* jvspec.c (jvgenmain_spec): Don't handle -fnew-verifier.
[gcc.git] / gcc / cfgloopmanip.c
1 /* Loop manipulation code for GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005, 2007, 2008, 2009 Free Software
3 Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "hard-reg-set.h"
27 #include "obstack.h"
28 #include "basic-block.h"
29 #include "cfgloop.h"
30 #include "cfglayout.h"
31 #include "cfghooks.h"
32 #include "output.h"
33 #include "tree-flow.h"
34
35 static void copy_loops_to (struct loop **, int,
36 struct loop *);
37 static void loop_redirect_edge (edge, basic_block);
38 static void remove_bbs (basic_block *, int);
39 static bool rpe_enum_p (const_basic_block, const void *);
40 static int find_path (edge, basic_block **);
41 static void fix_loop_placements (struct loop *, bool *);
42 static bool fix_bb_placement (basic_block);
43 static void fix_bb_placements (basic_block, bool *);
44 static void unloop (struct loop *, bool *);
45
46 #define RDIV(X,Y) (((X) + (Y) / 2) / (Y))
47
48 /* Checks whether basic block BB is dominated by DATA. */
49 static bool
50 rpe_enum_p (const_basic_block bb, const void *data)
51 {
52 return dominated_by_p (CDI_DOMINATORS, bb, (const_basic_block) data);
53 }
54
55 /* Remove basic blocks BBS. NBBS is the number of the basic blocks. */
56
57 static void
58 remove_bbs (basic_block *bbs, int nbbs)
59 {
60 int i;
61
62 for (i = 0; i < nbbs; i++)
63 delete_basic_block (bbs[i]);
64 }
65
66 /* Find path -- i.e. the basic blocks dominated by edge E and put them
67 into array BBS, that will be allocated large enough to contain them.
68 E->dest must have exactly one predecessor for this to work (it is
69 easy to achieve and we do not put it here because we do not want to
70 alter anything by this function). The number of basic blocks in the
71 path is returned. */
72 static int
73 find_path (edge e, basic_block **bbs)
74 {
75 gcc_assert (EDGE_COUNT (e->dest->preds) <= 1);
76
77 /* Find bbs in the path. */
78 *bbs = XCNEWVEC (basic_block, n_basic_blocks);
79 return dfs_enumerate_from (e->dest, 0, rpe_enum_p, *bbs,
80 n_basic_blocks, e->dest);
81 }
82
83 /* Fix placement of basic block BB inside loop hierarchy --
84 Let L be a loop to that BB belongs. Then every successor of BB must either
85 1) belong to some superloop of loop L, or
86 2) be a header of loop K such that K->outer is superloop of L
87 Returns true if we had to move BB into other loop to enforce this condition,
88 false if the placement of BB was already correct (provided that placements
89 of its successors are correct). */
90 static bool
91 fix_bb_placement (basic_block bb)
92 {
93 edge e;
94 edge_iterator ei;
95 struct loop *loop = current_loops->tree_root, *act;
96
97 FOR_EACH_EDGE (e, ei, bb->succs)
98 {
99 if (e->dest == EXIT_BLOCK_PTR)
100 continue;
101
102 act = e->dest->loop_father;
103 if (act->header == e->dest)
104 act = loop_outer (act);
105
106 if (flow_loop_nested_p (loop, act))
107 loop = act;
108 }
109
110 if (loop == bb->loop_father)
111 return false;
112
113 remove_bb_from_loops (bb);
114 add_bb_to_loop (bb, loop);
115
116 return true;
117 }
118
119 /* Fix placement of LOOP inside loop tree, i.e. find the innermost superloop
120 of LOOP to that leads at least one exit edge of LOOP, and set it
121 as the immediate superloop of LOOP. Return true if the immediate superloop
122 of LOOP changed. */
123
124 static bool
125 fix_loop_placement (struct loop *loop)
126 {
127 unsigned i;
128 edge e;
129 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
130 struct loop *father = current_loops->tree_root, *act;
131 bool ret = false;
132
133 FOR_EACH_VEC_ELT (edge, exits, i, e)
134 {
135 act = find_common_loop (loop, e->dest->loop_father);
136 if (flow_loop_nested_p (father, act))
137 father = act;
138 }
139
140 if (father != loop_outer (loop))
141 {
142 for (act = loop_outer (loop); act != father; act = loop_outer (act))
143 act->num_nodes -= loop->num_nodes;
144 flow_loop_tree_node_remove (loop);
145 flow_loop_tree_node_add (father, loop);
146
147 /* The exit edges of LOOP no longer exits its original immediate
148 superloops; remove them from the appropriate exit lists. */
149 FOR_EACH_VEC_ELT (edge, exits, i, e)
150 rescan_loop_exit (e, false, false);
151
152 ret = true;
153 }
154
155 VEC_free (edge, heap, exits);
156 return ret;
157 }
158
159 /* Fix placements of basic blocks inside loop hierarchy stored in loops; i.e.
160 enforce condition condition stated in description of fix_bb_placement. We
161 start from basic block FROM that had some of its successors removed, so that
162 his placement no longer has to be correct, and iteratively fix placement of
163 its predecessors that may change if placement of FROM changed. Also fix
164 placement of subloops of FROM->loop_father, that might also be altered due
165 to this change; the condition for them is similar, except that instead of
166 successors we consider edges coming out of the loops.
167
168 If the changes may invalidate the information about irreducible regions,
169 IRRED_INVALIDATED is set to true. */
170
171 static void
172 fix_bb_placements (basic_block from,
173 bool *irred_invalidated)
174 {
175 sbitmap in_queue;
176 basic_block *queue, *qtop, *qbeg, *qend;
177 struct loop *base_loop;
178 edge e;
179
180 /* We pass through blocks back-reachable from FROM, testing whether some
181 of their successors moved to outer loop. It may be necessary to
182 iterate several times, but it is finite, as we stop unless we move
183 the basic block up the loop structure. The whole story is a bit
184 more complicated due to presence of subloops, those are moved using
185 fix_loop_placement. */
186
187 base_loop = from->loop_father;
188 if (base_loop == current_loops->tree_root)
189 return;
190
191 in_queue = sbitmap_alloc (last_basic_block);
192 sbitmap_zero (in_queue);
193 SET_BIT (in_queue, from->index);
194 /* Prevent us from going out of the base_loop. */
195 SET_BIT (in_queue, base_loop->header->index);
196
197 queue = XNEWVEC (basic_block, base_loop->num_nodes + 1);
198 qtop = queue + base_loop->num_nodes + 1;
199 qbeg = queue;
200 qend = queue + 1;
201 *qbeg = from;
202
203 while (qbeg != qend)
204 {
205 edge_iterator ei;
206 from = *qbeg;
207 qbeg++;
208 if (qbeg == qtop)
209 qbeg = queue;
210 RESET_BIT (in_queue, from->index);
211
212 if (from->loop_father->header == from)
213 {
214 /* Subloop header, maybe move the loop upward. */
215 if (!fix_loop_placement (from->loop_father))
216 continue;
217 }
218 else
219 {
220 /* Ordinary basic block. */
221 if (!fix_bb_placement (from))
222 continue;
223 }
224
225 FOR_EACH_EDGE (e, ei, from->succs)
226 {
227 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
228 *irred_invalidated = true;
229 }
230
231 /* Something has changed, insert predecessors into queue. */
232 FOR_EACH_EDGE (e, ei, from->preds)
233 {
234 basic_block pred = e->src;
235 struct loop *nca;
236
237 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
238 *irred_invalidated = true;
239
240 if (TEST_BIT (in_queue, pred->index))
241 continue;
242
243 /* If it is subloop, then it either was not moved, or
244 the path up the loop tree from base_loop do not contain
245 it. */
246 nca = find_common_loop (pred->loop_father, base_loop);
