tree.h (alias_sets_might_conflict_p): Rename into alias_sets_must_conflict_p.
[gcc.git] / gcc / cfgloopanal.c
1 /* Natural loop analysis code for GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "hard-reg-set.h"
27 #include "obstack.h"
28 #include "basic-block.h"
29 #include "cfgloop.h"
30 #include "expr.h"
31 #include "output.h"
32 #include "graphds.h"
33
34 /* Checks whether BB is executed exactly once in each LOOP iteration. */
35
36 bool
37 just_once_each_iteration_p (const struct loop *loop, basic_block bb)
38 {
39 /* It must be executed at least once each iteration. */
40 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
41 return false;
42
43 /* And just once. */
44 if (bb->loop_father != loop)
45 return false;
46
47 /* But this was not enough. We might have some irreducible loop here. */
48 if (bb->flags & BB_IRREDUCIBLE_LOOP)
49 return false;
50
51 return true;
52 }
53
54 /* Marks the edge E in graph G irreducible if it connects two vertices in the
55 same scc. */
56
57 static void
58 check_irred (struct graph *g, struct graph_edge *e)
59 {
60 edge real = (edge) e->data;
61
62 /* All edges should lead from a component with higher number to the
63 one with lower one. */
64 gcc_assert (g->vertices[e->src].component >= g->vertices[e->dest].component);
65
66 if (g->vertices[e->src].component != g->vertices[e->dest].component)
67 return;
68
69 real->flags |= EDGE_IRREDUCIBLE_LOOP;
70 if (flow_bb_inside_loop_p (real->src->loop_father, real->dest))
71 real->src->flags |= BB_IRREDUCIBLE_LOOP;
72 }
73
74 /* Marks blocks and edges that are part of non-recognized loops; i.e. we
75 throw away all latch edges and mark blocks inside any remaining cycle.
76 Everything is a bit complicated due to fact we do not want to do this
77 for parts of cycles that only "pass" through some loop -- i.e. for
78 each cycle, we want to mark blocks that belong directly to innermost
79 loop containing the whole cycle.
80
81 LOOPS is the loop tree. */
82
83 #define LOOP_REPR(LOOP) ((LOOP)->num + last_basic_block)
84 #define BB_REPR(BB) ((BB)->index + 1)
85
86 void
87 mark_irreducible_loops (void)
88 {
89 basic_block act;
90 edge e;
91 edge_iterator ei;
92 int src, dest;
93 unsigned depth;
94 struct graph *g;
95 int num = number_of_loops ();
96 struct loop *cloop;
97
98 gcc_assert (current_loops != NULL);
99
100 /* Reset the flags. */
101 FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
102 {
103 act->flags &= ~BB_IRREDUCIBLE_LOOP;
104 FOR_EACH_EDGE (e, ei, act->succs)
105 e->flags &= ~EDGE_IRREDUCIBLE_LOOP;
106 }
107
108 /* Create the edge lists. */
109 g = new_graph (last_basic_block + num);
110
111 FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
112 FOR_EACH_EDGE (e, ei, act->succs)
113 {
114 /* Ignore edges to exit. */
115 if (e->dest == EXIT_BLOCK_PTR)
116 continue;
117
118 src = BB_REPR (act);
119 dest = BB_REPR (e->dest);
120
121 /* Ignore latch edges. */
122 if (e->dest->loop_father->header == e->dest
123 && e->dest->loop_father->latch == act)
124 continue;
125
126 /* Edges inside a single loop should be left where they are. Edges
127 to subloop headers should lead to representative of the subloop,
128 but from the same place.
