Add more checking of headers.
[gcc.git] / gcc / cfgloop.c
1 /* Natural loop discovery code for GNU compiler.
2 Copyright (C) 2000-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl.h"
25 #include "function.h"
26 #include "basic-block.h"
27 #include "cfgloop.h"
28 #include "diagnostic-core.h"
29 #include "flags.h"
30 #include "tree.h"
31 #include "tree-flow.h"
32 #include "pointer-set.h"
33 #include "ggc.h"
34 #include "dumpfile.h"
35
36 static void flow_loops_cfg_dump (FILE *);
37 \f
38 /* Dump loop related CFG information. */
39
40 static void
41 flow_loops_cfg_dump (FILE *file)
42 {
43 basic_block bb;
44
45 if (!file)
46 return;
47
48 FOR_EACH_BB (bb)
49 {
50 edge succ;
51 edge_iterator ei;
52
53 fprintf (file, ";; %d succs { ", bb->index);
54 FOR_EACH_EDGE (succ, ei, bb->succs)
55 fprintf (file, "%d ", succ->dest->index);
56 fprintf (file, "}\n");
57 }
58 }
59
60 /* Return nonzero if the nodes of LOOP are a subset of OUTER. */
61
62 bool
63 flow_loop_nested_p (const struct loop *outer, const struct loop *loop)
64 {
65 unsigned odepth = loop_depth (outer);
66
67 return (loop_depth (loop) > odepth
68 && (*loop->superloops)[odepth] == outer);
69 }
70
71 /* Returns the loop such that LOOP is nested DEPTH (indexed from zero)
72 loops within LOOP. */
73
74 struct loop *
75 superloop_at_depth (struct loop *loop, unsigned depth)
76 {
77 unsigned ldepth = loop_depth (loop);
78
79 gcc_assert (depth <= ldepth);
80
81 if (depth == ldepth)
82 return loop;
83
84 return (*loop->superloops)[depth];
85 }
86
87 /* Returns the list of the latch edges of LOOP. */
88
89 static vec<edge>
90 get_loop_latch_edges (const struct loop *loop)
91 {
92 edge_iterator ei;
93 edge e;
94 vec<edge> ret = vNULL;
95
96 FOR_EACH_EDGE (e, ei, loop->header->preds)
97 {
98 if (dominated_by_p (CDI_DOMINATORS, e->src, loop->header))
99 ret.safe_push (e);
100 }
101
102 return ret;
103 }
104
105 /* Dump the loop information specified by LOOP to the stream FILE
106 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
107
108 void
109 flow_loop_dump (const struct loop *loop, FILE *file,
110 void (*loop_dump_aux) (const struct loop *, FILE *, int),
111 int verbose)
112 {
113 basic_block *bbs;
114 unsigned i;
115 vec<edge> latches;
116 edge e;
117
118 if (! loop || ! loop->header)
119 return;
120
121 fprintf (file, ";;\n;; Loop %d\n", loop->num);
122
123 fprintf (file, ";; header %d, ", loop->header->index);
124 if (loop->latch)
125 fprintf (file, "latch %d\n", loop->latch->index);
126 else
127 {
128 fprintf (file, "multiple latches:");
129 latches = get_loop_latch_edges (loop);
130 FOR_EACH_VEC_ELT (latches, i, e)
131 fprintf (file, " %d", e->src->index);
132 latches.release ();
133 fprintf (file, "\n");
134 }
135
136 fprintf (file, ";; depth %d, outer %ld\n",
137 loop_depth (loop), (long) (loop_outer (loop)
138 ? loop_outer (loop)->num : -1));
139
140 fprintf (file, ";; nodes:");
141 bbs = get_loop_body (loop);
142 for (i = 0; i < loop->num_nodes; i++)
143 fprintf (file, " %d", bbs[i]->index);
144 free (bbs);
145 fprintf (file, "\n");
146
147 if (loop_dump_aux)
148 loop_dump_aux (loop, file, verbose);
149 }
150
151 /* Dump the loop information about loops to the stream FILE,
152 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
153
154 void
155 flow_loops_dump (FILE *file, void (*loop_dump_aux) (const struct loop *, FILE *, int), int verbose)
156 {
157 loop_iterator li;
158 struct loop *loop;
159
160 if (!current_loops || ! file)
161 return;
162
163 fprintf (file, ";; %d loops found\n", number_of_loops ());
164
165 FOR_EACH_LOOP (li, loop, LI_INCLUDE_ROOT)
166 {
167 flow_loop_dump (loop, file, loop_dump_aux, verbose);
168 }
169
170 if (verbose)
171 flow_loops_cfg_dump (file);
172 }
173
174 /* Free data allocated for LOOP. */
175
176 void
177 flow_loop_free (struct loop *loop)
178 {
179 struct loop_exit *exit, *next;
180
181 vec_free (loop->superloops);
182
183 /* Break the list of the loop exit records. They will be freed when the
184 corresponding edge is rescanned or removed, and this avoids
185 accessing the (already released) head of the list stored in the
186 loop structure. */
187 for (exit = loop->exits->next; exit != loop->exits; exit = next)
188 {
189 next = exit->next;
190 exit->next = exit;
191 exit->prev = exit;
192 }
193
194 ggc_free (loop->exits);
195 ggc_free (loop);
196 }
197
198 /* Free all the memory allocated for LOOPS. */
199
200 void
201 flow_loops_free (struct loops *loops)
202 {
203 if (loops->larray)
204 {
205 unsigned i;
206 loop_p loop;
207
208 /* Free the loop descriptors. */
209 FOR_EACH_VEC_SAFE_ELT (loops->larray, i, loop)
210 {
211 if (!loop)
212 continue;
213
214 flow_loop_free (loop);
215 }
216
217 vec_free (loops->larray);
218 }
219 }
220
221 /* Find the nodes contained within the LOOP with header HEADER.
