i386.c (make_resolver_func): Update.
[gcc.git] / gcc / cfgloopanal.c
1 /* Natural loop analysis code for GNU compiler.
2 Copyright (C) 2002-2017 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "predict.h"
27 #include "memmodel.h"
28 #include "emit-rtl.h"
29 #include "cfgloop.h"
30 #include "explow.h"
31 #include "expr.h"
32 #include "graphds.h"
33 #include "params.h"
34
35 struct target_cfgloop default_target_cfgloop;
36 #if SWITCHABLE_TARGET
37 struct target_cfgloop *this_target_cfgloop = &default_target_cfgloop;
38 #endif
39
40 /* Checks whether BB is executed exactly once in each LOOP iteration. */
41
42 bool
43 just_once_each_iteration_p (const struct loop *loop, const_basic_block bb)
44 {
45 /* It must be executed at least once each iteration. */
46 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
47 return false;
48
49 /* And just once. */
50 if (bb->loop_father != loop)
51 return false;
52
53 /* But this was not enough. We might have some irreducible loop here. */
54 if (bb->flags & BB_IRREDUCIBLE_LOOP)
55 return false;
56
57 return true;
58 }
59
60 /* Marks blocks and edges that are part of non-recognized loops; i.e. we
61 throw away all latch edges and mark blocks inside any remaining cycle.
62 Everything is a bit complicated due to fact we do not want to do this
63 for parts of cycles that only "pass" through some loop -- i.e. for
64 each cycle, we want to mark blocks that belong directly to innermost
65 loop containing the whole cycle.
66
67 LOOPS is the loop tree. */
68
69 #define LOOP_REPR(LOOP) ((LOOP)->num + last_basic_block_for_fn (cfun))
70 #define BB_REPR(BB) ((BB)->index + 1)
71
72 bool
73 mark_irreducible_loops (void)
74 {
75 basic_block act;
76 struct graph_edge *ge;
77 edge e;
78 edge_iterator ei;
79 int src, dest;
80 unsigned depth;
81 struct graph *g;
82 int num = number_of_loops (cfun);
83 struct loop *cloop;
84 bool irred_loop_found = false;
85 int i;
86
87 gcc_assert (current_loops != NULL);
88
89 /* Reset the flags. */
90 FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR_FOR_FN (cfun),
91 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
92 {
93 act->flags &= ~BB_IRREDUCIBLE_LOOP;
94 FOR_EACH_EDGE (e, ei, act->succs)
95 e->flags &= ~EDGE_IRREDUCIBLE_LOOP;
96 }
97
98 /* Create the edge lists. */
99 g = new_graph (last_basic_block_for_fn (cfun) + num);
100
101 FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR_FOR_FN (cfun),
102 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
103 FOR_EACH_EDGE (e, ei, act->succs)
104 {
105 /* Ignore edges to exit. */
106 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
107 continue;
108
109 src = BB_REPR (act);
110 dest = BB_REPR (e->dest);
111
112 /* Ignore latch edges. */
113 if (e->dest->loop_father->header == e->dest
114 && e->dest->loop_father->latch == act)
115 continue;
116
117 /* Edges inside a single loop should be left where they are. Edges
118 to subloop headers should lead to representative of the subloop,
119 but from the same place.
