Collections.java (UnmodifiableMap.toArray): Imported changes from Classpath.
[gcc.git] / gcc / cfgloopmanip.c
1 /* Loop manipulation code for GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "hard-reg-set.h"
27 #include "obstack.h"
28 #include "basic-block.h"
29 #include "cfgloop.h"
30 #include "cfglayout.h"
31 #include "cfghooks.h"
32 #include "output.h"
33
34 static void duplicate_subloops (struct loop *, struct loop *);
35 static void copy_loops_to (struct loop **, int,
36 struct loop *);
37 static void loop_redirect_edge (edge, basic_block);
38 static void remove_bbs (basic_block *, int);
39 static bool rpe_enum_p (basic_block, void *);
40 static int find_path (edge, basic_block **);
41 static void fix_loop_placements (struct loop *, bool *);
42 static bool fix_bb_placement (basic_block);
43 static void fix_bb_placements (basic_block, bool *);
44 static basic_block create_preheader (struct loop *, int);
45 static void unloop (struct loop *, bool *);
46
47 #define RDIV(X,Y) (((X) + (Y) / 2) / (Y))
48
49 /* Checks whether basic block BB is dominated by DATA. */
50 static bool
51 rpe_enum_p (basic_block bb, void *data)
52 {
53 return dominated_by_p (CDI_DOMINATORS, bb, data);
54 }
55
56 /* Remove basic blocks BBS. NBBS is the number of the basic blocks. */
57
58 static void
59 remove_bbs (basic_block *bbs, int nbbs)
60 {
61 int i;
62
63 for (i = 0; i < nbbs; i++)
64 delete_basic_block (bbs[i]);
65 }
66
67 /* Find path -- i.e. the basic blocks dominated by edge E and put them
68 into array BBS, that will be allocated large enough to contain them.
69 E->dest must have exactly one predecessor for this to work (it is
70 easy to achieve and we do not put it here because we do not want to
71 alter anything by this function). The number of basic blocks in the
72 path is returned. */
73 static int
74 find_path (edge e, basic_block **bbs)
75 {
76 gcc_assert (EDGE_COUNT (e->dest->preds) <= 1);
77
78 /* Find bbs in the path. */
79 *bbs = XCNEWVEC (basic_block, n_basic_blocks);
80 return dfs_enumerate_from (e->dest, 0, rpe_enum_p, *bbs,
81 n_basic_blocks, e->dest);
82 }
83
84 /* Fix placement of basic block BB inside loop hierarchy --
85 Let L be a loop to that BB belongs. Then every successor of BB must either
86 1) belong to some superloop of loop L, or
87 2) be a header of loop K such that K->outer is superloop of L
88 Returns true if we had to move BB into other loop to enforce this condition,
89 false if the placement of BB was already correct (provided that placements
90 of its successors are correct). */
91 static bool
92 fix_bb_placement (basic_block bb)
93 {
94 edge e;
95 edge_iterator ei;
96 struct loop *loop = current_loops->tree_root, *act;
97
98 FOR_EACH_EDGE (e, ei, bb->succs)
99 {
100 if (e->dest == EXIT_BLOCK_PTR)
101 continue;
102
103 act = e->dest->loop_father;
104 if (act->header == e->dest)
105 act = act->outer;
106
107 if (flow_loop_nested_p (loop, act))
108 loop = act;
109 }
110
111 if (loop == bb->loop_father)
112 return false;
113
114 remove_bb_from_loops (bb);
115 add_bb_to_loop (bb, loop);
116
117 return true;
118 }
119
120 /* Fix placement of LOOP inside loop tree, i.e. find the innermost superloop
121 of LOOP to that leads at least one exit edge of LOOP, and set it
122 as the immediate superloop of LOOP. Return true if the immediate superloop
123 of LOOP changed. */
124
125 static bool
126 fix_loop_placement (struct loop *loop)
127 {
128 unsigned i;
129 edge e;
130 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
131 struct loop *father = current_loops->tree_root, *act;
132 bool ret = false;
133
134 for (i = 0; VEC_iterate (edge, exits, i, e); i++)
135 {
136 act = find_common_loop (loop, e->dest->loop_father);
137 if (flow_loop_nested_p (father, act))
138 father = act;
139 }
140
141 if (father != loop->outer)
142 {
143 for (act = loop->outer; act != father; act = act->outer)
144 act->num_nodes -= loop->num_nodes;
145 flow_loop_tree_node_remove (loop);
146 flow_loop_tree_node_add (father, loop);
147
148 /* The exit edges of LOOP no longer exits its original immediate
149 superloops; remove them from the appropriate exit lists. */
150 for (i = 0; VEC_iterate (edge, exits, i, e); i++)
151 rescan_loop_exit (e, false, false);
152
153 ret = true;
154 }
155
156 VEC_free (edge, heap, exits);
157 return ret;
158 }
159
160 /* Fix placements of basic blocks inside loop hierarchy stored in loops; i.e.
161 enforce condition condition stated in description of fix_bb_placement. We
162 start from basic block FROM that had some of its successors removed, so that
163 his placement no longer has to be correct, and iteratively fix placement of
164 its predecessors that may change if placement of FROM changed. Also fix
165 placement of subloops of FROM->loop_father, that might also be altered due
166 to this change; the condition for them is similar, except that instead of
167 successors we consider edges coming out of the loops.