247 if (pred->loop_father != base_loop
248 && (nca == base_loop
249 || nca != pred->loop_father))
250 pred = pred->loop_father->header;
251 else if (!flow_loop_nested_p (from->loop_father, pred->loop_father))
252 {
253 /* No point in processing it. */
254 continue;
255 }
256
257 if (TEST_BIT (in_queue, pred->index))
258 continue;
259
260 /* Schedule the basic block. */
261 *qend = pred;
262 qend++;
263 if (qend == qtop)
264 qend = queue;
265 SET_BIT (in_queue, pred->index);
266 }
267 }
268 free (in_queue);
269 free (queue);
270 }
271
272 /* Removes path beginning at edge E, i.e. remove basic blocks dominated by E
273 and update loop structures and dominators. Return true if we were able
274 to remove the path, false otherwise (and nothing is affected then). */
275 bool
276 remove_path (edge e)
277 {
278 edge ae;
279 basic_block *rem_bbs, *bord_bbs, from, bb;
280 VEC (basic_block, heap) *dom_bbs;
281 int i, nrem, n_bord_bbs;
282 sbitmap seen;
283 bool irred_invalidated = false;
284
285 if (!can_remove_branch_p (e))
286 return false;
287
288 /* Keep track of whether we need to update information about irreducible
289 regions. This is the case if the removed area is a part of the
290 irreducible region, or if the set of basic blocks that belong to a loop
291 that is inside an irreducible region is changed, or if such a loop is
292 removed. */
293 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
294 irred_invalidated = true;
295
296 /* We need to check whether basic blocks are dominated by the edge
297 e, but we only have basic block dominators. This is easy to
298 fix -- when e->dest has exactly one predecessor, this corresponds
299 to blocks dominated by e->dest, if not, split the edge. */
300 if (!single_pred_p (e->dest))
301 e = single_pred_edge (split_edge (e));
302
303 /* It may happen that by removing path we remove one or more loops
304 we belong to. In this case first unloop the loops, then proceed
305 normally. We may assume that e->dest is not a header of any loop,
306 as it now has exactly one predecessor. */
307 while (loop_outer (e->src->loop_father)
308 && dominated_by_p (CDI_DOMINATORS,
309 e->src->loop_father->latch, e->dest))
310 unloop (e->src->loop_father, &irred_invalidated);
311
312 /* Identify the path. */
313 nrem = find_path (e, &rem_bbs);
314
315 n_bord_bbs = 0;
316 bord_bbs = XCNEWVEC (basic_block, n_basic_blocks);
317 seen = sbitmap_alloc (last_basic_block);
318 sbitmap_zero (seen);
319
320 /* Find "border" hexes -- i.e. those with predecessor in removed path. */
321 for (i = 0; i < nrem; i++)
322 SET_BIT (seen, rem_bbs[i]->index);
323 for (i = 0; i < nrem; i++)
324 {
325 edge_iterator ei;
326 bb = rem_bbs[i];
327 FOR_EACH_EDGE (ae, ei, rem_bbs[i]->succs)
328 if (ae->dest != EXIT_BLOCK_PTR && !TEST_BIT (seen, ae->dest->index))
329 {
330 SET_BIT (seen, ae->dest->index);
331 bord_bbs[n_bord_bbs++] = ae->dest;
332
333 if (ae->flags & EDGE_IRREDUCIBLE_LOOP)
334 irred_invalidated = true;
335 }
336 }
337
338 /* Remove the path. */
339 from = e->src;
340 remove_branch (e);
341 dom_bbs = NULL;
342
343 /* Cancel loops contained in the path. */
344 for (i = 0; i < nrem; i++)
345 if (rem_bbs[i]->loop_father->header == rem_bbs[i])
346 cancel_loop_tree (rem_bbs[i]->loop_father);
347
348 remove_bbs (rem_bbs, nrem);
349 free (rem_bbs);
350
351 /* Find blocks whose dominators may be affected. */
352 sbitmap_zero (seen);
353 for (i = 0; i < n_bord_bbs; i++)
354 {
355 basic_block ldom;
356
357 bb = get_immediate_dominator (CDI_DOMINATORS, bord_bbs[i]);
358 if (TEST_BIT (seen, bb->index))
359 continue;
360 SET_BIT (seen, bb->index);
361
362 for (ldom = first_dom_son (CDI_DOMINATORS, bb);
363 ldom;
364 ldom = next_dom_son (CDI_DOMINATORS, ldom))
365 if (!dominated_by_p (CDI_DOMINATORS, from, ldom))
366 VEC_safe_push (basic_block, heap, dom_bbs, ldom);
367 }
368
369 free (seen);
370
371 /* Recount dominators. */
372 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, true);
373 VEC_free (basic_block, heap, dom_bbs);
374 free (bord_bbs);
375
376 /* Fix placements of basic blocks inside loops and the placement of
377 loops in the loop tree. */
378 fix_bb_placements (from, &irred_invalidated);
379 fix_loop_placements (from->loop_father, &irred_invalidated);
380
381 if (irred_invalidated
382 && loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
383 mark_irreducible_loops ();
384
385 return true;
386 }
387
388 /* Creates place for a new LOOP in loops structure. */
389
390 static void
391 place_new_loop (struct loop *loop)
392 {
393 loop->num = number_of_loops ();
394 VEC_safe_push (loop_p, gc, current_loops->larray, loop);
395 }
396
397 /* Given LOOP structure with filled header and latch, find the body of the
398 corresponding loop and add it to loops tree. Insert the LOOP as a son of
399 outer. */
400
401 void
402 add_loop (struct loop *loop, struct loop *outer)
403 {
404 basic_block *bbs;
405 int i, n;
406 struct loop *subloop;
407 edge e;
408 edge_iterator ei;
409
410 /* Add it to loop structure. */
411 place_new_loop (loop);
412 flow_loop_tree_node_add (outer, loop);
413
414 /* Find its nodes. */
415 bbs = XNEWVEC (basic_block, n_basic_blocks);
416 n = get_loop_body_with_size (loop, bbs, n_basic_blocks);
417
418 for (i = 0; i < n; i++)
419 {
420 if (bbs[i]->loop_father == outer)
421 {
422 remove_bb_from_loops (bbs[i]);
423 add_bb_to_loop (bbs[i], loop);
424 continue;
425 }
426
427 loop->num_nodes++;
428
429 /* If we find a direct subloop of OUTER, move it to LOOP. */
430 subloop = bbs[i]->loop_father;
431 if (loop_outer (subloop) == outer
432 && subloop->header == bbs[i])
433 {
434 flow_loop_tree_node_remove (subloop);
435 flow_loop_tree_node_add (loop, subloop);
436 }
437 }
438
439 /* Update the information about loop exit edges. */
440 for (i = 0; i < n; i++)
441 {
442 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
443 {
444 rescan_loop_exit (e, false, false);
445 }
446 }
447
448 free (bbs);
449 }
450
451 /* Multiply all frequencies in LOOP by NUM/DEN. */
452 void
453 scale_loop_frequencies (struct loop *loop, int num, int den)
454 {
455 basic_block *bbs;
456
457 bbs = get_loop_body (loop);
458 scale_bbs_frequencies_int (bbs, loop->num_nodes, num, den);
459 free (bbs);
460 }
461
462 /* Recompute dominance information for basic blocks outside LOOP. */
463
464 static void
465 update_dominators_in_loop (struct loop *loop)
466 {
467 VEC (basic_block, heap) *dom_bbs = NULL;
468 sbitmap seen;
469 basic_block *body;
470 unsigned i;
471
472 seen = sbitmap_alloc (last_basic_block);
473 sbitmap_zero (seen);
474 body = get_loop_body (loop);
475
476 for (i = 0; i < loop->num_nodes; i++)
477 SET_BIT (seen, body[i]->index);
478
479 for (i = 0; i < loop->num_nodes; i++)
480 {
481 basic_block ldom;
482
483 for (ldom = first_dom_son (CDI_DOMINATORS, body[i]);
484 ldom;
485 ldom = next_dom_son (CDI_DOMINATORS, ldom))
486 if (!TEST_BIT (seen, ldom->index))
487 {
488 SET_BIT (seen, ldom->index);
489 VEC_safe_push (basic_block, heap, dom_bbs, ldom);
490 }
491 }
492
493 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
494 free (body);
495 free (seen);
496 VEC_free (basic_block, heap, dom_bbs);
497 }
498
499 /* Creates an if region as shown above. CONDITION is used to create
500 the test for the if.
