decl.c (value_annotation_hasher::handle_cache_entry): Delete.
[gcc.git] / gcc / cfgloopanal.c
1 /* Natural loop analysis code for GNU compiler.
2 Copyright (C) 2002-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl.h"
25 #include "hard-reg-set.h"
26 #include "obstack.h"
27 #include "predict.h"
28 #include "function.h"
29 #include "dominance.h"
30 #include "cfg.h"
31 #include "basic-block.h"
32 #include "cfgloop.h"
33 #include "symtab.h"
34 #include "flags.h"
35 #include "alias.h"
36 #include "tree.h"
37 #include "insn-config.h"
38 #include "expmed.h"
39 #include "dojump.h"
40 #include "explow.h"
41 #include "calls.h"
42 #include "emit-rtl.h"
43 #include "varasm.h"
44 #include "stmt.h"
45 #include "expr.h"
46 #include "graphds.h"
47 #include "params.h"
48
49 struct target_cfgloop default_target_cfgloop;
50 #if SWITCHABLE_TARGET
51 struct target_cfgloop *this_target_cfgloop = &default_target_cfgloop;
52 #endif
53
54 /* Checks whether BB is executed exactly once in each LOOP iteration. */
55
56 bool
57 just_once_each_iteration_p (const struct loop *loop, const_basic_block bb)
58 {
59 /* It must be executed at least once each iteration. */
60 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
61 return false;
62
63 /* And just once. */
64 if (bb->loop_father != loop)
65 return false;
66
67 /* But this was not enough. We might have some irreducible loop here. */
68 if (bb->flags & BB_IRREDUCIBLE_LOOP)
69 return false;
70
71 return true;
72 }
73
74 /* Marks blocks and edges that are part of non-recognized loops; i.e. we
75 throw away all latch edges and mark blocks inside any remaining cycle.
76 Everything is a bit complicated due to fact we do not want to do this
77 for parts of cycles that only "pass" through some loop -- i.e. for
78 each cycle, we want to mark blocks that belong directly to innermost
79 loop containing the whole cycle.
80
81 LOOPS is the loop tree. */
82
83 #define LOOP_REPR(LOOP) ((LOOP)->num + last_basic_block_for_fn (cfun))
84 #define BB_REPR(BB) ((BB)->index + 1)
85
86 bool
87 mark_irreducible_loops (void)
88 {
89 basic_block act;
90 struct graph_edge *ge;
91 edge e;
92 edge_iterator ei;
93 int src, dest;
94 unsigned depth;
95 struct graph *g;
96 int num = number_of_loops (cfun);
97 struct loop *cloop;
98 bool irred_loop_found = false;
99 int i;
100
101 gcc_assert (current_loops != NULL);
102
103 /* Reset the flags. */
104 FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR_FOR_FN (cfun),
105 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
106 {
107 act->flags &= ~BB_IRREDUCIBLE_LOOP;
108 FOR_EACH_EDGE (e, ei, act->succs)
109 e->flags &= ~EDGE_IRREDUCIBLE_LOOP;
110 }
111
112 /* Create the edge lists. */
113 g = new_graph (last_basic_block_for_fn (cfun) + num);
114
115 FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR_FOR_FN (cfun),
116 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
117 FOR_EACH_EDGE (e, ei, act->succs)
118 {
119 /* Ignore edges to exit. */
120 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
121 continue;
122
123 src = BB_REPR (act);
124 dest = BB_REPR (e->dest);
125
126 /* Ignore latch edges. */
127 if (e->dest->loop_father->header == e->dest
128 && e->dest->loop_father->latch == act)
129 continue;
130
131 /* Edges inside a single loop should be left where they are. Edges
132 to subloop headers should lead to representative of the subloop,
133 but from the same place.
