge in LATCHES that much more
507 frequent than the remaining edges. Returns such an edge, or NULL if we do
508 not find one.
509
510 We do not use guessed profile here, only the measured one. The guessed
511 profile is usually too flat and unreliable for this (and it is mostly based
512 on the loop structure of the program, so it does not make much sense to
513 derive the loop structure from it). */
514
515 static edge
516 find_subloop_latch_edge_by_profile (VEC (edge, heap) *latches)
517 {
518 unsigned i;
519 edge e, me = NULL;
520 gcov_type mcount = 0, tcount = 0;
521
522 FOR_EACH_VEC_ELT (edge, latches, i, e)
523 {
524 if (e->count > mcount)
525 {
526 me = e;
527 mcount = e->count;
528 }
529 tcount += e->count;
530 }
531
532 if (tcount < HEAVY_EDGE_MIN_SAMPLES
533 || (tcount - mcount) * HEAVY_EDGE_RATIO > tcount)
534 return NULL;
535
536 if (dump_file)
537 fprintf (dump_file,
538 "Found latch edge %d -> %d using profile information.\n",
539 me->src->index, me->dest->index);
540 return me;
541 }
542
543 /* Among LATCHES, guesses a latch edge of LOOP corresponding to subloop, based
544 on the structure of induction variables. Returns this edge, or NULL if we
545 do not find any.
546
547 We are quite conservative, and look just for an obvious simple innermost
548 loop (which is the case where we would lose the most performance by not
549 disambiguating the loop). More precisely, we look for the following
550 situation: The source of the chosen latch edge dominates sources of all
551 the other latch edges. Additionally, the header does not contain a phi node
552 such that the argument from the chosen edge is equal to the argument from
553 another edge. */
554
555 static edge
556 find_subloop_latch_edge_by_ivs (struct loop *loop ATTRIBUTE_UNUSED, VEC (edge, heap) *latches)
557 {
558 edge e, latch = VEC_index (edge, latches, 0);
559 unsigned i;
560 gimple phi;
561 gimple_stmt_iterator psi;
562 tree lop;
563 basic_block bb;
564
565 /* Find the candidate for the latch edge. */
566 for (i = 1; VEC_iterate (edge, latches, i, e); i++)
567 if (dominated_by_p (CDI_DOMINATORS, latch->src, e->src))
568 latch = e;
569
570 /* Verify that it dominates all the latch edges. */
571 FOR_EACH_VEC_ELT (edge, latches, i, e)
572 if (!dominated_by_p (CDI_DOMINATORS, e->src, latch->src))
573 return NULL;
574
575 /* Check for a phi node that would deny that this is a latch edge of
576 a subloop. */
577 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
578 {
579 phi = gsi_stmt (psi);
580 lop = PHI_ARG_DEF_FROM_EDGE (phi, latch);
581
582 /* Ignore the values that are not changed inside the subloop. */
583 if (TREE_CODE (lop) != SSA_NAME
584 || SSA_NAME_DEF_STMT (lop) == phi)
585 continue;
586 bb = gimple_bb (SSA_NAME_DEF_STMT (lop));
587 if (!bb || !flow_bb_inside_loop_p (loop, bb))
588 continue;
589
590 FOR_EACH_VEC_ELT (edge, latches, i, e)
591 if (e != latch
592 && PHI_ARG_DEF_FROM_EDGE (phi, e) == lop)
593 return NULL;
594 }
595
596 if (dump_file)
597 fprintf (dump_file,
598 "Found latch edge %d -> %d using iv structure.\n",
599 latch->src->index, latch->dest->index);
600 return latch;
601 }
602
603 /* If we can determine that one of the several latch edges of LOOP behaves
604 as a latch edge of a separate subloop, returns this edge. Otherwise
605 returns NULL. */
606
607 static edge
608 find_subloop_latch_edge (struct loop *loop)
609 {
610 VEC (edge, heap) *latches = get_loop_latch_edges (loop);
611 edge latch = NULL;
612
613 if (VEC_length (edge, latches) > 1)
614 {
615 latch = find_subloop_latch_edge_by_profile (latches);
616
617 if (!latch
618 /* We consider ivs to guess the latch edge only in SSA. Perhaps we
619 should use cfghook for this, but it is hard to imagine it would
620 be useful elsewhere. */
621 && current_ir_type () == IR_GIMPLE)
622 latch = find_subloop_latch_edge_by_ivs (loop, latches);
623 }
624
625 VEC_free (edge, heap, latches);
626 return latch;
627 }
628