168
169 If the changes may invalidate the information about irreducible regions,
170 IRRED_INVALIDATED is set to true. */
171
172 static void
173 fix_bb_placements (basic_block from,
174 bool *irred_invalidated)
175 {
176 sbitmap in_queue;
177 basic_block *queue, *qtop, *qbeg, *qend;
178 struct loop *base_loop;
179 edge e;
180
181 /* We pass through blocks back-reachable from FROM, testing whether some
182 of their successors moved to outer loop. It may be necessary to
183 iterate several times, but it is finite, as we stop unless we move
184 the basic block up the loop structure. The whole story is a bit
185 more complicated due to presence of subloops, those are moved using
186 fix_loop_placement. */
187
188 base_loop = from->loop_father;
189 if (base_loop == current_loops->tree_root)
190 return;
191
192 in_queue = sbitmap_alloc (last_basic_block);
193 sbitmap_zero (in_queue);
194 SET_BIT (in_queue, from->index);
195 /* Prevent us from going out of the base_loop. */
196 SET_BIT (in_queue, base_loop->header->index);
197
198 queue = XNEWVEC (basic_block, base_loop->num_nodes + 1);
199 qtop = queue + base_loop->num_nodes + 1;
200 qbeg = queue;
201 qend = queue + 1;
202 *qbeg = from;
203
204 while (qbeg != qend)
205 {
206 edge_iterator ei;
207 from = *qbeg;
208 qbeg++;
209 if (qbeg == qtop)
210 qbeg = queue;
211 RESET_BIT (in_queue, from->index);
212
213 if (from->loop_father->header == from)
214 {
215 /* Subloop header, maybe move the loop upward. */
216 if (!fix_loop_placement (from->loop_father))
217 continue;
218 }
219 else
220 {
221 /* Ordinary basic block. */
222 if (!fix_bb_placement (from))
223 continue;
224 }
225
226 FOR_EACH_EDGE (e, ei, from->succs)
227 {
228 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
229 *irred_invalidated = true;
230 }
231
232 /* Something has changed, insert predecessors into queue. */
233 FOR_EACH_EDGE (e, ei, from->preds)
234 {
235 basic_block pred = e->src;
236 struct loop *nca;
237
238 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
239 *irred_invalidated = true;
240
241 if (TEST_BIT (in_queue, pred->index))
242 continue;
243
244 /* If it is subloop, then it either was not moved, or
245 the path up the loop tree from base_loop do not contain
246 it. */
247 nca = find_common_loop (pred->loop_father, base_loop);
248 if (pred->loop_father != base_loop
249 && (nca == base_loop
250 || nca != pred->loop_father))
251 pred = pred->loop_father->header;
252 else if (!flow_loop_nested_p (from->loop_father, pred->loop_father))
253 {
254 /* No point in processing it. */
255 continue;
256 }
257
258 if (TEST_BIT (in_queue, pred->index))
259 continue;
260
261 /* Schedule the basic block. */
262 *qend = pred;
263 qend++;
264 if (qend == qtop)
265 qend = queue;
266 SET_BIT (in_queue, pred->index);
267 }
268 }
269 free (in_queue);
270 free (queue);
271 }
272
273 /* Removes path beginning at edge E, i.e. remove basic blocks dominated by E
274 and update loop structures and dominators. Return true if we were able
275 to remove the path, false otherwise (and nothing is affected then). */
276 bool
277 remove_path (edge e)
278 {
279 edge ae;
280 basic_block *rem_bbs, *bord_bbs, *dom_bbs, from, bb;
281 int i, nrem, n_bord_bbs, n_dom_bbs, nreml;
282 sbitmap seen;
283 bool irred_invalidated = false;
284 struct loop **deleted_loop;
285
286 if (!can_remove_branch_p (e))
287 return false;
288
289 /* Keep track of whether we need to update information about irreducible
290 regions. This is the case if the removed area is a part of the
291 irreducible region, or if the set of basic blocks that belong to a loop
292 that is inside an irreducible region is changed, or if such a loop is
293 removed. */
294 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
295 irred_invalidated = true;
296
297 /* We need to check whether basic blocks are dominated by the edge
298 e, but we only have basic block dominators. This is easy to
299 fix -- when e->dest has exactly one predecessor, this corresponds
300 to blocks dominated by e->dest, if not, split the edge. */
301 if (!single_pred_p (e->dest))
302 e = single_pred_edge (split_edge (e));
303
304 /* It may happen that by removing path we remove one or more loops
305 we belong to. In this case first unloop the loops, then proceed
306 normally. We may assume that e->dest is not a header of any loop,
307 as it now has exactly one predecessor. */
308 while (e->src->loop_father->outer
309 && dominated_by_p (CDI_DOMINATORS,
310 e->src->loop_father->latch, e->dest))
311 unloop (e->src->loop_father, &irred_invalidated);
312
313 /* Identify the path. */
314 nrem = find_path (e, &rem_bbs);
315
316 n_bord_bbs = 0;
317 bord_bbs = XCNEWVEC (basic_block, n_basic_blocks);
318 seen = sbitmap_alloc (last_basic_block);
319 sbitmap_zero (seen);
320
321 /* Find "border" hexes -- i.e. those with predecessor in removed path. */
322 for (i = 0; i < nrem; i++)
323 SET_BIT (seen, rem_bbs[i]->index);
324 for (i = 0; i < nrem; i++)
325 {
326 edge_iterator ei;
327 bb = rem_bbs[i];
328 FOR_EACH_EDGE (ae, ei, rem_bbs[i]->succs)
329 if (ae->dest != EXIT_BLOCK_PTR && !TEST_BIT (seen, ae->dest->index))
330 {
331 SET_BIT (seen, ae->dest->index);
332 bord_bbs[n_bord_bbs++] = ae->dest;
333
334 if (ae->flags & EDGE_IRREDUCIBLE_LOOP)
335 irred_invalidated = true;
336 }
337 }
338
339 /* Remove the path. */
340 from = e->src;
341 remove_branch (e);
342 dom_bbs = XCNEWVEC (basic_block, n_basic_blocks);
343
344 /* Cancel loops contained in the path. */
345 deleted_loop = XNEWVEC (struct loop *, nrem);
346 nreml = 0;
347 for (i = 0; i < nrem; i++)
348 if (rem_bbs[i]->loop_father->header == rem_bbs[i])
349 deleted_loop[nreml++] = rem_bbs[i]->loop_father;
350
351 remove_bbs (rem_bbs, nrem);
352 free (rem_bbs);
353
354 for (i = 0; i < nreml; i++)
355 cancel_loop_tree (deleted_loop[i]);
356 free (deleted_loop);
357
358 /* Find blocks whose dominators may be affected. */
359 n_dom_bbs = 0;
360 sbitmap_zero (seen);
361 for (i = 0; i < n_bord_bbs; i++)
362 {
363 basic_block ldom;
364
365 bb = get_immediate_dominator (CDI_DOMINATORS, bord_bbs[i]);
