[PR86153] simplify more overflow tests in VRP
[gcc.git] / gcc / cfgrtl.c
1 /* Control flow graph manipulation code for GNU compiler.
2 Copyright (C) 1987-2018 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file contains low level functions to manipulate the CFG and analyze it
21 that are aware of the RTL intermediate language.
22
23 Available functionality:
24 - Basic CFG/RTL manipulation API documented in cfghooks.h
25 - CFG-aware instruction chain manipulation
26 delete_insn, delete_insn_chain
27 - Edge splitting and committing to edges
28 insert_insn_on_edge, commit_edge_insertions
29 - CFG updating after insn simplification
30 purge_dead_edges, purge_all_dead_edges
31 - CFG fixing after coarse manipulation
32 fixup_abnormal_edges
33
34 Functions not supposed for generic use:
35 - Infrastructure to determine quickly basic block for insn
36 compute_bb_for_insn, update_bb_for_insn, set_block_for_insn,
37 - Edge redirection with updating and optimizing of insn chain
38 block_label, tidy_fallthru_edge, force_nonfallthru */
39 \f
40 #include "config.h"
41 #include "system.h"
42 #include "coretypes.h"
43 #include "backend.h"
44 #include "target.h"
45 #include "rtl.h"
46 #include "tree.h"
47 #include "cfghooks.h"
48 #include "df.h"
49 #include "insn-config.h"
50 #include "memmodel.h"
51 #include "emit-rtl.h"
52 #include "cfgrtl.h"
53 #include "cfganal.h"
54 #include "cfgbuild.h"
55 #include "cfgcleanup.h"
56 #include "bb-reorder.h"
57 #include "rtl-error.h"
58 #include "insn-attr.h"
59 #include "dojump.h"
60 #include "expr.h"
61 #include "cfgloop.h"
62 #include "tree-pass.h"
63 #include "print-rtl.h"
64
65 /* Holds the interesting leading and trailing notes for the function.
66 Only applicable if the CFG is in cfglayout mode. */
67 static GTY(()) rtx_insn *cfg_layout_function_footer;
68 static GTY(()) rtx_insn *cfg_layout_function_header;
69
70 static rtx_insn *skip_insns_after_block (basic_block);
71 static void record_effective_endpoints (void);
72 static void fixup_reorder_chain (void);
73
74 void verify_insn_chain (void);
75 static void fixup_fallthru_exit_predecessor (void);
76 static int can_delete_note_p (const rtx_note *);
77 static int can_delete_label_p (const rtx_code_label *);
78 static basic_block rtl_split_edge (edge);
79 static bool rtl_move_block_after (basic_block, basic_block);
80 static int rtl_verify_flow_info (void);
81 static basic_block cfg_layout_split_block (basic_block, void *);
82 static edge cfg_layout_redirect_edge_and_branch (edge, basic_block);
83 static basic_block cfg_layout_redirect_edge_and_branch_force (edge, basic_block);
84 static void cfg_layout_delete_block (basic_block);
85 static void rtl_delete_block (basic_block);
86 static basic_block rtl_redirect_edge_and_branch_force (edge, basic_block);
87 static edge rtl_redirect_edge_and_branch (edge, basic_block);
88 static basic_block rtl_split_block (basic_block, void *);
89 static void rtl_dump_bb (FILE *, basic_block, int, dump_flags_t);
90 static int rtl_verify_flow_info_1 (void);
91 static void rtl_make_forwarder_block (edge);
92 \f
93 /* Return true if NOTE is not one of the ones that must be kept paired,
94 so that we may simply delete it. */
95
96 static int
97 can_delete_note_p (const rtx_note *note)
98 {
99 switch (NOTE_KIND (note))
100 {
101 case NOTE_INSN_DELETED:
102 case NOTE_INSN_BASIC_BLOCK:
103 case NOTE_INSN_EPILOGUE_BEG:
104 return true;
105
106 default:
107 return false;
108 }
109 }
110
111 /* True if a given label can be deleted. */
112
113 static int
114 can_delete_label_p (const rtx_code_label *label)
115 {
116 return (!LABEL_PRESERVE_P (label)
117 /* User declared labels must be preserved. */
118 && LABEL_NAME (label) == 0
119 && !vec_safe_contains<rtx_insn *> (forced_labels,
120 const_cast<rtx_code_label *> (label)));
121 }
122
123 /* Delete INSN by patching it out. */
124
125 void
126 delete_insn (rtx_insn *insn)
127 {
128 rtx note;
129 bool really_delete = true;
130
131 if (LABEL_P (insn))
132 {
133 /* Some labels can't be directly removed from the INSN chain, as they
134 might be references via variables, constant pool etc.
135 Convert them to the special NOTE_INSN_DELETED_LABEL note. */
136 if (! can_delete_label_p (as_a <rtx_code_label *> (insn)))
137 {
138 const char *name = LABEL_NAME (insn);
139 basic_block bb = BLOCK_FOR_INSN (insn);
140 rtx_insn *bb_note = NEXT_INSN (insn);
141
142 really_delete = false;
143 PUT_CODE (insn, NOTE);
144 NOTE_KIND (insn) = NOTE_INSN_DELETED_LABEL;
145 NOTE_DELETED_LABEL_NAME (insn) = name;
146
147 /* If the note following the label starts a basic block, and the
148 label is a member of the same basic block, interchange the two. */
149 if (bb_note != NULL_RTX
150 && NOTE_INSN_BASIC_BLOCK_P (bb_note)
151 && bb != NULL
152 && bb == BLOCK_FOR_INSN (bb_note))
153 {
154 reorder_insns_nobb (insn, insn, bb_note);
155 BB_HEAD (bb) = bb_note;
156 if (BB_END (bb) == bb_note)
157 BB_END (bb) = insn;
158 }
159 }
160
161 remove_node_from_insn_list (insn, &nonlocal_goto_handler_labels);
162 }
163
164 if (really_delete)
165 {
166 /* If this insn has already been deleted, something is very wrong. */
167 gcc_assert (!insn->deleted ());
168 if (INSN_P (insn))
169 df_insn_delete (insn);
170 remove_insn (insn);
171 insn->set_deleted ();
172 }
173
174 /* If deleting a jump, decrement the use count of the label. Deleting
175 the label itself should happen in the normal course of block merging. */
176 if (JUMP_P (insn))
177 {
178 if (JUMP_LABEL (insn)
179 && LABEL_P (JUMP_LABEL (insn)))
180 LABEL_NUSES (JUMP_LABEL (insn))--;
181
182 /* If there are more targets, remove them too. */
183 while ((note
184 = find_reg_note (insn, REG_LABEL_TARGET, NULL_RTX)) != NULL_RTX
185 && LABEL_P (XEXP (note, 0)))
186 {
187 LABEL_NUSES (XEXP (note, 0))--;
188 remove_note (insn, note);
189 }
190 }
191
192 /* Also if deleting any insn that references a label as an operand. */
193 while ((note = find_reg_note (insn, REG_LABEL_OPERAND, NULL_RTX)) != NULL_RTX
194 && LABEL_P (XEXP (note, 0)))
195 {
196 LABEL_NUSES (XEXP (note, 0))--;
197 remove_note (insn, note);
198 }
199
200 if (rtx_jump_table_data *table = dyn_cast <rtx_jump_table_data *> (insn))
201 {
202 rtvec vec = table->get_labels ();
203 int len = GET_NUM_ELEM (vec);
204 int i;
205
206 for (i = 0; i < len; i++)
207 {
208 rtx label = XEXP (RTVEC_ELT (vec, i), 0);
209
210 /* When deleting code in bulk (e.g. removing many unreachable
211 blocks) we can delete a label that's a target of the vector
212 before deleting the vector itself. */
213 if (!NOTE_P (label))
214 LABEL_NUSES (label)--;
215 }
216 }
217 }
218
219 /* Like delete_insn but also purge dead edges from BB.
220 Return true if any edges are eliminated. */
221
222 bool
223 delete_insn_and_edges (rtx_insn *insn)
224 {
225 bool purge = false;
226
227 if (INSN_P (insn)
228 && BLOCK_FOR_INSN (insn)
229 && BB_END (BLOCK_FOR_INSN (insn)) == insn)
230 purge = true;
231 delete_insn (insn);
232 if (purge)
233 return purge_dead_edges (BLOCK_FOR_INSN (insn));
234 return false;
235 }
236
237 /* Unlink a chain of insns between START and FINISH, leaving notes
238 that must be paired. If CLEAR_BB is true, we set bb field for
239 insns that cannot be removed to NULL. */
240
241 void
242 delete_insn_chain (rtx start, rtx_insn *finish, bool clear_bb)
243 {
244 /* Unchain the insns one by one. It would be quicker to delete all of these
245 with a single unchaining, rather than one at a time, but we need to keep
246 the NOTE's. */
247 rtx_insn *current = finish;
248 while (1)
249 {
250 rtx_insn *prev = PREV_INSN (current);
251 if (NOTE_P (current) && !can_delete_note_p (as_a <rtx_note *> (current)))
252 ;
253 else
254 delete_insn (current);
255
256 if (clear_bb && !current->deleted ())
257 set_block_for_insn (current, NULL);
258
259 if (current == start)
260 break;
261 current = prev;
262 }
263 }
264 \f
265 /* Create a new basic block consisting of the instructions between HEAD and END
266 inclusive. This function is designed to allow fast BB construction - reuses
267 the note and basic block struct in BB_NOTE, if any and do not grow
268 BASIC_BLOCK chain and should be used directly only by CFG construction code.
269 END can be NULL in to create new empty basic block before HEAD. Both END
270 and HEAD can be NULL to create basic block at the end of INSN chain.
271 AFTER is the basic block we should be put after. */
272
273 basic_block
274 create_basic_block_structure (rtx_insn *head, rtx_insn *end, rtx_note *bb_note,
275 basic_block after)
276 {
277 basic_block bb;
278
279 if (bb_note
280 && (bb = NOTE_BASIC_BLOCK (bb_note)) != NULL
281 && bb->aux == NULL)
282 {
283 /* If we found an existing note, thread it back onto the chain. */
284
285 rtx_insn *after;
286
287 if (LABEL_P (head))
288 after = head;
289 else
290 {
291 after = PREV_INSN (head);
292 head = bb_note;
293 }
294
295 if (after != bb_note && NEXT_INSN (after) != bb_note)
296 reorder_insns_nobb (bb_note, bb_note, after);
297 }
298 else
299 {
300 /* Otherwise we must create a note and a basic block structure. */
301
302 bb = alloc_block ();
303
304 init_rtl_bb_info (bb);
305 if (!head && !end)
306 head = end = bb_note
307 = emit_note_after (NOTE_INSN_BASIC_BLOCK, get_last_insn ());
308 else if (LABEL_P (head) && end)
309 {
310 bb_note = emit_note_after (NOTE_INSN_BASIC_BLOCK, head);
311 if (head == end)
312 end = bb_note;
313 }
314 else
315 {
316 bb_note = emit_note_before (NOTE_INSN_BASIC_BLOCK, head);
317 head = bb_note;
318 if (!end)
319 end = head;
320 }
321
322 NOTE_BASIC_BLOCK (bb_note) = bb;
323 }
324
325 /* Always include the bb note in the block. */
326 if (NEXT_INSN (end) == bb_note)
327 end = bb_note;
328
329 BB_HEAD (bb) = head;
330 BB_END (bb) = end;
331 bb->index = last_basic_block_for_fn (cfun)++;
332 bb->flags = BB_NEW | BB_RTL;
333 link_block (bb, after);
334 SET_BASIC_BLOCK_FOR_FN (cfun, bb->index, bb);
335 df_bb_refs_record (bb->index, false);
336 update_bb_for_insn (bb);
337 BB_SET_PARTITION (bb, BB_UNPARTITIONED);
338
339 /* Tag the block so that we know it has been used when considering
340 other basic block notes. */
341 bb->aux = bb;
342
343 return bb;
344 }
345
346 /* Create new basic block consisting of instructions in between HEAD and END
347 and place it to the BB chain after block AFTER. END can be NULL to
348 create a new empty basic block before HEAD. Both END and HEAD can be
349 NULL to create basic block at the end of INSN chain. */
350
351 static basic_block
352 rtl_create_basic_block (void *headp, void *endp, basic_block after)
353 {
354 rtx_insn *head = (rtx_insn *) headp;
355 rtx_insn *end = (rtx_insn *) endp;
356 basic_block bb;
357
358 /* Grow the basic block array if needed. */
359 if ((size_t) last_basic_block_for_fn (cfun)
360 >= basic_block_info_for_fn (cfun)->length ())
361 {
362 size_t new_size =
363 (last_basic_block_for_fn (cfun)
364 + (last_basic_block_for_fn (cfun) + 3) / 4);
365 vec_safe_grow_cleared (basic_block_info_for_fn (cfun), new_size);
366 }
367
368 n_basic_blocks_for_fn (cfun)++;
369
370 bb = create_basic_block_structure (head, end, NULL, after);
371 bb->aux = NULL;
372 return bb;
373 }
374
375 static basic_block
376 cfg_layout_create_basic_block (void *head, void *end, basic_block after)
377 {
378 basic_block newbb = rtl_create_basic_block (head, end, after);
379
380 return newbb;
381 }
382 \f
383 /* Delete the insns in a (non-live) block. We physically delete every
384 non-deleted-note insn, and update the flow graph appropriately.
385
386 Return nonzero if we deleted an exception handler. */
387
388 /* ??? Preserving all such notes strikes me as wrong. It would be nice
389 to post-process the stream to remove empty blocks, loops, ranges, etc. */
390
391 static void
392 rtl_delete_block (basic_block b)
393 {
394 rtx_insn *insn, *end;
395
396 /* If the head of this block is a CODE_LABEL, then it might be the
397 label for an exception handler which can't be reached. We need
398 to remove the label from the exception_handler_label list. */
399 insn = BB_HEAD (b);
400
401 end = get_last_bb_insn (b);
402
403 /* Selectively delete the entire chain. */
404 BB_HEAD (b) = NULL;
405 delete_insn_chain (insn, end, true);
406
407
408 if (dump_file)
409 fprintf (dump_file, "deleting block %d\n", b->index);
410 df_bb_delete (b->index);
411 }
412 \f
413 /* Records the basic block struct in BLOCK_FOR_INSN for every insn. */
414
415 void
416 compute_bb_for_insn (void)
417 {
418 basic_block bb;
419
420 FOR_EACH_BB_FN (bb, cfun)
421 {
422 rtx_insn *end = BB_END (bb);
423 rtx_insn *insn;
424
425 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
426 {
427 BLOCK_FOR_INSN (insn) = bb;
428 if (insn == end)
429 break;
430 }
431 }
432 }
433
434 /* Release the basic_block_for_insn array. */
435
436 unsigned int
437 free_bb_for_insn (void)
438 {
439 rtx_insn *insn;
440 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
441 if (!BARRIER_P (insn))
442 BLOCK_FOR_INSN (insn) = NULL;
443 return 0;
444 }
445
446 namespace {
447
448 const pass_data pass_data_free_cfg =
449 {
450 RTL_PASS, /* type */
451 "*free_cfg", /* name */
452 OPTGROUP_NONE, /* optinfo_flags */
453 TV_NONE, /* tv_id */
454 0, /* properties_required */
455 0, /* properties_provided */
456 PROP_cfg, /* properties_destroyed */
457 0, /* todo_flags_start */
458 0, /* todo_flags_finish */
459 };
460
461 class pass_free_cfg : public rtl_opt_pass
462 {
463 public:
464 pass_free_cfg (gcc::context *ctxt)
465 : rtl_opt_pass (pass_data_free_cfg, ctxt)
466 {}
467
468 /* opt_pass methods: */
469 virtual unsigned int execute (function *);
470
471 }; // class pass_free_cfg
472
473 unsigned int
474 pass_free_cfg::execute (function *)
475 {
476 /* The resource.c machinery uses DF but the CFG isn't guaranteed to be
477 valid at that point so it would be too late to call df_analyze. */
478 if (DELAY_SLOTS && optimize > 0 && flag_delayed_branch)
479 {
480 df_note_add_problem ();
481 df_analyze ();
482 }
483
484 if (crtl->has_bb_partition)
485 insert_section_boundary_note ();
486
487 free_bb_for_insn ();
488 return 0;
489 }
490
491 } // anon namespace
492
493 rtl_opt_pass *
494 make_pass_free_cfg (gcc::context *ctxt)
495 {
496 return new pass_free_cfg (ctxt);
497 }
498
499 /* Return RTX to emit after when we want to emit code on the entry of function. */
500 rtx_insn *
501 entry_of_function (void)
502 {
503 return (n_basic_blocks_for_fn (cfun) > NUM_FIXED_BLOCKS ?
504 BB_HEAD (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb) : get_insns ());
505 }
506
507 /* Emit INSN at the entry point of the function, ensuring that it is only
508 executed once per function. */
509 void
510 emit_insn_at_entry (rtx insn)
511 {
512 edge_iterator ei = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
513 edge e = ei_safe_edge (ei);
514 gcc_assert (e->flags & EDGE_FALLTHRU);
515
516 insert_insn_on_edge (insn, e);
517 commit_edge_insertions ();
518 }
519
520 /* Update BLOCK_FOR_INSN of insns between BEGIN and END
521 (or BARRIER if found) and notify df of the bb change.