629 /* Callback for make_forwarder_block. Returns true if the edge E is marked
630 in the set MFB_REIS_SET. */
631
632 static struct pointer_set_t *mfb_reis_set;
633 static bool
634 mfb_redirect_edges_in_set (edge e)
635 {
636 return pointer_set_contains (mfb_reis_set, e);
637 }
638
639 /* Creates a subloop of LOOP with latch edge LATCH. */
640
641 static void
642 form_subloop (struct loop *loop, edge latch)
643 {
644 edge_iterator ei;
645 edge e, new_entry;
646 struct loop *new_loop;
647
648 mfb_reis_set = pointer_set_create ();
649 FOR_EACH_EDGE (e, ei, loop->header->preds)
650 {
651 if (e != latch)
652 pointer_set_insert (mfb_reis_set, e);
653 }
654 new_entry = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
655 NULL);
656 pointer_set_destroy (mfb_reis_set);
657
658 loop->header = new_entry->src;
659
660 /* Find the blocks and subloops that belong to the new loop, and add it to
661 the appropriate place in the loop tree. */
662 new_loop = alloc_loop ();
663 new_loop->header = new_entry->dest;
664 new_loop->latch = latch->src;
665 add_loop (new_loop, loop);
666 }
667
668 /* Make all the latch edges of LOOP to go to a single forwarder block --
669 a new latch of LOOP. */
670
671 static void
672 merge_latch_edges (struct loop *loop)
673 {
674 VEC (edge, heap) *latches = get_loop_latch_edges (loop);
675 edge latch, e;
676 unsigned i;
677
678 gcc_assert (VEC_length (edge, latches) > 0);
679
680 if (VEC_length (edge, latches) == 1)
681 loop->latch = VEC_index (edge, latches, 0)->src;
682 else
683 {
684 if (dump_file)
685 fprintf (dump_file, "Merged latch edges of loop %d\n", loop->num);
686
687 mfb_reis_set = pointer_set_create ();
688 FOR_EACH_VEC_ELT (edge, latches, i, e)
689 pointer_set_insert (mfb_reis_set, e);
690 latch = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
691 NULL);
692 pointer_set_destroy (mfb_reis_set);
693
694 loop->header = latch->dest;
695 loop->latch = latch->src;
696 }
697
698 VEC_free (edge, heap, latches);
699 }
700
701 /* LOOP may have several latch edges. Transform it into (possibly several)
702 loops with single latch edge. */
703
704 static void
705 disambiguate_multiple_latches (struct loop *loop)
706 {
707 edge e;
708
709 /* We eliminate the multiple latches by splitting the header to the forwarder
710 block F and the rest R, and redirecting the edges. There are two cases:
711
712 1) If there is a latch edge E that corresponds to a subloop (we guess
713 that based on profile -- if it is taken much more often than the
714 remaining edges; and on trees, using the information about induction
715 variables of the loops), we redirect E to R, all the remaining edges to
716 F, then rescan the loops and try again for the outer loop.
717 2) If there is no such edge, we redirect all latch edges to F, and the
718 entry edges to R, thus making F the single latch of the loop. */
719
720 if (dump_file)
721 fprintf (dump_file, "Disambiguating loop %d with multiple latches\n",
722 loop->num);
723
724 /* During latch merging, we may need to redirect the entry edges to a new
725 block. This would cause problems if the entry edge was the one from the
726 entry block. To avoid having to handle this case specially, split
727 such entry edge. */
728 e = find_edge (ENTRY_BLOCK_PTR, loop->header);
729 if (e)
730 split_edge (e);
731
732 while (1)
733 {
734 e = find_subloop_latch_edge (loop);
735 if (!e)
736 break;
737
738 form_subloop (loop, e);
739 }
740
741 merge_latch_edges (loop);
742 }
743
744 /* Split loops with multiple latch edges. */
745
746 void
747 disambiguate_loops_with_multiple_latches (void)
748 {
749 loop_iterator li;
750 struct loop *loop;
751
752 FOR_EACH_LOOP (li, loop, 0)
753 {
754 if (!loop->latch)
755 disambiguate_multiple_latches (loop);
756 }
757 }
758
759 /* Return nonzero if basic block BB belongs to LOOP. */
760 bool
761 flow_bb_inside_loop_p (const struct loop *loop, const_basic_block bb)
762 {
763 struct loop *source_loop;
764
765 if (bb == ENTRY_BLOCK_PTR || bb == EXIT_BLOCK_PTR)
