a-clrefi.adb, [...]: New files
[gcc.git] / gcc / cfgrtl.c
1 /* Control flow graph manipulation code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 /* This file contains low level functions to manipulate the CFG and analyze it
23 that are aware of the RTL intermediate language.
24
25 Available functionality:
26 - Basic CFG/RTL manipulation API documented in cfghooks.h
27 - CFG-aware instruction chain manipulation
28 delete_insn, delete_insn_chain
29 - Edge splitting and committing to edges
30 insert_insn_on_edge, commit_edge_insertions
31 - CFG updating after insn simplification
32 purge_dead_edges, purge_all_dead_edges
33
34 Functions not supposed for generic use:
35 - Infrastructure to determine quickly basic block for insn
36 compute_bb_for_insn, update_bb_for_insn, set_block_for_insn,
37 - Edge redirection with updating and optimizing of insn chain
38 block_label, tidy_fallthru_edge, force_nonfallthru */
39 \f
40 #include "config.h"
41 #include "system.h"
42 #include "coretypes.h"
43 #include "tm.h"
44 #include "tree.h"
45 #include "rtl.h"
46 #include "hard-reg-set.h"
47 #include "basic-block.h"
48 #include "regs.h"
49 #include "flags.h"
50 #include "output.h"
51 #include "function.h"
52 #include "except.h"
53 #include "toplev.h"
54 #include "tm_p.h"
55 #include "obstack.h"
56 #include "insn-config.h"
57 #include "cfglayout.h"
58 #include "expr.h"
59 #include "target.h"
60 #include "cfgloop.h"
61 #include "ggc.h"
62 #include "tree-pass.h"
63
64 static int can_delete_note_p (rtx);
65 static int can_delete_label_p (rtx);
66 static void commit_one_edge_insertion (edge);
67 static basic_block rtl_split_edge (edge);
68 static bool rtl_move_block_after (basic_block, basic_block);
69 static int rtl_verify_flow_info (void);
70 static basic_block cfg_layout_split_block (basic_block, void *);
71 static edge cfg_layout_redirect_edge_and_branch (edge, basic_block);
72 static basic_block cfg_layout_redirect_edge_and_branch_force (edge, basic_block);
73 static void cfg_layout_delete_block (basic_block);
74 static void rtl_delete_block (basic_block);
75 static basic_block rtl_redirect_edge_and_branch_force (edge, basic_block);
76 static edge rtl_redirect_edge_and_branch (edge, basic_block);
77 static basic_block rtl_split_block (basic_block, void *);
78 static void rtl_dump_bb (basic_block, FILE *, int);
79 static int rtl_verify_flow_info_1 (void);
80 static void rtl_make_forwarder_block (edge);
81 \f
82 /* Return true if NOTE is not one of the ones that must be kept paired,
83 so that we may simply delete it. */
84
85 static int
86 can_delete_note_p (rtx note)
87 {
88 return (NOTE_KIND (note) == NOTE_INSN_DELETED
89 || NOTE_KIND (note) == NOTE_INSN_BASIC_BLOCK);
90 }
91
92 /* True if a given label can be deleted. */
93
94 static int
95 can_delete_label_p (rtx label)
96 {
97 return (!LABEL_PRESERVE_P (label)
98 /* User declared labels must be preserved. */
99 && LABEL_NAME (label) == 0
100 && !in_expr_list_p (forced_labels, label));
101 }
102
103 /* Delete INSN by patching it out. Return the next insn. */
104
105 rtx
106 delete_insn (rtx insn)
107 {
108 rtx next = NEXT_INSN (insn);
109 rtx note;
110 bool really_delete = true;
111
112 if (LABEL_P (insn))
113 {
114 /* Some labels can't be directly removed from the INSN chain, as they
115 might be references via variables, constant pool etc.
116 Convert them to the special NOTE_INSN_DELETED_LABEL note. */
117 if (! can_delete_label_p (insn))
118 {
119 const char *name = LABEL_NAME (insn);
120
121 really_delete = false;
122 PUT_CODE (insn, NOTE);
123 NOTE_KIND (insn) = NOTE_INSN_DELETED_LABEL;
124 NOTE_DELETED_LABEL_NAME (insn) = name;
125 }
126
127 remove_node_from_expr_list (insn, &nonlocal_goto_handler_labels);
128 }
129
130 if (really_delete)
131 {
132 /* If this insn has already been deleted, something is very wrong. */
133 gcc_assert (!INSN_DELETED_P (insn));
134 remove_insn (insn);
135 INSN_DELETED_P (insn) = 1;
136 }
137
138 /* If deleting a jump, decrement the use count of the label. Deleting
139 the label itself should happen in the normal course of block merging. */
140 if (JUMP_P (insn)
141 && JUMP_LABEL (insn)
142 && LABEL_P (JUMP_LABEL (insn)))
143 LABEL_NUSES (JUMP_LABEL (insn))--;
144
145 /* Also if deleting an insn that references a label. */
146 else
147 {
148 while ((note = find_reg_note (insn, REG_LABEL, NULL_RTX)) != NULL_RTX
149 && LABEL_P (XEXP (note, 0)))
150 {
151 LABEL_NUSES (XEXP (note, 0))--;
152 remove_note (insn, note);
153 }
154 }
155
156 if (JUMP_P (insn)
157 && (GET_CODE (PATTERN (insn)) == ADDR_VEC
158 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC))
159 {
160 rtx pat = PATTERN (insn);
161 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
162 int len = XVECLEN (pat, diff_vec_p);
163 int i;
164
165 for (i = 0; i < len; i++)
166 {
167 rtx label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
168
169 /* When deleting code in bulk (e.g. removing many unreachable
170 blocks) we can delete a label that's a target of the vector
171 before deleting the vector itself. */
172 if (!NOTE_P (label))
173 LABEL_NUSES (label)--;
174 }
175 }
176
177 return next;
178 }
179
180 /* Like delete_insn but also purge dead edges from BB. */
181 rtx
182 delete_insn_and_edges (rtx insn)
183 {
184 rtx x;
185 bool purge = false;
186
187 if (INSN_P (insn)
188 && BLOCK_FOR_INSN (insn)
189 && BB_END (BLOCK_FOR_INSN (insn)) == insn)
190 purge = true;
191 x = delete_insn (insn);
192 if (purge)
193 purge_dead_edges (BLOCK_FOR_INSN (insn));
194 return x;
195 }
196
197 /* Unlink a chain of insns between START and FINISH, leaving notes
198 that must be paired. */
199
200 void
201 delete_insn_chain (rtx start, rtx finish)
202 {
203 rtx next;
204
205 /* Unchain the insns one by one. It would be quicker to delete all of these
206 with a single unchaining, rather than one at a time, but we need to keep
207 the NOTE's. */
208 while (1)
209 {
210 next = NEXT_INSN (start);
211 if (NOTE_P (start) && !can_delete_note_p (start))
212 ;
213 else
214 next = delete_insn (start);
215
216 if (start == finish)
217 break;
218 start = next;
219 }
220 }
221
222 /* Like delete_insn but also purge dead edges from BB. */
223 void
224 delete_insn_chain_and_edges (rtx first, rtx last)
225 {
226 bool purge = false;
227
228 if (INSN_P (last)
229 && BLOCK_FOR_INSN (last)
230 && BB_END (BLOCK_FOR_INSN (last)) == last)
231 purge = true;
232 delete_insn_chain (first, last);
233 if (purge)
234 purge_dead_edges (BLOCK_FOR_INSN (last));
235 }
236 \f
237 /* Create a new basic block consisting of the instructions between HEAD and END
238 inclusive. This function is designed to allow fast BB construction - reuses
239 the note and basic block struct in BB_NOTE, if any and do not grow
240 BASIC_BLOCK chain and should be used directly only by CFG construction code.
241 END can be NULL in to create new empty basic block before HEAD. Both END
242 and HEAD can be NULL to create basic block at the end of INSN chain.
243 AFTER is the basic block we should be put after. */
244
245 basic_block
246 create_basic_block_structure (rtx head, rtx end, rtx bb_note, basic_block after)
247 {
248 basic_block bb;
249
250 if (bb_note
251 && (bb = NOTE_BASIC_BLOCK (bb_note)) != NULL
252 && bb->aux == NULL)
253 {
254 /* If we found an existing note, thread it back onto the chain. */
255
256 rtx after;
257
258 if (LABEL_P (head))
259 after = head;
260 else
261 {
262 after = PREV_INSN (head);
263 head = bb_note;
264 }
265
266 if (after != bb_note && NEXT_INSN (after) != bb_note)
267 reorder_insns_nobb (bb_note, bb_note, after);
268 }
269 else
270 {
271 /* Otherwise we must create a note and a basic block structure. */
272
273 bb = alloc_block ();
274
275 init_rtl_bb_info (bb);
276 if (!head && !end)
277 head = end = bb_note
278 = emit_note_after (NOTE_INSN_BASIC_BLOCK, get_last_insn ());
279 else if (LABEL_P (head) && end)
280 {
281 bb_note = emit_note_after (NOTE_INSN_BASIC_BLOCK, head);
282 if (head == end)
283 end = bb_note;
284 }
285 else
286 {
287 bb_note = emit_note_before (NOTE_INSN_BASIC_BLOCK, head);
288 head = bb_note;
289 if (!end)
290 end = head;
291 }
292
293 NOTE_BASIC_BLOCK (bb_note) = bb;
294 }
295
296 /* Always include the bb note in the block. */
297 if (NEXT_INSN (end) == bb_note)
298 end = bb_note;
299
300 BB_HEAD (bb) = head;
301 BB_END (bb) = end;
302 bb->index = last_basic_block++;
303 bb->flags = BB_NEW | BB_RTL;
304 link_block (bb, after);
305 SET_BASIC_BLOCK (bb->index, bb);
306 update_bb_for_insn (bb);
307 BB_SET_PARTITION (bb, BB_UNPARTITIONED);
308
309 /* Tag the block so that we know it has been used when considering
310 other basic block notes. */
311 bb->aux = bb;
312
313 return bb;
314 }
315
316 /* Create new basic block consisting of instructions in between HEAD and END
317 and place it to the BB chain after block AFTER. END can be NULL in to
318 create new empty basic block before HEAD. Both END and HEAD can be NULL to
319 create basic block at the end of INSN chain. */
320
321 static basic_block
322 rtl_create_basic_block (void *headp, void *endp, basic_block after)
323 {
324 rtx head = (rtx) headp, end = (rtx) endp;
325 basic_block bb;
326
327 /* Grow the basic block array if needed. */
328 if ((size_t) last_basic_block >= VEC_length (basic_block, basic_block_info))
329 {
330 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
331 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, new_size);
332 }
333
334 n_basic_blocks++;
335
336 bb = create_basic_block_structure (head, end, NULL, after);
337 bb->aux = NULL;
338 return bb;
339 }
340
341 static basic_block
342 cfg_layout_create_basic_block (void *head, void *end, basic_block after)
343 {
344 basic_block newbb = rtl_create_basic_block (head, end, after);
345
346 return newbb;
347 }
348 \f
349 /* Delete the insns in a (non-live) block. We physically delete every
350 non-deleted-note insn, and update the flow graph appropriately.
351
352 Return nonzero if we deleted an exception handler. */
353
354 /* ??? Preserving all such notes strikes me as wrong. It would be nice
355 to post-process the stream to remove empty blocks, loops, ranges, etc. */
356
357 static void
358 rtl_delete_block (basic_block b)
359 {
360 rtx insn, end;
361
362 /* If the head of this block is a CODE_LABEL, then it might be the
363 label for an exception handler which can't be reached. We need
364 to remove the label from the exception_handler_label list. */
365 insn = BB_HEAD (b);
366 if (LABEL_P (insn))
367 maybe_remove_eh_handler (insn);
368
369 end = get_last_bb_insn (b);
370
371 /* Selectively delete the entire chain. */
372 BB_HEAD (b) = NULL;
373 delete_insn_chain (insn, end);
374 if (b->il.rtl->global_live_at_start)
375 {
376 FREE_REG_SET (b->il.rtl->global_live_at_start);
377 FREE_REG_SET (b->il.rtl->global_live_at_end);
378 b->il.rtl->global_live_at_start = NULL;
379 b->il.rtl->global_live_at_end = NULL;
380 }
381 }
382 \f
383 /* Records the basic block struct in BLOCK_FOR_INSN for every insn. */
384
385 void
386 compute_bb_for_insn (void)
387 {
388 basic_block bb;
389
390 FOR_EACH_BB (bb)
391 {
392 rtx end = BB_END (bb);
393 rtx insn;
394
395 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
396 {
397 BLOCK_FOR_INSN (insn) = bb;
398 if (insn == end)
399 break;
400 }
401 }
402 }
403
404 /* Release the basic_block_for_insn array. */
405
406 unsigned int
407 free_bb_for_insn (void)
408 {
409 rtx insn;
410 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
411 if (!BARRIER_P (insn))
412 BLOCK_FOR_INSN (insn) = NULL;
413 return 0;
414 }
415
416 struct tree_opt_pass pass_free_cfg =
417 {
418 NULL, /* name */
419 NULL, /* gate */
420 free_bb_for_insn, /* execute */
421 NULL, /* sub */
422 NULL, /* next */
423 0, /* static_pass_number */
424 0, /* tv_id */
425 0, /* properties_required */
426 0, /* properties_provided */
427 PROP_cfg, /* properties_destroyed */
428 0, /* todo_flags_start */
429 0, /* todo_flags_finish */
430 0 /* letter */
431 };
432
433 /* Return RTX to emit after when we want to emit code on the entry of function. */
434 rtx
435 entry_of_function (void)
436 {
437 return (n_basic_blocks > NUM_FIXED_BLOCKS ?