129
130 Edges exiting loops should lead from representative
131 of the son of nearest common ancestor of the loops in that
132 act lays. */
133
134 if (e->dest->loop_father->header == e->dest)
135 dest = LOOP_REPR (e->dest->loop_father);
136
137 if (!flow_bb_inside_loop_p (act->loop_father, e->dest))
138 {
139 depth = 1 + loop_depth (find_common_loop (act->loop_father,
140 e->dest->loop_father));
141 if (depth == loop_depth (act->loop_father))
142 cloop = act->loop_father;
143 else
144 cloop = VEC_index (loop_p, act->loop_father->superloops, depth);
145
146 src = LOOP_REPR (cloop);
147 }
148
149 add_edge (g, src, dest)->data = e;
150 }
151
152 /* Find the strongly connected components. */
153 graphds_scc (g, NULL);
154
155 /* Mark the irreducible loops. */
156 for_each_edge (g, check_irred);
157
158 free_graph (g);
159
160 current_loops->state |= LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS;
161 }
162
163 /* Counts number of insns inside LOOP. */
164 int
165 num_loop_insns (struct loop *loop)
166 {
167 basic_block *bbs, bb;
168 unsigned i, ninsns = 0;
169 rtx insn;
170
171 bbs = get_loop_body (loop);
172 for (i = 0; i < loop->num_nodes; i++)
173 {
174 bb = bbs[i];
175 ninsns++;
176 for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
177 if (INSN_P (insn))
178 ninsns++;
179 }
180 free(bbs);
181
182 return ninsns;
183 }
184
185 /* Counts number of insns executed on average per iteration LOOP. */
186 int
187 average_num_loop_insns (struct loop *loop)
188 {
189 basic_block *bbs, bb;
190 unsigned i, binsns, ninsns, ratio;
191 rtx insn;
192
193 ninsns = 0;
194 bbs = get_loop_body (loop);
195 for (i = 0; i < loop->num_nodes; i++)
196 {
197 bb = bbs[i];
198
199 binsns = 1;
200 for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
201 if (INSN_P (insn))
202 binsns++;
203
204 ratio = loop->header->frequency == 0
205 ? BB_FREQ_MAX
206 : (bb->frequency * BB_FREQ_MAX) / loop->header->frequency;
207 ninsns += binsns * ratio;
208 }
209 free(bbs);
210
211 ninsns /= BB_FREQ_MAX;
212 if (!ninsns)
213 ninsns = 1; /* To avoid division by zero. */
214
215 return ninsns;
216 }
217
218 /* Returns expected number of iterations of LOOP, according to
219 measured or guessed profile. No bounding is done on the
220 value. */
221
222 gcov_type
223 expected_loop_iterations_unbounded (const struct loop *loop)
224 {
225 edge e;
226 edge_iterator ei;
227
228 if (loop->latch->count || loop->header->count)
229 {
230 gcov_type count_in, count_latch, expected;
231
232 count_in = 0;
233 count_latch = 0;
234
235 FOR_EACH_EDGE (e, ei, loop->header->preds)
236 if (e->src == loop->latch)
237 count_latch = e->count;
238 else
239 count_in += e->count;
240
241 if (count_in == 0)
242 expected = count_latch * 2;
243 else
244 expected = (count_latch + count_in - 1) / count_in;
245
246 return expected;
247 }
248 else
249 {
250 int freq_in, freq_latch;
251
252 freq_in = 0;
253 freq_latch = 0;
254
255 FOR_EACH_EDGE (e, ei, loop->header->preds)
256 if (e->src == loop->latch)
257 freq_latch = EDGE_FREQUENCY (e);
258 else
259 freq_in += EDGE_FREQUENCY (e);
260
261 if (freq_in == 0)
262 return freq_latch * 2;
263
264 return (freq_latch + freq_in - 1) / freq_in;
265 }
266 }
267
268 /* Returns expected number of LOOP iterations. The returned value is bounded
269 by REG_BR_PROB_BASE. */
270
271 unsigned
272 expected_loop_iterations (const struct loop *loop)
273 {
274 gcov_type expected = expected_loop_iterations_unbounded (loop);
275 return (expected > REG_BR_PROB_BASE ? REG_BR_PROB_BASE : expected);
276 }
277
278 /* Returns the maximum level of nesting of subloops of LOOP. */