766 return 0;
767
768 source_loop = bb->loop_father;
769 return loop == source_loop || flow_loop_nested_p (loop, source_loop);
770 }
771
772 /* Enumeration predicate for get_loop_body_with_size. */
773 static bool
774 glb_enum_p (const_basic_block bb, const void *glb_loop)
775 {
776 const struct loop *const loop = (const struct loop *) glb_loop;
777 return (bb != loop->header
778 && dominated_by_p (CDI_DOMINATORS, bb, loop->header));
779 }
780
781 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
782 order against direction of edges from latch. Specially, if
783 header != latch, latch is the 1-st block. LOOP cannot be the fake
784 loop tree root, and its size must be at most MAX_SIZE. The blocks
785 in the LOOP body are stored to BODY, and the size of the LOOP is
786 returned. */
787
788 unsigned
789 get_loop_body_with_size (const struct loop *loop, basic_block *body,
790 unsigned max_size)
791 {
792 return dfs_enumerate_from (loop->header, 1, glb_enum_p,
793 body, max_size, loop);
794 }
795
796 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
797 order against direction of edges from latch. Specially, if
798 header != latch, latch is the 1-st block. */
799
800 basic_block *
801 get_loop_body (const struct loop *loop)
802 {
803 basic_block *body, bb;
804 unsigned tv = 0;
805
806 gcc_assert (loop->num_nodes);
807
808 body = XNEWVEC (basic_block, loop->num_nodes);
809
810 if (loop->latch == EXIT_BLOCK_PTR)
811 {
812 /* There may be blocks unreachable from EXIT_BLOCK, hence we need to
813 special-case the fake loop that contains the whole function. */
814 gcc_assert (loop->num_nodes == (unsigned) n_basic_blocks);
815 body[tv++] = loop->header;
816 body[tv++] = EXIT_BLOCK_PTR;
817 FOR_EACH_BB (bb)
818 body[tv++] = bb;
819 }
820 else
821 tv = get_loop_body_with_size (loop, body, loop->num_nodes);
822
823 gcc_assert (tv == loop->num_nodes);
824 return body;
825 }
826
827 /* Fills dominance descendants inside LOOP of the basic block BB into
828 array TOVISIT from index *TV. */
829
830 static void
831 fill_sons_in_loop (const struct loop *loop, basic_block bb,
832 basic_block *tovisit, int *tv)
833 {
834 basic_block son, postpone = NULL;
835
836 tovisit[(*tv)++] = bb;
837 for (son = first_dom_son (CDI_DOMINATORS, bb);
838 son;
839 son = next_dom_son (CDI_DOMINATORS, son))
840 {
841 if (!flow_bb_inside_loop_p (loop, son))
842 continue;
843
844 if (dominated_by_p (CDI_DOMINATORS, loop->latch, son))
845 {
846 postpone = son;
847 continue;
848 }
849 fill_sons_in_loop (loop, son, tovisit, tv);
850 }
851
852 if (postpone)
853 fill_sons_in_loop (loop, postpone, tovisit, tv);
854 }
855
856 /* Gets body of a LOOP (that must be different from the outermost loop)
857 sorted by dominance relation. Additionally, if a basic block s dominates
858 the latch, then only blocks dominated by s are be after it. */
859
860 basic_block *
861 get_loop_body_in_dom_order (const struct loop *loop)
862 {
863 basic_block *tovisit;
864 int tv;
865
866 gcc_assert (loop->num_nodes);
867
868 tovisit = XNEWVEC (basic_block, loop->num_nodes);
869
870 gcc_assert (loop->latch != EXIT_BLOCK_PTR);
871
872 tv = 0;
873 fill_sons_in_loop (loop, loop->header, tovisit, &tv);
874
875 gcc_assert (tv == (int) loop->num_nodes);
876
877 return tovisit;
878 }
879
880 /* Gets body of a LOOP sorted via provided BB_COMPARATOR. */
881
882 basic_block *
883 get_loop_body_in_custom_order (const struct loop *loop,
884 int (*bb_comparator) (const void *, const void *))
885 {
886 basic_block *bbs = get_loop_body (loop);
887
888 qsort (bbs, loop->num_nodes, sizeof (basic_block), bb_comparator);
889
890 return bbs;
891 }
892
893 /* Get body of a LOOP in breadth first sort order. */
894
895 basic_block *
896 get_loop_body_in_bfs_order (const struct loop *loop)
897 {
898 basic_block *blocks;
899 basic_block bb;
900 bitmap visited;
901 unsigned int i = 0;
902 unsigned int vc = 1;
903
904 gcc_assert (loop->num_nodes);
905 gcc_assert (loop->latch != EXIT_BLOCK_PTR);