522 The insn chain range is inclusive
523 (i.e. both BEGIN and END will be updated. */
524
525 static void
526 update_bb_for_insn_chain (rtx_insn *begin, rtx_insn *end, basic_block bb)
527 {
528 rtx_insn *insn;
529
530 end = NEXT_INSN (end);
531 for (insn = begin; insn != end; insn = NEXT_INSN (insn))
532 if (!BARRIER_P (insn))
533 df_insn_change_bb (insn, bb);
534 }
535
536 /* Update BLOCK_FOR_INSN of insns in BB to BB,
537 and notify df of the change. */
538
539 void
540 update_bb_for_insn (basic_block bb)
541 {
542 update_bb_for_insn_chain (BB_HEAD (bb), BB_END (bb), bb);
543 }
544
545 \f
546 /* Like active_insn_p, except keep the return value clobber around
547 even after reload. */
548
549 static bool
550 flow_active_insn_p (const rtx_insn *insn)
551 {
552 if (active_insn_p (insn))
553 return true;
554
555 /* A clobber of the function return value exists for buggy
556 programs that fail to return a value. Its effect is to
557 keep the return value from being live across the entire
558 function. If we allow it to be skipped, we introduce the
559 possibility for register lifetime confusion. */
560 if (GET_CODE (PATTERN (insn)) == CLOBBER
561 && REG_P (XEXP (PATTERN (insn), 0))
562 && REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))
563 return true;
564
565 return false;
566 }
567
568 /* Return true if the block has no effect and only forwards control flow to
569 its single destination. */
570
571 bool
572 contains_no_active_insn_p (const_basic_block bb)
573 {
574 rtx_insn *insn;
575
576 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
577 || bb == ENTRY_BLOCK_PTR_FOR_FN (cfun)
578 || !single_succ_p (bb)
579 || (single_succ_edge (bb)->flags & EDGE_FAKE) != 0)
580 return false;
581
582 for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
583 if (INSN_P (insn) && flow_active_insn_p (insn))
584 return false;
585
586 return (!INSN_P (insn)
587 || (JUMP_P (insn) && simplejump_p (insn))
588 || !flow_active_insn_p (insn));
589 }
590
591 /* Likewise, but protect loop latches, headers and preheaders. */
592 /* FIXME: Make this a cfg hook. */
593
594 bool
595 forwarder_block_p (const_basic_block bb)
596 {
597 if (!contains_no_active_insn_p (bb))
598 return false;
599
600 /* Protect loop latches, headers and preheaders. */
601 if (current_loops)
602 {
603 basic_block dest;
604 if (bb->loop_father->header == bb)
605 return false;
606 dest = EDGE_SUCC (bb, 0)->dest;
607 if (dest->loop_father->header == dest)
608 return false;
609 }
610
611 return true;
612 }
613
614 /* Return nonzero if we can reach target from src by falling through. */
615 /* FIXME: Make this a cfg hook, the result is only valid in cfgrtl mode. */
616
617 bool
618 can_fallthru (basic_block src, basic_block target)
619 {
620 rtx_insn *insn = BB_END (src);
621 rtx_insn *insn2;
622 edge e;
623 edge_iterator ei;
624
625 if (target == EXIT_BLOCK_PTR_FOR_FN (cfun))
626 return true;
627 if (src->next_bb != target)
628 return false;
629
630 /* ??? Later we may add code to move jump tables offline. */
631 if (tablejump_p (insn, NULL, NULL))
632 return false;
633
634 FOR_EACH_EDGE (e, ei, src->succs)
635 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
636 && e->flags & EDGE_FALLTHRU)
637 return false;
638
639 insn2 = BB_HEAD (target);
640 if (!active_insn_p (insn2))
641 insn2 = next_active_insn (insn2);
642
643 return next_active_insn (insn) == insn2;
644 }
645
646 /* Return nonzero if we could reach target from src by falling through,
647 if the target was made adjacent. If we already have a fall-through
648 edge to the exit block, we can't do that. */
649 static bool
650 could_fall_through (basic_block src, basic_block target)
651 {
652 edge e;
653 edge_iterator ei;
654
655 if (target == EXIT_BLOCK_PTR_FOR_FN (cfun))
656 return true;
657 FOR_EACH_EDGE (e, ei, src->succs)
658 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
659 && e->flags & EDGE_FALLTHRU)
660 return 0;
661 return true;
662 }
663 \f
664 /* Return the NOTE_INSN_BASIC_BLOCK of BB. */
665 rtx_note *
666 bb_note (basic_block bb)
667 {
668 rtx_insn *note;
669
670 note = BB_HEAD (bb);
671 if (LABEL_P (note))
672 note = NEXT_INSN (note);
673
674 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
675 return as_a <rtx_note *> (note);
676 }
677
678 /* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
679 note associated with the BLOCK. */
680
681 static rtx_insn *
682 first_insn_after_basic_block_note (basic_block block)
683 {
684 rtx_insn *insn;
685
686 /* Get the first instruction in the block. */
687 insn = BB_HEAD (block);
688
689 if (insn == NULL_RTX)
690 return NULL;
691 if (LABEL_P (insn))
692 insn = NEXT_INSN (insn);
693 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
694
695 return NEXT_INSN (insn);
696 }
697
698 /* Creates a new basic block just after basic block BB by splitting
699 everything after specified instruction INSNP. */
700
701 static basic_block
702 rtl_split_block (basic_block bb, void *insnp)
703 {
704 basic_block new_bb;
705 rtx_insn *insn = (rtx_insn *) insnp;
706 edge e;
707 edge_iterator ei;
708
709 if (!insn)
710 {
711 insn = first_insn_after_basic_block_note (bb);
712
713 if (insn)
714 {
715 rtx_insn *next = insn;
716
717 insn = PREV_INSN (insn);
718
719 /* If the block contains only debug insns, insn would have
720 been NULL in a non-debug compilation, and then we'd end
721 up emitting a DELETED note. For -fcompare-debug
722 stability, emit the note too. */
723 if (insn != BB_END (bb)
724 && DEBUG_INSN_P (next)
725 && DEBUG_INSN_P (BB_END (bb)))
726 {
727 while (next != BB_END (bb) && DEBUG_INSN_P (next))
728 next = NEXT_INSN (next);
729
730 if (next == BB_END (bb))
731 emit_note_after (NOTE_INSN_DELETED, next);
732 }
733 }
734 else
735 insn = get_last_insn ();
736 }
737
738 /* We probably should check type of the insn so that we do not create
739 inconsistent cfg. It is checked in verify_flow_info anyway, so do not
740 bother. */
741 if (insn == BB_END (bb))
742 emit_note_after (NOTE_INSN_DELETED, insn);
743
744 /* Create the new basic block. */
745 new_bb = create_basic_block (NEXT_INSN (insn), BB_END (bb), bb);
746 BB_COPY_PARTITION (new_bb, bb);
747 BB_END (bb) = insn;
748
749 /* Redirect the outgoing edges. */
750 new_bb->succs = bb->succs;
751 bb->succs = NULL;
752 FOR_EACH_EDGE (e, ei, new_bb->succs)
753 e->src = new_bb;
754
755 /* The new block starts off being dirty. */
756 df_set_bb_dirty (bb);
757 return new_bb;
758 }
759
760 /* Return true if the single edge between blocks A and B is the only place
761 in RTL which holds some unique locus. */
762
763 static bool
764 unique_locus_on_edge_between_p (basic_block a, basic_block b)
765 {
766 const location_t goto_locus = EDGE_SUCC (a, 0)->goto_locus;
767 rtx_insn *insn, *end;
768
769 if (LOCATION_LOCUS (goto_locus) == UNKNOWN_LOCATION)
770 return false;
771
772 /* First scan block A backward. */
773 insn = BB_END (a);
774 end = PREV_INSN (BB_HEAD (a));
775 while (insn != end && (!NONDEBUG_INSN_P (insn) || !INSN_HAS_LOCATION (insn)))
776 insn = PREV_INSN (insn);
777
778 if (insn != end && INSN_LOCATION (insn) == goto_locus)
779 return false;
780
781 /* Then scan block B forward. */
782 insn = BB_HEAD (b);
783 if (insn)
784 {
785 end = NEXT_INSN (BB_END (b));
786 while (insn != end && !NONDEBUG_INSN_P (insn))
787 insn = NEXT_INSN (insn);
788
789 if (insn != end && INSN_HAS_LOCATION (insn)
790 && INSN_LOCATION (insn) == goto_locus)
791 return false;
792 }
793
794 return true;
795 }
796
797 /* If the single edge between blocks A and B is the only place in RTL which
798 holds some unique locus, emit a nop with that locus between the blocks. */
799
800 static void
801 emit_nop_for_unique_locus_between (basic_block a, basic_block b)
802 {
803 if (!unique_locus_on_edge_between_p (a, b))
804 return;
805
806 BB_END (a) = emit_insn_after_noloc (gen_nop (), BB_END (a), a);
807 INSN_LOCATION (BB_END (a)) = EDGE_SUCC (a, 0)->goto_locus;
808 }
809
810 /* Blocks A and B are to be merged into a single block A. The insns
811 are already contiguous. */
812
813 static void
814 rtl_merge_blocks (basic_block a, basic_block b)
815 {
816 /* If B is a forwarder block whose outgoing edge has no location, we'll
817 propagate the locus of the edge between A and B onto it. */
818 const bool forward_edge_locus
819 = (b->flags & BB_FORWARDER_BLOCK) != 0
820 && LOCATION_LOCUS (EDGE_SUCC (b, 0)->goto_locus) == UNKNOWN_LOCATION;
821 rtx_insn *b_head = BB_HEAD (b), *b_end = BB_END (b), *a_end = BB_END (a);
822 rtx_insn *del_first = NULL, *del_last = NULL;
823 rtx_insn *b_debug_start = b_end, *b_debug_end = b_end;
824 int b_empty = 0;
825
826 if (dump_file)
827 fprintf (dump_file, "Merging block %d into block %d...\n", b->index,
828 a->index);
829
830 while (DEBUG_INSN_P (b_end))
831 b_end = PREV_INSN (b_debug_start = b_end);
832
833 /* If there was a CODE_LABEL beginning B, delete it. */
834 if (LABEL_P (b_head))
835 {
836 /* Detect basic blocks with nothing but a label. This can happen
837 in particular at the end of a function. */
838 if (b_head == b_end)
839 b_empty = 1;
840
841 del_first = del_last = b_head;
842 b_head = NEXT_INSN (b_head);
843 }
844
845 /* Delete the basic block note and handle blocks containing just that
846 note. */
847 if (NOTE_INSN_BASIC_BLOCK_P (b_head))
848 {
849 if (b_head == b_end)
850 b_empty = 1;
851 if (! del_last)
852 del_first = b_head;
853
854 del_last = b_head;
855 b_head = NEXT_INSN (b_head);
856 }
857
858 /* If there was a jump out of A, delete it. */
859 if (JUMP_P (a_end))
860 {
861 rtx_insn *prev;
862
863 for (prev = PREV_INSN (a_end); ; prev = PREV_INSN (prev))
864 if (!NOTE_P (prev)
865 || NOTE_INSN_BASIC_BLOCK_P (prev)
866 || prev == BB_HEAD (a))
867 break;
868
869 del_first = a_end;
870
871 /* If this was a conditional jump, we need to also delete
872 the insn that set cc0. */
873 if (HAVE_cc0 && only_sets_cc0_p (prev))
874 {
875 rtx_insn *tmp = prev;
876
877 prev = prev_nonnote_insn (prev);
878 if (!prev)
879 prev = BB_HEAD (a);
880 del_first = tmp;
881 }
882
883 a_end = PREV_INSN (del_first);
884 }
885 else if (BARRIER_P (NEXT_INSN (a_end)))
886 del_first = NEXT_INSN (a_end);
887
888 /* Delete everything marked above as well as crap that might be
889 hanging out between the two blocks. */
890 BB_END (a) = a_end;
891 BB_HEAD (b) = b_empty ? NULL : b_head;
892 delete_insn_chain (del_first, del_last, true);
893
894 /* If not optimizing, preserve the locus of the single edge between
895 blocks A and B if necessary by emitting a nop. */
896 if (!optimize
897 && !forward_edge_locus
898 && !DECL_IGNORED_P (current_function_decl))
899 {
900 emit_nop_for_unique_locus_between (a, b);
901 a_end = BB_END (a);
902 }
903
904 /* Reassociate the insns of B with A. */
905 if (!b_empty)
906 {
907 update_bb_for_insn_chain (a_end, b_debug_end, a);
908
909 BB_END (a) = b_debug_end;
910 BB_HEAD (b) = NULL;
911 }
912 else if (b_end != b_debug_end)
913 {
914 /* Move any deleted labels and other notes between the end of A
915 and the debug insns that make up B after the debug insns,
916 bringing the debug insns into A while keeping the notes after
917 the end of A. */
918 if (NEXT_INSN (a_end) != b_debug_start)
919 reorder_insns_nobb (NEXT_INSN (a_end), PREV_INSN (b_debug_start),
920 b_debug_end);
921 update_bb_for_insn_chain (b_debug_start, b_debug_end, a);
922 BB_END (a) = b_debug_end;
923 }
924
925 df_bb_delete (b->index);
926
927 if (forward_edge_locus)
928 EDGE_SUCC (b, 0)->goto_locus = EDGE_SUCC (a, 0)->goto_locus;
929
930 if (dump_file)
931 fprintf (dump_file, "Merged blocks %d and %d.\n", a->index, b->index);
932 }
933
934
935 /* Return true when block A and B can be merged. */
936
937 static bool
938 rtl_can_merge_blocks (basic_block a, basic_block b)
939 {
940 /* If we are partitioning hot/cold basic blocks, we don't want to
941 mess up unconditional or indirect jumps that cross between hot
942 and cold sections.
943
944 Basic block partitioning may result in some jumps that appear to
945 be optimizable (or blocks that appear to be mergeable), but which really
946 must be left untouched (they are required to make it safely across
947 partition boundaries). See the comments at the top of
948 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
949
950 if (BB_PARTITION (a) != BB_PARTITION (b))
951 return false;
952
953 /* Protect the loop latches. */
954 if (current_loops && b->loop_father->latch == b)
955 return false;
956
957 /* There must be exactly one edge in between the blocks. */
958 return (single_succ_p (a)
959 && single_succ (a) == b
960 && single_pred_p (b)
961 && a != b
962 /* Must be simple edge. */
963 && !(single_succ_edge (a)->flags & EDGE_COMPLEX)
964 && a->next_bb == b
965 && a != ENTRY_BLOCK_PTR_FOR_FN (cfun)
966 && b != EXIT_BLOCK_PTR_FOR_FN (cfun)
967 /* If the jump insn has side effects,
968 we can't kill the edge. */
969 && (!JUMP_P (BB_END (a))
970 || (reload_completed
971 ? simplejump_p (BB_END (a)) : onlyjump_p (BB_END (a)))));
972 }
973 \f
974 /* Return the label in the head of basic block BLOCK. Create one if it doesn't
975 exist. */
976
977 rtx_code_label *
978 block_label (basic_block block)
979 {
980 if (block == EXIT_BLOCK_PTR_FOR_FN (cfun))
981 return NULL;
982
983 if (!LABEL_P (BB_HEAD (block)))
984 {
985 BB_HEAD (block) = emit_label_before (gen_label_rtx (), BB_HEAD (block));
986 }
987
988 return as_a <rtx_code_label *> (BB_HEAD (block));
989 }
990
991 /* Attempt to perform edge redirection by replacing possibly complex jump
992 instruction by unconditional jump or removing jump completely. This can
993 apply only if all edges now point to the same block. The parameters and
994 return values are equivalent to redirect_edge_and_branch. */
995
996 edge
997 try_redirect_by_replacing_jump (edge e, basic_block target, bool in_cfglayout)
998 {
999 basic_block src = e->src;
1000 rtx_insn *insn = BB_END (src), *kill_from;
1001 rtx set;
1002 int fallthru = 0;
1003
1004 /* If we are partitioning hot/cold basic blocks, we don't want to
1005 mess up unconditional or indirect jumps that cross between hot
1006 and cold sections.