222 Return the number of nodes within the loop. */
223
224 int
225 flow_loop_nodes_find (basic_block header, struct loop *loop)
226 {
227 vec<basic_block> stack = vNULL;
228 int num_nodes = 1;
229 edge latch;
230 edge_iterator latch_ei;
231
232 header->loop_father = loop;
233
234 FOR_EACH_EDGE (latch, latch_ei, loop->header->preds)
235 {
236 if (latch->src->loop_father == loop
237 || !dominated_by_p (CDI_DOMINATORS, latch->src, loop->header))
238 continue;
239
240 num_nodes++;
241 stack.safe_push (latch->src);
242 latch->src->loop_father = loop;
243
244 while (!stack.is_empty ())
245 {
246 basic_block node;
247 edge e;
248 edge_iterator ei;
249
250 node = stack.pop ();
251
252 FOR_EACH_EDGE (e, ei, node->preds)
253 {
254 basic_block ancestor = e->src;
255
256 if (ancestor->loop_father != loop)
257 {
258 ancestor->loop_father = loop;
259 num_nodes++;
260 stack.safe_push (ancestor);
261 }
262 }
263 }
264 }
265 stack.release ();
266
267 return num_nodes;
268 }
269
270 /* Records the vector of superloops of the loop LOOP, whose immediate
271 superloop is FATHER. */
272
273 static void
274 establish_preds (struct loop *loop, struct loop *father)
275 {
276 loop_p ploop;
277 unsigned depth = loop_depth (father) + 1;
278 unsigned i;
279
280 loop->superloops = 0;
281 vec_alloc (loop->superloops, depth);
282 FOR_EACH_VEC_SAFE_ELT (father->superloops, i, ploop)
283 loop->superloops->quick_push (ploop);
284 loop->superloops->quick_push (father);
285
286 for (ploop = loop->inner; ploop; ploop = ploop->next)
287 establish_preds (ploop, loop);
288 }
289
290 /* Add LOOP to the loop hierarchy tree where FATHER is father of the
291 added loop. If LOOP has some children, take care of that their
292 pred field will be initialized correctly. */
293
294 void
295 flow_loop_tree_node_add (struct loop *father, struct loop *loop)
296 {
297 loop->next = father->inner;
298 father->inner = loop;
299
300 establish_preds (loop, father);
301 }
302
303 /* Remove LOOP from the loop hierarchy tree. */
304
305 void
306 flow_loop_tree_node_remove (struct loop *loop)
307 {
308 struct loop *prev, *father;
309
310 father = loop_outer (loop);
311
312 /* Remove loop from the list of sons. */
313 if (father->inner == loop)
314 father->inner = loop->next;
315 else
316 {
317 for (prev = father->inner; prev->next != loop; prev = prev->next)
318 continue;
319 prev->next = loop->next;
320 }
321
322 loop->superloops = NULL;
323 }
324
325 /* Allocates and returns new loop structure. */
326
327 struct loop *
328 alloc_loop (void)
329 {
330 struct loop *loop = ggc_alloc_cleared_loop ();
331
332 loop->exits = ggc_alloc_cleared_loop_exit ();
333 loop->exits->next = loop->exits->prev = loop->exits;
334 loop->can_be_parallel = false;
335
336 return loop;
337 }
338
339 /* Initializes loops structure LOOPS, reserving place for NUM_LOOPS loops
340 (including the root of the loop tree). */
341
342 static void
343 init_loops_structure (struct loops *loops, unsigned num_loops)
344 {
345 struct loop *root;
346
347 memset (loops, 0, sizeof *loops);
348 vec_alloc (loops->larray, num_loops);
349
350 /* Dummy loop containing whole function. */
351 root = alloc_loop ();
352 root->num_nodes = n_basic_blocks;
353 root->latch = EXIT_BLOCK_PTR;
354 root->header = ENTRY_BLOCK_PTR;
355 ENTRY_BLOCK_PTR->loop_father = root;
356 EXIT_BLOCK_PTR->loop_father = root;
357
358 loops->larray->quick_push (root);
359 loops->tree_root = root;
360 }
361
362 /* Returns whether HEADER is a loop header. */
363
364 bool
365 bb_loop_header_p (basic_block header)
366 {
367 edge_iterator ei;
368 edge e;
369
370 /* If we have an abnormal predecessor, do not consider the
371 loop (not worth the problems). */
372 if (bb_has_abnormal_pred (header))
373 return false;
374
375 /* Look for back edges where a predecessor is dominated
376 by this block. A natural loop has a single entry
377 node (header) that dominates all the nodes in the
378 loop. It also has single back edge to the header
379 from a latch node. */
380 FOR_EACH_EDGE (e, ei, header->preds)
381 {
382 basic_block latch = e->src;
383 if (latch != ENTRY_BLOCK_PTR
384 && dominated_by_p (CDI_DOMINATORS, latch, header))
385 return true;
386 }
387
388 return false;
389 }
390
391 /* Find all the natural loops in the function and save in LOOPS structure and
392 recalculate loop_father information in basic block structures.
393 If LOOPS is non-NULL then the loop structures for already recorded loops
394 will be re-used and their number will not change. We assume that no
395 stale loops exist in LOOPS.
396 When LOOPS is NULL it is allocated and re-built from scratch.
397 Return the built LOOPS structure. */
398
399 struct loops *
400 flow_loops_find (struct loops *loops)
401 {
402 bool from_scratch = (loops == NULL);
403 int *rc_order;
404 int b;
405 unsigned i;
406 vec<loop_p> larray;
407
408 /* Ensure that the dominators are computed. */
409 calculate_dominance_info (CDI_DOMINATORS);
410
411 if (!loops)
412 {
413 loops = ggc_alloc_cleared_loops ();
414 init_loops_structure (loops, 1);
415 }
416
417 /* Ensure that loop exits were released. */
418 gcc_assert (loops->exits == NULL);
419
420 /* Taking care of this degenerate case makes the rest of
421 this code simpler. */
422 if (n_basic_blocks == NUM_FIXED_BLOCKS)
423 return loops;
424
425 /* The root loop node contains all basic-blocks. */
426 loops->tree_root->num_nodes = n_basic_blocks;
427
428 /* Compute depth first search order of the CFG so that outer
429 natural loops will be found before inner natural loops. */
430 rc_order = XNEWVEC (int, n_basic_blocks);
431 pre_and_rev_post_order_compute (NULL, rc_order, false);
432
433 /* Gather all loop headers in reverse completion order and allocate
434 loop structures for loops that are not already present. */
435 larray.create (loops->larray->length());
436 for (b = 0; b < n_basic_blocks - NUM_FIXED_BLOCKS; b++)
437 {
438 basic_block header = BASIC_BLOCK (rc_order[b]);
439 if (bb_loop_header_p (header))
440 {
441 struct loop *loop;
442
443 /* The current active loop tree has valid loop-fathers for
444 header blocks. */
445 if (!from_scratch
446 && header->loop_father->header == header)
447 {
448 loop = header->loop_father;
449 /* If we found an existing loop remove it from the
450 loop tree. It is going to be inserted again
451 below. */
452 flow_loop_tree_node_remove (loop);
453 }
454 else
455 {
456 /* Otherwise allocate a new loop structure for the loop. */
457 loop = alloc_loop ();
458 /* ??? We could re-use unused loop slots here. */
459 loop->num = loops->larray->length ();
460 vec_safe_push (loops->larray, loop);
461 loop->header = header;
462
463 if (!from_scratch
464 && dump_file && (dump_flags & TDF_DETAILS))
465 fprintf (dump_file, "flow_loops_find: discovered new "
466 "loop %d with header %d\n",
467 loop->num, header->index);
468 }
469 larray.safe_push (loop);
470 }
471
472 /* Make blocks part of the loop root node at start. */
473 header->loop_father = loops->tree_root;
474 }
475
476 free (rc_order);
477
478 /* Now iterate over the loops found, insert them into the loop tree
479 and assign basic-block ownership. */
480 for (i = 0; i < larray.length (); ++i)
481 {
482 struct loop *loop = larray[i];
483 basic_block header = loop->header;
484 edge_iterator ei;
485 edge e;
486
487 flow_loop_tree_node_add (header->loop_father, loop);
488 loop->num_nodes = flow_loop_nodes_find (loop->header, loop);
489
490 /* Look for the latch for this header block, if it has just a
491 single one. */
492 FOR_EACH_EDGE (e, ei, header->preds)
493 {
494 basic_block latch = e->src;
495
496 if (flow_bb_inside_loop_p (loop, latch))
497 {
498 if (loop->latch != NULL)
499 {
500 /* More than one latch edge. */
501 loop->latch = NULL;
502 break;
503 }
504 loop->latch = latch;
505 }
506 }
507 }
508
509 larray.release();
510
511 return loops;
512 }
513
514 /* Ratio of frequencies of edges so that one of more latch edges is
515 considered to belong to inner loop with same header. */
516 #define HEAVY_EDGE_RATIO 8
517
518 /* Minimum number of samples for that we apply
519 find_subloop_latch_edge_by_profile heuristics. */
520 #define HEAVY_EDGE_MIN_SAMPLES 10
521
522 /* If the profile info is available, finds an edge in LATCHES that much more
523 frequent than the remaining edges. Returns such an edge, or NULL if we do
524 not find one.