366 if (TEST_BIT (seen, bb->index))
367 continue;
368 SET_BIT (seen, bb->index);
369
370 for (ldom = first_dom_son (CDI_DOMINATORS, bb);
371 ldom;
372 ldom = next_dom_son (CDI_DOMINATORS, ldom))
373 if (!dominated_by_p (CDI_DOMINATORS, from, ldom))
374 dom_bbs[n_dom_bbs++] = ldom;
375 }
376
377 free (seen);
378
379 /* Recount dominators. */
380 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, n_dom_bbs);
381 free (dom_bbs);
382 free (bord_bbs);
383
384 /* Fix placements of basic blocks inside loops and the placement of
385 loops in the loop tree. */
386 fix_bb_placements (from, &irred_invalidated);
387 fix_loop_placements (from->loop_father, &irred_invalidated);
388
389 if (irred_invalidated
390 && (current_loops->state & LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS) != 0)
391 mark_irreducible_loops ();
392
393 return true;
394 }
395
396 /* Creates place for a new LOOP in loops structure. */
397
398 static void
399 place_new_loop (struct loop *loop)
400 {
401 loop->num = number_of_loops ();
402 VEC_safe_push (loop_p, heap, current_loops->larray, loop);
403 }
404
405 /* Given LOOP structure with filled header and latch, find the body of the
406 corresponding loop and add it to loops tree. Insert the LOOP as a son of
407 outer. */
408
409 void
410 add_loop (struct loop *loop, struct loop *outer)
411 {
412 basic_block *bbs;
413 int i, n;
414 struct loop *subloop;
415
416 /* Add it to loop structure. */
417 place_new_loop (loop);
418 flow_loop_tree_node_add (outer, loop);
419
420 /* Find its nodes. */
421 bbs = XNEWVEC (basic_block, n_basic_blocks);
422 n = get_loop_body_with_size (loop, bbs, n_basic_blocks);
423
424 for (i = 0; i < n; i++)
425 {
426 if (bbs[i]->loop_father == outer)
427 {
428 remove_bb_from_loops (bbs[i]);
429 add_bb_to_loop (bbs[i], loop);
430 continue;
431 }
432
433 loop->num_nodes++;
434
435 /* If we find a direct subloop of OUTER, move it to LOOP. */
436 subloop = bbs[i]->loop_father;
437 if (subloop->outer == outer
438 && subloop->header == bbs[i])
439 {
440 flow_loop_tree_node_remove (subloop);
441 flow_loop_tree_node_add (loop, subloop);
442 }
443 }
444
445 free (bbs);
446 }
447
448 /* Multiply all frequencies in LOOP by NUM/DEN. */
449 void
450 scale_loop_frequencies (struct loop *loop, int num, int den)
451 {
452 basic_block *bbs;
453
454 bbs = get_loop_body (loop);
455 scale_bbs_frequencies_int (bbs, loop->num_nodes, num, den);
456 free (bbs);
457 }
458
459 /* Make area between HEADER_EDGE and LATCH_EDGE a loop by connecting
460 latch to header and update loop tree and dominators
461 accordingly. Everything between them plus LATCH_EDGE destination must
462 be dominated by HEADER_EDGE destination, and back-reachable from
463 LATCH_EDGE source. HEADER_EDGE is redirected to basic block SWITCH_BB,
464 FALSE_EDGE of SWITCH_BB to original destination of HEADER_EDGE and
465 TRUE_EDGE of SWITCH_BB to original destination of LATCH_EDGE.
466 Returns the newly created loop. Frequencies and counts in the new loop
467 are scaled by FALSE_SCALE and in the old one by TRUE_SCALE. */
468
469 struct loop *
470 loopify (edge latch_edge, edge header_edge,
471 basic_block switch_bb, edge true_edge, edge false_edge,
472 bool redirect_all_edges, unsigned true_scale, unsigned false_scale)
473 {
474 basic_block succ_bb = latch_edge->dest;
475 basic_block pred_bb = header_edge->src;
476 basic_block *dom_bbs, *body;
477 unsigned n_dom_bbs, i;
478 sbitmap seen;
479 struct loop *loop = alloc_loop ();
480 struct loop *outer = succ_bb->loop_father->outer;
481 int freq;
482 gcov_type cnt;
483 edge e;
484 edge_iterator ei;
485
486 loop->header = header_edge->dest;
487 loop->latch = latch_edge->src;
488
489 freq = EDGE_FREQUENCY (header_edge);
490 cnt = header_edge->count;
491
492 /* Redirect edges. */
493 loop_redirect_edge (latch_edge, loop->header);
494 loop_redirect_edge (true_edge, succ_bb);
495
496 /* During loop versioning, one of the switch_bb edge is already properly
497 set. Do not redirect it again unless redirect_all_edges is true. */
498 if (redirect_all_edges)
499 {
500 loop_redirect_edge (header_edge, switch_bb);
501 loop_redirect_edge (false_edge, loop->header);
502
503 /* Update dominators. */
504 set_immediate_dominator (CDI_DOMINATORS, switch_bb, pred_bb);
505 set_immediate_dominator (CDI_DOMINATORS, loop->header, switch_bb);
506 }
507
508 set_immediate_dominator (CDI_DOMINATORS, succ_bb, switch_bb);
509
510 /* Compute new loop. */
511 add_loop (loop, outer);
512
513 /* Add switch_bb to appropriate loop. */
514 if (switch_bb->loop_father)
515 remove_bb_from_loops (switch_bb);
516 add_bb_to_loop (switch_bb, outer);
517
518 /* Fix frequencies. */
519 if (redirect_all_edges)
520 {
521 switch_bb->frequency = freq;
522 switch_bb->count = cnt;
523 FOR_EACH_EDGE (e, ei, switch_bb->succs)
524 {
525 e->count = (switch_bb->count * e->probability) / REG_BR_PROB_BASE;
526 }
527 }
528 scale_loop_frequencies (loop, false_scale, REG_BR_PROB_BASE);
529 scale_loop_frequencies (succ_bb->loop_father, true_scale, REG_BR_PROB_BASE);
530
531 /* Update dominators of blocks outside of LOOP. */
532 dom_bbs = XCNEWVEC (basic_block, n_basic_blocks);
533 n_dom_bbs = 0;
534 seen = sbitmap_alloc (last_basic_block);
535 sbitmap_zero (seen);
536 body = get_loop_body (loop);
537
538 for (i = 0; i < loop->num_nodes; i++)
539 SET_BIT (seen, body[i]->index);
540
541 for (i = 0; i < loop->num_nodes; i++)
542 {
543 basic_block ldom;
544
545 for (ldom = first_dom_son (CDI_DOMINATORS, body[i]);
546 ldom;
547 ldom = next_dom_son (CDI_DOMINATORS, ldom))
548 if (!TEST_BIT (seen, ldom->index))
549 {
550 SET_BIT (seen, ldom->index);
551 dom_bbs[n_dom_bbs++] = ldom;
552 }
553 }
554
555 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, n_dom_bbs);
556
557 free (body);
558 free (seen);
559 free (dom_bbs);
560
561 return loop;
562 }
563
564 /* Remove the latch edge of a LOOP and update loops to indicate that
565 the LOOP was removed. After this function, original loop latch will
566 have no successor, which caller is expected to fix somehow.