438 BB_HEAD (ENTRY_BLOCK_PTR->next_bb) : get_insns ());
439 }
440
441 /* Emit INSN at the entry point of the function, ensuring that it is only
442 executed once per function. */
443 void
444 emit_insn_at_entry (rtx insn)
445 {
446 edge_iterator ei = ei_start (ENTRY_BLOCK_PTR->succs);
447 edge e = ei_safe_edge (ei);
448 gcc_assert (e->flags & EDGE_FALLTHRU);
449
450 insert_insn_on_edge (insn, e);
451 commit_edge_insertions ();
452 }
453
454 /* Update insns block within BB. */
455
456 void
457 update_bb_for_insn (basic_block bb)
458 {
459 rtx insn;
460
461 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
462 {
463 if (!BARRIER_P (insn))
464 set_block_for_insn (insn, bb);
465 if (insn == BB_END (bb))
466 break;
467 }
468 }
469 \f
470 /* Creates a new basic block just after basic block B by splitting
471 everything after specified instruction I. */
472
473 static basic_block
474 rtl_split_block (basic_block bb, void *insnp)
475 {
476 basic_block new_bb;
477 rtx insn = (rtx) insnp;
478 edge e;
479 edge_iterator ei;
480
481 if (!insn)
482 {
483 insn = first_insn_after_basic_block_note (bb);
484
485 if (insn)
486 insn = PREV_INSN (insn);
487 else
488 insn = get_last_insn ();
489 }
490
491 /* We probably should check type of the insn so that we do not create
492 inconsistent cfg. It is checked in verify_flow_info anyway, so do not
493 bother. */
494 if (insn == BB_END (bb))
495 emit_note_after (NOTE_INSN_DELETED, insn);
496
497 /* Create the new basic block. */
498 new_bb = create_basic_block (NEXT_INSN (insn), BB_END (bb), bb);
499 BB_COPY_PARTITION (new_bb, bb);
500 BB_END (bb) = insn;
501
502 /* Redirect the outgoing edges. */
503 new_bb->succs = bb->succs;
504 bb->succs = NULL;
505 FOR_EACH_EDGE (e, ei, new_bb->succs)
506 e->src = new_bb;
507
508 if (bb->il.rtl->global_live_at_start)
509 {
510 new_bb->il.rtl->global_live_at_start = ALLOC_REG_SET (&reg_obstack);
511 new_bb->il.rtl->global_live_at_end = ALLOC_REG_SET (&reg_obstack);
512 COPY_REG_SET (new_bb->il.rtl->global_live_at_end, bb->il.rtl->global_live_at_end);
513
514 /* We now have to calculate which registers are live at the end
515 of the split basic block and at the start of the new basic
516 block. Start with those registers that are known to be live
517 at the end of the original basic block and get
518 propagate_block to determine which registers are live. */
519 COPY_REG_SET (new_bb->il.rtl->global_live_at_start, bb->il.rtl->global_live_at_end);
520 propagate_block (new_bb, new_bb->il.rtl->global_live_at_start, NULL, NULL, 0);
521 COPY_REG_SET (bb->il.rtl->global_live_at_end,
522 new_bb->il.rtl->global_live_at_start);
523 #ifdef HAVE_conditional_execution
524 /* In the presence of conditional execution we are not able to update
525 liveness precisely. */
526 if (reload_completed)
527 {
528 bb->flags |= BB_DIRTY;
529 new_bb->flags |= BB_DIRTY;
530 }
531 #endif
532 }
533
534 return new_bb;
535 }
536
537 /* Blocks A and B are to be merged into a single block A. The insns
538 are already contiguous. */
539
540 static void
541 rtl_merge_blocks (basic_block a, basic_block b)
542 {
543 rtx b_head = BB_HEAD (b), b_end = BB_END (b), a_end = BB_END (a);
544 rtx del_first = NULL_RTX, del_last = NULL_RTX;
545 int b_empty = 0;
546
547 /* If there was a CODE_LABEL beginning B, delete it. */
548 if (LABEL_P (b_head))
549 {
550 /* This might have been an EH label that no longer has incoming
551 EH edges. Update data structures to match. */
552 maybe_remove_eh_handler (b_head);
553
554 /* Detect basic blocks with nothing but a label. This can happen
555 in particular at the end of a function. */
556 if (b_head == b_end)
557 b_empty = 1;
558
559 del_first = del_last = b_head;
560 b_head = NEXT_INSN (b_head);
561 }
562
563 /* Delete the basic block note and handle blocks containing just that
564 note. */
565 if (NOTE_INSN_BASIC_BLOCK_P (b_head))
566 {
567 if (b_head == b_end)
568 b_empty = 1;
569 if (! del_last)
570 del_first = b_head;
571
572 del_last = b_head;
573 b_head = NEXT_INSN (b_head);
574 }
575
576 /* If there was a jump out of A, delete it. */
577 if (JUMP_P (a_end))
578 {
579 rtx prev;
580
581 for (prev = PREV_INSN (a_end); ; prev = PREV_INSN (prev))
582 if (!NOTE_P (prev)
583 || NOTE_INSN_BASIC_BLOCK_P (prev)
584 || prev == BB_HEAD (a))
585 break;
586
587 del_first = a_end;
588
589 #ifdef HAVE_cc0
590 /* If this was a conditional jump, we need to also delete
591 the insn that set cc0. */
592 if (only_sets_cc0_p (prev))
593 {
594 rtx tmp = prev;
595
596 prev = prev_nonnote_insn (prev);
597 if (!prev)
598 prev = BB_HEAD (a);
599 del_first = tmp;
600 }
601 #endif
602
603 a_end = PREV_INSN (del_first);
604 }
605 else if (BARRIER_P (NEXT_INSN (a_end)))
606 del_first = NEXT_INSN (a_end);
607
608 /* Delete everything marked above as well as crap that might be
609 hanging out between the two blocks. */
610 BB_HEAD (b) = NULL;
611 delete_insn_chain (del_first, del_last);
612
613 /* Reassociate the insns of B with A. */
614 if (!b_empty)
615 {
616 rtx x;
617
618 for (x = a_end; x != b_end; x = NEXT_INSN (x))
619 set_block_for_insn (x, a);
620
621 set_block_for_insn (b_end, a);
622
623 a_end = b_end;
624 }
625
626 BB_END (a) = a_end;
627 a->il.rtl->global_live_at_end = b->il.rtl->global_live_at_end;
628 }
629
630 /* Return true when block A and B can be merged. */
631 static bool
632 rtl_can_merge_blocks (basic_block a,basic_block b)
633 {
634 /* If we are partitioning hot/cold basic blocks, we don't want to
635 mess up unconditional or indirect jumps that cross between hot
636 and cold sections.
637
638 Basic block partitioning may result in some jumps that appear to
639 be optimizable (or blocks that appear to be mergeable), but which really
640 must be left untouched (they are required to make it safely across
641 partition boundaries). See the comments at the top of
642 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
643
644 if (BB_PARTITION (a) != BB_PARTITION (b))
645 return false;
646
647 /* There must be exactly one edge in between the blocks. */
648 return (single_succ_p (a)
649 && single_succ (a) == b
650 && single_pred_p (b)
651 && a != b
652 /* Must be simple edge. */
653 && !(single_succ_edge (a)->flags & EDGE_COMPLEX)
654 && a->next_bb == b
655 && a != ENTRY_BLOCK_PTR && b != EXIT_BLOCK_PTR
656 /* If the jump insn has side effects,
657 we can't kill the edge. */
658 && (!JUMP_P (BB_END (a))
659 || (reload_completed
660 ? simplejump_p (BB_END (a)) : onlyjump_p (BB_END (a)))));
661 }
662 \f
663 /* Return the label in the head of basic block BLOCK. Create one if it doesn't
664 exist. */
665
666 rtx
667 block_label (basic_block block)
668 {
669 if (block == EXIT_BLOCK_PTR)
670 return NULL_RTX;
671
672 if (!LABEL_P (BB_HEAD (block)))
673 {
674 BB_HEAD (block) = emit_label_before (gen_label_rtx (), BB_HEAD (block));
675 }
676
677 return BB_HEAD (block);
678 }
679
680 /* Attempt to perform edge redirection by replacing possibly complex jump
681 instruction by unconditional jump or removing jump completely. This can
682 apply only if all edges now point to the same block. The parameters and
683 return values are equivalent to redirect_edge_and_branch. */
684
685 edge
686 try_redirect_by_replacing_jump (edge e, basic_block target, bool in_cfglayout)
687 {
688 basic_block src = e->src;
689 rtx insn = BB_END (src), kill_from;
690 rtx set;
691 int fallthru = 0;
692
693 /* If we are partitioning hot/cold basic blocks, we don't want to
694 mess up unconditional or indirect jumps that cross between hot
695 and cold sections.
696
697 Basic block partitioning may result in some jumps that appear to
698 be optimizable (or blocks that appear to be mergeable), but which really
699 must be left untouched (they are required to make it safely across
700 partition boundaries). See the comments at the top of
701 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
702
703 if (find_reg_note (insn, REG_CROSSING_JUMP, NULL_RTX)
704 || BB_PARTITION (src) != BB_PARTITION (target))
705 return NULL;
706
707 /* We can replace or remove a complex jump only when we have exactly
708 two edges. Also, if we have exactly one outgoing edge, we can
709 redirect that. */
710 if (EDGE_COUNT (src->succs) >= 3
711 /* Verify that all targets will be TARGET. Specifically, the
712 edge that is not E must also go to TARGET. */
713 || (EDGE_COUNT (src->succs) == 2
714 && EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target))
715 return NULL;
716
717 if (!onlyjump_p (insn))
718 return NULL;
719 if ((!optimize || reload_completed) && tablejump_p (insn, NULL, NULL))
720 return NULL;
721
722 /* Avoid removing branch with side effects. */
723 set = single_set (insn);
724 if (!set || side_effects_p (set))
725 return NULL;
726
727 /* In case we zap a conditional jump, we'll need to kill
728 the cc0 setter too. */
729 kill_from = insn;
730 #ifdef HAVE_cc0
731 if (reg_mentioned_p (cc0_rtx, PATTERN (insn))
732 && only_sets_cc0_p (PREV_INSN (insn)))
733 kill_from = PREV_INSN (insn);
734 #endif
735
736 /* See if we can create the fallthru edge. */
737 if (in_cfglayout || can_fallthru (src, target))
738 {
739 if (dump_file)
740 fprintf (dump_file, "Removing jump %i.\n", INSN_UID (insn));
741 fallthru = 1;
742
743 /* Selectively unlink whole insn chain. */
744 if (in_cfglayout)
745 {
746 rtx insn = src->il.rtl->footer;
747
748 delete_insn_chain (kill_from, BB_END (src));
749
750 /* Remove barriers but keep jumptables. */
751 while (insn)
752 {
753 if (BARRIER_P (insn))
754 {
755 if (PREV_INSN (insn))
756 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
757 else
758 src->il.rtl->footer = NEXT_INSN (insn);
759 if (NEXT_INSN (insn))
760 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
761 }
762 if (LABEL_P (insn))
763 break;
764 insn = NEXT_INSN (insn);
765 }
766 }
767 else
768 delete_insn_chain (kill_from, PREV_INSN (BB_HEAD (target)));
769 }
770
771 /* If this already is simplejump, redirect it. */
772 else if (simplejump_p (insn))
773 {
774 if (e->dest == target)
775 return NULL;
776 if (dump_file)
777 fprintf (dump_file, "Redirecting jump %i from %i to %i.\n",
778 INSN_UID (insn), e->dest->index, target->index);
779 if (!redirect_jump (insn, block_label (target), 0))
780 {
781 gcc_assert (target == EXIT_BLOCK_PTR);
782 return NULL;
783 }
784 }
785
786 /* Cannot do anything for target exit block. */
787 else if (target == EXIT_BLOCK_PTR)
788 return NULL;
789
790 /* Or replace possibly complicated jump insn by simple jump insn. */
791 else
792 {
793 rtx target_label = block_label (target);
794 rtx barrier, label, table;
795
796 emit_jump_insn_after_noloc (gen_jump (target_label), insn);
797 JUMP_LABEL (BB_END (src)) = target_label;
798 LABEL_NUSES (target_label)++;
799 if (dump_file)
800 fprintf (dump_file, "Replacing insn %i by jump %i\n",
801 INSN_UID (insn), INSN_UID (BB_END (src)));
802
803
804 delete_insn_chain (kill_from, insn);
805
806 /* Recognize a tablejump that we are converting to a
807 simple jump and remove its associated CODE_LABEL
808 and ADDR_VEC or ADDR_DIFF_VEC. */
809 if (tablejump_p (insn, &label, &table))
810 delete_insn_chain (label, table);
811
812 barrier = next_nonnote_insn (BB_END (src));
813 if (!barrier || !BARRIER_P (barrier))
814 emit_barrier_after (BB_END (src));
815 else
816 {
817 if (barrier != NEXT_INSN (BB_END (src)))
818 {
819 /* Move the jump before barrier so that the notes
820 which originally were or were created before jump table are
821 inside the basic block. */
822 rtx new_insn = BB_END (src);
823 rtx tmp;
824
825 for (tmp = NEXT_INSN (BB_END (src)); tmp != barrier;
826 tmp = NEXT_INSN (tmp))
827 set_block_for_insn (tmp, src);
828
829 NEXT_INSN (PREV_INSN (new_insn)) = NEXT_INSN (new_insn);
830 PREV_INSN (NEXT_INSN (new_insn)) = PREV_INSN (new_insn);
831
832 NEXT_INSN (new_insn) = barrier;
833 NEXT_INSN (PREV_INSN (barrier)) = new_insn;
834
835 PREV_INSN (new_insn) = PREV_INSN (barrier);
836 PREV_INSN (barrier) = new_insn;
837 }
838 }
839 }
840
841 /* Keep only one edge out and set proper flags. */
842 if (!single_succ_p (src))
843 remove_edge (e);
844 gcc_assert (single_succ_p (src));
845
846 e = single_succ_edge (src);
847 if (fallthru)
848 e->flags = EDGE_FALLTHRU;
849 else
850 e->flags = 0;
851
852 e->probability = REG_BR_PROB_BASE;
853 e->count = src->count;
854
855 if (e->dest != target)
856 redirect_edge_succ (e, target);
857
858 return e;
859 }
860
861 /* Redirect edge representing branch of (un)conditional jump or tablejump,
862 NULL on failure */
863 static edge
864 redirect_branch_edge (edge e, basic_block target)
865 {
866 rtx tmp;
867 rtx old_label = BB_HEAD (e->dest);
868 basic_block src = e->src;
869 rtx insn = BB_END (src);
870
871 /* We can only redirect non-fallthru edges of jump insn. */
872 if (e->flags & EDGE_FALLTHRU)
873 return NULL;
874 else if (!JUMP_P (insn))
875 return NULL;
876
877 /* Recognize a tablejump and adjust all matching cases. */
878 if (tablejump_p (insn, NULL, &tmp))
879 {
880 rtvec vec;
881 int j;
882 rtx new_label = block_label (target);
883
884 if (target == EXIT_BLOCK_PTR)
885 return NULL;
886 if (GET_CODE (PATTERN (tmp)) == ADDR_VEC)
887 vec = XVEC (PATTERN (tmp), 0);
888 else
889 vec = XVEC (PATTERN (tmp), 1);
890
891 for (j = GET_NUM_ELEM (vec) - 1; j >= 0; --j)
892 if (XEXP (RTVEC_ELT (vec, j), 0) == old_label)
893 {
894 RTVEC_ELT (vec, j) = gen_rtx_LABEL_REF (Pmode, new_label);
895 --LABEL_NUSES (old_label);
896 ++LABEL_NUSES (new_label);
897 }
898
899 /* Handle casesi dispatch insns. */
900 if ((tmp = single_set (insn)) != NULL
901 && SET_DEST (tmp) == pc_rtx
902 && GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE
903 && GET_CODE (XEXP (SET_SRC (tmp), 2)) == LABEL_REF
904 && XEXP (XEXP (SET_SRC (tmp), 2), 0) == old_label)
905 {
906 XEXP (SET_SRC (tmp), 2) = gen_rtx_LABEL_REF (Pmode,
907 new_label);
908 --LABEL_NUSES (old_label);
909 ++LABEL_NUSES (new_label);
910 }
911 }
912 else
913 {
914 /* ?? We may play the games with moving the named labels from
915 one basic block to the other in case only one computed_jump is
916 available. */
917 if (computed_jump_p (insn)
918 /* A return instruction can't be redirected. */
919 || returnjump_p (insn))
920 return NULL;
921
922 /* If the insn doesn't go where we think, we're confused. */
923 gcc_assert (JUMP_LABEL (insn) == old_label);
924
925 /* If the substitution doesn't succeed, die. This can happen
926 if the back end emitted unrecognizable instructions or if
927 target is exit block on some arches. */
928 if (!redirect_jump (insn, block_label (target), 0))
929 {
930 gcc_assert (target == EXIT_BLOCK_PTR);
931 return NULL;
932 }
933 }
934
935 if (dump_file)
936 fprintf (dump_file, "Edge %i->%i redirected to %i\n",
937 e->src->index, e->dest->index, target->index);
938
939 if (e->dest != target)
940 e = redirect_edge_succ_nodup (e, target);
941 return e;
942 }
943
944 /* Attempt to change code to redirect edge E to TARGET. Don't do that on
945 expense of adding new instructions or reordering basic blocks.