525
526 We do not use guessed profile here, only the measured one. The guessed
527 profile is usually too flat and unreliable for this (and it is mostly based
528 on the loop structure of the program, so it does not make much sense to
529 derive the loop structure from it). */
530
531 static edge
532 find_subloop_latch_edge_by_profile (vec<edge> latches)
533 {
534 unsigned i;
535 edge e, me = NULL;
536 gcov_type mcount = 0, tcount = 0;
537
538 FOR_EACH_VEC_ELT (latches, i, e)
539 {
540 if (e->count > mcount)
541 {
542 me = e;
543 mcount = e->count;
544 }
545 tcount += e->count;
546 }
547
548 if (tcount < HEAVY_EDGE_MIN_SAMPLES
549 || (tcount - mcount) * HEAVY_EDGE_RATIO > tcount)
550 return NULL;
551
552 if (dump_file)
553 fprintf (dump_file,
554 "Found latch edge %d -> %d using profile information.\n",
555 me->src->index, me->dest->index);
556 return me;
557 }
558
559 /* Among LATCHES, guesses a latch edge of LOOP corresponding to subloop, based
560 on the structure of induction variables. Returns this edge, or NULL if we
561 do not find any.
562
563 We are quite conservative, and look just for an obvious simple innermost
564 loop (which is the case where we would lose the most performance by not
565 disambiguating the loop). More precisely, we look for the following
566 situation: The source of the chosen latch edge dominates sources of all
567 the other latch edges. Additionally, the header does not contain a phi node
568 such that the argument from the chosen edge is equal to the argument from
569 another edge. */
570
571 static edge
572 find_subloop_latch_edge_by_ivs (struct loop *loop ATTRIBUTE_UNUSED, vec<edge> latches)
573 {
574 edge e, latch = latches[0];
575 unsigned i;
576 gimple phi;
577 gimple_stmt_iterator psi;
578 tree lop;
579 basic_block bb;
580
581 /* Find the candidate for the latch edge. */
582 for (i = 1; latches.iterate (i, &e); i++)
583 if (dominated_by_p (CDI_DOMINATORS, latch->src, e->src))
584 latch = e;
585
586 /* Verify that it dominates all the latch edges. */
587 FOR_EACH_VEC_ELT (latches, i, e)
588 if (!dominated_by_p (CDI_DOMINATORS, e->src, latch->src))
589 return NULL;
590
591 /* Check for a phi node that would deny that this is a latch edge of
592 a subloop. */
593 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
594 {
595 phi = gsi_stmt (psi);
596 lop = PHI_ARG_DEF_FROM_EDGE (phi, latch);
597
598 /* Ignore the values that are not changed inside the subloop. */
599 if (TREE_CODE (lop) != SSA_NAME
600 || SSA_NAME_DEF_STMT (lop) == phi)
601 continue;
602 bb = gimple_bb (SSA_NAME_DEF_STMT (lop));
603 if (!bb || !flow_bb_inside_loop_p (loop, bb))
604 continue;
605
606 FOR_EACH_VEC_ELT (latches, i, e)
607 if (e != latch
608 && PHI_ARG_DEF_FROM_EDGE (phi, e) == lop)
609 return NULL;
610 }
611
612 if (dump_file)
613 fprintf (dump_file,
614 "Found latch edge %d -> %d using iv structure.\n",
615 latch->src->index, latch->dest->index);
616 return latch;
617 }
618
619 /* If we can determine that one of the several latch edges of LOOP behaves
620 as a latch edge of a separate subloop, returns this edge. Otherwise
621 returns NULL. */
622
623 static edge
624 find_subloop_latch_edge (struct loop *loop)
625 {
626 vec<edge> latches = get_loop_latch_edges (loop);
627 edge latch = NULL;
628
629 if (latches.length () > 1)
630 {
631 latch = find_subloop_latch_edge_by_profile (latches);
632
633 if (!latch
634 /* We consider ivs to guess the latch edge only in SSA. Perhaps we
635 should use cfghook for this, but it is hard to imagine it would
636 be useful elsewhere. */
637 && current_ir_type () == IR_GIMPLE)
638 latch = find_subloop_latch_edge_by_ivs (loop, latches);
639 }
640
641 latches.release ();
642 return latch;
643 }
644
645 /* Callback for make_forwarder_block. Returns true if the edge E is marked
646 in the set MFB_REIS_SET. */
647
648 static struct pointer_set_t *mfb_reis_set;
649 static bool
650 mfb_redirect_edges_in_set (edge e)
651 {
652 return pointer_set_contains (mfb_reis_set, e);
653 }
654
655 /* Creates a subloop of LOOP with latch edge LATCH. */
656
657 static void
658 form_subloop (struct loop *loop, edge latch)
659 {
660 edge_iterator ei;
661 edge e, new_entry;
662 struct loop *new_loop;
663
664 mfb_reis_set = pointer_set_create ();
665 FOR_EACH_EDGE (e, ei, loop->header->preds)
666 {
667 if (e != latch)
668 pointer_set_insert (mfb_reis_set, e);
669 }
670 new_entry = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
671 NULL);
672 pointer_set_destroy (mfb_reis_set);
673
674 loop->header = new_entry->src;
675
676 /* Find the blocks and subloops that belong to the new loop, and add it to
677 the appropriate place in the loop tree. */
678 new_loop = alloc_loop ();
679 new_loop->header = new_entry->dest;
680 new_loop->latch = latch->src;
681 add_loop (new_loop, loop);
682 }
683
684 /* Make all the latch edges of LOOP to go to a single forwarder block --
685 a new latch of LOOP. */
686
687 static void
688 merge_latch_edges (struct loop *loop)
689 {
690 vec<edge> latches = get_loop_latch_edges (loop);
691 edge latch, e;
692 unsigned i;
693
694 gcc_assert (latches.length () > 0);
695
696 if (latches.length () == 1)
697 loop->latch = latches[0]->src;
698 else
699 {
700 if (dump_file)
701 fprintf (dump_file, "Merged latch edges of loop %d\n", loop->num);
702
703 mfb_reis_set = pointer_set_create ();
704 FOR_EACH_VEC_ELT (latches, i, e)
705 pointer_set_insert (mfb_reis_set, e);
706 latch = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
707 NULL);
708 pointer_set_destroy (mfb_reis_set);
709
710 loop->header = latch->dest;
711 loop->latch = latch->src;
712 }
713
714 latches.release ();
715 }
716
717 /* LOOP may have several latch edges. Transform it into (possibly several)
718 loops with single latch edge. */
719
720 static void
721 disambiguate_multiple_latches (struct loop *loop)
722 {
723 edge e;
724
725 /* We eliminate the multiple latches by splitting the header to the forwarder
726 block F and the rest R, and redirecting the edges. There are two cases:
727
728 1) If there is a latch edge E that corresponds to a subloop (we guess
729 that based on profile -- if it is taken much more often than the
730 remaining edges; and on trees, using the information about induction
731 variables of the loops), we redirect E to R, all the remaining edges to
732 F, then rescan the loops and try again for the outer loop.
733 2) If there is no such edge, we redirect all latch edges to F, and the
734 entry edges to R, thus making F the single latch of the loop. */
735
736 if (dump_file)
737 fprintf (dump_file, "Disambiguating loop %d with multiple latches\n",
738 loop->num);
739
740 /* During latch merging, we may need to redirect the entry edges to a new
741 block. This would cause problems if the entry edge was the one from the
742 entry block. To avoid having to handle this case specially, split
743 such entry edge. */
744 e = find_edge (ENTRY_BLOCK_PTR, loop->header);
745 if (e)
746 split_edge (e);
747
748 while (1)
749 {
750 e = find_subloop_latch_edge (loop);
751 if (!e)
752 break;
753
754 form_subloop (loop, e);
755 }
756
757 merge_latch_edges (loop);
758 }
759
760 /* Split loops with multiple latch edges. */
761
762 void
763 disambiguate_loops_with_multiple_latches (void)
764 {
765 loop_iterator li;
766 struct loop *loop;
767
768 FOR_EACH_LOOP (li, loop, 0)
769 {
770 if (!loop->latch)
771 disambiguate_multiple_latches (loop);
772 }
773 }
774
775 /* Return nonzero if basic block BB belongs to LOOP. */
776 bool
777 flow_bb_inside_loop_p (const struct loop *loop, const_basic_block bb)
778 {
779 struct loop *source_loop;
780
781 if (bb == ENTRY_BLOCK_PTR || bb == EXIT_BLOCK_PTR)
782 return 0;
783
784 source_loop = bb->loop_father;
785 return loop == source_loop || flow_loop_nested_p (loop, source_loop);
786 }
787
788 /* Enumeration predicate for get_loop_body_with_size. */
789 static bool
790 glb_enum_p (const_basic_block bb, const void *glb_loop)
791 {
792 const struct loop *const loop = (const struct loop *) glb_loop;
793 return (bb != loop->header
794 && dominated_by_p (CDI_DOMINATORS, bb, loop->header));
795 }
796
797 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
798 order against direction of edges from latch. Specially, if
799 header != latch, latch is the 1-st block. LOOP cannot be the fake
800 loop tree root, and its size must be at most MAX_SIZE. The blocks
801 in the LOOP body are stored to BODY, and the size of the LOOP is
802 returned. */
803
804 unsigned
805 get_loop_body_with_size (const struct loop *loop, basic_block *body,
806 unsigned max_size)
807 {
808 return dfs_enumerate_from (loop->header, 1, glb_enum_p,
809 body, max_size, loop);
810 }
811
812 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
813 order against direction of edges from latch. Specially, if
814 header != latch, latch is the 1-st block. */
815
816 basic_block *
817 get_loop_body (const struct loop *loop)
818 {
819 basic_block *body, bb;
820 unsigned tv = 0;
821
822 gcc_assert (loop->num_nodes);
823
824 body = XNEWVEC (basic_block, loop->num_nodes);
825
826 if (loop->latch == EXIT_BLOCK_PTR)
827 {
828 /* There may be blocks unreachable from EXIT_BLOCK, hence we need to
829 special-case the fake loop that contains the whole function. */
830 gcc_assert (loop->num_nodes == (unsigned) n_basic_blocks);
831 body[tv++] = loop->header;
832 body[tv++] = EXIT_BLOCK_PTR;
833 FOR_EACH_BB (bb)
834 body[tv++] = bb;
835 }
836 else
837 tv = get_loop_body_with_size (loop, body, loop->num_nodes);
838
839 gcc_assert (tv == loop->num_nodes);
840 return body;
841 }
842
843 /* Fills dominance descendants inside LOOP of the basic block BB into
844 array TOVISIT from index *TV. */
845
846 static void
847 fill_sons_in_loop (const struct loop *loop, basic_block bb,
848 basic_block *tovisit, int *tv)
849 {
850 basic_block son, postpone = NULL;
851
852 tovisit[(*tv)++] = bb;
853 for (son = first_dom_son (CDI_DOMINATORS, bb);
854 son;
855 son = next_dom_son (CDI_DOMINATORS, son))
856 {
857 if (!flow_bb_inside_loop_p (loop, son))
858 continue;
859
860 if (dominated_by_p (CDI_DOMINATORS, loop->latch, son))
861 {
862 postpone = son;
863 continue;
864 }
865 fill_sons_in_loop (loop, son, tovisit, tv);
866 }
867
868 if (postpone)
869 fill_sons_in_loop (loop, postpone, tovisit, tv);
870 }
871
872 /* Gets body of a LOOP (that must be different from the outermost loop)
873 sorted by dominance relation. Additionally, if a basic block s dominates
874 the latch, then only blocks dominated by s are be after it. */
875
876 basic_block *
877 get_loop_body_in_dom_order (const struct loop *loop)
878 {
879 basic_block *tovisit;
880 int tv;
881
882 gcc_assert (loop->num_nodes);
883
884 tovisit = XNEWVEC (basic_block, loop->num_nodes);
885
886 gcc_assert (loop->latch != EXIT_BLOCK_PTR);
887
888 tv = 0;