1007
1008 Basic block partitioning may result in some jumps that appear to
1009 be optimizable (or blocks that appear to be mergeable), but which really
1010 must be left untouched (they are required to make it safely across
1011 partition boundaries). See the comments at the top of
1012 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
1013
1014 if (BB_PARTITION (src) != BB_PARTITION (target))
1015 return NULL;
1016
1017 /* We can replace or remove a complex jump only when we have exactly
1018 two edges. Also, if we have exactly one outgoing edge, we can
1019 redirect that. */
1020 if (EDGE_COUNT (src->succs) >= 3
1021 /* Verify that all targets will be TARGET. Specifically, the
1022 edge that is not E must also go to TARGET. */
1023 || (EDGE_COUNT (src->succs) == 2
1024 && EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target))
1025 return NULL;
1026
1027 if (!onlyjump_p (insn))
1028 return NULL;
1029 if ((!optimize || reload_completed) && tablejump_p (insn, NULL, NULL))
1030 return NULL;
1031
1032 /* Avoid removing branch with side effects. */
1033 set = single_set (insn);
1034 if (!set || side_effects_p (set))
1035 return NULL;
1036
1037 /* In case we zap a conditional jump, we'll need to kill
1038 the cc0 setter too. */
1039 kill_from = insn;
1040 if (HAVE_cc0 && reg_mentioned_p (cc0_rtx, PATTERN (insn))
1041 && only_sets_cc0_p (PREV_INSN (insn)))
1042 kill_from = PREV_INSN (insn);
1043
1044 /* See if we can create the fallthru edge. */
1045 if (in_cfglayout || can_fallthru (src, target))
1046 {
1047 if (dump_file)
1048 fprintf (dump_file, "Removing jump %i.\n", INSN_UID (insn));
1049 fallthru = 1;
1050
1051 /* Selectively unlink whole insn chain. */
1052 if (in_cfglayout)
1053 {
1054 rtx_insn *insn = BB_FOOTER (src);
1055
1056 delete_insn_chain (kill_from, BB_END (src), false);
1057
1058 /* Remove barriers but keep jumptables. */
1059 while (insn)
1060 {
1061 if (BARRIER_P (insn))
1062 {
1063 if (PREV_INSN (insn))
1064 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
1065 else
1066 BB_FOOTER (src) = NEXT_INSN (insn);
1067 if (NEXT_INSN (insn))
1068 SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
1069 }
1070 if (LABEL_P (insn))
1071 break;
1072 insn = NEXT_INSN (insn);
1073 }
1074 }
1075 else
1076 delete_insn_chain (kill_from, PREV_INSN (BB_HEAD (target)),
1077 false);
1078 }
1079
1080 /* If this already is simplejump, redirect it. */
1081 else if (simplejump_p (insn))
1082 {
1083 if (e->dest == target)
1084 return NULL;
1085 if (dump_file)
1086 fprintf (dump_file, "Redirecting jump %i from %i to %i.\n",
1087 INSN_UID (insn), e->dest->index, target->index);
1088 if (!redirect_jump (as_a <rtx_jump_insn *> (insn),
1089 block_label (target), 0))
1090 {
1091 gcc_assert (target == EXIT_BLOCK_PTR_FOR_FN (cfun));
1092 return NULL;
1093 }
1094 }
1095
1096 /* Cannot do anything for target exit block. */
1097 else if (target == EXIT_BLOCK_PTR_FOR_FN (cfun))
1098 return NULL;
1099
1100 /* Or replace possibly complicated jump insn by simple jump insn. */
1101 else
1102 {
1103 rtx_code_label *target_label = block_label (target);
1104 rtx_insn *barrier;
1105 rtx_insn *label;
1106 rtx_jump_table_data *table;
1107
1108 emit_jump_insn_after_noloc (targetm.gen_jump (target_label), insn);
1109 JUMP_LABEL (BB_END (src)) = target_label;
1110 LABEL_NUSES (target_label)++;
1111 if (dump_file)
1112 fprintf (dump_file, "Replacing insn %i by jump %i\n",
1113 INSN_UID (insn), INSN_UID (BB_END (src)));
1114
1115
1116 delete_insn_chain (kill_from, insn, false);
1117
1118 /* Recognize a tablejump that we are converting to a
1119 simple jump and remove its associated CODE_LABEL
1120 and ADDR_VEC or ADDR_DIFF_VEC. */
1121 if (tablejump_p (insn, &label, &table))
1122 delete_insn_chain (label, table, false);
1123
1124 barrier = next_nonnote_nondebug_insn (BB_END (src));
1125 if (!barrier || !BARRIER_P (barrier))
1126 emit_barrier_after (BB_END (src));
1127 else
1128 {
1129 if (barrier != NEXT_INSN (BB_END (src)))
1130 {
1131 /* Move the jump before barrier so that the notes
1132 which originally were or were created before jump table are
1133 inside the basic block. */
1134 rtx_insn *new_insn = BB_END (src);
1135
1136 update_bb_for_insn_chain (NEXT_INSN (BB_END (src)),
1137 PREV_INSN (barrier), src);
1138
1139 SET_NEXT_INSN (PREV_INSN (new_insn)) = NEXT_INSN (new_insn);
1140 SET_PREV_INSN (NEXT_INSN (new_insn)) = PREV_INSN (new_insn);
1141
1142 SET_NEXT_INSN (new_insn) = barrier;
1143 SET_NEXT_INSN (PREV_INSN (barrier)) = new_insn;
1144
1145 SET_PREV_INSN (new_insn) = PREV_INSN (barrier);
1146 SET_PREV_INSN (barrier) = new_insn;
1147 }
1148 }
1149 }
1150
1151 /* Keep only one edge out and set proper flags. */
1152 if (!single_succ_p (src))
1153 remove_edge (e);
1154 gcc_assert (single_succ_p (src));
1155
1156 e = single_succ_edge (src);
1157 if (fallthru)
1158 e->flags = EDGE_FALLTHRU;
1159 else
1160 e->flags = 0;
1161
1162 e->probability = profile_probability::always ();
1163
1164 if (e->dest != target)
1165 redirect_edge_succ (e, target);
1166 return e;
1167 }
1168
1169 /* Subroutine of redirect_branch_edge that tries to patch the jump
1170 instruction INSN so that it reaches block NEW. Do this
1171 only when it originally reached block OLD. Return true if this
1172 worked or the original target wasn't OLD, return false if redirection
1173 doesn't work. */
1174
1175 static bool
1176 patch_jump_insn (rtx_insn *insn, rtx_insn *old_label, basic_block new_bb)
1177 {
1178 rtx_jump_table_data *table;
1179 rtx tmp;
1180 /* Recognize a tablejump and adjust all matching cases. */
1181 if (tablejump_p (insn, NULL, &table))
1182 {
1183 rtvec vec;
1184 int j;
1185 rtx_code_label *new_label = block_label (new_bb);
1186
1187 if (new_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
1188 return false;
1189 vec = table->get_labels ();
1190
1191 for (j = GET_NUM_ELEM (vec) - 1; j >= 0; --j)
1192 if (XEXP (RTVEC_ELT (vec, j), 0) == old_label)
1193 {
1194 RTVEC_ELT (vec, j) = gen_rtx_LABEL_REF (Pmode, new_label);
1195 --LABEL_NUSES (old_label);
1196 ++LABEL_NUSES (new_label);
1197 }
1198
1199 /* Handle casesi dispatch insns. */
1200 if ((tmp = single_set (insn)) != NULL
1201 && SET_DEST (tmp) == pc_rtx
1202 && GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE
1203 && GET_CODE (XEXP (SET_SRC (tmp), 2)) == LABEL_REF
1204 && label_ref_label (XEXP (SET_SRC (tmp), 2)) == old_label)
1205 {
1206 XEXP (SET_SRC (tmp), 2) = gen_rtx_LABEL_REF (Pmode,
1207 new_label);
1208 --LABEL_NUSES (old_label);
1209 ++LABEL_NUSES (new_label);
1210 }
1211 }
1212 else if ((tmp = extract_asm_operands (PATTERN (insn))) != NULL)
1213 {
1214 int i, n = ASM_OPERANDS_LABEL_LENGTH (tmp);
1215 rtx note;
1216
1217 if (new_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
1218 return false;
1219 rtx_code_label *new_label = block_label (new_bb);
1220
1221 for (i = 0; i < n; ++i)
1222 {
1223 rtx old_ref = ASM_OPERANDS_LABEL (tmp, i);
1224 gcc_assert (GET_CODE (old_ref) == LABEL_REF);
1225 if (XEXP (old_ref, 0) == old_label)
1226 {
1227 ASM_OPERANDS_LABEL (tmp, i)
1228 = gen_rtx_LABEL_REF (Pmode, new_label);
1229 --LABEL_NUSES (old_label);
1230 ++LABEL_NUSES (new_label);
1231 }
1232 }
1233
1234 if (JUMP_LABEL (insn) == old_label)
1235 {
1236 JUMP_LABEL (insn) = new_label;
1237 note = find_reg_note (insn, REG_LABEL_TARGET, new_label);
1238 if (note)
1239 remove_note (insn, note);
1240 }
1241 else
1242 {
1243 note = find_reg_note (insn, REG_LABEL_TARGET, old_label);
1244 if (note)
1245 remove_note (insn, note);
1246 if (JUMP_LABEL (insn) != new_label
1247 && !find_reg_note (insn, REG_LABEL_TARGET, new_label))
1248 add_reg_note (insn, REG_LABEL_TARGET, new_label);
1249 }
1250 while ((note = find_reg_note (insn, REG_LABEL_OPERAND, old_label))
1251 != NULL_RTX)
1252 XEXP (note, 0) = new_label;
1253 }
1254 else
1255 {
1256 /* ?? We may play the games with moving the named labels from
1257 one basic block to the other in case only one computed_jump is
1258 available. */
1259 if (computed_jump_p (insn)
1260 /* A return instruction can't be redirected. */
1261 || returnjump_p (insn))
1262 return false;
1263
1264 if (!currently_expanding_to_rtl || JUMP_LABEL (insn) == old_label)
1265 {
1266 /* If the insn doesn't go where we think, we're confused. */
1267 gcc_assert (JUMP_LABEL (insn) == old_label);
1268
1269 /* If the substitution doesn't succeed, die. This can happen
1270 if the back end emitted unrecognizable instructions or if
1271 target is exit block on some arches. Or for crossing
1272 jumps. */
1273 if (!redirect_jump (as_a <rtx_jump_insn *> (insn),
1274 block_label (new_bb), 0))
1275 {
1276 gcc_assert (new_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
1277 || CROSSING_JUMP_P (insn));
1278 return false;
1279 }
1280 }
1281 }
1282 return true;
1283 }
1284
1285
1286 /* Redirect edge representing branch of (un)conditional jump or tablejump,
1287 NULL on failure */
1288 static edge
1289 redirect_branch_edge (edge e, basic_block target)
1290 {
1291 rtx_insn *old_label = BB_HEAD (e->dest);
1292 basic_block src = e->src;
1293 rtx_insn *insn = BB_END (src);
1294
1295 /* We can only redirect non-fallthru edges of jump insn. */
1296 if (e->flags & EDGE_FALLTHRU)
1297 return NULL;
1298 else if (!JUMP_P (insn) && !currently_expanding_to_rtl)
1299 return NULL;
1300
1301 if (!currently_expanding_to_rtl)
1302 {
1303 if (!patch_jump_insn (as_a <rtx_jump_insn *> (insn), old_label, target))
1304 return NULL;
1305 }
1306 else
1307 /* When expanding this BB might actually contain multiple
1308 jumps (i.e. not yet split by find_many_sub_basic_blocks).
1309 Redirect all of those that match our label. */
1310 FOR_BB_INSNS (src, insn)
1311 if (JUMP_P (insn) && !patch_jump_insn (as_a <rtx_jump_insn *> (insn),
1312 old_label, target))
1313 return NULL;
1314
1315 if (dump_file)
1316 fprintf (dump_file, "Edge %i->%i redirected to %i\n",
1317 e->src->index, e->dest->index, target->index);
1318
1319 if (e->dest != target)
1320 e = redirect_edge_succ_nodup (e, target);
1321
1322 return e;
1323 }
1324
1325 /* Called when edge E has been redirected to a new destination,
1326 in order to update the region crossing flag on the edge and
1327 jump. */
1328
1329 static void
1330 fixup_partition_crossing (edge e)
1331 {
1332 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun) || e->dest
1333 == EXIT_BLOCK_PTR_FOR_FN (cfun))
1334 return;
1335 /* If we redirected an existing edge, it may already be marked
1336 crossing, even though the new src is missing a reg crossing note.
1337 But make sure reg crossing note doesn't already exist before
1338 inserting. */
1339 if (BB_PARTITION (e->src) != BB_PARTITION (e->dest))
1340 {
1341 e->flags |= EDGE_CROSSING;
1342 if (JUMP_P (BB_END (e->src)))
1343 CROSSING_JUMP_P (BB_END (e->src)) = 1;
1344 }
1345 else if (BB_PARTITION (e->src) == BB_PARTITION (e->dest))
1346 {
1347 e->flags &= ~EDGE_CROSSING;
1348 /* Remove the section crossing note from jump at end of
1349 src if it exists, and if no other successors are
1350 still crossing. */
1351 if (JUMP_P (BB_END (e->src)) && CROSSING_JUMP_P (BB_END (e->src)))
1352 {
1353 bool has_crossing_succ = false;
1354 edge e2;
1355 edge_iterator ei;
1356 FOR_EACH_EDGE (e2, ei, e->src->succs)
1357 {
1358 has_crossing_succ |= (e2->flags & EDGE_CROSSING);
1359 if (has_crossing_succ)
1360 break;
1361 }
1362 if (!has_crossing_succ)
1363 CROSSING_JUMP_P (BB_END (e->src)) = 0;
1364 }
1365 }
1366 }
1367
1368 /* Called when block BB has been reassigned to the cold partition,
1369 because it is now dominated by another cold block,
1370 to ensure that the region crossing attributes are updated. */
1371
1372 static void
1373 fixup_new_cold_bb (basic_block bb)
1374 {
1375 edge e;
1376 edge_iterator ei;
1377
1378 /* This is called when a hot bb is found to now be dominated
1379 by a cold bb and therefore needs to become cold. Therefore,
1380 its preds will no longer be region crossing. Any non-dominating
1381 preds that were previously hot would also have become cold
1382 in the caller for the same region. Any preds that were previously
1383 region-crossing will be adjusted in fixup_partition_crossing. */
1384 FOR_EACH_EDGE (e, ei, bb->preds)
1385 {
1386 fixup_partition_crossing (e);
1387 }
1388
1389 /* Possibly need to make bb's successor edges region crossing,
1390 or remove stale region crossing. */
1391 FOR_EACH_EDGE (e, ei, bb->succs)
1392 {
1393 /* We can't have fall-through edges across partition boundaries.
1394 Note that force_nonfallthru will do any necessary partition
1395 boundary fixup by calling fixup_partition_crossing itself. */
1396 if ((e->flags & EDGE_FALLTHRU)
1397 && BB_PARTITION (bb) != BB_PARTITION (e->dest)
1398 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1399 force_nonfallthru (e);
1400 else
1401 fixup_partition_crossing (e);
1402 }
1403 }
1404
1405 /* Attempt to change code to redirect edge E to TARGET. Don't do that on
1406 expense of adding new instructions or reordering basic blocks.
1407
1408 Function can be also called with edge destination equivalent to the TARGET.
1409 Then it should try the simplifications and do nothing if none is possible.
1410
1411 Return edge representing the branch if transformation succeeded. Return NULL
1412 on failure.
1413 We still return NULL in case E already destinated TARGET and we didn't
1414 managed to simplify instruction stream. */
1415
1416 static edge
1417 rtl_redirect_edge_and_branch (edge e, basic_block target)
1418 {
1419 edge ret;
1420 basic_block src = e->src;
1421 basic_block dest = e->dest;
1422
1423 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
1424 return NULL;
1425
1426 if (dest == target)
1427 return e;
1428
1429 if ((ret = try_redirect_by_replacing_jump (e, target, false)) != NULL)
1430 {
1431 df_set_bb_dirty (src);
1432 fixup_partition_crossing (ret);
1433 return ret;
1434 }
1435
1436 ret = redirect_branch_edge (e, target);
1437 if (!ret)
1438 return NULL;
1439
1440 df_set_bb_dirty (src);
1441 fixup_partition_crossing (ret);
1442 return ret;
1443 }
1444
1445 /* Emit a barrier after BB, into the footer if we are in CFGLAYOUT mode. */
1446
1447 void
1448 emit_barrier_after_bb (basic_block bb)
1449 {
1450 rtx_barrier *barrier = emit_barrier_after (BB_END (bb));
1451 gcc_assert (current_ir_type () == IR_RTL_CFGRTL
1452 || current_ir_type () == IR_RTL_CFGLAYOUT);
1453 if (current_ir_type () == IR_RTL_CFGLAYOUT)
1454 {
1455 rtx_insn *insn = unlink_insn_chain (barrier, barrier);
1456
1457 if (BB_FOOTER (bb))
1458 {
1459 rtx_insn *footer_tail = BB_FOOTER (bb);
1460
1461 while (NEXT_INSN (footer_tail))
1462 footer_tail = NEXT_INSN (footer_tail);
1463 if (!BARRIER_P (footer_tail))
1464 {
1465 SET_NEXT_INSN (footer_tail) = insn;
1466 SET_PREV_INSN (insn) = footer_tail;
1467 }
1468 }
1469 else
1470 BB_FOOTER (bb) = insn;
1471 }
1472 }
1473
1474 /* Like force_nonfallthru below, but additionally performs redirection
1475 Used by redirect_edge_and_branch_force. JUMP_LABEL is used only
1476 when redirecting to the EXIT_BLOCK, it is either ret_rtx or
1477 simple_return_rtx, indicating which kind of returnjump to create.
1478 It should be NULL otherwise. */
1479
1480 basic_block
1481 force_nonfallthru_and_redirect (edge e, basic_block target, rtx jump_label)
1482 {
1483 basic_block jump_block, new_bb = NULL, src = e->src;
1484 rtx note;
1485 edge new_edge;
1486 int abnormal_edge_flags = 0;
1487 bool asm_goto_edge = false;
1488 int loc;
1489
1490 /* In the case the last instruction is conditional jump to the next
1491 instruction, first redirect the jump itself and then continue
1492 by creating a basic block afterwards to redirect fallthru edge. */
1493 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
1494 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
1495 && any_condjump_p (BB_END (e->src))
1496 && JUMP_LABEL (BB_END (e->src)) == BB_HEAD (e->dest))
1497 {
1498 rtx note;
1499 edge b = unchecked_make_edge (e->src, target, 0);
1500 bool redirected;
1501
1502 redirected = redirect_jump (as_a <rtx_jump_insn *> (BB_END (e->src)),
1503 block_label (target), 0);
1504 gcc_assert (redirected);
1505
1506 note = find_reg_note (BB_END (e->src), REG_BR_PROB, NULL_RTX);
1507 if (note)
1508 {
1509 int prob = XINT (note, 0);
1510
1511 b->probability = profile_probability::from_reg_br_prob_note (prob);
1512 e->probability -= e->probability;
1513 }
1514 }
1515
1516 if (e->flags & EDGE_ABNORMAL)
1517 {
1518 /* Irritating special case - fallthru edge to the same block as abnormal
1519 edge.
1520 We can't redirect abnormal edge, but we still can split the fallthru
1521 one and create separate abnormal edge to original destination.
1522 This allows bb-reorder to make such edge non-fallthru. */
1523 gcc_assert (e->dest == target);
1524 abnormal_edge_flags = e->flags & ~EDGE_FALLTHRU;
1525 e->flags &= EDGE_FALLTHRU;
1526 }
1527 else
1528 {
1529 gcc_assert (e->flags & EDGE_FALLTHRU);
1530 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1531 {
1532 /* We can't redirect the entry block. Create an empty block
1533 at the start of the function which we use to add the new
1534 jump. */
1535 edge tmp;
1536 edge_iterator ei;
1537 bool found = false;
1538
1539 basic_block bb = create_basic_block (BB_HEAD (e->dest), NULL,
1540 ENTRY_BLOCK_PTR_FOR_FN (cfun));
1541 bb->count = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count;
1542
1543 /* Make sure new block ends up in correct hot/cold section. */
1544 BB_COPY_PARTITION (bb, e->dest);
1545
1546 /* Change the existing edge's source to be the new block, and add
1547 a new edge from the entry block to the new block. */
1548 e->src = bb;
1549 for (ei = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
1550 (tmp = ei_safe_edge (ei)); )
1551 {
1552 if (tmp == e)
1553 {
1554 ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs->unordered_remove (ei.index);
1555 found = true;
1556 break;
1557 }
1558 else
1559 ei_next (&ei);
1560 }
1561
1562 gcc_assert (found);
1563
1564 vec_safe_push (bb->succs, e);
1565 make_single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), bb,
1566 EDGE_FALLTHRU);
1567 }
1568 }
1569
1570 /* If e->src ends with asm goto, see if any of the ASM_OPERANDS_LABELs
1571 don't point to the target or fallthru label. */
1572 if (JUMP_P (BB_END (e->src))
1573 && target != EXIT_BLOCK_PTR_FOR_FN (cfun)
1574 && (e->flags & EDGE_FALLTHRU)
1575 && (note = extract_asm_operands (PATTERN (BB_END (e->src)))))
1576 {
1577 int i, n = ASM_OPERANDS_LABEL_LENGTH (note);
1578 bool adjust_jump_target = false;
1579
1580 for (i = 0; i < n; ++i)
1581 {
1582 if (XEXP (ASM_OPERANDS_LABEL (note, i), 0) == BB_HEAD (e->dest))
1583 {
1584 LABEL_NUSES (XEXP (ASM_OPERANDS_LABEL (note, i), 0))--;
1585 XEXP (ASM_OPERANDS_LABEL (note, i), 0) = block_label (target);
1586 LABEL_NUSES (XEXP (ASM_OPERANDS_LABEL (note, i), 0))++;
1587 adjust_jump_target = true;
1588 }
1589 if (XEXP (ASM_OPERANDS_LABEL (note, i), 0) == BB_HEAD (target))
1590 asm_goto_edge = true;
1591 }
1592 if (adjust_jump_target)
1593 {
1594 rtx_insn *insn = BB_END (e->src);
1595 rtx note;
1596 rtx_insn *old_label = BB_HEAD (e->dest);
1597 rtx_insn *new_label = BB_HEAD (target);
1598
1599 if (JUMP_LABEL (insn) == old_label)
1600 {
1601 JUMP_LABEL (insn) = new_label;
1602 note = find_reg_note (insn, REG_LABEL_TARGET, new_label);
1603 if (note)
1604 remove_note (insn, note);
1605 }
1606 else
1607 {
1608 note = find_reg_note (insn, REG_LABEL_TARGET, old_label);
1609 if (note)
1610 remove_note (insn, note);
1611 if (JUMP_LABEL (insn) != new_label
1612 && !find_reg_note (insn, REG_LABEL_TARGET, new_label))
1613 add_reg_note (insn, REG_LABEL_TARGET, new_label);
1614 }
1615 while ((note = find_reg_note (insn, REG_LABEL_OPERAND, old_label))
1616 != NULL_RTX)
1617 XEXP (note, 0) = new_label;
1618 }
1619 }
1620
1621 if (EDGE_COUNT (e->src->succs) >= 2 || abnormal_edge_flags || asm_goto_edge)
1622 {
1623 rtx_insn *new_head;
1624 profile_count count = e->count ();
1625 profile_probability probability = e->probability;
1626 /* Create the new structures. */
1627
1628 /* If the old block ended with a tablejump, skip its table
1629 by searching forward from there. Otherwise start searching
1630 forward from the last instruction of the old block. */
1631 rtx_jump_table_data *table;
1632 if (tablejump_p (BB_END (e->src), NULL, &table))
1633 new_head = table;
1634 else
1635 new_head = BB_END (e->src);
1636 new_head = NEXT_INSN (new_head);
1637
1638 jump_block = create_basic_block (new_head, NULL, e->src);
1639 jump_block->count = count;
1640
1641 /* Make sure new block ends up in correct hot/cold section. */
1642
1643 BB_COPY_PARTITION (jump_block, e->src);
1644
1645 /* Wire edge in. */
1646 new_edge = make_edge (e->src, jump_block, EDGE_FALLTHRU);
1647 new_edge->probability = probability;
1648
1649 /* Redirect old edge. */
1650 redirect_edge_pred (e, jump_block);
1651 e->probability = profile_probability::always ();
1652
1653 /* If e->src was previously region crossing, it no longer is
1654 and the reg crossing note should be removed. */
1655 fixup_partition_crossing (new_edge);
1656
1657 /* If asm goto has any label refs to target's label,
1658 add also edge from asm goto bb to target. */
1659 if (asm_goto_edge)
1660 {
1661 new_edge->probability = new_edge->probability.apply_scale (1, 2);
1662 jump_block->count = jump_block->count.apply_scale (1, 2);
1663 edge new_edge2 = make_edge (new_edge->src, target,
1664 e->flags & ~EDGE_FALLTHRU);
1665 new_edge2->probability = probability - new_edge->probability;
1666 }
1667
1668 new_bb = jump_block;
1669 }
1670 else
1671 jump_block = e->src;
1672
1673 loc = e->goto_locus;
1674 e->flags &= ~EDGE_FALLTHRU;
1675 if (target == EXIT_BLOCK_PTR_FOR_FN (cfun))
1676 {
1677 if (jump_label == ret_rtx)
1678 emit_jump_insn_after_setloc (targetm.gen_return (),
1679 BB_END (jump_block), loc);
1680 else
1681 {
1682 gcc_assert (jump_label == simple_return_rtx);
1683 emit_jump_insn_after_setloc (targetm.gen_simple_return (),
1684 BB_END (jump_block), loc);
1685 }
1686 set_return_jump_label (BB_END (jump_block));
1687 }
1688 else
1689 {
1690 rtx_code_label *label = block_label (target);
1691 emit_jump_insn_after_setloc (targetm.gen_jump (label),
1692 BB_END (jump_block), loc);
1693 JUMP_LABEL (BB_END (jump_block)) = label;
1694 LABEL_NUSES (label)++;
1695 }
1696
1697 /* We might be in cfg layout mode, and if so, the following routine will
1698 insert the barrier correctly. */
1699 emit_barrier_after_bb (jump_block);
1700 redirect_edge_succ_nodup (e, target);
1701
1702 if (abnormal_edge_flags)
1703 make_edge (src, target, abnormal_edge_flags);
1704
1705 df_mark_solutions_dirty ();
1706 fixup_partition_crossing (e);
1707 return new_bb;
1708 }
1709
1710 /* Edge E is assumed to be fallthru edge. Emit needed jump instruction
1711 (and possibly create new basic block) to make edge non-fallthru.
