escape: Implement tag phase.
[gcc.git] / gcc / cfgrtl.c
1 /* Control flow graph manipulation code for GNU compiler.
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file contains low level functions to manipulate the CFG and analyze it
21 that are aware of the RTL intermediate language.
22
23 Available functionality:
24 - Basic CFG/RTL manipulation API documented in cfghooks.h
25 - CFG-aware instruction chain manipulation
26 delete_insn, delete_insn_chain
27 - Edge splitting and committing to edges
28 insert_insn_on_edge, commit_edge_insertions
29 - CFG updating after insn simplification
30 purge_dead_edges, purge_all_dead_edges
31 - CFG fixing after coarse manipulation
32 fixup_abnormal_edges
33
34 Functions not supposed for generic use:
35 - Infrastructure to determine quickly basic block for insn
36 compute_bb_for_insn, update_bb_for_insn, set_block_for_insn,
37 - Edge redirection with updating and optimizing of insn chain
38 block_label, tidy_fallthru_edge, force_nonfallthru */
39 \f
40 #include "config.h"
41 #include "system.h"
42 #include "coretypes.h"
43 #include "backend.h"
44 #include "target.h"
45 #include "rtl.h"
46 #include "tree.h"
47 #include "cfghooks.h"
48 #include "df.h"
49 #include "insn-config.h"
50 #include "emit-rtl.h"
51 #include "cfgrtl.h"
52 #include "cfganal.h"
53 #include "cfgbuild.h"
54 #include "cfgcleanup.h"
55 #include "bb-reorder.h"
56 #include "rtl-error.h"
57 #include "insn-attr.h"
58 #include "dojump.h"
59 #include "expr.h"
60 #include "cfgloop.h"
61 #include "tree-pass.h"
62 #include "print-rtl.h"
63
64 /* Holds the interesting leading and trailing notes for the function.
65 Only applicable if the CFG is in cfglayout mode. */
66 static GTY(()) rtx_insn *cfg_layout_function_footer;
67 static GTY(()) rtx_insn *cfg_layout_function_header;
68
69 static rtx_insn *skip_insns_after_block (basic_block);
70 static void record_effective_endpoints (void);
71 static void fixup_reorder_chain (void);
72
73 void verify_insn_chain (void);
74 static void fixup_fallthru_exit_predecessor (void);
75 static int can_delete_note_p (const rtx_note *);
76 static int can_delete_label_p (const rtx_code_label *);
77 static basic_block rtl_split_edge (edge);
78 static bool rtl_move_block_after (basic_block, basic_block);
79 static int rtl_verify_flow_info (void);
80 static basic_block cfg_layout_split_block (basic_block, void *);
81 static edge cfg_layout_redirect_edge_and_branch (edge, basic_block);
82 static basic_block cfg_layout_redirect_edge_and_branch_force (edge, basic_block);
83 static void cfg_layout_delete_block (basic_block);
84 static void rtl_delete_block (basic_block);
85 static basic_block rtl_redirect_edge_and_branch_force (edge, basic_block);
86 static edge rtl_redirect_edge_and_branch (edge, basic_block);
87 static basic_block rtl_split_block (basic_block, void *);
88 static void rtl_dump_bb (FILE *, basic_block, int, int);
89 static int rtl_verify_flow_info_1 (void);
90 static void rtl_make_forwarder_block (edge);
91 \f
92 /* Return true if NOTE is not one of the ones that must be kept paired,
93 so that we may simply delete it. */
94
95 static int
96 can_delete_note_p (const rtx_note *note)
97 {
98 switch (NOTE_KIND (note))
99 {
100 case NOTE_INSN_DELETED:
101 case NOTE_INSN_BASIC_BLOCK:
102 case NOTE_INSN_EPILOGUE_BEG:
103 return true;
104
105 default:
106 return false;
107 }
108 }
109
110 /* True if a given label can be deleted. */
111
112 static int
113 can_delete_label_p (const rtx_code_label *label)
114 {
115 return (!LABEL_PRESERVE_P (label)
116 /* User declared labels must be preserved. */
117 && LABEL_NAME (label) == 0
118 && !in_insn_list_p (forced_labels, label));
119 }
120
121 /* Delete INSN by patching it out. */
122
123 void
124 delete_insn (rtx uncast_insn)
125 {
126 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
127 rtx note;
128 bool really_delete = true;
129
130 if (LABEL_P (insn))
131 {
132 /* Some labels can't be directly removed from the INSN chain, as they
133 might be references via variables, constant pool etc.
134 Convert them to the special NOTE_INSN_DELETED_LABEL note. */
135 if (! can_delete_label_p (as_a <rtx_code_label *> (insn)))
136 {
137 const char *name = LABEL_NAME (insn);
138 basic_block bb = BLOCK_FOR_INSN (insn);
139 rtx_insn *bb_note = NEXT_INSN (insn);
140
141 really_delete = false;
142 PUT_CODE (insn, NOTE);
143 NOTE_KIND (insn) = NOTE_INSN_DELETED_LABEL;
144 NOTE_DELETED_LABEL_NAME (insn) = name;
145
146 /* If the note following the label starts a basic block, and the
147 label is a member of the same basic block, interchange the two. */
148 if (bb_note != NULL_RTX
149 && NOTE_INSN_BASIC_BLOCK_P (bb_note)
150 && bb != NULL
151 && bb == BLOCK_FOR_INSN (bb_note))
152 {
153 reorder_insns_nobb (insn, insn, bb_note);
154 BB_HEAD (bb) = bb_note;
155 if (BB_END (bb) == bb_note)
156 BB_END (bb) = insn;
157 }
158 }
159
160 remove_node_from_insn_list (insn, &nonlocal_goto_handler_labels);
161 }
162
163 if (really_delete)
164 {
165 /* If this insn has already been deleted, something is very wrong. */
166 gcc_assert (!insn->deleted ());
167 if (INSN_P (insn))
168 df_insn_delete (insn);
169 remove_insn (insn);
170 insn->set_deleted ();
171 }
172
173 /* If deleting a jump, decrement the use count of the label. Deleting
174 the label itself should happen in the normal course of block merging. */
175 if (JUMP_P (insn))
176 {
177 if (JUMP_LABEL (insn)
178 && LABEL_P (JUMP_LABEL (insn)))
179 LABEL_NUSES (JUMP_LABEL (insn))--;
180
181 /* If there are more targets, remove them too. */
182 while ((note
183 = find_reg_note (insn, REG_LABEL_TARGET, NULL_RTX)) != NULL_RTX
184 && LABEL_P (XEXP (note, 0)))
185 {
186 LABEL_NUSES (XEXP (note, 0))--;
187 remove_note (insn, note);
188 }
189 }
190
191 /* Also if deleting any insn that references a label as an operand. */
192 while ((note = find_reg_note (insn, REG_LABEL_OPERAND, NULL_RTX)) != NULL_RTX
193 && LABEL_P (XEXP (note, 0)))
194 {
195 LABEL_NUSES (XEXP (note, 0))--;
196 remove_note (insn, note);
197 }
198
199 if (rtx_jump_table_data *table = dyn_cast <rtx_jump_table_data *> (insn))
200 {
201 rtvec vec = table->get_labels ();
202 int len = GET_NUM_ELEM (vec);
203 int i;
204
205 for (i = 0; i < len; i++)
206 {
207 rtx label = XEXP (RTVEC_ELT (vec, i), 0);
208
209 /* When deleting code in bulk (e.g. removing many unreachable
210 blocks) we can delete a label that's a target of the vector
211 before deleting the vector itself. */
212 if (!NOTE_P (label))
213 LABEL_NUSES (label)--;
214 }
215 }
216 }
217
218 /* Like delete_insn but also purge dead edges from BB.
219 Return true if any edges are eliminated. */
220
221 bool
222 delete_insn_and_edges (rtx_insn *insn)
223 {
224 bool purge = false;
225
226 if (INSN_P (insn)
227 && BLOCK_FOR_INSN (insn)
228 && BB_END (BLOCK_FOR_INSN (insn)) == insn)
229 purge = true;
230 delete_insn (insn);
231 if (purge)
232 return purge_dead_edges (BLOCK_FOR_INSN (insn));
233 return false;
234 }
235
236 /* Unlink a chain of insns between START and FINISH, leaving notes
237 that must be paired. If CLEAR_BB is true, we set bb field for
238 insns that cannot be removed to NULL. */
239
240 void
241 delete_insn_chain (rtx start, rtx finish, bool clear_bb)
242 {
243 rtx_insn *prev, *current;
244
245 /* Unchain the insns one by one. It would be quicker to delete all of these
246 with a single unchaining, rather than one at a time, but we need to keep
247 the NOTE's. */
248 current = safe_as_a <rtx_insn *> (finish);
249 while (1)
250 {
251 prev = PREV_INSN (current);
252 if (NOTE_P (current) && !can_delete_note_p (as_a <rtx_note *> (current)))
253 ;
254 else
255 delete_insn (current);
256
257 if (clear_bb && !current->deleted ())
258 set_block_for_insn (current, NULL);
259
260 if (current == start)
261 break;
262 current = prev;
263 }
264 }
265 \f
266 /* Create a new basic block consisting of the instructions between HEAD and END
267 inclusive. This function is designed to allow fast BB construction - reuses
268 the note and basic block struct in BB_NOTE, if any and do not grow
269 BASIC_BLOCK chain and should be used directly only by CFG construction code.
270 END can be NULL in to create new empty basic block before HEAD. Both END
271 and HEAD can be NULL to create basic block at the end of INSN chain.
272 AFTER is the basic block we should be put after. */
273
274 basic_block
275 create_basic_block_structure (rtx_insn *head, rtx_insn *end, rtx_note *bb_note,
276 basic_block after)
277 {
278 basic_block bb;
279
280 if (bb_note
281 && (bb = NOTE_BASIC_BLOCK (bb_note)) != NULL
282 && bb->aux == NULL)
283 {
284 /* If we found an existing note, thread it back onto the chain. */
285
286 rtx_insn *after;
287
288 if (LABEL_P (head))
289 after = head;
290 else
291 {
292 after = PREV_INSN (head);
293 head = bb_note;
294 }
295
296 if (after != bb_note && NEXT_INSN (after) != bb_note)
297 reorder_insns_nobb (bb_note, bb_note, after);
298 }
299 else
300 {
301 /* Otherwise we must create a note and a basic block structure. */
302
303 bb = alloc_block ();
304
305 init_rtl_bb_info (bb);
306 if (!head && !end)
307 head = end = bb_note
308 = emit_note_after (NOTE_INSN_BASIC_BLOCK, get_last_insn ());
309 else if (LABEL_P (head) && end)
310 {
311 bb_note = emit_note_after (NOTE_INSN_BASIC_BLOCK, head);
312 if (head == end)
313 end = bb_note;
314 }
315 else
316 {
317 bb_note = emit_note_before (NOTE_INSN_BASIC_BLOCK, head);
318 head = bb_note;
319 if (!end)
320 end = head;
321 }
322
323 NOTE_BASIC_BLOCK (bb_note) = bb;
324 }
325
326 /* Always include the bb note in the block. */
327 if (NEXT_INSN (end) == bb_note)
328 end = bb_note;
329
330 BB_HEAD (bb) = head;
331 BB_END (bb) = end;
332 bb->index = last_basic_block_for_fn (cfun)++;
333 bb->flags = BB_NEW | BB_RTL;
334 link_block (bb, after);
335 SET_BASIC_BLOCK_FOR_FN (cfun, bb->index, bb);
336 df_bb_refs_record (bb->index, false);
337 update_bb_for_insn (bb);
338 BB_SET_PARTITION (bb, BB_UNPARTITIONED);
339
340 /* Tag the block so that we know it has been used when considering
341 other basic block notes. */
342 bb->aux = bb;
343
344 return bb;
345 }
346
347 /* Create new basic block consisting of instructions in between HEAD and END
348 and place it to the BB chain after block AFTER. END can be NULL to
349 create a new empty basic block before HEAD. Both END and HEAD can be
350 NULL to create basic block at the end of INSN chain. */
351
352 static basic_block
353 rtl_create_basic_block (void *headp, void *endp, basic_block after)
354 {
355 rtx_insn *head = (rtx_insn *) headp;
356 rtx_insn *end = (rtx_insn *) endp;
357 basic_block bb;
358
359 /* Grow the basic block array if needed. */
360 if ((size_t) last_basic_block_for_fn (cfun)
361 >= basic_block_info_for_fn (cfun)->length ())
362 {
363 size_t new_size =
364 (last_basic_block_for_fn (cfun)
365 + (last_basic_block_for_fn (cfun) + 3) / 4);
366 vec_safe_grow_cleared (basic_block_info_for_fn (cfun), new_size);
367 }
368
369 n_basic_blocks_for_fn (cfun)++;
370
371 bb = create_basic_block_structure (head, end, NULL, after);
372 bb->aux = NULL;
373 return bb;
374 }
375
376 static basic_block
377 cfg_layout_create_basic_block (void *head, void *end, basic_block after)
378 {
379 basic_block newbb = rtl_create_basic_block (head, end, after);
380
381 return newbb;
382 }
383 \f
384 /* Delete the insns in a (non-live) block. We physically delete every
385 non-deleted-note insn, and update the flow graph appropriately.
386
387 Return nonzero if we deleted an exception handler. */
388
389 /* ??? Preserving all such notes strikes me as wrong. It would be nice
390 to post-process the stream to remove empty blocks, loops, ranges, etc. */
391
392 static void
393 rtl_delete_block (basic_block b)
394 {
395 rtx_insn *insn, *end;
396
397 /* If the head of this block is a CODE_LABEL, then it might be the
398 label for an exception handler which can't be reached. We need
399 to remove the label from the exception_handler_label list. */
400 insn = BB_HEAD (b);
401
402 end = get_last_bb_insn (b);
403
404 /* Selectively delete the entire chain. */
405 BB_HEAD (b) = NULL;
406 delete_insn_chain (insn, end, true);
407
408
409 if (dump_file)
410 fprintf (dump_file, "deleting block %d\n", b->index);
411 df_bb_delete (b->index);
412 }
413 \f
414 /* Records the basic block struct in BLOCK_FOR_INSN for every insn. */
415
416 void
417 compute_bb_for_insn (void)
418 {
419 basic_block bb;
420
421 FOR_EACH_BB_FN (bb, cfun)
422 {
423 rtx_insn *end = BB_END (bb);
424 rtx_insn *insn;
425
426 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
427 {
428 BLOCK_FOR_INSN (insn) = bb;
429 if (insn == end)
430 break;
431 }
432 }
433 }
434
435 /* Release the basic_block_for_insn array. */
436
437 unsigned int
438 free_bb_for_insn (void)
439 {
440 rtx_insn *insn;
441 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
442 if (!BARRIER_P (insn))
443 BLOCK_FOR_INSN (insn) = NULL;
444 return 0;
445 }
446
447 namespace {
448
449 const pass_data pass_data_free_cfg =
450 {
451 RTL_PASS, /* type */
452 "*free_cfg", /* name */
453 OPTGROUP_NONE, /* optinfo_flags */
454 TV_NONE, /* tv_id */
455 0, /* properties_required */
456 0, /* properties_provided */
457 PROP_cfg, /* properties_destroyed */
458 0, /* todo_flags_start */
459 0, /* todo_flags_finish */
460 };
461
462 class pass_free_cfg : public rtl_opt_pass
463 {
464 public:
465 pass_free_cfg (gcc::context *ctxt)
466 : rtl_opt_pass (pass_data_free_cfg, ctxt)
467 {}
468
469 /* opt_pass methods: */
470 virtual unsigned int execute (function *);
471
472 }; // class pass_free_cfg
473
474 unsigned int
475 pass_free_cfg::execute (function *)
476 {
477 /* The resource.c machinery uses DF but the CFG isn't guaranteed to be
478 valid at that point so it would be too late to call df_analyze. */
479 if (DELAY_SLOTS && optimize > 0 && flag_delayed_branch)
480 {
481 df_note_add_problem ();
482 df_analyze ();
483 }
484
485 if (crtl->has_bb_partition)
486 insert_section_boundary_note ();
487
488 free_bb_for_insn ();
489 return 0;
490 }
491
492 } // anon namespace
493
494 rtl_opt_pass *
495 make_pass_free_cfg (gcc::context *ctxt)
496 {
497 return new pass_free_cfg (ctxt);
498 }
499
500 /* Return RTX to emit after when we want to emit code on the entry of function. */
501 rtx_insn *
502 entry_of_function (void)
503 {
504 return (n_basic_blocks_for_fn (cfun) > NUM_FIXED_BLOCKS ?
505 BB_HEAD (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb) : get_insns ());
506 }
507
508 /* Emit INSN at the entry point of the function, ensuring that it is only
509 executed once per function. */
510 void
511 emit_insn_at_entry (rtx insn)
512 {
513 edge_iterator ei = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
514 edge e = ei_safe_edge (ei);
515 gcc_assert (e->flags & EDGE_FALLTHRU);
516
517 insert_insn_on_edge (insn, e);
518 commit_edge_insertions ();
519 }
520
521 /* Update BLOCK_FOR_INSN of insns between BEGIN and END
522 (or BARRIER if found) and notify df of the bb change.