946
947 Function can be also called with edge destination equivalent to the TARGET.
948 Then it should try the simplifications and do nothing if none is possible.
949
950 Return edge representing the branch if transformation succeeded. Return NULL
951 on failure.
952 We still return NULL in case E already destinated TARGET and we didn't
953 managed to simplify instruction stream. */
954
955 static edge
956 rtl_redirect_edge_and_branch (edge e, basic_block target)
957 {
958 edge ret;
959 basic_block src = e->src;
960
961 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
962 return NULL;
963
964 if (e->dest == target)
965 return e;
966
967 if ((ret = try_redirect_by_replacing_jump (e, target, false)) != NULL)
968 {
969 src->flags |= BB_DIRTY;
970 return ret;
971 }
972
973 ret = redirect_branch_edge (e, target);
974 if (!ret)
975 return NULL;
976
977 src->flags |= BB_DIRTY;
978 return ret;
979 }
980
981 /* Like force_nonfallthru below, but additionally performs redirection
982 Used by redirect_edge_and_branch_force. */
983
984 static basic_block
985 force_nonfallthru_and_redirect (edge e, basic_block target)
986 {
987 basic_block jump_block, new_bb = NULL, src = e->src;
988 rtx note;
989 edge new_edge;
990 int abnormal_edge_flags = 0;
991
992 /* In the case the last instruction is conditional jump to the next
993 instruction, first redirect the jump itself and then continue
994 by creating a basic block afterwards to redirect fallthru edge. */
995 if (e->src != ENTRY_BLOCK_PTR && e->dest != EXIT_BLOCK_PTR
996 && any_condjump_p (BB_END (e->src))
997 && JUMP_LABEL (BB_END (e->src)) == BB_HEAD (e->dest))
998 {
999 rtx note;
1000 edge b = unchecked_make_edge (e->src, target, 0);
1001 bool redirected;
1002
1003 redirected = redirect_jump (BB_END (e->src), block_label (target), 0);
1004 gcc_assert (redirected);
1005
1006 note = find_reg_note (BB_END (e->src), REG_BR_PROB, NULL_RTX);
1007 if (note)
1008 {
1009 int prob = INTVAL (XEXP (note, 0));
1010
1011 b->probability = prob;
1012 b->count = e->count * prob / REG_BR_PROB_BASE;
1013 e->probability -= e->probability;
1014 e->count -= b->count;
1015 if (e->probability < 0)
1016 e->probability = 0;
1017 if (e->count < 0)
1018 e->count = 0;
1019 }
1020 }
1021
1022 if (e->flags & EDGE_ABNORMAL)
1023 {
1024 /* Irritating special case - fallthru edge to the same block as abnormal
1025 edge.
1026 We can't redirect abnormal edge, but we still can split the fallthru
1027 one and create separate abnormal edge to original destination.
1028 This allows bb-reorder to make such edge non-fallthru. */
1029 gcc_assert (e->dest == target);
1030 abnormal_edge_flags = e->flags & ~(EDGE_FALLTHRU | EDGE_CAN_FALLTHRU);
1031 e->flags &= EDGE_FALLTHRU | EDGE_CAN_FALLTHRU;
1032 }
1033 else
1034 {
1035 gcc_assert (e->flags & EDGE_FALLTHRU);
1036 if (e->src == ENTRY_BLOCK_PTR)
1037 {
1038 /* We can't redirect the entry block. Create an empty block
1039 at the start of the function which we use to add the new
1040 jump. */
1041 edge tmp;
1042 edge_iterator ei;
1043 bool found = false;
1044
1045 basic_block bb = create_basic_block (BB_HEAD (e->dest), NULL, ENTRY_BLOCK_PTR);
1046
1047 /* Change the existing edge's source to be the new block, and add
1048 a new edge from the entry block to the new block. */
1049 e->src = bb;
1050 for (ei = ei_start (ENTRY_BLOCK_PTR->succs); (tmp = ei_safe_edge (ei)); )
1051 {
1052 if (tmp == e)
1053 {
1054 VEC_unordered_remove (edge, ENTRY_BLOCK_PTR->succs, ei.index);
1055 found = true;
1056 break;
1057 }
1058 else
1059 ei_next (&ei);
1060 }
1061
1062 gcc_assert (found);
1063
1064 VEC_safe_push (edge, gc, bb->succs, e);
1065 make_single_succ_edge (ENTRY_BLOCK_PTR, bb, EDGE_FALLTHRU);
1066 }
1067 }
1068
1069 if (EDGE_COUNT (e->src->succs) >= 2 || abnormal_edge_flags)
1070 {
1071 /* Create the new structures. */
1072
1073 /* If the old block ended with a tablejump, skip its table
1074 by searching forward from there. Otherwise start searching
1075 forward from the last instruction of the old block. */
1076 if (!tablejump_p (BB_END (e->src), NULL, &note))
1077 note = BB_END (e->src);
1078 note = NEXT_INSN (note);
1079
1080 jump_block = create_basic_block (note, NULL, e->src);
1081 jump_block->count = e->count;
1082 jump_block->frequency = EDGE_FREQUENCY (e);
1083 jump_block->loop_depth = target->loop_depth;
1084
1085 if (target->il.rtl->global_live_at_start)
1086 {
1087 jump_block->il.rtl->global_live_at_start = ALLOC_REG_SET (&reg_obstack);
1088 jump_block->il.rtl->global_live_at_end = ALLOC_REG_SET (&reg_obstack);
1089 COPY_REG_SET (jump_block->il.rtl->global_live_at_start,
1090 target->il.rtl->global_live_at_start);
1091 COPY_REG_SET (jump_block->il.rtl->global_live_at_end,
1092 target->il.rtl->global_live_at_start);
1093 }
1094
1095 /* Make sure new block ends up in correct hot/cold section. */
1096
1097 BB_COPY_PARTITION (jump_block, e->src);
1098 if (flag_reorder_blocks_and_partition
1099 && targetm.have_named_sections
1100 && JUMP_P (BB_END (jump_block))
1101 && !any_condjump_p (BB_END (jump_block))
1102 && (EDGE_SUCC (jump_block, 0)->flags & EDGE_CROSSING))
1103 REG_NOTES (BB_END (jump_block)) = gen_rtx_EXPR_LIST (REG_CROSSING_JUMP,
1104 NULL_RTX,
1105 REG_NOTES
1106 (BB_END
1107 (jump_block)));
1108
1109 /* Wire edge in. */
1110 new_edge = make_edge (e->src, jump_block, EDGE_FALLTHRU);
1111 new_edge->probability = e->probability;
1112 new_edge->count = e->count;
1113
1114 /* Redirect old edge. */
1115 redirect_edge_pred (e, jump_block);
1116 e->probability = REG_BR_PROB_BASE;
1117
1118 new_bb = jump_block;
1119 }
1120 else
1121 jump_block = e->src;
1122
1123 e->flags &= ~EDGE_FALLTHRU;
1124 if (target == EXIT_BLOCK_PTR)
1125 {
1126 #ifdef HAVE_return
1127 emit_jump_insn_after_noloc (gen_return (), BB_END (jump_block));
1128 #else
1129 gcc_unreachable ();
1130 #endif
1131 }
1132 else
1133 {
1134 rtx label = block_label (target);
1135 emit_jump_insn_after_noloc (gen_jump (label), BB_END (jump_block));
1136 JUMP_LABEL (BB_END (jump_block)) = label;
1137 LABEL_NUSES (label)++;
1138 }
1139
1140 emit_barrier_after (BB_END (jump_block));
1141 redirect_edge_succ_nodup (e, target);
1142
1143 if (abnormal_edge_flags)
1144 make_edge (src, target, abnormal_edge_flags);
1145
1146 return new_bb;
1147 }
1148
1149 /* Edge E is assumed to be fallthru edge. Emit needed jump instruction
1150 (and possibly create new basic block) to make edge non-fallthru.
1151 Return newly created BB or NULL if none. */
1152
1153 basic_block
1154 force_nonfallthru (edge e)
1155 {
1156 return force_nonfallthru_and_redirect (e, e->dest);
1157 }
1158
1159 /* Redirect edge even at the expense of creating new jump insn or
1160 basic block. Return new basic block if created, NULL otherwise.
1161 Conversion must be possible. */
1162
1163 static basic_block
1164 rtl_redirect_edge_and_branch_force (edge e, basic_block target)
1165 {
1166 if (redirect_edge_and_branch (e, target)
1167 || e->dest == target)
1168 return NULL;
1169
1170 /* In case the edge redirection failed, try to force it to be non-fallthru
1171 and redirect newly created simplejump. */
1172 e->src->flags |= BB_DIRTY;
1173 return force_nonfallthru_and_redirect (e, target);
1174 }
1175
1176 /* The given edge should potentially be a fallthru edge. If that is in
1177 fact true, delete the jump and barriers that are in the way. */
1178
1179 static void
1180 rtl_tidy_fallthru_edge (edge e)
1181 {
1182 rtx q;
1183 basic_block b = e->src, c = b->next_bb;
1184
1185 /* ??? In a late-running flow pass, other folks may have deleted basic
1186 blocks by nopping out blocks, leaving multiple BARRIERs between here
1187 and the target label. They ought to be chastised and fixed.
1188
1189 We can also wind up with a sequence of undeletable labels between
1190 one block and the next.
1191
1192 So search through a sequence of barriers, labels, and notes for
1193 the head of block C and assert that we really do fall through. */
1194
1195 for (q = NEXT_INSN (BB_END (b)); q != BB_HEAD (c); q = NEXT_INSN (q))
1196 if (INSN_P (q))
1197 return;
1198
1199 /* Remove what will soon cease being the jump insn from the source block.