134
135 Edges exiting loops should lead from representative
136 of the son of nearest common ancestor of the loops in that
137 act lays. */
138
139 if (e->dest->loop_father->header == e->dest)
140 dest = LOOP_REPR (e->dest->loop_father);
141
142 if (!flow_bb_inside_loop_p (act->loop_father, e->dest))
143 {
144 depth = 1 + loop_depth (find_common_loop (act->loop_father,
145 e->dest->loop_father));
146 if (depth == loop_depth (act->loop_father))
147 cloop = act->loop_father;
148 else
149 cloop = (*act->loop_father->superloops)[depth];
150
151 src = LOOP_REPR (cloop);
152 }
153
154 add_edge (g, src, dest)->data = e;
155 }
156
157 /* Find the strongly connected components. */
158 graphds_scc (g, NULL);
159
160 /* Mark the irreducible loops. */
161 for (i = 0; i < g->n_vertices; i++)
162 for (ge = g->vertices[i].succ; ge; ge = ge->succ_next)
163 {
164 edge real = (edge) ge->data;
165 /* edge E in graph G is irreducible if it connects two vertices in the
166 same scc. */
167
168 /* All edges should lead from a component with higher number to the
169 one with lower one. */
170 gcc_assert (g->vertices[ge->src].component >= g->vertices[ge->dest].component);
171
172 if (g->vertices[ge->src].component != g->vertices[ge->dest].component)
173 continue;
174
175 real->flags |= EDGE_IRREDUCIBLE_LOOP;
176 irred_loop_found = true;
177 if (flow_bb_inside_loop_p (real->src->loop_father, real->dest))
178 real->src->flags |= BB_IRREDUCIBLE_LOOP;
179 }
180
181 free_graph (g);
182
183 loops_state_set (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
184 return irred_loop_found;
185 }
186
187 /* Counts number of insns inside LOOP. */
188 int
189 num_loop_insns (const struct loop *loop)
190 {
191 basic_block *bbs, bb;
192 unsigned i, ninsns = 0;
193 rtx_insn *insn;
194
195 bbs = get_loop_body (loop);
196 for (i = 0; i < loop->num_nodes; i++)
197 {
198 bb = bbs[i];
199 FOR_BB_INSNS (bb, insn)
200 if (NONDEBUG_INSN_P (insn))
201 ninsns++;
202 }
203 free (bbs);
204
205 if (!ninsns)
206 ninsns = 1; /* To avoid division by zero. */
207
208 return ninsns;
209 }
210
211 /* Counts number of insns executed on average per iteration LOOP. */
212 int
213 average_num_loop_insns (const struct loop *loop)
214 {
215 basic_block *bbs, bb;
216 unsigned i, binsns, ninsns, ratio;
217 rtx_insn *insn;
218
219 ninsns = 0;
220 bbs = get_loop_body (loop);
221 for (i = 0; i < loop->num_nodes; i++)
222 {
223 bb = bbs[i];
224
225 binsns = 0;
226 FOR_BB_INSNS (bb, insn)
227 if (NONDEBUG_INSN_P (insn))
228 binsns++;
229
230 ratio = loop->header->frequency == 0
231 ? BB_FREQ_MAX
232 : (bb->frequency * BB_FREQ_MAX) / loop->header->frequency;
233 ninsns += binsns * ratio;
234 }
235 free (bbs);
236
237 ninsns /= BB_FREQ_MAX;
238 if (!ninsns)
239 ninsns = 1; /* To avoid division by zero. */
240
241 return ninsns;
242 }
243
244 /* Returns expected number of iterations of LOOP, according to
245 measured or guessed profile. No bounding is done on the
246 value. */
247
248 gcov_type
249 expected_loop_iterations_unbounded (const struct loop *loop)
250 {
251 edge e;
252 edge_iterator ei;
253
254 if (loop->latch->count || loop->header->count)
255 {
256 gcov_type count_in, count_latch, expected;
257
258 count_in = 0;
259 count_latch = 0;
260
261 FOR_EACH_EDGE (e, ei, loop->header->preds)
262 if (e->src == loop->latch)
263 count_latch = e->count;
264 else
265 count_in += e->count;
266