120
121 Edges exiting loops should lead from representative
122 of the son of nearest common ancestor of the loops in that
123 act lays. */
124
125 if (e->dest->loop_father->header == e->dest)
126 dest = LOOP_REPR (e->dest->loop_father);
127
128 if (!flow_bb_inside_loop_p (act->loop_father, e->dest))
129 {
130 depth = 1 + loop_depth (find_common_loop (act->loop_father,
131 e->dest->loop_father));
132 if (depth == loop_depth (act->loop_father))
133 cloop = act->loop_father;
134 else
135 cloop = (*act->loop_father->superloops)[depth];
136
137 src = LOOP_REPR (cloop);
138 }
139
140 add_edge (g, src, dest)->data = e;
141 }
142
143 /* Find the strongly connected components. */
144 graphds_scc (g, NULL);
145
146 /* Mark the irreducible loops. */
147 for (i = 0; i < g->n_vertices; i++)
148 for (ge = g->vertices[i].succ; ge; ge = ge->succ_next)
149 {
150 edge real = (edge) ge->data;
151 /* edge E in graph G is irreducible if it connects two vertices in the
152 same scc. */
153
154 /* All edges should lead from a component with higher number to the
155 one with lower one. */
156 gcc_assert (g->vertices[ge->src].component >= g->vertices[ge->dest].component);
157
158 if (g->vertices[ge->src].component != g->vertices[ge->dest].component)
159 continue;
160
161 real->flags |= EDGE_IRREDUCIBLE_LOOP;
162 irred_loop_found = true;
163 if (flow_bb_inside_loop_p (real->src->loop_father, real->dest))
164 real->src->flags |= BB_IRREDUCIBLE_LOOP;
165 }
166
167 free_graph (g);
168
169 loops_state_set (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
170 return irred_loop_found;
171 }
172
173 /* Counts number of insns inside LOOP. */
174 int
175 num_loop_insns (const struct loop *loop)
176 {
177 basic_block *bbs, bb;
178 unsigned i, ninsns = 0;
179 rtx_insn *insn;
180
181 bbs = get_loop_body (loop);
182 for (i = 0; i < loop->num_nodes; i++)
183 {
184 bb = bbs[i];
185 FOR_BB_INSNS (bb, insn)
186 if (NONDEBUG_INSN_P (insn))
187 ninsns++;
188 }
189 free (bbs);
190
191 if (!ninsns)
192 ninsns = 1; /* To avoid division by zero. */
193
194 return ninsns;
195 }
196
197 /* Counts number of insns executed on average per iteration LOOP. */
198 int
199 average_num_loop_insns (const struct loop *loop)
200 {
201 basic_block *bbs, bb;
202 unsigned i, binsns, ninsns, ratio;
203 rtx_insn *insn;
204
205 ninsns = 0;
206 bbs = get_loop_body (loop);
207 for (i = 0; i < loop->num_nodes; i++)
208 {
209 bb = bbs[i];
210
211 binsns = 0;
212 FOR_BB_INSNS (bb, insn)
213 if (NONDEBUG_INSN_P (insn))
214 binsns++;
215
216 ratio = loop->header->frequency == 0
217 ? BB_FREQ_MAX
218 : (bb->frequency * BB_FREQ_MAX) / loop->header->frequency;
219 ninsns += binsns * ratio;
220 }
221 free (bbs);
222
223 ninsns /= BB_FREQ_MAX;
224 if (!ninsns)
225 ninsns = 1; /* To avoid division by zero. */
226
227 return ninsns;
228 }
229
230 /* Returns expected number of iterations of LOOP, according to
231 measured or guessed profile. No bounding is done on the
232 value. */
233
234 gcov_type
235 expected_loop_iterations_unbounded (const struct loop *loop,
236 bool *read_profile_p)
237 {
238 edge e;
239 edge_iterator ei;
240 gcov_type expected = -1;
241
242 if (read_profile_p)
243 *read_profile_p = false;
244
245 /* If we have no profile at all, use AVG_LOOP_NITER. */
