rtlanal.c (subreg_get_info): Exit early for simple and common cases.
[gcc.git] / gcc / cfgloopanal.c
1 /* Natural loop analysis code for GNU compiler.
2 Copyright (C) 2002-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl.h"
25 #include "hard-reg-set.h"
26 #include "obstack.h"
27 #include "predict.h"
28 #include "vec.h"
29 #include "hashtab.h"
30 #include "hash-set.h"
31 #include "machmode.h"
32 #include "input.h"
33 #include "function.h"
34 #include "dominance.h"
35 #include "cfg.h"
36 #include "basic-block.h"
37 #include "cfgloop.h"
38 #include "symtab.h"
39 #include "flags.h"
40 #include "statistics.h"
41 #include "double-int.h"
42 #include "real.h"
43 #include "fixed-value.h"
44 #include "alias.h"
45 #include "wide-int.h"
46 #include "inchash.h"
47 #include "tree.h"
48 #include "insn-config.h"
49 #include "expmed.h"
50 #include "dojump.h"
51 #include "explow.h"
52 #include "calls.h"
53 #include "emit-rtl.h"
54 #include "varasm.h"
55 #include "stmt.h"
56 #include "expr.h"
57 #include "graphds.h"
58 #include "params.h"
59
60 struct target_cfgloop default_target_cfgloop;
61 #if SWITCHABLE_TARGET
62 struct target_cfgloop *this_target_cfgloop = &default_target_cfgloop;
63 #endif
64
65 /* Checks whether BB is executed exactly once in each LOOP iteration. */
66
67 bool
68 just_once_each_iteration_p (const struct loop *loop, const_basic_block bb)
69 {
70 /* It must be executed at least once each iteration. */
71 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
72 return false;
73
74 /* And just once. */
75 if (bb->loop_father != loop)
76 return false;
77
78 /* But this was not enough. We might have some irreducible loop here. */
79 if (bb->flags & BB_IRREDUCIBLE_LOOP)
80 return false;
81
82 return true;
83 }
84
85 /* Marks blocks and edges that are part of non-recognized loops; i.e. we
86 throw away all latch edges and mark blocks inside any remaining cycle.
87 Everything is a bit complicated due to fact we do not want to do this
88 for parts of cycles that only "pass" through some loop -- i.e. for
89 each cycle, we want to mark blocks that belong directly to innermost
90 loop containing the whole cycle.
91
92 LOOPS is the loop tree. */
93
94 #define LOOP_REPR(LOOP) ((LOOP)->num + last_basic_block_for_fn (cfun))
95 #define BB_REPR(BB) ((BB)->index + 1)
96
97 bool
98 mark_irreducible_loops (void)
99 {
100 basic_block act;
101 struct graph_edge *ge;
102 edge e;
103 edge_iterator ei;
104 int src, dest;
105 unsigned depth;
106 struct graph *g;
107 int num = number_of_loops (cfun);
108 struct loop *cloop;
109 bool irred_loop_found = false;
110 int i;
111
112 gcc_assert (current_loops != NULL);
113
114 /* Reset the flags. */
115 FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR_FOR_FN (cfun),
116 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
117 {
118 act->flags &= ~BB_IRREDUCIBLE_LOOP;
119 FOR_EACH_EDGE (e, ei, act->succs)
120 e->flags &= ~EDGE_IRREDUCIBLE_LOOP;
121 }
122
123 /* Create the edge lists. */
124 g = new_graph (last_basic_block_for_fn (cfun) + num);
125
126 FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR_FOR_FN (cfun),
127 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
128 FOR_EACH_EDGE (e, ei, act->succs)
129 {
130 /* Ignore edges to exit. */
131 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
132 continue;
133
134 src = BB_REPR (act);
135 dest = BB_REPR (e->dest);
136
137 /* Ignore latch edges. */
138 if (e->dest->loop_father->header == e->dest
139 && e->dest->loop_father->latch == act)
140 continue;
141
142 /* Edges inside a single loop should be left where they are. Edges
143 to subloop headers should lead to representative of the subloop,
144 but from the same place.