906
907 blocks = XNEWVEC (basic_block, loop->num_nodes);
908 visited = BITMAP_ALLOC (NULL);
909
910 bb = loop->header;
911 while (i < loop->num_nodes)
912 {
913 edge e;
914 edge_iterator ei;
915
916 if (bitmap_set_bit (visited, bb->index))
917 /* This basic block is now visited */
918 blocks[i++] = bb;
919
920 FOR_EACH_EDGE (e, ei, bb->succs)
921 {
922 if (flow_bb_inside_loop_p (loop, e->dest))
923 {
924 if (bitmap_set_bit (visited, e->dest->index))
925 blocks[i++] = e->dest;
926 }
927 }
928
929 gcc_assert (i >= vc);
930
931 bb = blocks[vc++];
932 }
933
934 BITMAP_FREE (visited);
935 return blocks;
936 }
937
938 /* Hash function for struct loop_exit. */
939
940 static hashval_t
941 loop_exit_hash (const void *ex)
942 {
943 const struct loop_exit *const exit = (const struct loop_exit *) ex;
944
945 return htab_hash_pointer (exit->e);
946 }
947
948 /* Equality function for struct loop_exit. Compares with edge. */
949
950 static int
951 loop_exit_eq (const void *ex, const void *e)
952 {
953 const struct loop_exit *const exit = (const struct loop_exit *) ex;
954
955 return exit->e == e;
956 }
957
958 /* Frees the list of loop exit descriptions EX. */
959
960 static void
961 loop_exit_free (void *ex)
962 {
963 struct loop_exit *exit = (struct loop_exit *) ex, *next;
964
965 for (; exit; exit = next)
966 {
967 next = exit->next_e;
968
969 exit->next->prev = exit->prev;
970 exit->prev->next = exit->next;
971
972 ggc_free (exit);
973 }
974 }
975
976 /* Returns the list of records for E as an exit of a loop. */
977
978 static struct loop_exit *
979 get_exit_descriptions (edge e)
980 {
981 return (struct loop_exit *) htab_find_with_hash (current_loops->exits, e,
982 htab_hash_pointer (e));
983 }
984
985 /* Updates the lists of loop exits in that E appears.
986 If REMOVED is true, E is being removed, and we
987 just remove it from the lists of exits.
988 If NEW_EDGE is true and E is not a loop exit, we
989 do not try to remove it from loop exit lists. */
990
991 void
992 rescan_loop_exit (edge e, bool new_edge, bool removed)
993 {
994 void **slot;
995 struct loop_exit *exits = NULL, *exit;
996 struct loop *aloop, *cloop;
997
998 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
999 return;
1000
1001 if (!removed
1002 && e->src->loop_father != NULL
1003 && e->dest->loop_father != NULL
1004 && !flow_bb_inside_loop_p (e->src->loop_father, e->dest))
1005 {
1006 cloop = find_common_loop (e->src->loop_father, e->dest->loop_father);
1007 for (aloop = e->src->loop_father;
1008 aloop != cloop;
1009 aloop = loop_outer (aloop))
1010 {
1011 exit = ggc_alloc_loop_exit ();
1012 exit->e = e;
1013
1014 exit->next = aloop->exits->next;
1015 exit->prev = aloop->exits;
1016 exit->next->prev = exit;
1017 exit->prev->next = exit;
1018
1019 exit->next_e = exits;
1020 exits = exit;
1021 }
1022 }
1023
1024 if (!exits && new_edge)
1025 return;
1026
1027 slot = htab_find_slot_with_hash (current_loops->exits, e,
1028 htab_hash_pointer (e),
1029 exits ? INSERT : NO_INSERT);
1030 if (!slot)
1031 return;
1032
1033 if (exits)
1034 {
1035 if (*slot)
1036 loop_exit_free (*slot);
1037 *slot = exits;
1038 }
1039 else
1040 htab_clear_slot (current_loops->exits, slot);
1041 }
1042
1043 /* For each loop, record list of exit edges, and start maintaining these
1044 lists. */
1045
1046 void
1047 record_loop_exits (void)
1048 {
1049 basic_block bb;
1050 edge_iterator ei;
1051 edge e;
1052
1053 if (!current_loops)
1054 return;
1055
1056 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1057 return;
1058 loops_state_set (LOOPS_HAVE_RECORDED_EXITS);
1059
1060 gcc_assert (current_loops->exits == NULL);
1061 current_loops->exits = htab_create_ggc (2 * number_of_loops (),
1062 loop_exit_hash, loop_exit_eq,
1063 loop_exit_free);
1064
1065 FOR_EACH_BB (bb)
1066 {
1067 FOR_EACH_EDGE (e, ei, bb->succs)
1068 {
1069 rescan_loop_exit (e, true, false);
1070 }
1071 }
1072 }
1073
1074 /* Dumps information about the exit in *SLOT to FILE.