567
568 If this may cause the information about irreducible regions to become
569 invalid, IRRED_INVALIDATED is set to true. */
570
571 static void
572 unloop (struct loop *loop, bool *irred_invalidated)
573 {
574 basic_block *body;
575 struct loop *ploop;
576 unsigned i, n;
577 basic_block latch = loop->latch;
578 bool dummy = false;
579
580 if (loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP)
581 *irred_invalidated = true;
582
583 /* This is relatively straightforward. The dominators are unchanged, as
584 loop header dominates loop latch, so the only thing we have to care of
585 is the placement of loops and basic blocks inside the loop tree. We
586 move them all to the loop->outer, and then let fix_bb_placements do
587 its work. */
588
589 body = get_loop_body (loop);
590 n = loop->num_nodes;
591 for (i = 0; i < n; i++)
592 if (body[i]->loop_father == loop)
593 {
594 remove_bb_from_loops (body[i]);
595 add_bb_to_loop (body[i], loop->outer);
596 }
597 free(body);
598
599 while (loop->inner)
600 {
601 ploop = loop->inner;
602 flow_loop_tree_node_remove (ploop);
603 flow_loop_tree_node_add (loop->outer, ploop);
604 }
605
606 /* Remove the loop and free its data. */
607 delete_loop (loop);
608
609 remove_edge (single_succ_edge (latch));
610
611 /* We do not pass IRRED_INVALIDATED to fix_bb_placements here, as even if
612 there is an irreducible region inside the cancelled loop, the flags will
613 be still correct. */
614 fix_bb_placements (latch, &dummy);
615 }
616
617 /* Fix placement of superloops of LOOP inside loop tree, i.e. ensure that
618 condition stated in description of fix_loop_placement holds for them.
619 It is used in case when we removed some edges coming out of LOOP, which
620 may cause the right placement of LOOP inside loop tree to change.
621
622 IRRED_INVALIDATED is set to true if a change in the loop structures might
623 invalidate the information about irreducible regions. */
624
625 static void
626 fix_loop_placements (struct loop *loop, bool *irred_invalidated)
627 {
628 struct loop *outer;
629
630 while (loop->outer)
631 {
632 outer = loop->outer;
633 if (!fix_loop_placement (loop))
634 break;
635
636 /* Changing the placement of a loop in the loop tree may alter the
637 validity of condition 2) of the description of fix_bb_placement
638 for its preheader, because the successor is the header and belongs
639 to the loop. So call fix_bb_placements to fix up the placement
640 of the preheader and (possibly) of its predecessors. */
641 fix_bb_placements (loop_preheader_edge (loop)->src,
642 irred_invalidated);
643 loop = outer;
644 }
645 }
646
647 /* Copies copy of LOOP as subloop of TARGET loop, placing newly
648 created loop into loops structure. */
649 struct loop *
650 duplicate_loop (struct loop *loop, struct loop *target)
651 {
652 struct loop *cloop;
653 cloop = alloc_loop ();
654 place_new_loop (cloop);
655
656 /* Mark the new loop as copy of LOOP. */
657 loop->copy = cloop;
658
659 /* Add it to target. */
660 flow_loop_tree_node_add (target, cloop);
661
662 return cloop;
663 }
664
665 /* Copies structure of subloops of LOOP into TARGET loop, placing
666 newly created loops into loop tree. */
667 static void
668 duplicate_subloops (struct loop *loop, struct loop *target)
669 {
670 struct loop *aloop, *cloop;
671
672 for (aloop = loop->inner; aloop; aloop = aloop->next)
673 {
674 cloop = duplicate_loop (aloop, target);
675 duplicate_subloops (aloop, cloop);
676 }
677 }
678
679 /* Copies structure of subloops of N loops, stored in array COPIED_LOOPS,
680 into TARGET loop, placing newly created loops into loop tree. */
681 static void
682 copy_loops_to (struct loop **copied_loops, int n, struct loop *target)
683 {
684 struct loop *aloop;
685 int i;
686
687 for (i = 0; i < n; i++)
688 {
689 aloop = duplicate_loop (copied_loops[i], target);
690 duplicate_subloops (copied_loops[i], aloop);
691 }
692 }
693
694 /* Redirects edge E to basic block DEST. */
695 static void
696 loop_redirect_edge (edge e, basic_block dest)
697 {
698 if (e->dest == dest)
699 return;
700
701 redirect_edge_and_branch_force (e, dest);
702 }
703
704 /* Check whether LOOP's body can be duplicated. */
705 bool
706 can_duplicate_loop_p (struct loop *loop)
707 {
708 int ret;
709 basic_block *bbs = get_loop_body (loop);
710
711 ret = can_copy_bbs_p (bbs, loop->num_nodes);
712 free (bbs);
713
714 return ret;
715 }
716
717 /* Sets probability and count of edge E to zero. The probability and count
718 is redistributed evenly to the remaining edges coming from E->src. */
719
720 static void
721 set_zero_probability (edge e)
722 {
723 basic_block bb = e->src;
724 edge_iterator ei;
725 edge ae, last = NULL;
726 unsigned n = EDGE_COUNT (bb->succs);
727 gcov_type cnt = e->count, cnt1;
728 unsigned prob = e->probability, prob1;
729
730 gcc_assert (n > 1);
731 cnt1 = cnt / (n - 1);
732 prob1 = prob / (n - 1);
733
734 FOR_EACH_EDGE (ae, ei, bb->succs)
735 {
736 if (ae == e)
737 continue;
738
739 ae->probability += prob1;
740 ae->count += cnt1;
741 last = ae;
742 }
743
744 /* Move the rest to one of the edges. */
745 last->probability += prob % (n - 1);
746 last->count += cnt % (n - 1);
747
748 e->probability = 0;
749 e->count = 0;
750 }
751
752 /* Duplicates body of LOOP to given edge E NDUPL times. Takes care of updating
753 loop structure and dominators. E's destination must be LOOP header for
754 this to work, i.e. it must be entry or latch edge of this loop; these are
