PR c++/68795: fix uninitialized close_paren_loc in cp_parser_postfix_expression
[gcc.git] / gcc / cfgloopanal.c
1 /* Natural loop analysis code for GNU compiler.
2 Copyright (C) 2002-2016 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "predict.h"
27 #include "emit-rtl.h"
28 #include "cfgloop.h"
29 #include "explow.h"
30 #include "expr.h"
31 #include "graphds.h"
32 #include "params.h"
33
34 struct target_cfgloop default_target_cfgloop;
35 #if SWITCHABLE_TARGET
36 struct target_cfgloop *this_target_cfgloop = &default_target_cfgloop;
37 #endif
38
39 /* Checks whether BB is executed exactly once in each LOOP iteration. */
40
41 bool
42 just_once_each_iteration_p (const struct loop *loop, const_basic_block bb)
43 {
44 /* It must be executed at least once each iteration. */
45 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
46 return false;
47
48 /* And just once. */
49 if (bb->loop_father != loop)
50 return false;
51
52 /* But this was not enough. We might have some irreducible loop here. */
53 if (bb->flags & BB_IRREDUCIBLE_LOOP)
54 return false;
55
56 return true;
57 }
58
59 /* Marks blocks and edges that are part of non-recognized loops; i.e. we
60 throw away all latch edges and mark blocks inside any remaining cycle.
61 Everything is a bit complicated due to fact we do not want to do this
62 for parts of cycles that only "pass" through some loop -- i.e. for
63 each cycle, we want to mark blocks that belong directly to innermost
64 loop containing the whole cycle.
65
66 LOOPS is the loop tree. */
67
68 #define LOOP_REPR(LOOP) ((LOOP)->num + last_basic_block_for_fn (cfun))
69 #define BB_REPR(BB) ((BB)->index + 1)
70
71 bool
72 mark_irreducible_loops (void)
73 {
74 basic_block act;
75 struct graph_edge *ge;
76 edge e;
77 edge_iterator ei;
78 int src, dest;
79 unsigned depth;
80 struct graph *g;
81 int num = number_of_loops (cfun);
82 struct loop *cloop;
83 bool irred_loop_found = false;
84 int i;
85
86 gcc_assert (current_loops != NULL);
87
88 /* Reset the flags. */
89 FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR_FOR_FN (cfun),
90 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
91 {
92 act->flags &= ~BB_IRREDUCIBLE_LOOP;
93 FOR_EACH_EDGE (e, ei, act->succs)
94 e->flags &= ~EDGE_IRREDUCIBLE_LOOP;
95 }
96
97 /* Create the edge lists. */
98 g = new_graph (last_basic_block_for_fn (cfun) + num);
99
100 FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR_FOR_FN (cfun),
101 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
102 FOR_EACH_EDGE (e, ei, act->succs)
103 {
104 /* Ignore edges to exit. */
105 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
106 continue;
107
108 src = BB_REPR (act);
109 dest = BB_REPR (e->dest);
110
111 /* Ignore latch edges. */
112 if (e->dest->loop_father->header == e->dest
113 && e->dest->loop_father->latch == act)
114 continue;
115
116 /* Edges inside a single loop should be left where they are. Edges
117 to subloop headers should lead to representative of the subloop,
118 but from the same place.
119
120 Edges exiting loops should lead from representative
121 of the son of nearest common ancestor of the loops in that
122 act lays. */
123
124 if (e->dest->loop_father->header == e->dest)
125 dest = LOOP_REPR (e->dest->loop_father);
126
127 if (!flow_bb_inside_loop_p (act->loop_father, e->dest))
128 {
129 depth = 1 + loop_depth (find_common_loop (act->loop_father,
130 e->dest->loop_father));
131 if (depth == loop_depth (act->loop_father))
132 cloop = act->loop_father;
133 else
134 cloop = (*act->loop_father->superloops)[depth];
135
136 src = LOOP_REPR (cloop);
137 }
138
139 add_edge (g, src, dest)->data = e;
140 }
141
142 /* Find the strongly connected components. */
143 graphds_scc (g, NULL);
144
145 /* Mark the irreducible loops. */
146 for (i = 0; i < g->n_vertices; i++)
147 for (ge = g->vertices[i].succ; ge; ge = ge->succ_next)
148 {
149 edge real = (edge) ge->data;
150 /* edge E in graph G is irreducible if it connects two vertices in the
151 same scc. */
152
153 /* All edges should lead from a component with higher number to the
154 one with lower one. */
155 gcc_assert (g->vertices[ge->src].component >= g->vertices[ge->dest].component);
156
157 if (g->vertices[ge->src].component != g->vertices[ge->dest].component)
158 continue;
159
160 real->flags |= EDGE_IRREDUCIBLE_LOOP;