1075 Callback for htab_traverse. */
1076
1077 static int
1078 dump_recorded_exit (void **slot, void *file)
1079 {
1080 struct loop_exit *exit = (struct loop_exit *) *slot;
1081 unsigned n = 0;
1082 edge e = exit->e;
1083
1084 for (; exit != NULL; exit = exit->next_e)
1085 n++;
1086
1087 fprintf ((FILE*) file, "Edge %d->%d exits %u loops\n",
1088 e->src->index, e->dest->index, n);
1089
1090 return 1;
1091 }
1092
1093 /* Dumps the recorded exits of loops to FILE. */
1094
1095 extern void dump_recorded_exits (FILE *);
1096 void
1097 dump_recorded_exits (FILE *file)
1098 {
1099 if (!current_loops->exits)
1100 return;
1101 htab_traverse (current_loops->exits, dump_recorded_exit, file);
1102 }
1103
1104 /* Releases lists of loop exits. */
1105
1106 void
1107 release_recorded_exits (void)
1108 {
1109 gcc_assert (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS));
1110 htab_delete (current_loops->exits);
1111 current_loops->exits = NULL;
1112 loops_state_clear (LOOPS_HAVE_RECORDED_EXITS);
1113 }
1114
1115 /* Returns the list of the exit edges of a LOOP. */
1116
1117 VEC (edge, heap) *
1118 get_loop_exit_edges (const struct loop *loop)
1119 {
1120 VEC (edge, heap) *edges = NULL;
1121 edge e;
1122 unsigned i;
1123 basic_block *body;
1124 edge_iterator ei;
1125 struct loop_exit *exit;
1126
1127 gcc_assert (loop->latch != EXIT_BLOCK_PTR);
1128
1129 /* If we maintain the lists of exits, use them. Otherwise we must
1130 scan the body of the loop. */
1131 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1132 {
1133 for (exit = loop->exits->next; exit->e; exit = exit->next)
1134 VEC_safe_push (edge, heap, edges, exit->e);
1135 }
1136 else
1137 {
1138 body = get_loop_body (loop);
1139 for (i = 0; i < loop->num_nodes; i++)
1140 FOR_EACH_EDGE (e, ei, body[i]->succs)
1141 {
1142 if (!flow_bb_inside_loop_p (loop, e->dest))
1143 VEC_safe_push (edge, heap, edges, e);
1144 }
1145 free (body);
1146 }
1147
1148 return edges;
1149 }
1150
1151 /* Counts the number of conditional branches inside LOOP. */
1152
1153 unsigned
1154 num_loop_branches (const struct loop *loop)
1155 {
1156 unsigned i, n;
1157 basic_block * body;
1158
1159 gcc_assert (loop->latch != EXIT_BLOCK_PTR);
1160
1161 body = get_loop_body (loop);
1162 n = 0;
1163 for (i = 0; i < loop->num_nodes; i++)
1164 if (EDGE_COUNT (body[i]->succs) >= 2)
1165 n++;
1166 free (body);
1167
1168 return n;
1169 }
1170
1171 /* Adds basic block BB to LOOP. */
1172 void
1173 add_bb_to_loop (basic_block bb, struct loop *loop)
1174 {
1175 unsigned i;
1176 loop_p ploop;
1177 edge_iterator ei;
1178 edge e;
1179
1180 gcc_assert (bb->loop_father == NULL);
1181 bb->loop_father = loop;
1182 loop->num_nodes++;
1183 FOR_EACH_VEC_ELT (loop_p, loop->superloops, i, ploop)
1184 ploop->num_nodes++;
1185
1186 FOR_EACH_EDGE (e, ei, bb->succs)
1187 {
1188 rescan_loop_exit (e, true, false);
1189 }
1190 FOR_EACH_EDGE (e, ei, bb->preds)
1191 {
1192 rescan_loop_exit (e, true, false);
1193 }
1194 }
1195
1196 /* Remove basic block BB from loops. */
1197 void
1198 remove_bb_from_loops (basic_block bb)
1199 {
1200 int i;
1201 struct loop *loop = bb->loop_father;
1202 loop_p ploop;
1203 edge_iterator ei;
1204 edge e;
1205
1206 gcc_assert (loop != NULL);
1207 loop->num_nodes--;
1208 FOR_EACH_VEC_ELT (loop_p, loop->superloops, i, ploop)
1209 ploop->num_nodes--;
1210 bb->loop_father = NULL;
1211
1212 FOR_EACH_EDGE (e, ei, bb->succs)
1213 {
1214 rescan_loop_exit (e, false, true);
1215 }
1216 FOR_EACH_EDGE (e, ei, bb->preds)
1217 {
1218 rescan_loop_exit (e, false, true);
1219 }