523 The insn chain range is inclusive
524 (i.e. both BEGIN and END will be updated. */
525
526 static void
527 update_bb_for_insn_chain (rtx_insn *begin, rtx_insn *end, basic_block bb)
528 {
529 rtx_insn *insn;
530
531 end = NEXT_INSN (end);
532 for (insn = begin; insn != end; insn = NEXT_INSN (insn))
533 if (!BARRIER_P (insn))
534 df_insn_change_bb (insn, bb);
535 }
536
537 /* Update BLOCK_FOR_INSN of insns in BB to BB,
538 and notify df of the change. */
539
540 void
541 update_bb_for_insn (basic_block bb)
542 {
543 update_bb_for_insn_chain (BB_HEAD (bb), BB_END (bb), bb);
544 }
545
546 \f
547 /* Like active_insn_p, except keep the return value clobber around
548 even after reload. */
549
550 static bool
551 flow_active_insn_p (const rtx_insn *insn)
552 {
553 if (active_insn_p (insn))
554 return true;
555
556 /* A clobber of the function return value exists for buggy
557 programs that fail to return a value. Its effect is to
558 keep the return value from being live across the entire
559 function. If we allow it to be skipped, we introduce the
560 possibility for register lifetime confusion. */
561 if (GET_CODE (PATTERN (insn)) == CLOBBER
562 && REG_P (XEXP (PATTERN (insn), 0))
563 && REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))
564 return true;
565
566 return false;
567 }
568
569 /* Return true if the block has no effect and only forwards control flow to
570 its single destination. */
571
572 bool
573 contains_no_active_insn_p (const_basic_block bb)
574 {
575 rtx_insn *insn;
576
577 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun) || bb == ENTRY_BLOCK_PTR_FOR_FN (cfun)
578 || !single_succ_p (bb))
579 return false;
580
581 for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
582 if (INSN_P (insn) && flow_active_insn_p (insn))
583 return false;
584
585 return (!INSN_P (insn)
586 || (JUMP_P (insn) && simplejump_p (insn))
587 || !flow_active_insn_p (insn));
588 }
589
590 /* Likewise, but protect loop latches, headers and preheaders. */
591 /* FIXME: Make this a cfg hook. */
592
593 bool
594 forwarder_block_p (const_basic_block bb)
595 {
596 if (!contains_no_active_insn_p (bb))
597 return false;
598
599 /* Protect loop latches, headers and preheaders. */
600 if (current_loops)
601 {
602 basic_block dest;
603 if (bb->loop_father->header == bb)
604 return false;
605 dest = EDGE_SUCC (bb, 0)->dest;
606 if (dest->loop_father->header == dest)
607 return false;
608 }
609
610 return true;
611 }
612
613 /* Return nonzero if we can reach target from src by falling through. */
614 /* FIXME: Make this a cfg hook, the result is only valid in cfgrtl mode. */
615
616 bool
617 can_fallthru (basic_block src, basic_block target)
618 {
619 rtx_insn *insn = BB_END (src);
620 rtx_insn *insn2;
621 edge e;
622 edge_iterator ei;
623
624 if (target == EXIT_BLOCK_PTR_FOR_FN (cfun))
625 return true;
626 if (src->next_bb != target)
627 return false;
628
629 /* ??? Later we may add code to move jump tables offline. */
630 if (tablejump_p (insn, NULL, NULL))
631 return false;
632
633 FOR_EACH_EDGE (e, ei, src->succs)
634 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
635 && e->flags & EDGE_FALLTHRU)
636 return false;
637
638 insn2 = BB_HEAD (target);
639 if (!active_insn_p (insn2))
640 insn2 = next_active_insn (insn2);
641
642 return next_active_insn (insn) == insn2;
643 }
644
645 /* Return nonzero if we could reach target from src by falling through,
646 if the target was made adjacent. If we already have a fall-through
647 edge to the exit block, we can't do that. */
648 static bool
649 could_fall_through (basic_block src, basic_block target)
650 {
651 edge e;
652 edge_iterator ei;
653
654 if (target == EXIT_BLOCK_PTR_FOR_FN (cfun))
655 return true;
656 FOR_EACH_EDGE (e, ei, src->succs)
657 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
658 && e->flags & EDGE_FALLTHRU)
659 return 0;
660 return true;
661 }
662 \f
663 /* Return the NOTE_INSN_BASIC_BLOCK of BB. */
664 rtx_note *
665 bb_note (basic_block bb)
666 {
667 rtx_insn *note;
668
669 note = BB_HEAD (bb);
670 if (LABEL_P (note))
671 note = NEXT_INSN (note);
672
673 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
674 return as_a <rtx_note *> (note);
675 }
676
677 /* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
678 note associated with the BLOCK. */
679
680 static rtx_insn *
681 first_insn_after_basic_block_note (basic_block block)
682 {
683 rtx_insn *insn;
684
685 /* Get the first instruction in the block. */
686 insn = BB_HEAD (block);
687
688 if (insn == NULL_RTX)
689 return NULL;
690 if (LABEL_P (insn))
691 insn = NEXT_INSN (insn);
692 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
693
694 return NEXT_INSN (insn);
695 }
696
697 /* Creates a new basic block just after basic block BB by splitting
698 everything after specified instruction INSNP. */
699
700 static basic_block
701 rtl_split_block (basic_block bb, void *insnp)
702 {
703 basic_block new_bb;
704 rtx_insn *insn = (rtx_insn *) insnp;
705 edge e;
706 edge_iterator ei;
707
708 if (!insn)
709 {
710 insn = first_insn_after_basic_block_note (bb);
711
712 if (insn)
713 {
714 rtx_insn *next = insn;
715
716 insn = PREV_INSN (insn);
717
718 /* If the block contains only debug insns, insn would have
719 been NULL in a non-debug compilation, and then we'd end
720 up emitting a DELETED note. For -fcompare-debug
721 stability, emit the note too. */
722 if (insn != BB_END (bb)
723 && DEBUG_INSN_P (next)
724 && DEBUG_INSN_P (BB_END (bb)))
725 {
726 while (next != BB_END (bb) && DEBUG_INSN_P (next))
727 next = NEXT_INSN (next);
728
729 if (next == BB_END (bb))
730 emit_note_after (NOTE_INSN_DELETED, next);
731 }
732 }
733 else
734 insn = get_last_insn ();
735 }
736
737 /* We probably should check type of the insn so that we do not create
738 inconsistent cfg. It is checked in verify_flow_info anyway, so do not
739 bother. */
740 if (insn == BB_END (bb))
741 emit_note_after (NOTE_INSN_DELETED, insn);
742
743 /* Create the new basic block. */
744 new_bb = create_basic_block (NEXT_INSN (insn), BB_END (bb), bb);
745 BB_COPY_PARTITION (new_bb, bb);
746 BB_END (bb) = insn;
747
748 /* Redirect the outgoing edges. */
749 new_bb->succs = bb->succs;
750 bb->succs = NULL;
751 FOR_EACH_EDGE (e, ei, new_bb->succs)
752 e->src = new_bb;
753
754 /* The new block starts off being dirty. */
755 df_set_bb_dirty (bb);
756 return new_bb;
757 }
758
759 /* Return true if the single edge between blocks A and B is the only place
760 in RTL which holds some unique locus. */
761
762 static bool
763 unique_locus_on_edge_between_p (basic_block a, basic_block b)
764 {
765 const location_t goto_locus = EDGE_SUCC (a, 0)->goto_locus;
766 rtx_insn *insn, *end;
767
768 if (LOCATION_LOCUS (goto_locus) == UNKNOWN_LOCATION)
769 return false;
770
771 /* First scan block A backward. */
772 insn = BB_END (a);
773 end = PREV_INSN (BB_HEAD (a));
774 while (insn != end && (!NONDEBUG_INSN_P (insn) || !INSN_HAS_LOCATION (insn)))
775 insn = PREV_INSN (insn);
776
777 if (insn != end && INSN_LOCATION (insn) == goto_locus)
778 return false;
779
780 /* Then scan block B forward. */
781 insn = BB_HEAD (b);
782 if (insn)
783 {
784 end = NEXT_INSN (BB_END (b));
785 while (insn != end && !NONDEBUG_INSN_P (insn))
786 insn = NEXT_INSN (insn);
787
788 if (insn != end && INSN_HAS_LOCATION (insn)
789 && INSN_LOCATION (insn) == goto_locus)
790 return false;
791 }
792
793 return true;
794 }
795
796 /* If the single edge between blocks A and B is the only place in RTL which
797 holds some unique locus, emit a nop with that locus between the blocks. */
798
799 static void
800 emit_nop_for_unique_locus_between (basic_block a, basic_block b)
801 {
802 if (!unique_locus_on_edge_between_p (a, b))
803 return;
804
805 BB_END (a) = emit_insn_after_noloc (gen_nop (), BB_END (a), a);
806 INSN_LOCATION (BB_END (a)) = EDGE_SUCC (a, 0)->goto_locus;
807 }
808
809 /* Blocks A and B are to be merged into a single block A. The insns
810 are already contiguous. */
811
812 static void
813 rtl_merge_blocks (basic_block a, basic_block b)
814 {
815 rtx_insn *b_head = BB_HEAD (b), *b_end = BB_END (b), *a_end = BB_END (a);
816 rtx_insn *del_first = NULL, *del_last = NULL;
817 rtx_insn *b_debug_start = b_end, *b_debug_end = b_end;
818 bool forwarder_p = (b->flags & BB_FORWARDER_BLOCK) != 0;
819 int b_empty = 0;
820
821 if (dump_file)
822 fprintf (dump_file, "Merging block %d into block %d...\n", b->index,
823 a->index);
824
825 while (DEBUG_INSN_P (b_end))
826 b_end = PREV_INSN (b_debug_start = b_end);
827
828 /* If there was a CODE_LABEL beginning B, delete it. */
829 if (LABEL_P (b_head))
830 {
831 /* Detect basic blocks with nothing but a label. This can happen
832 in particular at the end of a function. */
833 if (b_head == b_end)
834 b_empty = 1;
835
836 del_first = del_last = b_head;
837 b_head = NEXT_INSN (b_head);
838 }
839
840 /* Delete the basic block note and handle blocks containing just that
841 note. */
842 if (NOTE_INSN_BASIC_BLOCK_P (b_head))
843 {
844 if (b_head == b_end)
845 b_empty = 1;
846 if (! del_last)
847 del_first = b_head;
848
849 del_last = b_head;
850 b_head = NEXT_INSN (b_head);
851 }
852
853 /* If there was a jump out of A, delete it. */
854 if (JUMP_P (a_end))
855 {
856 rtx_insn *prev;
857
858 for (prev = PREV_INSN (a_end); ; prev = PREV_INSN (prev))
859 if (!NOTE_P (prev)
860 || NOTE_INSN_BASIC_BLOCK_P (prev)
861 || prev == BB_HEAD (a))
862 break;
863
864 del_first = a_end;
865
866 /* If this was a conditional jump, we need to also delete
867 the insn that set cc0. */
868 if (HAVE_cc0 && only_sets_cc0_p (prev))
869 {
870 rtx_insn *tmp = prev;
871
872 prev = prev_nonnote_insn (prev);
873 if (!prev)
874 prev = BB_HEAD (a);
875 del_first = tmp;
876 }
877
878 a_end = PREV_INSN (del_first);
879 }
880 else if (BARRIER_P (NEXT_INSN (a_end)))
881 del_first = NEXT_INSN (a_end);
882
883 /* Delete everything marked above as well as crap that might be
884 hanging out between the two blocks. */
885 BB_END (a) = a_end;
886 BB_HEAD (b) = b_empty ? NULL : b_head;
887 delete_insn_chain (del_first, del_last, true);
888
889 /* When not optimizing and the edge is the only place in RTL which holds
890 some unique locus, emit a nop with that locus in between. */
891 if (!optimize)
892 {
893 emit_nop_for_unique_locus_between (a, b);
894 a_end = BB_END (a);
895 }
896
897 /* Reassociate the insns of B with A. */
898 if (!b_empty)
899 {
900 update_bb_for_insn_chain (a_end, b_debug_end, a);
901
902 BB_END (a) = b_debug_end;
903 BB_HEAD (b) = NULL;
904 }
905 else if (b_end != b_debug_end)
906 {
907 /* Move any deleted labels and other notes between the end of A
908 and the debug insns that make up B after the debug insns,
909 bringing the debug insns into A while keeping the notes after
910 the end of A. */
911 if (NEXT_INSN (a_end) != b_debug_start)
912 reorder_insns_nobb (NEXT_INSN (a_end), PREV_INSN (b_debug_start),
913 b_debug_end);
914 update_bb_for_insn_chain (b_debug_start, b_debug_end, a);
915 BB_END (a) = b_debug_end;
916 }
917
918 df_bb_delete (b->index);
919
920 /* If B was a forwarder block, propagate the locus on the edge. */
921 if (forwarder_p
922 && LOCATION_LOCUS (EDGE_SUCC (b, 0)->goto_locus) == UNKNOWN_LOCATION)
923 EDGE_SUCC (b, 0)->goto_locus = EDGE_SUCC (a, 0)->goto_locus;
924
925 if (dump_file)
926 fprintf (dump_file, "Merged blocks %d and %d.\n", a->index, b->index);
927 }
928
929
930 /* Return true when block A and B can be merged. */
931
932 static bool
933 rtl_can_merge_blocks (basic_block a, basic_block b)
934 {
935 /* If we are partitioning hot/cold basic blocks, we don't want to
936 mess up unconditional or indirect jumps that cross between hot
937 and cold sections.
938
939 Basic block partitioning may result in some jumps that appear to
940 be optimizable (or blocks that appear to be mergeable), but which really
941 must be left untouched (they are required to make it safely across
942 partition boundaries). See the comments at the top of
943 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
944
945 if (BB_PARTITION (a) != BB_PARTITION (b))
946 return false;
947
948 /* Protect the loop latches. */
949 if (current_loops && b->loop_father->latch == b)
950 return false;
951
952 /* There must be exactly one edge in between the blocks. */
953 return (single_succ_p (a)
954 && single_succ (a) == b
955 && single_pred_p (b)
956 && a != b
957 /* Must be simple edge. */
958 && !(single_succ_edge (a)->flags & EDGE_COMPLEX)
959 && a->next_bb == b
960 && a != ENTRY_BLOCK_PTR_FOR_FN (cfun)
961 && b != EXIT_BLOCK_PTR_FOR_FN (cfun)
962 /* If the jump insn has side effects,
963 we can't kill the edge. */
964 && (!JUMP_P (BB_END (a))
965 || (reload_completed
966 ? simplejump_p (BB_END (a)) : onlyjump_p (BB_END (a)))));
967 }
968 \f
969 /* Return the label in the head of basic block BLOCK. Create one if it doesn't
970 exist. */
971
972 rtx_code_label *
973 block_label (basic_block block)
974 {
975 if (block == EXIT_BLOCK_PTR_FOR_FN (cfun))
976 return NULL;
977
978 if (!LABEL_P (BB_HEAD (block)))
979 {
980 BB_HEAD (block) = emit_label_before (gen_label_rtx (), BB_HEAD (block));
981 }
982
983 return as_a <rtx_code_label *> (BB_HEAD (block));
984 }
985
986 /* Attempt to perform edge redirection by replacing possibly complex jump
987 instruction by unconditional jump or removing jump completely. This can
988 apply only if all edges now point to the same block. The parameters and
989 return values are equivalent to redirect_edge_and_branch. */
990
991 edge
992 try_redirect_by_replacing_jump (edge e, basic_block target, bool in_cfglayout)
993 {
994 basic_block src = e->src;
995 rtx_insn *insn = BB_END (src), *kill_from;
996 rtx set;
997 int fallthru = 0;
998
999 /* If we are partitioning hot/cold basic blocks, we don't want to
1000 mess up unconditional or indirect jumps that cross between hot
1001 and cold sections.
1002
1003 Basic block partitioning may result in some jumps that appear to
1004 be optimizable (or blocks that appear to be mergeable), but which really
1005 must be left untouched (they are required to make it safely across
1006 partition boundaries). See the comments at the top of
1007 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
1008
1009 if (BB_PARTITION (src) != BB_PARTITION (target))
1010 return NULL;
1011
1012 /* We can replace or remove a complex jump only when we have exactly
1013 two edges. Also, if we have exactly one outgoing edge, we can
1014 redirect that. */
1015 if (EDGE_COUNT (src->succs) >= 3
1016 /* Verify that all targets will be TARGET. Specifically, the
1017 edge that is not E must also go to TARGET. */
1018 || (EDGE_COUNT (src->succs) == 2
1019 && EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target))
1020 return NULL;
1021
1022 if (!onlyjump_p (insn))
1023 return NULL;
1024 if ((!optimize || reload_completed) && tablejump_p (insn, NULL, NULL))
1025 return NULL;
1026
1027 /* Avoid removing branch with side effects. */
1028 set = single_set (insn);
1029 if (!set || side_effects_p (set))
1030 return NULL;
1031
1032 /* In case we zap a conditional jump, we'll need to kill
1033 the cc0 setter too. */
1034 kill_from = insn;
1035 if (HAVE_cc0 && reg_mentioned_p (cc0_rtx, PATTERN (insn))
1036 && only_sets_cc0_p (PREV_INSN (insn)))
1037 kill_from = PREV_INSN (insn);
1038
1039 /* See if we can create the fallthru edge. */
1040 if (in_cfglayout || can_fallthru (src, target))
1041 {
1042 if (dump_file)
1043 fprintf (dump_file, "Removing jump %i.\n", INSN_UID (insn));
1044 fallthru = 1;
1045
1046 /* Selectively unlink whole insn chain. */
1047 if (in_cfglayout)
1048 {
1049 rtx_insn *insn = BB_FOOTER (src);
1050
1051 delete_insn_chain (kill_from, BB_END (src), false);
1052
1053 /* Remove barriers but keep jumptables. */
1054 while (insn)
1055 {
1056 if (BARRIER_P (insn))
1057 {
1058 if (PREV_INSN (insn))
1059 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
1060 else
1061 BB_FOOTER (src) = NEXT_INSN (insn);
1062 if (NEXT_INSN (insn))
1063 SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
1064 }
1065 if (LABEL_P (insn))
1066 break;
1067 insn = NEXT_INSN (insn);
1068 }
1069 }
1070 else
1071 delete_insn_chain (kill_from, PREV_INSN (BB_HEAD (target)),
1072 false);
1073 }
1074
1075 /* If this already is simplejump, redirect it. */
1076 else if (simplejump_p (insn))
1077 {
1078 if (e->dest == target)
1079 return NULL;
1080 if (dump_file)
1081 fprintf (dump_file, "Redirecting jump %i from %i to %i.\n",
1082 INSN_UID (insn), e->dest->index, target->index);
1083 if (!redirect_jump (as_a <rtx_jump_insn *> (insn),
1084 block_label (target), 0))
1085 {
1086 gcc_assert (target == EXIT_BLOCK_PTR_FOR_FN (cfun));
1087 return NULL;
1088 }
1089 }
1090
1091 /* Cannot do anything for target exit block. */
1092 else if (target == EXIT_BLOCK_PTR_FOR_FN (cfun))
1093 return NULL;
1094
1095 /* Or replace possibly complicated jump insn by simple jump insn. */
1096 else
1097 {
1098 rtx_code_label *target_label = block_label (target);
1099 rtx_insn *barrier;
1100 rtx label;
1101 rtx_jump_table_data *table;
1102
1103 emit_jump_insn_after_noloc (targetm.gen_jump (target_label), insn);
1104 JUMP_LABEL (BB_END (src)) = target_label;
1105 LABEL_NUSES (target_label)++;
1106 if (dump_file)
1107 fprintf (dump_file, "Replacing insn %i by jump %i\n",
1108 INSN_UID (insn), INSN_UID (BB_END (src)));
1109
1110
1111 delete_insn_chain (kill_from, insn, false);
1112
1113 /* Recognize a tablejump that we are converting to a
1114 simple jump and remove its associated CODE_LABEL
1115 and ADDR_VEC or ADDR_DIFF_VEC. */
1116 if (tablejump_p (insn, &label, &table))
1117 delete_insn_chain (label, table, false);
1118
1119 barrier = next_nonnote_insn (BB_END (src));
1120 if (!barrier || !BARRIER_P (barrier))
1121 emit_barrier_after (BB_END (src));
1122 else
1123 {
1124 if (barrier != NEXT_INSN (BB_END (src)))
1125 {
1126 /* Move the jump before barrier so that the notes
1127 which originally were or were created before jump table are
1128 inside the basic block. */
1129 rtx_insn *new_insn = BB_END (src);
1130
1131 update_bb_for_insn_chain (NEXT_INSN (BB_END (src)),
1132 PREV_INSN (barrier), src);
1133
1134 SET_NEXT_INSN (PREV_INSN (new_insn)) = NEXT_INSN (new_insn);
1135 SET_PREV_INSN (NEXT_INSN (new_insn)) = PREV_INSN (new_insn);
1136
1137 SET_NEXT_INSN (new_insn) = barrier;
1138 SET_NEXT_INSN (PREV_INSN (barrier)) = new_insn;
1139
1140 SET_PREV_INSN (new_insn) = PREV_INSN (barrier);
1141 SET_PREV_INSN (barrier) = new_insn;
1142 }
1143 }
1144 }
1145
1146 /* Keep only one edge out and set proper flags. */
1147 if (!single_succ_p (src))
1148 remove_edge (e);
1149 gcc_assert (single_succ_p (src));
1150
1151 e = single_succ_edge (src);
1152 if (fallthru)
1153 e->flags = EDGE_FALLTHRU;
1154 else
1155 e->flags = 0;
1156
1157 e->probability = REG_BR_PROB_BASE;
1158 e->count = src->count;
1159
1160 if (e->dest != target)
1161 redirect_edge_succ (e, target);
1162 return e;
1163 }
1164
1165 /* Subroutine of redirect_branch_edge that tries to patch the jump
1166 instruction INSN so that it reaches block NEW. Do this
1167 only when it originally reached block OLD. Return true if this
1168 worked or the original target wasn't OLD, return false if redirection
1169 doesn't work. */
1170
1171 static bool
1172 patch_jump_insn (rtx_insn *insn, rtx_insn *old_label, basic_block new_bb)
1173 {
1174 rtx_jump_table_data *table;
1175 rtx tmp;
1176 /* Recognize a tablejump and adjust all matching cases. */
1177 if (tablejump_p (insn, NULL, &table))
1178 {
1179 rtvec vec;
1180 int j;
1181 rtx_code_label *new_label = block_label (new_bb);
1182
1183 if (new_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
1184 return false;
1185 vec = table->get_labels ();
1186
1187 for (j = GET_NUM_ELEM (vec) - 1; j >= 0; --j)
1188 if (XEXP (RTVEC_ELT (vec, j), 0) == old_label)
1189 {
1190 RTVEC_ELT (vec, j) = gen_rtx_LABEL_REF (Pmode, new_label);
1191 --LABEL_NUSES (old_label);
1192 ++LABEL_NUSES (new_label);
1193 }
1194
1195 /* Handle casesi dispatch insns. */
1196 if ((tmp = single_set (insn)) != NULL
1197 && SET_DEST (tmp) == pc_rtx
1198 && GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE
1199 && GET_CODE (XEXP (SET_SRC (tmp), 2)) == LABEL_REF
1200 && LABEL_REF_LABEL (XEXP (SET_SRC (tmp), 2)) == old_label)
1201 {
1202 XEXP (SET_SRC (tmp), 2) = gen_rtx_LABEL_REF (Pmode,
1203 new_label);
1204 --LABEL_NUSES (old_label);
1205 ++LABEL_NUSES (new_label);
1206 }
1207 }
1208 else if ((tmp = extract_asm_operands (PATTERN (insn))) != NULL)
1209 {
1210 int i, n = ASM_OPERANDS_LABEL_LENGTH (tmp);
1211 rtx note;
1212
1213 if (new_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
1214 return false;
1215 rtx_code_label *new_label = block_label (new_bb);
1216
1217 for (i = 0; i < n; ++i)
1218 {
1219 rtx old_ref = ASM_OPERANDS_LABEL (tmp, i);
1220 gcc_assert (GET_CODE (old_ref) == LABEL_REF);
1221 if (XEXP (old_ref, 0) == old_label)
1222 {
1223 ASM_OPERANDS_LABEL (tmp, i)
1224 = gen_rtx_LABEL_REF (Pmode, new_label);
1225 --LABEL_NUSES (old_label);
1226 ++LABEL_NUSES (new_label);
1227 }
1228 }
1229
1230 if (JUMP_LABEL (insn) == old_label)
1231 {
1232 JUMP_LABEL (insn) = new_label;
1233 note = find_reg_note (insn, REG_LABEL_TARGET, new_label);
1234 if (note)
1235 remove_note (insn, note);
1236 }
1237 else
1238 {
1239 note = find_reg_note (insn, REG_LABEL_TARGET, old_label);
1240 if (note)
1241 remove_note (insn, note);
1242 if (JUMP_LABEL (insn) != new_label
1243 && !find_reg_note (insn, REG_LABEL_TARGET, new_label))
1244 add_reg_note (insn, REG_LABEL_TARGET, new_label);
1245 }
1246 while ((note = find_reg_note (insn, REG_LABEL_OPERAND, old_label))
1247 != NULL_RTX)
1248 XEXP (note, 0) = new_label;
1249 }
1250 else
1251 {
1252 /* ?? We may play the games with moving the named labels from
1253 one basic block to the other in case only one computed_jump is
1254 available. */
1255 if (computed_jump_p (insn)
1256 /* A return instruction can't be redirected. */
1257 || returnjump_p (insn))
1258 return false;
1259
1260 if (!currently_expanding_to_rtl || JUMP_LABEL (insn) == old_label)
1261 {
1262 /* If the insn doesn't go where we think, we're confused. */
1263 gcc_assert (JUMP_LABEL (insn) == old_label);
1264
1265 /* If the substitution doesn't succeed, die. This can happen
1266 if the back end emitted unrecognizable instructions or if
1267 target is exit block on some arches. */
1268 if (!redirect_jump (as_a <rtx_jump_insn *> (insn),
1269 block_label (new_bb), 0))
1270 {
1271 gcc_assert (new_bb == EXIT_BLOCK_PTR_FOR_FN (cfun));
1272 return false;
1273 }
1274 }
1275 }
1276 return true;
1277 }
1278
1279
1280 /* Redirect edge representing branch of (un)conditional jump or tablejump,
1281 NULL on failure */
1282 static edge
1283 redirect_branch_edge (edge e, basic_block target)
1284 {
1285 rtx_insn *old_label = BB_HEAD (e->dest);
1286 basic_block src = e->src;
1287 rtx_insn *insn = BB_END (src);
1288
1289 /* We can only redirect non-fallthru edges of jump insn. */
1290 if (e->flags & EDGE_FALLTHRU)
1291 return NULL;
1292 else if (!JUMP_P (insn) && !currently_expanding_to_rtl)
1293 return NULL;
1294
1295 if (!currently_expanding_to_rtl)
1296 {
1297 if (!patch_jump_insn (as_a <rtx_jump_insn *> (insn), old_label, target))
1298 return NULL;
1299 }
1300 else
1301 /* When expanding this BB might actually contain multiple
1302 jumps (i.e. not yet split by find_many_sub_basic_blocks).
1303 Redirect all of those that match our label. */
1304 FOR_BB_INSNS (src, insn)
1305 if (JUMP_P (insn) && !patch_jump_insn (as_a <rtx_jump_insn *> (insn),
1306 old_label, target))
1307 return NULL;
1308
1309 if (dump_file)
1310 fprintf (dump_file, "Edge %i->%i redirected to %i\n",
1311 e->src->index, e->dest->index, target->index);
1312
1313 if (e->dest != target)
1314 e = redirect_edge_succ_nodup (e, target);
1315
1316 return e;
1317 }
1318
1319 /* Called when edge E has been redirected to a new destination,
1320 in order to update the region crossing flag on the edge and
1321 jump. */
1322
1323 static void
1324 fixup_partition_crossing (edge e)
1325 {
1326 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun) || e->dest
1327 == EXIT_BLOCK_PTR_FOR_FN (cfun))
1328 return;
1329 /* If we redirected an existing edge, it may already be marked
1330 crossing, even though the new src is missing a reg crossing note.