889 fill_sons_in_loop (loop, loop->header, tovisit, &tv);
890
891 gcc_assert (tv == (int) loop->num_nodes);
892
893 return tovisit;
894 }
895
896 /* Gets body of a LOOP sorted via provided BB_COMPARATOR. */
897
898 basic_block *
899 get_loop_body_in_custom_order (const struct loop *loop,
900 int (*bb_comparator) (const void *, const void *))
901 {
902 basic_block *bbs = get_loop_body (loop);
903
904 qsort (bbs, loop->num_nodes, sizeof (basic_block), bb_comparator);
905
906 return bbs;
907 }
908
909 /* Get body of a LOOP in breadth first sort order. */
910
911 basic_block *
912 get_loop_body_in_bfs_order (const struct loop *loop)
913 {
914 basic_block *blocks;
915 basic_block bb;
916 bitmap visited;
917 unsigned int i = 0;
918 unsigned int vc = 1;
919
920 gcc_assert (loop->num_nodes);
921 gcc_assert (loop->latch != EXIT_BLOCK_PTR);
922
923 blocks = XNEWVEC (basic_block, loop->num_nodes);
924 visited = BITMAP_ALLOC (NULL);
925
926 bb = loop->header;
927 while (i < loop->num_nodes)
928 {
929 edge e;
930 edge_iterator ei;
931
932 if (bitmap_set_bit (visited, bb->index))
933 /* This basic block is now visited */
934 blocks[i++] = bb;
935
936 FOR_EACH_EDGE (e, ei, bb->succs)
937 {
938 if (flow_bb_inside_loop_p (loop, e->dest))
939 {
940 if (bitmap_set_bit (visited, e->dest->index))
941 blocks[i++] = e->dest;
942 }
943 }
944
945 gcc_assert (i >= vc);
946
947 bb = blocks[vc++];
948 }
949
950 BITMAP_FREE (visited);
951 return blocks;
952 }
953
954 /* Hash function for struct loop_exit. */
955
956 static hashval_t
957 loop_exit_hash (const void *ex)
958 {
959 const struct loop_exit *const exit = (const struct loop_exit *) ex;
960
961 return htab_hash_pointer (exit->e);
962 }
963
964 /* Equality function for struct loop_exit. Compares with edge. */
965
966 static int
967 loop_exit_eq (const void *ex, const void *e)
968 {
969 const struct loop_exit *const exit = (const struct loop_exit *) ex;
970
971 return exit->e == e;
972 }
973
974 /* Frees the list of loop exit descriptions EX. */
975
976 static void
977 loop_exit_free (void *ex)
978 {
979 struct loop_exit *exit = (struct loop_exit *) ex, *next;
980
981 for (; exit; exit = next)
982 {
983 next = exit->next_e;
984
985 exit->next->prev = exit->prev;
986 exit->prev->next = exit->next;
987
988 ggc_free (exit);
989 }
990 }
991
992 /* Returns the list of records for E as an exit of a loop. */
993
994 static struct loop_exit *
995 get_exit_descriptions (edge e)
996 {
997 return (struct loop_exit *) htab_find_with_hash (current_loops->exits, e,
998 htab_hash_pointer (e));
999 }
1000
1001 /* Updates the lists of loop exits in that E appears.
1002 If REMOVED is true, E is being removed, and we
1003 just remove it from the lists of exits.
1004 If NEW_EDGE is true and E is not a loop exit, we
1005 do not try to remove it from loop exit lists. */
1006
1007 void
1008 rescan_loop_exit (edge e, bool new_edge, bool removed)
1009 {
1010 void **slot;
1011 struct loop_exit *exits = NULL, *exit;
1012 struct loop *aloop, *cloop;
1013
1014 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1015 return;
1016
1017 if (!removed
1018 && e->src->loop_father != NULL
1019 && e->dest->loop_father != NULL
1020 && !flow_bb_inside_loop_p (e->src->loop_father, e->dest))
1021 {
1022 cloop = find_common_loop (e->src->loop_father, e->dest->loop_father);
1023 for (aloop = e->src->loop_father;
1024 aloop != cloop;
1025 aloop = loop_outer (aloop))
1026 {
1027 exit = ggc_alloc_loop_exit ();
1028 exit->e = e;
1029
1030 exit->next = aloop->exits->next;
1031 exit->prev = aloop->exits;
1032 exit->next->prev = exit;
1033 exit->prev->next = exit;
1034
1035 exit->next_e = exits;
1036 exits = exit;
1037 }
1038 }
1039
1040 if (!exits && new_edge)
1041 return;
1042
1043 slot = htab_find_slot_with_hash (current_loops->exits, e,
1044 htab_hash_pointer (e),
1045 exits ? INSERT : NO_INSERT);
1046 if (!slot)
1047 return;
1048
1049 if (exits)
1050 {
1051 if (*slot)
1052 loop_exit_free (*slot);
1053 *slot = exits;
1054 }
1055 else
1056 htab_clear_slot (current_loops->exits, slot);
1057 }
1058
1059 /* For each loop, record list of exit edges, and start maintaining these
1060 lists. */
1061
1062 void
1063 record_loop_exits (void)
1064 {
1065 basic_block bb;
1066 edge_iterator ei;
1067 edge e;
1068
1069 if (!current_loops)
1070 return;
1071
1072 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1073 return;
1074 loops_state_set (LOOPS_HAVE_RECORDED_EXITS);
1075
1076 gcc_assert (current_loops->exits == NULL);
1077 current_loops->exits = htab_create_ggc (2 * number_of_loops (),
1078 loop_exit_hash, loop_exit_eq,
1079 loop_exit_free);
1080
1081 FOR_EACH_BB (bb)
1082 {
1083 FOR_EACH_EDGE (e, ei, bb->succs)
1084 {
1085 rescan_loop_exit (e, true, false);
1086 }
1087 }
1088 }
1089
1090 /* Dumps information about the exit in *SLOT to FILE.