501
502 |
503 | ------------- -------------
504 | | pred_bb | | pred_bb |
505 | ------------- -------------
506 | | |
507 | | | ENTRY_EDGE
508 | | ENTRY_EDGE V
509 | | ====> -------------
510 | | | cond_bb |
511 | | | CONDITION |
512 | | -------------
513 | V / \
514 | ------------- e_false / \ e_true
515 | | succ_bb | V V
516 | ------------- ----------- -----------
517 | | false_bb | | true_bb |
518 | ----------- -----------
519 | \ /
520 | \ /
521 | V V
522 | -------------
523 | | join_bb |
524 | -------------
525 | | exit_edge (result)
526 | V
527 | -----------
528 | | succ_bb |
529 | -----------
530 |
531 */
532
533 edge
534 create_empty_if_region_on_edge (edge entry_edge, tree condition)
535 {
536
537 basic_block cond_bb, true_bb, false_bb, join_bb;
538 edge e_true, e_false, exit_edge;
539 gimple cond_stmt;
540 tree simple_cond;
541 gimple_stmt_iterator gsi;
542
543 cond_bb = split_edge (entry_edge);
544
545 /* Insert condition in cond_bb. */
546 gsi = gsi_last_bb (cond_bb);
547 simple_cond =
548 force_gimple_operand_gsi (&gsi, condition, true, NULL,
549 false, GSI_NEW_STMT);
550 cond_stmt = gimple_build_cond_from_tree (simple_cond, NULL_TREE, NULL_TREE);
551 gsi = gsi_last_bb (cond_bb);
552 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
553
554 join_bb = split_edge (single_succ_edge (cond_bb));
555
556 e_true = single_succ_edge (cond_bb);
557 true_bb = split_edge (e_true);
558
559 e_false = make_edge (cond_bb, join_bb, 0);
560 false_bb = split_edge (e_false);
561
562 e_true->flags &= ~EDGE_FALLTHRU;
563 e_true->flags |= EDGE_TRUE_VALUE;
564 e_false->flags &= ~EDGE_FALLTHRU;
565 e_false->flags |= EDGE_FALSE_VALUE;
566
567 set_immediate_dominator (CDI_DOMINATORS, cond_bb, entry_edge->src);
568 set_immediate_dominator (CDI_DOMINATORS, true_bb, cond_bb);
569 set_immediate_dominator (CDI_DOMINATORS, false_bb, cond_bb);
570 set_immediate_dominator (CDI_DOMINATORS, join_bb, cond_bb);
571
572 exit_edge = single_succ_edge (join_bb);
573
574 if (single_pred_p (exit_edge->dest))
575 set_immediate_dominator (CDI_DOMINATORS, exit_edge->dest, join_bb);
576
577 return exit_edge;
578 }
579
580 /* create_empty_loop_on_edge
581 |
582 | - pred_bb - ------ pred_bb ------
583 | | | | iv0 = initial_value |
584 | -----|----- ---------|-----------
585 | | ______ | entry_edge
586 | | entry_edge / | |
587 | | ====> | -V---V- loop_header -------------
588 | V | | iv_before = phi (iv0, iv_after) |
589 | - succ_bb - | ---|-----------------------------
590 | | | | |
591 | ----------- | ---V--- loop_body ---------------
592 | | | iv_after = iv_before + stride |
593 | | | if (iv_before < upper_bound) |
594 | | ---|--------------\--------------
595 | | | \ exit_e
596 | | V \
597 | | - loop_latch - V- succ_bb -
598 | | | | | |
599 | | /------------- -----------
600 | \ ___ /
601
602 Creates an empty loop as shown above, the IV_BEFORE is the SSA_NAME
603 that is used before the increment of IV. IV_BEFORE should be used for
604 adding code to the body that uses the IV. OUTER is the outer loop in
605 which the new loop should be inserted.
606
607 Both INITIAL_VALUE and UPPER_BOUND expressions are gimplified and
608 inserted on the loop entry edge. This implies that this function
609 should be used only when the UPPER_BOUND expression is a loop
610 invariant. */
611
612 struct loop *
613 create_empty_loop_on_edge (edge entry_edge,
614 tree initial_value,
615 tree stride, tree upper_bound,
616 tree iv,
617 tree *iv_before,
618 tree *iv_after,
619 struct loop *outer)
620 {
621 basic_block loop_header, loop_latch, succ_bb, pred_bb;
622 struct loop *loop;
623 gimple_stmt_iterator gsi;
624 gimple_seq stmts;
625 gimple cond_expr;
626 tree exit_test;
627 edge exit_e;
628 int prob;
629
630 gcc_assert (entry_edge && initial_value && stride && upper_bound && iv);
631
632 /* Create header, latch and wire up the loop. */
633 pred_bb = entry_edge->src;
634 loop_header = split_edge (entry_edge);
635 loop_latch = split_edge (single_succ_edge (loop_header));
636 succ_bb = single_succ (loop_latch);
637 make_edge (loop_header, succ_bb, 0);
638 redirect_edge_succ_nodup (single_succ_edge (loop_latch), loop_header);
639
640 /* Set immediate dominator information. */
641 set_immediate_dominator (CDI_DOMINATORS, loop_header, pred_bb);
642 set_immediate_dominator (CDI_DOMINATORS, loop_latch, loop_header);
643 set_immediate_dominator (CDI_DOMINATORS, succ_bb, loop_header);
644
645 /* Initialize a loop structure and put it in a loop hierarchy. */
646 loop = alloc_loop ();
647 loop->header = loop_header;
648 loop->latch = loop_latch;
649 add_loop (loop, outer);
650
651 /* TODO: Fix frequencies and counts. */
652 prob = REG_BR_PROB_BASE / 2;
653
654 scale_loop_frequencies (loop, REG_BR_PROB_BASE - prob, REG_BR_PROB_BASE);
655
656 /* Update dominators. */
657 update_dominators_in_loop (loop);
658
659 /* Modify edge flags. */
660 exit_e = single_exit (loop);
661 exit_e->flags = EDGE_LOOP_EXIT | EDGE_FALSE_VALUE;
662 single_pred_edge (loop_latch)->flags = EDGE_TRUE_VALUE;
663
664 /* Construct IV code in loop. */
665 initial_value = force_gimple_operand (initial_value, &stmts, true, iv);
666 if (stmts)
667 {
668 gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
669 gsi_commit_edge_inserts ();
670 }
671
672 upper_bound = force_gimple_operand (upper_bound, &stmts, true, NULL);
673 if (stmts)
674 {
675 gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
676 gsi_commit_edge_inserts ();
677 }
678
679 gsi = gsi_last_bb (loop_header);
680 create_iv (initial_value, stride, iv, loop, &gsi, false,
681 iv_before, iv_after);
682
683 /* Insert loop exit condition. */
684 cond_expr = gimple_build_cond
685 (LT_EXPR, *iv_before, upper_bound, NULL_TREE, NULL_TREE);
686
687 exit_test = gimple_cond_lhs (cond_expr);
688 exit_test = force_gimple_operand_gsi (&gsi, exit_test, true, NULL,
689 false, GSI_NEW_STMT);
690 gimple_cond_set_lhs (cond_expr, exit_test);
691 gsi = gsi_last_bb (exit_e->src);
692 gsi_insert_after (&gsi, cond_expr, GSI_NEW_STMT);
693
694 split_block_after_labels (loop_header);
695
696 return loop;