279
280 unsigned
281 get_loop_level (const struct loop *loop)
282 {
283 const struct loop *ploop;
284 unsigned mx = 0, l;
285
286 for (ploop = loop->inner; ploop; ploop = ploop->next)
287 {
288 l = get_loop_level (ploop);
289 if (l >= mx)
290 mx = l + 1;
291 }
292 return mx;
293 }
294
295 /* Returns estimate on cost of computing SEQ. */
296
297 static unsigned
298 seq_cost (rtx seq)
299 {
300 unsigned cost = 0;
301 rtx set;
302
303 for (; seq; seq = NEXT_INSN (seq))
304 {
305 set = single_set (seq);
306 if (set)
307 cost += rtx_cost (set, SET);
308 else
309 cost++;
310 }
311
312 return cost;
313 }
314
315 /* The properties of the target. */
316
317 unsigned target_avail_regs; /* Number of available registers. */
318 unsigned target_res_regs; /* Number of registers reserved for temporary
319 expressions. */
320 unsigned target_reg_cost; /* The cost for register when there still
321 is some reserve, but we are approaching
322 the number of available registers. */
323 unsigned target_spill_cost; /* The cost for register when we need
324 to spill. */
325
326 /* Initialize the constants for computing set costs. */
327
328 void
329 init_set_costs (void)
330 {
331 rtx seq;
332 rtx reg1 = gen_raw_REG (SImode, FIRST_PSEUDO_REGISTER);
333 rtx reg2 = gen_raw_REG (SImode, FIRST_PSEUDO_REGISTER + 1);
334 rtx addr = gen_raw_REG (Pmode, FIRST_PSEUDO_REGISTER + 2);
335 rtx mem = validize_mem (gen_rtx_MEM (SImode, addr));
336 unsigned i;
337
338 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
339 if (TEST_HARD_REG_BIT (reg_class_contents[GENERAL_REGS], i)
340 && !fixed_regs[i])
341 target_avail_regs++;
342
343 target_res_regs = 3;
344
345 /* Set up the costs for using extra registers:
346
347 1) If not many free registers remain, we should prefer having an
348 additional move to decreasing the number of available registers.
349 (TARGET_REG_COST).
350 2) If no registers are available, we need to spill, which may require
351 storing the old value to memory and loading it back
352 (TARGET_SPILL_COST). */
353
354 start_sequence ();
355 emit_move_insn (reg1, reg2);
356 seq = get_insns ();
357 end_sequence ();
358 target_reg_cost = seq_cost (seq);
359
360 start_sequence ();
361 emit_move_insn (mem, reg1);
362 emit_move_insn (reg2, mem);
363 seq = get_insns ();
364 end_sequence ();
365 target_spill_cost = seq_cost (seq);
366 }
367
368 /* Estimates cost of increased register pressure caused by making N_NEW new
369 registers live around the loop. N_OLD is the number of registers live
370 around the loop. */
371
372 unsigned
373 estimate_reg_pressure_cost (unsigned n_new, unsigned n_old)
374 {
375 unsigned regs_needed = n_new + n_old;
376
377 /* If we have enough registers, we should use them and not restrict
378 the transformations unnecessarily. */
379 if (regs_needed + target_res_regs <= target_avail_regs)
380 return 0;
381
382 /* If we are close to running out of registers, try to preserve them. */
383 if (regs_needed <= target_avail_regs)
384 return target_reg_cost * n_new;
385
386 /* If we run out of registers, it is very expensive to add another one. */
387 return target_spill_cost * n_new;
388 }
389
390 /* Sets EDGE_LOOP_EXIT flag for all loop exits. */
391
392 void
393 mark_loop_exit_edges (void)
394 {
395 basic_block bb;
396 edge e;
397
398 if (number_of_loops () <= 1)
399 return;
400
401 FOR_EACH_BB (bb)
402 {
403 edge_iterator ei;
404
405 FOR_EACH_EDGE (e, ei, bb->succs)
406 {
407 if (loop_outer (bb->loop_father)
408 && loop_exit_edge_p (bb->loop_father, e))
409 e->flags |= EDGE_LOOP_EXIT;
410 else
411 e->flags &= ~EDGE_LOOP_EXIT;
412 }
413 }
414 }
415