double-int.c (lshift_double, [...]): Remove SHIFT_COUNT_TRUNCATED handling.
[gcc.git] / gcc / cfgloopanal.c
1 /* Natural loop analysis code for GNU compiler.
2 Copyright (C) 2002-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl.h"
25 #include "hard-reg-set.h"
26 #include "obstack.h"
27 #include "basic-block.h"
28 #include "cfgloop.h"
29 #include "expr.h"
30 #include "graphds.h"
31 #include "params.h"
32
33 struct target_cfgloop default_target_cfgloop;
34 #if SWITCHABLE_TARGET
35 struct target_cfgloop *this_target_cfgloop = &default_target_cfgloop;
36 #endif
37
38 /* Checks whether BB is executed exactly once in each LOOP iteration. */
39
40 bool
41 just_once_each_iteration_p (const struct loop *loop, const_basic_block bb)
42 {
43 /* It must be executed at least once each iteration. */
44 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
45 return false;
46
47 /* And just once. */
48 if (bb->loop_father != loop)
49 return false;
50
51 /* But this was not enough. We might have some irreducible loop here. */
52 if (bb->flags & BB_IRREDUCIBLE_LOOP)
53 return false;
54
55 return true;
56 }
57
58 /* Marks blocks and edges that are part of non-recognized loops; i.e. we
59 throw away all latch edges and mark blocks inside any remaining cycle.
60 Everything is a bit complicated due to fact we do not want to do this
61 for parts of cycles that only "pass" through some loop -- i.e. for
62 each cycle, we want to mark blocks that belong directly to innermost
63 loop containing the whole cycle.
64
65 LOOPS is the loop tree. */
66
67 #define LOOP_REPR(LOOP) ((LOOP)->num + last_basic_block)
68 #define BB_REPR(BB) ((BB)->index + 1)
69
70 bool
71 mark_irreducible_loops (void)
72 {
73 basic_block act;
74 struct graph_edge *ge;
75 edge e;
76 edge_iterator ei;
77 int src, dest;
78 unsigned depth;
79 struct graph *g;
80 int num = number_of_loops (cfun);
81 struct loop *cloop;
82 bool irred_loop_found = false;
83 int i;
84
85 gcc_assert (current_loops != NULL);
86
87 /* Reset the flags. */
88 FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
89 {
90 act->flags &= ~BB_IRREDUCIBLE_LOOP;
91 FOR_EACH_EDGE (e, ei, act->succs)
92 e->flags &= ~EDGE_IRREDUCIBLE_LOOP;
93 }
94
95 /* Create the edge lists. */
96 g = new_graph (last_basic_block + num);
97
98 FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
99 FOR_EACH_EDGE (e, ei, act->succs)
100 {
101 /* Ignore edges to exit. */
102 if (e->dest == EXIT_BLOCK_PTR)
103 continue;
104
105 src = BB_REPR (act);
106 dest = BB_REPR (e->dest);
107
108 /* Ignore latch edges. */
109 if (e->dest->loop_father->header == e->dest
110 && e->dest->loop_father->latch == act)
111 continue;
112
113 /* Edges inside a single loop should be left where they are. Edges
114 to subloop headers should lead to representative of the subloop,
115 but from the same place.