1712 Return newly created BB or NULL if none. */
1713
1714 static basic_block
1715 rtl_force_nonfallthru (edge e)
1716 {
1717 return force_nonfallthru_and_redirect (e, e->dest, NULL_RTX);
1718 }
1719
1720 /* Redirect edge even at the expense of creating new jump insn or
1721 basic block. Return new basic block if created, NULL otherwise.
1722 Conversion must be possible. */
1723
1724 static basic_block
1725 rtl_redirect_edge_and_branch_force (edge e, basic_block target)
1726 {
1727 if (redirect_edge_and_branch (e, target)
1728 || e->dest == target)
1729 return NULL;
1730
1731 /* In case the edge redirection failed, try to force it to be non-fallthru
1732 and redirect newly created simplejump. */
1733 df_set_bb_dirty (e->src);
1734 return force_nonfallthru_and_redirect (e, target, NULL_RTX);
1735 }
1736
1737 /* The given edge should potentially be a fallthru edge. If that is in
1738 fact true, delete the jump and barriers that are in the way. */
1739
1740 static void
1741 rtl_tidy_fallthru_edge (edge e)
1742 {
1743 rtx_insn *q;
1744 basic_block b = e->src, c = b->next_bb;
1745
1746 /* ??? In a late-running flow pass, other folks may have deleted basic
1747 blocks by nopping out blocks, leaving multiple BARRIERs between here
1748 and the target label. They ought to be chastised and fixed.
1749
1750 We can also wind up with a sequence of undeletable labels between
1751 one block and the next.
1752
1753 So search through a sequence of barriers, labels, and notes for
1754 the head of block C and assert that we really do fall through. */
1755
1756 for (q = NEXT_INSN (BB_END (b)); q != BB_HEAD (c); q = NEXT_INSN (q))
1757 if (NONDEBUG_INSN_P (q))
1758 return;
1759
1760 /* Remove what will soon cease being the jump insn from the source block.
1761 If block B consisted only of this single jump, turn it into a deleted
1762 note. */
1763 q = BB_END (b);
1764 if (JUMP_P (q)
1765 && onlyjump_p (q)
1766 && (any_uncondjump_p (q)
1767 || single_succ_p (b)))
1768 {
1769 rtx_insn *label;
1770 rtx_jump_table_data *table;
1771
1772 if (tablejump_p (q, &label, &table))
1773 {
1774 /* The label is likely mentioned in some instruction before
1775 the tablejump and might not be DCEd, so turn it into
1776 a note instead and move before the tablejump that is going to
1777 be deleted. */
1778 const char *name = LABEL_NAME (label);
1779 PUT_CODE (label, NOTE);
1780 NOTE_KIND (label) = NOTE_INSN_DELETED_LABEL;
1781 NOTE_DELETED_LABEL_NAME (label) = name;
1782 reorder_insns (label, label, PREV_INSN (q));
1783 delete_insn (table);
1784 }
1785
1786 /* If this was a conditional jump, we need to also delete
1787 the insn that set cc0. */
1788 if (HAVE_cc0 && any_condjump_p (q) && only_sets_cc0_p (PREV_INSN (q)))
1789 q = PREV_INSN (q);
1790
1791 q = PREV_INSN (q);
1792 }
1793 /* Unconditional jumps with side-effects (i.e. which we can't just delete
1794 together with the barrier) should never have a fallthru edge. */
1795 else if (JUMP_P (q) && any_uncondjump_p (q))
1796 return;
1797
1798 /* Selectively unlink the sequence. */
1799 if (q != PREV_INSN (BB_HEAD (c)))
1800 delete_insn_chain (NEXT_INSN (q), PREV_INSN (BB_HEAD (c)), false);
1801
1802 e->flags |= EDGE_FALLTHRU;
1803 }
1804 \f
1805 /* Should move basic block BB after basic block AFTER. NIY. */
1806
1807 static bool
1808 rtl_move_block_after (basic_block bb ATTRIBUTE_UNUSED,
1809 basic_block after ATTRIBUTE_UNUSED)
1810 {
1811 return false;
1812 }
1813
1814 /* Locate the last bb in the same partition as START_BB. */
1815
1816 static basic_block
1817 last_bb_in_partition (basic_block start_bb)
1818 {
1819 basic_block bb;
1820 FOR_BB_BETWEEN (bb, start_bb, EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
1821 {
1822 if (BB_PARTITION (start_bb) != BB_PARTITION (bb->next_bb))
1823 return bb;
1824 }
1825 /* Return bb before the exit block. */
1826 return bb->prev_bb;
1827 }
1828
1829 /* Split a (typically critical) edge. Return the new block.
1830 The edge must not be abnormal.
1831
1832 ??? The code generally expects to be called on critical edges.
1833 The case of a block ending in an unconditional jump to a
1834 block with multiple predecessors is not handled optimally. */
1835
1836 static basic_block
1837 rtl_split_edge (edge edge_in)
1838 {
1839 basic_block bb, new_bb;
1840 rtx_insn *before;
1841
1842 /* Abnormal edges cannot be split. */
1843 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
1844
1845 /* We are going to place the new block in front of edge destination.
1846 Avoid existence of fallthru predecessors. */
1847 if ((edge_in->flags & EDGE_FALLTHRU) == 0)
1848 {
1849 edge e = find_fallthru_edge (edge_in->dest->preds);
1850
1851 if (e)
1852 force_nonfallthru (e);
1853 }
1854
1855 /* Create the basic block note. */
1856 if (edge_in->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1857 before = BB_HEAD (edge_in->dest);
1858 else
1859 before = NULL;
1860
1861 /* If this is a fall through edge to the exit block, the blocks might be
1862 not adjacent, and the right place is after the source. */
1863 if ((edge_in->flags & EDGE_FALLTHRU)
1864 && edge_in->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1865 {
1866 before = NEXT_INSN (BB_END (edge_in->src));
1867 bb = create_basic_block (before, NULL, edge_in->src);
1868 BB_COPY_PARTITION (bb, edge_in->src);
1869 }
1870 else
1871 {
1872 if (edge_in->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1873 {
1874 bb = create_basic_block (before, NULL, edge_in->dest->prev_bb);
1875 BB_COPY_PARTITION (bb, edge_in->dest);
1876 }
1877 else
1878 {
1879 basic_block after = edge_in->dest->prev_bb;
1880 /* If this is post-bb reordering, and the edge crosses a partition
1881 boundary, the new block needs to be inserted in the bb chain
1882 at the end of the src partition (since we put the new bb into
1883 that partition, see below). Otherwise we may end up creating
1884 an extra partition crossing in the chain, which is illegal.
1885 It can't go after the src, because src may have a fall-through
1886 to a different block. */
1887 if (crtl->bb_reorder_complete
1888 && (edge_in->flags & EDGE_CROSSING))
1889 {
1890 after = last_bb_in_partition (edge_in->src);
1891 before = get_last_bb_insn (after);
1892 /* The instruction following the last bb in partition should
1893 be a barrier, since it cannot end in a fall-through. */
1894 gcc_checking_assert (BARRIER_P (before));
1895 before = NEXT_INSN (before);
1896 }
1897 bb = create_basic_block (before, NULL, after);
1898 /* Put the split bb into the src partition, to avoid creating
1899 a situation where a cold bb dominates a hot bb, in the case
1900 where src is cold and dest is hot. The src will dominate
1901 the new bb (whereas it might not have dominated dest). */
1902 BB_COPY_PARTITION (bb, edge_in->src);
1903 }
1904 }
1905
1906 make_single_succ_edge (bb, edge_in->dest, EDGE_FALLTHRU);
1907
1908 /* Can't allow a region crossing edge to be fallthrough. */
1909 if (BB_PARTITION (bb) != BB_PARTITION (edge_in->dest)
1910 && edge_in->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1911 {
1912 new_bb = force_nonfallthru (single_succ_edge (bb));
1913 gcc_assert (!new_bb);
1914 }
1915
1916 /* For non-fallthru edges, we must adjust the predecessor's
1917 jump instruction to target our new block. */
1918 if ((edge_in->flags & EDGE_FALLTHRU) == 0)
1919 {
1920 edge redirected = redirect_edge_and_branch (edge_in, bb);
1921 gcc_assert (redirected);
1922 }
1923 else
1924 {
1925 if (edge_in->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
1926 {
1927 /* For asm goto even splitting of fallthru edge might
1928 need insn patching, as other labels might point to the
1929 old label. */
1930 rtx_insn *last = BB_END (edge_in->src);
1931 if (last
1932 && JUMP_P (last)
1933 && edge_in->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
1934 && (extract_asm_operands (PATTERN (last))
1935 || JUMP_LABEL (last) == before)
1936 && patch_jump_insn (last, before, bb))
1937 df_set_bb_dirty (edge_in->src);
1938 }
1939 redirect_edge_succ (edge_in, bb);
1940 }
1941
1942 return bb;
1943 }
1944
1945 /* Queue instructions for insertion on an edge between two basic blocks.
1946 The new instructions and basic blocks (if any) will not appear in the
1947 CFG until commit_edge_insertions is called. */
1948
1949 void
1950 insert_insn_on_edge (rtx pattern, edge e)
1951 {
1952 /* We cannot insert instructions on an abnormal critical edge.
1953 It will be easier to find the culprit if we die now. */
1954 gcc_assert (!((e->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (e)));
1955
1956 if (e->insns.r == NULL_RTX)
1957 start_sequence ();
1958 else
1959 push_to_sequence (e->insns.r);
1960
1961 emit_insn (pattern);
1962
1963 e->insns.r = get_insns ();
1964 end_sequence ();
1965 }
1966
1967 /* Update the CFG for the instructions queued on edge E. */
1968
1969 void
1970 commit_one_edge_insertion (edge e)
1971 {
1972 rtx_insn *before = NULL, *after = NULL, *insns, *tmp, *last;
1973 basic_block bb;
1974
1975 /* Pull the insns off the edge now since the edge might go away. */
1976 insns = e->insns.r;
1977 e->insns.r = NULL;
1978
1979 /* Figure out where to put these insns. If the destination has
1980 one predecessor, insert there. Except for the exit block. */
1981 if (single_pred_p (e->dest) && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1982 {
1983 bb = e->dest;
1984
1985 /* Get the location correct wrt a code label, and "nice" wrt
1986 a basic block note, and before everything else. */
1987 tmp = BB_HEAD (bb);
1988 if (LABEL_P (tmp))
1989 tmp = NEXT_INSN (tmp);
1990 if (NOTE_INSN_BASIC_BLOCK_P (tmp))
1991 tmp = NEXT_INSN (tmp);
1992 if (tmp == BB_HEAD (bb))
1993 before = tmp;
1994 else if (tmp)
1995 after = PREV_INSN (tmp);
1996 else
1997 after = get_last_insn ();
1998 }
1999
2000 /* If the source has one successor and the edge is not abnormal,
2001 insert there. Except for the entry block.
2002 Don't do this if the predecessor ends in a jump other than
2003 unconditional simple jump. E.g. for asm goto that points all
2004 its labels at the fallthru basic block, we can't insert instructions
2005 before the asm goto, as the asm goto can have various of side effects,
2006 and can't emit instructions after the asm goto, as it must end
2007 the basic block. */
2008 else if ((e->flags & EDGE_ABNORMAL) == 0
2009 && single_succ_p (e->src)
2010 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
2011 && (!JUMP_P (BB_END (e->src))
2012 || simplejump_p (BB_END (e->src))))
2013 {
2014 bb = e->src;
2015
2016 /* It is possible to have a non-simple jump here. Consider a target
2017 where some forms of unconditional jumps clobber a register. This
2018 happens on the fr30 for example.
2019
2020 We know this block has a single successor, so we can just emit
2021 the queued insns before the jump. */
2022 if (JUMP_P (BB_END (bb)))
2023 before = BB_END (bb);
2024 else
2025 {
2026 /* We'd better be fallthru, or we've lost track of what's what. */
2027 gcc_assert (e->flags & EDGE_FALLTHRU);
2028
2029 after = BB_END (bb);
2030 }
2031 }
2032
2033 /* Otherwise we must split the edge. */
2034 else
2035 {
2036 bb = split_edge (e);
2037
2038 /* If E crossed a partition boundary, we needed to make bb end in
2039 a region-crossing jump, even though it was originally fallthru. */
2040 if (JUMP_P (BB_END (bb)))
2041 before = BB_END (bb);
2042 else
2043 after = BB_END (bb);
2044 }
2045
2046 /* Now that we've found the spot, do the insertion. */
2047 if (before)
2048 {
2049 emit_insn_before_noloc (insns, before, bb);
2050 last = prev_nonnote_insn (before);
2051 }
2052 else
2053 last = emit_insn_after_noloc (insns, after, bb);
2054
2055 if (returnjump_p (last))
2056 {
2057 /* ??? Remove all outgoing edges from BB and add one for EXIT.