755 unique, as the loops must have preheaders for this function to work
756 correctly (in case E is latch, the function unrolls the loop, if E is entry
757 edge, it peels the loop). Store edges created by copying ORIG edge from
758 copies corresponding to set bits in WONT_EXIT bitmap (bit 0 corresponds to
759 original LOOP body, the other copies are numbered in order given by control
760 flow through them) into TO_REMOVE array. Returns false if duplication is
761 impossible. */
762
763 bool
764 duplicate_loop_to_header_edge (struct loop *loop, edge e,
765 unsigned int ndupl, sbitmap wont_exit,
766 edge orig, VEC (edge, heap) **to_remove,
767 int flags)
768 {
769 struct loop *target, *aloop;
770 struct loop **orig_loops;
771 unsigned n_orig_loops;
772 basic_block header = loop->header, latch = loop->latch;
773 basic_block *new_bbs, *bbs, *first_active;
774 basic_block new_bb, bb, first_active_latch = NULL;
775 edge ae, latch_edge;
776 edge spec_edges[2], new_spec_edges[2];
777 #define SE_LATCH 0
778 #define SE_ORIG 1
779 unsigned i, j, n;
780 int is_latch = (latch == e->src);
781 int scale_act = 0, *scale_step = NULL, scale_main = 0;
782 int scale_after_exit = 0;
783 int p, freq_in, freq_le, freq_out_orig;
784 int prob_pass_thru, prob_pass_wont_exit, prob_pass_main;
785 int add_irreducible_flag;
786 basic_block place_after;
787 bitmap bbs_to_scale = NULL;
788 bitmap_iterator bi;
789
790 gcc_assert (e->dest == loop->header);
791 gcc_assert (ndupl > 0);
792
793 if (orig)
794 {
795 /* Orig must be edge out of the loop. */
796 gcc_assert (flow_bb_inside_loop_p (loop, orig->src));
797 gcc_assert (!flow_bb_inside_loop_p (loop, orig->dest));
798 }
799
800 n = loop->num_nodes;
801 bbs = get_loop_body_in_dom_order (loop);
802 gcc_assert (bbs[0] == loop->header);
803 gcc_assert (bbs[n - 1] == loop->latch);
804
805 /* Check whether duplication is possible. */
806 if (!can_copy_bbs_p (bbs, loop->num_nodes))
807 {
808 free (bbs);
809 return false;
810 }
811 new_bbs = XNEWVEC (basic_block, loop->num_nodes);
812
813 /* In case we are doing loop peeling and the loop is in the middle of
814 irreducible region, the peeled copies will be inside it too. */
815 add_irreducible_flag = e->flags & EDGE_IRREDUCIBLE_LOOP;
816 gcc_assert (!is_latch || !add_irreducible_flag);
817
818 /* Find edge from latch. */
819 latch_edge = loop_latch_edge (loop);
820
821 if (flags & DLTHE_FLAG_UPDATE_FREQ)
822 {
823 /* Calculate coefficients by that we have to scale frequencies
824 of duplicated loop bodies. */
825 freq_in = header->frequency;
826 freq_le = EDGE_FREQUENCY (latch_edge);
827 if (freq_in == 0)
828 freq_in = 1;
829 if (freq_in < freq_le)
830 freq_in = freq_le;
831 freq_out_orig = orig ? EDGE_FREQUENCY (orig) : freq_in - freq_le;
832 if (freq_out_orig > freq_in - freq_le)
833 freq_out_orig = freq_in - freq_le;
834 prob_pass_thru = RDIV (REG_BR_PROB_BASE * freq_le, freq_in);
835 prob_pass_wont_exit =
836 RDIV (REG_BR_PROB_BASE * (freq_le + freq_out_orig), freq_in);
837
838 if (orig
839 && REG_BR_PROB_BASE - orig->probability != 0)
840 {
841 /* The blocks that are dominated by a removed exit edge ORIG have
842 frequencies scaled by this. */
843 scale_after_exit = RDIV (REG_BR_PROB_BASE * REG_BR_PROB_BASE,
844 REG_BR_PROB_BASE - orig->probability);
845 bbs_to_scale = BITMAP_ALLOC (NULL);
846 for (i = 0; i < n; i++)
847 {
848 if (bbs[i] != orig->src
849 && dominated_by_p (CDI_DOMINATORS, bbs[i], orig->src))
850 bitmap_set_bit (bbs_to_scale, i);
851 }
852 }
853
854 scale_step = XNEWVEC (int, ndupl);
855
856 for (i = 1; i <= ndupl; i++)
857 scale_step[i - 1] = TEST_BIT (wont_exit, i)
858 ? prob_pass_wont_exit
859 : prob_pass_thru;
860
861 /* Complete peeling is special as the probability of exit in last
862 copy becomes 1. */
863 if (flags & DLTHE_FLAG_COMPLETTE_PEEL)
864 {
865 int wanted_freq = EDGE_FREQUENCY (e);
866
867 if (wanted_freq > freq_in)
868 wanted_freq = freq_in;
869
870 gcc_assert (!is_latch);
871 /* First copy has frequency of incoming edge. Each subsequent
872 frequency should be reduced by prob_pass_wont_exit. Caller
873 should've managed the flags so all except for original loop
874 has won't exist set. */
875 scale_act = RDIV (wanted_freq * REG_BR_PROB_BASE, freq_in);
876 /* Now simulate the duplication adjustments and compute header
877 frequency of the last copy. */
878 for (i = 0; i < ndupl; i++)
879 wanted_freq = RDIV (wanted_freq * scale_step[i], REG_BR_PROB_BASE);
880 scale_main = RDIV (wanted_freq * REG_BR_PROB_BASE, freq_in);
881 }
882 else if (is_latch)
883 {
884 prob_pass_main = TEST_BIT (wont_exit, 0)
885 ? prob_pass_wont_exit
886 : prob_pass_thru;
887 p = prob_pass_main;
888 scale_main = REG_BR_PROB_BASE;
889 for (i = 0; i < ndupl; i++)
890 {
891 scale_main += p;
892 p = RDIV (p * scale_step[i], REG_BR_PROB_BASE);
893 }
894 scale_main = RDIV (REG_BR_PROB_BASE * REG_BR_PROB_BASE, scale_main);
895 scale_act = RDIV (scale_main * prob_pass_main, REG_BR_PROB_BASE);
896 }
897 else
898 {
899 scale_main = REG_BR_PROB_BASE;
900 for (i = 0; i < ndupl; i++)
901 scale_main = RDIV (scale_main * scale_step[i], REG_BR_PROB_BASE);
902 scale_act = REG_BR_PROB_BASE - prob_pass_thru;
903 }
904 for (i = 0; i < ndupl; i++)
905 gcc_assert (scale_step[i] >= 0 && scale_step[i] <= REG_BR_PROB_BASE);
906 gcc_assert (scale_main >= 0 && scale_main <= REG_BR_PROB_BASE
907 && scale_act >= 0 && scale_act <= REG_BR_PROB_BASE);
908 }
909
910 /* Loop the new bbs will belong to. */
911 target = e->src->loop_father;
912