697 }
698
699 /* Make area between HEADER_EDGE and LATCH_EDGE a loop by connecting
700 latch to header and update loop tree and dominators
701 accordingly. Everything between them plus LATCH_EDGE destination must
702 be dominated by HEADER_EDGE destination, and back-reachable from
703 LATCH_EDGE source. HEADER_EDGE is redirected to basic block SWITCH_BB,
704 FALSE_EDGE of SWITCH_BB to original destination of HEADER_EDGE and
705 TRUE_EDGE of SWITCH_BB to original destination of LATCH_EDGE.
706 Returns the newly created loop. Frequencies and counts in the new loop
707 are scaled by FALSE_SCALE and in the old one by TRUE_SCALE. */
708
709 struct loop *
710 loopify (edge latch_edge, edge header_edge,
711 basic_block switch_bb, edge true_edge, edge false_edge,
712 bool redirect_all_edges, unsigned true_scale, unsigned false_scale)
713 {
714 basic_block succ_bb = latch_edge->dest;
715 basic_block pred_bb = header_edge->src;
716 struct loop *loop = alloc_loop ();
717 struct loop *outer = loop_outer (succ_bb->loop_father);
718 int freq;
719 gcov_type cnt;
720 edge e;
721 edge_iterator ei;
722
723 loop->header = header_edge->dest;
724 loop->latch = latch_edge->src;
725
726 freq = EDGE_FREQUENCY (header_edge);
727 cnt = header_edge->count;
728
729 /* Redirect edges. */
730 loop_redirect_edge (latch_edge, loop->header);
731 loop_redirect_edge (true_edge, succ_bb);
732
733 /* During loop versioning, one of the switch_bb edge is already properly
734 set. Do not redirect it again unless redirect_all_edges is true. */
735 if (redirect_all_edges)
736 {
737 loop_redirect_edge (header_edge, switch_bb);
738 loop_redirect_edge (false_edge, loop->header);
739
740 /* Update dominators. */
741 set_immediate_dominator (CDI_DOMINATORS, switch_bb, pred_bb);
742 set_immediate_dominator (CDI_DOMINATORS, loop->header, switch_bb);
743 }
744
745 set_immediate_dominator (CDI_DOMINATORS, succ_bb, switch_bb);
746
747 /* Compute new loop. */
748 add_loop (loop, outer);
749
750 /* Add switch_bb to appropriate loop. */
751 if (switch_bb->loop_father)
752 remove_bb_from_loops (switch_bb);
753 add_bb_to_loop (switch_bb, outer);
754
755 /* Fix frequencies. */
756 if (redirect_all_edges)
757 {
758 switch_bb->frequency = freq;
759 switch_bb->count = cnt;
760 FOR_EACH_EDGE (e, ei, switch_bb->succs)
761 {
762 e->count = (switch_bb->count * e->probability) / REG_BR_PROB_BASE;
763 }
764 }
765 scale_loop_frequencies (loop, false_scale, REG_BR_PROB_BASE);
766 scale_loop_frequencies (succ_bb->loop_father, true_scale, REG_BR_PROB_BASE);
767 update_dominators_in_loop (loop);
768
769 return loop;
770 }
771
772 /* Remove the latch edge of a LOOP and update loops to indicate that
773 the LOOP was removed. After this function, original loop latch will
774 have no successor, which caller is expected to fix somehow.
775
776 If this may cause the information about irreducible regions to become
777 invalid, IRRED_INVALIDATED is set to true. */
778
779 static void
780 unloop (struct loop *loop, bool *irred_invalidated)
781 {
782 basic_block *body;
783 struct loop *ploop;
784 unsigned i, n;
785 basic_block latch = loop->latch;
786 bool dummy = false;
787
788 if (loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP)
789 *irred_invalidated = true;
790
791 /* This is relatively straightforward. The dominators are unchanged, as
792 loop header dominates loop latch, so the only thing we have to care of
793 is the placement of loops and basic blocks inside the loop tree. We
794 move them all to the loop->outer, and then let fix_bb_placements do
795 its work. */
796
797 body = get_loop_body (loop);
798 n = loop->num_nodes;
799 for (i = 0; i < n; i++)
800 if (body[i]->loop_father == loop)
801 {
802 remove_bb_from_loops (body[i]);
803 add_bb_to_loop (body[i], loop_outer (loop));
804 }
805 free(body);
806
807 while (loop->inner)
808 {
809 ploop = loop->inner;
810 flow_loop_tree_node_remove (ploop);
811 flow_loop_tree_node_add (loop_outer (loop), ploop);
812 }
813
814 /* Remove the loop and free its data. */
815 delete_loop (loop);
816
817 remove_edge (single_succ_edge (latch));
818
819 /* We do not pass IRRED_INVALIDATED to fix_bb_placements here, as even if
820 there is an irreducible region inside the cancelled loop, the flags will
821 be still correct. */
822 fix_bb_placements (latch, &dummy);
823 }
824
825 /* Fix placement of superloops of LOOP inside loop tree, i.e. ensure that
826 condition stated in description of fix_loop_placement holds for them.
827 It is used in case when we removed some edges coming out of LOOP, which
828 may cause the right placement of LOOP inside loop tree to change.
829
830 IRRED_INVALIDATED is set to true if a change in the loop structures might
831 invalidate the information about irreducible regions. */
832
833 static void
834 fix_loop_placements (struct loop *loop, bool *irred_invalidated)
835 {
836 struct loop *outer;
837
838 while (loop_outer (loop))
839 {
840 outer = loop_outer (loop);
841 if (!fix_loop_placement (loop))
842 break;
843
844 /* Changing the placement of a loop in the loop tree may alter the
845 validity of condition 2) of the description of fix_bb_placement
846 for its preheader, because the successor is the header and belongs
847 to the loop. So call fix_bb_placements to fix up the placement
848 of the preheader and (possibly) of its predecessors. */
849 fix_bb_placements (loop_preheader_edge (loop)->src,
850 irred_invalidated);
851 loop = outer;
852 }
853 }
854
855 /* Copies copy of LOOP as subloop of TARGET loop, placing newly
856 created loop into loops structure. */
857 struct loop *
858 duplicate_loop (struct loop *loop, struct loop *target)
859 {
860 struct loop *cloop;
861 cloop = alloc_loop ();
862 place_new_loop (cloop);
863
864 /* Mark the new loop as copy of LOOP. */
865 set_loop_copy (loop, cloop);
866
867 /* Add it to target. */
868 flow_loop_tree_node_add (target, cloop);
869
870 return cloop;
871 }
872
873 /* Copies structure of subloops of LOOP into TARGET loop, placing
874 newly created loops into loop tree. */
875 void
876 duplicate_subloops (struct loop *loop, struct loop *target)
877 {
878 struct loop *aloop, *cloop;
879
880 for (aloop = loop->inner; aloop; aloop = aloop->next)
881 {
882 cloop = duplicate_loop (aloop, target);
883 duplicate_subloops (aloop, cloop);
884 }
885 }
886
887 /* Copies structure of subloops of N loops, stored in array COPIED_LOOPS,
888 into TARGET loop, placing newly created loops into loop tree. */
889 static void
890 copy_loops_to (struct loop **copied_loops, int n, struct loop *target)
891 {
892 struct loop *aloop;
893 int i;
894
895 for (i = 0; i < n; i++)