2058 This is not currently a problem because this only happens
2059 for the (single) epilogue, which already has a fallthru edge
2060 to EXIT. */
2061
2062 e = single_succ_edge (bb);
2063 gcc_assert (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
2064 && single_succ_p (bb) && (e->flags & EDGE_FALLTHRU));
2065
2066 e->flags &= ~EDGE_FALLTHRU;
2067 emit_barrier_after (last);
2068
2069 if (before)
2070 delete_insn (before);
2071 }
2072 else
2073 gcc_assert (!JUMP_P (last));
2074 }
2075
2076 /* Update the CFG for all queued instructions. */
2077
2078 void
2079 commit_edge_insertions (void)
2080 {
2081 basic_block bb;
2082
2083 /* Optimization passes that invoke this routine can cause hot blocks
2084 previously reached by both hot and cold blocks to become dominated only
2085 by cold blocks. This will cause the verification below to fail,
2086 and lead to now cold code in the hot section. In some cases this
2087 may only be visible after newly unreachable blocks are deleted,
2088 which will be done by fixup_partitions. */
2089 fixup_partitions ();
2090
2091 checking_verify_flow_info ();
2092
2093 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
2094 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
2095 {
2096 edge e;
2097 edge_iterator ei;
2098
2099 FOR_EACH_EDGE (e, ei, bb->succs)
2100 if (e->insns.r)
2101 commit_one_edge_insertion (e);
2102 }
2103 }
2104 \f
2105
2106 /* Print out RTL-specific basic block information (live information
2107 at start and end with TDF_DETAILS). FLAGS are the TDF_* masks
2108 documented in dumpfile.h. */
2109
2110 static void
2111 rtl_dump_bb (FILE *outf, basic_block bb, int indent, dump_flags_t flags)
2112 {
2113 char *s_indent;
2114
2115 s_indent = (char *) alloca ((size_t) indent + 1);
2116 memset (s_indent, ' ', (size_t) indent);
2117 s_indent[indent] = '\0';
2118
2119 if (df && (flags & TDF_DETAILS))
2120 {
2121 df_dump_top (bb, outf);
2122 putc ('\n', outf);
2123 }
2124
2125 if (bb->index != ENTRY_BLOCK && bb->index != EXIT_BLOCK)
2126 {
2127 rtx_insn *last = BB_END (bb);
2128 if (last)
2129 last = NEXT_INSN (last);
2130 for (rtx_insn *insn = BB_HEAD (bb); insn != last; insn = NEXT_INSN (insn))
2131 {
2132 if (flags & TDF_DETAILS)
2133 df_dump_insn_top (insn, outf);
2134 if (! (flags & TDF_SLIM))
2135 print_rtl_single (outf, insn);
2136 else
2137 dump_insn_slim (outf, insn);
2138 if (flags & TDF_DETAILS)
2139 df_dump_insn_bottom (insn, outf);
2140 }
2141 }
2142
2143 if (df && (flags & TDF_DETAILS))
2144 {
2145 df_dump_bottom (bb, outf);
2146 putc ('\n', outf);
2147 }
2148
2149 }
2150 \f
2151 /* Like dump_function_to_file, but for RTL. Print out dataflow information
2152 for the start of each basic block. FLAGS are the TDF_* masks documented
2153 in dumpfile.h. */
2154
2155 void
2156 print_rtl_with_bb (FILE *outf, const rtx_insn *rtx_first, dump_flags_t flags)
2157 {
2158 const rtx_insn *tmp_rtx;
2159 if (rtx_first == 0)
2160 fprintf (outf, "(nil)\n");
2161 else
2162 {
2163 enum bb_state { NOT_IN_BB, IN_ONE_BB, IN_MULTIPLE_BB };
2164 int max_uid = get_max_uid ();
2165 basic_block *start = XCNEWVEC (basic_block, max_uid);
2166 basic_block *end = XCNEWVEC (basic_block, max_uid);
2167 enum bb_state *in_bb_p = XCNEWVEC (enum bb_state, max_uid);
2168 basic_block bb;
2169
2170 /* After freeing the CFG, we still have BLOCK_FOR_INSN set on most
2171 insns, but the CFG is not maintained so the basic block info
2172 is not reliable. Therefore it's omitted from the dumps. */
2173 if (! (cfun->curr_properties & PROP_cfg))
2174 flags &= ~TDF_BLOCKS;
2175
2176 if (df)
2177 df_dump_start (outf);
2178
2179 if (flags & TDF_BLOCKS)
2180 {
2181 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2182 {
2183 rtx_insn *x;
2184
2185 start[INSN_UID (BB_HEAD (bb))] = bb;
2186 end[INSN_UID (BB_END (bb))] = bb;
2187 for (x = BB_HEAD (bb); x != NULL_RTX; x = NEXT_INSN (x))
2188 {
2189 enum bb_state state = IN_MULTIPLE_BB;
2190
2191 if (in_bb_p[INSN_UID (x)] == NOT_IN_BB)
2192 state = IN_ONE_BB;
2193 in_bb_p[INSN_UID (x)] = state;
2194
2195 if (x == BB_END (bb))
2196 break;
2197 }
2198 }
2199 }
2200
2201 for (tmp_rtx = rtx_first; tmp_rtx != NULL; tmp_rtx = NEXT_INSN (tmp_rtx))
2202 {
2203 if (flags & TDF_BLOCKS)
2204 {
2205 bb = start[INSN_UID (tmp_rtx)];
2206 if (bb != NULL)
2207 {
2208 dump_bb_info (outf, bb, 0, dump_flags, true, false);
2209 if (df && (flags & TDF_DETAILS))
2210 df_dump_top (bb, outf);
2211 }
2212
2213 if (in_bb_p[INSN_UID (tmp_rtx)] == NOT_IN_BB
2214 && !NOTE_P (tmp_rtx)
2215 && !BARRIER_P (tmp_rtx))
2216 fprintf (outf, ";; Insn is not within a basic block\n");
2217 else if (in_bb_p[INSN_UID (tmp_rtx)] == IN_MULTIPLE_BB)
2218 fprintf (outf, ";; Insn is in multiple basic blocks\n");
2219 }
2220
2221 if (flags & TDF_DETAILS)
2222 df_dump_insn_top (tmp_rtx, outf);
2223 if (! (flags & TDF_SLIM))
2224 print_rtl_single (outf, tmp_rtx);
2225 else
2226 dump_insn_slim (outf, tmp_rtx);
2227 if (flags & TDF_DETAILS)
2228 df_dump_insn_bottom (tmp_rtx, outf);
2229
2230 if (flags & TDF_BLOCKS)
2231 {
2232 bb = end[INSN_UID (tmp_rtx)];
2233 if (bb != NULL)
2234 {
2235 dump_bb_info (outf, bb, 0, dump_flags, false, true);
2236 if (df && (flags & TDF_DETAILS))
2237 df_dump_bottom (bb, outf);
2238 putc ('\n', outf);
2239 }
2240 }
2241 }
2242
2243 free (start);
2244 free (end);
2245 free (in_bb_p);
2246 }
2247 }
2248 \f
2249 /* Update the branch probability of BB if a REG_BR_PROB is present. */
2250
2251 void
2252 update_br_prob_note (basic_block bb)
2253 {
2254 rtx note;
2255 note = find_reg_note (BB_END (bb), REG_BR_PROB, NULL_RTX);
2256 if (!JUMP_P (BB_END (bb)) || !BRANCH_EDGE (bb)->probability.initialized_p ())
2257 {
2258 if (note)
2259 {
2260 rtx *note_link, this_rtx;
2261
2262 note_link = &REG_NOTES (BB_END (bb));
2263 for (this_rtx = *note_link; this_rtx; this_rtx = XEXP (this_rtx, 1))
2264 if (this_rtx == note)
2265 {
2266 *note_link = XEXP (this_rtx, 1);
2267 break;
2268 }
2269 }
2270 return;
2271 }
2272 if (!note
2273 || XINT (note, 0) == BRANCH_EDGE (bb)->probability.to_reg_br_prob_note ())
2274 return;
2275 XINT (note, 0) = BRANCH_EDGE (bb)->probability.to_reg_br_prob_note ();
2276 }
2277
2278 /* Get the last insn associated with block BB (that includes barriers and
2279 tablejumps after BB). */
2280 rtx_insn *
2281 get_last_bb_insn (basic_block bb)
2282 {
2283 rtx_jump_table_data *table;
2284 rtx_insn *tmp;
2285 rtx_insn *end = BB_END (bb);
2286
2287 /* Include any jump table following the basic block. */
2288 if (tablejump_p (end, NULL, &table))
2289 end = table;
2290
2291 /* Include any barriers that may follow the basic block. */
2292 tmp = next_nonnote_nondebug_insn_bb (end);
2293 while (tmp && BARRIER_P (tmp))
2294 {
2295 end = tmp;
2296 tmp = next_nonnote_nondebug_insn_bb (end);
2297 }
2298
2299 return end;
2300 }
2301
2302 /* Add all BBs reachable from entry via hot paths into the SET. */
2303
2304 void
2305 find_bbs_reachable_by_hot_paths (hash_set<basic_block> *set)
2306 {
2307 auto_vec<basic_block, 64> worklist;
2308
2309 set->add (ENTRY_BLOCK_PTR_FOR_FN (cfun));
2310 worklist.safe_push (ENTRY_BLOCK_PTR_FOR_FN (cfun));
2311
2312 while (worklist.length () > 0)
2313 {
2314 basic_block bb = worklist.pop ();
2315 edge_iterator ei;
2316 edge e;
2317
2318 FOR_EACH_EDGE (e, ei, bb->succs)
2319 if (BB_PARTITION (e->dest) != BB_COLD_PARTITION
2320 && !set->add (e->dest))
2321 worklist.safe_push (e->dest);
2322 }
2323 }
2324
2325 /* Sanity check partition hotness to ensure that basic blocks in
2326   the cold partition don't dominate basic blocks in the hot partition.
2327 If FLAG_ONLY is true, report violations as errors. Otherwise
2328 re-mark the dominated blocks as cold, since this is run after
2329 cfg optimizations that may make hot blocks previously reached
2330 by both hot and cold blocks now only reachable along cold paths. */
2331
2332 static vec<basic_block>
2333 find_partition_fixes (bool flag_only)
2334 {
2335 basic_block bb;
2336 vec<basic_block> bbs_in_cold_partition = vNULL;
2337 vec<basic_block> bbs_to_fix = vNULL;
2338 hash_set<basic_block> set;
2339
2340 /* Callers check this. */
2341 gcc_checking_assert (crtl->has_bb_partition);
2342
2343 find_bbs_reachable_by_hot_paths (&set);
2344
2345 FOR_EACH_BB_FN (bb, cfun)
2346 if (!set.contains (bb)
2347 && BB_PARTITION (bb) != BB_COLD_PARTITION)
2348 {
2349 if (flag_only)
2350 error ("non-cold basic block %d reachable only "
2351 "by paths crossing the cold partition", bb->index);
2352 else
2353 BB_SET_PARTITION (bb, BB_COLD_PARTITION);
2354 bbs_to_fix.safe_push (bb);
2355 bbs_in_cold_partition.safe_push (bb);
2356 }
2357
2358 return bbs_to_fix;
2359 }
2360
2361 /* Perform cleanup on the hot/cold bb partitioning after optimization
2362 passes that modify the cfg. */
2363
2364 void
2365 fixup_partitions (void)
2366 {
2367 basic_block bb;
2368
2369 if (!crtl->has_bb_partition)
2370 return;
2371
2372 /* Delete any blocks that became unreachable and weren't
2373 already cleaned up, for example during edge forwarding
2374 and convert_jumps_to_returns. This will expose more
2375 opportunities for fixing the partition boundaries here.
2376 Also, the calculation of the dominance graph during verification
2377 will assert if there are unreachable nodes. */
2378 delete_unreachable_blocks ();
2379
2380 /* If there are partitions, do a sanity check on them: A basic block in
2381   a cold partition cannot dominate a basic block in a hot partition.
2382 Fixup any that now violate this requirement, as a result of edge
2383 forwarding and unreachable block deletion.  */
2384 vec<basic_block> bbs_to_fix = find_partition_fixes (false);
2385
2386 /* Do the partition fixup after all necessary blocks have been converted to
2387 cold, so that we only update the region crossings the minimum number of
2388 places, which can require forcing edges to be non fallthru. */
2389 while (! bbs_to_fix.is_empty ())
2390 {
2391 bb = bbs_to_fix.pop ();
2392 fixup_new_cold_bb (bb);
2393 }
2394 }
2395
2396 /* Verify, in the basic block chain, that there is at most one switch
2397 between hot/cold partitions. This condition will not be true until
2398 after reorder_basic_blocks is called. */
2399
2400 static int
2401 verify_hot_cold_block_grouping (void)
2402 {
2403 basic_block bb;
2404 int err = 0;
2405 bool switched_sections = false;
2406 int current_partition = BB_UNPARTITIONED;
2407
2408 /* Even after bb reordering is complete, we go into cfglayout mode
2409 again (in compgoto). Ensure we don't call this before going back
2410 into linearized RTL when any layout fixes would have been committed. */
2411 if (!crtl->bb_reorder_complete
2412 || current_ir_type () != IR_RTL_CFGRTL)
2413 return err;
2414
2415 FOR_EACH_BB_FN (bb, cfun)
2416 {
2417 if (current_partition != BB_UNPARTITIONED
2418 && BB_PARTITION (bb) != current_partition)
2419 {
2420 if (switched_sections)
2421 {
2422 error ("multiple hot/cold transitions found (bb %i)",
2423 bb->index);
2424 err = 1;
2425 }
2426 else
2427 switched_sections = true;
2428
2429 if (!crtl->has_bb_partition)
2430 error ("partition found but function partition flag not set");
2431 }
2432 current_partition = BB_PARTITION (bb);
2433 }
2434
2435 return err;
2436 }
2437 \f
2438
2439 /* Perform several checks on the edges out of each block, such as
2440 the consistency of the branch probabilities, the correctness
2441 of hot/cold partition crossing edges, and the number of expected
2442 successor edges. Also verify that the dominance relationship
2443 between hot/cold blocks is sane. */
2444
2445 static int
2446 rtl_verify_edges (void)
2447 {
2448 int err = 0;
2449 basic_block bb;
2450
2451 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2452 {
2453 int n_fallthru = 0, n_branch = 0, n_abnormal_call = 0, n_sibcall = 0;
2454 int n_eh = 0, n_abnormal = 0;
2455 edge e, fallthru = NULL;
2456 edge_iterator ei;
2457 rtx note;
2458 bool has_crossing_edge = false;
2459
2460 if (JUMP_P (BB_END (bb))
2461 && (note = find_reg_note (BB_END (bb), REG_BR_PROB, NULL_RTX))
2462 && EDGE_COUNT (bb->succs) >= 2
2463 && any_condjump_p (BB_END (bb)))
2464 {
2465 if (!BRANCH_EDGE (bb)->probability.initialized_p ())
2466 {
2467 if (profile_status_for_fn (cfun) != PROFILE_ABSENT)
2468 {
2469 error ("verify_flow_info: "
2470 "REG_BR_PROB is set but cfg probability is not");
2471 err = 1;
2472 }
2473 }
2474 else if (XINT (note, 0)
2475 != BRANCH_EDGE (bb)->probability.to_reg_br_prob_note ()
2476 && profile_status_for_fn (cfun) != PROFILE_ABSENT)
2477 {
2478 error ("verify_flow_info: REG_BR_PROB does not match cfg %i %i",
2479 XINT (note, 0),
2480 BRANCH_EDGE (bb)->probability.to_reg_br_prob_note ());
2481 err = 1;
2482 }
2483 }
2484
2485 FOR_EACH_EDGE (e, ei, bb->succs)
2486 {
2487 bool is_crossing;
2488
2489 if (e->flags & EDGE_FALLTHRU)
2490 n_fallthru++, fallthru = e;
2491
2492 is_crossing = (BB_PARTITION (e->src) != BB_PARTITION (e->dest)
2493 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
2494 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun));
2495 has_crossing_edge |= is_crossing;
2496 if (e->flags & EDGE_CROSSING)
2497 {
2498 if (!is_crossing)
2499 {
2500 error ("EDGE_CROSSING incorrectly set across same section");
2501 err = 1;
2502 }
2503 if (e->flags & EDGE_FALLTHRU)
2504 {
2505 error ("fallthru edge crosses section boundary in bb %i",
2506 e->src->index);
2507 err = 1;
2508 }
2509 if (e->flags & EDGE_EH)
2510 {
2511 error ("EH edge crosses section boundary in bb %i",
2512 e->src->index);
2513 err = 1;
2514 }
2515 if (JUMP_P (BB_END (bb)) && !CROSSING_JUMP_P (BB_END (bb)))
2516 {
2517 error ("No region crossing jump at section boundary in bb %i",
2518 bb->index);
2519 err = 1;
2520 }
2521 }
2522 else if (is_crossing)
2523 {
2524 error ("EDGE_CROSSING missing across section boundary");
2525 err = 1;
2526 }
2527
2528 if ((e->flags & ~(EDGE_DFS_BACK
2529 | EDGE_CAN_FALLTHRU
2530 | EDGE_IRREDUCIBLE_LOOP
2531 | EDGE_LOOP_EXIT
2532 | EDGE_CROSSING
2533 | EDGE_PRESERVE)) == 0)
2534 n_branch++;
2535
2536 if (e->flags & EDGE_ABNORMAL_CALL)
2537 n_abnormal_call++;
2538
2539 if (e->flags & EDGE_SIBCALL)
2540 n_sibcall++;
2541
2542 if (e->flags & EDGE_EH)
2543 n_eh++;
2544
2545 if (e->flags & EDGE_ABNORMAL)
2546 n_abnormal++;
2547 }
2548
2549 if (!has_crossing_edge
2550 && JUMP_P (BB_END (bb))
2551 && CROSSING_JUMP_P (BB_END (bb)))
2552 {
2553 print_rtl_with_bb (stderr, get_insns (), TDF_BLOCKS | TDF_DETAILS);
2554 error ("Region crossing jump across same section in bb %i",
2555 bb->index);
2556 err = 1;
2557 }
2558
2559 if (n_eh && !find_reg_note (BB_END (bb), REG_EH_REGION, NULL_RTX))
2560 {
2561 error ("missing REG_EH_REGION note at the end of bb %i", bb->index);
2562 err = 1;
2563 }
2564 if (n_eh > 1)
2565 {
2566 error ("too many exception handling edges in bb %i", bb->index);
2567 err = 1;
2568 }
2569 if (n_branch
2570 && (!JUMP_P (BB_END (bb))
2571 || (n_branch > 1 && (any_uncondjump_p (BB_END (bb))
2572 || any_condjump_p (BB_END (bb))))))
2573 {
2574 error ("too many outgoing branch edges from bb %i", bb->index);
2575 err = 1;
2576 }
2577 if (n_fallthru && any_uncondjump_p (BB_END (bb)))
2578 {
2579 error ("fallthru edge after unconditional jump in bb %i", bb->index);
2580 err = 1;
2581 }
2582 if (n_branch != 1 && any_uncondjump_p (BB_END (bb)))
2583 {
2584 error ("wrong number of branch edges after unconditional jump"
2585 " in bb %i", bb->index);
2586 err = 1;
2587 }
2588 if (n_branch != 1 && any_condjump_p (BB_END (bb))
2589 && JUMP_LABEL (BB_END (bb)) != BB_HEAD (fallthru->dest))
2590 {
2591 error ("wrong amount of branch edges after conditional jump"
2592 " in bb %i", bb->index);
2593 err = 1;
2594 }
2595 if (n_abnormal_call && !CALL_P (BB_END (bb)))
2596 {
2597 error ("abnormal call edges for non-call insn in bb %i", bb->index);
2598 err = 1;
2599 }
2600 if (n_sibcall && !CALL_P (BB_END (bb)))
2601 {
2602 error ("sibcall edges for non-call insn in bb %i", bb->index);
2603 err = 1;
2604 }
2605 if (n_abnormal > n_eh
2606 && !(CALL_P (BB_END (bb))
2607 && n_abnormal == n_abnormal_call + n_sibcall)
2608 && (!JUMP_P (BB_END (bb))
2609 || any_condjump_p (BB_END (bb))
2610 || any_uncondjump_p (BB_END (bb))))
2611 {
2612 error ("abnormal edges for no purpose in bb %i", bb->index);
2613 err = 1;
2614 }
2615
2616 int has_eh = -1;
2617 FOR_EACH_EDGE (e, ei, bb->preds)
2618 {
2619 if (has_eh == -1)
2620 has_eh = (e->flags & EDGE_EH);
2621 if ((e->flags & EDGE_EH) == has_eh)
2622 continue;
2623 error ("EH incoming edge mixed with non-EH incoming edges "
2624 "in bb %i", bb->index);
2625 err = 1;
2626 break;
2627 }
2628 }
2629
2630 /* If there are partitions, do a sanity check on them: A basic block in
2631   a cold partition cannot dominate a basic block in a hot partition.  */
2632 if (crtl->has_bb_partition && !err
2633 && current_ir_type () == IR_RTL_CFGLAYOUT)
2634 {
2635 vec<basic_block> bbs_to_fix = find_partition_fixes (true);
2636 err = !bbs_to_fix.is_empty ();
2637 }
2638
2639 /* Clean up. */
2640 return err;
2641 }
2642
2643 /* Checks on the instructions within blocks. Currently checks that each
2644 block starts with a basic block note, and that basic block notes and
2645 control flow jumps are not found in the middle of the block. */
2646
2647 static int
2648 rtl_verify_bb_insns (void)
2649 {
2650 rtx_insn *x;
2651 int err = 0;
2652 basic_block bb;
2653
2654 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2655 {
2656 /* Now check the header of basic
2657 block. It ought to contain optional CODE_LABEL followed
2658 by NOTE_BASIC_BLOCK. */
2659 x = BB_HEAD (bb);
2660 if (LABEL_P (x))
2661 {
2662 if (BB_END (bb) == x)
2663 {
2664 error ("NOTE_INSN_BASIC_BLOCK is missing for block %d",
2665 bb->index);
2666 err = 1;
2667 }
2668
2669 x = NEXT_INSN (x);
2670 }
2671
2672 if (!NOTE_INSN_BASIC_BLOCK_P (x) || NOTE_BASIC_BLOCK (x) != bb)
2673 {
2674 error ("NOTE_INSN_BASIC_BLOCK is missing for block %d",
2675 bb->index);
2676 err = 1;
2677 }
2678
2679 if (BB_END (bb) == x)
2680 /* Do checks for empty blocks here. */
2681 ;
2682 else
2683 for (x = NEXT_INSN (x); x; x = NEXT_INSN (x))
2684 {
2685 if (NOTE_INSN_BASIC_BLOCK_P (x))
2686 {
2687 error ("NOTE_INSN_BASIC_BLOCK %d in middle of basic block %d",
2688 INSN_UID (x), bb->index);
2689 err = 1;
2690 }
2691
2692 if (x == BB_END (bb))
2693 break;
2694
2695 if (control_flow_insn_p (x))
2696 {
2697 error ("in basic block %d:", bb->index);
2698 fatal_insn ("flow control insn inside a basic block", x);
2699 }
2700 }
2701 }
2702
2703 /* Clean up. */
2704 return err;
2705 }
2706
2707 /* Verify that block pointers for instructions in basic blocks, headers and
2708 footers are set appropriately. */
2709
2710 static int
2711 rtl_verify_bb_pointers (void)
2712 {
2713 int err = 0;
2714 basic_block bb;
2715
2716 /* Check the general integrity of the basic blocks. */
2717 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2718 {
2719 rtx_insn *insn;
2720
2721 if (!(bb->flags & BB_RTL))
2722 {
2723 error ("BB_RTL flag not set for block %d", bb->index);
2724 err = 1;
2725 }
2726
2727 FOR_BB_INSNS (bb, insn)
2728 if (BLOCK_FOR_INSN (insn) != bb)
2729 {
2730 error ("insn %d basic block pointer is %d, should be %d",
2731 INSN_UID (insn),
2732 BLOCK_FOR_INSN (insn) ? BLOCK_FOR_INSN (insn)->index : 0,
2733 bb->index);
2734 err = 1;
2735 }
2736
2737 for (insn = BB_HEADER (bb); insn; insn = NEXT_INSN (insn))
2738 if (!BARRIER_P (insn)
2739 && BLOCK_FOR_INSN (insn) != NULL)
2740 {
2741 error ("insn %d in header of bb %d has non-NULL basic block",
2742 INSN_UID (insn), bb->index);
2743 err = 1;
2744 }
2745 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2746 if (!BARRIER_P (insn)
2747 && BLOCK_FOR_INSN (insn) != NULL)
2748 {
2749 error ("insn %d in footer of bb %d has non-NULL basic block",
2750 INSN_UID (insn), bb->index);
2751 err = 1;
2752 }
2753 }
2754
2755 /* Clean up. */
2756 return err;
2757 }
2758
2759 /* Verify the CFG and RTL consistency common for both underlying RTL and
2760 cfglayout RTL.
