fold-const.c (fold_binary_loc): Fix copy-and-pasto.
[gcc.git] / gcc / cfgloopanal.c
1 /* Natural loop analysis code for GNU compiler.
2 Copyright (C) 2002-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl.h"
25 #include "hard-reg-set.h"
26 #include "obstack.h"
27 #include "basic-block.h"
28 #include "cfgloop.h"
29 #include "expr.h"
30 #include "graphds.h"
31 #include "params.h"
32
33 struct target_cfgloop default_target_cfgloop;
34 #if SWITCHABLE_TARGET
35 struct target_cfgloop *this_target_cfgloop = &default_target_cfgloop;
36 #endif
37
38 /* Checks whether BB is executed exactly once in each LOOP iteration. */
39
40 bool
41 just_once_each_iteration_p (const struct loop *loop, const_basic_block bb)
42 {
43 /* It must be executed at least once each iteration. */
44 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
45 return false;
46
47 /* And just once. */
48 if (bb->loop_father != loop)
49 return false;
50
51 /* But this was not enough. We might have some irreducible loop here. */
52 if (bb->flags & BB_IRREDUCIBLE_LOOP)
53 return false;
54
55 return true;
56 }
57
58 /* Marks blocks and edges that are part of non-recognized loops; i.e. we
59 throw away all latch edges and mark blocks inside any remaining cycle.
60 Everything is a bit complicated due to fact we do not want to do this
61 for parts of cycles that only "pass" through some loop -- i.e. for
62 each cycle, we want to mark blocks that belong directly to innermost
63 loop containing the whole cycle.
64
65 LOOPS is the loop tree. */
66
67 #define LOOP_REPR(LOOP) ((LOOP)->num + last_basic_block_for_fn (cfun))
68 #define BB_REPR(BB) ((BB)->index + 1)
69
70 bool
71 mark_irreducible_loops (void)
72 {
73 basic_block act;
74 struct graph_edge *ge;
75 edge e;
76 edge_iterator ei;
77 int src, dest;
78 unsigned depth;
79 struct graph *g;
80 int num = number_of_loops (cfun);
81 struct loop *cloop;
82 bool irred_loop_found = false;
83 int i;
84
85 gcc_assert (current_loops != NULL);
86
87 /* Reset the flags. */
88 FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR_FOR_FN (cfun),
89 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
90 {
91 act->flags &= ~BB_IRREDUCIBLE_LOOP;
92 FOR_EACH_EDGE (e, ei, act->succs)
93 e->flags &= ~EDGE_IRREDUCIBLE_LOOP;
94 }
95
96 /* Create the edge lists. */
97 g = new_graph (last_basic_block_for_fn (cfun) + num);
98
99 FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR_FOR_FN (cfun),
100 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
101 FOR_EACH_EDGE (e, ei, act->succs)
102 {
103 /* Ignore edges to exit. */
104 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
105 continue;
106
107 src = BB_REPR (act);
108 dest = BB_REPR (e->dest);
109
110 /* Ignore latch edges. */
111 if (e->dest->loop_father->header == e->dest
112 && e->dest->loop_father->latch == act)
113 continue;
114
115 /* Edges inside a single loop should be left where they are. Edges
116 to subloop headers should lead to representative of the subloop,
117 but from the same place.
118
119 Edges exiting loops should lead from representative
120 of the son of nearest common ancestor of the loops in that
121 act lays. */
122
123 if (e->dest->loop_father->header == e->dest)
124 dest = LOOP_REPR (e->dest->loop_father);
125
126 if (!flow_bb_inside_loop_p (act->loop_father, e->dest))
127 {
128 depth = 1 + loop_depth (find_common_loop (act->loop_father,
129 e->dest->loop_father));
130 if (depth == loop_depth (act->loop_father))
131 cloop = act->loop_father;
132 else
133 cloop = (*act->loop_father->superloops)[depth];
134
135 src = LOOP_REPR (cloop);
136 }
137
138 add_edge (g, src, dest)->data = e;
139 }
140
141 /* Find the strongly connected components. */
142 graphds_scc (g, NULL);
143
144 /* Mark the irreducible loops. */
145 for (i = 0; i < g->n_vertices; i++)
146 for (ge = g->vertices[i].succ; ge; ge = ge->succ_next)
147 {
148 edge real = (edge) ge->data;
149 /* edge E in graph G is irreducible if it connects two vertices in the
150 same scc. */
151
152 /* All edges should lead from a component with higher number to the
153 one with lower one. */
154 gcc_assert (g->vertices[ge->src].component >= g->vertices[ge->dest].component);
155
156 if (g->vertices[ge->src].component != g->vertices[ge->dest].component)
157 continue;
158
159 real->flags |= EDGE_IRREDUCIBLE_LOOP;