1091 Callback for htab_traverse. */
1092
1093 static int
1094 dump_recorded_exit (void **slot, void *file)
1095 {
1096 struct loop_exit *exit = (struct loop_exit *) *slot;
1097 unsigned n = 0;
1098 edge e = exit->e;
1099
1100 for (; exit != NULL; exit = exit->next_e)
1101 n++;
1102
1103 fprintf ((FILE*) file, "Edge %d->%d exits %u loops\n",
1104 e->src->index, e->dest->index, n);
1105
1106 return 1;
1107 }
1108
1109 /* Dumps the recorded exits of loops to FILE. */
1110
1111 extern void dump_recorded_exits (FILE *);
1112 void
1113 dump_recorded_exits (FILE *file)
1114 {
1115 if (!current_loops->exits)
1116 return;
1117 htab_traverse (current_loops->exits, dump_recorded_exit, file);
1118 }
1119
1120 /* Releases lists of loop exits. */
1121
1122 void
1123 release_recorded_exits (void)
1124 {
1125 gcc_assert (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS));
1126 htab_delete (current_loops->exits);
1127 current_loops->exits = NULL;
1128 loops_state_clear (LOOPS_HAVE_RECORDED_EXITS);
1129 }
1130
1131 /* Returns the list of the exit edges of a LOOP. */
1132
1133 vec<edge>
1134 get_loop_exit_edges (const struct loop *loop)
1135 {
1136 vec<edge> edges = vNULL;
1137 edge e;
1138 unsigned i;
1139 basic_block *body;
1140 edge_iterator ei;
1141 struct loop_exit *exit;
1142
1143 gcc_assert (loop->latch != EXIT_BLOCK_PTR);
1144
1145 /* If we maintain the lists of exits, use them. Otherwise we must
1146 scan the body of the loop. */
1147 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1148 {
1149 for (exit = loop->exits->next; exit->e; exit = exit->next)
1150 edges.safe_push (exit->e);
1151 }
1152 else
1153 {
1154 body = get_loop_body (loop);
1155 for (i = 0; i < loop->num_nodes; i++)
1156 FOR_EACH_EDGE (e, ei, body[i]->succs)
1157 {
1158 if (!flow_bb_inside_loop_p (loop, e->dest))
1159 edges.safe_push (e);
1160 }
1161 free (body);
1162 }
1163
1164 return edges;
1165 }
1166
1167 /* Counts the number of conditional branches inside LOOP. */
1168
1169 unsigned
1170 num_loop_branches (const struct loop *loop)
1171 {
1172 unsigned i, n;
1173 basic_block * body;
1174
1175 gcc_assert (loop->latch != EXIT_BLOCK_PTR);
1176
1177 body = get_loop_body (loop);
1178 n = 0;
1179 for (i = 0; i < loop->num_nodes; i++)
1180 if (EDGE_COUNT (body[i]->succs) >= 2)
1181 n++;
1182 free (body);
1183
1184 return n;
1185 }
1186
1187 /* Adds basic block BB to LOOP. */
1188 void
1189 add_bb_to_loop (basic_block bb, struct loop *loop)
1190 {
1191 unsigned i;
1192 loop_p ploop;
1193 edge_iterator ei;
1194 edge e;
1195
1196 gcc_assert (bb->loop_father == NULL);
1197 bb->loop_father = loop;
1198 loop->num_nodes++;
1199 FOR_EACH_VEC_SAFE_ELT (loop->superloops, i, ploop)
1200 ploop->num_nodes++;
1201
1202 FOR_EACH_EDGE (e, ei, bb->succs)
1203 {
1204 rescan_loop_exit (e, true, false);
1205 }
1206 FOR_EACH_EDGE (e, ei, bb->preds)
1207 {
1208 rescan_loop_exit (e, true, false);
1209 }
1210 }
1211
1212 /* Remove basic block BB from loops. */
1213 void
1214 remove_bb_from_loops (basic_block bb)
1215 {
1216 unsigned i;
1217 struct loop *loop = bb->loop_father;
1218 loop_p ploop;
1219 edge_iterator ei;
1220 edge e;
1221
1222 gcc_assert (loop != NULL);
1223 loop->num_nodes--;
1224 FOR_EACH_VEC_SAFE_ELT (loop->superloops, i, ploop)
1225 ploop->num_nodes--;
1226 bb->loop_father = NULL;
1227
1228 FOR_EACH_EDGE (e, ei, bb->succs)
1229 {
1230 rescan_loop_exit (e, false, true);
1231 }
1232 FOR_EACH_EDGE (e, ei, bb->preds)
1233 {
1234 rescan_loop_exit (e, false, true);
1235 }
1236 }
1237
1238 /* Finds nearest common ancestor in loop tree for given loops. */
1239 struct loop *
1240 find_common_loop (struct loop *loop_s, struct loop *loop_d)
1241 {
1242 unsigned sdepth, ddepth;
1243
1244 if (!loop_s) return loop_d;
1245 if (!loop_d) return loop_s;
1246
1247 sdepth = loop_depth (loop_s);
1248 ddepth = loop_depth (loop_d);
1249
1250 if (sdepth < ddepth)
1251 loop_d = (*loop_d->superloops)[sdepth];
1252 else if (sdepth > ddepth)
1253 loop_s = (*loop_s->superloops)[ddepth];
1254
1255 while (loop_s != loop_d)
1256 {
1257 loop_s = loop_outer (loop_s);
1258 loop_d = loop_outer (loop_d);
1259 }
1260 return loop_s;
1261 }
1262
1263 /* Removes LOOP from structures and frees its data. */
1264
1265 void
1266 delete_loop (struct loop *loop)
1267 {
1268 /* Remove the loop from structure. */
1269 flow_loop_tree_node_remove (loop);
1270
1271 /* Remove loop from loops array. */
1272 (*current_loops->larray)[loop->num] = NULL;
1273
1274 /* Free loop data. */
1275 flow_loop_free (loop);
1276 }
1277
1278 /* Cancels the LOOP; it must be innermost one. */
1279
1280 static void
1281 cancel_loop (struct loop *loop)
1282 {
1283 basic_block *bbs;
1284 unsigned i;
1285 struct loop *outer = loop_outer (loop);
1286
1287 gcc_assert (!loop->inner);
1288
1289 /* Move blocks up one level (they should be removed as soon as possible). */
1290 bbs = get_loop_body (loop);
1291 for (i = 0; i < loop->num_nodes; i++)
1292 bbs[i]->loop_father = outer;
1293
1294 free (bbs);
1295 delete_loop (loop);
1296 }
1297
1298 /* Cancels LOOP and all its subloops. */
1299 void
1300 cancel_loop_tree (struct loop *loop)
1301 {
1302 while (loop->inner)
1303 cancel_loop_tree (loop->inner);
1304 cancel_loop (loop);
1305 }
1306
1307 /* Checks that information about loops is correct
1308 -- sizes of loops are all right
1309 -- results of get_loop_body really belong to the loop
1310 -- loop header have just single entry edge and single latch edge
1311 -- loop latches have only single successor that is header of their loop
1312 -- irreducible loops are correctly marked
1313 -- the cached loop depth and loop father of each bb is correct
1314 */
1315 DEBUG_FUNCTION void