896 {
897 aloop = duplicate_loop (copied_loops[i], target);
898 duplicate_subloops (copied_loops[i], aloop);
899 }
900 }
901
902 /* Redirects edge E to basic block DEST. */
903 static void
904 loop_redirect_edge (edge e, basic_block dest)
905 {
906 if (e->dest == dest)
907 return;
908
909 redirect_edge_and_branch_force (e, dest);
910 }
911
912 /* Check whether LOOP's body can be duplicated. */
913 bool
914 can_duplicate_loop_p (const struct loop *loop)
915 {
916 int ret;
917 basic_block *bbs = get_loop_body (loop);
918
919 ret = can_copy_bbs_p (bbs, loop->num_nodes);
920 free (bbs);
921
922 return ret;
923 }
924
925 /* Sets probability and count of edge E to zero. The probability and count
926 is redistributed evenly to the remaining edges coming from E->src. */
927
928 static void
929 set_zero_probability (edge e)
930 {
931 basic_block bb = e->src;
932 edge_iterator ei;
933 edge ae, last = NULL;
934 unsigned n = EDGE_COUNT (bb->succs);
935 gcov_type cnt = e->count, cnt1;
936 unsigned prob = e->probability, prob1;
937
938 gcc_assert (n > 1);
939 cnt1 = cnt / (n - 1);
940 prob1 = prob / (n - 1);
941
942 FOR_EACH_EDGE (ae, ei, bb->succs)
943 {
944 if (ae == e)
945 continue;
946
947 ae->probability += prob1;
948 ae->count += cnt1;
949 last = ae;
950 }
951
952 /* Move the rest to one of the edges. */
953 last->probability += prob % (n - 1);
954 last->count += cnt % (n - 1);
955
956 e->probability = 0;
957 e->count = 0;
958 }
959
960 /* Duplicates body of LOOP to given edge E NDUPL times. Takes care of updating
961 loop structure and dominators. E's destination must be LOOP header for
962 this to work, i.e. it must be entry or latch edge of this loop; these are
963 unique, as the loops must have preheaders for this function to work
964 correctly (in case E is latch, the function unrolls the loop, if E is entry
965 edge, it peels the loop). Store edges created by copying ORIG edge from
966 copies corresponding to set bits in WONT_EXIT bitmap (bit 0 corresponds to
967 original LOOP body, the other copies are numbered in order given by control
968 flow through them) into TO_REMOVE array. Returns false if duplication is
969 impossible. */
970
971 bool
972 duplicate_loop_to_header_edge (struct loop *loop, edge e,
973 unsigned int ndupl, sbitmap wont_exit,
974 edge orig, VEC (edge, heap) **to_remove,
975 int flags)
976 {
977 struct loop *target, *aloop;
978 struct loop **orig_loops;
979 unsigned n_orig_loops;
980 basic_block header = loop->header, latch = loop->latch;
981 basic_block *new_bbs, *bbs, *first_active;
982 basic_block new_bb, bb, first_active_latch = NULL;
983 edge ae, latch_edge;
984 edge spec_edges[2], new_spec_edges[2];
985 #define SE_LATCH 0
986 #define SE_ORIG 1
987 unsigned i, j, n;
988 int is_latch = (latch == e->src);
989 int scale_act = 0, *scale_step = NULL, scale_main = 0;
990 int scale_after_exit = 0;
991 int p, freq_in, freq_le, freq_out_orig;
992 int prob_pass_thru, prob_pass_wont_exit, prob_pass_main;
993 int add_irreducible_flag;
994 basic_block place_after;
995 bitmap bbs_to_scale = NULL;
996 bitmap_iterator bi;
997
998 gcc_assert (e->dest == loop->header);
999 gcc_assert (ndupl > 0);
1000
1001 if (orig)
1002 {
1003 /* Orig must be edge out of the loop. */
1004 gcc_assert (flow_bb_inside_loop_p (loop, orig->src));
1005 gcc_assert (!flow_bb_inside_loop_p (loop, orig->dest));
1006 }
1007
1008 n = loop->num_nodes;
1009 bbs = get_loop_body_in_dom_order (loop);
1010 gcc_assert (bbs[0] == loop->header);
1011 gcc_assert (bbs[n - 1] == loop->latch);
1012
1013 /* Check whether duplication is possible. */
1014 if (!can_copy_bbs_p (bbs, loop->num_nodes))
1015 {
1016 free (bbs);
1017 return false;
1018 }
1019 new_bbs = XNEWVEC (basic_block, loop->num_nodes);
1020
1021 /* In case we are doing loop peeling and the loop is in the middle of
1022 irreducible region, the peeled copies will be inside it too. */
1023 add_irreducible_flag = e->flags & EDGE_IRREDUCIBLE_LOOP;
1024 gcc_assert (!is_latch || !add_irreducible_flag);
1025
1026 /* Find edge from latch. */
1027 latch_edge = loop_latch_edge (loop);
1028
1029 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1030 {
1031 /* Calculate coefficients by that we have to scale frequencies
1032 of duplicated loop bodies. */
1033 freq_in = header->frequency;
1034 freq_le = EDGE_FREQUENCY (latch_edge);
1035 if (freq_in == 0)
1036 freq_in = 1;
1037 if (freq_in < freq_le)
1038 freq_in = freq_le;
1039 freq_out_orig = orig ? EDGE_FREQUENCY (orig) : freq_in - freq_le;
1040 if (freq_out_orig > freq_in - freq_le)
1041 freq_out_orig = freq_in - freq_le;
1042 prob_pass_thru = RDIV (REG_BR_PROB_BASE * freq_le, freq_in);
1043 prob_pass_wont_exit =
1044 RDIV (REG_BR_PROB_BASE * (freq_le + freq_out_orig), freq_in);
1045
1046 if (orig
1047 && REG_BR_PROB_BASE - orig->probability != 0)
1048 {
1049 /* The blocks that are dominated by a removed exit edge ORIG have
1050 frequencies scaled by this. */
1051 scale_after_exit = RDIV (REG_BR_PROB_BASE * REG_BR_PROB_BASE,
1052 REG_BR_PROB_BASE - orig->probability);
1053 bbs_to_scale = BITMAP_ALLOC (NULL);
1054 for (i = 0; i < n; i++)
1055 {
1056 if (bbs[i] != orig->src
1057 && dominated_by_p (CDI_DOMINATORS, bbs[i], orig->src))
1058 bitmap_set_bit (bbs_to_scale, i);
1059 }
1060 }
1061
1062 scale_step = XNEWVEC (int, ndupl);
1063
1064 for (i = 1; i <= ndupl; i++)
1065 scale_step[i - 1] = TEST_BIT (wont_exit, i)
1066 ? prob_pass_wont_exit
1067 : prob_pass_thru;
1068
1069 /* Complete peeling is special as the probability of exit in last
1070 copy becomes 1. */
1071 if (flags & DLTHE_FLAG_COMPLETTE_PEEL)
1072 {
1073 int wanted_freq = EDGE_FREQUENCY (e);
1074
1075 if (wanted_freq > freq_in)
1076 wanted_freq = freq_in;
1077
1078 gcc_assert (!is_latch);
1079 /* First copy has frequency of incoming edge. Each subsequent
1080 frequency should be reduced by prob_pass_wont_exit. Caller
1081 should've managed the flags so all except for original loop
1082 has won't exist set. */
1083 scale_act = RDIV (wanted_freq * REG_BR_PROB_BASE, freq_in);
1084 /* Now simulate the duplication adjustments and compute header
1085 frequency of the last copy. */
1086 for (i = 0; i < ndupl; i++)
1087 wanted_freq = RDIV (wanted_freq * scale_step[i], REG_BR_PROB_BASE);
1088 scale_main = RDIV (wanted_freq * REG_BR_PROB_BASE, freq_in);
1089 }
1090 else if (is_latch)
1091 {
1092 prob_pass_main = TEST_BIT (wont_exit, 0)
1093 ? prob_pass_wont_exit
1094 : prob_pass_thru;
1095 p = prob_pass_main;
1096 scale_main = REG_BR_PROB_BASE;
1097 for (i = 0; i < ndupl; i++)
1098 {
1099 scale_main += p;
1100 p = RDIV (p * scale_step[i], REG_BR_PROB_BASE);
1101 }