267 if (count_in == 0)
268 expected = count_latch * 2;
269 else
270 expected = (count_latch + count_in - 1) / count_in;
271
272 return expected;
273 }
274 else
275 {
276 int freq_in, freq_latch;
277
278 freq_in = 0;
279 freq_latch = 0;
280
281 FOR_EACH_EDGE (e, ei, loop->header->preds)
282 if (e->src == loop->latch)
283 freq_latch = EDGE_FREQUENCY (e);
284 else
285 freq_in += EDGE_FREQUENCY (e);
286
287 if (freq_in == 0)
288 return freq_latch * 2;
289
290 return (freq_latch + freq_in - 1) / freq_in;
291 }
292 }
293
294 /* Returns expected number of LOOP iterations. The returned value is bounded
295 by REG_BR_PROB_BASE. */
296
297 unsigned
298 expected_loop_iterations (const struct loop *loop)
299 {
300 gcov_type expected = expected_loop_iterations_unbounded (loop);
301 return (expected > REG_BR_PROB_BASE ? REG_BR_PROB_BASE : expected);
302 }
303
304 /* Returns the maximum level of nesting of subloops of LOOP. */
305
306 unsigned
307 get_loop_level (const struct loop *loop)
308 {
309 const struct loop *ploop;
310 unsigned mx = 0, l;
311
312 for (ploop = loop->inner; ploop; ploop = ploop->next)
313 {
314 l = get_loop_level (ploop);
315 if (l >= mx)
316 mx = l + 1;
317 }
318 return mx;
319 }
320
321 /* Initialize the constants for computing set costs. */
322
323 void
324 init_set_costs (void)
325 {
326 int speed;
327 rtx_insn *seq;
328 rtx reg1 = gen_raw_REG (SImode, LAST_VIRTUAL_REGISTER + 1);
329 rtx reg2 = gen_raw_REG (SImode, LAST_VIRTUAL_REGISTER + 2);
330 rtx addr = gen_raw_REG (Pmode, LAST_VIRTUAL_REGISTER + 3);
331 rtx mem = validize_mem (gen_rtx_MEM (SImode, addr));
332 unsigned i;
333
334 target_avail_regs = 0;
335 target_clobbered_regs = 0;
336 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
337 if (TEST_HARD_REG_BIT (reg_class_contents[GENERAL_REGS], i)
338 && !fixed_regs[i])
339 {
340 target_avail_regs++;
341 if (call_used_regs[i])
342 target_clobbered_regs++;
343 }
344
345 target_res_regs = 3;
346
347 for (speed = 0; speed < 2; speed++)
348 {
349 crtl->maybe_hot_insn_p = speed;
350 /* Set up the costs for using extra registers:
351
352 1) If not many free registers remain, we should prefer having an
353 additional move to decreasing the number of available registers.
354 (TARGET_REG_COST).
355 2) If no registers are available, we need to spill, which may require
356 storing the old value to memory and loading it back
357 (TARGET_SPILL_COST). */
358
359 start_sequence ();
360 emit_move_insn (reg1, reg2);
361 seq = get_insns ();
362 end_sequence ();
363 target_reg_cost [speed] = seq_cost (seq, speed);
364
365 start_sequence ();
366 emit_move_insn (mem, reg1);
367 emit_move_insn (reg2, mem);
368 seq = get_insns ();
369 end_sequence ();
370 target_spill_cost [speed] = seq_cost (seq, speed);
371 }
372 default_rtl_profile ();
373 }
374
375 /* Estimates cost of increased register pressure caused by making N_NEW new
376 registers live around the loop. N_OLD is the number of registers live
377 around the loop. If CALL_P is true, also take into account that
378 call-used registers may be clobbered in the loop body, reducing the
379 number of available registers before we spill. */
380
381 unsigned
382 estimate_reg_pressure_cost (unsigned n_new, unsigned n_old, bool speed,
383 bool call_p)
384 {
385 unsigned cost;
386 unsigned regs_needed = n_new + n_old;
387 unsigned available_regs = target_avail_regs;
388