116
117 Edges exiting loops should lead from representative
118 of the son of nearest common ancestor of the loops in that
119 act lays. */
120
121 if (e->dest->loop_father->header == e->dest)
122 dest = LOOP_REPR (e->dest->loop_father);
123
124 if (!flow_bb_inside_loop_p (act->loop_father, e->dest))
125 {
126 depth = 1 + loop_depth (find_common_loop (act->loop_father,
127 e->dest->loop_father));
128 if (depth == loop_depth (act->loop_father))
129 cloop = act->loop_father;
130 else
131 cloop = (*act->loop_father->superloops)[depth];
132
133 src = LOOP_REPR (cloop);
134 }
135
136 add_edge (g, src, dest)->data = e;
137 }
138
139 /* Find the strongly connected components. */
140 graphds_scc (g, NULL);
141
142 /* Mark the irreducible loops. */
143 for (i = 0; i < g->n_vertices; i++)
144 for (ge = g->vertices[i].succ; ge; ge = ge->succ_next)
145 {
146 edge real = (edge) ge->data;
147 /* edge E in graph G is irreducible if it connects two vertices in the
148 same scc. */
149
150 /* All edges should lead from a component with higher number to the
151 one with lower one. */
152 gcc_assert (g->vertices[ge->src].component >= g->vertices[ge->dest].component);
153
154 if (g->vertices[ge->src].component != g->vertices[ge->dest].component)
155 continue;
156
157 real->flags |= EDGE_IRREDUCIBLE_LOOP;
158 irred_loop_found = true;
159 if (flow_bb_inside_loop_p (real->src->loop_father, real->dest))
160 real->src->flags |= BB_IRREDUCIBLE_LOOP;
161 }
162
163 free_graph (g);
164
165 loops_state_set (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
166 return irred_loop_found;
167 }
168
169 /* Counts number of insns inside LOOP. */
170 int
171 num_loop_insns (const struct loop *loop)
172 {
173 basic_block *bbs, bb;
174 unsigned i, ninsns = 0;
175 rtx insn;
176
177 bbs = get_loop_body (loop);
178 for (i = 0; i < loop->num_nodes; i++)
179 {
180 bb = bbs[i];
181 FOR_BB_INSNS (bb, insn)
182 if (NONDEBUG_INSN_P (insn))
183 ninsns++;
184 }
185 free (bbs);
186
187 if (!ninsns)
188 ninsns = 1; /* To avoid division by zero. */
189
190 return ninsns;
191 }
192
193 /* Counts number of insns executed on average per iteration LOOP. */
194 int
195 average_num_loop_insns (const struct loop *loop)
196 {
197 basic_block *bbs, bb;
198 unsigned i, binsns, ninsns, ratio;
199 rtx insn;
200
201 ninsns = 0;
202 bbs = get_loop_body (loop);
203 for (i = 0; i < loop->num_nodes; i++)
204 {
205 bb = bbs[i];
206
207 binsns = 0;
208 FOR_BB_INSNS (bb, insn)
209 if (NONDEBUG_INSN_P (insn))
210 binsns++;
211
212 ratio = loop->header->frequency == 0
213 ? BB_FREQ_MAX
214 : (bb->frequency * BB_FREQ_MAX) / loop->header->frequency;
215 ninsns += binsns * ratio;
216 }
217 free (bbs);
218
219 ninsns /= BB_FREQ_MAX;
220 if (!ninsns)
221 ninsns = 1; /* To avoid division by zero. */
222
223 return ninsns;
224 }
225
226 /* Returns expected number of iterations of LOOP, according to
227 measured or guessed profile. No bounding is done on the
228 value. */
229
230 gcov_type
231 expected_loop_iterations_unbounded (const struct loop *loop)
232 {
233 edge e;
234 edge_iterator ei;
235
236 if (loop->latch->count || loop->header->count)
237 {
238 gcov_type count_in, count_latch, expected;
239
240 count_in = 0;
241 count_latch = 0;
242
243 FOR_EACH_EDGE (e, ei, loop->header->preds)
244 if (e->src == loop->latch)
245 count_latch = e->count;
246 else
247 count_in += e->count;
248
249 if (count_in == 0)
250 expected = count_latch * 2;
251 else
252 expected = (count_latch + count_in - 1) / count_in;