1331 But make sure reg crossing note doesn't already exist before
1332 inserting. */
1333 if (BB_PARTITION (e->src) != BB_PARTITION (e->dest))
1334 {
1335 e->flags |= EDGE_CROSSING;
1336 if (JUMP_P (BB_END (e->src))
1337 && !CROSSING_JUMP_P (BB_END (e->src)))
1338 CROSSING_JUMP_P (BB_END (e->src)) = 1;
1339 }
1340 else if (BB_PARTITION (e->src) == BB_PARTITION (e->dest))
1341 {
1342 e->flags &= ~EDGE_CROSSING;
1343 /* Remove the section crossing note from jump at end of
1344 src if it exists, and if no other successors are
1345 still crossing. */
1346 if (JUMP_P (BB_END (e->src)) && CROSSING_JUMP_P (BB_END (e->src)))
1347 {
1348 bool has_crossing_succ = false;
1349 edge e2;
1350 edge_iterator ei;
1351 FOR_EACH_EDGE (e2, ei, e->src->succs)
1352 {
1353 has_crossing_succ |= (e2->flags & EDGE_CROSSING);
1354 if (has_crossing_succ)
1355 break;
1356 }
1357 if (!has_crossing_succ)
1358 CROSSING_JUMP_P (BB_END (e->src)) = 0;
1359 }
1360 }
1361 }
1362
1363 /* Called when block BB has been reassigned to the cold partition,
1364 because it is now dominated by another cold block,
1365 to ensure that the region crossing attributes are updated. */
1366
1367 static void
1368 fixup_new_cold_bb (basic_block bb)
1369 {
1370 edge e;
1371 edge_iterator ei;
1372
1373 /* This is called when a hot bb is found to now be dominated
1374 by a cold bb and therefore needs to become cold. Therefore,
1375 its preds will no longer be region crossing. Any non-dominating
1376 preds that were previously hot would also have become cold
1377 in the caller for the same region. Any preds that were previously
1378 region-crossing will be adjusted in fixup_partition_crossing. */
1379 FOR_EACH_EDGE (e, ei, bb->preds)
1380 {
1381 fixup_partition_crossing (e);
1382 }
1383
1384 /* Possibly need to make bb's successor edges region crossing,
1385 or remove stale region crossing. */
1386 FOR_EACH_EDGE (e, ei, bb->succs)
1387 {
1388 /* We can't have fall-through edges across partition boundaries.
1389 Note that force_nonfallthru will do any necessary partition
1390 boundary fixup by calling fixup_partition_crossing itself. */
1391 if ((e->flags & EDGE_FALLTHRU)
1392 && BB_PARTITION (bb) != BB_PARTITION (e->dest)
1393 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1394 force_nonfallthru (e);
1395 else
1396 fixup_partition_crossing (e);
1397 }
1398 }
1399
1400 /* Attempt to change code to redirect edge E to TARGET. Don't do that on
1401 expense of adding new instructions or reordering basic blocks.
1402
1403 Function can be also called with edge destination equivalent to the TARGET.
1404 Then it should try the simplifications and do nothing if none is possible.
1405
1406 Return edge representing the branch if transformation succeeded. Return NULL
1407 on failure.
1408 We still return NULL in case E already destinated TARGET and we didn't
1409 managed to simplify instruction stream. */
1410
1411 static edge
1412 rtl_redirect_edge_and_branch (edge e, basic_block target)
1413 {
1414 edge ret;
1415 basic_block src = e->src;
1416 basic_block dest = e->dest;
1417
1418 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
1419 return NULL;
1420
1421 if (dest == target)
1422 return e;
1423
1424 if ((ret = try_redirect_by_replacing_jump (e, target, false)) != NULL)
1425 {
1426 df_set_bb_dirty (src);
1427 fixup_partition_crossing (ret);
1428 return ret;
1429 }
1430
1431 ret = redirect_branch_edge (e, target);
1432 if (!ret)
1433 return NULL;
1434
1435 df_set_bb_dirty (src);
1436 fixup_partition_crossing (ret);
1437 return ret;
1438 }
1439
1440 /* Emit a barrier after BB, into the footer if we are in CFGLAYOUT mode. */
1441
1442 void
1443 emit_barrier_after_bb (basic_block bb)
1444 {
1445 rtx_barrier *barrier = emit_barrier_after (BB_END (bb));
1446 gcc_assert (current_ir_type () == IR_RTL_CFGRTL
1447 || current_ir_type () == IR_RTL_CFGLAYOUT);
1448 if (current_ir_type () == IR_RTL_CFGLAYOUT)
1449 {
1450 rtx_insn *insn = unlink_insn_chain (barrier, barrier);
1451
1452 if (BB_FOOTER (bb))
1453 {
1454 rtx_insn *footer_tail = BB_FOOTER (bb);
1455
1456 while (NEXT_INSN (footer_tail))
1457 footer_tail = NEXT_INSN (footer_tail);
1458 if (!BARRIER_P (footer_tail))
1459 {
1460 SET_NEXT_INSN (footer_tail) = insn;
1461 SET_PREV_INSN (insn) = footer_tail;
1462 }
1463 }
1464 else
1465 BB_FOOTER (bb) = insn;
1466 }
1467 }
1468
1469 /* Like force_nonfallthru below, but additionally performs redirection
1470 Used by redirect_edge_and_branch_force. JUMP_LABEL is used only
1471 when redirecting to the EXIT_BLOCK, it is either ret_rtx or
1472 simple_return_rtx, indicating which kind of returnjump to create.
1473 It should be NULL otherwise. */
1474
1475 basic_block
1476 force_nonfallthru_and_redirect (edge e, basic_block target, rtx jump_label)
1477 {
1478 basic_block jump_block, new_bb = NULL, src = e->src;
1479 rtx note;
1480 edge new_edge;
1481 int abnormal_edge_flags = 0;
1482 bool asm_goto_edge = false;
1483 int loc;
1484
1485 /* In the case the last instruction is conditional jump to the next
1486 instruction, first redirect the jump itself and then continue
1487 by creating a basic block afterwards to redirect fallthru edge. */
1488 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
1489 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
1490 && any_condjump_p (BB_END (e->src))
1491 && JUMP_LABEL (BB_END (e->src)) == BB_HEAD (e->dest))
1492 {
1493 rtx note;
1494 edge b = unchecked_make_edge (e->src, target, 0);
1495 bool redirected;
1496
1497 redirected = redirect_jump (as_a <rtx_jump_insn *> (BB_END (e->src)),
1498 block_label (target), 0);
1499 gcc_assert (redirected);
1500
1501 note = find_reg_note (BB_END (e->src), REG_BR_PROB, NULL_RTX);
1502 if (note)
1503 {
1504 int prob = XINT (note, 0);
1505
1506 b->probability = prob;
1507 /* Update this to use GCOV_COMPUTE_SCALE. */
1508 b->count = e->count * prob / REG_BR_PROB_BASE;
1509 e->probability -= e->probability;
1510 e->count -= b->count;
1511 if (e->probability < 0)
1512 e->probability = 0;
1513 if (e->count < 0)
1514 e->count = 0;
1515 }
1516 }
1517
1518 if (e->flags & EDGE_ABNORMAL)
1519 {
1520 /* Irritating special case - fallthru edge to the same block as abnormal
1521 edge.
1522 We can't redirect abnormal edge, but we still can split the fallthru
1523 one and create separate abnormal edge to original destination.
1524 This allows bb-reorder to make such edge non-fallthru. */
1525 gcc_assert (e->dest == target);
1526 abnormal_edge_flags = e->flags & ~EDGE_FALLTHRU;
1527 e->flags &= EDGE_FALLTHRU;
1528 }
1529 else
1530 {
1531 gcc_assert (e->flags & EDGE_FALLTHRU);
1532 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1533 {
1534 /* We can't redirect the entry block. Create an empty block
1535 at the start of the function which we use to add the new
1536 jump. */
1537 edge tmp;
1538 edge_iterator ei;
1539 bool found = false;
1540
1541 basic_block bb = create_basic_block (BB_HEAD (e->dest), NULL,
1542 ENTRY_BLOCK_PTR_FOR_FN (cfun));
1543
1544 /* Change the existing edge's source to be the new block, and add
1545 a new edge from the entry block to the new block. */
1546 e->src = bb;
1547 for (ei = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
1548 (tmp = ei_safe_edge (ei)); )
1549 {
1550 if (tmp == e)
1551 {
1552 ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs->unordered_remove (ei.index);
1553 found = true;
1554 break;
1555 }
1556 else
1557 ei_next (&ei);
1558 }
1559
1560 gcc_assert (found);
1561
1562 vec_safe_push (bb->succs, e);
1563 make_single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), bb,
1564 EDGE_FALLTHRU);
1565 }
1566 }
1567
1568 /* If e->src ends with asm goto, see if any of the ASM_OPERANDS_LABELs
1569 don't point to the target or fallthru label. */
1570 if (JUMP_P (BB_END (e->src))
1571 && target != EXIT_BLOCK_PTR_FOR_FN (cfun)
1572 && (e->flags & EDGE_FALLTHRU)
1573 && (note = extract_asm_operands (PATTERN (BB_END (e->src)))))
1574 {
1575 int i, n = ASM_OPERANDS_LABEL_LENGTH (note);
1576 bool adjust_jump_target = false;
1577
1578 for (i = 0; i < n; ++i)
1579 {
1580 if (XEXP (ASM_OPERANDS_LABEL (note, i), 0) == BB_HEAD (e->dest))
1581 {
1582 LABEL_NUSES (XEXP (ASM_OPERANDS_LABEL (note, i), 0))--;
1583 XEXP (ASM_OPERANDS_LABEL (note, i), 0) = block_label (target);
1584 LABEL_NUSES (XEXP (ASM_OPERANDS_LABEL (note, i), 0))++;
1585 adjust_jump_target = true;
1586 }
1587 if (XEXP (ASM_OPERANDS_LABEL (note, i), 0) == BB_HEAD (target))
1588 asm_goto_edge = true;
1589 }
1590 if (adjust_jump_target)
1591 {
1592 rtx_insn *insn = BB_END (e->src);
1593 rtx note;
1594 rtx_insn *old_label = BB_HEAD (e->dest);
1595 rtx_insn *new_label = BB_HEAD (target);
1596
1597 if (JUMP_LABEL (insn) == old_label)
1598 {
1599 JUMP_LABEL (insn) = new_label;
1600 note = find_reg_note (insn, REG_LABEL_TARGET, new_label);
1601 if (note)
1602 remove_note (insn, note);
1603 }
1604 else
1605 {
1606 note = find_reg_note (insn, REG_LABEL_TARGET, old_label);
1607 if (note)
1608 remove_note (insn, note);
1609 if (JUMP_LABEL (insn) != new_label
1610 && !find_reg_note (insn, REG_LABEL_TARGET, new_label))
1611 add_reg_note (insn, REG_LABEL_TARGET, new_label);
1612 }
1613 while ((note = find_reg_note (insn, REG_LABEL_OPERAND, old_label))
1614 != NULL_RTX)
1615 XEXP (note, 0) = new_label;
1616 }
1617 }
1618
1619 if (EDGE_COUNT (e->src->succs) >= 2 || abnormal_edge_flags || asm_goto_edge)
1620 {
1621 rtx_insn *new_head;
1622 gcov_type count = e->count;
1623 int probability = e->probability;
1624 /* Create the new structures. */
1625
1626 /* If the old block ended with a tablejump, skip its table
1627 by searching forward from there. Otherwise start searching
1628 forward from the last instruction of the old block. */
1629 rtx_jump_table_data *table;
1630 if (tablejump_p (BB_END (e->src), NULL, &table))
1631 new_head = table;
1632 else
1633 new_head = BB_END (e->src);
1634 new_head = NEXT_INSN (new_head);
1635
1636 jump_block = create_basic_block (new_head, NULL, e->src);
1637 jump_block->count = count;
1638 jump_block->frequency = EDGE_FREQUENCY (e);
1639
1640 /* Make sure new block ends up in correct hot/cold section. */
1641
1642 BB_COPY_PARTITION (jump_block, e->src);
1643
1644 /* Wire edge in. */
1645 new_edge = make_edge (e->src, jump_block, EDGE_FALLTHRU);
1646 new_edge->probability = probability;
1647 new_edge->count = count;
1648
1649 /* Redirect old edge. */
1650 redirect_edge_pred (e, jump_block);
1651 e->probability = REG_BR_PROB_BASE;
1652
1653 /* If e->src was previously region crossing, it no longer is
1654 and the reg crossing note should be removed. */
1655 fixup_partition_crossing (new_edge);
1656
1657 /* If asm goto has any label refs to target's label,
1658 add also edge from asm goto bb to target. */
1659 if (asm_goto_edge)
1660 {
1661 new_edge->probability /= 2;
1662 new_edge->count /= 2;
1663 jump_block->count /= 2;
1664 jump_block->frequency /= 2;
1665 new_edge = make_edge (new_edge->src, target,
1666 e->flags & ~EDGE_FALLTHRU);
1667 new_edge->probability = probability - probability / 2;
1668 new_edge->count = count - count / 2;
1669 }
1670
1671 new_bb = jump_block;
1672 }
1673 else
1674 jump_block = e->src;
1675
1676 loc = e->goto_locus;
1677 e->flags &= ~EDGE_FALLTHRU;
1678 if (target == EXIT_BLOCK_PTR_FOR_FN (cfun))
1679 {
1680 if (jump_label == ret_rtx)
1681 emit_jump_insn_after_setloc (targetm.gen_return (),
1682 BB_END (jump_block), loc);
1683 else
1684 {
1685 gcc_assert (jump_label == simple_return_rtx);
1686 emit_jump_insn_after_setloc (targetm.gen_simple_return (),
1687 BB_END (jump_block), loc);
1688 }
1689 set_return_jump_label (BB_END (jump_block));
1690 }
1691 else
1692 {
1693 rtx_code_label *label = block_label (target);
1694 emit_jump_insn_after_setloc (targetm.gen_jump (label),
1695 BB_END (jump_block), loc);
1696 JUMP_LABEL (BB_END (jump_block)) = label;
1697 LABEL_NUSES (label)++;
1698 }
1699
1700 /* We might be in cfg layout mode, and if so, the following routine will
1701 insert the barrier correctly. */
1702 emit_barrier_after_bb (jump_block);
1703 redirect_edge_succ_nodup (e, target);
1704
1705 if (abnormal_edge_flags)
1706 make_edge (src, target, abnormal_edge_flags);
1707
1708 df_mark_solutions_dirty ();
1709 fixup_partition_crossing (e);
1710 return new_bb;
1711 }
1712
1713 /* Edge E is assumed to be fallthru edge. Emit needed jump instruction
1714 (and possibly create new basic block) to make edge non-fallthru.
1715 Return newly created BB or NULL if none. */
1716
1717 static basic_block
1718 rtl_force_nonfallthru (edge e)
1719 {
1720 return force_nonfallthru_and_redirect (e, e->dest, NULL_RTX);
1721 }
1722
1723 /* Redirect edge even at the expense of creating new jump insn or
1724 basic block. Return new basic block if created, NULL otherwise.
1725 Conversion must be possible. */
1726
1727 static basic_block
1728 rtl_redirect_edge_and_branch_force (edge e, basic_block target)
1729 {
1730 if (redirect_edge_and_branch (e, target)
1731 || e->dest == target)
1732 return NULL;
1733
1734 /* In case the edge redirection failed, try to force it to be non-fallthru
1735 and redirect newly created simplejump. */
1736 df_set_bb_dirty (e->src);
1737 return force_nonfallthru_and_redirect (e, target, NULL_RTX);
1738 }
1739
1740 /* The given edge should potentially be a fallthru edge. If that is in
1741 fact true, delete the jump and barriers that are in the way. */
1742
1743 static void
1744 rtl_tidy_fallthru_edge (edge e)
1745 {
1746 rtx_insn *q;
1747 basic_block b = e->src, c = b->next_bb;
1748
1749 /* ??? In a late-running flow pass, other folks may have deleted basic
1750 blocks by nopping out blocks, leaving multiple BARRIERs between here
1751 and the target label. They ought to be chastised and fixed.
1752
1753 We can also wind up with a sequence of undeletable labels between
1754 one block and the next.
1755
1756 So search through a sequence of barriers, labels, and notes for
1757 the head of block C and assert that we really do fall through. */
1758
1759 for (q = NEXT_INSN (BB_END (b)); q != BB_HEAD (c); q = NEXT_INSN (q))
1760 if (INSN_P (q))
1761 return;
1762
1763 /* Remove what will soon cease being the jump insn from the source block.
1764 If block B consisted only of this single jump, turn it into a deleted
1765 note. */
1766 q = BB_END (b);
1767 if (JUMP_P (q)
1768 && onlyjump_p (q)
1769 && (any_uncondjump_p (q)
1770 || single_succ_p (b)))
1771 {
1772 rtx label;
1773 rtx_jump_table_data *table;
1774
1775 if (tablejump_p (q, &label, &table))
1776 {
1777 /* The label is likely mentioned in some instruction before
1778 the tablejump and might not be DCEd, so turn it into
1779 a note instead and move before the tablejump that is going to
1780 be deleted. */
1781 const char *name = LABEL_NAME (label);
1782 PUT_CODE (label, NOTE);
1783 NOTE_KIND (label) = NOTE_INSN_DELETED_LABEL;
1784 NOTE_DELETED_LABEL_NAME (label) = name;
1785 rtx_insn *lab = safe_as_a <rtx_insn *> (label);
1786 reorder_insns (lab, lab, PREV_INSN (q));
1787 delete_insn (table);
1788 }
1789
1790 /* If this was a conditional jump, we need to also delete
1791 the insn that set cc0. */
1792 if (HAVE_cc0 && any_condjump_p (q) && only_sets_cc0_p (PREV_INSN (q)))
1793 q = PREV_INSN (q);
1794
1795 q = PREV_INSN (q);
1796 }
1797
1798 /* Selectively unlink the sequence. */
1799 if (q != PREV_INSN (BB_HEAD (c)))
1800 delete_insn_chain (NEXT_INSN (q), PREV_INSN (BB_HEAD (c)), false);
1801
1802 e->flags |= EDGE_FALLTHRU;
1803 }
1804 \f
1805 /* Should move basic block BB after basic block AFTER. NIY. */
1806
1807 static bool
1808 rtl_move_block_after (basic_block bb ATTRIBUTE_UNUSED,
1809 basic_block after ATTRIBUTE_UNUSED)
1810 {
1811 return false;
1812 }
1813
1814 /* Locate the last bb in the same partition as START_BB. */
1815
1816 static basic_block
1817 last_bb_in_partition (basic_block start_bb)
1818 {
1819 basic_block bb;
1820 FOR_BB_BETWEEN (bb, start_bb, EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
1821 {
1822 if (BB_PARTITION (start_bb) != BB_PARTITION (bb->next_bb))
1823 return bb;
1824 }
1825 /* Return bb before the exit block. */
1826 return bb->prev_bb;
1827 }
1828
1829 /* Split a (typically critical) edge. Return the new block.
1830 The edge must not be abnormal.
1831
1832 ??? The code generally expects to be called on critical edges.
1833 The case of a block ending in an unconditional jump to a
1834 block with multiple predecessors is not handled optimally. */
1835
1836 static basic_block
1837 rtl_split_edge (edge edge_in)
1838 {
1839 basic_block bb, new_bb;
1840 rtx_insn *before;
1841
1842 /* Abnormal edges cannot be split. */
1843 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
1844
1845 /* We are going to place the new block in front of edge destination.
1846 Avoid existence of fallthru predecessors. */
1847 if ((edge_in->flags & EDGE_FALLTHRU) == 0)
1848 {
1849 edge e = find_fallthru_edge (edge_in->dest->preds);
1850
1851 if (e)
1852 force_nonfallthru (e);
1853 }
1854
1855 /* Create the basic block note. */
1856 if (edge_in->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1857 before = BB_HEAD (edge_in->dest);
1858 else
1859 before = NULL;
1860
1861 /* If this is a fall through edge to the exit block, the blocks might be
1862 not adjacent, and the right place is after the source. */
1863 if ((edge_in->flags & EDGE_FALLTHRU)
1864 && edge_in->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1865 {
1866 before = NEXT_INSN (BB_END (edge_in->src));
1867 bb = create_basic_block (before, NULL, edge_in->src);
1868 BB_COPY_PARTITION (bb, edge_in->src);
1869 }
1870 else
1871 {
1872 if (edge_in->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1873 {
1874 bb = create_basic_block (before, NULL, edge_in->dest->prev_bb);
1875 BB_COPY_PARTITION (bb, edge_in->dest);
1876 }
1877 else
1878 {
1879 basic_block after = edge_in->dest->prev_bb;
1880 /* If this is post-bb reordering, and the edge crosses a partition
1881 boundary, the new block needs to be inserted in the bb chain
1882 at the end of the src partition (since we put the new bb into
1883 that partition, see below). Otherwise we may end up creating
1884 an extra partition crossing in the chain, which is illegal.
1885 It can't go after the src, because src may have a fall-through
1886 to a different block. */
1887 if (crtl->bb_reorder_complete
1888 && (edge_in->flags & EDGE_CROSSING))
1889 {
1890 after = last_bb_in_partition (edge_in->src);
1891 before = get_last_bb_insn (after);
1892 /* The instruction following the last bb in partition should
1893 be a barrier, since it cannot end in a fall-through. */
1894 gcc_checking_assert (BARRIER_P (before));
1895 before = NEXT_INSN (before);
1896 }
1897 bb = create_basic_block (before, NULL, after);
1898 /* Put the split bb into the src partition, to avoid creating
1899 a situation where a cold bb dominates a hot bb, in the case
1900 where src is cold and dest is hot. The src will dominate
1901 the new bb (whereas it might not have dominated dest). */
1902 BB_COPY_PARTITION (bb, edge_in->src);
1903 }
1904 }
1905
1906 make_single_succ_edge (bb, edge_in->dest, EDGE_FALLTHRU);
1907
1908 /* Can't allow a region crossing edge to be fallthrough. */
1909 if (BB_PARTITION (bb) != BB_PARTITION (edge_in->dest)
1910 && edge_in->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1911 {
1912 new_bb = force_nonfallthru (single_succ_edge (bb));
1913 gcc_assert (!new_bb);
1914 }
1915
1916 /* For non-fallthru edges, we must adjust the predecessor's
1917 jump instruction to target our new block. */
1918 if ((edge_in->flags & EDGE_FALLTHRU) == 0)
1919 {
1920 edge redirected = redirect_edge_and_branch (edge_in, bb);
1921 gcc_assert (redirected);
1922 }
1923 else
1924 {
1925 if (edge_in->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
1926 {
1927 /* For asm goto even splitting of fallthru edge might
1928 need insn patching, as other labels might point to the
1929 old label. */
1930 rtx_insn *last = BB_END (edge_in->src);
1931 if (last
1932 && JUMP_P (last)
1933 && edge_in->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
1934 && extract_asm_operands (PATTERN (last)) != NULL_RTX
1935 && patch_jump_insn (last, before, bb))
1936 df_set_bb_dirty (edge_in->src);
1937 }
1938 redirect_edge_succ (edge_in, bb);
1939 }
1940
1941 return bb;
1942 }
1943
1944 /* Queue instructions for insertion on an edge between two basic blocks.