160 irred_loop_found = true;
161 if (flow_bb_inside_loop_p (real->src->loop_father, real->dest))
162 real->src->flags |= BB_IRREDUCIBLE_LOOP;
163 }
164
165 free_graph (g);
166
167 loops_state_set (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
168 return irred_loop_found;
169 }
170
171 /* Counts number of insns inside LOOP. */
172 int
173 num_loop_insns (const struct loop *loop)
174 {
175 basic_block *bbs, bb;
176 unsigned i, ninsns = 0;
177 rtx_insn *insn;
178
179 bbs = get_loop_body (loop);
180 for (i = 0; i < loop->num_nodes; i++)
181 {
182 bb = bbs[i];
183 FOR_BB_INSNS (bb, insn)
184 if (NONDEBUG_INSN_P (insn))
185 ninsns++;
186 }
187 free (bbs);
188
189 if (!ninsns)
190 ninsns = 1; /* To avoid division by zero. */
191
192 return ninsns;
193 }
194
195 /* Counts number of insns executed on average per iteration LOOP. */
196 int
197 average_num_loop_insns (const struct loop *loop)
198 {
199 basic_block *bbs, bb;
200 unsigned i, binsns, ninsns, ratio;
201 rtx_insn *insn;
202
203 ninsns = 0;
204 bbs = get_loop_body (loop);
205 for (i = 0; i < loop->num_nodes; i++)
206 {
207 bb = bbs[i];
208
209 binsns = 0;
210 FOR_BB_INSNS (bb, insn)
211 if (NONDEBUG_INSN_P (insn))
212 binsns++;
213
214 ratio = loop->header->frequency == 0
215 ? BB_FREQ_MAX
216 : (bb->frequency * BB_FREQ_MAX) / loop->header->frequency;
217 ninsns += binsns * ratio;
218 }
219 free (bbs);
220
221 ninsns /= BB_FREQ_MAX;
222 if (!ninsns)
223 ninsns = 1; /* To avoid division by zero. */
224
225 return ninsns;
226 }
227
228 /* Returns expected number of iterations of LOOP, according to
229 measured or guessed profile. No bounding is done on the
230 value. */
231
232 gcov_type
233 expected_loop_iterations_unbounded (const struct loop *loop)
234 {
235 edge e;
236 edge_iterator ei;
237
238 if (loop->latch->count || loop->header->count)
239 {
240 gcov_type count_in, count_latch, expected;
241
242 count_in = 0;
243 count_latch = 0;
244
245 FOR_EACH_EDGE (e, ei, loop->header->preds)
246 if (e->src == loop->latch)
247 count_latch = e->count;
248 else
249 count_in += e->count;
250
251 if (count_in == 0)
252 expected = count_latch * 2;
253 else
254 expected = (count_latch + count_in - 1) / count_in;
255
256 return expected;
257 }
258 else
259 {
260 int freq_in, freq_latch;
261
262 freq_in = 0;
263 freq_latch = 0;
264
265 FOR_EACH_EDGE (e, ei, loop->header->preds)
266 if (e->src == loop->latch)
267 freq_latch = EDGE_FREQUENCY (e);
268 else
269 freq_in += EDGE_FREQUENCY (e);
270
271 if (freq_in == 0)
272 return freq_latch * 2;
273
274 return (freq_latch + freq_in - 1) / freq_in;
275 }
276 }
277
278 /* Returns expected number of LOOP iterations. The returned value is bounded
279 by REG_BR_PROB_BASE. */
280
281 unsigned
282 expected_loop_iterations (const struct loop *loop)
283 {
284 gcov_type expected = expected_loop_iterations_unbounded (loop);
285 return (expected > REG_BR_PROB_BASE ? REG_BR_PROB_BASE : expected);
286 }
287
288 /* Returns the maximum level of nesting of subloops of LOOP. */
289
290 unsigned
291 get_loop_level (const struct loop *loop)
292 {
293 const struct loop *ploop;
294 unsigned mx = 0, l;
295
296 for (ploop = loop->inner; ploop; ploop = ploop->next)
297 {
298 l = get_loop_level (ploop);
299 if (l >= mx)
300 mx = l + 1;
301 }
302 return mx;
303 }
304
305 /* Initialize the constants for computing set costs. */
306
307 void
308 init_set_costs (void)
309 {
310 int speed;
311 rtx_insn *seq;
312 rtx reg1 = gen_raw_REG (SImode, FIRST_PSEUDO_REGISTER);
313 rtx reg2 = gen_raw_REG (SImode, FIRST_PSEUDO_REGISTER + 1);
314 rtx addr = gen_raw_REG (Pmode, FIRST_PSEUDO_REGISTER + 2);
315 rtx mem = validize_mem (gen_rtx_MEM (SImode, addr));
316 unsigned i;
317
318 target_avail_regs = 0;
319 target_clobbered_regs = 0;
320 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
321 if (TEST_HARD_REG_BIT (reg_class_contents[GENERAL_REGS], i)
322 && !fixed_regs[i])
323 {
324 target_avail_regs++;
325 if (call_used_regs[i])
326 target_clobbered_regs++;
327 }
328
329 target_res_regs = 3;
330
331 for (speed = 0; speed < 2; speed++)
332 {
333 crtl->maybe_hot_insn_p = speed;
334 /* Set up the costs for using extra registers:
335
336 1) If not many free registers remain, we should prefer having an
337 additional move to decreasing the number of available registers.
338 (TARGET_REG_COST).