1316 verify_loop_structure (void)
1317 {
1318 unsigned *sizes, i, j;
1319 sbitmap irreds;
1320 basic_block bb;
1321 struct loop *loop;
1322 int err = 0;
1323 edge e;
1324 unsigned num = number_of_loops ();
1325 loop_iterator li;
1326 struct loop_exit *exit, *mexit;
1327 bool dom_available = dom_info_available_p (CDI_DOMINATORS);
1328 sbitmap visited;
1329
1330 /* We need up-to-date dominators, compute or verify them. */
1331 if (!dom_available)
1332 calculate_dominance_info (CDI_DOMINATORS);
1333 else
1334 verify_dominators (CDI_DOMINATORS);
1335
1336 /* Check sizes. */
1337 sizes = XCNEWVEC (unsigned, num);
1338 sizes[0] = 2;
1339
1340 FOR_EACH_BB (bb)
1341 for (loop = bb->loop_father; loop; loop = loop_outer (loop))
1342 sizes[loop->num]++;
1343
1344 FOR_EACH_LOOP (li, loop, LI_INCLUDE_ROOT)
1345 {
1346 i = loop->num;
1347
1348 if (loop->num_nodes != sizes[i])
1349 {
1350 error ("size of loop %d should be %d, not %d",
1351 i, sizes[i], loop->num_nodes);
1352 err = 1;
1353 }
1354 }
1355
1356 /* Check the headers. */
1357 FOR_EACH_BB (bb)
1358 if (bb_loop_header_p (bb)
1359 && bb->loop_father->header != bb)
1360 {
1361 error ("loop with header %d not in loop tree", bb->index);
1362 err = 1;
1363 }
1364
1365 /* Check get_loop_body. */
1366 visited = sbitmap_alloc (last_basic_block);
1367 bitmap_clear (visited);
1368 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
1369 {
1370 basic_block *bbs = get_loop_body (loop);
1371
1372 for (j = 0; j < loop->num_nodes; j++)
1373 {
1374 bb = bbs[j];
1375
1376 if (!flow_bb_inside_loop_p (loop, bb))
1377 {
1378 error ("bb %d does not belong to loop %d",
1379 bb->index, loop->num);
1380 err = 1;
1381 }
1382
1383 /* Ignore this block if it is in an inner loop. */
1384 if (bitmap_bit_p (visited, bb->index))
1385 continue;
1386 bitmap_set_bit (visited, bb->index);
1387
1388 if (bb->loop_father != loop)
1389 {
1390 error ("bb %d has father loop %d, should be loop %d",
1391 bb->index, bb->loop_father->num, loop->num);
1392 err = 1;
1393 }
1394 }
1395
1396 free (bbs);
1397 }
1398 sbitmap_free (visited);
1399
1400 /* Check headers and latches. */
1401 FOR_EACH_LOOP (li, loop, 0)
1402 {
1403 i = loop->num;
1404
1405 if (!bb_loop_header_p (loop->header))
1406 {
1407 error ("loop %d%'s header is not a loop header", i);
1408 err = 1;
1409 }
1410 if (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS)
1411 && EDGE_COUNT (loop->header->preds) != 2)
1412 {
1413 error ("loop %d%'s header does not have exactly 2 entries", i);
1414 err = 1;
1415 }
1416 if (loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES))
1417 {
1418 if (!single_succ_p (loop->latch))
1419 {
1420 error ("loop %d%'s latch does not have exactly 1 successor", i);
1421 err = 1;
1422 }
1423 if (single_succ (loop->latch) != loop->header)
1424 {
1425 error ("loop %d%'s latch does not have header as successor", i);
1426 err = 1;
1427 }
1428 if (loop->latch->loop_father != loop)
1429 {
1430 error ("loop %d%'s latch does not belong directly to it", i);
1431 err = 1;
1432 }
1433 }
1434 if (loop->header->loop_father != loop)
1435 {
1436 error ("loop %d%'s header does not belong directly to it", i);
1437 err = 1;
1438 }
1439 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS)
1440 && (loop_latch_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP))
1441 {
1442 error ("loop %d%'s latch is marked as part of irreducible region", i);
1443 err = 1;
1444 }
1445 }
1446
1447 /* Check irreducible loops. */
1448 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
1449 {
1450 /* Record old info. */
1451 irreds = sbitmap_alloc (last_basic_block);
1452 FOR_EACH_BB (bb)
1453 {
1454 edge_iterator ei;
1455 if (bb->flags & BB_IRREDUCIBLE_LOOP)
1456 bitmap_set_bit (irreds, bb->index);
1457 else
1458 bitmap_clear_bit (irreds, bb->index);
1459 FOR_EACH_EDGE (e, ei, bb->succs)
1460 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
1461 e->flags |= EDGE_ALL_FLAGS + 1;
1462 }
1463
1464 /* Recount it. */
1465 mark_irreducible_loops ();
1466
1467 /* Compare. */
1468 FOR_EACH_BB (bb)
1469 {
1470 edge_iterator ei;
1471
1472 if ((bb->flags & BB_IRREDUCIBLE_LOOP)
1473 && !bitmap_bit_p (irreds, bb->index))
1474 {
1475 error ("basic block %d should be marked irreducible", bb->index);
1476 err = 1;
1477 }
1478 else if (!(bb->flags & BB_IRREDUCIBLE_LOOP)
1479 && bitmap_bit_p (irreds, bb->index))
1480 {
1481 error ("basic block %d should not be marked irreducible", bb->index);
1482 err = 1;
1483 }
1484 FOR_EACH_EDGE (e, ei, bb->succs)
1485 {
1486 if ((e->flags & EDGE_IRREDUCIBLE_LOOP)
1487 && !(e->flags & (EDGE_ALL_FLAGS + 1)))
1488 {
1489 error ("edge from %d to %d should be marked irreducible",
1490 e->src->index, e->dest->index);
1491 err = 1;
1492 }
1493 else if (!(e->flags & EDGE_IRREDUCIBLE_LOOP)
1494 && (e->flags & (EDGE_ALL_FLAGS + 1)))
1495 {
1496 error ("edge from %d to %d should not be marked irreducible",
1497 e->src->index, e->dest->index);
1498 err = 1;
1499 }
1500 e->flags &= ~(EDGE_ALL_FLAGS + 1);
1501 }
1502 }
1503 free (irreds);
1504 }
1505
1506 /* Check the recorded loop exits. */
1507 FOR_EACH_LOOP (li, loop, 0)
1508 {
1509 if (!loop->exits || loop->exits->e != NULL)
1510 {
1511 error ("corrupted head of the exits list of loop %d",
1512 loop->num);
1513 err = 1;
1514 }
1515 else
1516 {
1517 /* Check that the list forms a cycle, and all elements except
1518 for the head are nonnull. */
1519 for (mexit = loop->exits, exit = mexit->next, i = 0;
1520 exit->e && exit != mexit;
1521 exit = exit->next)
1522 {
1523 if (i++ & 1)
1524 mexit = mexit->next;
1525 }
1526
1527 if (exit != loop->exits)
1528 {
1529 error ("corrupted exits list of loop %d", loop->num);
1530 err = 1;
1531 }
1532 }