145
146 Edges exiting loops should lead from representative
147 of the son of nearest common ancestor of the loops in that
148 act lays. */
149
150 if (e->dest->loop_father->header == e->dest)
151 dest = LOOP_REPR (e->dest->loop_father);
152
153 if (!flow_bb_inside_loop_p (act->loop_father, e->dest))
154 {
155 depth = 1 + loop_depth (find_common_loop (act->loop_father,
156 e->dest->loop_father));
157 if (depth == loop_depth (act->loop_father))
158 cloop = act->loop_father;
159 else
160 cloop = (*act->loop_father->superloops)[depth];
161
162 src = LOOP_REPR (cloop);
163 }
164
165 add_edge (g, src, dest)->data = e;
166 }
167
168 /* Find the strongly connected components. */
169 graphds_scc (g, NULL);
170
171 /* Mark the irreducible loops. */
172 for (i = 0; i < g->n_vertices; i++)
173 for (ge = g->vertices[i].succ; ge; ge = ge->succ_next)
174 {
175 edge real = (edge) ge->data;
176 /* edge E in graph G is irreducible if it connects two vertices in the
177 same scc. */
178
179 /* All edges should lead from a component with higher number to the
180 one with lower one. */
181 gcc_assert (g->vertices[ge->src].component >= g->vertices[ge->dest].component);
182
183 if (g->vertices[ge->src].component != g->vertices[ge->dest].component)
184 continue;
185
186 real->flags |= EDGE_IRREDUCIBLE_LOOP;
187 irred_loop_found = true;
188 if (flow_bb_inside_loop_p (real->src->loop_father, real->dest))
189 real->src->flags |= BB_IRREDUCIBLE_LOOP;
190 }
191
192 free_graph (g);
193
194 loops_state_set (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
195 return irred_loop_found;
196 }
197
198 /* Counts number of insns inside LOOP. */
199 int
200 num_loop_insns (const struct loop *loop)
201 {
202 basic_block *bbs, bb;
203 unsigned i, ninsns = 0;
204 rtx_insn *insn;
205
206 bbs = get_loop_body (loop);
207 for (i = 0; i < loop->num_nodes; i++)
208 {
209 bb = bbs[i];
210 FOR_BB_INSNS (bb, insn)
211 if (NONDEBUG_INSN_P (insn))
212 ninsns++;
213 }
214 free (bbs);
215
216 if (!ninsns)
217 ninsns = 1; /* To avoid division by zero. */
218
219 return ninsns;
220 }
221
222 /* Counts number of insns executed on average per iteration LOOP. */
223 int
224 average_num_loop_insns (const struct loop *loop)
225 {
226 basic_block *bbs, bb;
227 unsigned i, binsns, ninsns, ratio;
228 rtx_insn *insn;
229
230 ninsns = 0;
231 bbs = get_loop_body (loop);
232 for (i = 0; i < loop->num_nodes; i++)
233 {
234 bb = bbs[i];
235
236 binsns = 0;
237 FOR_BB_INSNS (bb, insn)
238 if (NONDEBUG_INSN_P (insn))
239 binsns++;
240
241 ratio = loop->header->frequency == 0
242 ? BB_FREQ_MAX
243 : (bb->frequency * BB_FREQ_MAX) / loop->header->frequency;
244 ninsns += binsns * ratio;
245 }
246 free (bbs);
247
248 ninsns /= BB_FREQ_MAX;
249 if (!ninsns)
250 ninsns = 1; /* To avoid division by zero. */
251
252 return ninsns;
253 }