1945 The new instructions and basic blocks (if any) will not appear in the
1946 CFG until commit_edge_insertions is called. */
1947
1948 void
1949 insert_insn_on_edge (rtx pattern, edge e)
1950 {
1951 /* We cannot insert instructions on an abnormal critical edge.
1952 It will be easier to find the culprit if we die now. */
1953 gcc_assert (!((e->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (e)));
1954
1955 if (e->insns.r == NULL_RTX)
1956 start_sequence ();
1957 else
1958 push_to_sequence (e->insns.r);
1959
1960 emit_insn (pattern);
1961
1962 e->insns.r = get_insns ();
1963 end_sequence ();
1964 }
1965
1966 /* Update the CFG for the instructions queued on edge E. */
1967
1968 void
1969 commit_one_edge_insertion (edge e)
1970 {
1971 rtx_insn *before = NULL, *after = NULL, *insns, *tmp, *last;
1972 basic_block bb;
1973
1974 /* Pull the insns off the edge now since the edge might go away. */
1975 insns = e->insns.r;
1976 e->insns.r = NULL;
1977
1978 /* Figure out where to put these insns. If the destination has
1979 one predecessor, insert there. Except for the exit block. */
1980 if (single_pred_p (e->dest) && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1981 {
1982 bb = e->dest;
1983
1984 /* Get the location correct wrt a code label, and "nice" wrt
1985 a basic block note, and before everything else. */
1986 tmp = BB_HEAD (bb);
1987 if (LABEL_P (tmp))
1988 tmp = NEXT_INSN (tmp);
1989 if (NOTE_INSN_BASIC_BLOCK_P (tmp))
1990 tmp = NEXT_INSN (tmp);
1991 if (tmp == BB_HEAD (bb))
1992 before = tmp;
1993 else if (tmp)
1994 after = PREV_INSN (tmp);
1995 else
1996 after = get_last_insn ();
1997 }
1998
1999 /* If the source has one successor and the edge is not abnormal,
2000 insert there. Except for the entry block.
2001 Don't do this if the predecessor ends in a jump other than
2002 unconditional simple jump. E.g. for asm goto that points all
2003 its labels at the fallthru basic block, we can't insert instructions
2004 before the asm goto, as the asm goto can have various of side effects,
2005 and can't emit instructions after the asm goto, as it must end
2006 the basic block. */
2007 else if ((e->flags & EDGE_ABNORMAL) == 0
2008 && single_succ_p (e->src)
2009 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
2010 && (!JUMP_P (BB_END (e->src))
2011 || simplejump_p (BB_END (e->src))))
2012 {
2013 bb = e->src;
2014
2015 /* It is possible to have a non-simple jump here. Consider a target
2016 where some forms of unconditional jumps clobber a register. This
2017 happens on the fr30 for example.
2018
2019 We know this block has a single successor, so we can just emit
2020 the queued insns before the jump. */
2021 if (JUMP_P (BB_END (bb)))
2022 before = BB_END (bb);
2023 else
2024 {
2025 /* We'd better be fallthru, or we've lost track of what's what. */
2026 gcc_assert (e->flags & EDGE_FALLTHRU);
2027
2028 after = BB_END (bb);
2029 }
2030 }
2031
2032 /* Otherwise we must split the edge. */
2033 else
2034 {
2035 bb = split_edge (e);
2036
2037 /* If E crossed a partition boundary, we needed to make bb end in
2038 a region-crossing jump, even though it was originally fallthru. */
2039 if (JUMP_P (BB_END (bb)))
2040 before = BB_END (bb);
2041 else
2042 after = BB_END (bb);
2043 }
2044
2045 /* Now that we've found the spot, do the insertion. */
2046 if (before)
2047 {
2048 emit_insn_before_noloc (insns, before, bb);
2049 last = prev_nonnote_insn (before);
2050 }
2051 else
2052 last = emit_insn_after_noloc (insns, after, bb);
2053
2054 if (returnjump_p (last))
2055 {
2056 /* ??? Remove all outgoing edges from BB and add one for EXIT.
2057 This is not currently a problem because this only happens
2058 for the (single) epilogue, which already has a fallthru edge
2059 to EXIT. */
2060
2061 e = single_succ_edge (bb);
2062 gcc_assert (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
2063 && single_succ_p (bb) && (e->flags & EDGE_FALLTHRU));
2064
2065 e->flags &= ~EDGE_FALLTHRU;
2066 emit_barrier_after (last);
2067
2068 if (before)
2069 delete_insn (before);
2070 }
2071 else
2072 gcc_assert (!JUMP_P (last));
2073 }
2074
2075 /* Update the CFG for all queued instructions. */
2076
2077 void
2078 commit_edge_insertions (void)
2079 {
2080 basic_block bb;
2081
2082 /* Optimization passes that invoke this routine can cause hot blocks
2083 previously reached by both hot and cold blocks to become dominated only
2084 by cold blocks. This will cause the verification below to fail,
2085 and lead to now cold code in the hot section. In some cases this
2086 may only be visible after newly unreachable blocks are deleted,
2087 which will be done by fixup_partitions. */
2088 fixup_partitions ();
2089
2090 checking_verify_flow_info ();
2091
2092 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
2093 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
2094 {
2095 edge e;
2096 edge_iterator ei;
2097
2098 FOR_EACH_EDGE (e, ei, bb->succs)
2099 if (e->insns.r)
2100 commit_one_edge_insertion (e);
2101 }
2102 }
2103 \f
2104
2105 /* Print out RTL-specific basic block information (live information
2106 at start and end with TDF_DETAILS). FLAGS are the TDF_* masks
2107 documented in dumpfile.h. */
2108
2109 static void
2110 rtl_dump_bb (FILE *outf, basic_block bb, int indent, int flags)
2111 {
2112 rtx_insn *insn;
2113 rtx_insn *last;
2114 char *s_indent;
2115
2116 s_indent = (char *) alloca ((size_t) indent + 1);
2117 memset (s_indent, ' ', (size_t) indent);
2118 s_indent[indent] = '\0';
2119
2120 if (df && (flags & TDF_DETAILS))
2121 {
2122 df_dump_top (bb, outf);
2123 putc ('\n', outf);
2124 }
2125
2126 if (bb->index != ENTRY_BLOCK && bb->index != EXIT_BLOCK)
2127 for (insn = BB_HEAD (bb), last = NEXT_INSN (BB_END (bb)); insn != last;
2128 insn = NEXT_INSN (insn))
2129 {
2130 if (flags & TDF_DETAILS)
2131 df_dump_insn_top (insn, outf);
2132 if (! (flags & TDF_SLIM))
2133 print_rtl_single (outf, insn);
2134 else
2135 dump_insn_slim (outf, insn);
2136 if (flags & TDF_DETAILS)
2137 df_dump_insn_bottom (insn, outf);
2138 }
2139
2140 if (df && (flags & TDF_DETAILS))
2141 {
2142 df_dump_bottom (bb, outf);
2143 putc ('\n', outf);
2144 }
2145
2146 }
2147 \f
2148 /* Like dump_function_to_file, but for RTL. Print out dataflow information
2149 for the start of each basic block. FLAGS are the TDF_* masks documented
2150 in dumpfile.h. */
2151
2152 void
2153 print_rtl_with_bb (FILE *outf, const rtx_insn *rtx_first, int flags)
2154 {
2155 const rtx_insn *tmp_rtx;
2156 if (rtx_first == 0)
2157 fprintf (outf, "(nil)\n");
2158 else
2159 {
2160 enum bb_state { NOT_IN_BB, IN_ONE_BB, IN_MULTIPLE_BB };
2161 int max_uid = get_max_uid ();
2162 basic_block *start = XCNEWVEC (basic_block, max_uid);
2163 basic_block *end = XCNEWVEC (basic_block, max_uid);
2164 enum bb_state *in_bb_p = XCNEWVEC (enum bb_state, max_uid);
2165 basic_block bb;
2166
2167 /* After freeing the CFG, we still have BLOCK_FOR_INSN set on most
2168 insns, but the CFG is not maintained so the basic block info
2169 is not reliable. Therefore it's omitted from the dumps. */
2170 if (! (cfun->curr_properties & PROP_cfg))
2171 flags &= ~TDF_BLOCKS;
2172
2173 if (df)
2174 df_dump_start (outf);
2175
2176 if (flags & TDF_BLOCKS)
2177 {
2178 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2179 {
2180 rtx_insn *x;
2181
2182 start[INSN_UID (BB_HEAD (bb))] = bb;
2183 end[INSN_UID (BB_END (bb))] = bb;
2184 for (x = BB_HEAD (bb); x != NULL_RTX; x = NEXT_INSN (x))
2185 {
2186 enum bb_state state = IN_MULTIPLE_BB;
2187
2188 if (in_bb_p[INSN_UID (x)] == NOT_IN_BB)
2189 state = IN_ONE_BB;
2190 in_bb_p[INSN_UID (x)] = state;
2191
2192 if (x == BB_END (bb))
2193 break;
2194 }
2195 }
2196 }
2197
2198 for (tmp_rtx = rtx_first; NULL != tmp_rtx; tmp_rtx = NEXT_INSN (tmp_rtx))
2199 {
2200 if (flags & TDF_BLOCKS)
2201 {
2202 bb = start[INSN_UID (tmp_rtx)];
2203 if (bb != NULL)
2204 {
2205 dump_bb_info (outf, bb, 0, dump_flags | TDF_COMMENT, true, false);
2206 if (df && (flags & TDF_DETAILS))
2207 df_dump_top (bb, outf);
2208 }
2209
2210 if (in_bb_p[INSN_UID (tmp_rtx)] == NOT_IN_BB
2211 && !NOTE_P (tmp_rtx)
2212 && !BARRIER_P (tmp_rtx))
2213 fprintf (outf, ";; Insn is not within a basic block\n");
2214 else if (in_bb_p[INSN_UID (tmp_rtx)] == IN_MULTIPLE_BB)
2215 fprintf (outf, ";; Insn is in multiple basic blocks\n");
2216 }
2217
2218 if (flags & TDF_DETAILS)
2219 df_dump_insn_top (tmp_rtx, outf);
2220 if (! (flags & TDF_SLIM))
2221 print_rtl_single (outf, tmp_rtx);
2222 else
2223 dump_insn_slim (outf, tmp_rtx);
2224 if (flags & TDF_DETAILS)
2225 df_dump_insn_bottom (tmp_rtx, outf);
2226
2227 if (flags & TDF_BLOCKS)
2228 {
2229 bb = end[INSN_UID (tmp_rtx)];
2230 if (bb != NULL)
2231 {
2232 dump_bb_info (outf, bb, 0, dump_flags | TDF_COMMENT, false, true);
2233 if (df && (flags & TDF_DETAILS))
2234 df_dump_bottom (bb, outf);
2235 putc ('\n', outf);
2236 }
2237 }
2238 }
2239
2240 free (start);
2241 free (end);
2242 free (in_bb_p);
2243 }
2244 }
2245 \f
2246 /* Update the branch probability of BB if a REG_BR_PROB is present. */
2247
2248 void
2249 update_br_prob_note (basic_block bb)
2250 {
2251 rtx note;
2252 if (!JUMP_P (BB_END (bb)))
2253 return;
2254 note = find_reg_note (BB_END (bb), REG_BR_PROB, NULL_RTX);
2255 if (!note || XINT (note, 0) == BRANCH_EDGE (bb)->probability)
2256 return;
2257 XINT (note, 0) = BRANCH_EDGE (bb)->probability;
2258 }
2259
2260 /* Get the last insn associated with block BB (that includes barriers and
2261 tablejumps after BB). */
2262 rtx_insn *
2263 get_last_bb_insn (basic_block bb)
2264 {
2265 rtx_jump_table_data *table;
2266 rtx_insn *tmp;
2267 rtx_insn *end = BB_END (bb);
2268
2269 /* Include any jump table following the basic block. */
2270 if (tablejump_p (end, NULL, &table))
2271 end = table;
2272
2273 /* Include any barriers that may follow the basic block. */
2274 tmp = next_nonnote_insn_bb (end);
2275 while (tmp && BARRIER_P (tmp))
2276 {
2277 end = tmp;
2278 tmp = next_nonnote_insn_bb (end);
2279 }
2280
2281 return end;
2282 }
2283
2284 /* Sanity check partition hotness to ensure that basic blocks in
2285   the cold partition don't dominate basic blocks in the hot partition.
2286 If FLAG_ONLY is true, report violations as errors. Otherwise
2287 re-mark the dominated blocks as cold, since this is run after
2288 cfg optimizations that may make hot blocks previously reached
2289 by both hot and cold blocks now only reachable along cold paths. */
2290
2291 static vec<basic_block>
2292 find_partition_fixes (bool flag_only)
2293 {
2294 basic_block bb;
2295 vec<basic_block> bbs_in_cold_partition = vNULL;
2296 vec<basic_block> bbs_to_fix = vNULL;
2297
2298 /* Callers check this. */
2299 gcc_checking_assert (crtl->has_bb_partition);
2300
2301 FOR_EACH_BB_FN (bb, cfun)
2302 if ((BB_PARTITION (bb) == BB_COLD_PARTITION))
2303 bbs_in_cold_partition.safe_push (bb);
2304
2305 if (bbs_in_cold_partition.is_empty ())
2306 return vNULL;
2307
2308 bool dom_calculated_here = !dom_info_available_p (CDI_DOMINATORS);
2309
2310 if (dom_calculated_here)
2311 calculate_dominance_info (CDI_DOMINATORS);
2312
2313 while (! bbs_in_cold_partition.is_empty ())
2314 {
2315 bb = bbs_in_cold_partition.pop ();
2316 /* Any blocks dominated by a block in the cold section
2317 must also be cold. */
2318 basic_block son;
2319 for (son = first_dom_son (CDI_DOMINATORS, bb);
2320 son;
2321 son = next_dom_son (CDI_DOMINATORS, son))
2322 {
2323 /* If son is not yet cold, then mark it cold here and
2324 enqueue it for further processing. */
2325 if ((BB_PARTITION (son) != BB_COLD_PARTITION))
2326 {
2327 if (flag_only)
2328 error ("non-cold basic block %d dominated "
2329 "by a block in the cold partition (%d)", son->index, bb->index);
2330 else
2331 BB_SET_PARTITION (son, BB_COLD_PARTITION);
2332 bbs_to_fix.safe_push (son);
2333 bbs_in_cold_partition.safe_push (son);
2334 }
2335 }
2336 }
2337
2338 if (dom_calculated_here)
2339 free_dominance_info (CDI_DOMINATORS);
2340
2341 return bbs_to_fix;
2342 }
2343
2344 /* Perform cleanup on the hot/cold bb partitioning after optimization
2345 passes that modify the cfg. */
2346
2347 void
2348 fixup_partitions (void)
2349 {
2350 basic_block bb;
2351
2352 if (!crtl->has_bb_partition)
2353 return;
2354
2355 /* Delete any blocks that became unreachable and weren't
2356 already cleaned up, for example during edge forwarding
2357 and convert_jumps_to_returns. This will expose more
2358 opportunities for fixing the partition boundaries here.
2359 Also, the calculation of the dominance graph during verification
2360 will assert if there are unreachable nodes. */
2361 delete_unreachable_blocks ();
2362
2363 /* If there are partitions, do a sanity check on them: A basic block in
2364   a cold partition cannot dominate a basic block in a hot partition.
2365 Fixup any that now violate this requirement, as a result of edge
2366 forwarding and unreachable block deletion.  */
2367 vec<basic_block> bbs_to_fix = find_partition_fixes (false);
2368
2369 /* Do the partition fixup after all necessary blocks have been converted to
2370 cold, so that we only update the region crossings the minimum number of
2371 places, which can require forcing edges to be non fallthru. */
2372 while (! bbs_to_fix.is_empty ())
2373 {
2374 bb = bbs_to_fix.pop ();
2375 fixup_new_cold_bb (bb);
2376 }
2377 }
2378
2379 /* Verify, in the basic block chain, that there is at most one switch
2380 between hot/cold partitions. This condition will not be true until
2381 after reorder_basic_blocks is called. */
2382
2383 static int
2384 verify_hot_cold_block_grouping (void)
2385 {
2386 basic_block bb;
2387 int err = 0;
2388 bool switched_sections = false;
2389 int current_partition = BB_UNPARTITIONED;
2390
2391 /* Even after bb reordering is complete, we go into cfglayout mode
2392 again (in compgoto). Ensure we don't call this before going back
2393 into linearized RTL when any layout fixes would have been committed. */
2394 if (!crtl->bb_reorder_complete
2395 || current_ir_type () != IR_RTL_CFGRTL)
2396 return err;
2397
2398 FOR_EACH_BB_FN (bb, cfun)
2399 {
2400 if (current_partition != BB_UNPARTITIONED
2401 && BB_PARTITION (bb) != current_partition)
2402 {
2403 if (switched_sections)
2404 {
2405 error ("multiple hot/cold transitions found (bb %i)",
2406 bb->index);
2407 err = 1;
2408 }
2409 else
2410 switched_sections = true;
2411
2412 if (!crtl->has_bb_partition)
2413 error ("partition found but function partition flag not set");
2414 }
2415 current_partition = BB_PARTITION (bb);
2416 }
2417
2418 return err;
2419 }
2420 \f
2421
2422 /* Perform several checks on the edges out of each block, such as
2423 the consistency of the branch probabilities, the correctness
2424 of hot/cold partition crossing edges, and the number of expected
2425 successor edges. Also verify that the dominance relationship
2426 between hot/cold blocks is sane. */
2427
2428 static int
2429 rtl_verify_edges (void)
2430 {
2431 int err = 0;
2432 basic_block bb;
2433
2434 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2435 {
2436 int n_fallthru = 0, n_branch = 0, n_abnormal_call = 0, n_sibcall = 0;
2437 int n_eh = 0, n_abnormal = 0;
2438 edge e, fallthru = NULL;
2439 edge_iterator ei;
2440 rtx note;
2441 bool has_crossing_edge = false;
2442
2443 if (JUMP_P (BB_END (bb))
2444 && (note = find_reg_note (BB_END (bb), REG_BR_PROB, NULL_RTX))
2445 && EDGE_COUNT (bb->succs) >= 2
2446 && any_condjump_p (BB_END (bb)))
2447 {
2448 if (XINT (note, 0) != BRANCH_EDGE (bb)->probability
2449 && profile_status_for_fn (cfun) != PROFILE_ABSENT)
2450 {
2451 error ("verify_flow_info: REG_BR_PROB does not match cfg %i %i",
2452 XINT (note, 0), BRANCH_EDGE (bb)->probability);
2453 err = 1;
2454 }
2455 }
2456
2457 FOR_EACH_EDGE (e, ei, bb->succs)
2458 {
2459 bool is_crossing;
2460
2461 if (e->flags & EDGE_FALLTHRU)
2462 n_fallthru++, fallthru = e;
2463
2464 is_crossing = (BB_PARTITION (e->src) != BB_PARTITION (e->dest)
2465 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
2466 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun));
2467 has_crossing_edge |= is_crossing;
2468 if (e->flags & EDGE_CROSSING)
2469 {
2470 if (!is_crossing)
2471 {
2472 error ("EDGE_CROSSING incorrectly set across same section");
2473 err = 1;
2474 }
2475 if (e->flags & EDGE_FALLTHRU)
2476 {
2477 error ("fallthru edge crosses section boundary in bb %i",
2478 e->src->index);
2479 err = 1;
2480 }
2481 if (e->flags & EDGE_EH)
2482 {
2483 error ("EH edge crosses section boundary in bb %i",
2484 e->src->index);
2485 err = 1;
2486 }
2487 if (JUMP_P (BB_END (bb)) && !CROSSING_JUMP_P (BB_END (bb)))
2488 {
2489 error ("No region crossing jump at section boundary in bb %i",
2490 bb->index);
2491 err = 1;
2492 }
2493 }
2494 else if (is_crossing)
2495 {
2496 error ("EDGE_CROSSING missing across section boundary");
2497 err = 1;
2498 }
2499
2500 if ((e->flags & ~(EDGE_DFS_BACK
2501 | EDGE_CAN_FALLTHRU
2502 | EDGE_IRREDUCIBLE_LOOP
2503 | EDGE_LOOP_EXIT
2504 | EDGE_CROSSING
2505 | EDGE_PRESERVE)) == 0)
2506 n_branch++;
2507
2508 if (e->flags & EDGE_ABNORMAL_CALL)
2509 n_abnormal_call++;
2510
2511 if (e->flags & EDGE_SIBCALL)
2512 n_sibcall++;
2513
2514 if (e->flags & EDGE_EH)
2515 n_eh++;
2516
2517 if (e->flags & EDGE_ABNORMAL)
2518 n_abnormal++;
2519 }
2520
2521 if (!has_crossing_edge
2522 && JUMP_P (BB_END (bb))
2523 && CROSSING_JUMP_P (BB_END (bb)))
2524 {
2525 print_rtl_with_bb (stderr, get_insns (), TDF_RTL | TDF_BLOCKS | TDF_DETAILS);
2526 error ("Region crossing jump across same section in bb %i",
2527 bb->index);
2528 err = 1;
2529 }
2530
2531 if (n_eh && !find_reg_note (BB_END (bb), REG_EH_REGION, NULL_RTX))
2532 {
2533 error ("missing REG_EH_REGION note at the end of bb %i", bb->index);
2534 err = 1;
2535 }
2536 if (n_eh > 1)
2537 {
2538 error ("too many exception handling edges in bb %i", bb->index);
2539 err = 1;
2540 }
2541 if (n_branch
2542 && (!JUMP_P (BB_END (bb))
2543 || (n_branch > 1 && (any_uncondjump_p (BB_END (bb))
2544 || any_condjump_p (BB_END (bb))))))
2545 {
2546 error ("too many outgoing branch edges from bb %i", bb->index);
2547 err = 1;
2548 }
2549 if (n_fallthru && any_uncondjump_p (BB_END (bb)))
2550 {
2551 error ("fallthru edge after unconditional jump in bb %i", bb->index);
2552 err = 1;
2553 }
2554 if (n_branch != 1 && any_uncondjump_p (BB_END (bb)))
2555 {
2556 error ("wrong number of branch edges after unconditional jump"
2557 " in bb %i", bb->index);
2558 err = 1;
2559 }
2560 if (n_branch != 1 && any_condjump_p (BB_END (bb))
2561 && JUMP_LABEL (BB_END (bb)) != BB_HEAD (fallthru->dest))
2562 {
2563 error ("wrong amount of branch edges after conditional jump"
2564 " in bb %i", bb->index);
2565 err = 1;
2566 }
2567 if (n_abnormal_call && !CALL_P (BB_END (bb)))
2568 {
2569 error ("abnormal call edges for non-call insn in bb %i", bb->index);
2570 err = 1;
2571 }
2572 if (n_sibcall && !CALL_P (BB_END (bb)))
2573 {
2574 error ("sibcall edges for non-call insn in bb %i", bb->index);
2575 err = 1;
2576 }
2577 if (n_abnormal > n_eh
2578 && !(CALL_P (BB_END (bb))
2579 && n_abnormal == n_abnormal_call + n_sibcall)
2580 && (!JUMP_P (BB_END (bb))
2581 || any_condjump_p (BB_END (bb))
2582 || any_uncondjump_p (BB_END (bb))))
2583 {
2584 error ("abnormal edges for no purpose in bb %i", bb->index);
2585 err = 1;
2586 }
2587 }
2588
2589 /* If there are partitions, do a sanity check on them: A basic block in
2590   a cold partition cannot dominate a basic block in a hot partition.  */
2591 if (crtl->has_bb_partition && !err)
2592 {
2593 vec<basic_block> bbs_to_fix = find_partition_fixes (true);
2594 err = !bbs_to_fix.is_empty ();
2595 }
2596
2597 /* Clean up. */
2598 return err;
2599 }
2600
2601 /* Checks on the instructions within blocks. Currently checks that each
2602 block starts with a basic block note, and that basic block notes and
2603 control flow jumps are not found in the middle of the block. */
2604
2605 static int
2606 rtl_verify_bb_insns (void)
2607 {
2608 rtx_insn *x;
2609 int err = 0;
2610 basic_block bb;
2611
2612 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2613 {
2614 /* Now check the header of basic
2615 block. It ought to contain optional CODE_LABEL followed
2616 by NOTE_BASIC_BLOCK. */
2617 x = BB_HEAD (bb);
2618 if (LABEL_P (x))
2619 {
2620 if (BB_END (bb) == x)
2621 {
2622 error ("NOTE_INSN_BASIC_BLOCK is missing for block %d",
2623 bb->index);
2624 err = 1;
2625 }
2626
2627 x = NEXT_INSN (x);
2628 }
2629
2630 if (!NOTE_INSN_BASIC_BLOCK_P (x) || NOTE_BASIC_BLOCK (x) != bb)
2631 {
2632 error ("NOTE_INSN_BASIC_BLOCK is missing for block %d",
2633 bb->index);
2634 err = 1;
2635 }
2636
2637 if (BB_END (bb) == x)
2638 /* Do checks for empty blocks here. */
2639 ;
2640 else
2641 for (x = NEXT_INSN (x); x; x = NEXT_INSN (x))
2642 {
2643 if (NOTE_INSN_BASIC_BLOCK_P (x))
2644 {
2645 error ("NOTE_INSN_BASIC_BLOCK %d in middle of basic block %d",
2646 INSN_UID (x), bb->index);
2647 err = 1;
2648 }
2649
2650 if (x == BB_END (bb))
2651 break;
2652
2653 if (control_flow_insn_p (x))
2654 {
2655 error ("in basic block %d:", bb->index);
2656 fatal_insn ("flow control insn inside a basic block", x);
2657 }
2658 }
2659 }
2660
2661 /* Clean up. */
2662 return err;
2663 }
2664
2665 /* Verify that block pointers for instructions in basic blocks, headers and
2666 footers are set appropriately. */
2667
2668 static int
2669 rtl_verify_bb_pointers (void)
2670 {
2671 int err = 0;
2672 basic_block bb;
2673
2674 /* Check the general integrity of the basic blocks. */
2675 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2676 {
2677 rtx_insn *insn;
2678
2679 if (!(bb->flags & BB_RTL))
2680 {
2681 error ("BB_RTL flag not set for block %d", bb->index);
2682 err = 1;
2683 }
2684
2685 FOR_BB_INSNS (bb, insn)
2686 if (BLOCK_FOR_INSN (insn) != bb)
2687 {
2688 error ("insn %d basic block pointer is %d, should be %d",
2689 INSN_UID (insn),
2690 BLOCK_FOR_INSN (insn) ? BLOCK_FOR_INSN (insn)->index : 0,
2691 bb->index);
2692 err = 1;
2693 }
2694
2695 for (insn = BB_HEADER (bb); insn; insn = NEXT_INSN (insn))
2696 if (!BARRIER_P (insn)
2697 && BLOCK_FOR_INSN (insn) != NULL)
2698 {
2699 error ("insn %d in header of bb %d has non-NULL basic block",
2700 INSN_UID (insn), bb->index);
2701 err = 1;
2702 }
2703 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2704 if (!BARRIER_P (insn)
2705 && BLOCK_FOR_INSN (insn) != NULL)
2706 {
2707 error ("insn %d in footer of bb %d has non-NULL basic block",
2708 INSN_UID (insn), bb->index);
2709 err = 1;
2710 }
2711 }
2712
2713 /* Clean up. */
2714 return err;
2715 }
2716
2717 /* Verify the CFG and RTL consistency common for both underlying RTL and
2718 cfglayout RTL.