246 if (profile_status_for_fn (cfun) == PROFILE_ABSENT)
247 expected = PARAM_VALUE (PARAM_AVG_LOOP_NITER);
248 else if (loop->latch && (loop->latch->count.reliable_p ()
249 || loop->header->count.reliable_p ()))
250 {
251 profile_count count_in = profile_count::zero (),
252 count_latch = profile_count::zero ();
253
254 FOR_EACH_EDGE (e, ei, loop->header->preds)
255 if (e->src == loop->latch)
256 count_latch = e->count;
257 else
258 count_in += e->count;
259
260 if (!count_latch.initialized_p ())
261 ;
262 else if (!(count_in > profile_count::zero ()))
263 expected = count_latch.to_gcov_type () * 2;
264 else
265 {
266 expected = (count_latch.to_gcov_type () + count_in.to_gcov_type ()
267 - 1) / count_in.to_gcov_type ();
268 if (read_profile_p)
269 *read_profile_p = true;
270 }
271 }
272 if (expected == -1)
273 {
274 int freq_in, freq_latch;
275
276 freq_in = 0;
277 freq_latch = 0;
278
279 FOR_EACH_EDGE (e, ei, loop->header->preds)
280 if (flow_bb_inside_loop_p (loop, e->src))
281 freq_latch += EDGE_FREQUENCY (e);
282 else
283 freq_in += EDGE_FREQUENCY (e);
284
285 if (freq_in == 0)
286 {
287 /* If we have no profile at all, use AVG_LOOP_NITER iterations. */
288 if (!freq_latch)
289 expected = PARAM_VALUE (PARAM_AVG_LOOP_NITER);
290 else
291 expected = freq_latch * 2;
292 }
293 else
294 expected = (freq_latch + freq_in - 1) / freq_in;
295 }
296
297 HOST_WIDE_INT max = get_max_loop_iterations_int (loop);
298 if (max != -1 && max < expected)
299 return max;
300 return expected;
301 }
302
303 /* Returns expected number of LOOP iterations. The returned value is bounded
304 by REG_BR_PROB_BASE. */
305
306 unsigned
307 expected_loop_iterations (struct loop *loop)
308 {
309 gcov_type expected = expected_loop_iterations_unbounded (loop);
310 return (expected > REG_BR_PROB_BASE ? REG_BR_PROB_BASE : expected);
311 }
312
313 /* Returns the maximum level of nesting of subloops of LOOP. */
314
315 unsigned
316 get_loop_level (const struct loop *loop)
317 {
318 const struct loop *ploop;
319 unsigned mx = 0, l;
320
321 for (ploop = loop->inner; ploop; ploop = ploop->next)
322 {
323 l = get_loop_level (ploop);
324 if (l >= mx)
325 mx = l + 1;
326 }
327 return mx;
328 }
329
330 /* Initialize the constants for computing set costs. */
331
332 void
333 init_set_costs (void)
334 {
335 int speed;
336 rtx_insn *seq;
337 rtx reg1 = gen_raw_REG (SImode, LAST_VIRTUAL_REGISTER + 1);
338 rtx reg2 = gen_raw_REG (SImode, LAST_VIRTUAL_REGISTER + 2);
339 rtx addr = gen_raw_REG (Pmode, LAST_VIRTUAL_REGISTER + 3);
340 rtx mem = validize_mem (gen_rtx_MEM (SImode, addr));
341 unsigned i;
342
343 target_avail_regs = 0;
344 target_clobbered_regs = 0;
345 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
346 if (TEST_HARD_REG_BIT (reg_class_contents[GENERAL_REGS], i)
347 && !fixed_regs[i])
348 {
349 target_avail_regs++;
350 if (call_used_regs[i])
351 target_clobbered_regs++;
352 }
353
354 target_res_regs = 3;
355
356 for (speed = 0; speed < 2; speed++)
357 {
358 crtl->maybe_hot_insn_p = speed;
359 /* Set up the costs for using extra registers:
360
361 1) If not many free registers remain, we should prefer having an
362 additional move to decreasing the number of available registers.
363 (TARGET_REG_COST).