913 /* Original loops. */
914 n_orig_loops = 0;
915 for (aloop = loop->inner; aloop; aloop = aloop->next)
916 n_orig_loops++;
917 orig_loops = XCNEWVEC (struct loop *, n_orig_loops);
918 for (aloop = loop->inner, i = 0; aloop; aloop = aloop->next, i++)
919 orig_loops[i] = aloop;
920
921 loop->copy = target;
922
923 first_active = XNEWVEC (basic_block, n);
924 if (is_latch)
925 {
926 memcpy (first_active, bbs, n * sizeof (basic_block));
927 first_active_latch = latch;
928 }
929
930 spec_edges[SE_ORIG] = orig;
931 spec_edges[SE_LATCH] = latch_edge;
932
933 place_after = e->src;
934 for (j = 0; j < ndupl; j++)
935 {
936 /* Copy loops. */
937 copy_loops_to (orig_loops, n_orig_loops, target);
938
939 /* Copy bbs. */
940 copy_bbs (bbs, n, new_bbs, spec_edges, 2, new_spec_edges, loop,
941 place_after);
942 place_after = new_spec_edges[SE_LATCH]->src;
943
944 if (flags & DLTHE_RECORD_COPY_NUMBER)
945 for (i = 0; i < n; i++)
946 {
947 gcc_assert (!new_bbs[i]->aux);
948 new_bbs[i]->aux = (void *)(size_t)(j + 1);
949 }
950
951 /* Note whether the blocks and edges belong to an irreducible loop. */
952 if (add_irreducible_flag)
953 {
954 for (i = 0; i < n; i++)
955 new_bbs[i]->flags |= BB_DUPLICATED;
956 for (i = 0; i < n; i++)
957 {
958 edge_iterator ei;
959 new_bb = new_bbs[i];
960 if (new_bb->loop_father == target)
961 new_bb->flags |= BB_IRREDUCIBLE_LOOP;
962
963 FOR_EACH_EDGE (ae, ei, new_bb->succs)
964 if ((ae->dest->flags & BB_DUPLICATED)
965 && (ae->src->loop_father == target
966 || ae->dest->loop_father == target))
967 ae->flags |= EDGE_IRREDUCIBLE_LOOP;
968 }
969 for (i = 0; i < n; i++)
970 new_bbs[i]->flags &= ~BB_DUPLICATED;
971 }
972
973 /* Redirect the special edges. */
974 if (is_latch)
975 {
976 redirect_edge_and_branch_force (latch_edge, new_bbs[0]);
977 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
978 loop->header);
979 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], latch);
980 latch = loop->latch = new_bbs[n - 1];
981 e = latch_edge = new_spec_edges[SE_LATCH];
982 }
983 else
984 {
985 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
986 loop->header);
987 redirect_edge_and_branch_force (e, new_bbs[0]);
988 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], e->src);
989 e = new_spec_edges[SE_LATCH];
990 }
991
992 /* Record exit edge in this copy. */
993 if (orig && TEST_BIT (wont_exit, j + 1))
994 {
995 if (to_remove)
996 VEC_safe_push (edge, heap, *to_remove, new_spec_edges[SE_ORIG]);
997 set_zero_probability (new_spec_edges[SE_ORIG]);
998
999 /* Scale the frequencies of the blocks dominated by the exit. */
1000 if (bbs_to_scale)
1001 {
1002 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1003 {
1004 scale_bbs_frequencies_int (new_bbs + i, 1, scale_after_exit,
1005 REG_BR_PROB_BASE);
1006 }
1007 }
1008 }
1009
1010 /* Record the first copy in the control flow order if it is not
1011 the original loop (i.e. in case of peeling). */
1012 if (!first_active_latch)
1013 {
1014 memcpy (first_active, new_bbs, n * sizeof (basic_block));
1015 first_active_latch = new_bbs[n - 1];
1016 }
1017
1018 /* Set counts and frequencies. */
1019 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1020 {
1021 scale_bbs_frequencies_int (new_bbs, n, scale_act, REG_BR_PROB_BASE);
1022 scale_act = RDIV (scale_act * scale_step[j], REG_BR_PROB_BASE);
1023 }
1024 }
1025 free (new_bbs);
1026 free (orig_loops);
1027
1028 /* Record the exit edge in the original loop body, and update the frequencies. */
1029 if (orig && TEST_BIT (wont_exit, 0))
1030 {
1031 if (to_remove)
1032 VEC_safe_push (edge, heap, *to_remove, orig);
1033 set_zero_probability (orig);
1034
1035 /* Scale the frequencies of the blocks dominated by the exit. */
1036 if (bbs_to_scale)
1037 {
1038 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1039 {
1040 scale_bbs_frequencies_int (bbs + i, 1, scale_after_exit,
1041 REG_BR_PROB_BASE);
1042 }
1043 }
1044 }
1045
1046 /* Update the original loop. */
1047 if (!is_latch)
1048 set_immediate_dominator (CDI_DOMINATORS, e->dest, e->src);
1049 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1050 {
1051 scale_bbs_frequencies_int (bbs, n, scale_main, REG_BR_PROB_BASE);
1052 free (scale_step);
1053 }
1054
1055 /* Update dominators of outer blocks if affected. */
1056 for (i = 0; i < n; i++)
1057 {
1058 basic_block dominated, dom_bb, *dom_bbs;
1059 int n_dom_bbs,j;
1060
1061 bb = bbs[i];
1062 bb->aux = 0;
1063
1064 n_dom_bbs = get_dominated_by (CDI_DOMINATORS, bb, &dom_bbs);
1065 for (j = 0; j < n_dom_bbs; j++)
1066 {
1067 dominated = dom_bbs[j];
1068 if (flow_bb_inside_loop_p (loop, dominated))
1069 continue;
1070 dom_bb = nearest_common_dominator (
1071 CDI_DOMINATORS, first_active[i], first_active_latch);
1072 set_immediate_dominator (CDI_DOMINATORS, dominated, dom_bb);
1073 }
1074 free (dom_bbs);
1075 }
1076 free (first_active);
1077
1078 free (bbs);
1079 BITMAP_FREE (bbs_to_scale);
1080
1081 return true;
1082 }
1083
1084 /* A callback for make_forwarder block, to redirect all edges except for
1085 MFB_KJ_EDGE to the entry part. E is the edge for that we should decide
1086 whether to redirect it. */
1087
1088 static edge mfb_kj_edge;
1089 static bool
1090 mfb_keep_just (edge e)
1091 {
1092 return e != mfb_kj_edge;
1093 }
1094
1095 /* Creates a pre-header for a LOOP. Returns newly created block. Unless
1096 CP_SIMPLE_PREHEADERS is set in FLAGS, we only force LOOP to have single
1097 entry; otherwise we also force preheader block to have only one successor.