2719
2720 Currently it does following checks:
2721
2722 - overlapping of basic blocks
2723 - insns with wrong BLOCK_FOR_INSN pointers
2724 - headers of basic blocks (the NOTE_INSN_BASIC_BLOCK note)
2725 - tails of basic blocks (ensure that boundary is necessary)
2726 - scans body of the basic block for JUMP_INSN, CODE_LABEL
2727 and NOTE_INSN_BASIC_BLOCK
2728 - verify that no fall_thru edge crosses hot/cold partition boundaries
2729 - verify that there are no pending RTL branch predictions
2730 - verify that hot blocks are not dominated by cold blocks
2731
2732 In future it can be extended check a lot of other stuff as well
2733 (reachability of basic blocks, life information, etc. etc.). */
2734
2735 static int
2736 rtl_verify_flow_info_1 (void)
2737 {
2738 int err = 0;
2739
2740 err |= rtl_verify_bb_pointers ();
2741
2742 err |= rtl_verify_bb_insns ();
2743
2744 err |= rtl_verify_edges ();
2745
2746 return err;
2747 }
2748
2749 /* Walk the instruction chain and verify that bb head/end pointers
2750 are correct, and that instructions are in exactly one bb and have
2751 correct block pointers. */
2752
2753 static int
2754 rtl_verify_bb_insn_chain (void)
2755 {
2756 basic_block bb;
2757 int err = 0;
2758 rtx_insn *x;
2759 rtx_insn *last_head = get_last_insn ();
2760 basic_block *bb_info;
2761 const int max_uid = get_max_uid ();
2762
2763 bb_info = XCNEWVEC (basic_block, max_uid);
2764
2765 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2766 {
2767 rtx_insn *head = BB_HEAD (bb);
2768 rtx_insn *end = BB_END (bb);
2769
2770 for (x = last_head; x != NULL_RTX; x = PREV_INSN (x))
2771 {
2772 /* Verify the end of the basic block is in the INSN chain. */
2773 if (x == end)
2774 break;
2775
2776 /* And that the code outside of basic blocks has NULL bb field. */
2777 if (!BARRIER_P (x)
2778 && BLOCK_FOR_INSN (x) != NULL)
2779 {
2780 error ("insn %d outside of basic blocks has non-NULL bb field",
2781 INSN_UID (x));
2782 err = 1;
2783 }
2784 }
2785
2786 if (!x)
2787 {
2788 error ("end insn %d for block %d not found in the insn stream",
2789 INSN_UID (end), bb->index);
2790 err = 1;
2791 }
2792
2793 /* Work backwards from the end to the head of the basic block
2794 to verify the head is in the RTL chain. */
2795 for (; x != NULL_RTX; x = PREV_INSN (x))
2796 {
2797 /* While walking over the insn chain, verify insns appear
2798 in only one basic block. */
2799 if (bb_info[INSN_UID (x)] != NULL)
2800 {
2801 error ("insn %d is in multiple basic blocks (%d and %d)",
2802 INSN_UID (x), bb->index, bb_info[INSN_UID (x)]->index);
2803 err = 1;
2804 }
2805
2806 bb_info[INSN_UID (x)] = bb;
2807
2808 if (x == head)
2809 break;
2810 }
2811 if (!x)
2812 {
2813 error ("head insn %d for block %d not found in the insn stream",
2814 INSN_UID (head), bb->index);
2815 err = 1;
2816 }
2817
2818 last_head = PREV_INSN (x);
2819 }
2820
2821 for (x = last_head; x != NULL_RTX; x = PREV_INSN (x))
2822 {
2823 /* Check that the code before the first basic block has NULL
2824 bb field. */
2825 if (!BARRIER_P (x)
2826 && BLOCK_FOR_INSN (x) != NULL)
2827 {
2828 error ("insn %d outside of basic blocks has non-NULL bb field",
2829 INSN_UID (x));
2830 err = 1;
2831 }
2832 }
2833 free (bb_info);
2834
2835 return err;
2836 }
2837
2838 /* Verify that fallthru edges point to adjacent blocks in layout order and
2839 that barriers exist after non-fallthru blocks. */
2840
2841 static int
2842 rtl_verify_fallthru (void)
2843 {
2844 basic_block bb;
2845 int err = 0;
2846
2847 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2848 {
2849 edge e;
2850
2851 e = find_fallthru_edge (bb->succs);
2852 if (!e)
2853 {
2854 rtx_insn *insn;
2855
2856 /* Ensure existence of barrier in BB with no fallthru edges. */
2857 for (insn = NEXT_INSN (BB_END (bb)); ; insn = NEXT_INSN (insn))
2858 {
2859 if (!insn || NOTE_INSN_BASIC_BLOCK_P (insn))
2860 {
2861 error ("missing barrier after block %i", bb->index);
2862 err = 1;
2863 break;
2864 }
2865 if (BARRIER_P (insn))
2866 break;
2867 }
2868 }
2869 else if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
2870 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
2871 {
2872 rtx_insn *insn;
2873
2874 if (e->src->next_bb != e->dest)
2875 {
2876 error
2877 ("verify_flow_info: Incorrect blocks for fallthru %i->%i",
2878 e->src->index, e->dest->index);
2879 err = 1;
2880 }
2881 else
2882 for (insn = NEXT_INSN (BB_END (e->src)); insn != BB_HEAD (e->dest);
2883 insn = NEXT_INSN (insn))
2884 if (BARRIER_P (insn) || INSN_P (insn))
2885 {
2886 error ("verify_flow_info: Incorrect fallthru %i->%i",
2887 e->src->index, e->dest->index);
2888 fatal_insn ("wrong insn in the fallthru edge", insn);
2889 err = 1;
2890 }
2891 }
2892 }
2893
2894 return err;
2895 }
2896
2897 /* Verify that blocks are laid out in consecutive order. While walking the
2898 instructions, verify that all expected instructions are inside the basic
2899 blocks, and that all returns are followed by barriers. */
2900
2901 static int
2902 rtl_verify_bb_layout (void)
2903 {
2904 basic_block bb;
2905 int err = 0;
2906 rtx_insn *x;
2907 int num_bb_notes;
2908 rtx_insn * const rtx_first = get_insns ();
2909 basic_block last_bb_seen = ENTRY_BLOCK_PTR_FOR_FN (cfun), curr_bb = NULL;
2910
2911 num_bb_notes = 0;
2912 last_bb_seen = ENTRY_BLOCK_PTR_FOR_FN (cfun);
2913
2914 for (x = rtx_first; x; x = NEXT_INSN (x))
2915 {
2916 if (NOTE_INSN_BASIC_BLOCK_P (x))
2917 {
2918 bb = NOTE_BASIC_BLOCK (x);
2919
2920 num_bb_notes++;
2921 if (bb != last_bb_seen->next_bb)
2922 internal_error ("basic blocks not laid down consecutively");
2923
2924 curr_bb = last_bb_seen = bb;
2925 }
2926
2927 if (!curr_bb)
2928 {
2929 switch (GET_CODE (x))
2930 {
2931 case BARRIER:
2932 case NOTE:
2933 break;
2934
2935 case CODE_LABEL:
2936 /* An ADDR_VEC is placed outside any basic block. */
2937 if (NEXT_INSN (x)
2938 && JUMP_TABLE_DATA_P (NEXT_INSN (x)))
2939 x = NEXT_INSN (x);
2940
2941 /* But in any case, non-deletable labels can appear anywhere. */
2942 break;
2943
2944 default:
2945 fatal_insn ("insn outside basic block", x);
2946 }
2947 }
2948
2949 if (JUMP_P (x)
2950 && returnjump_p (x) && ! condjump_p (x)
2951 && ! (next_nonnote_insn (x) && BARRIER_P (next_nonnote_insn (x))))
2952 fatal_insn ("return not followed by barrier", x);
2953
2954 if (curr_bb && x == BB_END (curr_bb))
2955 curr_bb = NULL;
2956 }
2957
2958 if (num_bb_notes != n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS)
2959 internal_error
2960 ("number of bb notes in insn chain (%d) != n_basic_blocks (%d)",
2961 num_bb_notes, n_basic_blocks_for_fn (cfun));
2962
2963 return err;
2964 }
2965
2966 /* Verify the CFG and RTL consistency common for both underlying RTL and
2967 cfglayout RTL, plus consistency checks specific to linearized RTL mode.
2968
2969 Currently it does following checks:
2970 - all checks of rtl_verify_flow_info_1
2971 - test head/end pointers
2972 - check that blocks are laid out in consecutive order
2973 - check that all insns are in the basic blocks
2974 (except the switch handling code, barriers and notes)
2975 - check that all returns are followed by barriers
2976 - check that all fallthru edge points to the adjacent blocks
2977 - verify that there is a single hot/cold partition boundary after bbro */
2978
2979 static int
2980 rtl_verify_flow_info (void)
2981 {
2982 int err = 0;
2983
2984 err |= rtl_verify_flow_info_1 ();
2985
2986 err |= rtl_verify_bb_insn_chain ();
2987
2988 err |= rtl_verify_fallthru ();
2989
2990 err |= rtl_verify_bb_layout ();
2991
2992 err |= verify_hot_cold_block_grouping ();
2993
2994 return err;
2995 }
2996 \f
2997 /* Assume that the preceding pass has possibly eliminated jump instructions
2998 or converted the unconditional jumps. Eliminate the edges from CFG.
2999 Return true if any edges are eliminated. */
3000
3001 bool
3002 purge_dead_edges (basic_block bb)
3003 {
3004 edge e;
3005 rtx_insn *insn = BB_END (bb);
3006 rtx note;
3007 bool purged = false;
3008 bool found;
3009 edge_iterator ei;
3010
3011 if (DEBUG_INSN_P (insn) && insn != BB_HEAD (bb))
3012 do
3013 insn = PREV_INSN (insn);
3014 while ((DEBUG_INSN_P (insn) || NOTE_P (insn)) && insn != BB_HEAD (bb));
3015
3016 /* If this instruction cannot trap, remove REG_EH_REGION notes. */
3017 if (NONJUMP_INSN_P (insn)
3018 && (note = find_reg_note (insn, REG_EH_REGION, NULL)))
3019 {
3020 rtx eqnote;
3021
3022 if (! may_trap_p (PATTERN (insn))
3023 || ((eqnote = find_reg_equal_equiv_note (insn))
3024 && ! may_trap_p (XEXP (eqnote, 0))))
3025 remove_note (insn, note);
3026 }
3027
3028 /* Cleanup abnormal edges caused by exceptions or non-local gotos. */
3029 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
3030 {
3031 bool remove = false;
3032
3033 /* There are three types of edges we need to handle correctly here: EH
3034 edges, abnormal call EH edges, and abnormal call non-EH edges. The
3035 latter can appear when nonlocal gotos are used. */
3036 if (e->flags & EDGE_ABNORMAL_CALL)
3037 {
3038 if (!CALL_P (insn))
3039 remove = true;
3040 else if (can_nonlocal_goto (insn))
3041 ;
3042 else if ((e->flags & EDGE_EH) && can_throw_internal (insn))
3043 ;
3044 else if (flag_tm && find_reg_note (insn, REG_TM, NULL))
3045 ;
3046 else
3047 remove = true;
3048 }
3049 else if (e->flags & EDGE_EH)
3050 remove = !can_throw_internal (insn);
3051
3052 if (remove)
3053 {
3054 remove_edge (e);
3055 df_set_bb_dirty (bb);
3056 purged = true;
3057 }
3058 else
3059 ei_next (&ei);
3060 }
3061
3062 if (JUMP_P (insn))
3063 {
3064 rtx note;
3065 edge b,f;
3066 edge_iterator ei;
3067
3068 /* We do care only about conditional jumps and simplejumps. */
3069 if (!any_condjump_p (insn)
3070 && !returnjump_p (insn)
3071 && !simplejump_p (insn))
3072 return purged;
3073
3074 /* Branch probability/prediction notes are defined only for
3075 condjumps. We've possibly turned condjump into simplejump. */
3076 if (simplejump_p (insn))
3077 {
3078 note = find_reg_note (insn, REG_BR_PROB, NULL);
3079 if (note)
3080 remove_note (insn, note);
3081 while ((note = find_reg_note (insn, REG_BR_PRED, NULL)))
3082 remove_note (insn, note);
3083 }
3084
3085 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
3086 {
3087 /* Avoid abnormal flags to leak from computed jumps turned
3088 into simplejumps. */
3089
3090 e->flags &= ~EDGE_ABNORMAL;
3091
3092 /* See if this edge is one we should keep. */
3093 if ((e->flags & EDGE_FALLTHRU) && any_condjump_p (insn))
3094 /* A conditional jump can fall through into the next
3095 block, so we should keep the edge. */
3096 {
3097 ei_next (&ei);
3098 continue;
3099 }
3100 else if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
3101 && BB_HEAD (e->dest) == JUMP_LABEL (insn))
3102 /* If the destination block is the target of the jump,
3103 keep the edge. */
3104 {
3105 ei_next (&ei);
3106 continue;
3107 }
3108 else if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
3109 && returnjump_p (insn))
3110 /* If the destination block is the exit block, and this
3111 instruction is a return, then keep the edge. */
3112 {
3113 ei_next (&ei);
3114 continue;
3115 }
3116 else if ((e->flags & EDGE_EH) && can_throw_internal (insn))
3117 /* Keep the edges that correspond to exceptions thrown by
3118 this instruction and rematerialize the EDGE_ABNORMAL
3119 flag we just cleared above. */
3120 {
3121 e->flags |= EDGE_ABNORMAL;
3122 ei_next (&ei);
3123 continue;
3124 }
3125
3126 /* We do not need this edge. */
3127 df_set_bb_dirty (bb);
3128 purged = true;
3129 remove_edge (e);
3130 }
3131
3132 if (EDGE_COUNT (bb->succs) == 0 || !purged)
3133 return purged;
3134
3135 if (dump_file)
3136 fprintf (dump_file, "Purged edges from bb %i\n", bb->index);
3137
3138 if (!optimize)
3139 return purged;
3140
3141 /* Redistribute probabilities. */
3142 if (single_succ_p (bb))
3143 {
3144 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
3145 single_succ_edge (bb)->count = bb->count;
3146 }
3147 else
3148 {
3149 note = find_reg_note (insn, REG_BR_PROB, NULL);
3150 if (!note)
3151 return purged;
3152
3153 b = BRANCH_EDGE (bb);
3154 f = FALLTHRU_EDGE (bb);
3155 b->probability = XINT (note, 0);
3156 f->probability = REG_BR_PROB_BASE - b->probability;
3157 /* Update these to use GCOV_COMPUTE_SCALE. */
3158 b->count = bb->count * b->probability / REG_BR_PROB_BASE;
3159 f->count = bb->count * f->probability / REG_BR_PROB_BASE;
3160 }
3161
3162 return purged;
3163 }
3164 else if (CALL_P (insn) && SIBLING_CALL_P (insn))
3165 {
3166 /* First, there should not be any EH or ABCALL edges resulting
3167 from non-local gotos and the like. If there were, we shouldn't
3168 have created the sibcall in the first place. Second, there
3169 should of course never have been a fallthru edge. */
3170 gcc_assert (single_succ_p (bb));
3171 gcc_assert (single_succ_edge (bb)->flags
3172 == (EDGE_SIBCALL | EDGE_ABNORMAL));
3173
3174 return 0;
3175 }
3176
3177 /* If we don't see a jump insn, we don't know exactly why the block would
3178 have been broken at this point. Look for a simple, non-fallthru edge,
3179 as these are only created by conditional branches. If we find such an
3180 edge we know that there used to be a jump here and can then safely
3181 remove all non-fallthru edges. */
3182 found = false;
3183 FOR_EACH_EDGE (e, ei, bb->succs)
3184 if (! (e->flags & (EDGE_COMPLEX | EDGE_FALLTHRU)))
3185 {
3186 found = true;
3187 break;
3188 }
3189
3190 if (!found)
3191 return purged;
3192
3193 /* Remove all but the fake and fallthru edges. The fake edge may be
3194 the only successor for this block in the case of noreturn
3195 calls. */
3196 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
3197 {
3198 if (!(e->flags & (EDGE_FALLTHRU | EDGE_FAKE)))
3199 {
3200 df_set_bb_dirty (bb);
3201 remove_edge (e);
3202 purged = true;
3203 }
3204 else
3205 ei_next (&ei);
3206 }
3207
3208 gcc_assert (single_succ_p (bb));
3209
3210 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
3211 single_succ_edge (bb)->count = bb->count;
3212
3213 if (dump_file)
3214 fprintf (dump_file, "Purged non-fallthru edges from bb %i\n",
3215 bb->index);
3216 return purged;
3217 }
3218
3219 /* Search all basic blocks for potentially dead edges and purge them. Return
3220 true if some edge has been eliminated. */
3221
3222 bool
3223 purge_all_dead_edges (void)
3224 {
3225 int purged = false;
3226 basic_block bb;
3227
3228 FOR_EACH_BB_FN (bb, cfun)
3229 {
3230 bool purged_here = purge_dead_edges (bb);
3231
3232 purged |= purged_here;
3233 }
3234
3235 return purged;
3236 }
3237
3238 /* This is used by a few passes that emit some instructions after abnormal
3239 calls, moving the basic block's end, while they in fact do want to emit
3240 them on the fallthru edge. Look for abnormal call edges, find backward
3241 the call in the block and insert the instructions on the edge instead.