253
254 return expected;
255 }
256 else
257 {
258 int freq_in, freq_latch;
259
260 freq_in = 0;
261 freq_latch = 0;
262
263 FOR_EACH_EDGE (e, ei, loop->header->preds)
264 if (e->src == loop->latch)
265 freq_latch = EDGE_FREQUENCY (e);
266 else
267 freq_in += EDGE_FREQUENCY (e);
268
269 if (freq_in == 0)
270 return freq_latch * 2;
271
272 return (freq_latch + freq_in - 1) / freq_in;
273 }
274 }
275
276 /* Returns expected number of LOOP iterations. The returned value is bounded
277 by REG_BR_PROB_BASE. */
278
279 unsigned
280 expected_loop_iterations (const struct loop *loop)
281 {
282 gcov_type expected = expected_loop_iterations_unbounded (loop);
283 return (expected > REG_BR_PROB_BASE ? REG_BR_PROB_BASE : expected);
284 }
285
286 /* Returns the maximum level of nesting of subloops of LOOP. */
287
288 unsigned
289 get_loop_level (const struct loop *loop)
290 {
291 const struct loop *ploop;
292 unsigned mx = 0, l;
293
294 for (ploop = loop->inner; ploop; ploop = ploop->next)
295 {
296 l = get_loop_level (ploop);
297 if (l >= mx)
298 mx = l + 1;
299 }
300 return mx;
301 }
302
303 /* Returns estimate on cost of computing SEQ. */
304
305 static unsigned
306 seq_cost (const_rtx seq, bool speed)
307 {
308 unsigned cost = 0;
309 rtx set;
310
311 for (; seq; seq = NEXT_INSN (seq))
312 {
313 set = single_set (seq);
314 if (set)
315 cost += set_rtx_cost (set, speed);
316 else
317 cost++;
318 }
319
320 return cost;
321 }
322
323 /* Initialize the constants for computing set costs. */
324
325 void
326 init_set_costs (void)
327 {
328 int speed;
329 rtx seq;
330 rtx reg1 = gen_raw_REG (SImode, FIRST_PSEUDO_REGISTER);
331 rtx reg2 = gen_raw_REG (SImode, FIRST_PSEUDO_REGISTER + 1);
332 rtx addr = gen_raw_REG (Pmode, FIRST_PSEUDO_REGISTER + 2);
333 rtx mem = validize_mem (gen_rtx_MEM (SImode, addr));
334 unsigned i;
335
336 target_avail_regs = 0;
337 target_clobbered_regs = 0;
338 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
339 if (TEST_HARD_REG_BIT (reg_class_contents[GENERAL_REGS], i)
340 && !fixed_regs[i])
341 {
342 target_avail_regs++;
343 if (call_used_regs[i])
344 target_clobbered_regs++;
345 }
346
347 target_res_regs = 3;
348
349 for (speed = 0; speed < 2; speed++)
350 {
351 crtl->maybe_hot_insn_p = speed;
352 /* Set up the costs for using extra registers:
353
354 1) If not many free registers remain, we should prefer having an
355 additional move to decreasing the number of available registers.
356 (TARGET_REG_COST).
357 2) If no registers are available, we need to spill, which may require
358 storing the old value to memory and loading it back
359 (TARGET_SPILL_COST). */
360
361 start_sequence ();
362 emit_move_insn (reg1, reg2);
363 seq = get_insns ();
364 end_sequence ();
365 target_reg_cost [speed] = seq_cost (seq, speed);
366
367 start_sequence ();
368 emit_move_insn (mem, reg1);
369 emit_move_insn (reg2, mem);
370 seq = get_insns ();
371 end_sequence ();
372 target_spill_cost [speed] = seq_cost (seq, speed);
373 }
374 default_rtl_profile ();
375 }
376
377 /* Estimates cost of increased register pressure caused by making N_NEW new
378 registers live around the loop. N_OLD is the number of registers live
379 around the loop. If CALL_P is true, also take into account that
380 call-used registers may be clobbered in the loop body, reducing the
381 number of available registers before we spill. */
382
383 unsigned
384 estimate_reg_pressure_cost (unsigned n_new, unsigned n_old, bool speed,
385 bool call_p)
386 {
387 unsigned cost;