1098 The function also updates dominators. */
1099
1100 static basic_block
1101 create_preheader (struct loop *loop, int flags)
1102 {
1103 edge e, fallthru;
1104 basic_block dummy;
1105 int nentry = 0;
1106 bool irred = false;
1107 bool latch_edge_was_fallthru;
1108 edge one_succ_pred = 0;
1109 edge_iterator ei;
1110
1111 FOR_EACH_EDGE (e, ei, loop->header->preds)
1112 {
1113 if (e->src == loop->latch)
1114 continue;
1115 irred |= (e->flags & EDGE_IRREDUCIBLE_LOOP) != 0;
1116 nentry++;
1117 if (single_succ_p (e->src))
1118 one_succ_pred = e;
1119 }
1120 gcc_assert (nentry);
1121 if (nentry == 1)
1122 {
1123 e = loop_preheader_edge (loop);
1124
1125 if (/* We do not allow entry block to be the loop preheader, since we
1126 cannot emit code there. */
1127 e->src != ENTRY_BLOCK_PTR
1128 /* If we want simple preheaders, also force the preheader to have
1129 just a single successor. */
1130 && !((flags & CP_SIMPLE_PREHEADERS)
1131 && !single_succ_p (e->src)))
1132 return NULL;
1133 }
1134
1135 mfb_kj_edge = loop_latch_edge (loop);
1136 latch_edge_was_fallthru = (mfb_kj_edge->flags & EDGE_FALLTHRU) != 0;
1137 fallthru = make_forwarder_block (loop->header, mfb_keep_just, NULL);
1138 dummy = fallthru->src;
1139 loop->header = fallthru->dest;
1140
1141 /* Try to be clever in placing the newly created preheader. The idea is to
1142 avoid breaking any "fallthruness" relationship between blocks.
1143
1144 The preheader was created just before the header and all incoming edges
1145 to the header were redirected to the preheader, except the latch edge.
1146 So the only problematic case is when this latch edge was a fallthru
1147 edge: it is not anymore after the preheader creation so we have broken
1148 the fallthruness. We're therefore going to look for a better place. */
1149 if (latch_edge_was_fallthru)
1150 {
1151 if (one_succ_pred)
1152 e = one_succ_pred;
1153 else
1154 e = EDGE_PRED (dummy, 0);
1155
1156 move_block_after (dummy, e->src);
1157 }
1158
1159 if (irred)
1160 {
1161 dummy->flags |= BB_IRREDUCIBLE_LOOP;
1162 single_succ_edge (dummy)->flags |= EDGE_IRREDUCIBLE_LOOP;
1163 }
1164
1165 if (dump_file)
1166 fprintf (dump_file, "Created preheader block for loop %i\n",
1167 loop->num);
1168
1169 return dummy;
1170 }
1171
1172 /* Create preheaders for each loop; for meaning of FLAGS see create_preheader. */
1173
1174 void
1175 create_preheaders (int flags)
1176 {
1177 loop_iterator li;
1178 struct loop *loop;
1179
1180 FOR_EACH_LOOP (li, loop, 0)
1181 create_preheader (loop, flags);
1182 current_loops->state |= LOOPS_HAVE_PREHEADERS;
1183 }
1184
1185 /* Forces all loop latches to have only single successor. */
1186
1187 void
1188 force_single_succ_latches (void)
1189 {
1190 loop_iterator li;
1191 struct loop *loop;
1192 edge e;
1193
1194 FOR_EACH_LOOP (li, loop, 0)
1195 {
1196 if (loop->latch != loop->header && single_succ_p (loop->latch))
1197 continue;
1198
1199 e = find_edge (loop->latch, loop->header);
1200
1201 split_edge (e);
1202 }
1203 current_loops->state |= LOOPS_HAVE_SIMPLE_LATCHES;
1204 }
1205
1206 /* This function is called from loop_version. It splits the entry edge
1207 of the loop we want to version, adds the versioning condition, and
1208 adjust the edges to the two versions of the loop appropriately.
1209 e is an incoming edge. Returns the basic block containing the
1210 condition.
1211
1212 --- edge e ---- > [second_head]
1213
1214 Split it and insert new conditional expression and adjust edges.
1215
1216 --- edge e ---> [cond expr] ---> [first_head]
1217 |
1218 +---------> [second_head]
1219
1220 THEN_PROB is the probability of then branch of the condition. */
1221
1222 static basic_block
1223 lv_adjust_loop_entry_edge (basic_block first_head, basic_block second_head,
1224 edge e, void *cond_expr, unsigned then_prob)
1225 {
1226 basic_block new_head = NULL;
1227 edge e1;
1228
1229 gcc_assert (e->dest == second_head);
1230
1231 /* Split edge 'e'. This will create a new basic block, where we can
1232 insert conditional expr. */
1233 new_head = split_edge (e);
1234
1235 lv_add_condition_to_bb (first_head, second_head, new_head,
1236 cond_expr);
1237
1238 /* Don't set EDGE_TRUE_VALUE in RTL mode, as it's invalid there. */
1239 e = single_succ_edge (new_head);
1240 e1 = make_edge (new_head, first_head,
1241 current_ir_type () == IR_GIMPLE ? EDGE_TRUE_VALUE : 0);
1242 e1->probability = then_prob;
1243 e->probability = REG_BR_PROB_BASE - then_prob;
1244 e1->count = RDIV (e->count * e1->probability, REG_BR_PROB_BASE);
1245 e->count = RDIV (e->count * e->probability, REG_BR_PROB_BASE);
1246
1247 set_immediate_dominator (CDI_DOMINATORS, first_head, new_head);
1248 set_immediate_dominator (CDI_DOMINATORS, second_head, new_head);
1249
1250 /* Adjust loop header phi nodes. */
1251 lv_adjust_loop_header_phi (first_head, second_head, new_head, e1);
1252
1253 return new_head;
1254 }
1255
1256 /* Main entry point for Loop Versioning transformation.
1257
1258 This transformation given a condition and a loop, creates
1259 -if (condition) { loop_copy1 } else { loop_copy2 },
1260 where loop_copy1 is the loop transformed in one way, and loop_copy2
1261 is the loop transformed in another way (or unchanged). 'condition'
1262 may be a run time test for things that were not resolved by static
1263 analysis (overlapping ranges (anti-aliasing), alignment, etc.).
1264
1265 THEN_PROB is the probability of the then edge of the if. THEN_SCALE
1266 is the ratio by that the frequencies in the original loop should
1267 be scaled. ELSE_SCALE is the ratio by that the frequencies in the
1268 new loop should be scaled.