1200 If block B consisted only of this single jump, turn it into a deleted
1201 note. */
1202 q = BB_END (b);
1203 if (JUMP_P (q)
1204 && onlyjump_p (q)
1205 && (any_uncondjump_p (q)
1206 || single_succ_p (b)))
1207 {
1208 #ifdef HAVE_cc0
1209 /* If this was a conditional jump, we need to also delete
1210 the insn that set cc0. */
1211 if (any_condjump_p (q) && only_sets_cc0_p (PREV_INSN (q)))
1212 q = PREV_INSN (q);
1213 #endif
1214
1215 q = PREV_INSN (q);
1216 }
1217
1218 /* Selectively unlink the sequence. */
1219 if (q != PREV_INSN (BB_HEAD (c)))
1220 delete_insn_chain (NEXT_INSN (q), PREV_INSN (BB_HEAD (c)));
1221
1222 e->flags |= EDGE_FALLTHRU;
1223 }
1224 \f
1225 /* Should move basic block BB after basic block AFTER. NIY. */
1226
1227 static bool
1228 rtl_move_block_after (basic_block bb ATTRIBUTE_UNUSED,
1229 basic_block after ATTRIBUTE_UNUSED)
1230 {
1231 return false;
1232 }
1233
1234 /* Split a (typically critical) edge. Return the new block.
1235 The edge must not be abnormal.
1236
1237 ??? The code generally expects to be called on critical edges.
1238 The case of a block ending in an unconditional jump to a
1239 block with multiple predecessors is not handled optimally. */
1240
1241 static basic_block
1242 rtl_split_edge (edge edge_in)
1243 {
1244 basic_block bb;
1245 rtx before;
1246
1247 /* Abnormal edges cannot be split. */
1248 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
1249
1250 /* We are going to place the new block in front of edge destination.
1251 Avoid existence of fallthru predecessors. */
1252 if ((edge_in->flags & EDGE_FALLTHRU) == 0)
1253 {
1254 edge e;
1255 edge_iterator ei;
1256
1257 FOR_EACH_EDGE (e, ei, edge_in->dest->preds)
1258 if (e->flags & EDGE_FALLTHRU)
1259 break;
1260
1261 if (e)
1262 force_nonfallthru (e);
1263 }
1264
1265 /* Create the basic block note. */
1266 if (edge_in->dest != EXIT_BLOCK_PTR)
1267 before = BB_HEAD (edge_in->dest);
1268 else
1269 before = NULL_RTX;
1270
1271 /* If this is a fall through edge to the exit block, the blocks might be
1272 not adjacent, and the right place is the after the source. */
1273 if (edge_in->flags & EDGE_FALLTHRU && edge_in->dest == EXIT_BLOCK_PTR)
1274 {
1275 before = NEXT_INSN (BB_END (edge_in->src));
1276 bb = create_basic_block (before, NULL, edge_in->src);
1277 BB_COPY_PARTITION (bb, edge_in->src);
1278 }
1279 else
1280 {
1281 bb = create_basic_block (before, NULL, edge_in->dest->prev_bb);
1282 /* ??? Why not edge_in->dest->prev_bb here? */
1283 BB_COPY_PARTITION (bb, edge_in->dest);
1284 }
1285
1286 /* ??? This info is likely going to be out of date very soon. */
1287 if (edge_in->dest->il.rtl->global_live_at_start)
1288 {
1289 bb->il.rtl->global_live_at_start = ALLOC_REG_SET (&reg_obstack);
1290 bb->il.rtl->global_live_at_end = ALLOC_REG_SET (&reg_obstack);
1291 COPY_REG_SET (bb->il.rtl->global_live_at_start,
1292 edge_in->dest->il.rtl->global_live_at_start);
1293 COPY_REG_SET (bb->il.rtl->global_live_at_end,
1294 edge_in->dest->il.rtl->global_live_at_start);
1295 }
1296
1297 make_single_succ_edge (bb, edge_in->dest, EDGE_FALLTHRU);
1298
1299 /* For non-fallthru edges, we must adjust the predecessor's
1300 jump instruction to target our new block. */
1301 if ((edge_in->flags & EDGE_FALLTHRU) == 0)
1302 {
1303 edge redirected = redirect_edge_and_branch (edge_in, bb);
1304 gcc_assert (redirected);
1305 }
1306 else
1307 redirect_edge_succ (edge_in, bb);
1308
1309 return bb;
1310 }
1311
1312 /* Queue instructions for insertion on an edge between two basic blocks.
1313 The new instructions and basic blocks (if any) will not appear in the
1314 CFG until commit_edge_insertions is called. */
1315
1316 void
1317 insert_insn_on_edge (rtx pattern, edge e)
1318 {
1319 /* We cannot insert instructions on an abnormal critical edge.
1320 It will be easier to find the culprit if we die now. */
1321 gcc_assert (!((e->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (e)));
1322
1323 if (e->insns.r == NULL_RTX)
1324 start_sequence ();
1325 else
1326 push_to_sequence (e->insns.r);
1327
1328 emit_insn (pattern);
1329
1330 e->insns.r = get_insns ();
1331 end_sequence ();
1332 }
1333
1334 /* Update the CFG for the instructions queued on edge E. */
1335
1336 static void
1337 commit_one_edge_insertion (edge e)
1338 {
1339 rtx before = NULL_RTX, after = NULL_RTX, insns, tmp, last;
1340 basic_block bb = NULL;
1341
1342 /* Pull the insns off the edge now since the edge might go away. */
1343 insns = e->insns.r;
1344 e->insns.r = NULL_RTX;
1345
1346 if (!before && !after)
1347 {
1348 /* Figure out where to put these things. If the destination has
1349 one predecessor, insert there. Except for the exit block. */
1350 if (single_pred_p (e->dest) && e->dest != EXIT_BLOCK_PTR)
1351 {
1352 bb = e->dest;
1353
1354 /* Get the location correct wrt a code label, and "nice" wrt
1355 a basic block note, and before everything else. */
1356 tmp = BB_HEAD (bb);
1357 if (LABEL_P (tmp))
1358 tmp = NEXT_INSN (tmp);
1359 if (NOTE_INSN_BASIC_BLOCK_P (tmp))
1360 tmp = NEXT_INSN (tmp);
1361 if (tmp == BB_HEAD (bb))
1362 before = tmp;
1363 else if (tmp)
1364 after = PREV_INSN (tmp);
1365 else
1366 after = get_last_insn ();
1367 }
1368
1369 /* If the source has one successor and the edge is not abnormal,
1370 insert there. Except for the entry block. */
1371 else if ((e->flags & EDGE_ABNORMAL) == 0
1372 && single_succ_p (e->src)
1373 && e->src != ENTRY_BLOCK_PTR)
1374 {
1375 bb = e->src;
1376
1377 /* It is possible to have a non-simple jump here. Consider a target
1378 where some forms of unconditional jumps clobber a register. This
1379 happens on the fr30 for example.
1380
1381 We know this block has a single successor, so we can just emit
1382 the queued insns before the jump. */
1383 if (JUMP_P (BB_END (bb)))
1384 before = BB_END (bb);
1385 else
1386 {
1387 /* We'd better be fallthru, or we've lost track of
1388 what's what. */
1389 gcc_assert (e->flags & EDGE_FALLTHRU);
1390
1391 after = BB_END (bb);
1392 }
1393 }
1394 /* Otherwise we must split the edge. */
1395 else
1396 {
1397 bb = split_edge (e);
1398 after = BB_END (bb);
1399
1400 if (flag_reorder_blocks_and_partition
1401 && targetm.have_named_sections
1402 && e->src != ENTRY_BLOCK_PTR
1403 && BB_PARTITION (e->src) == BB_COLD_PARTITION
1404 && !(e->flags & EDGE_CROSSING))
1405 {
1406 rtx bb_note, cur_insn;
1407
1408 bb_note = NULL_RTX;
1409 for (cur_insn = BB_HEAD (bb); cur_insn != NEXT_INSN (BB_END (bb));
1410 cur_insn = NEXT_INSN (cur_insn))
1411 if (NOTE_INSN_BASIC_BLOCK_P (cur_insn))
1412 {
1413 bb_note = cur_insn;
1414 break;
1415 }
1416
1417 if (JUMP_P (BB_END (bb))
1418 && !any_condjump_p (BB_END (bb))
1419 && (single_succ_edge (bb)->flags & EDGE_CROSSING))
1420 REG_NOTES (BB_END (bb)) = gen_rtx_EXPR_LIST
1421 (REG_CROSSING_JUMP, NULL_RTX, REG_NOTES (BB_END (bb)));
1422 }
1423 }
1424 }
1425
1426 /* Now that we've found the spot, do the insertion. */
1427
1428 if (before)
1429 {
1430 emit_insn_before_noloc (insns, before);
1431 last = prev_nonnote_insn (before);
1432 }
1433 else
1434 last = emit_insn_after_noloc (insns, after);
1435
1436 if (returnjump_p (last))
1437 {
1438 /* ??? Remove all outgoing edges from BB and add one for EXIT.
1439 This is not currently a problem because this only happens
1440 for the (single) epilogue, which already has a fallthru edge
1441 to EXIT. */
1442
1443 e = single_succ_edge (bb);
1444 gcc_assert (e->dest == EXIT_BLOCK_PTR
1445 && single_succ_p (bb) && (e->flags & EDGE_FALLTHRU));
1446
1447 e->flags &= ~EDGE_FALLTHRU;
1448 emit_barrier_after (last);
1449
1450 if (before)
1451 delete_insn (before);
1452 }
1453 else
1454 gcc_assert (!JUMP_P (last));
1455
1456 /* Mark the basic block for find_many_sub_basic_blocks. */
1457 if (current_ir_type () != IR_RTL_CFGLAYOUT)
1458 bb->aux = &bb->aux;
1459 }
1460
1461 /* Update the CFG for all queued instructions. */
1462
1463 void
1464 commit_edge_insertions (void)
1465 {
1466 basic_block bb;
1467 sbitmap blocks;
1468 bool changed = false;
1469
1470 #ifdef ENABLE_CHECKING
1471 verify_flow_info ();
1472 #endif
1473
1474 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
1475 {
1476 edge e;
1477 edge_iterator ei;
1478
1479 FOR_EACH_EDGE (e, ei, bb->succs)
1480 if (e->insns.r)
1481 {
1482 changed = true;
1483 commit_one_edge_insertion (e);
1484 }
1485 }
1486
1487 if (!changed)
1488 return;
1489
1490 /* In the old rtl CFG API, it was OK to insert control flow on an
1491 edge, apparently? In cfglayout mode, this will *not* work, and
1492 the caller is responsible for making sure that control flow is
1493 valid at all times. */
1494 if (current_ir_type () == IR_RTL_CFGLAYOUT)
1495 return;
1496
1497 blocks = sbitmap_alloc (last_basic_block);
1498 sbitmap_zero (blocks);
1499 FOR_EACH_BB (bb)
1500 if (bb->aux)
1501 {
1502 SET_BIT (blocks, bb->index);
1503 /* Check for forgotten bb->aux values before commit_edge_insertions
1504 call. */
1505 gcc_assert (bb->aux == &bb->aux);
1506 bb->aux = NULL;
1507 }
1508 find_many_sub_basic_blocks (blocks);
1509 sbitmap_free (blocks);
1510 }
1511 \f
1512 /* Print out RTL-specific basic block information (live information
1513 at start and end). */
1514
1515 static void
1516 rtl_dump_bb (basic_block bb, FILE *outf, int indent)
1517 {
1518 rtx insn;
1519 rtx last;
1520 char *s_indent;
1521
1522 s_indent = (char *) alloca ((size_t) indent + 1);
1523 memset (s_indent, ' ', (size_t) indent);
1524 s_indent[indent] = '\0';
1525
1526 fprintf (outf, ";;%s Registers live at start: ", s_indent);
1527 dump_regset (bb->il.rtl->global_live_at_start, outf);
1528 putc ('\n', outf);
1529
1530 for (insn = BB_HEAD (bb), last = NEXT_INSN (BB_END (bb)); insn != last;
1531 insn = NEXT_INSN (insn))
1532 print_rtl_single (outf, insn);
1533
1534 fprintf (outf, ";;%s Registers live at end: ", s_indent);
1535 dump_regset (bb->il.rtl->global_live_at_end, outf);
1536 putc ('\n', outf);
1537 }
1538 \f
1539 /* Like print_rtl, but also print out live information for the start of each
1540 basic block. */
1541
1542 void
1543 print_rtl_with_bb (FILE *outf, rtx rtx_first)
1544 {
1545 rtx tmp_rtx;
1546
1547 if (rtx_first == 0)
1548 fprintf (outf, "(nil)\n");
1549 else
1550 {
1551 enum bb_state { NOT_IN_BB, IN_ONE_BB, IN_MULTIPLE_BB };
1552 int max_uid = get_max_uid ();
1553 basic_block *start = XCNEWVEC (basic_block, max_uid);
1554 basic_block *end = XCNEWVEC (basic_block, max_uid);
1555 enum bb_state *in_bb_p = XCNEWVEC (enum bb_state, max_uid);
1556
1557 basic_block bb;
1558
1559 FOR_EACH_BB_REVERSE (bb)
1560 {
1561 rtx x;
1562
1563 start[INSN_UID (BB_HEAD (bb))] = bb;
1564 end[INSN_UID (BB_END (bb))] = bb;
1565 for (x = BB_HEAD (bb); x != NULL_RTX; x = NEXT_INSN (x))
1566 {
1567 enum bb_state state = IN_MULTIPLE_BB;
1568
1569 if (in_bb_p[INSN_UID (x)] == NOT_IN_BB)
1570 state = IN_ONE_BB;
1571 in_bb_p[INSN_UID (x)] = state;
1572
1573 if (x == BB_END (bb))
1574 break;
1575 }
1576 }
1577
1578 for (tmp_rtx = rtx_first; NULL != tmp_rtx; tmp_rtx = NEXT_INSN (tmp_rtx))
1579 {
1580 int did_output;
1581 edge_iterator ei;
1582 edge e;
1583
1584 if ((bb = start[INSN_UID (tmp_rtx)]) != NULL)
1585 {
1586 fprintf (outf, ";; Start of basic block %d, registers live:",
1587 bb->index);
1588 dump_regset (bb->il.rtl->global_live_at_start, outf);
1589 putc ('\n', outf);
1590 FOR_EACH_EDGE (e, ei, bb->preds)
1591 {
1592 fputs (";; Pred edge ", outf);
1593 dump_edge_info (outf, e, 0);
1594 fputc ('\n', outf);
1595 }
1596 }
1597
1598 if (in_bb_p[INSN_UID (tmp_rtx)] == NOT_IN_BB
1599 && !NOTE_P (tmp_rtx)
1600 && !BARRIER_P (tmp_rtx))
1601 fprintf (outf, ";; Insn is not within a basic block\n");
1602 else if (in_bb_p[INSN_UID (tmp_rtx)] == IN_MULTIPLE_BB)
1603 fprintf (outf, ";; Insn is in multiple basic blocks\n");
1604
1605 did_output = print_rtl_single (outf, tmp_rtx);
1606
1607 if ((bb = end[INSN_UID (tmp_rtx)]) != NULL)
1608 {
1609 fprintf (outf, ";; End of basic block %d, registers live:",
1610 bb->index);
1611 dump_regset (bb->il.rtl->global_live_at_end, outf);
1612 putc ('\n', outf);
1613 FOR_EACH_EDGE (e, ei, bb->succs)
1614 {
1615 fputs (";; Succ edge ", outf);
1616 dump_edge_info (outf, e, 1);
1617 fputc ('\n', outf);
1618 }
1619 }
1620
1621 if (did_output)
1622 putc ('\n', outf);
1623 }
1624
1625 free (start);
1626 free (end);
1627 free (in_bb_p);
1628 }
1629
1630 if (current_function_epilogue_delay_list != 0)
1631 {
1632 fprintf (outf, "\n;; Insns in epilogue delay list:\n\n");
1633 for (tmp_rtx = current_function_epilogue_delay_list; tmp_rtx != 0;
1634 tmp_rtx = XEXP (tmp_rtx, 1))
1635 print_rtl_single (outf, XEXP (tmp_rtx, 0));
1636 }
1637 }
1638 \f
1639 void
1640 update_br_prob_note (basic_block bb)
1641 {
1642 rtx note;
1643 if (!JUMP_P (BB_END (bb)))
1644 return;
1645 note = find_reg_note (BB_END (bb), REG_BR_PROB, NULL_RTX);
1646 if (!note || INTVAL (XEXP (note, 0)) == BRANCH_EDGE (bb)->probability)
1647 return;
1648 XEXP (note, 0) = GEN_INT (BRANCH_EDGE (bb)->probability);
1649 }
1650
1651 /* Get the last insn associated with block BB (that includes barriers and
1652 tablejumps after BB). */
1653 rtx
1654 get_last_bb_insn (basic_block bb)
1655 {
1656 rtx tmp;
1657 rtx end = BB_END (bb);
1658
1659 /* Include any jump table following the basic block. */
1660 if (tablejump_p (end, NULL, &tmp))
1661 end = tmp;
1662
1663 /* Include any barriers that may follow the basic block. */
1664 tmp = next_nonnote_insn (end);
1665 while (tmp && BARRIER_P (tmp))
1666 {
1667 end = tmp;
1668 tmp = next_nonnote_insn (end);
1669 }
1670
1671 return end;
1672 }
1673 \f
1674 /* Verify the CFG and RTL consistency common for both underlying RTL and
1675 cfglayout RTL.