3242
3243 Similarly, handle instructions throwing exceptions internally.
3244
3245 Return true when instructions have been found and inserted on edges. */
3246
3247 bool
3248 fixup_abnormal_edges (void)
3249 {
3250 bool inserted = false;
3251 basic_block bb;
3252
3253 FOR_EACH_BB_FN (bb, cfun)
3254 {
3255 edge e;
3256 edge_iterator ei;
3257
3258 /* Look for cases we are interested in - calls or instructions causing
3259 exceptions. */
3260 FOR_EACH_EDGE (e, ei, bb->succs)
3261 if ((e->flags & EDGE_ABNORMAL_CALL)
3262 || ((e->flags & (EDGE_ABNORMAL | EDGE_EH))
3263 == (EDGE_ABNORMAL | EDGE_EH)))
3264 break;
3265
3266 if (e && !CALL_P (BB_END (bb)) && !can_throw_internal (BB_END (bb)))
3267 {
3268 rtx_insn *insn;
3269
3270 /* Get past the new insns generated. Allow notes, as the insns
3271 may be already deleted. */
3272 insn = BB_END (bb);
3273 while ((NONJUMP_INSN_P (insn) || NOTE_P (insn))
3274 && !can_throw_internal (insn)
3275 && insn != BB_HEAD (bb))
3276 insn = PREV_INSN (insn);
3277
3278 if (CALL_P (insn) || can_throw_internal (insn))
3279 {
3280 rtx_insn *stop, *next;
3281
3282 e = find_fallthru_edge (bb->succs);
3283
3284 stop = NEXT_INSN (BB_END (bb));
3285 BB_END (bb) = insn;
3286
3287 for (insn = NEXT_INSN (insn); insn != stop; insn = next)
3288 {
3289 next = NEXT_INSN (insn);
3290 if (INSN_P (insn))
3291 {
3292 delete_insn (insn);
3293
3294 /* Sometimes there's still the return value USE.
3295 If it's placed after a trapping call (i.e. that
3296 call is the last insn anyway), we have no fallthru
3297 edge. Simply delete this use and don't try to insert
3298 on the non-existent edge. */
3299 if (GET_CODE (PATTERN (insn)) != USE)
3300 {
3301 /* We're not deleting it, we're moving it. */
3302 insn->set_undeleted ();
3303 SET_PREV_INSN (insn) = NULL_RTX;
3304 SET_NEXT_INSN (insn) = NULL_RTX;
3305
3306 insert_insn_on_edge (insn, e);
3307 inserted = true;
3308 }
3309 }
3310 else if (!BARRIER_P (insn))
3311 set_block_for_insn (insn, NULL);
3312 }
3313 }
3314
3315 /* It may be that we don't find any trapping insn. In this
3316 case we discovered quite late that the insn that had been
3317 marked as can_throw_internal in fact couldn't trap at all.
3318 So we should in fact delete the EH edges out of the block. */
3319 else
3320 purge_dead_edges (bb);
3321 }
3322 }
3323
3324 return inserted;
3325 }
3326 \f
3327 /* Cut the insns from FIRST to LAST out of the insns stream. */
3328
3329 rtx_insn *
3330 unlink_insn_chain (rtx_insn *first, rtx_insn *last)
3331 {
3332 rtx_insn *prevfirst = PREV_INSN (first);
3333 rtx_insn *nextlast = NEXT_INSN (last);
3334
3335 SET_PREV_INSN (first) = NULL;
3336 SET_NEXT_INSN (last) = NULL;
3337 if (prevfirst)
3338 SET_NEXT_INSN (prevfirst) = nextlast;
3339 if (nextlast)
3340 SET_PREV_INSN (nextlast) = prevfirst;
3341 else
3342 set_last_insn (prevfirst);
3343 if (!prevfirst)
3344 set_first_insn (nextlast);
3345 return first;
3346 }
3347 \f
3348 /* Skip over inter-block insns occurring after BB which are typically
3349 associated with BB (e.g., barriers). If there are any such insns,
3350 we return the last one. Otherwise, we return the end of BB. */
3351
3352 static rtx_insn *
3353 skip_insns_after_block (basic_block bb)
3354 {
3355 rtx_insn *insn, *last_insn, *next_head, *prev;
3356
3357 next_head = NULL;
3358 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3359 next_head = BB_HEAD (bb->next_bb);
3360
3361 for (last_insn = insn = BB_END (bb); (insn = NEXT_INSN (insn)) != 0; )
3362 {
3363 if (insn == next_head)
3364 break;
3365
3366 switch (GET_CODE (insn))
3367 {
3368 case BARRIER:
3369 last_insn = insn;
3370 continue;
3371
3372 case NOTE:
3373 switch (NOTE_KIND (insn))
3374 {
3375 case NOTE_INSN_BLOCK_END:
3376 gcc_unreachable ();
3377 continue;
3378 default:
3379 continue;
3380 break;
3381 }
3382 break;
3383
3384 case CODE_LABEL:
3385 if (NEXT_INSN (insn)
3386 && JUMP_TABLE_DATA_P (NEXT_INSN (insn)))
3387 {
3388 insn = NEXT_INSN (insn);
3389 last_insn = insn;
3390 continue;
3391 }
3392 break;
3393
3394 default:
3395 break;
3396 }
3397
3398 break;
3399 }
3400
3401 /* It is possible to hit contradictory sequence. For instance:
3402
3403 jump_insn
3404 NOTE_INSN_BLOCK_BEG
3405 barrier
3406
3407 Where barrier belongs to jump_insn, but the note does not. This can be
3408 created by removing the basic block originally following
3409 NOTE_INSN_BLOCK_BEG. In such case reorder the notes. */
3410
3411 for (insn = last_insn; insn != BB_END (bb); insn = prev)
3412 {
3413 prev = PREV_INSN (insn);
3414 if (NOTE_P (insn))
3415 switch (NOTE_KIND (insn))
3416 {
3417 case NOTE_INSN_BLOCK_END:
3418 gcc_unreachable ();
3419 break;
3420 case NOTE_INSN_DELETED:
3421 case NOTE_INSN_DELETED_LABEL:
3422 case NOTE_INSN_DELETED_DEBUG_LABEL:
3423 continue;
3424 default:
3425 reorder_insns (insn, insn, last_insn);
3426 }
3427 }
3428
3429 return last_insn;
3430 }
3431
3432 /* Locate or create a label for a given basic block. */
3433
3434 static rtx_insn *
3435 label_for_bb (basic_block bb)
3436 {
3437 rtx_insn *label = BB_HEAD (bb);
3438
3439 if (!LABEL_P (label))
3440 {
3441 if (dump_file)
3442 fprintf (dump_file, "Emitting label for block %d\n", bb->index);
3443
3444 label = block_label (bb);
3445 }
3446
3447 return label;
3448 }
3449
3450 /* Locate the effective beginning and end of the insn chain for each
3451 block, as defined by skip_insns_after_block above. */
3452
3453 static void
3454 record_effective_endpoints (void)
3455 {
3456 rtx_insn *next_insn;
3457 basic_block bb;
3458 rtx_insn *insn;
3459
3460 for (insn = get_insns ();
3461 insn
3462 && NOTE_P (insn)
3463 && NOTE_KIND (insn) != NOTE_INSN_BASIC_BLOCK;
3464 insn = NEXT_INSN (insn))
3465 continue;
3466 /* No basic blocks at all? */
3467 gcc_assert (insn);
3468
3469 if (PREV_INSN (insn))
3470 cfg_layout_function_header =
3471 unlink_insn_chain (get_insns (), PREV_INSN (insn));
3472 else
3473 cfg_layout_function_header = NULL;
3474
3475 next_insn = get_insns ();
3476 FOR_EACH_BB_FN (bb, cfun)
3477 {
3478 rtx_insn *end;
3479
3480 if (PREV_INSN (BB_HEAD (bb)) && next_insn != BB_HEAD (bb))
3481 BB_HEADER (bb) = unlink_insn_chain (next_insn,
3482 PREV_INSN (BB_HEAD (bb)));
3483 end = skip_insns_after_block (bb);
3484 if (NEXT_INSN (BB_END (bb)) && BB_END (bb) != end)
3485 BB_FOOTER (bb) = unlink_insn_chain (NEXT_INSN (BB_END (bb)), end);
3486 next_insn = NEXT_INSN (BB_END (bb));
3487 }
3488
3489 cfg_layout_function_footer = next_insn;
3490 if (cfg_layout_function_footer)
3491 cfg_layout_function_footer = unlink_insn_chain (cfg_layout_function_footer, get_last_insn ());
3492 }
3493 \f
3494 namespace {
3495
3496 const pass_data pass_data_into_cfg_layout_mode =
3497 {
3498 RTL_PASS, /* type */
3499 "into_cfglayout", /* name */
3500 OPTGROUP_NONE, /* optinfo_flags */
3501 TV_CFG, /* tv_id */
3502 0, /* properties_required */
3503 PROP_cfglayout, /* properties_provided */
3504 0, /* properties_destroyed */
3505 0, /* todo_flags_start */
3506 0, /* todo_flags_finish */
3507 };
3508
3509 class pass_into_cfg_layout_mode : public rtl_opt_pass
3510 {
3511 public:
3512 pass_into_cfg_layout_mode (gcc::context *ctxt)
3513 : rtl_opt_pass (pass_data_into_cfg_layout_mode, ctxt)
3514 {}
3515
3516 /* opt_pass methods: */
3517 virtual unsigned int execute (function *)
3518 {
3519 cfg_layout_initialize (0);
3520 return 0;
3521 }
3522
3523 }; // class pass_into_cfg_layout_mode
3524
3525 } // anon namespace
3526
3527 rtl_opt_pass *
3528 make_pass_into_cfg_layout_mode (gcc::context *ctxt)
3529 {
3530 return new pass_into_cfg_layout_mode (ctxt);
3531 }
3532
3533 namespace {
3534
3535 const pass_data pass_data_outof_cfg_layout_mode =
3536 {
3537 RTL_PASS, /* type */
3538 "outof_cfglayout", /* name */
3539 OPTGROUP_NONE, /* optinfo_flags */
3540 TV_CFG, /* tv_id */
3541 0, /* properties_required */
3542 0, /* properties_provided */
3543 PROP_cfglayout, /* properties_destroyed */
3544 0, /* todo_flags_start */
3545 0, /* todo_flags_finish */
3546 };
3547
3548 class pass_outof_cfg_layout_mode : public rtl_opt_pass
3549 {
3550 public:
3551 pass_outof_cfg_layout_mode (gcc::context *ctxt)
3552 : rtl_opt_pass (pass_data_outof_cfg_layout_mode, ctxt)
3553 {}
3554
3555 /* opt_pass methods: */
3556 virtual unsigned int execute (function *);
3557
3558 }; // class pass_outof_cfg_layout_mode
3559
3560 unsigned int
3561 pass_outof_cfg_layout_mode::execute (function *fun)
3562 {
3563 basic_block bb;
3564
3565 FOR_EACH_BB_FN (bb, fun)
3566 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (fun))
3567 bb->aux = bb->next_bb;
3568
3569 cfg_layout_finalize ();
3570
3571 return 0;
3572 }
3573
3574 } // anon namespace
3575
3576 rtl_opt_pass *
3577 make_pass_outof_cfg_layout_mode (gcc::context *ctxt)
3578 {
3579 return new pass_outof_cfg_layout_mode (ctxt);
3580 }
3581 \f
3582
3583 /* Link the basic blocks in the correct order, compacting the basic
3584 block queue while at it. If STAY_IN_CFGLAYOUT_MODE is false, this
3585 function also clears the basic block header and footer fields.
3586
3587 This function is usually called after a pass (e.g. tracer) finishes
3588 some transformations while in cfglayout mode. The required sequence
3589 of the basic blocks is in a linked list along the bb->aux field.
3590 This functions re-links the basic block prev_bb and next_bb pointers
3591 accordingly, and it compacts and renumbers the blocks.
3592
3593 FIXME: This currently works only for RTL, but the only RTL-specific
3594 bits are the STAY_IN_CFGLAYOUT_MODE bits. The tracer pass was moved
3595 to GIMPLE a long time ago, but it doesn't relink the basic block
3596 chain. It could do that (to give better initial RTL) if this function
3597 is made IR-agnostic (and moved to cfganal.c or cfg.c while at it). */
3598
3599 void
3600 relink_block_chain (bool stay_in_cfglayout_mode)
3601 {
3602 basic_block bb, prev_bb;
3603 int index;
3604
3605 /* Maybe dump the re-ordered sequence. */
3606 if (dump_file)
3607 {
3608 fprintf (dump_file, "Reordered sequence:\n");
3609 for (bb = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb, index =
3610 NUM_FIXED_BLOCKS;
3611 bb;
3612 bb = (basic_block) bb->aux, index++)
3613 {
3614 fprintf (dump_file, " %i ", index);
3615 if (get_bb_original (bb))
3616 fprintf (dump_file, "duplicate of %i ",
3617 get_bb_original (bb)->index);
3618 else if (forwarder_block_p (bb)
3619 && !LABEL_P (BB_HEAD (bb)))
3620 fprintf (dump_file, "compensation ");
3621 else
3622 fprintf (dump_file, "bb %i ", bb->index);
3623 fprintf (dump_file, " [%i]\n", bb->frequency);
3624 }
3625 }
3626
3627 /* Now reorder the blocks. */
3628 prev_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
3629 bb = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb;
3630 for (; bb; prev_bb = bb, bb = (basic_block) bb->aux)
3631 {
3632 bb->prev_bb = prev_bb;
3633 prev_bb->next_bb = bb;
3634 }
3635 prev_bb->next_bb = EXIT_BLOCK_PTR_FOR_FN (cfun);
3636 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb = prev_bb;
3637
3638 /* Then, clean up the aux fields. */
3639 FOR_ALL_BB_FN (bb, cfun)
3640 {
3641 bb->aux = NULL;
3642 if (!stay_in_cfglayout_mode)
3643 BB_HEADER (bb) = BB_FOOTER (bb) = NULL;
3644 }
3645
3646 /* Maybe reset the original copy tables, they are not valid anymore
3647 when we renumber the basic blocks in compact_blocks. If we are
3648 are going out of cfglayout mode, don't re-allocate the tables. */
3649 free_original_copy_tables ();
3650 if (stay_in_cfglayout_mode)
3651 initialize_original_copy_tables ();
3652
3653 /* Finally, put basic_block_info in the new order. */
3654 compact_blocks ();
3655 }
3656 \f
3657
3658 /* Given a reorder chain, rearrange the code to match. */
3659
3660 static void
3661 fixup_reorder_chain (void)
3662 {
3663 basic_block bb;
3664 rtx_insn *insn = NULL;
3665
3666 if (cfg_layout_function_header)
3667 {
3668 set_first_insn (cfg_layout_function_header);
3669 insn = cfg_layout_function_header;
3670 while (NEXT_INSN (insn))
3671 insn = NEXT_INSN (insn);
3672 }
3673
3674 /* First do the bulk reordering -- rechain the blocks without regard to
3675 the needed changes to jumps and labels. */
3676
3677 for (bb = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb; bb; bb = (basic_block)
3678 bb->aux)
3679 {
3680 if (BB_HEADER (bb))
3681 {
3682 if (insn)
3683 SET_NEXT_INSN (insn) = BB_HEADER (bb);
3684 else
3685 set_first_insn (BB_HEADER (bb));
3686 SET_PREV_INSN (BB_HEADER (bb)) = insn;
3687 insn = BB_HEADER (bb);
3688 while (NEXT_INSN (insn))
3689 insn = NEXT_INSN (insn);
3690 }
3691 if (insn)
3692 SET_NEXT_INSN (insn) = BB_HEAD (bb);
3693 else
3694 set_first_insn (BB_HEAD (bb));
3695 SET_PREV_INSN (BB_HEAD (bb)) = insn;
3696 insn = BB_END (bb);
3697 if (BB_FOOTER (bb))
3698 {
3699 SET_NEXT_INSN (insn) = BB_FOOTER (bb);
3700 SET_PREV_INSN (BB_FOOTER (bb)) = insn;
3701 while (NEXT_INSN (insn))
3702 insn = NEXT_INSN (insn);
3703 }
3704 }
3705
3706 SET_NEXT_INSN (insn) = cfg_layout_function_footer;
3707 if (cfg_layout_function_footer)
3708 SET_PREV_INSN (cfg_layout_function_footer) = insn;
3709
3710 while (NEXT_INSN (insn))
3711 insn = NEXT_INSN (insn);
3712
3713 set_last_insn (insn);
3714 if (flag_checking)
3715 verify_insn_chain ();
3716
3717 /* Now add jumps and labels as needed to match the blocks new
3718 outgoing edges. */
3719
3720 for (bb = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb; bb ; bb = (basic_block)
3721 bb->aux)
3722 {
3723 edge e_fall, e_taken, e;
3724 rtx_insn *bb_end_insn;
3725 rtx ret_label = NULL_RTX;
3726 basic_block nb;
3727 edge_iterator ei;
3728
3729 if (EDGE_COUNT (bb->succs) == 0)
3730 continue;
3731
3732 /* Find the old fallthru edge, and another non-EH edge for
3733 a taken jump. */
3734 e_taken = e_fall = NULL;
3735
3736 FOR_EACH_EDGE (e, ei, bb->succs)
3737 if (e->flags & EDGE_FALLTHRU)
3738 e_fall = e;
3739 else if (! (e->flags & EDGE_EH))
3740 e_taken = e;
3741
3742 bb_end_insn = BB_END (bb);
3743 if (rtx_jump_insn *bb_end_jump = dyn_cast <rtx_jump_insn *> (bb_end_insn))
3744 {
3745 ret_label = JUMP_LABEL (bb_end_jump);
3746 if (any_condjump_p (bb_end_jump))
3747 {
3748 /* This might happen if the conditional jump has side
3749 effects and could therefore not be optimized away.
3750 Make the basic block to end with a barrier in order
3751 to prevent rtl_verify_flow_info from complaining. */
3752 if (!e_fall)
3753 {
3754 gcc_assert (!onlyjump_p (bb_end_jump)
3755 || returnjump_p (bb_end_jump)
3756 || (e_taken->flags & EDGE_CROSSING));
3757 emit_barrier_after (bb_end_jump);
3758 continue;
3759 }
3760
3761 /* If the old fallthru is still next, nothing to do. */
3762 if (bb->aux == e_fall->dest
3763 || e_fall->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
3764 continue;
3765
3766 /* The degenerated case of conditional jump jumping to the next
3767 instruction can happen for jumps with side effects. We need
3768 to construct a forwarder block and this will be done just
3769 fine by force_nonfallthru below. */
3770 if (!e_taken)
3771 ;
3772
3773 /* There is another special case: if *neither* block is next,
3774 such as happens at the very end of a function, then we'll
3775 need to add a new unconditional jump. Choose the taken
3776 edge based on known or assumed probability. */
3777 else if (bb->aux != e_taken->dest)
3778 {
3779 rtx note = find_reg_note (bb_end_jump, REG_BR_PROB, 0);
3780
3781 if (note
3782 && XINT (note, 0) < REG_BR_PROB_BASE / 2
3783 && invert_jump (bb_end_jump,
3784 (e_fall->dest
3785 == EXIT_BLOCK_PTR_FOR_FN (cfun)
3786 ? NULL_RTX
3787 : label_for_bb (e_fall->dest)), 0))
3788 {
3789 e_fall->flags &= ~EDGE_FALLTHRU;
3790 gcc_checking_assert (could_fall_through
3791 (e_taken->src, e_taken->dest));
3792 e_taken->flags |= EDGE_FALLTHRU;
3793 update_br_prob_note (bb);
3794 e = e_fall, e_fall = e_taken, e_taken = e;
3795 }
3796 }
3797
3798 /* If the "jumping" edge is a crossing edge, and the fall
3799 through edge is non-crossing, leave things as they are. */
3800 else if ((e_taken->flags & EDGE_CROSSING)
3801 && !(e_fall->flags & EDGE_CROSSING))
3802 continue;
3803
3804 /* Otherwise we can try to invert the jump. This will
3805 basically never fail, however, keep up the pretense. */
3806 else if (invert_jump (bb_end_jump,
3807 (e_fall->dest
3808 == EXIT_BLOCK_PTR_FOR_FN (cfun)
3809 ? NULL_RTX
3810 : label_for_bb (e_fall->dest)), 0))
3811 {
3812 e_fall->flags &= ~EDGE_FALLTHRU;
3813 gcc_checking_assert (could_fall_through
3814 (e_taken->src, e_taken->dest));
3815 e_taken->flags |= EDGE_FALLTHRU;
3816 update_br_prob_note (bb);
3817 if (LABEL_NUSES (ret_label) == 0
3818 && single_pred_p (e_taken->dest))
3819 delete_insn (ret_label);
3820 continue;
3821 }
3822 }
3823 else if (extract_asm_operands (PATTERN (bb_end_insn)) != NULL)
3824 {
3825 /* If the old fallthru is still next or if
3826 asm goto doesn't have a fallthru (e.g. when followed by
3827 __builtin_unreachable ()), nothing to do. */
3828 if (! e_fall
3829 || bb->aux == e_fall->dest
3830 || e_fall->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
3831 continue;
3832
3833 /* Otherwise we'll have to use the fallthru fixup below. */
3834 }
3835 else
3836 {
3837 /* Otherwise we have some return, switch or computed
3838 jump. In the 99% case, there should not have been a
3839 fallthru edge. */
3840 gcc_assert (returnjump_p (bb_end_insn) || !e_fall);
3841 continue;
3842 }
3843 }
3844 else
3845 {
3846 /* No fallthru implies a noreturn function with EH edges, or
3847 something similarly bizarre. In any case, we don't need to
3848 do anything. */
3849 if (! e_fall)
3850 continue;
3851
3852 /* If the fallthru block is still next, nothing to do. */
3853 if (bb->aux == e_fall->dest)
3854 continue;
3855
3856 /* A fallthru to exit block. */
3857 if (e_fall->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
3858 continue;
3859 }
3860
3861 /* We got here if we need to add a new jump insn.