389 /* If there is a call in the loop body, the call-clobbered registers
390 are not available for loop invariants. */
391 if (call_p)
392 available_regs = available_regs - target_clobbered_regs;
393
394 /* If we have enough registers, we should use them and not restrict
395 the transformations unnecessarily. */
396 if (regs_needed + target_res_regs <= available_regs)
397 return 0;
398
399 if (regs_needed <= available_regs)
400 /* If we are close to running out of registers, try to preserve
401 them. */
402 cost = target_reg_cost [speed] * n_new;
403 else
404 /* If we run out of registers, it is very expensive to add another
405 one. */
406 cost = target_spill_cost [speed] * n_new;
407
408 if (optimize && (flag_ira_region == IRA_REGION_ALL
409 || flag_ira_region == IRA_REGION_MIXED)
410 && number_of_loops (cfun) <= (unsigned) IRA_MAX_LOOPS_NUM)
411 /* IRA regional allocation deals with high register pressure
412 better. So decrease the cost (to do more accurate the cost
413 calculation for IRA, we need to know how many registers lives
414 through the loop transparently). */
415 cost /= 2;
416
417 return cost;
418 }
419
420 /* Sets EDGE_LOOP_EXIT flag for all loop exits. */
421
422 void
423 mark_loop_exit_edges (void)
424 {
425 basic_block bb;
426 edge e;
427
428 if (number_of_loops (cfun) <= 1)
429 return;
430
431 FOR_EACH_BB_FN (bb, cfun)
432 {
433 edge_iterator ei;
434
435 FOR_EACH_EDGE (e, ei, bb->succs)
436 {
437 if (loop_outer (bb->loop_father)
438 && loop_exit_edge_p (bb->loop_father, e))
439 e->flags |= EDGE_LOOP_EXIT;
440 else
441 e->flags &= ~EDGE_LOOP_EXIT;
442 }
443 }
444 }
445
446 /* Return exit edge if loop has only one exit that is likely
447 to be executed on runtime (i.e. it is not EH or leading
448 to noreturn call. */
449
450 edge
451 single_likely_exit (struct loop *loop)
452 {
453 edge found = single_exit (loop);
454 vec<edge> exits;
455 unsigned i;
456 edge ex;
457
458 if (found)
459 return found;
460 exits = get_loop_exit_edges (loop);
461 FOR_EACH_VEC_ELT (exits, i, ex)
462 {
463 if (ex->flags & (EDGE_EH | EDGE_ABNORMAL_CALL))
464 continue;
465 /* The constant of 5 is set in a way so noreturn calls are
466 ruled out by this test. The static branch prediction algorithm
467 will not assign such a low probability to conditionals for usual
468 reasons. */
469 if (profile_status_for_fn (cfun) != PROFILE_ABSENT
470 && ex->probability < 5 && !ex->count)
471 continue;
472 if (!found)
473 found = ex;
474 else
475 {
476 exits.release ();
477 return NULL;
478 }
479 }
480 exits.release ();
481 return found;
482 }
483
484
485 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
486 order against direction of edges from latch. Specially, if
487 header != latch, latch is the 1-st block. */
488
489 vec<basic_block>
490 get_loop_hot_path (const struct loop *loop)
491 {
492 basic_block bb = loop->header;
493 vec<basic_block> path = vNULL;
494 bitmap visited = BITMAP_ALLOC (NULL);
495
496 while (true)
497 {
498 edge_iterator ei;
499 edge e;
500 edge best = NULL;
501
502 path.safe_push (bb);
503 bitmap_set_bit (visited, bb->index);
504 FOR_EACH_EDGE (e, ei, bb->succs)
505 if ((!best || e->probability > best->probability)
506 && !loop_exit_edge_p (loop, e)
507 && !bitmap_bit_p (visited, e->dest->index))
508 best = e;
509 if (!best || best->dest == loop->header)
510 break;
511 bb = best->dest;
512 }
513 BITMAP_FREE (visited);
514 return path;
515 }