339 2) If no registers are available, we need to spill, which may require
340 storing the old value to memory and loading it back
341 (TARGET_SPILL_COST). */
342
343 start_sequence ();
344 emit_move_insn (reg1, reg2);
345 seq = get_insns ();
346 end_sequence ();
347 target_reg_cost [speed] = seq_cost (seq, speed);
348
349 start_sequence ();
350 emit_move_insn (mem, reg1);
351 emit_move_insn (reg2, mem);
352 seq = get_insns ();
353 end_sequence ();
354 target_spill_cost [speed] = seq_cost (seq, speed);
355 }
356 default_rtl_profile ();
357 }
358
359 /* Estimates cost of increased register pressure caused by making N_NEW new
360 registers live around the loop. N_OLD is the number of registers live
361 around the loop. If CALL_P is true, also take into account that
362 call-used registers may be clobbered in the loop body, reducing the
363 number of available registers before we spill. */
364
365 unsigned
366 estimate_reg_pressure_cost (unsigned n_new, unsigned n_old, bool speed,
367 bool call_p)
368 {
369 unsigned cost;
370 unsigned regs_needed = n_new + n_old;
371 unsigned available_regs = target_avail_regs;
372
373 /* If there is a call in the loop body, the call-clobbered registers
374 are not available for loop invariants. */
375 if (call_p)
376 available_regs = available_regs - target_clobbered_regs;
377
378 /* If we have enough registers, we should use them and not restrict
379 the transformations unnecessarily. */
380 if (regs_needed + target_res_regs <= available_regs)
381 return 0;
382
383 if (regs_needed <= available_regs)
384 /* If we are close to running out of registers, try to preserve
385 them. */
386 cost = target_reg_cost [speed] * n_new;
387 else
388 /* If we run out of registers, it is very expensive to add another
389 one. */
390 cost = target_spill_cost [speed] * n_new;
391
392 if (optimize && (flag_ira_region == IRA_REGION_ALL
393 || flag_ira_region == IRA_REGION_MIXED)
394 && number_of_loops (cfun) <= (unsigned) IRA_MAX_LOOPS_NUM)
395 /* IRA regional allocation deals with high register pressure
396 better. So decrease the cost (to do more accurate the cost
397 calculation for IRA, we need to know how many registers lives
398 through the loop transparently). */
399 cost /= 2;
400
401 return cost;
402 }
403
404 /* Sets EDGE_LOOP_EXIT flag for all loop exits. */
405
406 void
407 mark_loop_exit_edges (void)
408 {
409 basic_block bb;
410 edge e;
411
412 if (number_of_loops (cfun) <= 1)
413 return;
414
415 FOR_EACH_BB_FN (bb, cfun)
416 {
417 edge_iterator ei;
418
419 FOR_EACH_EDGE (e, ei, bb->succs)
420 {
421 if (loop_outer (bb->loop_father)
422 && loop_exit_edge_p (bb->loop_father, e))
423 e->flags |= EDGE_LOOP_EXIT;
424 else
425 e->flags &= ~EDGE_LOOP_EXIT;
426 }
427 }
428 }
429
430 /* Return exit edge if loop has only one exit that is likely
431 to be executed on runtime (i.e. it is not EH or leading
432 to noreturn call. */
433
434 edge
435 single_likely_exit (struct loop *loop)
436 {
437 edge found = single_exit (loop);
438 vec<edge> exits;
439 unsigned i;
440 edge ex;
441
442 if (found)
443 return found;
444 exits = get_loop_exit_edges (loop);
445 FOR_EACH_VEC_ELT (exits, i, ex)
446 {
447 if (ex->flags & (EDGE_EH | EDGE_ABNORMAL_CALL))
448 continue;
449 /* The constant of 5 is set in a way so noreturn calls are
450 ruled out by this test. The static branch prediction algorithm
451 will not assign such a low probability to conditionals for usual
452 reasons. */
453 if (profile_status_for_fn (cfun) != PROFILE_ABSENT
454 && ex->probability < 5 && !ex->count)
455 continue;
456 if (!found)
457 found = ex;
458 else
459 {
460 exits.release ();
461 return NULL;
462 }
463 }
464 exits.release ();
465 return found;
466 }
467
468
469 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
470 order against direction of edges from latch. Specially, if
471 header != latch, latch is the 1-st block. */
472
473 vec<basic_block>
474 get_loop_hot_path (const struct loop *loop)
475 {
476 basic_block bb = loop->header;
477 vec<basic_block> path = vNULL;
478 bitmap visited = BITMAP_ALLOC (NULL);
479
480 while (true)
481 {
482 edge_iterator ei;
483 edge e;
484 edge best = NULL;
485
486 path.safe_push (bb);
487 bitmap_set_bit (visited, bb->index);
488 FOR_EACH_EDGE (e, ei, bb->succs)
489 if ((!best || e->probability > best->probability)
490 && !loop_exit_edge_p (loop, e)
491 && !bitmap_bit_p (visited, e->dest->index))
492 best = e;
493 if (!best || best->dest == loop->header)
494 break;
495 bb = best->dest;
496 }
497 BITMAP_FREE (visited);
498 return path;
499 }