1676
1677 Currently it does following checks:
1678
1679 - overlapping of basic blocks
1680 - insns with wrong BLOCK_FOR_INSN pointers
1681 - headers of basic blocks (the NOTE_INSN_BASIC_BLOCK note)
1682 - tails of basic blocks (ensure that boundary is necessary)
1683 - scans body of the basic block for JUMP_INSN, CODE_LABEL
1684 and NOTE_INSN_BASIC_BLOCK
1685 - verify that no fall_thru edge crosses hot/cold partition boundaries
1686 - verify that there are no pending RTL branch predictions
1687
1688 In future it can be extended check a lot of other stuff as well
1689 (reachability of basic blocks, life information, etc. etc.). */
1690
1691 static int
1692 rtl_verify_flow_info_1 (void)
1693 {
1694 rtx x;
1695 int err = 0;
1696 basic_block bb;
1697
1698 /* Check the general integrity of the basic blocks. */
1699 FOR_EACH_BB_REVERSE (bb)
1700 {
1701 rtx insn;
1702
1703 if (!(bb->flags & BB_RTL))
1704 {
1705 error ("BB_RTL flag not set for block %d", bb->index);
1706 err = 1;
1707 }
1708
1709 FOR_BB_INSNS (bb, insn)
1710 if (BLOCK_FOR_INSN (insn) != bb)
1711 {
1712 error ("insn %d basic block pointer is %d, should be %d",
1713 INSN_UID (insn),
1714 BLOCK_FOR_INSN (insn) ? BLOCK_FOR_INSN (insn)->index : 0,
1715 bb->index);
1716 err = 1;
1717 }
1718 }
1719
1720 /* Now check the basic blocks (boundaries etc.) */
1721 FOR_EACH_BB_REVERSE (bb)
1722 {
1723 int n_fallthru = 0, n_eh = 0, n_call = 0, n_abnormal = 0, n_branch = 0;
1724 edge e, fallthru = NULL;
1725 rtx note;
1726 edge_iterator ei;
1727
1728 if (JUMP_P (BB_END (bb))
1729 && (note = find_reg_note (BB_END (bb), REG_BR_PROB, NULL_RTX))
1730 && EDGE_COUNT (bb->succs) >= 2
1731 && any_condjump_p (BB_END (bb)))
1732 {
1733 if (INTVAL (XEXP (note, 0)) != BRANCH_EDGE (bb)->probability
1734 && profile_status != PROFILE_ABSENT)
1735 {
1736 error ("verify_flow_info: REG_BR_PROB does not match cfg %wi %i",
1737 INTVAL (XEXP (note, 0)), BRANCH_EDGE (bb)->probability);
1738 err = 1;
1739 }
1740 }
1741 FOR_EACH_EDGE (e, ei, bb->succs)
1742 {
1743 if (e->flags & EDGE_FALLTHRU)
1744 {
1745 n_fallthru++, fallthru = e;
1746 if ((e->flags & EDGE_CROSSING)
1747 || (BB_PARTITION (e->src) != BB_PARTITION (e->dest)
1748 && e->src != ENTRY_BLOCK_PTR
1749 && e->dest != EXIT_BLOCK_PTR))
1750 {
1751 error ("fallthru edge crosses section boundary (bb %i)",
1752 e->src->index);
1753 err = 1;
1754 }
1755 }
1756
1757 if ((e->flags & ~(EDGE_DFS_BACK
1758 | EDGE_CAN_FALLTHRU
1759 | EDGE_IRREDUCIBLE_LOOP
1760 | EDGE_LOOP_EXIT
1761 | EDGE_CROSSING)) == 0)
1762 n_branch++;
1763
1764 if (e->flags & EDGE_ABNORMAL_CALL)
1765 n_call++;
1766
1767 if (e->flags & EDGE_EH)
1768 n_eh++;
1769 else if (e->flags & EDGE_ABNORMAL)
1770 n_abnormal++;
1771 }
1772
1773 if (n_eh && GET_CODE (PATTERN (BB_END (bb))) != RESX
1774 && !find_reg_note (BB_END (bb), REG_EH_REGION, NULL_RTX))
1775 {
1776 error ("missing REG_EH_REGION note in the end of bb %i", bb->index);
1777 err = 1;
1778 }
1779 if (n_branch
1780 && (!JUMP_P (BB_END (bb))
1781 || (n_branch > 1 && (any_uncondjump_p (BB_END (bb))
1782 || any_condjump_p (BB_END (bb))))))
1783 {
1784 error ("too many outgoing branch edges from bb %i", bb->index);
1785 err = 1;
1786 }
1787 if (n_fallthru && any_uncondjump_p (BB_END (bb)))
1788 {
1789 error ("fallthru edge after unconditional jump %i", bb->index);
1790 err = 1;
1791 }
1792 if (n_branch != 1 && any_uncondjump_p (BB_END (bb)))
1793 {
1794 error ("wrong amount of branch edges after unconditional jump %i", bb->index);
1795 err = 1;
1796 }
1797 if (n_branch != 1 && any_condjump_p (BB_END (bb))
1798 && JUMP_LABEL (BB_END (bb)) != BB_HEAD (fallthru->dest))
1799 {
1800 error ("wrong amount of branch edges after conditional jump %i",
1801 bb->index);
1802 err = 1;
1803 }
1804 if (n_call && !CALL_P (BB_END (bb)))
1805 {
1806 error ("call edges for non-call insn in bb %i", bb->index);
1807 err = 1;
1808 }
1809 if (n_abnormal
1810 && (!CALL_P (BB_END (bb)) && n_call != n_abnormal)
1811 && (!JUMP_P (BB_END (bb))
1812 || any_condjump_p (BB_END (bb))
1813 || any_uncondjump_p (BB_END (bb))))
1814 {
1815 error ("abnormal edges for no purpose in bb %i", bb->index);
1816 err = 1;
1817 }
1818
1819 for (x = BB_HEAD (bb); x != NEXT_INSN (BB_END (bb)); x = NEXT_INSN (x))
1820 /* We may have a barrier inside a basic block before dead code
1821 elimination. There is no BLOCK_FOR_INSN field in a barrier. */
1822 if (!BARRIER_P (x) && BLOCK_FOR_INSN (x) != bb)
1823 {
1824 debug_rtx (x);
1825 if (! BLOCK_FOR_INSN (x))
1826 error
1827 ("insn %d inside basic block %d but block_for_insn is NULL",
1828 INSN_UID (x), bb->index);
1829 else
1830 error
1831 ("insn %d inside basic block %d but block_for_insn is %i",
1832 INSN_UID (x), bb->index, BLOCK_FOR_INSN (x)->index);
1833
1834 err = 1;
1835 }
1836
1837 /* OK pointers are correct. Now check the header of basic
1838 block. It ought to contain optional CODE_LABEL followed
1839 by NOTE_BASIC_BLOCK. */
1840 x = BB_HEAD (bb);
1841 if (LABEL_P (x))
1842 {
1843 if (BB_END (bb) == x)
1844 {
1845 error ("NOTE_INSN_BASIC_BLOCK is missing for block %d",
1846 bb->index);
1847 err = 1;
1848 }
1849
1850 x = NEXT_INSN (x);
1851 }
1852
1853 if (!NOTE_INSN_BASIC_BLOCK_P (x) || NOTE_BASIC_BLOCK (x) != bb)
1854 {
1855 error ("NOTE_INSN_BASIC_BLOCK is missing for block %d",
1856 bb->index);
1857 err = 1;
1858 }
1859
1860 if (BB_END (bb) == x)
1861 /* Do checks for empty blocks here. */
1862 ;
1863 else
1864 for (x = NEXT_INSN (x); x; x = NEXT_INSN (x))
1865 {
1866 if (NOTE_INSN_BASIC_BLOCK_P (x))
1867 {
1868 error ("NOTE_INSN_BASIC_BLOCK %d in middle of basic block %d",
1869 INSN_UID (x), bb->index);
1870 err = 1;
1871 }
1872
1873 if (x == BB_END (bb))
1874 break;
1875
1876 if (control_flow_insn_p (x))
1877 {
1878 error ("in basic block %d:", bb->index);
1879 fatal_insn ("flow control insn inside a basic block", x);
1880 }
1881 }
1882 }
1883
1884 /* Clean up. */
1885 return err;
1886 }
1887
1888 /* Verify the CFG and RTL consistency common for both underlying RTL and
1889 cfglayout RTL.