388 unsigned regs_needed = n_new + n_old;
389 unsigned available_regs = target_avail_regs;
390
391 /* If there is a call in the loop body, the call-clobbered registers
392 are not available for loop invariants. */
393 if (call_p)
394 available_regs = available_regs - target_clobbered_regs;
395
396 /* If we have enough registers, we should use them and not restrict
397 the transformations unnecessarily. */
398 if (regs_needed + target_res_regs <= available_regs)
399 return 0;
400
401 if (regs_needed <= available_regs)
402 /* If we are close to running out of registers, try to preserve
403 them. */
404 cost = target_reg_cost [speed] * n_new;
405 else
406 /* If we run out of registers, it is very expensive to add another
407 one. */
408 cost = target_spill_cost [speed] * n_new;
409
410 if (optimize && (flag_ira_region == IRA_REGION_ALL
411 || flag_ira_region == IRA_REGION_MIXED)
412 && number_of_loops (cfun) <= (unsigned) IRA_MAX_LOOPS_NUM)
413 /* IRA regional allocation deals with high register pressure
414 better. So decrease the cost (to do more accurate the cost
415 calculation for IRA, we need to know how many registers lives
416 through the loop transparently). */
417 cost /= 2;
418
419 return cost;
420 }
421
422 /* Sets EDGE_LOOP_EXIT flag for all loop exits. */
423
424 void
425 mark_loop_exit_edges (void)
426 {
427 basic_block bb;
428 edge e;
429
430 if (number_of_loops (cfun) <= 1)
431 return;
432
433 FOR_EACH_BB (bb)
434 {
435 edge_iterator ei;
436
437 FOR_EACH_EDGE (e, ei, bb->succs)
438 {
439 if (loop_outer (bb->loop_father)
440 && loop_exit_edge_p (bb->loop_father, e))
441 e->flags |= EDGE_LOOP_EXIT;
442 else
443 e->flags &= ~EDGE_LOOP_EXIT;
444 }
445 }
446 }
447
448 /* Return exit edge if loop has only one exit that is likely
449 to be executed on runtime (i.e. it is not EH or leading
450 to noreturn call. */
451
452 edge
453 single_likely_exit (struct loop *loop)
454 {
455 edge found = single_exit (loop);
456 vec<edge> exits;
457 unsigned i;
458 edge ex;
459
460 if (found)
461 return found;
462 exits = get_loop_exit_edges (loop);
463 FOR_EACH_VEC_ELT (exits, i, ex)
464 {
465 if (ex->flags & (EDGE_EH | EDGE_ABNORMAL_CALL))
466 continue;
467 /* The constant of 5 is set in a way so noreturn calls are
468 ruled out by this test. The static branch prediction algorithm
469 will not assign such a low probability to conditionals for usual
470 reasons. */
471 if (profile_status != PROFILE_ABSENT
472 && ex->probability < 5 && !ex->count)
473 continue;
474 if (!found)
475 found = ex;
476 else
477 {
478 exits.release ();
479 return NULL;
480 }
481 }
482 exits.release ();
483 return found;
484 }
485
486
487 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
488 order against direction of edges from latch. Specially, if
489 header != latch, latch is the 1-st block. */
490
491 vec<basic_block>
492 get_loop_hot_path (const struct loop *loop)
493 {
494 basic_block bb = loop->header;
495 vec<basic_block> path = vNULL;
496 bitmap visited = BITMAP_ALLOC (NULL);
497
498 while (true)
499 {
500 edge_iterator ei;
501 edge e;
502 edge best = NULL;
503
504 path.safe_push (bb);
505 bitmap_set_bit (visited, bb->index);
506 FOR_EACH_EDGE (e, ei, bb->succs)
507 if ((!best || e->probability > best->probability)
508 && !loop_exit_edge_p (loop, e)
509 && !bitmap_bit_p (visited, e->dest->index))
510 best = e;
511 if (!best || best->dest == loop->header)
512 break;
513 bb = best->dest;
514 }
515 BITMAP_FREE (visited);
516 return path;
517 }