1220 }
1221
1222 /* Finds nearest common ancestor in loop tree for given loops. */
1223 struct loop *
1224 find_common_loop (struct loop *loop_s, struct loop *loop_d)
1225 {
1226 unsigned sdepth, ddepth;
1227
1228 if (!loop_s) return loop_d;
1229 if (!loop_d) return loop_s;
1230
1231 sdepth = loop_depth (loop_s);
1232 ddepth = loop_depth (loop_d);
1233
1234 if (sdepth < ddepth)
1235 loop_d = VEC_index (loop_p, loop_d->superloops, sdepth);
1236 else if (sdepth > ddepth)
1237 loop_s = VEC_index (loop_p, loop_s->superloops, ddepth);
1238
1239 while (loop_s != loop_d)
1240 {
1241 loop_s = loop_outer (loop_s);
1242 loop_d = loop_outer (loop_d);
1243 }
1244 return loop_s;
1245 }
1246
1247 /* Removes LOOP from structures and frees its data. */
1248
1249 void
1250 delete_loop (struct loop *loop)
1251 {
1252 /* Remove the loop from structure. */
1253 flow_loop_tree_node_remove (loop);
1254
1255 /* Remove loop from loops array. */
1256 VEC_replace (loop_p, current_loops->larray, loop->num, NULL);
1257
1258 /* Free loop data. */
1259 flow_loop_free (loop);
1260 }
1261
1262 /* Cancels the LOOP; it must be innermost one. */
1263
1264 static void
1265 cancel_loop (struct loop *loop)
1266 {
1267 basic_block *bbs;
1268 unsigned i;
1269 struct loop *outer = loop_outer (loop);
1270
1271 gcc_assert (!loop->inner);
1272
1273 /* Move blocks up one level (they should be removed as soon as possible). */
1274 bbs = get_loop_body (loop);
1275 for (i = 0; i < loop->num_nodes; i++)
1276 bbs[i]->loop_father = outer;
1277
1278 free (bbs);
1279 delete_loop (loop);
1280 }
1281
1282 /* Cancels LOOP and all its subloops. */
1283 void
1284 cancel_loop_tree (struct loop *loop)
1285 {
1286 while (loop->inner)
1287 cancel_loop_tree (loop->inner);
1288 cancel_loop (loop);
1289 }
1290
1291 /* Checks that information about loops is correct
1292 -- sizes of loops are all right
1293 -- results of get_loop_body really belong to the loop
1294 -- loop header have just single entry edge and single latch edge
1295 -- loop latches have only single successor that is header of their loop
1296 -- irreducible loops are correctly marked
1297 */
1298 DEBUG_FUNCTION void
1299 verify_loop_structure (void)
1300 {
1301 unsigned *sizes, i, j;
1302 sbitmap irreds;
1303 basic_block *bbs, bb;
1304 struct loop *loop;
1305 int err = 0;
1306 edge e;
1307 unsigned num = number_of_loops ();
1308 loop_iterator li;
1309 struct loop_exit *exit, *mexit;
1310 bool dom_available = dom_info_available_p (CDI_DOMINATORS);
1311
1312 /* We need up-to-date dominators, compute or verify them. */
1313 if (!dom_available)
1314 calculate_dominance_info (CDI_DOMINATORS);
1315 else
1316 verify_dominators (CDI_DOMINATORS);
1317
1318 /* Check sizes. */
1319 sizes = XCNEWVEC (unsigned, num);
1320 sizes[0] = 2;
1321
1322 FOR_EACH_BB (bb)
1323 for (loop = bb->loop_father; loop; loop = loop_outer (loop))
1324 sizes[loop->num]++;
1325
1326 FOR_EACH_LOOP (li, loop, LI_INCLUDE_ROOT)
1327 {
1328 i = loop->num;
1329
1330 if (loop->num_nodes != sizes[i])
1331 {
1332 error ("size of loop %d should be %d, not %d",
1333 i, sizes[i], loop->num_nodes);
1334 err = 1;
1335 }
1336 }
1337
1338 /* Check get_loop_body. */
1339 FOR_EACH_LOOP (li, loop, 0)
1340 {
1341 bbs = get_loop_body (loop);
1342
1343 for (j = 0; j < loop->num_nodes; j++)
1344 if (!flow_bb_inside_loop_p (loop, bbs[j]))
1345 {
1346 error ("bb %d do not belong to loop %d",
1347 bbs[j]->index, loop->num);
1348 err = 1;
1349 }
1350 free (bbs);
1351 }
1352
1353 /* Check headers and latches. */
1354 FOR_EACH_LOOP (li, loop, 0)