1102 scale_main = RDIV (REG_BR_PROB_BASE * REG_BR_PROB_BASE, scale_main);
1103 scale_act = RDIV (scale_main * prob_pass_main, REG_BR_PROB_BASE);
1104 }
1105 else
1106 {
1107 scale_main = REG_BR_PROB_BASE;
1108 for (i = 0; i < ndupl; i++)
1109 scale_main = RDIV (scale_main * scale_step[i], REG_BR_PROB_BASE);
1110 scale_act = REG_BR_PROB_BASE - prob_pass_thru;
1111 }
1112 for (i = 0; i < ndupl; i++)
1113 gcc_assert (scale_step[i] >= 0 && scale_step[i] <= REG_BR_PROB_BASE);
1114 gcc_assert (scale_main >= 0 && scale_main <= REG_BR_PROB_BASE
1115 && scale_act >= 0 && scale_act <= REG_BR_PROB_BASE);
1116 }
1117
1118 /* Loop the new bbs will belong to. */
1119 target = e->src->loop_father;
1120
1121 /* Original loops. */
1122 n_orig_loops = 0;
1123 for (aloop = loop->inner; aloop; aloop = aloop->next)
1124 n_orig_loops++;
1125 orig_loops = XCNEWVEC (struct loop *, n_orig_loops);
1126 for (aloop = loop->inner, i = 0; aloop; aloop = aloop->next, i++)
1127 orig_loops[i] = aloop;
1128
1129 set_loop_copy (loop, target);
1130
1131 first_active = XNEWVEC (basic_block, n);
1132 if (is_latch)
1133 {
1134 memcpy (first_active, bbs, n * sizeof (basic_block));
1135 first_active_latch = latch;
1136 }
1137
1138 spec_edges[SE_ORIG] = orig;
1139 spec_edges[SE_LATCH] = latch_edge;
1140
1141 place_after = e->src;
1142 for (j = 0; j < ndupl; j++)
1143 {
1144 /* Copy loops. */
1145 copy_loops_to (orig_loops, n_orig_loops, target);
1146
1147 /* Copy bbs. */
1148 copy_bbs (bbs, n, new_bbs, spec_edges, 2, new_spec_edges, loop,
1149 place_after);
1150 place_after = new_spec_edges[SE_LATCH]->src;
1151
1152 if (flags & DLTHE_RECORD_COPY_NUMBER)
1153 for (i = 0; i < n; i++)
1154 {
1155 gcc_assert (!new_bbs[i]->aux);
1156 new_bbs[i]->aux = (void *)(size_t)(j + 1);
1157 }
1158
1159 /* Note whether the blocks and edges belong to an irreducible loop. */
1160 if (add_irreducible_flag)
1161 {
1162 for (i = 0; i < n; i++)
1163 new_bbs[i]->flags |= BB_DUPLICATED;
1164 for (i = 0; i < n; i++)
1165 {
1166 edge_iterator ei;
1167 new_bb = new_bbs[i];
1168 if (new_bb->loop_father == target)
1169 new_bb->flags |= BB_IRREDUCIBLE_LOOP;
1170
1171 FOR_EACH_EDGE (ae, ei, new_bb->succs)
1172 if ((ae->dest->flags & BB_DUPLICATED)
1173 && (ae->src->loop_father == target
1174 || ae->dest->loop_father == target))
1175 ae->flags |= EDGE_IRREDUCIBLE_LOOP;
1176 }
1177 for (i = 0; i < n; i++)
1178 new_bbs[i]->flags &= ~BB_DUPLICATED;
1179 }
1180
1181 /* Redirect the special edges. */
1182 if (is_latch)
1183 {
1184 redirect_edge_and_branch_force (latch_edge, new_bbs[0]);
1185 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1186 loop->header);
1187 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], latch);
1188 latch = loop->latch = new_bbs[n - 1];
1189 e = latch_edge = new_spec_edges[SE_LATCH];
1190 }
1191 else
1192 {
1193 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1194 loop->header);
1195 redirect_edge_and_branch_force (e, new_bbs[0]);
1196 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], e->src);
1197 e = new_spec_edges[SE_LATCH];
1198 }
1199
1200 /* Record exit edge in this copy. */
1201 if (orig && TEST_BIT (wont_exit, j + 1))
1202 {
1203 if (to_remove)
1204 VEC_safe_push (edge, heap, *to_remove, new_spec_edges[SE_ORIG]);
1205 set_zero_probability (new_spec_edges[SE_ORIG]);
1206
1207 /* Scale the frequencies of the blocks dominated by the exit. */
1208 if (bbs_to_scale)
1209 {
1210 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1211 {
1212 scale_bbs_frequencies_int (new_bbs + i, 1, scale_after_exit,
1213 REG_BR_PROB_BASE);
1214 }
1215 }
1216 }
1217
1218 /* Record the first copy in the control flow order if it is not
1219 the original loop (i.e. in case of peeling). */
1220 if (!first_active_latch)
1221 {
1222 memcpy (first_active, new_bbs, n * sizeof (basic_block));
1223 first_active_latch = new_bbs[n - 1];
1224 }
1225
1226 /* Set counts and frequencies. */
1227 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1228 {
1229 scale_bbs_frequencies_int (new_bbs, n, scale_act, REG_BR_PROB_BASE);
1230 scale_act = RDIV (scale_act * scale_step[j], REG_BR_PROB_BASE);
1231 }
1232 }
1233 free (new_bbs);
1234 free (orig_loops);
1235
1236 /* Record the exit edge in the original loop body, and update the frequencies. */
1237 if (orig && TEST_BIT (wont_exit, 0))
1238 {
1239 if (to_remove)
1240 VEC_safe_push (edge, heap, *to_remove, orig);
1241 set_zero_probability (orig);
1242
1243 /* Scale the frequencies of the blocks dominated by the exit. */
1244 if (bbs_to_scale)
1245 {
1246 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1247 {
1248 scale_bbs_frequencies_int (bbs + i, 1, scale_after_exit,
1249 REG_BR_PROB_BASE);
1250 }
1251 }
1252 }
1253
1254 /* Update the original loop. */
1255 if (!is_latch)
1256 set_immediate_dominator (CDI_DOMINATORS, e->dest, e->src);
1257 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1258 {
1259 scale_bbs_frequencies_int (bbs, n, scale_main, REG_BR_PROB_BASE);
1260 free (scale_step);
1261 }
1262
1263 /* Update dominators of outer blocks if affected. */
1264 for (i = 0; i < n; i++)
1265 {
1266 basic_block dominated, dom_bb;
1267 VEC (basic_block, heap) *dom_bbs;
1268 unsigned j;
1269
1270 bb = bbs[i];
1271 bb->aux = 0;
1272
1273 dom_bbs = get_dominated_by (CDI_DOMINATORS, bb);
1274 FOR_EACH_VEC_ELT (basic_block, dom_bbs, j, dominated)
1275 {
1276 if (flow_bb_inside_loop_p (loop, dominated))
1277 continue;
1278 dom_bb = nearest_common_dominator (
1279 CDI_DOMINATORS, first_active[i], first_active_latch);
1280 set_immediate_dominator (CDI_DOMINATORS, dominated, dom_bb);
1281 }
1282 VEC_free (basic_block, heap, dom_bbs);
1283 }
1284 free (first_active);
1285
1286 free (bbs);
1287 BITMAP_FREE (bbs_to_scale);
1288
1289 return true;
1290 }
1291
1292 /* A callback for make_forwarder block, to redirect all edges except for
1293 MFB_KJ_EDGE to the entry part. E is the edge for that we should decide
1294 whether to redirect it. */
1295
1296 edge mfb_kj_edge;
1297 bool
1298 mfb_keep_just (edge e)
1299 {
1300 return e != mfb_kj_edge;
1301 }
1302
1303 /* True when a candidate preheader BLOCK has predecessors from LOOP. */
1304
1305 static bool
1306 has_preds_from_loop (basic_block block, struct loop *loop)
1307 {
1308 edge e;
1309 edge_iterator ei;
1310
1311 FOR_EACH_EDGE (e, ei, block->preds)
1312 if (e->src->loop_father == loop)
1313 return true;
1314 return false;
1315 }
1316
1317 /* Creates a pre-header for a LOOP. Returns newly created block. Unless
1318 CP_SIMPLE_PREHEADERS is set in FLAGS, we only force LOOP to have single
1319 entry; otherwise we also force preheader block to have only one successor.