1890
1891 Currently it does following checks:
1892 - all checks of rtl_verify_flow_info_1
1893 - test head/end pointers
1894 - check that all insns are in the basic blocks
1895 (except the switch handling code, barriers and notes)
1896 - check that all returns are followed by barriers
1897 - check that all fallthru edge points to the adjacent blocks. */
1898
1899 static int
1900 rtl_verify_flow_info (void)
1901 {
1902 basic_block bb;
1903 int err = rtl_verify_flow_info_1 ();
1904 rtx x;
1905 rtx last_head = get_last_insn ();
1906 basic_block *bb_info;
1907 int num_bb_notes;
1908 const rtx rtx_first = get_insns ();
1909 basic_block last_bb_seen = ENTRY_BLOCK_PTR, curr_bb = NULL;
1910 const int max_uid = get_max_uid ();
1911
1912 bb_info = XCNEWVEC (basic_block, max_uid);
1913
1914 FOR_EACH_BB_REVERSE (bb)
1915 {
1916 edge e;
1917 edge_iterator ei;
1918 rtx head = BB_HEAD (bb);
1919 rtx end = BB_END (bb);
1920
1921 /* Verify the end of the basic block is in the INSN chain. */
1922 for (x = last_head; x != NULL_RTX; x = PREV_INSN (x))
1923 if (x == end)
1924 break;
1925
1926 if (!x)
1927 {
1928 error ("end insn %d for block %d not found in the insn stream",
1929 INSN_UID (end), bb->index);
1930 err = 1;
1931 }
1932
1933 /* Work backwards from the end to the head of the basic block
1934 to verify the head is in the RTL chain. */
1935 for (; x != NULL_RTX; x = PREV_INSN (x))
1936 {
1937 /* While walking over the insn chain, verify insns appear
1938 in only one basic block. */
1939 if (bb_info[INSN_UID (x)] != NULL)
1940 {
1941 error ("insn %d is in multiple basic blocks (%d and %d)",
1942 INSN_UID (x), bb->index, bb_info[INSN_UID (x)]->index);
1943 err = 1;
1944 }
1945
1946 bb_info[INSN_UID (x)] = bb;
1947
1948 if (x == head)
1949 break;
1950 }
1951 if (!x)
1952 {
1953 error ("head insn %d for block %d not found in the insn stream",
1954 INSN_UID (head), bb->index);
1955 err = 1;
1956 }
1957
1958 last_head = x;
1959
1960 FOR_EACH_EDGE (e, ei, bb->succs)
1961 if (e->flags & EDGE_FALLTHRU)
1962 break;
1963 if (!e)
1964 {
1965 rtx insn;
1966
1967 /* Ensure existence of barrier in BB with no fallthru edges. */
1968 for (insn = BB_END (bb); !insn || !BARRIER_P (insn);
1969 insn = NEXT_INSN (insn))
1970 if (!insn
1971 || NOTE_INSN_BASIC_BLOCK_P (insn))
1972 {
1973 error ("missing barrier after block %i", bb->index);
1974 err = 1;
1975 break;
1976 }
1977 }
1978 else if (e->src != ENTRY_BLOCK_PTR
1979 && e->dest != EXIT_BLOCK_PTR)
1980 {
1981 rtx insn;
1982
1983 if (e->src->next_bb != e->dest)
1984 {
1985 error
1986 ("verify_flow_info: Incorrect blocks for fallthru %i->%i",
1987 e->src->index, e->dest->index);
1988 err = 1;
1989 }
1990 else
1991 for (insn = NEXT_INSN (BB_END (e->src)); insn != BB_HEAD (e->dest);
1992 insn = NEXT_INSN (insn))
1993 if (BARRIER_P (insn) || INSN_P (insn))
1994 {
1995 error ("verify_flow_info: Incorrect fallthru %i->%i",
1996 e->src->index, e->dest->index);
1997 fatal_insn ("wrong insn in the fallthru edge", insn);
1998 err = 1;
1999 }
2000 }
2001 }
2002
2003 free (bb_info);
2004
2005 num_bb_notes = 0;
2006 last_bb_seen = ENTRY_BLOCK_PTR;
2007
2008 for (x = rtx_first; x; x = NEXT_INSN (x))
2009 {
2010 if (NOTE_INSN_BASIC_BLOCK_P (x))
2011 {
2012 bb = NOTE_BASIC_BLOCK (x);
2013
2014 num_bb_notes++;
2015 if (bb != last_bb_seen->next_bb)
2016 internal_error ("basic blocks not laid down consecutively");
2017
2018 curr_bb = last_bb_seen = bb;
2019 }
2020
2021 if (!curr_bb)
2022 {
2023 switch (GET_CODE (x))
2024 {
2025 case BARRIER:
2026 case NOTE:
2027 break;
2028
2029 case CODE_LABEL:
2030 /* An addr_vec is placed outside any basic block. */
2031 if (NEXT_INSN (x)
2032 && JUMP_P (NEXT_INSN (x))
2033 && (GET_CODE (PATTERN (NEXT_INSN (x))) == ADDR_DIFF_VEC
2034 || GET_CODE (PATTERN (NEXT_INSN (x))) == ADDR_VEC))
2035 x = NEXT_INSN (x);
2036
2037 /* But in any case, non-deletable labels can appear anywhere. */
2038 break;
2039
2040 default:
2041 fatal_insn ("insn outside basic block", x);
2042 }
2043 }
2044
2045 if (JUMP_P (x)
2046 && returnjump_p (x) && ! condjump_p (x)
2047 && ! (next_nonnote_insn (x) && BARRIER_P (next_nonnote_insn (x))))
2048 fatal_insn ("return not followed by barrier", x);
2049 if (curr_bb && x == BB_END (curr_bb))
2050 curr_bb = NULL;
2051 }
2052
2053 if (num_bb_notes != n_basic_blocks - NUM_FIXED_BLOCKS)
2054 internal_error
2055 ("number of bb notes in insn chain (%d) != n_basic_blocks (%d)",
2056 num_bb_notes, n_basic_blocks);
2057
2058 return err;
2059 }
2060 \f
2061 /* Assume that the preceding pass has possibly eliminated jump instructions
2062 or converted the unconditional jumps. Eliminate the edges from CFG.
2063 Return true if any edges are eliminated. */
2064
2065 bool
2066 purge_dead_edges (basic_block bb)
2067 {
2068 edge e;
2069 rtx insn = BB_END (bb), note;
2070 bool purged = false;
2071 bool found;
2072 edge_iterator ei;
2073
2074 /* If this instruction cannot trap, remove REG_EH_REGION notes. */
2075 if (NONJUMP_INSN_P (insn)
2076 && (note = find_reg_note (insn, REG_EH_REGION, NULL)))
2077 {
2078 rtx eqnote;
2079
2080 if (! may_trap_p (PATTERN (insn))
2081 || ((eqnote = find_reg_equal_equiv_note (insn))
2082 && ! may_trap_p (XEXP (eqnote, 0))))
2083 remove_note (insn, note);
2084 }
2085
2086 /* Cleanup abnormal edges caused by exceptions or non-local gotos. */
2087 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
2088 {
2089 /* There are three types of edges we need to handle correctly here: EH
2090 edges, abnormal call EH edges, and abnormal call non-EH edges. The
2091 latter can appear when nonlocal gotos are used. */
2092 if (e->flags & EDGE_EH)
2093 {
2094 if (can_throw_internal (BB_END (bb))
2095 /* If this is a call edge, verify that this is a call insn. */
2096 && (! (e->flags & EDGE_ABNORMAL_CALL)
2097 || CALL_P (BB_END (bb))))
2098 {
2099 ei_next (&ei);
2100 continue;
2101 }
2102 }
2103 else if (e->flags & EDGE_ABNORMAL_CALL)
2104 {
2105 if (CALL_P (BB_END (bb))
2106 && (! (note = find_reg_note (insn, REG_EH_REGION, NULL))
2107 || INTVAL (XEXP (note, 0)) >= 0))
2108 {
2109 ei_next (&ei);
2110 continue;
2111 }
2112 }
2113 else
2114 {
2115 ei_next (&ei);
2116 continue;
2117 }
2118
2119 remove_edge (e);
2120 bb->flags |= BB_DIRTY;
2121 purged = true;
2122 }
2123
2124 if (JUMP_P (insn))
2125 {
2126 rtx note;
2127 edge b,f;
2128 edge_iterator ei;
2129
2130 /* We do care only about conditional jumps and simplejumps. */
2131 if (!any_condjump_p (insn)
2132 && !returnjump_p (insn)
2133 && !simplejump_p (insn))
2134 return purged;
2135
2136 /* Branch probability/prediction notes are defined only for
2137 condjumps. We've possibly turned condjump into simplejump. */
2138 if (simplejump_p (insn))
2139 {
2140 note = find_reg_note (insn, REG_BR_PROB, NULL);
2141 if (note)
2142 remove_note (insn, note);
2143 while ((note = find_reg_note (insn, REG_BR_PRED, NULL)))
2144 remove_note (insn, note);
2145 }
2146
2147 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
2148 {
2149 /* Avoid abnormal flags to leak from computed jumps turned
2150 into simplejumps. */
2151
2152 e->flags &= ~EDGE_ABNORMAL;
2153
2154 /* See if this edge is one we should keep. */
2155 if ((e->flags & EDGE_FALLTHRU) && any_condjump_p (insn))
2156 /* A conditional jump can fall through into the next
2157 block, so we should keep the edge. */
2158 {
2159 ei_next (&ei);
2160 continue;
2161 }
2162 else if (e->dest != EXIT_BLOCK_PTR
2163 && BB_HEAD (e->dest) == JUMP_LABEL (insn))
2164 /* If the destination block is the target of the jump,
2165 keep the edge. */
2166 {
2167 ei_next (&ei);
2168 continue;
2169 }
2170 else if (e->dest == EXIT_BLOCK_PTR && returnjump_p (insn))
2171 /* If the destination block is the exit block, and this
2172 instruction is a return, then keep the edge. */
2173 {
2174 ei_next (&ei);
2175 continue;
2176 }
2177 else if ((e->flags & EDGE_EH) && can_throw_internal (insn))
2178 /* Keep the edges that correspond to exceptions thrown by
2179 this instruction and rematerialize the EDGE_ABNORMAL
2180 flag we just cleared above. */
2181 {
2182 e->flags |= EDGE_ABNORMAL;
2183 ei_next (&ei);
2184 continue;
2185 }
2186
2187 /* We do not need this edge. */
2188 bb->flags |= BB_DIRTY;
2189 purged = true;
2190 remove_edge (e);
2191 }
2192
2193 if (EDGE_COUNT (bb->succs) == 0 || !purged)
2194 return purged;
2195
2196 if (dump_file)
2197 fprintf (dump_file, "Purged edges from bb %i\n", bb->index);
2198
2199 if (!optimize)
2200 return purged;
2201
2202 /* Redistribute probabilities. */
2203 if (single_succ_p (bb))
2204 {
2205 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
2206 single_succ_edge (bb)->count = bb->count;
2207 }
2208 else
2209 {
2210 note = find_reg_note (insn, REG_BR_PROB, NULL);
2211 if (!note)
2212 return purged;
2213
2214 b = BRANCH_EDGE (bb);
2215 f = FALLTHRU_EDGE (bb);
2216 b->probability = INTVAL (XEXP (note, 0));
2217 f->probability = REG_BR_PROB_BASE - b->probability;
2218 b->count = bb->count * b->probability / REG_BR_PROB_BASE;
2219 f->count = bb->count * f->probability / REG_BR_PROB_BASE;
2220 }
2221
2222 return purged;
2223 }
2224 else if (CALL_P (insn) && SIBLING_CALL_P (insn))
2225 {
2226 /* First, there should not be any EH or ABCALL edges resulting
2227 from non-local gotos and the like. If there were, we shouldn't
2228 have created the sibcall in the first place. Second, there
2229 should of course never have been a fallthru edge. */
2230 gcc_assert (single_succ_p (bb));
2231 gcc_assert (single_succ_edge (bb)->flags
2232 == (EDGE_SIBCALL | EDGE_ABNORMAL));
2233
2234 return 0;
2235 }
2236
2237 /* If we don't see a jump insn, we don't know exactly why the block would
2238 have been broken at this point. Look for a simple, non-fallthru edge,
2239 as these are only created by conditional branches. If we find such an
2240 edge we know that there used to be a jump here and can then safely
2241 remove all non-fallthru edges. */
2242 found = false;
2243 FOR_EACH_EDGE (e, ei, bb->succs)
2244 if (! (e->flags & (EDGE_COMPLEX | EDGE_FALLTHRU)))
2245 {
2246 found = true;
2247 break;
2248 }
2249
2250 if (!found)
2251 return purged;
2252
2253 /* Remove all but the fake and fallthru edges. The fake edge may be
2254 the only successor for this block in the case of noreturn
2255 calls. */
2256 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
2257 {
2258 if (!(e->flags & (EDGE_FALLTHRU | EDGE_FAKE)))
2259 {
2260 bb->flags |= BB_DIRTY;
2261 remove_edge (e);
2262 purged = true;
2263 }
2264 else
2265 ei_next (&ei);
2266 }
2267
2268 gcc_assert (single_succ_p (bb));
2269
2270 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
2271 single_succ_edge (bb)->count = bb->count;
2272
2273 if (dump_file)
2274 fprintf (dump_file, "Purged non-fallthru edges from bb %i\n",
2275 bb->index);
2276 return purged;
2277 }
2278
2279 /* Search all basic blocks for potentially dead edges and purge them. Return
2280 true if some edge has been eliminated. */
2281
2282 bool
2283 purge_all_dead_edges (void)
2284 {
2285 int purged = false;
2286 basic_block bb;
2287
2288 FOR_EACH_BB (bb)
2289 {
2290 bool purged_here = purge_dead_edges (bb);
2291
2292 purged |= purged_here;
2293 }
2294
2295 return purged;
2296 }
2297
2298 /* Same as split_block but update cfg_layout structures. */
2299
2300 static basic_block
2301 cfg_layout_split_block (basic_block bb, void *insnp)
2302 {
2303 rtx insn = (rtx) insnp;
2304 basic_block new_bb = rtl_split_block (bb, insn);
2305
2306 new_bb->il.rtl->footer = bb->il.rtl->footer;
2307 bb->il.rtl->footer = NULL;
2308
2309 return new_bb;
2310 }
2311
2312
2313 /* Redirect Edge to DEST. */
2314 static edge
2315 cfg_layout_redirect_edge_and_branch (edge e, basic_block dest)
2316 {
2317 basic_block src = e->src;
2318 edge ret;
2319
2320 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
2321 return NULL;
2322
2323 if (e->dest == dest)
2324 return e;
2325
2326 if (e->src != ENTRY_BLOCK_PTR
2327 && (ret = try_redirect_by_replacing_jump (e, dest, true)))
2328 {
2329 src->flags |= BB_DIRTY;
2330 return ret;
2331 }
2332
2333 if (e->src == ENTRY_BLOCK_PTR