1355 {
1356 i = loop->num;
1357
1358 if (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS)
1359 && EDGE_COUNT (loop->header->preds) != 2)
1360 {
1361 error ("loop %d%'s header does not have exactly 2 entries", i);
1362 err = 1;
1363 }
1364 if (loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES))
1365 {
1366 if (!single_succ_p (loop->latch))
1367 {
1368 error ("loop %d%'s latch does not have exactly 1 successor", i);
1369 err = 1;
1370 }
1371 if (single_succ (loop->latch) != loop->header)
1372 {
1373 error ("loop %d%'s latch does not have header as successor", i);
1374 err = 1;
1375 }
1376 if (loop->latch->loop_father != loop)
1377 {
1378 error ("loop %d%'s latch does not belong directly to it", i);
1379 err = 1;
1380 }
1381 }
1382 if (loop->header->loop_father != loop)
1383 {
1384 error ("loop %d%'s header does not belong directly to it", i);
1385 err = 1;
1386 }
1387 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS)
1388 && (loop_latch_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP))
1389 {
1390 error ("loop %d%'s latch is marked as part of irreducible region", i);
1391 err = 1;
1392 }
1393 }
1394
1395 /* Check irreducible loops. */
1396 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
1397 {
1398 /* Record old info. */
1399 irreds = sbitmap_alloc (last_basic_block);
1400 FOR_EACH_BB (bb)
1401 {
1402 edge_iterator ei;
1403 if (bb->flags & BB_IRREDUCIBLE_LOOP)
1404 SET_BIT (irreds, bb->index);
1405 else
1406 RESET_BIT (irreds, bb->index);
1407 FOR_EACH_EDGE (e, ei, bb->succs)
1408 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
1409 e->flags |= EDGE_ALL_FLAGS + 1;
1410 }
1411
1412 /* Recount it. */
1413 mark_irreducible_loops ();
1414
1415 /* Compare. */
1416 FOR_EACH_BB (bb)
1417 {
1418 edge_iterator ei;
1419
1420 if ((bb->flags & BB_IRREDUCIBLE_LOOP)
1421 && !TEST_BIT (irreds, bb->index))
1422 {
1423 error ("basic block %d should be marked irreducible", bb->index);
1424 err = 1;
1425 }
1426 else if (!(bb->flags & BB_IRREDUCIBLE_LOOP)
1427 && TEST_BIT (irreds, bb->index))
1428 {
1429 error ("basic block %d should not be marked irreducible", bb->index);
1430 err = 1;
1431 }
1432 FOR_EACH_EDGE (e, ei, bb->succs)
1433 {
1434 if ((e->flags & EDGE_IRREDUCIBLE_LOOP)
1435 && !(e->flags & (EDGE_ALL_FLAGS + 1)))
1436 {
1437 error ("edge from %d to %d should be marked irreducible",
1438 e->src->index, e->dest->index);
1439 err = 1;
1440 }
1441 else if (!(e->flags & EDGE_IRREDUCIBLE_LOOP)
1442 && (e->flags & (EDGE_ALL_FLAGS + 1)))
1443 {
1444 error ("edge from %d to %d should not be marked irreducible",
1445 e->src->index, e->dest->index);
1446 err = 1;
1447 }
1448 e->flags &= ~(EDGE_ALL_FLAGS + 1);
1449 }
1450 }
1451 free (irreds);
1452 }
1453
1454 /* Check the recorded loop exits. */
1455 FOR_EACH_LOOP (li, loop, 0)
1456 {
1457 if (!loop->exits || loop->exits->e != NULL)
1458 {
1459 error ("corrupted head of the exits list of loop %d",
1460 loop->num);
1461 err = 1;
1462 }
1463 else
1464 {
1465 /* Check that the list forms a cycle, and all elements except
1466 for the head are nonnull. */
1467 for (mexit = loop->exits, exit = mexit->next, i = 0;
1468 exit->e && exit != mexit;
1469 exit = exit->next)
1470 {
1471 if (i++ & 1)
1472 mexit = mexit->next;
1473 }
1474
1475 if (exit != loop->exits)
1476 {
1477 error ("corrupted exits list of loop %d", loop->num);
1478 err = 1;
1479 }
1480 }
1481
1482 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1483 {
1484 if (loop->exits->next != loop->exits)
1485 {
1486 error ("nonempty exits list of loop %d, but exits are not recorded",