161 irred_loop_found = true;
162 if (flow_bb_inside_loop_p (real->src->loop_father, real->dest))
163 real->src->flags |= BB_IRREDUCIBLE_LOOP;
164 }
165
166 free_graph (g);
167
168 loops_state_set (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
169 return irred_loop_found;
170 }
171
172 /* Counts number of insns inside LOOP. */
173 int
174 num_loop_insns (const struct loop *loop)
175 {
176 basic_block *bbs, bb;
177 unsigned i, ninsns = 0;
178 rtx_insn *insn;
179
180 bbs = get_loop_body (loop);
181 for (i = 0; i < loop->num_nodes; i++)
182 {
183 bb = bbs[i];
184 FOR_BB_INSNS (bb, insn)
185 if (NONDEBUG_INSN_P (insn))
186 ninsns++;
187 }
188 free (bbs);
189
190 if (!ninsns)
191 ninsns = 1; /* To avoid division by zero. */
192
193 return ninsns;
194 }
195
196 /* Counts number of insns executed on average per iteration LOOP. */
197 int
198 average_num_loop_insns (const struct loop *loop)
199 {
200 basic_block *bbs, bb;
201 unsigned i, binsns, ninsns, ratio;
202 rtx_insn *insn;
203
204 ninsns = 0;
205 bbs = get_loop_body (loop);
206 for (i = 0; i < loop->num_nodes; i++)
207 {
208 bb = bbs[i];
209
210 binsns = 0;
211 FOR_BB_INSNS (bb, insn)
212 if (NONDEBUG_INSN_P (insn))
213 binsns++;
214
215 ratio = loop->header->frequency == 0
216 ? BB_FREQ_MAX
217 : (bb->frequency * BB_FREQ_MAX) / loop->header->frequency;
218 ninsns += binsns * ratio;
219 }
220 free (bbs);
221
222 ninsns /= BB_FREQ_MAX;
223 if (!ninsns)
224 ninsns = 1; /* To avoid division by zero. */
225
226 return ninsns;
227 }
228
229 /* Returns expected number of iterations of LOOP, according to
230 measured or guessed profile. No bounding is done on the
231 value. */
232
233 gcov_type
234 expected_loop_iterations_unbounded (const struct loop *loop)
235 {
236 edge e;
237 edge_iterator ei;
238
239 if (loop->latch->count || loop->header->count)
240 {
241 gcov_type count_in, count_latch, expected;
242
243 count_in = 0;
244 count_latch = 0;
245
246 FOR_EACH_EDGE (e, ei, loop->header->preds)
247 if (e->src == loop->latch)
248 count_latch = e->count;
249 else
250 count_in += e->count;
251
252 if (count_in == 0)
253 expected = count_latch * 2;
254 else
255 expected = (count_latch + count_in - 1) / count_in;
256
257 return expected;
258 }
259 else
260 {
261 int freq_in, freq_latch;
262
263 freq_in = 0;
264 freq_latch = 0;
265
266 FOR_EACH_EDGE (e, ei, loop->header->preds)
267 if (e->src == loop->latch)
268 freq_latch = EDGE_FREQUENCY (e);
269 else
270 freq_in += EDGE_FREQUENCY (e);
271
272 if (freq_in == 0)
273 return freq_latch * 2;
274
275 return (freq_latch + freq_in - 1) / freq_in;
276 }
277 }
278
279 /* Returns expected number of LOOP iterations. The returned value is bounded
280 by REG_BR_PROB_BASE. */
281
282 unsigned
283 expected_loop_iterations (const struct loop *loop)
284 {
285 gcov_type expected = expected_loop_iterations_unbounded (loop);
286 return (expected > REG_BR_PROB_BASE ? REG_BR_PROB_BASE : expected);
287 }
288
289 /* Returns the maximum level of nesting of subloops of LOOP. */
290
291 unsigned
292 get_loop_level (const struct loop *loop)
293 {
294 const struct loop *ploop;
295 unsigned mx = 0, l;
296
297 for (ploop = loop->inner; ploop; ploop = ploop->next)
298 {
299 l = get_loop_level (ploop);
300 if (l >= mx)
301 mx = l + 1;
302 }
303 return mx;
304 }
305
306 /* Initialize the constants for computing set costs. */
307
308 void
309 init_set_costs (void)
310 {
311 int speed;
312 rtx_insn *seq;
313 rtx reg1 = gen_raw_REG (SImode, LAST_VIRTUAL_REGISTER + 1);
314 rtx reg2 = gen_raw_REG (SImode, LAST_VIRTUAL_REGISTER + 2);
315 rtx addr = gen_raw_REG (Pmode, LAST_VIRTUAL_REGISTER + 3);
316 rtx mem = validize_mem (gen_rtx_MEM (SImode, addr));
317 unsigned i;
318
319 target_avail_regs = 0;
320 target_clobbered_regs = 0;
321 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
322 if (TEST_HARD_REG_BIT (reg_class_contents[GENERAL_REGS], i)
323 && !fixed_regs[i])
324 {
325 target_avail_regs++;
326 if (call_used_regs[i])
327 target_clobbered_regs++;
328 }
329
330 target_res_regs = 3;
331
332 for (speed = 0; speed < 2; speed++)
333 {
334 crtl->maybe_hot_insn_p = speed;
335 /* Set up the costs for using extra registers:
336
337 1) If not many free registers remain, we should prefer having an
338 additional move to decreasing the number of available registers.
339 (TARGET_REG_COST).