1269
1270 If PLACE_AFTER is true, we place the new loop after LOOP in the
1271 instruction stream, otherwise it is placed before LOOP. */
1272
1273 struct loop *
1274 loop_version (struct loop *loop,
1275 void *cond_expr, basic_block *condition_bb,
1276 unsigned then_prob, unsigned then_scale, unsigned else_scale,
1277 bool place_after)
1278 {
1279 basic_block first_head, second_head;
1280 edge entry, latch_edge, true_edge, false_edge;
1281 int irred_flag;
1282 struct loop *nloop;
1283 basic_block cond_bb;
1284
1285 /* CHECKME: Loop versioning does not handle nested loop at this point. */
1286 if (loop->inner)
1287 return NULL;
1288
1289 /* Record entry and latch edges for the loop */
1290 entry = loop_preheader_edge (loop);
1291 irred_flag = entry->flags & EDGE_IRREDUCIBLE_LOOP;
1292 entry->flags &= ~EDGE_IRREDUCIBLE_LOOP;
1293
1294 /* Note down head of loop as first_head. */
1295 first_head = entry->dest;
1296
1297 /* Duplicate loop. */
1298 if (!cfg_hook_duplicate_loop_to_header_edge (loop, entry, 1,
1299 NULL, NULL, NULL, 0))
1300 return NULL;
1301
1302 /* After duplication entry edge now points to new loop head block.
1303 Note down new head as second_head. */
1304 second_head = entry->dest;
1305
1306 /* Split loop entry edge and insert new block with cond expr. */
1307 cond_bb = lv_adjust_loop_entry_edge (first_head, second_head,
1308 entry, cond_expr, then_prob);
1309 if (condition_bb)
1310 *condition_bb = cond_bb;
1311
1312 if (!cond_bb)
1313 {
1314 entry->flags |= irred_flag;
1315 return NULL;
1316 }
1317
1318 latch_edge = single_succ_edge (get_bb_copy (loop->latch));
1319
1320 extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
1321 nloop = loopify (latch_edge,
1322 single_pred_edge (get_bb_copy (loop->header)),
1323 cond_bb, true_edge, false_edge,
1324 false /* Do not redirect all edges. */,
1325 then_scale, else_scale);
1326
1327 /* loopify redirected latch_edge. Update its PENDING_STMTS. */
1328 lv_flush_pending_stmts (latch_edge);
1329
1330 /* loopify redirected condition_bb's succ edge. Update its PENDING_STMTS. */
1331 extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
1332 lv_flush_pending_stmts (false_edge);
1333 /* Adjust irreducible flag. */
1334 if (irred_flag)
1335 {
1336 cond_bb->flags |= BB_IRREDUCIBLE_LOOP;
1337 loop_preheader_edge (loop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1338 loop_preheader_edge (nloop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1339 single_pred_edge (cond_bb)->flags |= EDGE_IRREDUCIBLE_LOOP;
1340 }
1341
1342 if (place_after)
1343 {
1344 basic_block *bbs = get_loop_body_in_dom_order (nloop), after;
1345 unsigned i;
1346
1347 after = loop->latch;
1348
1349 for (i = 0; i < nloop->num_nodes; i++)
1350 {
1351 move_block_after (bbs[i], after);
1352 after = bbs[i];
1353 }
1354 free (bbs);
1355 }
1356
1357 /* At this point condition_bb is loop predheader with two successors,
1358 first_head and second_head. Make sure that loop predheader has only
1359 one successor. */
1360 split_edge (loop_preheader_edge (loop));
1361 split_edge (loop_preheader_edge (nloop));
1362
1363 return nloop;
1364 }
1365
1366 /* The structure of loops might have changed. Some loops might get removed
1367 (and their headers and latches were set to NULL), loop exists might get
1368 removed (thus the loop nesting may be wrong), and some blocks and edges
1369 were changed (so the information about bb --> loop mapping does not have
1370 to be correct). But still for the remaining loops the header dominates
1371 the latch, and loops did not get new subloobs (new loops might possibly
1372 get created, but we are not interested in them). Fix up the mess.
1373
1374 If CHANGED_BBS is not NULL, basic blocks whose loop has changed are
1375 marked in it. */
1376
1377 void
1378 fix_loop_structure (bitmap changed_bbs)
1379 {
1380 basic_block bb;
1381 struct loop *loop, *ploop;
1382 loop_iterator li;
1383
1384 /* Remove the old bb -> loop mapping. */
1385 FOR_EACH_BB (bb)
1386 {
1387 bb->aux = (void *) (size_t) bb->loop_father->depth;
1388 bb->loop_father = current_loops->tree_root;
1389 }
1390
1391 /* Remove the dead loops from structures. */
1392 current_loops->tree_root->num_nodes = n_basic_blocks;
1393 FOR_EACH_LOOP (li, loop, 0)
1394 {
1395 loop->num_nodes = 0;
1396 if (loop->header)
1397 continue;
1398
1399 while (loop->inner)
1400 {
1401 ploop = loop->inner;
1402 flow_loop_tree_node_remove (ploop);
1403 flow_loop_tree_node_add (loop->outer, ploop);
1404 }
1405
1406 /* Remove the loop and free its data. */
1407 delete_loop (loop);
1408 }
1409
1410 /* Rescan the bodies of loops, starting from the outermost. */
1411 FOR_EACH_LOOP (li, loop, 0)
1412 {
1413 loop->num_nodes = flow_loop_nodes_find (loop->header, loop);
1414 }
1415
1416 /* Now fix the loop nesting. */
1417 FOR_EACH_LOOP (li, loop, 0)
1418 {
1419 bb = loop_preheader_edge (loop)->src;
1420 if (bb->loop_father != loop->outer)
1421 {
1422 flow_loop_tree_node_remove (loop);
1423 flow_loop_tree_node_add (bb->loop_father, loop);
1424 }
1425 }
1426
1427 /* Mark the blocks whose loop has changed. */
1428 FOR_EACH_BB (bb)
1429 {
1430 if (changed_bbs
1431 && (void *) (size_t) bb->loop_father->depth != bb->aux)
1432 bitmap_set_bit (changed_bbs, bb->index);
1433
1434 bb->aux = NULL;
1435 }
1436
1437 if (current_loops->state & LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS)
1438 mark_irreducible_loops ();
1439
1440 if (current_loops->state & LOOPS_HAVE_RECORDED_EXITS)
1441 {
1442 release_recorded_exits ();
1443 record_loop_exits ();
1444 }
1445 }