2761
2762 Currently it does following checks:
2763
2764 - overlapping of basic blocks
2765 - insns with wrong BLOCK_FOR_INSN pointers
2766 - headers of basic blocks (the NOTE_INSN_BASIC_BLOCK note)
2767 - tails of basic blocks (ensure that boundary is necessary)
2768 - scans body of the basic block for JUMP_INSN, CODE_LABEL
2769 and NOTE_INSN_BASIC_BLOCK
2770 - verify that no fall_thru edge crosses hot/cold partition boundaries
2771 - verify that there are no pending RTL branch predictions
2772 - verify that hot blocks are not dominated by cold blocks
2773
2774 In future it can be extended check a lot of other stuff as well
2775 (reachability of basic blocks, life information, etc. etc.). */
2776
2777 static int
2778 rtl_verify_flow_info_1 (void)
2779 {
2780 int err = 0;
2781
2782 err |= rtl_verify_bb_pointers ();
2783
2784 err |= rtl_verify_bb_insns ();
2785
2786 err |= rtl_verify_edges ();
2787
2788 return err;
2789 }
2790
2791 /* Walk the instruction chain and verify that bb head/end pointers
2792 are correct, and that instructions are in exactly one bb and have
2793 correct block pointers. */
2794
2795 static int
2796 rtl_verify_bb_insn_chain (void)
2797 {
2798 basic_block bb;
2799 int err = 0;
2800 rtx_insn *x;
2801 rtx_insn *last_head = get_last_insn ();
2802 basic_block *bb_info;
2803 const int max_uid = get_max_uid ();
2804
2805 bb_info = XCNEWVEC (basic_block, max_uid);
2806
2807 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2808 {
2809 rtx_insn *head = BB_HEAD (bb);
2810 rtx_insn *end = BB_END (bb);
2811
2812 for (x = last_head; x != NULL_RTX; x = PREV_INSN (x))
2813 {
2814 /* Verify the end of the basic block is in the INSN chain. */
2815 if (x == end)
2816 break;
2817
2818 /* And that the code outside of basic blocks has NULL bb field. */
2819 if (!BARRIER_P (x)
2820 && BLOCK_FOR_INSN (x) != NULL)
2821 {
2822 error ("insn %d outside of basic blocks has non-NULL bb field",
2823 INSN_UID (x));
2824 err = 1;
2825 }
2826 }
2827
2828 if (!x)
2829 {
2830 error ("end insn %d for block %d not found in the insn stream",
2831 INSN_UID (end), bb->index);
2832 err = 1;
2833 }
2834
2835 /* Work backwards from the end to the head of the basic block
2836 to verify the head is in the RTL chain. */
2837 for (; x != NULL_RTX; x = PREV_INSN (x))
2838 {
2839 /* While walking over the insn chain, verify insns appear
2840 in only one basic block. */
2841 if (bb_info[INSN_UID (x)] != NULL)
2842 {
2843 error ("insn %d is in multiple basic blocks (%d and %d)",
2844 INSN_UID (x), bb->index, bb_info[INSN_UID (x)]->index);
2845 err = 1;
2846 }
2847
2848 bb_info[INSN_UID (x)] = bb;
2849
2850 if (x == head)
2851 break;
2852 }
2853 if (!x)
2854 {
2855 error ("head insn %d for block %d not found in the insn stream",
2856 INSN_UID (head), bb->index);
2857 err = 1;
2858 }
2859
2860 last_head = PREV_INSN (x);
2861 }
2862
2863 for (x = last_head; x != NULL_RTX; x = PREV_INSN (x))
2864 {
2865 /* Check that the code before the first basic block has NULL
2866 bb field. */
2867 if (!BARRIER_P (x)
2868 && BLOCK_FOR_INSN (x) != NULL)
2869 {
2870 error ("insn %d outside of basic blocks has non-NULL bb field",
2871 INSN_UID (x));
2872 err = 1;
2873 }
2874 }
2875 free (bb_info);
2876
2877 return err;
2878 }
2879
2880 /* Verify that fallthru edges point to adjacent blocks in layout order and
2881 that barriers exist after non-fallthru blocks. */
2882
2883 static int
2884 rtl_verify_fallthru (void)
2885 {
2886 basic_block bb;
2887 int err = 0;
2888
2889 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2890 {
2891 edge e;
2892
2893 e = find_fallthru_edge (bb->succs);
2894 if (!e)
2895 {
2896 rtx_insn *insn;
2897
2898 /* Ensure existence of barrier in BB with no fallthru edges. */
2899 for (insn = NEXT_INSN (BB_END (bb)); ; insn = NEXT_INSN (insn))
2900 {
2901 if (!insn || NOTE_INSN_BASIC_BLOCK_P (insn))
2902 {
2903 error ("missing barrier after block %i", bb->index);
2904 err = 1;
2905 break;
2906 }
2907 if (BARRIER_P (insn))
2908 break;
2909 }
2910 }
2911 else if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
2912 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
2913 {
2914 rtx_insn *insn;
2915
2916 if (e->src->next_bb != e->dest)
2917 {
2918 error
2919 ("verify_flow_info: Incorrect blocks for fallthru %i->%i",
2920 e->src->index, e->dest->index);
2921 err = 1;
2922 }
2923 else
2924 for (insn = NEXT_INSN (BB_END (e->src)); insn != BB_HEAD (e->dest);
2925 insn = NEXT_INSN (insn))
2926 if (BARRIER_P (insn) || NONDEBUG_INSN_P (insn))
2927 {
2928 error ("verify_flow_info: Incorrect fallthru %i->%i",
2929 e->src->index, e->dest->index);
2930 fatal_insn ("wrong insn in the fallthru edge", insn);
2931 err = 1;
2932 }
2933 }
2934 }
2935
2936 return err;
2937 }
2938
2939 /* Verify that blocks are laid out in consecutive order. While walking the
2940 instructions, verify that all expected instructions are inside the basic
2941 blocks, and that all returns are followed by barriers. */
2942
2943 static int
2944 rtl_verify_bb_layout (void)
2945 {
2946 basic_block bb;
2947 int err = 0;
2948 rtx_insn *x, *y;
2949 int num_bb_notes;
2950 rtx_insn * const rtx_first = get_insns ();
2951 basic_block last_bb_seen = ENTRY_BLOCK_PTR_FOR_FN (cfun), curr_bb = NULL;
2952
2953 num_bb_notes = 0;
2954 last_bb_seen = ENTRY_BLOCK_PTR_FOR_FN (cfun);
2955
2956 for (x = rtx_first; x; x = NEXT_INSN (x))
2957 {
2958 if (NOTE_INSN_BASIC_BLOCK_P (x))
2959 {
2960 bb = NOTE_BASIC_BLOCK (x);
2961
2962 num_bb_notes++;
2963 if (bb != last_bb_seen->next_bb)
2964 internal_error ("basic blocks not laid down consecutively");
2965
2966 curr_bb = last_bb_seen = bb;
2967 }
2968
2969 if (!curr_bb)
2970 {
2971 switch (GET_CODE (x))
2972 {
2973 case BARRIER:
2974 case NOTE:
2975 break;
2976
2977 case CODE_LABEL:
2978 /* An ADDR_VEC is placed outside any basic block. */
2979 if (NEXT_INSN (x)
2980 && JUMP_TABLE_DATA_P (NEXT_INSN (x)))
2981 x = NEXT_INSN (x);
2982
2983 /* But in any case, non-deletable labels can appear anywhere. */
2984 break;
2985
2986 default:
2987 fatal_insn ("insn outside basic block", x);
2988 }
2989 }
2990
2991 if (JUMP_P (x)
2992 && returnjump_p (x) && ! condjump_p (x)
2993 && ! ((y = next_nonnote_nondebug_insn (x))
2994 && BARRIER_P (y)))
2995 fatal_insn ("return not followed by barrier", x);
2996
2997 if (curr_bb && x == BB_END (curr_bb))
2998 curr_bb = NULL;
2999 }
3000
3001 if (num_bb_notes != n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS)
3002 internal_error
3003 ("number of bb notes in insn chain (%d) != n_basic_blocks (%d)",
3004 num_bb_notes, n_basic_blocks_for_fn (cfun));
3005
3006 return err;
3007 }
3008
3009 /* Verify the CFG and RTL consistency common for both underlying RTL and
3010 cfglayout RTL, plus consistency checks specific to linearized RTL mode.
3011
3012 Currently it does following checks:
3013 - all checks of rtl_verify_flow_info_1
3014 - test head/end pointers
3015 - check that blocks are laid out in consecutive order
3016 - check that all insns are in the basic blocks
3017 (except the switch handling code, barriers and notes)
3018 - check that all returns are followed by barriers
3019 - check that all fallthru edge points to the adjacent blocks
3020 - verify that there is a single hot/cold partition boundary after bbro */
3021
3022 static int
3023 rtl_verify_flow_info (void)
3024 {
3025 int err = 0;
3026
3027 err |= rtl_verify_flow_info_1 ();
3028
3029 err |= rtl_verify_bb_insn_chain ();
3030
3031 err |= rtl_verify_fallthru ();
3032
3033 err |= rtl_verify_bb_layout ();
3034
3035 err |= verify_hot_cold_block_grouping ();
3036
3037 return err;
3038 }
3039 \f
3040 /* Assume that the preceding pass has possibly eliminated jump instructions
3041 or converted the unconditional jumps. Eliminate the edges from CFG.
3042 Return true if any edges are eliminated. */
3043
3044 bool
3045 purge_dead_edges (basic_block bb)
3046 {
3047 edge e;
3048 rtx_insn *insn = BB_END (bb);
3049 rtx note;
3050 bool purged = false;
3051 bool found;
3052 edge_iterator ei;
3053
3054 if (DEBUG_INSN_P (insn) && insn != BB_HEAD (bb))
3055 do
3056 insn = PREV_INSN (insn);
3057 while ((DEBUG_INSN_P (insn) || NOTE_P (insn)) && insn != BB_HEAD (bb));
3058
3059 /* If this instruction cannot trap, remove REG_EH_REGION notes. */
3060 if (NONJUMP_INSN_P (insn)
3061 && (note = find_reg_note (insn, REG_EH_REGION, NULL)))
3062 {
3063 rtx eqnote;
3064
3065 if (! may_trap_p (PATTERN (insn))
3066 || ((eqnote = find_reg_equal_equiv_note (insn))
3067 && ! may_trap_p (XEXP (eqnote, 0))))
3068 remove_note (insn, note);
3069 }
3070
3071 /* Cleanup abnormal edges caused by exceptions or non-local gotos. */
3072 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
3073 {
3074 bool remove = false;
3075
3076 /* There are three types of edges we need to handle correctly here: EH
3077 edges, abnormal call EH edges, and abnormal call non-EH edges. The
3078 latter can appear when nonlocal gotos are used. */
3079 if (e->flags & EDGE_ABNORMAL_CALL)
3080 {
3081 if (!CALL_P (insn))
3082 remove = true;
3083 else if (can_nonlocal_goto (insn))
3084 ;
3085 else if ((e->flags & EDGE_EH) && can_throw_internal (insn))
3086 ;
3087 else if (flag_tm && find_reg_note (insn, REG_TM, NULL))
3088 ;
3089 else
3090 remove = true;
3091 }
3092 else if (e->flags & EDGE_EH)
3093 remove = !can_throw_internal (insn);
3094
3095 if (remove)
3096 {
3097 remove_edge (e);
3098 df_set_bb_dirty (bb);
3099 purged = true;
3100 }
3101 else
3102 ei_next (&ei);
3103 }
3104
3105 if (JUMP_P (insn))
3106 {
3107 rtx note;
3108 edge b,f;
3109 edge_iterator ei;
3110
3111 /* We do care only about conditional jumps and simplejumps. */
3112 if (!any_condjump_p (insn)
3113 && !returnjump_p (insn)
3114 && !simplejump_p (insn))
3115 return purged;
3116
3117 /* Branch probability/prediction notes are defined only for
3118 condjumps. We've possibly turned condjump into simplejump. */
3119 if (simplejump_p (insn))
3120 {
3121 note = find_reg_note (insn, REG_BR_PROB, NULL);
3122 if (note)
3123 remove_note (insn, note);
3124 while ((note = find_reg_note (insn, REG_BR_PRED, NULL)))
3125 remove_note (insn, note);
3126 }
3127
3128 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
3129 {
3130 /* Avoid abnormal flags to leak from computed jumps turned
3131 into simplejumps. */
3132
3133 e->flags &= ~EDGE_ABNORMAL;
3134
3135 /* See if this edge is one we should keep. */
3136 if ((e->flags & EDGE_FALLTHRU) && any_condjump_p (insn))
3137 /* A conditional jump can fall through into the next
3138 block, so we should keep the edge. */
3139 {
3140 ei_next (&ei);
3141 continue;
3142 }
3143 else if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
3144 && BB_HEAD (e->dest) == JUMP_LABEL (insn))
3145 /* If the destination block is the target of the jump,
3146 keep the edge. */
3147 {
3148 ei_next (&ei);
3149 continue;
3150 }
3151 else if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
3152 && returnjump_p (insn))
3153 /* If the destination block is the exit block, and this
3154 instruction is a return, then keep the edge. */
3155 {
3156 ei_next (&ei);
3157 continue;
3158 }
3159 else if ((e->flags & EDGE_EH) && can_throw_internal (insn))
3160 /* Keep the edges that correspond to exceptions thrown by
3161 this instruction and rematerialize the EDGE_ABNORMAL
3162 flag we just cleared above. */
3163 {
3164 e->flags |= EDGE_ABNORMAL;
3165 ei_next (&ei);
3166 continue;
3167 }
3168
3169 /* We do not need this edge. */
3170 df_set_bb_dirty (bb);
3171 purged = true;
3172 remove_edge (e);
3173 }
3174
3175 if (EDGE_COUNT (bb->succs) == 0 || !purged)
3176 return purged;
3177
3178 if (dump_file)
3179 fprintf (dump_file, "Purged edges from bb %i\n", bb->index);
3180
3181 if (!optimize)
3182 return purged;
3183
3184 /* Redistribute probabilities. */
3185 if (single_succ_p (bb))
3186 {
3187 single_succ_edge (bb)->probability = profile_probability::always ();
3188 }
3189 else
3190 {
3191 note = find_reg_note (insn, REG_BR_PROB, NULL);
3192 if (!note)
3193 return purged;
3194
3195 b = BRANCH_EDGE (bb);
3196 f = FALLTHRU_EDGE (bb);
3197 b->probability = profile_probability::from_reg_br_prob_note
3198 (XINT (note, 0));
3199 f->probability = b->probability.invert ();
3200 }
3201
3202 return purged;
3203 }
3204 else if (CALL_P (insn) && SIBLING_CALL_P (insn))
3205 {
3206 /* First, there should not be any EH or ABCALL edges resulting
3207 from non-local gotos and the like. If there were, we shouldn't
3208 have created the sibcall in the first place. Second, there
3209 should of course never have been a fallthru edge. */
3210 gcc_assert (single_succ_p (bb));
3211 gcc_assert (single_succ_edge (bb)->flags
3212 == (EDGE_SIBCALL | EDGE_ABNORMAL));
3213
3214 return 0;
3215 }
3216
3217 /* If we don't see a jump insn, we don't know exactly why the block would
3218 have been broken at this point. Look for a simple, non-fallthru edge,
3219 as these are only created by conditional branches. If we find such an
3220 edge we know that there used to be a jump here and can then safely
3221 remove all non-fallthru edges. */
3222 found = false;
3223 FOR_EACH_EDGE (e, ei, bb->succs)
3224 if (! (e->flags & (EDGE_COMPLEX | EDGE_FALLTHRU)))
3225 {
3226 found = true;
3227 break;
3228 }
3229
3230 if (!found)
3231 return purged;
3232
3233 /* Remove all but the fake and fallthru edges. The fake edge may be
3234 the only successor for this block in the case of noreturn
3235 calls. */
3236 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
3237 {
3238 if (!(e->flags & (EDGE_FALLTHRU | EDGE_FAKE)))
3239 {
3240 df_set_bb_dirty (bb);
3241 remove_edge (e);
3242 purged = true;
3243 }
3244 else
3245 ei_next (&ei);
3246 }
3247
3248 gcc_assert (single_succ_p (bb));
3249
3250 single_succ_edge (bb)->probability = profile_probability::always ();
3251
3252 if (dump_file)
3253 fprintf (dump_file, "Purged non-fallthru edges from bb %i\n",
3254 bb->index);
3255 return purged;
3256 }
3257
3258 /* Search all basic blocks for potentially dead edges and purge them. Return
3259 true if some edge has been eliminated. */
3260
3261 bool
3262 purge_all_dead_edges (void)
3263 {
3264 int purged = false;
3265 basic_block bb;
3266
3267 FOR_EACH_BB_FN (bb, cfun)
3268 {
3269 bool purged_here = purge_dead_edges (bb);
3270
3271 purged |= purged_here;
3272 }
3273
3274 return purged;
3275 }
3276
3277 /* This is used by a few passes that emit some instructions after abnormal
3278 calls, moving the basic block's end, while they in fact do want to emit
3279 them on the fallthru edge. Look for abnormal call edges, find backward
3280 the call in the block and insert the instructions on the edge instead.