3862 Note force_nonfallthru can delete E_FALL and thus we have to
3863 save E_FALL->src prior to the call to force_nonfallthru. */
3864 nb = force_nonfallthru_and_redirect (e_fall, e_fall->dest, ret_label);
3865 if (nb)
3866 {
3867 nb->aux = bb->aux;
3868 bb->aux = nb;
3869 /* Don't process this new block. */
3870 bb = nb;
3871 }
3872 }
3873
3874 relink_block_chain (/*stay_in_cfglayout_mode=*/false);
3875
3876 /* Annoying special case - jump around dead jumptables left in the code. */
3877 FOR_EACH_BB_FN (bb, cfun)
3878 {
3879 edge e = find_fallthru_edge (bb->succs);
3880
3881 if (e && !can_fallthru (e->src, e->dest))
3882 force_nonfallthru (e);
3883 }
3884
3885 /* Ensure goto_locus from edges has some instructions with that locus
3886 in RTL. */
3887 if (!optimize)
3888 FOR_EACH_BB_FN (bb, cfun)
3889 {
3890 edge e;
3891 edge_iterator ei;
3892
3893 FOR_EACH_EDGE (e, ei, bb->succs)
3894 if (LOCATION_LOCUS (e->goto_locus) != UNKNOWN_LOCATION
3895 && !(e->flags & EDGE_ABNORMAL))
3896 {
3897 edge e2;
3898 edge_iterator ei2;
3899 basic_block dest, nb;
3900 rtx_insn *end;
3901
3902 insn = BB_END (e->src);
3903 end = PREV_INSN (BB_HEAD (e->src));
3904 while (insn != end
3905 && (!NONDEBUG_INSN_P (insn) || !INSN_HAS_LOCATION (insn)))
3906 insn = PREV_INSN (insn);
3907 if (insn != end
3908 && INSN_LOCATION (insn) == e->goto_locus)
3909 continue;
3910 if (simplejump_p (BB_END (e->src))
3911 && !INSN_HAS_LOCATION (BB_END (e->src)))
3912 {
3913 INSN_LOCATION (BB_END (e->src)) = e->goto_locus;
3914 continue;
3915 }
3916 dest = e->dest;
3917 if (dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
3918 {
3919 /* Non-fallthru edges to the exit block cannot be split. */
3920 if (!(e->flags & EDGE_FALLTHRU))
3921 continue;
3922 }
3923 else
3924 {
3925 insn = BB_HEAD (dest);
3926 end = NEXT_INSN (BB_END (dest));
3927 while (insn != end && !NONDEBUG_INSN_P (insn))
3928 insn = NEXT_INSN (insn);
3929 if (insn != end && INSN_HAS_LOCATION (insn)
3930 && INSN_LOCATION (insn) == e->goto_locus)
3931 continue;
3932 }
3933 nb = split_edge (e);
3934 if (!INSN_P (BB_END (nb)))
3935 BB_END (nb) = emit_insn_after_noloc (gen_nop (), BB_END (nb),
3936 nb);
3937 INSN_LOCATION (BB_END (nb)) = e->goto_locus;
3938
3939 /* If there are other incoming edges to the destination block
3940 with the same goto locus, redirect them to the new block as
3941 well, this can prevent other such blocks from being created
3942 in subsequent iterations of the loop. */
3943 for (ei2 = ei_start (dest->preds); (e2 = ei_safe_edge (ei2)); )
3944 if (LOCATION_LOCUS (e2->goto_locus) != UNKNOWN_LOCATION
3945 && !(e2->flags & (EDGE_ABNORMAL | EDGE_FALLTHRU))
3946 && e->goto_locus == e2->goto_locus)
3947 redirect_edge_and_branch (e2, nb);
3948 else
3949 ei_next (&ei2);
3950 }
3951 }
3952 }
3953 \f
3954 /* Perform sanity checks on the insn chain.
3955 1. Check that next/prev pointers are consistent in both the forward and
3956 reverse direction.
3957 2. Count insns in chain, going both directions, and check if equal.
3958 3. Check that get_last_insn () returns the actual end of chain. */
3959
3960 DEBUG_FUNCTION void
3961 verify_insn_chain (void)
3962 {
3963 rtx_insn *x, *prevx, *nextx;
3964 int insn_cnt1, insn_cnt2;
3965
3966 for (prevx = NULL, insn_cnt1 = 1, x = get_insns ();
3967 x != 0;
3968 prevx = x, insn_cnt1++, x = NEXT_INSN (x))
3969 gcc_assert (PREV_INSN (x) == prevx);
3970
3971 gcc_assert (prevx == get_last_insn ());
3972
3973 for (nextx = NULL, insn_cnt2 = 1, x = get_last_insn ();
3974 x != 0;
3975 nextx = x, insn_cnt2++, x = PREV_INSN (x))
3976 gcc_assert (NEXT_INSN (x) == nextx);
3977
3978 gcc_assert (insn_cnt1 == insn_cnt2);
3979 }
3980 \f
3981 /* If we have assembler epilogues, the block falling through to exit must
3982 be the last one in the reordered chain when we reach final. Ensure
3983 that this condition is met. */
3984 static void
3985 fixup_fallthru_exit_predecessor (void)
3986 {
3987 edge e;
3988 basic_block bb = NULL;
3989
3990 /* This transformation is not valid before reload, because we might
3991 separate a call from the instruction that copies the return
3992 value. */
3993 gcc_assert (reload_completed);
3994
3995 e = find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
3996 if (e)
3997 bb = e->src;
3998
3999 if (bb && bb->aux)
4000 {
4001 basic_block c = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb;
4002
4003 /* If the very first block is the one with the fall-through exit
4004 edge, we have to split that block. */
4005 if (c == bb)
4006 {
4007 bb = split_block_after_labels (bb)->dest;
4008 bb->aux = c->aux;
4009 c->aux = bb;
4010 BB_FOOTER (bb) = BB_FOOTER (c);
4011 BB_FOOTER (c) = NULL;
4012 }
4013
4014 while (c->aux != bb)
4015 c = (basic_block) c->aux;
4016
4017 c->aux = bb->aux;
4018 while (c->aux)
4019 c = (basic_block) c->aux;
4020
4021 c->aux = bb;
4022 bb->aux = NULL;
4023 }
4024 }
4025
4026 /* In case there are more than one fallthru predecessors of exit, force that
4027 there is only one. */
4028
4029 static void
4030 force_one_exit_fallthru (void)
4031 {
4032 edge e, predecessor = NULL;
4033 bool more = false;
4034 edge_iterator ei;
4035 basic_block forwarder, bb;
4036
4037 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
4038 if (e->flags & EDGE_FALLTHRU)
4039 {
4040 if (predecessor == NULL)
4041 predecessor = e;
4042 else
4043 {
4044 more = true;
4045 break;
4046 }
4047 }
4048
4049 if (!more)
4050 return;
4051
4052 /* Exit has several fallthru predecessors. Create a forwarder block for
4053 them. */
4054 forwarder = split_edge (predecessor);
4055 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
4056 (e = ei_safe_edge (ei)); )
4057 {
4058 if (e->src == forwarder
4059 || !(e->flags & EDGE_FALLTHRU))
4060 ei_next (&ei);
4061 else
4062 redirect_edge_and_branch_force (e, forwarder);
4063 }
4064
4065 /* Fix up the chain of blocks -- make FORWARDER immediately precede the
4066 exit block. */
4067 FOR_EACH_BB_FN (bb, cfun)
4068 {
4069 if (bb->aux == NULL && bb != forwarder)
4070 {
4071 bb->aux = forwarder;
4072 break;
4073 }
4074 }
4075 }
4076 \f
4077 /* Return true in case it is possible to duplicate the basic block BB. */
4078
4079 static bool
4080 cfg_layout_can_duplicate_bb_p (const_basic_block bb)
4081 {
4082 /* Do not attempt to duplicate tablejumps, as we need to unshare
4083 the dispatch table. This is difficult to do, as the instructions
4084 computing jump destination may be hoisted outside the basic block. */
4085 if (tablejump_p (BB_END (bb), NULL, NULL))
4086 return false;
4087
4088 /* Do not duplicate blocks containing insns that can't be copied. */
4089 if (targetm.cannot_copy_insn_p)
4090 {
4091 rtx_insn *insn = BB_HEAD (bb);
4092 while (1)
4093 {
4094 if (INSN_P (insn) && targetm.cannot_copy_insn_p (insn))
4095 return false;
4096 if (insn == BB_END (bb))
4097 break;
4098 insn = NEXT_INSN (insn);
4099 }
4100 }
4101
4102 return true;
4103 }
4104
4105 rtx_insn *
4106 duplicate_insn_chain (rtx_insn *from, rtx_insn *to)
4107 {
4108 rtx_insn *insn, *next, *copy;
4109 rtx_note *last;
4110
4111 /* Avoid updating of boundaries of previous basic block. The
4112 note will get removed from insn stream in fixup. */
4113 last = emit_note (NOTE_INSN_DELETED);
4114
4115 /* Create copy at the end of INSN chain. The chain will
4116 be reordered later. */
4117 for (insn = from; insn != NEXT_INSN (to); insn = NEXT_INSN (insn))
4118 {
4119 switch (GET_CODE (insn))
4120 {
4121 case DEBUG_INSN:
4122 /* Don't duplicate label debug insns. */
4123 if (TREE_CODE (INSN_VAR_LOCATION_DECL (insn)) == LABEL_DECL)
4124 break;
4125 /* FALLTHRU */
4126 case INSN:
4127 case CALL_INSN:
4128 case JUMP_INSN:
4129 copy = emit_copy_of_insn_after (insn, get_last_insn ());
4130 if (JUMP_P (insn) && JUMP_LABEL (insn) != NULL_RTX
4131 && ANY_RETURN_P (JUMP_LABEL (insn)))
4132 JUMP_LABEL (copy) = JUMP_LABEL (insn);
4133 maybe_copy_prologue_epilogue_insn (insn, copy);
4134 break;
4135
4136 case JUMP_TABLE_DATA:
4137 /* Avoid copying of dispatch tables. We never duplicate
4138 tablejumps, so this can hit only in case the table got
4139 moved far from original jump.
4140 Avoid copying following barrier as well if any
4141 (and debug insns in between). */
4142 for (next = NEXT_INSN (insn);
4143 next != NEXT_INSN (to);
4144 next = NEXT_INSN (next))
4145 if (!DEBUG_INSN_P (next))
4146 break;
4147 if (next != NEXT_INSN (to) && BARRIER_P (next))
4148 insn = next;
4149 break;
4150
4151 case CODE_LABEL:
4152 break;
4153
4154 case BARRIER:
4155 emit_barrier ();
4156 break;
4157
4158 case NOTE:
4159 switch (NOTE_KIND (insn))
4160 {
4161 /* In case prologue is empty and function contain label
4162 in first BB, we may want to copy the block. */
4163 case NOTE_INSN_PROLOGUE_END:
4164
4165 case NOTE_INSN_DELETED:
4166 case NOTE_INSN_DELETED_LABEL:
4167 case NOTE_INSN_DELETED_DEBUG_LABEL:
4168 /* No problem to strip these. */
4169 case NOTE_INSN_FUNCTION_BEG:
4170 /* There is always just single entry to function. */
4171 case NOTE_INSN_BASIC_BLOCK:
4172 /* We should only switch text sections once. */
4173 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
4174 break;
4175
4176 case NOTE_INSN_EPILOGUE_BEG:
4177 case NOTE_INSN_UPDATE_SJLJ_CONTEXT:
4178 emit_note_copy (as_a <rtx_note *> (insn));
4179 break;
4180
4181 default:
4182 /* All other notes should have already been eliminated. */
4183 gcc_unreachable ();
4184 }
4185 break;
4186 default:
4187 gcc_unreachable ();
4188 }
4189 }
4190 insn = NEXT_INSN (last);
4191 delete_insn (last);
4192 return insn;
4193 }
4194
4195 /* Create a duplicate of the basic block BB. */
4196
4197 static basic_block
4198 cfg_layout_duplicate_bb (basic_block bb)
4199 {
4200 rtx_insn *insn;
4201 basic_block new_bb;
4202
4203 insn = duplicate_insn_chain (BB_HEAD (bb), BB_END (bb));
4204 new_bb = create_basic_block (insn,
4205 insn ? get_last_insn () : NULL,
4206 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
4207
4208 BB_COPY_PARTITION (new_bb, bb);
4209 if (BB_HEADER (bb))
4210 {
4211 insn = BB_HEADER (bb);
4212 while (NEXT_INSN (insn))
4213 insn = NEXT_INSN (insn);
4214 insn = duplicate_insn_chain (BB_HEADER (bb), insn);
4215 if (insn)
4216 BB_HEADER (new_bb) = unlink_insn_chain (insn, get_last_insn ());
4217 }
4218
4219 if (BB_FOOTER (bb))
4220 {
4221 insn = BB_FOOTER (bb);
4222 while (NEXT_INSN (insn))
4223 insn = NEXT_INSN (insn);
4224 insn = duplicate_insn_chain (BB_FOOTER (bb), insn);
4225 if (insn)
4226 BB_FOOTER (new_bb) = unlink_insn_chain (insn, get_last_insn ());
4227 }
4228
4229 return new_bb;
4230 }
4231
4232 \f
4233 /* Main entry point to this module - initialize the datastructures for
4234 CFG layout changes. It keeps LOOPS up-to-date if not null.
4235
4236 FLAGS is a set of additional flags to pass to cleanup_cfg(). */
4237
4238 void
4239 cfg_layout_initialize (unsigned int flags)
4240 {
4241 rtx_insn_list *x;
4242 basic_block bb;
4243
4244 /* Once bb partitioning is complete, cfg layout mode should not be
4245 re-entered. Entering cfg layout mode may require fixups. As an
4246 example, if edge forwarding performed when optimizing the cfg
4247 layout required moving a block from the hot to the cold
4248 section. This would create an illegal partitioning unless some
4249 manual fixup was performed. */
4250 gcc_assert (!(crtl->bb_reorder_complete
4251 && flag_reorder_blocks_and_partition));
4252
4253 initialize_original_copy_tables ();
4254
4255 cfg_layout_rtl_register_cfg_hooks ();
4256
4257 record_effective_endpoints ();
4258
4259 /* Make sure that the targets of non local gotos are marked. */
4260 for (x = nonlocal_goto_handler_labels; x; x = x->next ())
4261 {
4262 bb = BLOCK_FOR_INSN (x->insn ());
4263 bb->flags |= BB_NON_LOCAL_GOTO_TARGET;
4264 }
4265
4266 cleanup_cfg (CLEANUP_CFGLAYOUT | flags);
4267 }
4268
4269 /* Splits superblocks. */
4270 void
4271 break_superblocks (void)
4272 {
4273 sbitmap superblocks;
4274 bool need = false;
4275 basic_block bb;
4276
4277 superblocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
4278 bitmap_clear (superblocks);
4279
4280 FOR_EACH_BB_FN (bb, cfun)
4281 if (bb->flags & BB_SUPERBLOCK)
4282 {
4283 bb->flags &= ~BB_SUPERBLOCK;
4284 bitmap_set_bit (superblocks, bb->index);
4285 need = true;
4286 }
4287
4288 if (need)
4289 {
4290 rebuild_jump_labels (get_insns ());
4291 find_many_sub_basic_blocks (superblocks);
4292 }
4293
4294 free (superblocks);
4295 }
4296
4297 /* Finalize the changes: reorder insn list according to the sequence specified
4298 by aux pointers, enter compensation code, rebuild scope forest. */
4299
4300 void
4301 cfg_layout_finalize (void)
4302 {
4303 checking_verify_flow_info ();
4304 free_dominance_info (CDI_DOMINATORS);
4305 force_one_exit_fallthru ();
4306 rtl_register_cfg_hooks ();
4307 if (reload_completed && !targetm.have_epilogue ())
4308 fixup_fallthru_exit_predecessor ();
4309 fixup_reorder_chain ();
4310
4311 rebuild_jump_labels (get_insns ());
4312 delete_dead_jumptables ();
4313
4314 if (flag_checking)
4315 verify_insn_chain ();
4316 checking_verify_flow_info ();
4317 }
4318
4319
4320 /* Same as split_block but update cfg_layout structures. */
4321
4322 static basic_block
4323 cfg_layout_split_block (basic_block bb, void *insnp)
4324 {
4325 rtx insn = (rtx) insnp;
4326 basic_block new_bb = rtl_split_block (bb, insn);
4327
4328 BB_FOOTER (new_bb) = BB_FOOTER (bb);
4329 BB_FOOTER (bb) = NULL;
4330
4331 return new_bb;
4332 }
4333
4334 /* Redirect Edge to DEST. */
4335 static edge
4336 cfg_layout_redirect_edge_and_branch (edge e, basic_block dest)
4337 {
4338 basic_block src = e->src;
4339 edge ret;
4340
4341 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
4342 return NULL;
4343
4344 if (e->dest == dest)
4345 return e;
4346
4347 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
4348 && (ret = try_redirect_by_replacing_jump (e, dest, true)))
4349 {
4350 df_set_bb_dirty (src);
4351 return ret;
4352 }
4353
4354 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
4355 && (e->flags & EDGE_FALLTHRU) && !(e->flags & EDGE_COMPLEX))
4356 {
4357 if (dump_file)
4358 fprintf (dump_file, "Redirecting entry edge from bb %i to %i\n",
4359 e->src->index, dest->index);
4360
4361 df_set_bb_dirty (e->src);
4362 redirect_edge_succ (e, dest);
4363 return e;
4364 }
4365
4366 /* Redirect_edge_and_branch may decide to turn branch into fallthru edge
4367 in the case the basic block appears to be in sequence. Avoid this
4368 transformation. */
4369
4370 if (e->flags & EDGE_FALLTHRU)
4371 {
4372 /* Redirect any branch edges unified with the fallthru one. */
4373 if (JUMP_P (BB_END (src))
4374 && label_is_jump_target_p (BB_HEAD (e->dest),
4375 BB_END (src)))
4376 {
4377 edge redirected;
4378
4379 if (dump_file)
4380 fprintf (dump_file, "Fallthru edge unified with branch "
4381 "%i->%i redirected to %i\n",
4382 e->src->index, e->dest->index, dest->index);
4383 e->flags &= ~EDGE_FALLTHRU;
4384 redirected = redirect_branch_edge (e, dest);
4385 gcc_assert (redirected);
4386 redirected->flags |= EDGE_FALLTHRU;
4387 df_set_bb_dirty (redirected->src);
4388 return redirected;
4389 }
4390 /* In case we are redirecting fallthru edge to the branch edge
4391 of conditional jump, remove it. */
4392 if (EDGE_COUNT (src->succs) == 2)
4393 {
4394 /* Find the edge that is different from E. */
4395 edge s = EDGE_SUCC (src, EDGE_SUCC (src, 0) == e);
4396
4397 if (s->dest == dest
4398 && any_condjump_p (BB_END (src))
4399 && onlyjump_p (BB_END (src)))
4400 delete_insn (BB_END (src));
4401 }
4402 if (dump_file)
4403 fprintf (dump_file, "Redirecting fallthru edge %i->%i to %i\n",
4404 e->src->index, e->dest->index, dest->index);
4405 ret = redirect_edge_succ_nodup (e, dest);
4406 }
4407 else
4408 ret = redirect_branch_edge (e, dest);
4409
4410 /* We don't want simplejumps in the insn stream during cfglayout. */
4411 gcc_assert (!simplejump_p (BB_END (src)));
4412
4413 df_set_bb_dirty (src);
4414 return ret;
4415 }
4416
4417 /* Simple wrapper as we always can redirect fallthru edges. */
4418 static basic_block
4419 cfg_layout_redirect_edge_and_branch_force (edge e, basic_block dest)
4420 {
4421 edge redirected = cfg_layout_redirect_edge_and_branch (e, dest);
4422
4423 gcc_assert (redirected);
4424 return NULL;
4425 }
4426
4427 /* Same as delete_basic_block but update cfg_layout structures. */
4428
4429 static void
4430 cfg_layout_delete_block (basic_block bb)
4431 {
4432 rtx_insn *insn, *next, *prev = PREV_INSN (BB_HEAD (bb)), *remaints;
4433 rtx_insn **to;
4434
4435 if (BB_HEADER (bb))
4436 {
4437 next = BB_HEAD (bb);
4438 if (prev)
4439 SET_NEXT_INSN (prev) = BB_HEADER (bb);
4440 else
4441 set_first_insn (BB_HEADER (bb));
4442 SET_PREV_INSN (BB_HEADER (bb)) = prev;
4443 insn = BB_HEADER (bb);
4444 while (NEXT_INSN (insn))
4445 insn = NEXT_INSN (insn);
4446 SET_NEXT_INSN (insn) = next;
4447 SET_PREV_INSN (next) = insn;
4448 }
4449 next = NEXT_INSN (BB_END (bb));
4450 if (BB_FOOTER (bb))
4451 {
4452 insn = BB_FOOTER (bb);
4453 while (insn)
4454 {
4455 if (BARRIER_P (insn))
4456 {
4457 if (PREV_INSN (insn))
4458 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
4459 else
4460 BB_FOOTER (bb) = NEXT_INSN (insn);
4461 if (NEXT_INSN (insn))
4462 SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
4463 }
4464 if (LABEL_P (insn))
4465 break;
4466 insn = NEXT_INSN (insn);
4467 }
4468 if (BB_FOOTER (bb))
4469 {
4470 insn = BB_END (bb);
4471 SET_NEXT_INSN (insn) = BB_FOOTER (bb);
4472 SET_PREV_INSN (BB_FOOTER (bb)) = insn;
4473 while (NEXT_INSN (insn))
4474 insn = NEXT_INSN (insn);
4475 SET_NEXT_INSN (insn) = next;
4476 if (next)
4477 SET_PREV_INSN (next) = insn;
4478 else
4479 set_last_insn (insn);
4480 }
4481 }
4482 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
4483 to = &BB_HEADER (bb->next_bb);
4484 else
4485 to = &cfg_layout_function_footer;
4486
4487 rtl_delete_block (bb);
4488
4489 if (prev)
4490 prev = NEXT_INSN (prev);
4491 else
4492 prev = get_insns ();
4493 if (next)
4494 next = PREV_INSN (next);
4495 else
4496 next = get_last_insn ();
4497
4498 if (next && NEXT_INSN (next) != prev)
4499 {
4500 remaints = unlink_insn_chain (prev, next);
4501 insn = remaints;
4502 while (NEXT_INSN (insn))
4503 insn = NEXT_INSN (insn);
4504 SET_NEXT_INSN (insn) = *to;
4505 if (*to)
4506 SET_PREV_INSN (*to) = insn;
4507 *to = remaints;
4508 }
4509 }
4510
4511 /* Return true when blocks A and B can be safely merged. */
4512
4513 static bool
4514 cfg_layout_can_merge_blocks_p (basic_block a, basic_block b)
4515 {
4516 /* If we are partitioning hot/cold basic blocks, we don't want to
4517 mess up unconditional or indirect jumps that cross between hot
4518 and cold sections.