2334 && (e->flags & EDGE_FALLTHRU) && !(e->flags & EDGE_COMPLEX))
2335 {
2336 if (dump_file)
2337 fprintf (dump_file, "Redirecting entry edge from bb %i to %i\n",
2338 e->src->index, dest->index);
2339
2340 e->src->flags |= BB_DIRTY;
2341 redirect_edge_succ (e, dest);
2342 return e;
2343 }
2344
2345 /* Redirect_edge_and_branch may decide to turn branch into fallthru edge
2346 in the case the basic block appears to be in sequence. Avoid this
2347 transformation. */
2348
2349 if (e->flags & EDGE_FALLTHRU)
2350 {
2351 /* Redirect any branch edges unified with the fallthru one. */
2352 if (JUMP_P (BB_END (src))
2353 && label_is_jump_target_p (BB_HEAD (e->dest),
2354 BB_END (src)))
2355 {
2356 edge redirected;
2357
2358 if (dump_file)
2359 fprintf (dump_file, "Fallthru edge unified with branch "
2360 "%i->%i redirected to %i\n",
2361 e->src->index, e->dest->index, dest->index);
2362 e->flags &= ~EDGE_FALLTHRU;
2363 redirected = redirect_branch_edge (e, dest);
2364 gcc_assert (redirected);
2365 e->flags |= EDGE_FALLTHRU;
2366 e->src->flags |= BB_DIRTY;
2367 return e;
2368 }
2369 /* In case we are redirecting fallthru edge to the branch edge
2370 of conditional jump, remove it. */
2371 if (EDGE_COUNT (src->succs) == 2)
2372 {
2373 /* Find the edge that is different from E. */
2374 edge s = EDGE_SUCC (src, EDGE_SUCC (src, 0) == e);
2375
2376 if (s->dest == dest
2377 && any_condjump_p (BB_END (src))
2378 && onlyjump_p (BB_END (src)))
2379 delete_insn (BB_END (src));
2380 }
2381 ret = redirect_edge_succ_nodup (e, dest);
2382 if (dump_file)
2383 fprintf (dump_file, "Fallthru edge %i->%i redirected to %i\n",
2384 e->src->index, e->dest->index, dest->index);
2385 }
2386 else
2387 ret = redirect_branch_edge (e, dest);
2388
2389 /* We don't want simplejumps in the insn stream during cfglayout. */
2390 gcc_assert (!simplejump_p (BB_END (src)));
2391
2392 src->flags |= BB_DIRTY;
2393 return ret;
2394 }
2395
2396 /* Simple wrapper as we always can redirect fallthru edges. */
2397 static basic_block
2398 cfg_layout_redirect_edge_and_branch_force (edge e, basic_block dest)
2399 {
2400 edge redirected = cfg_layout_redirect_edge_and_branch (e, dest);
2401
2402 gcc_assert (redirected);
2403 return NULL;
2404 }
2405
2406 /* Same as delete_basic_block but update cfg_layout structures. */
2407
2408 static void
2409 cfg_layout_delete_block (basic_block bb)
2410 {
2411 rtx insn, next, prev = PREV_INSN (BB_HEAD (bb)), *to, remaints;
2412
2413 if (bb->il.rtl->header)
2414 {
2415 next = BB_HEAD (bb);
2416 if (prev)
2417 NEXT_INSN (prev) = bb->il.rtl->header;
2418 else
2419 set_first_insn (bb->il.rtl->header);
2420 PREV_INSN (bb->il.rtl->header) = prev;
2421 insn = bb->il.rtl->header;
2422 while (NEXT_INSN (insn))
2423 insn = NEXT_INSN (insn);
2424 NEXT_INSN (insn) = next;
2425 PREV_INSN (next) = insn;
2426 }
2427 next = NEXT_INSN (BB_END (bb));
2428 if (bb->il.rtl->footer)
2429 {
2430 insn = bb->il.rtl->footer;
2431 while (insn)
2432 {
2433 if (BARRIER_P (insn))
2434 {
2435 if (PREV_INSN (insn))
2436 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2437 else
2438 bb->il.rtl->footer = NEXT_INSN (insn);
2439 if (NEXT_INSN (insn))
2440 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2441 }
2442 if (LABEL_P (insn))
2443 break;
2444 insn = NEXT_INSN (insn);
2445 }
2446 if (bb->il.rtl->footer)
2447 {
2448 insn = BB_END (bb);
2449 NEXT_INSN (insn) = bb->il.rtl->footer;
2450 PREV_INSN (bb->il.rtl->footer) = insn;
2451 while (NEXT_INSN (insn))
2452 insn = NEXT_INSN (insn);
2453 NEXT_INSN (insn) = next;
2454 if (next)
2455 PREV_INSN (next) = insn;
2456 else
2457 set_last_insn (insn);
2458 }
2459 }
2460 if (bb->next_bb != EXIT_BLOCK_PTR)
2461 to = &bb->next_bb->il.rtl->header;
2462 else
2463 to = &cfg_layout_function_footer;
2464
2465 rtl_delete_block (bb);
2466
2467 if (prev)
2468 prev = NEXT_INSN (prev);
2469 else
2470 prev = get_insns ();
2471 if (next)
2472 next = PREV_INSN (next);
2473 else
2474 next = get_last_insn ();
2475
2476 if (next && NEXT_INSN (next) != prev)
2477 {
2478 remaints = unlink_insn_chain (prev, next);
2479 insn = remaints;
2480 while (NEXT_INSN (insn))
2481 insn = NEXT_INSN (insn);
2482 NEXT_INSN (insn) = *to;
2483 if (*to)
2484 PREV_INSN (*to) = insn;
2485 *to = remaints;
2486 }
2487 }
2488
2489 /* Return true when blocks A and B can be safely merged. */
2490 static bool
2491 cfg_layout_can_merge_blocks_p (basic_block a, basic_block b)
2492 {
2493 /* If we are partitioning hot/cold basic blocks, we don't want to
2494 mess up unconditional or indirect jumps that cross between hot
2495 and cold sections.
2496
2497 Basic block partitioning may result in some jumps that appear to
2498 be optimizable (or blocks that appear to be mergeable), but which really
2499 must be left untouched (they are required to make it safely across
2500 partition boundaries). See the comments at the top of
2501 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
2502
2503 if (BB_PARTITION (a) != BB_PARTITION (b))
2504 return false;
2505
2506 /* There must be exactly one edge in between the blocks. */
2507 return (single_succ_p (a)
2508 && single_succ (a) == b
2509 && single_pred_p (b) == 1
2510 && a != b
2511 /* Must be simple edge. */
2512 && !(single_succ_edge (a)->flags & EDGE_COMPLEX)
2513 && a != ENTRY_BLOCK_PTR && b != EXIT_BLOCK_PTR
2514 /* If the jump insn has side effects, we can't kill the edge.
2515 When not optimizing, try_redirect_by_replacing_jump will
2516 not allow us to redirect an edge by replacing a table jump. */
2517 && (!JUMP_P (BB_END (a))
2518 || ((!optimize || reload_completed)
2519 ? simplejump_p (BB_END (a)) : onlyjump_p (BB_END (a)))));
2520 }
2521
2522 /* Merge block A and B. The blocks must be mergeable. */
2523
2524 static void
2525 cfg_layout_merge_blocks (basic_block a, basic_block b)
2526 {
2527 #ifdef ENABLE_CHECKING
2528 gcc_assert (cfg_layout_can_merge_blocks_p (a, b));
2529 #endif
2530
2531 /* If there was a CODE_LABEL beginning B, delete it. */
2532 if (LABEL_P (BB_HEAD (b)))
2533 {
2534 /* This might have been an EH label that no longer has incoming
2535 EH edges. Update data structures to match. */
2536 maybe_remove_eh_handler (BB_HEAD (b));
2537
2538 delete_insn (BB_HEAD (b));
2539 }
2540
2541 /* We should have fallthru edge in a, or we can do dummy redirection to get
2542 it cleaned up. */
2543 if (JUMP_P (BB_END (a)))
2544 try_redirect_by_replacing_jump (EDGE_SUCC (a, 0), b, true);
2545 gcc_assert (!JUMP_P (BB_END (a)));
2546
2547 /* Possible line number notes should appear in between. */
2548 if (b->il.rtl->header)
2549 {
2550 rtx first = BB_END (a), last;
2551
2552 last = emit_insn_after_noloc (b->il.rtl->header, BB_END (a));
2553 delete_insn_chain (NEXT_INSN (first), last);
2554 b->il.rtl->header = NULL;
2555 }
2556
2557 /* In the case basic blocks are not adjacent, move them around. */
2558 if (NEXT_INSN (BB_END (a)) != BB_HEAD (b))
2559 {
2560 rtx first = unlink_insn_chain (BB_HEAD (b), BB_END (b));
2561
2562 emit_insn_after_noloc (first, BB_END (a));
2563 /* Skip possible DELETED_LABEL insn. */
2564 if (!NOTE_INSN_BASIC_BLOCK_P (first))
2565 first = NEXT_INSN (first);
2566 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (first));
2567 BB_HEAD (b) = NULL;
2568 delete_insn (first);
2569 }
2570 /* Otherwise just re-associate the instructions. */
2571 else
2572 {
2573 rtx insn;
2574
2575 for (insn = BB_HEAD (b);
2576 insn != NEXT_INSN (BB_END (b));
2577 insn = NEXT_INSN (insn))
2578 set_block_for_insn (insn, a);
2579 insn = BB_HEAD (b);
2580 /* Skip possible DELETED_LABEL insn. */
2581 if (!NOTE_INSN_BASIC_BLOCK_P (insn))
2582 insn = NEXT_INSN (insn);
2583 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
2584 BB_HEAD (b) = NULL;
2585 BB_END (a) = BB_END (b);
2586 delete_insn (insn);
2587 }
2588
2589 /* Possible tablejumps and barriers should appear after the block. */
2590 if (b->il.rtl->footer)
2591 {
2592 if (!a->il.rtl->footer)
2593 a->il.rtl->footer = b->il.rtl->footer;
2594 else
2595 {
2596 rtx last = a->il.rtl->footer;
2597
2598 while (NEXT_INSN (last))
2599 last = NEXT_INSN (last);
2600 NEXT_INSN (last) = b->il.rtl->footer;
2601 PREV_INSN (b->il.rtl->footer) = last;
2602 }
2603 b->il.rtl->footer = NULL;
2604 }
2605 a->il.rtl->global_live_at_end = b->il.rtl->global_live_at_end;
2606
2607 if (dump_file)
2608 fprintf (dump_file, "Merged blocks %d and %d.\n",
2609 a->index, b->index);
2610 }
2611
2612 /* Split edge E. */
2613
2614 static basic_block
2615 cfg_layout_split_edge (edge e)
2616 {
2617 basic_block new_bb =
2618 create_basic_block (e->src != ENTRY_BLOCK_PTR
2619 ? NEXT_INSN (BB_END (e->src)) : get_insns (),
2620 NULL_RTX, e->src);
2621
2622 /* ??? This info is likely going to be out of date very soon, but we must
2623 create it to avoid getting an ICE later. */
2624 if (e->dest->il.rtl->global_live_at_start)
2625 {
2626 new_bb->il.rtl->global_live_at_start = ALLOC_REG_SET (&reg_obstack);
2627 new_bb->il.rtl->global_live_at_end = ALLOC_REG_SET (&reg_obstack);
2628 COPY_REG_SET (new_bb->il.rtl->global_live_at_start,
2629 e->dest->il.rtl->global_live_at_start);
2630 COPY_REG_SET (new_bb->il.rtl->global_live_at_end,
2631 e->dest->il.rtl->global_live_at_start);
2632 }
2633
2634 make_edge (new_bb, e->dest, EDGE_FALLTHRU);
2635 redirect_edge_and_branch_force (e, new_bb);
2636
2637 return new_bb;
2638 }
2639
2640 /* Do postprocessing after making a forwarder block joined by edge FALLTHRU. */
2641
2642 static void
2643 rtl_make_forwarder_block (edge fallthru ATTRIBUTE_UNUSED)
2644 {
2645 }
2646
2647 /* Return 1 if BB ends with a call, possibly followed by some
2648 instructions that must stay with the call, 0 otherwise. */
2649
2650 static bool
2651 rtl_block_ends_with_call_p (basic_block bb)
2652 {
2653 rtx insn = BB_END (bb);
2654
2655 while (!CALL_P (insn)
2656 && insn != BB_HEAD (bb)
2657 && keep_with_call_p (insn))
2658 insn = PREV_INSN (insn);
2659 return (CALL_P (insn));
2660 }
2661
2662 /* Return 1 if BB ends with a conditional branch, 0 otherwise. */
2663
2664 static bool
2665 rtl_block_ends_with_condjump_p (basic_block bb)
2666 {
2667 return any_condjump_p (BB_END (bb));
2668 }
2669
2670 /* Return true if we need to add fake edge to exit.
2671 Helper function for rtl_flow_call_edges_add. */
2672
2673 static bool
2674 need_fake_edge_p (rtx insn)
2675 {
2676 if (!INSN_P (insn))
2677 return false;
2678
2679 if ((CALL_P (insn)
2680 && !SIBLING_CALL_P (insn)
2681 && !find_reg_note (insn, REG_NORETURN, NULL)
2682 && !CONST_OR_PURE_CALL_P (insn)))
2683 return true;
2684
2685 return ((GET_CODE (PATTERN (insn)) == ASM_OPERANDS
2686 && MEM_VOLATILE_P (PATTERN (insn)))
2687 || (GET_CODE (PATTERN (insn)) == PARALLEL
2688 && asm_noperands (insn) != -1
2689 && MEM_VOLATILE_P (XVECEXP (PATTERN (insn), 0, 0)))
2690 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
2691 }
2692
2693 /* Add fake edges to the function exit for any non constant and non noreturn
2694 calls, volatile inline assembly in the bitmap of blocks specified by
2695 BLOCKS or to the whole CFG if BLOCKS is zero. Return the number of blocks
2696 that were split.
2697
2698 The goal is to expose cases in which entering a basic block does not imply
2699 that all subsequent instructions must be executed. */
2700
2701 static int
2702 rtl_flow_call_edges_add (sbitmap blocks)
2703 {
2704 int i;
2705 int blocks_split = 0;
2706 int last_bb = last_basic_block;
2707 bool check_last_block = false;
2708
2709 if (n_basic_blocks == NUM_FIXED_BLOCKS)
2710 return 0;
2711
2712 if (! blocks)
2713 check_last_block = true;
2714 else
2715 check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);
2716
2717 /* In the last basic block, before epilogue generation, there will be
2718 a fallthru edge to EXIT. Special care is required if the last insn
2719 of the last basic block is a call because make_edge folds duplicate
2720 edges, which would result in the fallthru edge also being marked
2721 fake, which would result in the fallthru edge being removed by
2722 remove_fake_edges, which would result in an invalid CFG.