3281
3282 Similarly, handle instructions throwing exceptions internally.
3283
3284 Return true when instructions have been found and inserted on edges. */
3285
3286 bool
3287 fixup_abnormal_edges (void)
3288 {
3289 bool inserted = false;
3290 basic_block bb;
3291
3292 FOR_EACH_BB_FN (bb, cfun)
3293 {
3294 edge e;
3295 edge_iterator ei;
3296
3297 /* Look for cases we are interested in - calls or instructions causing
3298 exceptions. */
3299 FOR_EACH_EDGE (e, ei, bb->succs)
3300 if ((e->flags & EDGE_ABNORMAL_CALL)
3301 || ((e->flags & (EDGE_ABNORMAL | EDGE_EH))
3302 == (EDGE_ABNORMAL | EDGE_EH)))
3303 break;
3304
3305 if (e && !CALL_P (BB_END (bb)) && !can_throw_internal (BB_END (bb)))
3306 {
3307 rtx_insn *insn;
3308
3309 /* Get past the new insns generated. Allow notes, as the insns
3310 may be already deleted. */
3311 insn = BB_END (bb);
3312 while ((NONJUMP_INSN_P (insn) || NOTE_P (insn))
3313 && !can_throw_internal (insn)
3314 && insn != BB_HEAD (bb))
3315 insn = PREV_INSN (insn);
3316
3317 if (CALL_P (insn) || can_throw_internal (insn))
3318 {
3319 rtx_insn *stop, *next;
3320
3321 e = find_fallthru_edge (bb->succs);
3322
3323 stop = NEXT_INSN (BB_END (bb));
3324 BB_END (bb) = insn;
3325
3326 for (insn = NEXT_INSN (insn); insn != stop; insn = next)
3327 {
3328 next = NEXT_INSN (insn);
3329 if (INSN_P (insn))
3330 {
3331 delete_insn (insn);
3332
3333 /* Sometimes there's still the return value USE.
3334 If it's placed after a trapping call (i.e. that
3335 call is the last insn anyway), we have no fallthru
3336 edge. Simply delete this use and don't try to insert
3337 on the non-existent edge.
3338 Similarly, sometimes a call that can throw is
3339 followed in the source with __builtin_unreachable (),
3340 meaning that there is UB if the call returns rather
3341 than throws. If there weren't any instructions
3342 following such calls before, supposedly even the ones
3343 we've deleted aren't significant and can be
3344 removed. */
3345 if (e)
3346 {
3347 /* We're not deleting it, we're moving it. */
3348 insn->set_undeleted ();
3349 SET_PREV_INSN (insn) = NULL_RTX;
3350 SET_NEXT_INSN (insn) = NULL_RTX;
3351
3352 insert_insn_on_edge (insn, e);
3353 inserted = true;
3354 }
3355 }
3356 else if (!BARRIER_P (insn))
3357 set_block_for_insn (insn, NULL);
3358 }
3359 }
3360
3361 /* It may be that we don't find any trapping insn. In this
3362 case we discovered quite late that the insn that had been
3363 marked as can_throw_internal in fact couldn't trap at all.
3364 So we should in fact delete the EH edges out of the block. */
3365 else
3366 purge_dead_edges (bb);
3367 }
3368 }
3369
3370 return inserted;
3371 }
3372 \f
3373 /* Cut the insns from FIRST to LAST out of the insns stream. */
3374
3375 rtx_insn *
3376 unlink_insn_chain (rtx_insn *first, rtx_insn *last)
3377 {
3378 rtx_insn *prevfirst = PREV_INSN (first);
3379 rtx_insn *nextlast = NEXT_INSN (last);
3380
3381 SET_PREV_INSN (first) = NULL;
3382 SET_NEXT_INSN (last) = NULL;
3383 if (prevfirst)
3384 SET_NEXT_INSN (prevfirst) = nextlast;
3385 if (nextlast)
3386 SET_PREV_INSN (nextlast) = prevfirst;
3387 else
3388 set_last_insn (prevfirst);
3389 if (!prevfirst)
3390 set_first_insn (nextlast);
3391 return first;
3392 }
3393 \f
3394 /* Skip over inter-block insns occurring after BB which are typically
3395 associated with BB (e.g., barriers). If there are any such insns,
3396 we return the last one. Otherwise, we return the end of BB. */
3397
3398 static rtx_insn *
3399 skip_insns_after_block (basic_block bb)
3400 {
3401 rtx_insn *insn, *last_insn, *next_head, *prev;
3402
3403 next_head = NULL;
3404 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3405 next_head = BB_HEAD (bb->next_bb);
3406
3407 for (last_insn = insn = BB_END (bb); (insn = NEXT_INSN (insn)) != 0; )
3408 {
3409 if (insn == next_head)
3410 break;
3411
3412 switch (GET_CODE (insn))
3413 {
3414 case BARRIER:
3415 last_insn = insn;
3416 continue;
3417
3418 case NOTE:
3419 switch (NOTE_KIND (insn))
3420 {
3421 case NOTE_INSN_BLOCK_END:
3422 gcc_unreachable ();
3423 continue;
3424 default:
3425 continue;
3426 break;
3427 }
3428 break;
3429
3430 case CODE_LABEL:
3431 if (NEXT_INSN (insn)
3432 && JUMP_TABLE_DATA_P (NEXT_INSN (insn)))
3433 {
3434 insn = NEXT_INSN (insn);
3435 last_insn = insn;
3436 continue;
3437 }
3438 break;
3439
3440 default:
3441 break;
3442 }
3443
3444 break;
3445 }
3446
3447 /* It is possible to hit contradictory sequence. For instance:
3448
3449 jump_insn
3450 NOTE_INSN_BLOCK_BEG
3451 barrier
3452
3453 Where barrier belongs to jump_insn, but the note does not. This can be
3454 created by removing the basic block originally following
3455 NOTE_INSN_BLOCK_BEG. In such case reorder the notes. */
3456
3457 for (insn = last_insn; insn != BB_END (bb); insn = prev)
3458 {
3459 prev = PREV_INSN (insn);
3460 if (NOTE_P (insn))
3461 switch (NOTE_KIND (insn))
3462 {
3463 case NOTE_INSN_BLOCK_END:
3464 gcc_unreachable ();
3465 break;
3466 case NOTE_INSN_DELETED:
3467 case NOTE_INSN_DELETED_LABEL:
3468 case NOTE_INSN_DELETED_DEBUG_LABEL:
3469 continue;
3470 default:
3471 reorder_insns (insn, insn, last_insn);
3472 }
3473 }
3474
3475 return last_insn;
3476 }
3477
3478 /* Locate or create a label for a given basic block. */
3479
3480 static rtx_insn *
3481 label_for_bb (basic_block bb)
3482 {
3483 rtx_insn *label = BB_HEAD (bb);
3484
3485 if (!LABEL_P (label))
3486 {
3487 if (dump_file)
3488 fprintf (dump_file, "Emitting label for block %d\n", bb->index);
3489
3490 label = block_label (bb);
3491 }
3492
3493 return label;
3494 }
3495
3496 /* Locate the effective beginning and end of the insn chain for each
3497 block, as defined by skip_insns_after_block above. */
3498
3499 static void
3500 record_effective_endpoints (void)
3501 {
3502 rtx_insn *next_insn;
3503 basic_block bb;
3504 rtx_insn *insn;
3505
3506 for (insn = get_insns ();
3507 insn
3508 && NOTE_P (insn)
3509 && NOTE_KIND (insn) != NOTE_INSN_BASIC_BLOCK;
3510 insn = NEXT_INSN (insn))
3511 continue;
3512 /* No basic blocks at all? */
3513 gcc_assert (insn);
3514
3515 if (PREV_INSN (insn))
3516 cfg_layout_function_header =
3517 unlink_insn_chain (get_insns (), PREV_INSN (insn));
3518 else
3519 cfg_layout_function_header = NULL;
3520
3521 next_insn = get_insns ();
3522 FOR_EACH_BB_FN (bb, cfun)
3523 {
3524 rtx_insn *end;
3525
3526 if (PREV_INSN (BB_HEAD (bb)) && next_insn != BB_HEAD (bb))
3527 BB_HEADER (bb) = unlink_insn_chain (next_insn,
3528 PREV_INSN (BB_HEAD (bb)));
3529 end = skip_insns_after_block (bb);
3530 if (NEXT_INSN (BB_END (bb)) && BB_END (bb) != end)
3531 BB_FOOTER (bb) = unlink_insn_chain (NEXT_INSN (BB_END (bb)), end);
3532 next_insn = NEXT_INSN (BB_END (bb));
3533 }
3534
3535 cfg_layout_function_footer = next_insn;
3536 if (cfg_layout_function_footer)
3537 cfg_layout_function_footer = unlink_insn_chain (cfg_layout_function_footer, get_last_insn ());
3538 }
3539 \f
3540 namespace {
3541
3542 const pass_data pass_data_into_cfg_layout_mode =
3543 {
3544 RTL_PASS, /* type */
3545 "into_cfglayout", /* name */
3546 OPTGROUP_NONE, /* optinfo_flags */
3547 TV_CFG, /* tv_id */
3548 0, /* properties_required */
3549 PROP_cfglayout, /* properties_provided */
3550 0, /* properties_destroyed */
3551 0, /* todo_flags_start */
3552 0, /* todo_flags_finish */
3553 };
3554
3555 class pass_into_cfg_layout_mode : public rtl_opt_pass
3556 {
3557 public:
3558 pass_into_cfg_layout_mode (gcc::context *ctxt)
3559 : rtl_opt_pass (pass_data_into_cfg_layout_mode, ctxt)
3560 {}
3561
3562 /* opt_pass methods: */
3563 virtual unsigned int execute (function *)
3564 {
3565 cfg_layout_initialize (0);
3566 return 0;
3567 }
3568
3569 }; // class pass_into_cfg_layout_mode
3570
3571 } // anon namespace
3572
3573 rtl_opt_pass *
3574 make_pass_into_cfg_layout_mode (gcc::context *ctxt)
3575 {
3576 return new pass_into_cfg_layout_mode (ctxt);
3577 }
3578
3579 namespace {
3580
3581 const pass_data pass_data_outof_cfg_layout_mode =
3582 {
3583 RTL_PASS, /* type */
3584 "outof_cfglayout", /* name */
3585 OPTGROUP_NONE, /* optinfo_flags */
3586 TV_CFG, /* tv_id */
3587 0, /* properties_required */
3588 0, /* properties_provided */
3589 PROP_cfglayout, /* properties_destroyed */
3590 0, /* todo_flags_start */
3591 0, /* todo_flags_finish */
3592 };
3593
3594 class pass_outof_cfg_layout_mode : public rtl_opt_pass
3595 {
3596 public:
3597 pass_outof_cfg_layout_mode (gcc::context *ctxt)
3598 : rtl_opt_pass (pass_data_outof_cfg_layout_mode, ctxt)
3599 {}
3600
3601 /* opt_pass methods: */
3602 virtual unsigned int execute (function *);
3603
3604 }; // class pass_outof_cfg_layout_mode
3605
3606 unsigned int
3607 pass_outof_cfg_layout_mode::execute (function *fun)
3608 {
3609 basic_block bb;
3610
3611 FOR_EACH_BB_FN (bb, fun)
3612 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (fun))
3613 bb->aux = bb->next_bb;
3614
3615 cfg_layout_finalize ();
3616
3617 return 0;
3618 }
3619
3620 } // anon namespace
3621
3622 rtl_opt_pass *
3623 make_pass_outof_cfg_layout_mode (gcc::context *ctxt)
3624 {
3625 return new pass_outof_cfg_layout_mode (ctxt);
3626 }
3627 \f
3628
3629 /* Link the basic blocks in the correct order, compacting the basic
3630 block queue while at it. If STAY_IN_CFGLAYOUT_MODE is false, this
3631 function also clears the basic block header and footer fields.
3632
3633 This function is usually called after a pass (e.g. tracer) finishes
3634 some transformations while in cfglayout mode. The required sequence
3635 of the basic blocks is in a linked list along the bb->aux field.
3636 This functions re-links the basic block prev_bb and next_bb pointers
3637 accordingly, and it compacts and renumbers the blocks.
3638
3639 FIXME: This currently works only for RTL, but the only RTL-specific
3640 bits are the STAY_IN_CFGLAYOUT_MODE bits. The tracer pass was moved
3641 to GIMPLE a long time ago, but it doesn't relink the basic block
3642 chain. It could do that (to give better initial RTL) if this function
3643 is made IR-agnostic (and moved to cfganal.c or cfg.c while at it). */
3644
3645 void
3646 relink_block_chain (bool stay_in_cfglayout_mode)
3647 {
3648 basic_block bb, prev_bb;
3649 int index;
3650
3651 /* Maybe dump the re-ordered sequence. */
3652 if (dump_file)
3653 {
3654 fprintf (dump_file, "Reordered sequence:\n");
3655 for (bb = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb, index =
3656 NUM_FIXED_BLOCKS;
3657 bb;
3658 bb = (basic_block) bb->aux, index++)
3659 {
3660 fprintf (dump_file, " %i ", index);
3661 if (get_bb_original (bb))
3662 fprintf (dump_file, "duplicate of %i ",
3663 get_bb_original (bb)->index);
3664 else if (forwarder_block_p (bb)
3665 && !LABEL_P (BB_HEAD (bb)))
3666 fprintf (dump_file, "compensation ");
3667 else
3668 fprintf (dump_file, "bb %i ", bb->index);
3669 }
3670 }
3671
3672 /* Now reorder the blocks. */
3673 prev_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
3674 bb = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb;
3675 for (; bb; prev_bb = bb, bb = (basic_block) bb->aux)
3676 {
3677 bb->prev_bb = prev_bb;
3678 prev_bb->next_bb = bb;
3679 }
3680 prev_bb->next_bb = EXIT_BLOCK_PTR_FOR_FN (cfun);
3681 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb = prev_bb;
3682
3683 /* Then, clean up the aux fields. */
3684 FOR_ALL_BB_FN (bb, cfun)
3685 {
3686 bb->aux = NULL;
3687 if (!stay_in_cfglayout_mode)
3688 BB_HEADER (bb) = BB_FOOTER (bb) = NULL;
3689 }
3690
3691 /* Maybe reset the original copy tables, they are not valid anymore
3692 when we renumber the basic blocks in compact_blocks. If we are
3693 are going out of cfglayout mode, don't re-allocate the tables. */
3694 if (original_copy_tables_initialized_p ())
3695 free_original_copy_tables ();
3696 if (stay_in_cfglayout_mode)
3697 initialize_original_copy_tables ();
3698
3699 /* Finally, put basic_block_info in the new order. */
3700 compact_blocks ();
3701 }
3702 \f
3703
3704 /* Given a reorder chain, rearrange the code to match. */
3705
3706 static void
3707 fixup_reorder_chain (void)
3708 {
3709 basic_block bb;
3710 rtx_insn *insn = NULL;
3711
3712 if (cfg_layout_function_header)
3713 {
3714 set_first_insn (cfg_layout_function_header);
3715 insn = cfg_layout_function_header;
3716 while (NEXT_INSN (insn))
3717 insn = NEXT_INSN (insn);
3718 }
3719
3720 /* First do the bulk reordering -- rechain the blocks without regard to
3721 the needed changes to jumps and labels. */
3722
3723 for (bb = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb; bb; bb = (basic_block)
3724 bb->aux)
3725 {
3726 if (BB_HEADER (bb))
3727 {
3728 if (insn)
3729 SET_NEXT_INSN (insn) = BB_HEADER (bb);
3730 else
3731 set_first_insn (BB_HEADER (bb));
3732 SET_PREV_INSN (BB_HEADER (bb)) = insn;
3733 insn = BB_HEADER (bb);
3734 while (NEXT_INSN (insn))
3735 insn = NEXT_INSN (insn);
3736 }
3737 if (insn)
3738 SET_NEXT_INSN (insn) = BB_HEAD (bb);
3739 else
3740 set_first_insn (BB_HEAD (bb));
3741 SET_PREV_INSN (BB_HEAD (bb)) = insn;
3742 insn = BB_END (bb);
3743 if (BB_FOOTER (bb))
3744 {
3745 SET_NEXT_INSN (insn) = BB_FOOTER (bb);
3746 SET_PREV_INSN (BB_FOOTER (bb)) = insn;
3747 while (NEXT_INSN (insn))
3748 insn = NEXT_INSN (insn);
3749 }
3750 }
3751
3752 SET_NEXT_INSN (insn) = cfg_layout_function_footer;
3753 if (cfg_layout_function_footer)
3754 SET_PREV_INSN (cfg_layout_function_footer) = insn;
3755
3756 while (NEXT_INSN (insn))
3757 insn = NEXT_INSN (insn);
3758
3759 set_last_insn (insn);
3760 if (flag_checking)
3761 verify_insn_chain ();
3762
3763 /* Now add jumps and labels as needed to match the blocks new
3764 outgoing edges. */
3765
3766 for (bb = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb; bb ; bb = (basic_block)
3767 bb->aux)
3768 {
3769 edge e_fall, e_taken, e;
3770 rtx_insn *bb_end_insn;
3771 rtx ret_label = NULL_RTX;
3772 basic_block nb;
3773 edge_iterator ei;
3774
3775 if (EDGE_COUNT (bb->succs) == 0)
3776 continue;
3777
3778 /* Find the old fallthru edge, and another non-EH edge for
3779 a taken jump. */
3780 e_taken = e_fall = NULL;
3781
3782 FOR_EACH_EDGE (e, ei, bb->succs)
3783 if (e->flags & EDGE_FALLTHRU)
3784 e_fall = e;
3785 else if (! (e->flags & EDGE_EH))
3786 e_taken = e;
3787
3788 bb_end_insn = BB_END (bb);
3789 if (rtx_jump_insn *bb_end_jump = dyn_cast <rtx_jump_insn *> (bb_end_insn))
3790 {
3791 ret_label = JUMP_LABEL (bb_end_jump);
3792 if (any_condjump_p (bb_end_jump))
3793 {
3794 /* This might happen if the conditional jump has side
3795 effects and could therefore not be optimized away.