4519
4520 Basic block partitioning may result in some jumps that appear to
4521 be optimizable (or blocks that appear to be mergeable), but which really
4522 must be left untouched (they are required to make it safely across
4523 partition boundaries). See the comments at the top of
4524 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
4525
4526 if (BB_PARTITION (a) != BB_PARTITION (b))
4527 return false;
4528
4529 /* Protect the loop latches. */
4530 if (current_loops && b->loop_father->latch == b)
4531 return false;
4532
4533 /* If we would end up moving B's instructions, make sure it doesn't fall
4534 through into the exit block, since we cannot recover from a fallthrough
4535 edge into the exit block occurring in the middle of a function. */
4536 if (NEXT_INSN (BB_END (a)) != BB_HEAD (b))
4537 {
4538 edge e = find_fallthru_edge (b->succs);
4539 if (e && e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
4540 return false;
4541 }
4542
4543 /* There must be exactly one edge in between the blocks. */
4544 return (single_succ_p (a)
4545 && single_succ (a) == b
4546 && single_pred_p (b) == 1
4547 && a != b
4548 /* Must be simple edge. */
4549 && !(single_succ_edge (a)->flags & EDGE_COMPLEX)
4550 && a != ENTRY_BLOCK_PTR_FOR_FN (cfun)
4551 && b != EXIT_BLOCK_PTR_FOR_FN (cfun)
4552 /* If the jump insn has side effects, we can't kill the edge.
4553 When not optimizing, try_redirect_by_replacing_jump will
4554 not allow us to redirect an edge by replacing a table jump. */
4555 && (!JUMP_P (BB_END (a))
4556 || ((!optimize || reload_completed)
4557 ? simplejump_p (BB_END (a)) : onlyjump_p (BB_END (a)))));
4558 }
4559
4560 /* Merge block A and B. The blocks must be mergeable. */
4561
4562 static void
4563 cfg_layout_merge_blocks (basic_block a, basic_block b)
4564 {
4565 bool forwarder_p = (b->flags & BB_FORWARDER_BLOCK) != 0;
4566 rtx_insn *insn;
4567
4568 gcc_checking_assert (cfg_layout_can_merge_blocks_p (a, b));
4569
4570 if (dump_file)
4571 fprintf (dump_file, "Merging block %d into block %d...\n", b->index,
4572 a->index);
4573
4574 /* If there was a CODE_LABEL beginning B, delete it. */
4575 if (LABEL_P (BB_HEAD (b)))
4576 {
4577 delete_insn (BB_HEAD (b));
4578 }
4579
4580 /* We should have fallthru edge in a, or we can do dummy redirection to get
4581 it cleaned up. */
4582 if (JUMP_P (BB_END (a)))
4583 try_redirect_by_replacing_jump (EDGE_SUCC (a, 0), b, true);
4584 gcc_assert (!JUMP_P (BB_END (a)));
4585
4586 /* When not optimizing and the edge is the only place in RTL which holds
4587 some unique locus, emit a nop with that locus in between. */
4588 if (!optimize)
4589 emit_nop_for_unique_locus_between (a, b);
4590
4591 /* Move things from b->footer after a->footer. */
4592 if (BB_FOOTER (b))
4593 {
4594 if (!BB_FOOTER (a))
4595 BB_FOOTER (a) = BB_FOOTER (b);
4596 else
4597 {
4598 rtx_insn *last = BB_FOOTER (a);
4599
4600 while (NEXT_INSN (last))
4601 last = NEXT_INSN (last);
4602 SET_NEXT_INSN (last) = BB_FOOTER (b);
4603 SET_PREV_INSN (BB_FOOTER (b)) = last;
4604 }
4605 BB_FOOTER (b) = NULL;
4606 }
4607
4608 /* Move things from b->header before a->footer.
4609 Note that this may include dead tablejump data, but we don't clean
4610 those up until we go out of cfglayout mode. */
4611 if (BB_HEADER (b))
4612 {
4613 if (! BB_FOOTER (a))
4614 BB_FOOTER (a) = BB_HEADER (b);
4615 else
4616 {
4617 rtx_insn *last = BB_HEADER (b);
4618
4619 while (NEXT_INSN (last))
4620 last = NEXT_INSN (last);
4621 SET_NEXT_INSN (last) = BB_FOOTER (a);
4622 SET_PREV_INSN (BB_FOOTER (a)) = last;
4623 BB_FOOTER (a) = BB_HEADER (b);
4624 }
4625 BB_HEADER (b) = NULL;
4626 }
4627
4628 /* In the case basic blocks are not adjacent, move them around. */
4629 if (NEXT_INSN (BB_END (a)) != BB_HEAD (b))
4630 {
4631 insn = unlink_insn_chain (BB_HEAD (b), BB_END (b));
4632
4633 emit_insn_after_noloc (insn, BB_END (a), a);
4634 }
4635 /* Otherwise just re-associate the instructions. */
4636 else
4637 {
4638 insn = BB_HEAD (b);
4639 BB_END (a) = BB_END (b);
4640 }
4641
4642 /* emit_insn_after_noloc doesn't call df_insn_change_bb.
4643 We need to explicitly call. */
4644 update_bb_for_insn_chain (insn, BB_END (b), a);
4645
4646 /* Skip possible DELETED_LABEL insn. */
4647 if (!NOTE_INSN_BASIC_BLOCK_P (insn))
4648 insn = NEXT_INSN (insn);
4649 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
4650 BB_HEAD (b) = BB_END (b) = NULL;
4651 delete_insn (insn);
4652
4653 df_bb_delete (b->index);
4654
4655 /* If B was a forwarder block, propagate the locus on the edge. */
4656 if (forwarder_p
4657 && LOCATION_LOCUS (EDGE_SUCC (b, 0)->goto_locus) == UNKNOWN_LOCATION)
4658 EDGE_SUCC (b, 0)->goto_locus = EDGE_SUCC (a, 0)->goto_locus;
4659
4660 if (dump_file)
4661 fprintf (dump_file, "Merged blocks %d and %d.\n", a->index, b->index);
4662 }
4663
4664 /* Split edge E. */
4665
4666 static basic_block
4667 cfg_layout_split_edge (edge e)
4668 {
4669 basic_block new_bb =
4670 create_basic_block (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
4671 ? NEXT_INSN (BB_END (e->src)) : get_insns (),
4672 NULL_RTX, e->src);
4673
4674 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
4675 BB_COPY_PARTITION (new_bb, e->src);
4676 else
4677 BB_COPY_PARTITION (new_bb, e->dest);
4678 make_edge (new_bb, e->dest, EDGE_FALLTHRU);
4679 redirect_edge_and_branch_force (e, new_bb);
4680
4681 return new_bb;
4682 }
4683
4684 /* Do postprocessing after making a forwarder block joined by edge FALLTHRU. */
4685
4686 static void
4687 rtl_make_forwarder_block (edge fallthru ATTRIBUTE_UNUSED)
4688 {
4689 }
4690
4691 /* Return true if BB contains only labels or non-executable
4692 instructions. */
4693
4694 static bool
4695 rtl_block_empty_p (basic_block bb)
4696 {
4697 rtx_insn *insn;
4698
4699 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun)
4700 || bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4701 return true;
4702
4703 FOR_BB_INSNS (bb, insn)
4704 if (NONDEBUG_INSN_P (insn) && !any_uncondjump_p (insn))
4705 return false;
4706
4707 return true;
4708 }
4709
4710 /* Split a basic block if it ends with a conditional branch and if
4711 the other part of the block is not empty. */
4712
4713 static basic_block
4714 rtl_split_block_before_cond_jump (basic_block bb)
4715 {
4716 rtx_insn *insn;
4717 rtx_insn *split_point = NULL;
4718 rtx_insn *last = NULL;
4719 bool found_code = false;
4720
4721 FOR_BB_INSNS (bb, insn)
4722 {
4723 if (any_condjump_p (insn))
4724 split_point = last;
4725 else if (NONDEBUG_INSN_P (insn))
4726 found_code = true;
4727 last = insn;
4728 }
4729
4730 /* Did not find everything. */
4731 if (found_code && split_point)
4732 return split_block (bb, split_point)->dest;
4733 else
4734 return NULL;
4735 }
4736
4737 /* Return 1 if BB ends with a call, possibly followed by some
4738 instructions that must stay with the call, 0 otherwise. */
4739
4740 static bool
4741 rtl_block_ends_with_call_p (basic_block bb)
4742 {
4743 rtx_insn *insn = BB_END (bb);
4744
4745 while (!CALL_P (insn)
4746 && insn != BB_HEAD (bb)
4747 && (keep_with_call_p (insn)
4748 || NOTE_P (insn)
4749 || DEBUG_INSN_P (insn)))
4750 insn = PREV_INSN (insn);
4751 return (CALL_P (insn));
4752 }
4753
4754 /* Return 1 if BB ends with a conditional branch, 0 otherwise. */
4755
4756 static bool
4757 rtl_block_ends_with_condjump_p (const_basic_block bb)
4758 {
4759 return any_condjump_p (BB_END (bb));
4760 }
4761
4762 /* Return true if we need to add fake edge to exit.
4763 Helper function for rtl_flow_call_edges_add. */
4764
4765 static bool
4766 need_fake_edge_p (const rtx_insn *insn)
4767 {
4768 if (!INSN_P (insn))
4769 return false;
4770
4771 if ((CALL_P (insn)
4772 && !SIBLING_CALL_P (insn)
4773 && !find_reg_note (insn, REG_NORETURN, NULL)
4774 && !(RTL_CONST_OR_PURE_CALL_P (insn))))
4775 return true;
4776
4777 return ((GET_CODE (PATTERN (insn)) == ASM_OPERANDS
4778 && MEM_VOLATILE_P (PATTERN (insn)))
4779 || (GET_CODE (PATTERN (insn)) == PARALLEL
4780 && asm_noperands (insn) != -1
4781 && MEM_VOLATILE_P (XVECEXP (PATTERN (insn), 0, 0)))
4782 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
4783 }
4784
4785 /* Add fake edges to the function exit for any non constant and non noreturn
4786 calls, volatile inline assembly in the bitmap of blocks specified by
4787 BLOCKS or to the whole CFG if BLOCKS is zero. Return the number of blocks
4788 that were split.
4789
4790 The goal is to expose cases in which entering a basic block does not imply
4791 that all subsequent instructions must be executed. */
4792
4793 static int
4794 rtl_flow_call_edges_add (sbitmap blocks)
4795 {
4796 int i;
4797 int blocks_split = 0;
4798 int last_bb = last_basic_block_for_fn (cfun);
4799 bool check_last_block = false;
4800
4801 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
4802 return 0;
4803
4804 if (! blocks)
4805 check_last_block = true;
4806 else
4807 check_last_block = bitmap_bit_p (blocks,
4808 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb->index);
4809
4810 /* In the last basic block, before epilogue generation, there will be
4811 a fallthru edge to EXIT. Special care is required if the last insn
4812 of the last basic block is a call because make_edge folds duplicate
4813 edges, which would result in the fallthru edge also being marked
4814 fake, which would result in the fallthru edge being removed by
4815 remove_fake_edges, which would result in an invalid CFG.
4816
4817 Moreover, we can't elide the outgoing fake edge, since the block
4818 profiler needs to take this into account in order to solve the minimal
4819 spanning tree in the case that the call doesn't return.
4820
4821 Handle this by adding a dummy instruction in a new last basic block. */
4822 if (check_last_block)
4823 {
4824 basic_block bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
4825 rtx_insn *insn = BB_END (bb);
4826
4827 /* Back up past insns that must be kept in the same block as a call. */
4828 while (insn != BB_HEAD (bb)
4829 && keep_with_call_p (insn))
4830 insn = PREV_INSN (insn);
4831
4832 if (need_fake_edge_p (insn))
4833 {
4834 edge e;
4835
4836 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
4837 if (e)
4838 {
4839 insert_insn_on_edge (gen_use (const0_rtx), e);
4840 commit_edge_insertions ();
4841 }
4842 }
4843 }
4844
4845 /* Now add fake edges to the function exit for any non constant
4846 calls since there is no way that we can determine if they will
4847 return or not... */
4848
4849 for (i = NUM_FIXED_BLOCKS; i < last_bb; i++)
4850 {
4851 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
4852 rtx_insn *insn;
4853 rtx_insn *prev_insn;
4854
4855 if (!bb)
4856 continue;
4857
4858 if (blocks && !bitmap_bit_p (blocks, i))
4859 continue;
4860
4861 for (insn = BB_END (bb); ; insn = prev_insn)
4862 {
4863 prev_insn = PREV_INSN (insn);
4864 if (need_fake_edge_p (insn))
4865 {
4866 edge e;
4867 rtx_insn *split_at_insn = insn;
4868
4869 /* Don't split the block between a call and an insn that should
4870 remain in the same block as the call. */
4871 if (CALL_P (insn))
4872 while (split_at_insn != BB_END (bb)
4873 && keep_with_call_p (NEXT_INSN (split_at_insn)))
4874 split_at_insn = NEXT_INSN (split_at_insn);
4875
4876 /* The handling above of the final block before the epilogue
4877 should be enough to verify that there is no edge to the exit
4878 block in CFG already. Calling make_edge in such case would
4879 cause us to mark that edge as fake and remove it later. */
4880
4881 if (flag_checking && split_at_insn == BB_END (bb))
4882 {
4883 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
4884 gcc_assert (e == NULL);
4885 }
4886
4887 /* Note that the following may create a new basic block
4888 and renumber the existing basic blocks. */
4889 if (split_at_insn != BB_END (bb))
4890 {
4891 e = split_block (bb, split_at_insn);
4892 if (e)
4893 blocks_split++;
4894 }
4895
4896 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
4897 }
4898
4899 if (insn == BB_HEAD (bb))
4900 break;
4901 }
4902 }
4903
4904 if (blocks_split)
4905 verify_flow_info ();
4906
4907 return blocks_split;
4908 }
4909
4910 /* Add COMP_RTX as a condition at end of COND_BB. FIRST_HEAD is
4911 the conditional branch target, SECOND_HEAD should be the fall-thru
4912 there is no need to handle this here the loop versioning code handles
4913 this. the reason for SECON_HEAD is that it is needed for condition
4914 in trees, and this should be of the same type since it is a hook. */
4915 static void
4916 rtl_lv_add_condition_to_bb (basic_block first_head ,
4917 basic_block second_head ATTRIBUTE_UNUSED,
4918 basic_block cond_bb, void *comp_rtx)
4919 {
4920 rtx_code_label *label;
4921 rtx_insn *seq, *jump;
4922 rtx op0 = XEXP ((rtx)comp_rtx, 0);
4923 rtx op1 = XEXP ((rtx)comp_rtx, 1);
4924 enum rtx_code comp = GET_CODE ((rtx)comp_rtx);
4925 machine_mode mode;
4926
4927
4928 label = block_label (first_head);
4929 mode = GET_MODE (op0);
4930 if (mode == VOIDmode)
4931 mode = GET_MODE (op1);
4932
4933 start_sequence ();
4934 op0 = force_operand (op0, NULL_RTX);
4935 op1 = force_operand (op1, NULL_RTX);
4936 do_compare_rtx_and_jump (op0, op1, comp, 0, mode, NULL_RTX, NULL, label, -1);
4937 jump = get_last_insn ();
4938 JUMP_LABEL (jump) = label;
4939 LABEL_NUSES (label)++;
4940 seq = get_insns ();
4941 end_sequence ();
4942
4943 /* Add the new cond, in the new head. */
4944 emit_insn_after (seq, BB_END (cond_bb));
4945 }
4946
4947
4948 /* Given a block B with unconditional branch at its end, get the
4949 store the return the branch edge and the fall-thru edge in
4950 BRANCH_EDGE and FALLTHRU_EDGE respectively. */
4951 static void
4952 rtl_extract_cond_bb_edges (basic_block b, edge *branch_edge,
4953 edge *fallthru_edge)
4954 {
4955 edge e = EDGE_SUCC (b, 0);
4956
4957 if (e->flags & EDGE_FALLTHRU)
4958 {
4959 *fallthru_edge = e;
4960 *branch_edge = EDGE_SUCC (b, 1);
4961 }
4962 else
4963 {
4964 *branch_edge = e;
4965 *fallthru_edge = EDGE_SUCC (b, 1);
4966 }
4967 }
4968
4969 void
4970 init_rtl_bb_info (basic_block bb)
4971 {
4972 gcc_assert (!bb->il.x.rtl);
4973 bb->il.x.head_ = NULL;
4974 bb->il.x.rtl = ggc_cleared_alloc<rtl_bb_info> ();
4975 }
4976
4977 /* Returns true if it is possible to remove edge E by redirecting
4978 it to the destination of the other edge from E->src. */
4979
4980 static bool
4981 rtl_can_remove_branch_p (const_edge e)
4982 {
4983 const_basic_block src = e->src;
4984 const_basic_block target = EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest;
4985 const rtx_insn *insn = BB_END (src);
4986 rtx set;
4987
4988 /* The conditions are taken from try_redirect_by_replacing_jump. */
4989 if (target == EXIT_BLOCK_PTR_FOR_FN (cfun))
4990 return false;
4991
4992 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
4993 return false;
4994
4995 if (BB_PARTITION (src) != BB_PARTITION (target))
4996 return false;
4997
4998 if (!onlyjump_p (insn)
4999 || tablejump_p (insn, NULL, NULL))
5000 return false;
5001
5002 set = single_set (insn);
5003 if (!set || side_effects_p (set))
5004 return false;
5005
5006 return true;
5007 }
5008
5009 static basic_block
5010 rtl_duplicate_bb (basic_block bb)
5011 {
5012 bb = cfg_layout_duplicate_bb (bb);
5013 bb->aux = NULL;
5014 return bb;
5015 }
5016
5017 /* Do book-keeping of basic block BB for the profile consistency checker.
5018 If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
5019 then do post-pass accounting. Store the counting in RECORD. */
5020 static void
5021 rtl_account_profile_record (basic_block bb, int after_pass,
5022 struct profile_record *record)
5023 {
5024 rtx_insn *insn;
5025 FOR_BB_INSNS (bb, insn)
5026 if (INSN_P (insn))
5027 {
5028 record->size[after_pass]
5029 += insn_rtx_cost (PATTERN (insn), false);
5030 if (profile_status_for_fn (cfun) == PROFILE_READ)
5031 record->time[after_pass]
5032 += insn_rtx_cost (PATTERN (insn), true) * bb->count;
5033 else if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
5034 record->time[after_pass]
5035 += insn_rtx_cost (PATTERN (insn), true) * bb->frequency;
5036 }
5037 }
5038
5039 /* Implementation of CFG manipulation for linearized RTL. */
5040 struct cfg_hooks rtl_cfg_hooks = {
5041 "rtl",
5042 rtl_verify_flow_info,
5043 rtl_dump_bb,
5044 rtl_dump_bb_for_graph,
5045 rtl_create_basic_block,
5046 rtl_redirect_edge_and_branch,
5047 rtl_redirect_edge_and_branch_force,
5048 rtl_can_remove_branch_p,
5049 rtl_delete_block,
5050 rtl_split_block,
5051 rtl_move_block_after,
5052 rtl_can_merge_blocks, /* can_merge_blocks_p */
5053 rtl_merge_blocks,
5054 rtl_predict_edge,
5055 rtl_predicted_by_p,
5056 cfg_layout_can_duplicate_bb_p,
5057 rtl_duplicate_bb,
5058 rtl_split_edge,
5059 rtl_make_forwarder_block,
5060 rtl_tidy_fallthru_edge,
5061 rtl_force_nonfallthru,
5062 rtl_block_ends_with_call_p,
5063 rtl_block_ends_with_condjump_p,
5064 rtl_flow_call_edges_add,
5065 NULL, /* execute_on_growing_pred */
5066 NULL, /* execute_on_shrinking_pred */
5067 NULL, /* duplicate loop for trees */
5068 NULL, /* lv_add_condition_to_bb */
5069 NULL, /* lv_adjust_loop_header_phi*/
5070 NULL, /* extract_cond_bb_edges */
5071 NULL, /* flush_pending_stmts */
5072 rtl_block_empty_p, /* block_empty_p */
5073 rtl_split_block_before_cond_jump, /* split_block_before_cond_jump */
5074 rtl_account_profile_record,
5075 };
5076
5077 /* Implementation of CFG manipulation for cfg layout RTL, where
5078 basic block connected via fallthru edges does not have to be adjacent.
5079 This representation will hopefully become the default one in future
5080 version of the compiler. */
5081
5082 struct cfg_hooks cfg_layout_rtl_cfg_hooks = {
5083 "cfglayout mode",
5084 rtl_verify_flow_info_1,
5085 rtl_dump_bb,
5086 rtl_dump_bb_for_graph,
5087 cfg_layout_create_basic_block,
5088 cfg_layout_redirect_edge_and_branch,
5089 cfg_layout_redirect_edge_and_branch_force,
5090 rtl_can_remove_branch_p,
5091 cfg_layout_delete_block,
5092 cfg_layout_split_block,
5093 rtl_move_block_after,
5094 cfg_layout_can_merge_blocks_p,
5095 cfg_layout_merge_blocks,
5096 rtl_predict_edge,
5097 rtl_predicted_by_p,
5098 cfg_layout_can_duplicate_bb_p,
5099 cfg_layout_duplicate_bb,
5100 cfg_layout_split_edge,
5101 rtl_make_forwarder_block,
5102 NULL, /* tidy_fallthru_edge */
5103 rtl_force_nonfallthru,
5104 rtl_block_ends_with_call_p,
5105 rtl_block_ends_with_condjump_p,
5106 rtl_flow_call_edges_add,
5107 NULL, /* execute_on_growing_pred */
5108 NULL, /* execute_on_shrinking_pred */
5109 duplicate_loop_to_header_edge, /* duplicate loop for trees */
5110 rtl_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
5111 NULL, /* lv_adjust_loop_header_phi*/
5112 rtl_extract_cond_bb_edges, /* extract_cond_bb_edges */
5113 NULL, /* flush_pending_stmts */
5114 rtl_block_empty_p, /* block_empty_p */
5115 rtl_split_block_before_cond_jump, /* split_block_before_cond_jump */
5116 rtl_account_profile_record,
5117 };
5118
5119 #include "gt-cfgrtl.h"