254
255 /* Returns expected number of iterations of LOOP, according to
256 measured or guessed profile. No bounding is done on the
257 value. */
258
259 gcov_type
260 expected_loop_iterations_unbounded (const struct loop *loop)
261 {
262 edge e;
263 edge_iterator ei;
264
265 if (loop->latch->count || loop->header->count)
266 {
267 gcov_type count_in, count_latch, expected;
268
269 count_in = 0;
270 count_latch = 0;
271
272 FOR_EACH_EDGE (e, ei, loop->header->preds)
273 if (e->src == loop->latch)
274 count_latch = e->count;
275 else
276 count_in += e->count;
277
278 if (count_in == 0)
279 expected = count_latch * 2;
280 else
281 expected = (count_latch + count_in - 1) / count_in;
282
283 return expected;
284 }
285 else
286 {
287 int freq_in, freq_latch;
288
289 freq_in = 0;
290 freq_latch = 0;
291
292 FOR_EACH_EDGE (e, ei, loop->header->preds)
293 if (e->src == loop->latch)
294 freq_latch = EDGE_FREQUENCY (e);
295 else
296 freq_in += EDGE_FREQUENCY (e);
297
298 if (freq_in == 0)
299 return freq_latch * 2;
300
301 return (freq_latch + freq_in - 1) / freq_in;
302 }
303 }
304
305 /* Returns expected number of LOOP iterations. The returned value is bounded
306 by REG_BR_PROB_BASE. */
307
308 unsigned
309 expected_loop_iterations (const struct loop *loop)
310 {
311 gcov_type expected = expected_loop_iterations_unbounded (loop);
312 return (expected > REG_BR_PROB_BASE ? REG_BR_PROB_BASE : expected);
313 }
314
315 /* Returns the maximum level of nesting of subloops of LOOP. */
316
317 unsigned
318 get_loop_level (const struct loop *loop)
319 {
320 const struct loop *ploop;
321 unsigned mx = 0, l;
322
323 for (ploop = loop->inner; ploop; ploop = ploop->next)
324 {
325 l = get_loop_level (ploop);
326 if (l >= mx)
327 mx = l + 1;
328 }
329 return mx;
330 }
331
332 /* Initialize the constants for computing set costs. */
333
334 void
335 init_set_costs (void)
336 {
337 int speed;
338 rtx_insn *seq;
339 rtx reg1 = gen_raw_REG (SImode, FIRST_PSEUDO_REGISTER);
340 rtx reg2 = gen_raw_REG (SImode, FIRST_PSEUDO_REGISTER + 1);
341 rtx addr = gen_raw_REG (Pmode, FIRST_PSEUDO_REGISTER + 2);
342 rtx mem = validize_mem (gen_rtx_MEM (SImode, addr));
343 unsigned i;
344
345 target_avail_regs = 0;
346 target_clobbered_regs = 0;
347 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
348 if (TEST_HARD_REG_BIT (reg_class_contents[GENERAL_REGS], i)
349 && !fixed_regs[i])
350 {
351 target_avail_regs++;
352 if (call_used_regs[i])
353 target_clobbered_regs++;
354 }
355
356 target_res_regs = 3;
357
358 for (speed = 0; speed < 2; speed++)
359 {
360 crtl->maybe_hot_insn_p = speed;
361 /* Set up the costs for using extra registers:
362
363 1) If not many free registers remain, we should prefer having an
364 additional move to decreasing the number of available registers.
365 (TARGET_REG_COST).