364 2) If no registers are available, we need to spill, which may require
365 storing the old value to memory and loading it back
366 (TARGET_SPILL_COST). */
367
368 start_sequence ();
369 emit_move_insn (reg1, reg2);
370 seq = get_insns ();
371 end_sequence ();
372 target_reg_cost [speed] = seq_cost (seq, speed);
373
374 start_sequence ();
375 emit_move_insn (mem, reg1);
376 emit_move_insn (reg2, mem);
377 seq = get_insns ();
378 end_sequence ();
379 target_spill_cost [speed] = seq_cost (seq, speed);
380 }
381 default_rtl_profile ();
382 }
383
384 /* Estimates cost of increased register pressure caused by making N_NEW new
385 registers live around the loop. N_OLD is the number of registers live
386 around the loop. If CALL_P is true, also take into account that
387 call-used registers may be clobbered in the loop body, reducing the
388 number of available registers before we spill. */
389
390 unsigned
391 estimate_reg_pressure_cost (unsigned n_new, unsigned n_old, bool speed,
392 bool call_p)
393 {
394 unsigned cost;
395 unsigned regs_needed = n_new + n_old;
396 unsigned available_regs = target_avail_regs;
397
398 /* If there is a call in the loop body, the call-clobbered registers
399 are not available for loop invariants. */
400 if (call_p)
401 available_regs = available_regs - target_clobbered_regs;
402
403 /* If we have enough registers, we should use them and not restrict
404 the transformations unnecessarily. */
405 if (regs_needed + target_res_regs <= available_regs)
406 return 0;
407
408 if (regs_needed <= available_regs)
409 /* If we are close to running out of registers, try to preserve
410 them. */
411 cost = target_reg_cost [speed] * n_new;
412 else
413 /* If we run out of registers, it is very expensive to add another
414 one. */
415 cost = target_spill_cost [speed] * n_new;
416
417 if (optimize && (flag_ira_region == IRA_REGION_ALL
418 || flag_ira_region == IRA_REGION_MIXED)
419 && number_of_loops (cfun) <= (unsigned) IRA_MAX_LOOPS_NUM)
420 /* IRA regional allocation deals with high register pressure
421 better. So decrease the cost (to do more accurate the cost
422 calculation for IRA, we need to know how many registers lives
423 through the loop transparently). */
424 cost /= 2;
425
426 return cost;
427 }
428
429 /* Sets EDGE_LOOP_EXIT flag for all loop exits. */
430
431 void
432 mark_loop_exit_edges (void)
433 {
434 basic_block bb;
435 edge e;
436
437 if (number_of_loops (cfun) <= 1)
438 return;
439
440 FOR_EACH_BB_FN (bb, cfun)
441 {
442 edge_iterator ei;
443
444 FOR_EACH_EDGE (e, ei, bb->succs)
445 {
446 if (loop_outer (bb->loop_father)
447 && loop_exit_edge_p (bb->loop_father, e))
448 e->flags |= EDGE_LOOP_EXIT;
449 else
450 e->flags &= ~EDGE_LOOP_EXIT;
451 }
452 }
453 }
454
455 /* Return exit edge if loop has only one exit that is likely
456 to be executed on runtime (i.e. it is not EH or leading
457 to noreturn call. */
458
459 edge
460 single_likely_exit (struct loop *loop)
461 {
462 edge found = single_exit (loop);
463 vec<edge> exits;
464 unsigned i;
465 edge ex;
466
467 if (found)
468 return found;
469 exits = get_loop_exit_edges (loop);
470 FOR_EACH_VEC_ELT (exits, i, ex)
471 {
472 if (ex->flags & (EDGE_EH | EDGE_ABNORMAL_CALL))
473 continue;
474 /* The constant of 5 is set in a way so noreturn calls are
475 ruled out by this test. The static branch prediction algorithm
476 will not assign such a low probability to conditionals for usual
477 reasons.
478 FIXME: Turn to likely_never_executed */
479 if ((profile_status_for_fn (cfun) != PROFILE_ABSENT
480 && ex->probability < 5)
481 || ex->count == profile_count::zero ())
482 continue;
483 if (!found)
484 found = ex;
485 else
486 {
487 exits.release ();
488 return NULL;
489 }
490 }
491 exits.release ();
492 return found;
493 }
494
495
496 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
497 order against direction of edges from latch. Specially, if
498 header != latch, latch is the 1-st block. */
499
500 vec<basic_block>
501 get_loop_hot_path (const struct loop *loop)
502 {
503 basic_block bb = loop->header;
504 vec<basic_block> path = vNULL;
505 bitmap visited = BITMAP_ALLOC (NULL);
506
507 while (true)
508 {
509 edge_iterator ei;
510 edge e;
511 edge best = NULL;
512
513 path.safe_push (bb);
514 bitmap_set_bit (visited, bb->index);
515 FOR_EACH_EDGE (e, ei, bb->succs)
516 if ((!best || e->probability > best->probability)
517 && !loop_exit_edge_p (loop, e)
518 && !bitmap_bit_p (visited, e->dest->index))
519 best = e;
520 if (!best || best->dest == loop->header)
521 break;
522 bb = best->dest;
523 }
524 BITMAP_FREE (visited);
525 return path;
526 }