2723
2724 Moreover, we can't elide the outgoing fake edge, since the block
2725 profiler needs to take this into account in order to solve the minimal
2726 spanning tree in the case that the call doesn't return.
2727
2728 Handle this by adding a dummy instruction in a new last basic block. */
2729 if (check_last_block)
2730 {
2731 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
2732 rtx insn = BB_END (bb);
2733
2734 /* Back up past insns that must be kept in the same block as a call. */
2735 while (insn != BB_HEAD (bb)
2736 && keep_with_call_p (insn))
2737 insn = PREV_INSN (insn);
2738
2739 if (need_fake_edge_p (insn))
2740 {
2741 edge e;
2742
2743 e = find_edge (bb, EXIT_BLOCK_PTR);
2744 if (e)
2745 {
2746 insert_insn_on_edge (gen_rtx_USE (VOIDmode, const0_rtx), e);
2747 commit_edge_insertions ();
2748 }
2749 }
2750 }
2751
2752 /* Now add fake edges to the function exit for any non constant
2753 calls since there is no way that we can determine if they will
2754 return or not... */
2755
2756 for (i = NUM_FIXED_BLOCKS; i < last_bb; i++)
2757 {
2758 basic_block bb = BASIC_BLOCK (i);
2759 rtx insn;
2760 rtx prev_insn;
2761
2762 if (!bb)
2763 continue;
2764
2765 if (blocks && !TEST_BIT (blocks, i))
2766 continue;
2767
2768 for (insn = BB_END (bb); ; insn = prev_insn)
2769 {
2770 prev_insn = PREV_INSN (insn);
2771 if (need_fake_edge_p (insn))
2772 {
2773 edge e;
2774 rtx split_at_insn = insn;
2775
2776 /* Don't split the block between a call and an insn that should
2777 remain in the same block as the call. */
2778 if (CALL_P (insn))
2779 while (split_at_insn != BB_END (bb)
2780 && keep_with_call_p (NEXT_INSN (split_at_insn)))
2781 split_at_insn = NEXT_INSN (split_at_insn);
2782
2783 /* The handling above of the final block before the epilogue
2784 should be enough to verify that there is no edge to the exit
2785 block in CFG already. Calling make_edge in such case would
2786 cause us to mark that edge as fake and remove it later. */
2787
2788 #ifdef ENABLE_CHECKING
2789 if (split_at_insn == BB_END (bb))
2790 {
2791 e = find_edge (bb, EXIT_BLOCK_PTR);
2792 gcc_assert (e == NULL);
2793 }
2794 #endif
2795
2796 /* Note that the following may create a new basic block
2797 and renumber the existing basic blocks. */
2798 if (split_at_insn != BB_END (bb))
2799 {
2800 e = split_block (bb, split_at_insn);
2801 if (e)
2802 blocks_split++;
2803 }
2804
2805 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
2806 }
2807
2808 if (insn == BB_HEAD (bb))
2809 break;
2810 }
2811 }
2812
2813 if (blocks_split)
2814 verify_flow_info ();
2815
2816 return blocks_split;
2817 }
2818
2819 /* Add COMP_RTX as a condition at end of COND_BB. FIRST_HEAD is
2820 the conditional branch target, SECOND_HEAD should be the fall-thru
2821 there is no need to handle this here the loop versioning code handles
2822 this. the reason for SECON_HEAD is that it is needed for condition
2823 in trees, and this should be of the same type since it is a hook. */
2824 static void
2825 rtl_lv_add_condition_to_bb (basic_block first_head ,
2826 basic_block second_head ATTRIBUTE_UNUSED,
2827 basic_block cond_bb, void *comp_rtx)
2828 {
2829 rtx label, seq, jump;
2830 rtx op0 = XEXP ((rtx)comp_rtx, 0);
2831 rtx op1 = XEXP ((rtx)comp_rtx, 1);
2832 enum rtx_code comp = GET_CODE ((rtx)comp_rtx);
2833 enum machine_mode mode;
2834
2835
2836 label = block_label (first_head);
2837 mode = GET_MODE (op0);
2838 if (mode == VOIDmode)
2839 mode = GET_MODE (op1);
2840
2841 start_sequence ();
2842 op0 = force_operand (op0, NULL_RTX);
2843 op1 = force_operand (op1, NULL_RTX);
2844 do_compare_rtx_and_jump (op0, op1, comp, 0,
2845 mode, NULL_RTX, NULL_RTX, label);
2846 jump = get_last_insn ();
2847 JUMP_LABEL (jump) = label;
2848 LABEL_NUSES (label)++;
2849 seq = get_insns ();
2850 end_sequence ();
2851
2852 /* Add the new cond , in the new head. */
2853 emit_insn_after(seq, BB_END(cond_bb));
2854 }
2855
2856
2857 /* Given a block B with unconditional branch at its end, get the
2858 store the return the branch edge and the fall-thru edge in
2859 BRANCH_EDGE and FALLTHRU_EDGE respectively. */
2860 static void
2861 rtl_extract_cond_bb_edges (basic_block b, edge *branch_edge,
2862 edge *fallthru_edge)
2863 {
2864 edge e = EDGE_SUCC (b, 0);
2865
2866 if (e->flags & EDGE_FALLTHRU)
2867 {
2868 *fallthru_edge = e;
2869 *branch_edge = EDGE_SUCC (b, 1);
2870 }
2871 else
2872 {
2873 *branch_edge = e;
2874 *fallthru_edge = EDGE_SUCC (b, 1);
2875 }
2876 }
2877
2878 void
2879 init_rtl_bb_info (basic_block bb)
2880 {
2881 gcc_assert (!bb->il.rtl);
2882 bb->il.rtl = GGC_CNEW (struct rtl_bb_info);
2883 }
2884
2885
2886 /* Add EXPR to the end of basic block BB. */
2887
2888 rtx
2889 insert_insn_end_bb_new (rtx pat, basic_block bb)
2890 {
2891 rtx insn = BB_END (bb);
2892 rtx new_insn;
2893 rtx pat_end = pat;
2894
2895 while (NEXT_INSN (pat_end) != NULL_RTX)
2896 pat_end = NEXT_INSN (pat_end);
2897
2898 /* If the last insn is a jump, insert EXPR in front [taking care to
2899 handle cc0, etc. properly]. Similarly we need to care trapping
2900 instructions in presence of non-call exceptions. */
2901
2902 if (JUMP_P (insn)
2903 || (NONJUMP_INSN_P (insn)
2904 && (!single_succ_p (bb)
2905 || single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
2906 {
2907 #ifdef HAVE_cc0
2908 rtx note;
2909 #endif
2910 /* If this is a jump table, then we can't insert stuff here. Since
2911 we know the previous real insn must be the tablejump, we insert
2912 the new instruction just before the tablejump. */
2913 if (GET_CODE (PATTERN (insn)) == ADDR_VEC
2914 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
2915 insn = prev_real_insn (insn);
2916
2917 #ifdef HAVE_cc0
2918 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
2919 if cc0 isn't set. */
2920 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2921 if (note)
2922 insn = XEXP (note, 0);
2923 else
2924 {
2925 rtx maybe_cc0_setter = prev_nonnote_insn (insn);
2926 if (maybe_cc0_setter
2927 && INSN_P (maybe_cc0_setter)
2928 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
2929 insn = maybe_cc0_setter;
2930 }
2931 #endif
2932 /* FIXME: What if something in cc0/jump uses value set in new
2933 insn? */
2934 new_insn = emit_insn_before_noloc (pat, insn);
2935 }
2936
2937 /* Likewise if the last insn is a call, as will happen in the presence
2938 of exception handling. */
2939 else if (CALL_P (insn)
2940 && (!single_succ_p (bb)
2941 || single_succ_edge (bb)->flags & EDGE_ABNORMAL))
2942 {
2943 /* Keeping in mind SMALL_REGISTER_CLASSES and parameters in registers,
2944 we search backward and place the instructions before the first
2945 parameter is loaded. Do this for everyone for consistency and a
2946 presumption that we'll get better code elsewhere as well. */
2947
2948 /* Since different machines initialize their parameter registers
2949 in different orders, assume nothing. Collect the set of all
2950 parameter registers. */
2951 insn = find_first_parameter_load (insn, BB_HEAD (bb));
2952
2953 /* If we found all the parameter loads, then we want to insert
2954 before the first parameter load.
2955
2956 If we did not find all the parameter loads, then we might have
2957 stopped on the head of the block, which could be a CODE_LABEL.
2958 If we inserted before the CODE_LABEL, then we would be putting
2959 the insn in the wrong basic block. In that case, put the insn
2960 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
2961 while (LABEL_P (insn)
2962 || NOTE_INSN_BASIC_BLOCK_P (insn))
2963 insn = NEXT_INSN (insn);
2964
2965 new_insn = emit_insn_before_noloc (pat, insn);
2966 }
2967 else
2968 new_insn = emit_insn_after_noloc (pat, insn);
2969
2970 return new_insn;
2971 }
2972
2973 /* Returns true if it is possible to remove edge E by redirecting
2974 it to the destination of the other edge from E->src. */
2975
2976 static bool
2977 rtl_can_remove_branch_p (edge e)
2978 {
2979 basic_block src = e->src;
2980 basic_block target = EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest;
2981 rtx insn = BB_END (src), set;
2982
2983 /* The conditions are taken from try_redirect_by_replacing_jump. */
2984 if (target == EXIT_BLOCK_PTR)
2985 return false;
2986
2987 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
2988 return false;
2989
2990 if (find_reg_note (insn, REG_CROSSING_JUMP, NULL_RTX)
2991 || BB_PARTITION (src) != BB_PARTITION (target))
2992 return false;
2993
2994 if (!onlyjump_p (insn)
2995 || tablejump_p (insn, NULL, NULL))
2996 return false;
2997
2998 set = single_set (insn);
2999 if (!set || side_effects_p (set))
3000 return false;
3001
3002 return true;
3003 }
3004
3005 /* Implementation of CFG manipulation for linearized RTL. */
3006 struct cfg_hooks rtl_cfg_hooks = {
3007 "rtl",
3008 rtl_verify_flow_info,
3009 rtl_dump_bb,
3010 rtl_create_basic_block,
3011 rtl_redirect_edge_and_branch,
3012 rtl_redirect_edge_and_branch_force,
3013 rtl_can_remove_branch_p,
3014 rtl_delete_block,
3015 rtl_split_block,
3016 rtl_move_block_after,
3017 rtl_can_merge_blocks, /* can_merge_blocks_p */
3018 rtl_merge_blocks,
3019 rtl_predict_edge,
3020 rtl_predicted_by_p,
3021 NULL, /* can_duplicate_block_p */
3022 NULL, /* duplicate_block */
3023 rtl_split_edge,
3024 rtl_make_forwarder_block,
3025 rtl_tidy_fallthru_edge,
3026 rtl_block_ends_with_call_p,
3027 rtl_block_ends_with_condjump_p,
3028 rtl_flow_call_edges_add,
3029 NULL, /* execute_on_growing_pred */
3030 NULL, /* execute_on_shrinking_pred */
3031 NULL, /* duplicate loop for trees */
3032 NULL, /* lv_add_condition_to_bb */
3033 NULL, /* lv_adjust_loop_header_phi*/
3034 NULL, /* extract_cond_bb_edges */
3035 NULL /* flush_pending_stmts */
3036 };
3037
3038 /* Implementation of CFG manipulation for cfg layout RTL, where
3039 basic block connected via fallthru edges does not have to be adjacent.
3040 This representation will hopefully become the default one in future
3041 version of the compiler. */
3042
3043 /* We do not want to declare these functions in a header file, since they
3044 should only be used through the cfghooks interface, and we do not want to
3045 move them here since it would require also moving quite a lot of related
3046 code. */
3047 extern bool cfg_layout_can_duplicate_bb_p (basic_block);
3048 extern basic_block cfg_layout_duplicate_bb (basic_block);
3049
3050 struct cfg_hooks cfg_layout_rtl_cfg_hooks = {
3051 "cfglayout mode",
3052 rtl_verify_flow_info_1,
3053 rtl_dump_bb,
3054 cfg_layout_create_basic_block,
3055 cfg_layout_redirect_edge_and_branch,
3056 cfg_layout_redirect_edge_and_branch_force,
3057 rtl_can_remove_branch_p,
3058 cfg_layout_delete_block,
3059 cfg_layout_split_block,
3060 rtl_move_block_after,
3061 cfg_layout_can_merge_blocks_p,
3062 cfg_layout_merge_blocks,
3063 rtl_predict_edge,
3064 rtl_predicted_by_p,
3065 cfg_layout_can_duplicate_bb_p,
3066 cfg_layout_duplicate_bb,
3067 cfg_layout_split_edge,
3068 rtl_make_forwarder_block,
3069 NULL,
3070 rtl_block_ends_with_call_p,
3071 rtl_block_ends_with_condjump_p,
3072 rtl_flow_call_edges_add,
3073 NULL, /* execute_on_growing_pred */
3074 NULL, /* execute_on_shrinking_pred */
3075 duplicate_loop_to_header_edge, /* duplicate loop for trees */
3076 rtl_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
3077 NULL, /* lv_adjust_loop_header_phi*/
3078 rtl_extract_cond_bb_edges, /* extract_cond_bb_edges */
3079 NULL /* flush_pending_stmts */
3080 };