366 2) If no registers are available, we need to spill, which may require
367 storing the old value to memory and loading it back
368 (TARGET_SPILL_COST). */
369
370 start_sequence ();
371 emit_move_insn (reg1, reg2);
372 seq = get_insns ();
373 end_sequence ();
374 target_reg_cost [speed] = seq_cost (seq, speed);
375
376 start_sequence ();
377 emit_move_insn (mem, reg1);
378 emit_move_insn (reg2, mem);
379 seq = get_insns ();
380 end_sequence ();
381 target_spill_cost [speed] = seq_cost (seq, speed);
382 }
383 default_rtl_profile ();
384 }
385
386 /* Estimates cost of increased register pressure caused by making N_NEW new
387 registers live around the loop. N_OLD is the number of registers live
388 around the loop. If CALL_P is true, also take into account that
389 call-used registers may be clobbered in the loop body, reducing the
390 number of available registers before we spill. */
391
392 unsigned
393 estimate_reg_pressure_cost (unsigned n_new, unsigned n_old, bool speed,
394 bool call_p)
395 {
396 unsigned cost;
397 unsigned regs_needed = n_new + n_old;
398 unsigned available_regs = target_avail_regs;
399
400 /* If there is a call in the loop body, the call-clobbered registers
401 are not available for loop invariants. */
402 if (call_p)
403 available_regs = available_regs - target_clobbered_regs;
404
405 /* If we have enough registers, we should use them and not restrict
406 the transformations unnecessarily. */
407 if (regs_needed + target_res_regs <= available_regs)
408 return 0;
409
410 if (regs_needed <= available_regs)
411 /* If we are close to running out of registers, try to preserve
412 them. */
413 cost = target_reg_cost [speed] * n_new;
414 else
415 /* If we run out of registers, it is very expensive to add another
416 one. */
417 cost = target_spill_cost [speed] * n_new;
418
419 if (optimize && (flag_ira_region == IRA_REGION_ALL
420 || flag_ira_region == IRA_REGION_MIXED)
421 && number_of_loops (cfun) <= (unsigned) IRA_MAX_LOOPS_NUM)
422 /* IRA regional allocation deals with high register pressure
423 better. So decrease the cost (to do more accurate the cost
424 calculation for IRA, we need to know how many registers lives
425 through the loop transparently). */
426 cost /= 2;
427
428 return cost;
429 }
430
431 /* Sets EDGE_LOOP_EXIT flag for all loop exits. */
432
433 void
434 mark_loop_exit_edges (void)
435 {
436 basic_block bb;
437 edge e;
438
439 if (number_of_loops (cfun) <= 1)
440 return;
441
442 FOR_EACH_BB_FN (bb, cfun)
443 {
444 edge_iterator ei;
445
446 FOR_EACH_EDGE (e, ei, bb->succs)
447 {
448 if (loop_outer (bb->loop_father)
449 && loop_exit_edge_p (bb->loop_father, e))
450 e->flags |= EDGE_LOOP_EXIT;
451 else
452 e->flags &= ~EDGE_LOOP_EXIT;
453 }
454 }
455 }
456
457 /* Return exit edge if loop has only one exit that is likely
458 to be executed on runtime (i.e. it is not EH or leading
459 to noreturn call. */
460
461 edge
462 single_likely_exit (struct loop *loop)
463 {
464 edge found = single_exit (loop);
465 vec<edge> exits;
466 unsigned i;
467 edge ex;
468
469 if (found)
470 return found;
471 exits = get_loop_exit_edges (loop);
472 FOR_EACH_VEC_ELT (exits, i, ex)
473 {
474 if (ex->flags & (EDGE_EH | EDGE_ABNORMAL_CALL))
475 continue;
476 /* The constant of 5 is set in a way so noreturn calls are
477 ruled out by this test. The static branch prediction algorithm
478 will not assign such a low probability to conditionals for usual
479 reasons. */
480 if (profile_status_for_fn (cfun) != PROFILE_ABSENT
481 && ex->probability < 5 && !ex->count)
482 continue;
483 if (!found)
484 found = ex;
485 else
486 {
487 exits.release ();
488 return NULL;
489 }
490 }
491 exits.release ();
492 return found;
493 }
494
495
496 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
497 order against direction of edges from latch. Specially, if
498 header != latch, latch is the 1-st block. */
499
500 vec<basic_block>
501 get_loop_hot_path (const struct loop *loop)
502 {
503 basic_block bb = loop->header;
504 vec<basic_block> path = vNULL;
505 bitmap visited = BITMAP_ALLOC (NULL);
506
507 while (true)
508 {
509 edge_iterator ei;
510 edge e;
511 edge best = NULL;
512
513 path.safe_push (bb);
514 bitmap_set_bit (visited, bb->index);
515 FOR_EACH_EDGE (e, ei, bb->succs)
516 if ((!best || e->probability > best->probability)
517 && !loop_exit_edge_p (loop, e)
518 && !bitmap_bit_p (visited, e->dest->index))
519 best = e;
520 if (!best || best->dest == loop->header)
521 break;
522 bb = best->dest;
523 }
524 BITMAP_FREE (visited);
525 return path;
526 }