1487 loop->num);
1488 err = 1;
1489 }
1490 }
1491 }
1492
1493 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1494 {
1495 unsigned n_exits = 0, eloops;
1496
1497 memset (sizes, 0, sizeof (unsigned) * num);
1498 FOR_EACH_BB (bb)
1499 {
1500 edge_iterator ei;
1501 if (bb->loop_father == current_loops->tree_root)
1502 continue;
1503 FOR_EACH_EDGE (e, ei, bb->succs)
1504 {
1505 if (flow_bb_inside_loop_p (bb->loop_father, e->dest))
1506 continue;
1507
1508 n_exits++;
1509 exit = get_exit_descriptions (e);
1510 if (!exit)
1511 {
1512 error ("exit %d->%d not recorded",
1513 e->src->index, e->dest->index);
1514 err = 1;
1515 }
1516 eloops = 0;
1517 for (; exit; exit = exit->next_e)
1518 eloops++;
1519
1520 for (loop = bb->loop_father;
1521 loop != e->dest->loop_father;
1522 loop = loop_outer (loop))
1523 {
1524 eloops--;
1525 sizes[loop->num]++;
1526 }
1527
1528 if (eloops != 0)
1529 {
1530 error ("wrong list of exited loops for edge %d->%d",
1531 e->src->index, e->dest->index);
1532 err = 1;
1533 }
1534 }
1535 }
1536
1537 if (n_exits != htab_elements (current_loops->exits))
1538 {
1539 error ("too many loop exits recorded");
1540 err = 1;
1541 }
1542
1543 FOR_EACH_LOOP (li, loop, 0)
1544 {
1545 eloops = 0;
1546 for (exit = loop->exits->next; exit->e; exit = exit->next)
1547 eloops++;
1548 if (eloops != sizes[loop->num])
1549 {
1550 error ("%d exits recorded for loop %d (having %d exits)",
1551 eloops, loop->num, sizes[loop->num]);
1552 err = 1;
1553 }
1554 }
1555 }
1556
1557 gcc_assert (!err);
1558
1559 free (sizes);
1560 if (!dom_available)
1561 free_dominance_info (CDI_DOMINATORS);
1562 }
1563
1564 /* Returns latch edge of LOOP. */
1565 edge
1566 loop_latch_edge (const struct loop *loop)
1567 {
1568 return find_edge (loop->latch, loop->header);
1569 }
1570
1571 /* Returns preheader edge of LOOP. */
1572 edge
1573 loop_preheader_edge (const struct loop *loop)
1574 {
1575 edge e;
1576 edge_iterator ei;
1577
1578 gcc_assert (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS));
1579
1580 FOR_EACH_EDGE (e, ei, loop->header->preds)
1581 if (e->src != loop->latch)
1582 break;
1583
1584 return e;
1585 }
1586
1587 /* Returns true if E is an exit of LOOP. */
1588
1589 bool
1590 loop_exit_edge_p (const struct loop *loop, const_edge e)
1591 {
1592 return (flow_bb_inside_loop_p (loop, e->src)
1593 && !flow_bb_inside_loop_p (loop, e->dest));
1594 }
1595
1596 /* Returns the single exit edge of LOOP, or NULL if LOOP has either no exit
1597 or more than one exit. If loops do not have the exits recorded, NULL
1598 is returned always. */
1599
1600 edge
1601 single_exit (const struct loop *loop)
1602 {
1603 struct loop_exit *exit = loop->exits->next;
1604
1605 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1606 return NULL;
1607
1608 if (exit->e && exit->next == loop->exits)
1609 return exit->e;
1610 else
1611 return NULL;
1612 }
1613
1614 /* Returns true when BB has an incoming edge exiting LOOP. */
1615
1616 bool
1617 loop_exits_to_bb_p (struct loop *loop, basic_block bb)
1618 {
1619 edge e;
1620 edge_iterator ei;
1621
1622 FOR_EACH_EDGE (e, ei, bb->preds)
1623 if (loop_exit_edge_p (loop, e))
1624 return true;
1625
1626 return false;
1627 }
1628
1629 /* Returns true when BB has an outgoing edge exiting LOOP. */
1630
1631 bool
1632 loop_exits_from_bb_p (struct loop *loop, basic_block bb)
1633 {
1634 edge e;
1635 edge_iterator ei;
1636
1637 FOR_EACH_EDGE (e, ei, bb->succs)
1638 if (loop_exit_edge_p (loop, e))
1639 return true;
1640
1641 return false;
1642 }