1320 When CP_FALLTHRU_PREHEADERS is set in FLAGS, we force the preheader block
1321 to be a fallthru predecessor to the loop header and to have only
1322 predecessors from outside of the loop.
1323 The function also updates dominators. */
1324
1325 basic_block
1326 create_preheader (struct loop *loop, int flags)
1327 {
1328 edge e, fallthru;
1329 basic_block dummy;
1330 int nentry = 0;
1331 bool irred = false;
1332 bool latch_edge_was_fallthru;
1333 edge one_succ_pred = NULL, single_entry = NULL;
1334 edge_iterator ei;
1335
1336 FOR_EACH_EDGE (e, ei, loop->header->preds)
1337 {
1338 if (e->src == loop->latch)
1339 continue;
1340 irred |= (e->flags & EDGE_IRREDUCIBLE_LOOP) != 0;
1341 nentry++;
1342 single_entry = e;
1343 if (single_succ_p (e->src))
1344 one_succ_pred = e;
1345 }
1346 gcc_assert (nentry);
1347 if (nentry == 1)
1348 {
1349 bool need_forwarder_block = false;
1350
1351 /* We do not allow entry block to be the loop preheader, since we
1352 cannot emit code there. */
1353 if (single_entry->src == ENTRY_BLOCK_PTR)
1354 need_forwarder_block = true;
1355 else
1356 {
1357 /* If we want simple preheaders, also force the preheader to have
1358 just a single successor. */
1359 if ((flags & CP_SIMPLE_PREHEADERS)
1360 && !single_succ_p (single_entry->src))
1361 need_forwarder_block = true;
1362 /* If we want fallthru preheaders, also create forwarder block when
1363 preheader ends with a jump or has predecessors from loop. */
1364 else if ((flags & CP_FALLTHRU_PREHEADERS)
1365 && (JUMP_P (BB_END (single_entry->src))
1366 || has_preds_from_loop (single_entry->src, loop)))
1367 need_forwarder_block = true;
1368 }
1369 if (! need_forwarder_block)
1370 return NULL;
1371 }
1372
1373 mfb_kj_edge = loop_latch_edge (loop);
1374 latch_edge_was_fallthru = (mfb_kj_edge->flags & EDGE_FALLTHRU) != 0;
1375 fallthru = make_forwarder_block (loop->header, mfb_keep_just, NULL);
1376 dummy = fallthru->src;
1377 loop->header = fallthru->dest;
1378
1379 /* Try to be clever in placing the newly created preheader. The idea is to
1380 avoid breaking any "fallthruness" relationship between blocks.
1381
1382 The preheader was created just before the header and all incoming edges
1383 to the header were redirected to the preheader, except the latch edge.
1384 So the only problematic case is when this latch edge was a fallthru
1385 edge: it is not anymore after the preheader creation so we have broken
1386 the fallthruness. We're therefore going to look for a better place. */
1387 if (latch_edge_was_fallthru)
1388 {
1389 if (one_succ_pred)
1390 e = one_succ_pred;
1391 else
1392 e = EDGE_PRED (dummy, 0);
1393
1394 move_block_after (dummy, e->src);
1395 }
1396
1397 if (irred)
1398 {
1399 dummy->flags |= BB_IRREDUCIBLE_LOOP;
1400 single_succ_edge (dummy)->flags |= EDGE_IRREDUCIBLE_LOOP;
1401 }
1402
1403 if (dump_file)
1404 fprintf (dump_file, "Created preheader block for loop %i\n",
1405 loop->num);
1406
1407 if (flags & CP_FALLTHRU_PREHEADERS)
1408 gcc_assert ((single_succ_edge (dummy)->flags & EDGE_FALLTHRU)
1409 && !JUMP_P (BB_END (dummy)));
1410
1411 return dummy;
1412 }
1413
1414 /* Create preheaders for each loop; for meaning of FLAGS see create_preheader. */
1415
1416 void
1417 create_preheaders (int flags)
1418 {
1419 loop_iterator li;
1420 struct loop *loop;
1421
1422 if (!current_loops)
1423 return;
1424
1425 FOR_EACH_LOOP (li, loop, 0)
1426 create_preheader (loop, flags);
1427 loops_state_set (LOOPS_HAVE_PREHEADERS);
1428 }
1429
1430 /* Forces all loop latches to have only single successor. */
1431
1432 void
1433 force_single_succ_latches (void)
1434 {
1435 loop_iterator li;
1436 struct loop *loop;
1437 edge e;
1438
1439 FOR_EACH_LOOP (li, loop, 0)
1440 {
1441 if (loop->latch != loop->header && single_succ_p (loop->latch))
1442 continue;
1443
1444 e = find_edge (loop->latch, loop->header);
1445
1446 split_edge (e);
1447 }
1448 loops_state_set (LOOPS_HAVE_SIMPLE_LATCHES);
1449 }
1450
1451 /* This function is called from loop_version. It splits the entry edge
1452 of the loop we want to version, adds the versioning condition, and
1453 adjust the edges to the two versions of the loop appropriately.
1454 e is an incoming edge. Returns the basic block containing the
1455 condition.
1456
1457 --- edge e ---- > [second_head]
1458
1459 Split it and insert new conditional expression and adjust edges.
1460
1461 --- edge e ---> [cond expr] ---> [first_head]
1462 |
1463 +---------> [second_head]
1464
1465 THEN_PROB is the probability of then branch of the condition. */
1466
1467 static basic_block
1468 lv_adjust_loop_entry_edge (basic_block first_head, basic_block second_head,
1469 edge e, void *cond_expr, unsigned then_prob)
1470 {
1471 basic_block new_head = NULL;
1472 edge e1;
1473
1474 gcc_assert (e->dest == second_head);
1475
1476 /* Split edge 'e'. This will create a new basic block, where we can
1477 insert conditional expr. */
1478 new_head = split_edge (e);
1479
1480 lv_add_condition_to_bb (first_head, second_head, new_head,
1481 cond_expr);
1482
1483 /* Don't set EDGE_TRUE_VALUE in RTL mode, as it's invalid there. */
1484 e = single_succ_edge (new_head);
1485 e1 = make_edge (new_head, first_head,
1486 current_ir_type () == IR_GIMPLE ? EDGE_TRUE_VALUE : 0);
1487 e1->probability = then_prob;
1488 e->probability = REG_BR_PROB_BASE - then_prob;
1489 e1->count = RDIV (e->count * e1->probability, REG_BR_PROB_BASE);
1490 e->count = RDIV (e->count * e->probability, REG_BR_PROB_BASE);
1491
1492 set_immediate_dominator (CDI_DOMINATORS, first_head, new_head);
1493 set_immediate_dominator (CDI_DOMINATORS, second_head, new_head);
1494
1495 /* Adjust loop header phi nodes. */
1496 lv_adjust_loop_header_phi (first_head, second_head, new_head, e1);
1497
1498 return new_head;
1499 }
1500
1501 /* Main entry point for Loop Versioning transformation.