1533
1534 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1535 {
1536 if (loop->exits->next != loop->exits)
1537 {
1538 error ("nonempty exits list of loop %d, but exits are not recorded",
1539 loop->num);
1540 err = 1;
1541 }
1542 }
1543 }
1544
1545 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1546 {
1547 unsigned n_exits = 0, eloops;
1548
1549 memset (sizes, 0, sizeof (unsigned) * num);
1550 FOR_EACH_BB (bb)
1551 {
1552 edge_iterator ei;
1553 if (bb->loop_father == current_loops->tree_root)
1554 continue;
1555 FOR_EACH_EDGE (e, ei, bb->succs)
1556 {
1557 if (flow_bb_inside_loop_p (bb->loop_father, e->dest))
1558 continue;
1559
1560 n_exits++;
1561 exit = get_exit_descriptions (e);
1562 if (!exit)
1563 {
1564 error ("exit %d->%d not recorded",
1565 e->src->index, e->dest->index);
1566 err = 1;
1567 }
1568 eloops = 0;
1569 for (; exit; exit = exit->next_e)
1570 eloops++;
1571
1572 for (loop = bb->loop_father;
1573 loop != e->dest->loop_father
1574 /* When a loop exit is also an entry edge which
1575 can happen when avoiding CFG manipulations
1576 then the last loop exited is the outer loop
1577 of the loop entered. */
1578 && loop != loop_outer (e->dest->loop_father);
1579 loop = loop_outer (loop))
1580 {
1581 eloops--;
1582 sizes[loop->num]++;
1583 }
1584
1585 if (eloops != 0)
1586 {
1587 error ("wrong list of exited loops for edge %d->%d",
1588 e->src->index, e->dest->index);
1589 err = 1;
1590 }
1591 }
1592 }
1593
1594 if (n_exits != htab_elements (current_loops->exits))
1595 {
1596 error ("too many loop exits recorded");
1597 err = 1;
1598 }
1599
1600 FOR_EACH_LOOP (li, loop, 0)
1601 {
1602 eloops = 0;
1603 for (exit = loop->exits->next; exit->e; exit = exit->next)
1604 eloops++;
1605 if (eloops != sizes[loop->num])
1606 {
1607 error ("%d exits recorded for loop %d (having %d exits)",
1608 eloops, loop->num, sizes[loop->num]);
1609 err = 1;
1610 }
1611 }
1612 }
1613
1614 gcc_assert (!err);
1615
1616 free (sizes);
1617 if (!dom_available)
1618 free_dominance_info (CDI_DOMINATORS);
1619 }
1620
1621 /* Returns latch edge of LOOP. */
1622 edge
1623 loop_latch_edge (const struct loop *loop)
1624 {
1625 return find_edge (loop->latch, loop->header);
1626 }
1627
1628 /* Returns preheader edge of LOOP. */
1629 edge
1630 loop_preheader_edge (const struct loop *loop)
1631 {
1632 edge e;
1633 edge_iterator ei;
1634
1635 gcc_assert (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS));
1636
1637 FOR_EACH_EDGE (e, ei, loop->header->preds)
1638 if (e->src != loop->latch)
1639 break;
1640
1641 return e;
1642 }
1643
1644 /* Returns true if E is an exit of LOOP. */
1645
1646 bool
1647 loop_exit_edge_p (const struct loop *loop, const_edge e)
1648 {
1649 return (flow_bb_inside_loop_p (loop, e->src)
1650 && !flow_bb_inside_loop_p (loop, e->dest));
1651 }
1652
1653 /* Returns the single exit edge of LOOP, or NULL if LOOP has either no exit
1654 or more than one exit. If loops do not have the exits recorded, NULL
1655 is returned always. */
1656
1657 edge
1658 single_exit (const struct loop *loop)
1659 {
1660 struct loop_exit *exit = loop->exits->next;
1661
1662 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1663 return NULL;
1664
1665 if (exit->e && exit->next == loop->exits)
1666 return exit->e;
1667 else
1668 return NULL;
1669 }
1670
1671 /* Returns true when BB has an incoming edge exiting LOOP. */
1672
1673 bool
1674 loop_exits_to_bb_p (struct loop *loop, basic_block bb)
1675 {
1676 edge e;
1677 edge_iterator ei;
1678
1679 FOR_EACH_EDGE (e, ei, bb->preds)
1680 if (loop_exit_edge_p (loop, e))
1681 return true;
1682
1683 return false;
1684 }
1685
1686 /* Returns true when BB has an outgoing edge exiting LOOP. */
1687
1688 bool
1689 loop_exits_from_bb_p (struct loop *loop, basic_block bb)
1690 {
1691 edge e;
1692 edge_iterator ei;
1693
1694 FOR_EACH_EDGE (e, ei, bb->succs)
1695 if (loop_exit_edge_p (loop, e))
1696 return true;
1697
1698 return false;
1699 }
1700
1701 /* Return location corresponding to the loop control condition if possible. */
1702
1703 location_t
1704 get_loop_location (struct loop *loop)
1705 {
1706 rtx insn = NULL;
1707 struct niter_desc *desc = NULL;
1708 edge exit;
1709
1710 /* For a for or while loop, we would like to return the location
1711 of the for or while statement, if possible. To do this, look
1712 for the branch guarding the loop back-edge. */
1713
1714 /* If this is a simple loop with an in_edge, then the loop control
1715 branch is typically at the end of its source. */
1716 desc = get_simple_loop_desc (loop);
1717 if (desc->in_edge)
1718 {
1719 FOR_BB_INSNS_REVERSE (desc->in_edge->src, insn)
1720 {
1721 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1722 return INSN_LOCATION (insn);
1723 }
1724 }
1725 /* If loop has a single exit, then the loop control branch
1726 must be at the end of its source. */
1727 if ((exit = single_exit (loop)))
1728 {
1729 FOR_BB_INSNS_REVERSE (exit->src, insn)
1730 {
1731 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1732 return INSN_LOCATION (insn);
1733 }
1734 }
1735 /* Next check the latch, to see if it is non-empty. */
1736 FOR_BB_INSNS_REVERSE (loop->latch, insn)
1737 {
1738 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1739 return INSN_LOCATION (insn);
1740 }
1741 /* Finally, if none of the above identifies the loop control branch,
1742 return the first location in the loop header. */
1743 FOR_BB_INSNS (loop->header, insn)
1744 {
1745 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1746 return INSN_LOCATION (insn);
1747 }
1748 /* If all else fails, simply return the current function location. */
1749 return DECL_SOURCE_LOCATION (current_function_decl);
1750 }
1751