340 2) If no registers are available, we need to spill, which may require
341 storing the old value to memory and loading it back
342 (TARGET_SPILL_COST). */
343
344 start_sequence ();
345 emit_move_insn (reg1, reg2);
346 seq = get_insns ();
347 end_sequence ();
348 target_reg_cost [speed] = seq_cost (seq, speed);
349
350 start_sequence ();
351 emit_move_insn (mem, reg1);
352 emit_move_insn (reg2, mem);
353 seq = get_insns ();
354 end_sequence ();
355 target_spill_cost [speed] = seq_cost (seq, speed);
356 }
357 default_rtl_profile ();
358 }
359
360 /* Estimates cost of increased register pressure caused by making N_NEW new
361 registers live around the loop. N_OLD is the number of registers live
362 around the loop. If CALL_P is true, also take into account that
363 call-used registers may be clobbered in the loop body, reducing the
364 number of available registers before we spill. */
365
366 unsigned
367 estimate_reg_pressure_cost (unsigned n_new, unsigned n_old, bool speed,
368 bool call_p)
369 {
370 unsigned cost;
371 unsigned regs_needed = n_new + n_old;
372 unsigned available_regs = target_avail_regs;
373
374 /* If there is a call in the loop body, the call-clobbered registers
375 are not available for loop invariants. */
376 if (call_p)
377 available_regs = available_regs - target_clobbered_regs;
378
379 /* If we have enough registers, we should use them and not restrict
380 the transformations unnecessarily. */
381 if (regs_needed + target_res_regs <= available_regs)
382 return 0;
383
384 if (regs_needed <= available_regs)
385 /* If we are close to running out of registers, try to preserve
386 them. */
387 cost = target_reg_cost [speed] * n_new;
388 else
389 /* If we run out of registers, it is very expensive to add another
390 one. */
391 cost = target_spill_cost [speed] * n_new;
392
393 if (optimize && (flag_ira_region == IRA_REGION_ALL
394 || flag_ira_region == IRA_REGION_MIXED)
395 && number_of_loops (cfun) <= (unsigned) IRA_MAX_LOOPS_NUM)
396 /* IRA regional allocation deals with high register pressure
397 better. So decrease the cost (to do more accurate the cost
398 calculation for IRA, we need to know how many registers lives
399 through the loop transparently). */
400 cost /= 2;
401
402 return cost;
403 }
404
405 /* Sets EDGE_LOOP_EXIT flag for all loop exits. */
406
407 void
408 mark_loop_exit_edges (void)
409 {
410 basic_block bb;
411 edge e;
412
413 if (number_of_loops (cfun) <= 1)
414 return;
415
416 FOR_EACH_BB_FN (bb, cfun)
417 {
418 edge_iterator ei;
419
420 FOR_EACH_EDGE (e, ei, bb->succs)
421 {
422 if (loop_outer (bb->loop_father)
423 && loop_exit_edge_p (bb->loop_father, e))
424 e->flags |= EDGE_LOOP_EXIT;
425 else
426 e->flags &= ~EDGE_LOOP_EXIT;
427 }
428 }
429 }
430
431 /* Return exit edge if loop has only one exit that is likely
432 to be executed on runtime (i.e. it is not EH or leading
433 to noreturn call. */
434
435 edge
436 single_likely_exit (struct loop *loop)
437 {
438 edge found = single_exit (loop);
439 vec<edge> exits;
440 unsigned i;
441 edge ex;
442
443 if (found)
444 return found;
445 exits = get_loop_exit_edges (loop);
446 FOR_EACH_VEC_ELT (exits, i, ex)
447 {
448 if (ex->flags & (EDGE_EH | EDGE_ABNORMAL_CALL))
449 continue;
450 /* The constant of 5 is set in a way so noreturn calls are
451 ruled out by this test. The static branch prediction algorithm
452 will not assign such a low probability to conditionals for usual
453 reasons. */
454 if (profile_status_for_fn (cfun) != PROFILE_ABSENT
455 && ex->probability < 5 && !ex->count)
456 continue;
457 if (!found)
458 found = ex;
459 else
460 {
461 exits.release ();
462 return NULL;
463 }
464 }
465 exits.release ();
466 return found;
467 }
468
469
470 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
471 order against direction of edges from latch. Specially, if
472 header != latch, latch is the 1-st block. */
473
474 vec<basic_block>
475 get_loop_hot_path (const struct loop *loop)
476 {
477 basic_block bb = loop->header;
478 vec<basic_block> path = vNULL;
479 bitmap visited = BITMAP_ALLOC (NULL);
480
481 while (true)
482 {
483 edge_iterator ei;
484 edge e;
485 edge best = NULL;
486
487 path.safe_push (bb);
488 bitmap_set_bit (visited, bb->index);
489 FOR_EACH_EDGE (e, ei, bb->succs)
490 if ((!best || e->probability > best->probability)
491 && !loop_exit_edge_p (loop, e)
492 && !bitmap_bit_p (visited, e->dest->index))
493 best = e;
494 if (!best || best->dest == loop->header)
495 break;
496 bb = best->dest;
497 }
498 BITMAP_FREE (visited);
499 return path;
500 }