1502
1503 This transformation given a condition and a loop, creates
1504 -if (condition) { loop_copy1 } else { loop_copy2 },
1505 where loop_copy1 is the loop transformed in one way, and loop_copy2
1506 is the loop transformed in another way (or unchanged). 'condition'
1507 may be a run time test for things that were not resolved by static
1508 analysis (overlapping ranges (anti-aliasing), alignment, etc.).
1509
1510 THEN_PROB is the probability of the then edge of the if. THEN_SCALE
1511 is the ratio by that the frequencies in the original loop should
1512 be scaled. ELSE_SCALE is the ratio by that the frequencies in the
1513 new loop should be scaled.
1514
1515 If PLACE_AFTER is true, we place the new loop after LOOP in the
1516 instruction stream, otherwise it is placed before LOOP. */
1517
1518 struct loop *
1519 loop_version (struct loop *loop,
1520 void *cond_expr, basic_block *condition_bb,
1521 unsigned then_prob, unsigned then_scale, unsigned else_scale,
1522 bool place_after)
1523 {
1524 basic_block first_head, second_head;
1525 edge entry, latch_edge, true_edge, false_edge;
1526 int irred_flag;
1527 struct loop *nloop;
1528 basic_block cond_bb;
1529
1530 /* Record entry and latch edges for the loop */
1531 entry = loop_preheader_edge (loop);
1532 irred_flag = entry->flags & EDGE_IRREDUCIBLE_LOOP;
1533 entry->flags &= ~EDGE_IRREDUCIBLE_LOOP;
1534
1535 /* Note down head of loop as first_head. */
1536 first_head = entry->dest;
1537
1538 /* Duplicate loop. */
1539 if (!cfg_hook_duplicate_loop_to_header_edge (loop, entry, 1,
1540 NULL, NULL, NULL, 0))
1541 return NULL;
1542
1543 /* After duplication entry edge now points to new loop head block.
1544 Note down new head as second_head. */
1545 second_head = entry->dest;
1546
1547 /* Split loop entry edge and insert new block with cond expr. */
1548 cond_bb = lv_adjust_loop_entry_edge (first_head, second_head,
1549 entry, cond_expr, then_prob);
1550 if (condition_bb)
1551 *condition_bb = cond_bb;
1552
1553 if (!cond_bb)
1554 {
1555 entry->flags |= irred_flag;
1556 return NULL;
1557 }
1558
1559 latch_edge = single_succ_edge (get_bb_copy (loop->latch));
1560
1561 extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
1562 nloop = loopify (latch_edge,
1563 single_pred_edge (get_bb_copy (loop->header)),
1564 cond_bb, true_edge, false_edge,
1565 false /* Do not redirect all edges. */,
1566 then_scale, else_scale);
1567
1568 /* loopify redirected latch_edge. Update its PENDING_STMTS. */
1569 lv_flush_pending_stmts (latch_edge);
1570
1571 /* loopify redirected condition_bb's succ edge. Update its PENDING_STMTS. */
1572 extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
1573 lv_flush_pending_stmts (false_edge);
1574 /* Adjust irreducible flag. */
1575 if (irred_flag)
1576 {
1577 cond_bb->flags |= BB_IRREDUCIBLE_LOOP;
1578 loop_preheader_edge (loop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1579 loop_preheader_edge (nloop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1580 single_pred_edge (cond_bb)->flags |= EDGE_IRREDUCIBLE_LOOP;
1581 }
1582
1583 if (place_after)
1584 {
1585 basic_block *bbs = get_loop_body_in_dom_order (nloop), after;
1586 unsigned i;
1587
1588 after = loop->latch;
1589
1590 for (i = 0; i < nloop->num_nodes; i++)
1591 {
1592 move_block_after (bbs[i], after);
1593 after = bbs[i];
1594 }
1595 free (bbs);
1596 }
1597
1598 /* At this point condition_bb is loop preheader with two successors,
1599 first_head and second_head. Make sure that loop preheader has only
1600 one successor. */
1601 split_edge (loop_preheader_edge (loop));
1602 split_edge (loop_preheader_edge (nloop));
1603
1604 return nloop;
1605 }
1606
1607 /* The structure of loops might have changed. Some loops might get removed
1608 (and their headers and latches were set to NULL), loop exists might get
1609 removed (thus the loop nesting may be wrong), and some blocks and edges
1610 were changed (so the information about bb --> loop mapping does not have
1611 to be correct). But still for the remaining loops the header dominates
1612 the latch, and loops did not get new subloops (new loops might possibly
1613 get created, but we are not interested in them). Fix up the mess.
1614
1615 If CHANGED_BBS is not NULL, basic blocks whose loop has changed are
1616 marked in it. */
1617
1618 void
1619 fix_loop_structure (bitmap changed_bbs)
1620 {
1621 basic_block bb;
1622 struct loop *loop, *ploop;
1623 loop_iterator li;
1624 bool record_exits = false;
1625 struct loop **superloop = XNEWVEC (struct loop *, number_of_loops ());
1626
1627 /* Remove the old bb -> loop mapping. Remember the depth of the blocks in
1628 the loop hierarchy, so that we can recognize blocks whose loop nesting
1629 relationship has changed. */
1630 FOR_EACH_BB (bb)
1631 {
1632 if (changed_bbs)
1633 bb->aux = (void *) (size_t) loop_depth (bb->loop_father);
1634 bb->loop_father = current_loops->tree_root;
1635 }
1636
1637 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1638 {
1639 release_recorded_exits ();
1640 record_exits = true;
1641 }
1642
1643 /* Remove the dead loops from structures. We start from the innermost
1644 loops, so that when we remove the loops, we know that the loops inside
1645 are preserved, and do not waste time relinking loops that will be
1646 removed later. */
1647 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
1648 {
1649 if (loop->header)
1650 continue;
1651
1652 while (loop->inner)
1653 {
1654 ploop = loop->inner;
1655 flow_loop_tree_node_remove (ploop);
1656 flow_loop_tree_node_add (loop_outer (loop), ploop);
1657 }
1658
1659 /* Remove the loop and free its data. */
1660 delete_loop (loop);
1661 }
1662
1663 /* Rescan the bodies of loops, starting from the outermost ones. We assume
1664 that no optimization interchanges the order of the loops, i.e., it cannot
1665 happen that L1 was superloop of L2 before and it is subloop of L2 now
1666 (without explicitly updating loop information). At the same time, we also
1667 determine the new loop structure. */
1668 current_loops->tree_root->num_nodes = n_basic_blocks;
1669 FOR_EACH_LOOP (li, loop, 0)
1670 {
1671 superloop[loop->num] = loop->header->loop_father;
1672 loop->num_nodes = flow_loop_nodes_find (loop->header, loop);
1673 }
1674
1675 /* Now fix the loop nesting. */
1676 FOR_EACH_LOOP (li, loop, 0)
1677 {
1678 ploop = superloop[loop->num];
1679 if (ploop != loop_outer (loop))
1680 {
1681 flow_loop_tree_node_remove (loop);
1682 flow_loop_tree_node_add (ploop, loop);
1683 }
1684 }
1685 free (superloop);
1686
1687 /* Mark the blocks whose loop has changed. */
1688 if (changed_bbs)
1689 {
1690 FOR_EACH_BB (bb)
1691 {
1692 if ((void *) (size_t) loop_depth (bb->loop_father) != bb->aux)
1693 bitmap_set_bit (changed_bbs, bb->index);
1694
1695 bb->aux = NULL;
1696 }
1697 }
1698
1699 if (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS))
1700 create_preheaders (CP_SIMPLE_PREHEADERS);
1701
1702 if (loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES))
1703 force_single_succ_latches ();
1704
1705 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
1706 mark_irreducible_loops ();
1707
1708 if (record_exits)
1709 record_loop_exits ();
1710
1711 #ifdef ENABLE_CHECKING
1712 verify_loop_structure ();
1713 #endif
1714 }