3796 Make the basic block to end with a barrier in order
3797 to prevent rtl_verify_flow_info from complaining. */
3798 if (!e_fall)
3799 {
3800 gcc_assert (!onlyjump_p (bb_end_jump)
3801 || returnjump_p (bb_end_jump)
3802 || (e_taken->flags & EDGE_CROSSING));
3803 emit_barrier_after (bb_end_jump);
3804 continue;
3805 }
3806
3807 /* If the old fallthru is still next, nothing to do. */
3808 if (bb->aux == e_fall->dest
3809 || e_fall->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
3810 continue;
3811
3812 /* The degenerated case of conditional jump jumping to the next
3813 instruction can happen for jumps with side effects. We need
3814 to construct a forwarder block and this will be done just
3815 fine by force_nonfallthru below. */
3816 if (!e_taken)
3817 ;
3818
3819 /* There is another special case: if *neither* block is next,
3820 such as happens at the very end of a function, then we'll
3821 need to add a new unconditional jump. Choose the taken
3822 edge based on known or assumed probability. */
3823 else if (bb->aux != e_taken->dest)
3824 {
3825 rtx note = find_reg_note (bb_end_jump, REG_BR_PROB, 0);
3826
3827 if (note
3828 && profile_probability::from_reg_br_prob_note
3829 (XINT (note, 0)) < profile_probability::even ()
3830 && invert_jump (bb_end_jump,
3831 (e_fall->dest
3832 == EXIT_BLOCK_PTR_FOR_FN (cfun)
3833 ? NULL_RTX
3834 : label_for_bb (e_fall->dest)), 0))
3835 {
3836 e_fall->flags &= ~EDGE_FALLTHRU;
3837 gcc_checking_assert (could_fall_through
3838 (e_taken->src, e_taken->dest));
3839 e_taken->flags |= EDGE_FALLTHRU;
3840 update_br_prob_note (bb);
3841 e = e_fall, e_fall = e_taken, e_taken = e;
3842 }
3843 }
3844
3845 /* If the "jumping" edge is a crossing edge, and the fall
3846 through edge is non-crossing, leave things as they are. */
3847 else if ((e_taken->flags & EDGE_CROSSING)
3848 && !(e_fall->flags & EDGE_CROSSING))
3849 continue;
3850
3851 /* Otherwise we can try to invert the jump. This will
3852 basically never fail, however, keep up the pretense. */
3853 else if (invert_jump (bb_end_jump,
3854 (e_fall->dest
3855 == EXIT_BLOCK_PTR_FOR_FN (cfun)
3856 ? NULL_RTX
3857 : label_for_bb (e_fall->dest)), 0))
3858 {
3859 e_fall->flags &= ~EDGE_FALLTHRU;
3860 gcc_checking_assert (could_fall_through
3861 (e_taken->src, e_taken->dest));
3862 e_taken->flags |= EDGE_FALLTHRU;
3863 update_br_prob_note (bb);
3864 if (LABEL_NUSES (ret_label) == 0
3865 && single_pred_p (e_taken->dest))
3866 delete_insn (as_a<rtx_insn *> (ret_label));
3867 continue;
3868 }
3869 }
3870 else if (extract_asm_operands (PATTERN (bb_end_insn)) != NULL)
3871 {
3872 /* If the old fallthru is still next or if
3873 asm goto doesn't have a fallthru (e.g. when followed by
3874 __builtin_unreachable ()), nothing to do. */
3875 if (! e_fall
3876 || bb->aux == e_fall->dest
3877 || e_fall->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
3878 continue;
3879
3880 /* Otherwise we'll have to use the fallthru fixup below. */
3881 }
3882 else
3883 {
3884 /* Otherwise we have some return, switch or computed
3885 jump. In the 99% case, there should not have been a
3886 fallthru edge. */
3887 gcc_assert (returnjump_p (bb_end_insn) || !e_fall);
3888 continue;
3889 }
3890 }
3891 else
3892 {
3893 /* No fallthru implies a noreturn function with EH edges, or
3894 something similarly bizarre. In any case, we don't need to
3895 do anything. */
3896 if (! e_fall)
3897 continue;
3898
3899 /* If the fallthru block is still next, nothing to do. */
3900 if (bb->aux == e_fall->dest)
3901 continue;
3902
3903 /* A fallthru to exit block. */
3904 if (e_fall->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
3905 continue;
3906 }
3907
3908 /* We got here if we need to add a new jump insn.
3909 Note force_nonfallthru can delete E_FALL and thus we have to
3910 save E_FALL->src prior to the call to force_nonfallthru. */
3911 nb = force_nonfallthru_and_redirect (e_fall, e_fall->dest, ret_label);
3912 if (nb)
3913 {
3914 nb->aux = bb->aux;
3915 bb->aux = nb;
3916 /* Don't process this new block. */
3917 bb = nb;
3918 }
3919 }
3920
3921 relink_block_chain (/*stay_in_cfglayout_mode=*/false);
3922
3923 /* Annoying special case - jump around dead jumptables left in the code. */
3924 FOR_EACH_BB_FN (bb, cfun)
3925 {
3926 edge e = find_fallthru_edge (bb->succs);
3927
3928 if (e && !can_fallthru (e->src, e->dest))
3929 force_nonfallthru (e);
3930 }
3931
3932 /* Ensure goto_locus from edges has some instructions with that locus in RTL
3933 when not optimizing. */
3934 if (!optimize && !DECL_IGNORED_P (current_function_decl))
3935 FOR_EACH_BB_FN (bb, cfun)
3936 {
3937 edge e;
3938 edge_iterator ei;
3939
3940 FOR_EACH_EDGE (e, ei, bb->succs)
3941 if (LOCATION_LOCUS (e->goto_locus) != UNKNOWN_LOCATION
3942 && !(e->flags & EDGE_ABNORMAL))
3943 {
3944 edge e2;
3945 edge_iterator ei2;
3946 basic_block dest, nb;
3947 rtx_insn *end;
3948
3949 insn = BB_END (e->src);
3950 end = PREV_INSN (BB_HEAD (e->src));
3951 while (insn != end
3952 && (!NONDEBUG_INSN_P (insn) || !INSN_HAS_LOCATION (insn)))
3953 insn = PREV_INSN (insn);
3954 if (insn != end
3955 && INSN_LOCATION (insn) == e->goto_locus)
3956 continue;
3957 if (simplejump_p (BB_END (e->src))
3958 && !INSN_HAS_LOCATION (BB_END (e->src)))
3959 {
3960 INSN_LOCATION (BB_END (e->src)) = e->goto_locus;
3961 continue;
3962 }
3963 dest = e->dest;
3964 if (dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
3965 {
3966 /* Non-fallthru edges to the exit block cannot be split. */
3967 if (!(e->flags & EDGE_FALLTHRU))
3968 continue;
3969 }
3970 else
3971 {
3972 insn = BB_HEAD (dest);
3973 end = NEXT_INSN (BB_END (dest));
3974 while (insn != end && !NONDEBUG_INSN_P (insn))
3975 insn = NEXT_INSN (insn);
3976 if (insn != end && INSN_HAS_LOCATION (insn)
3977 && INSN_LOCATION (insn) == e->goto_locus)
3978 continue;
3979 }
3980 nb = split_edge (e);
3981 if (!INSN_P (BB_END (nb)))
3982 BB_END (nb) = emit_insn_after_noloc (gen_nop (), BB_END (nb),
3983 nb);
3984 INSN_LOCATION (BB_END (nb)) = e->goto_locus;
3985
3986 /* If there are other incoming edges to the destination block
3987 with the same goto locus, redirect them to the new block as
3988 well, this can prevent other such blocks from being created
3989 in subsequent iterations of the loop. */
3990 for (ei2 = ei_start (dest->preds); (e2 = ei_safe_edge (ei2)); )
3991 if (LOCATION_LOCUS (e2->goto_locus) != UNKNOWN_LOCATION
3992 && !(e2->flags & (EDGE_ABNORMAL | EDGE_FALLTHRU))
3993 && e->goto_locus == e2->goto_locus)
3994 redirect_edge_and_branch (e2, nb);
3995 else
3996 ei_next (&ei2);
3997 }
3998 }
3999 }
4000 \f
4001 /* Perform sanity checks on the insn chain.
4002 1. Check that next/prev pointers are consistent in both the forward and
4003 reverse direction.
4004 2. Count insns in chain, going both directions, and check if equal.
4005 3. Check that get_last_insn () returns the actual end of chain. */
4006
4007 DEBUG_FUNCTION void
4008 verify_insn_chain (void)
4009 {
4010 rtx_insn *x, *prevx, *nextx;
4011 int insn_cnt1, insn_cnt2;
4012
4013 for (prevx = NULL, insn_cnt1 = 1, x = get_insns ();
4014 x != 0;
4015 prevx = x, insn_cnt1++, x = NEXT_INSN (x))
4016 gcc_assert (PREV_INSN (x) == prevx);
4017
4018 gcc_assert (prevx == get_last_insn ());
4019
4020 for (nextx = NULL, insn_cnt2 = 1, x = get_last_insn ();
4021 x != 0;
4022 nextx = x, insn_cnt2++, x = PREV_INSN (x))
4023 gcc_assert (NEXT_INSN (x) == nextx);
4024
4025 gcc_assert (insn_cnt1 == insn_cnt2);
4026 }
4027 \f
4028 /* If we have assembler epilogues, the block falling through to exit must
4029 be the last one in the reordered chain when we reach final. Ensure
4030 that this condition is met. */
4031 static void
4032 fixup_fallthru_exit_predecessor (void)
4033 {
4034 edge e;
4035 basic_block bb = NULL;
4036
4037 /* This transformation is not valid before reload, because we might
4038 separate a call from the instruction that copies the return
4039 value. */
4040 gcc_assert (reload_completed);
4041
4042 e = find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
4043 if (e)
4044 bb = e->src;
4045
4046 if (bb && bb->aux)
4047 {
4048 basic_block c = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb;
4049
4050 /* If the very first block is the one with the fall-through exit
4051 edge, we have to split that block. */
4052 if (c == bb)
4053 {
4054 bb = split_block_after_labels (bb)->dest;
4055 bb->aux = c->aux;
4056 c->aux = bb;
4057 BB_FOOTER (bb) = BB_FOOTER (c);
4058 BB_FOOTER (c) = NULL;
4059 }
4060
4061 while (c->aux != bb)
4062 c = (basic_block) c->aux;
4063
4064 c->aux = bb->aux;
4065 while (c->aux)
4066 c = (basic_block) c->aux;
4067
4068 c->aux = bb;
4069 bb->aux = NULL;
4070 }
4071 }
4072
4073 /* In case there are more than one fallthru predecessors of exit, force that
4074 there is only one. */
4075
4076 static void
4077 force_one_exit_fallthru (void)
4078 {
4079 edge e, predecessor = NULL;
4080 bool more = false;
4081 edge_iterator ei;
4082 basic_block forwarder, bb;
4083
4084 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
4085 if (e->flags & EDGE_FALLTHRU)
4086 {
4087 if (predecessor == NULL)
4088 predecessor = e;
4089 else
4090 {
4091 more = true;
4092 break;
4093 }
4094 }
4095
4096 if (!more)
4097 return;
4098
4099 /* Exit has several fallthru predecessors. Create a forwarder block for
4100 them. */
4101 forwarder = split_edge (predecessor);
4102 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
4103 (e = ei_safe_edge (ei)); )
4104 {
4105 if (e->src == forwarder
4106 || !(e->flags & EDGE_FALLTHRU))
4107 ei_next (&ei);
4108 else
4109 redirect_edge_and_branch_force (e, forwarder);
4110 }
4111
4112 /* Fix up the chain of blocks -- make FORWARDER immediately precede the
4113 exit block. */
4114 FOR_EACH_BB_FN (bb, cfun)
4115 {
4116 if (bb->aux == NULL && bb != forwarder)
4117 {
4118 bb->aux = forwarder;
4119 break;
4120 }
4121 }
4122 }
4123 \f
4124 /* Return true in case it is possible to duplicate the basic block BB. */
4125
4126 static bool
4127 cfg_layout_can_duplicate_bb_p (const_basic_block bb)
4128 {
4129 /* Do not attempt to duplicate tablejumps, as we need to unshare
4130 the dispatch table. This is difficult to do, as the instructions
4131 computing jump destination may be hoisted outside the basic block. */
4132 if (tablejump_p (BB_END (bb), NULL, NULL))
4133 return false;
4134
4135 /* Do not duplicate blocks containing insns that can't be copied. */
4136 if (targetm.cannot_copy_insn_p)
4137 {
4138 rtx_insn *insn = BB_HEAD (bb);
4139 while (1)
4140 {
4141 if (INSN_P (insn) && targetm.cannot_copy_insn_p (insn))
4142 return false;
4143 if (insn == BB_END (bb))
4144 break;
4145 insn = NEXT_INSN (insn);
4146 }
4147 }
4148
4149 return true;
4150 }
4151
4152 rtx_insn *
4153 duplicate_insn_chain (rtx_insn *from, rtx_insn *to)
4154 {
4155 rtx_insn *insn, *next, *copy;
4156 rtx_note *last;
4157
4158 /* Avoid updating of boundaries of previous basic block. The
4159 note will get removed from insn stream in fixup. */
4160 last = emit_note (NOTE_INSN_DELETED);
4161
4162 /* Create copy at the end of INSN chain. The chain will
4163 be reordered later. */
4164 for (insn = from; insn != NEXT_INSN (to); insn = NEXT_INSN (insn))
4165 {
4166 switch (GET_CODE (insn))
4167 {
4168 case DEBUG_INSN:
4169 /* Don't duplicate label debug insns. */
4170 if (DEBUG_BIND_INSN_P (insn)
4171 && TREE_CODE (INSN_VAR_LOCATION_DECL (insn)) == LABEL_DECL)
4172 break;
4173 /* FALLTHRU */
4174 case INSN:
4175 case CALL_INSN:
4176 case JUMP_INSN:
4177 copy = emit_copy_of_insn_after (insn, get_last_insn ());
4178 if (JUMP_P (insn) && JUMP_LABEL (insn) != NULL_RTX
4179 && ANY_RETURN_P (JUMP_LABEL (insn)))
4180 JUMP_LABEL (copy) = JUMP_LABEL (insn);
4181 maybe_copy_prologue_epilogue_insn (insn, copy);
4182 break;
4183
4184 case JUMP_TABLE_DATA:
4185 /* Avoid copying of dispatch tables. We never duplicate
4186 tablejumps, so this can hit only in case the table got
4187 moved far from original jump.
4188 Avoid copying following barrier as well if any
4189 (and debug insns in between). */
4190 for (next = NEXT_INSN (insn);
4191 next != NEXT_INSN (to);
4192 next = NEXT_INSN (next))
4193 if (!DEBUG_INSN_P (next))
4194 break;
4195 if (next != NEXT_INSN (to) && BARRIER_P (next))
4196 insn = next;
4197 break;
4198
4199 case CODE_LABEL:
4200 break;
4201
4202 case BARRIER:
4203 emit_barrier ();
4204 break;
4205
4206 case NOTE:
4207 switch (NOTE_KIND (insn))
4208 {
4209 /* In case prologue is empty and function contain label
4210 in first BB, we may want to copy the block. */
4211 case NOTE_INSN_PROLOGUE_END:
4212
4213 case NOTE_INSN_DELETED:
4214 case NOTE_INSN_DELETED_LABEL:
4215 case NOTE_INSN_DELETED_DEBUG_LABEL:
4216 /* No problem to strip these. */
4217 case NOTE_INSN_FUNCTION_BEG:
4218 /* There is always just single entry to function. */
4219 case NOTE_INSN_BASIC_BLOCK:
4220 /* We should only switch text sections once. */
4221 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
4222 break;
4223
4224 case NOTE_INSN_EPILOGUE_BEG:
4225 case NOTE_INSN_UPDATE_SJLJ_CONTEXT:
4226 emit_note_copy (as_a <rtx_note *> (insn));
4227 break;
4228
4229 default:
4230 /* All other notes should have already been eliminated. */
4231 gcc_unreachable ();
4232 }
4233 break;
4234 default:
4235 gcc_unreachable ();
4236 }
4237 }
4238 insn = NEXT_INSN (last);
4239 delete_insn (last);
4240 return insn;
4241 }
4242
4243 /* Create a duplicate of the basic block BB. */
4244
4245 static basic_block
4246 cfg_layout_duplicate_bb (basic_block bb)
4247 {
4248 rtx_insn *insn;
4249 basic_block new_bb;
4250
4251 insn = duplicate_insn_chain (BB_HEAD (bb), BB_END (bb));
4252 new_bb = create_basic_block (insn,
4253 insn ? get_last_insn () : NULL,
4254 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
4255
4256 BB_COPY_PARTITION (new_bb, bb);
4257 if (BB_HEADER (bb))
4258 {
4259 insn = BB_HEADER (bb);
4260 while (NEXT_INSN (insn))
4261 insn = NEXT_INSN (insn);
4262 insn = duplicate_insn_chain (BB_HEADER (bb), insn);
4263 if (insn)
4264 BB_HEADER (new_bb) = unlink_insn_chain (insn, get_last_insn ());
4265 }
4266
4267 if (BB_FOOTER (bb))
4268 {
4269 insn = BB_FOOTER (bb);
4270 while (NEXT_INSN (insn))
4271 insn = NEXT_INSN (insn);
4272 insn = duplicate_insn_chain (BB_FOOTER (bb), insn);
4273 if (insn)
4274 BB_FOOTER (new_bb) = unlink_insn_chain (insn, get_last_insn ());
4275 }
4276
4277 return new_bb;
4278 }
4279
4280 \f
4281 /* Main entry point to this module - initialize the datastructures for
4282 CFG layout changes. It keeps LOOPS up-to-date if not null.
4283
4284 FLAGS is a set of additional flags to pass to cleanup_cfg(). */
4285
4286 void
4287 cfg_layout_initialize (int flags)
4288 {
4289 rtx_insn_list *x;
4290 basic_block bb;
4291
4292 /* Once bb partitioning is complete, cfg layout mode should not be
4293 re-entered. Entering cfg layout mode may require fixups. As an
4294 example, if edge forwarding performed when optimizing the cfg
4295 layout required moving a block from the hot to the cold
4296 section. This would create an illegal partitioning unless some
4297 manual fixup was performed. */
4298 gcc_assert (!crtl->bb_reorder_complete || !crtl->has_bb_partition);
4299
4300 initialize_original_copy_tables ();
4301
4302 cfg_layout_rtl_register_cfg_hooks ();
4303
4304 record_effective_endpoints ();
4305
4306 /* Make sure that the targets of non local gotos are marked. */
4307 for (x = nonlocal_goto_handler_labels; x; x = x->next ())
4308 {
4309 bb = BLOCK_FOR_INSN (x->insn ());
4310 bb->flags |= BB_NON_LOCAL_GOTO_TARGET;
4311 }
4312
4313 cleanup_cfg (CLEANUP_CFGLAYOUT | flags);
4314 }
4315
4316 /* Splits superblocks. */
4317 void
4318 break_superblocks (void)
4319 {
4320 bool need = false;
4321 basic_block bb;
4322
4323 auto_sbitmap superblocks (last_basic_block_for_fn (cfun));
4324 bitmap_clear (superblocks);
4325
4326 FOR_EACH_BB_FN (bb, cfun)
4327 if (bb->flags & BB_SUPERBLOCK)
4328 {
4329 bb->flags &= ~BB_SUPERBLOCK;
4330 bitmap_set_bit (superblocks, bb->index);
4331 need = true;
4332 }
4333
4334 if (need)
4335 {
4336 rebuild_jump_labels (get_insns ());
4337 find_many_sub_basic_blocks (superblocks);
4338 }
4339 }
4340
4341 /* Finalize the changes: reorder insn list according to the sequence specified
4342 by aux pointers, enter compensation code, rebuild scope forest. */
4343
4344 void
4345 cfg_layout_finalize (void)
4346 {
4347 free_dominance_info (CDI_DOMINATORS);
4348 force_one_exit_fallthru ();
4349 rtl_register_cfg_hooks ();
4350 if (reload_completed && !targetm.have_epilogue ())
4351 fixup_fallthru_exit_predecessor ();
4352 fixup_reorder_chain ();
4353
4354 rebuild_jump_labels (get_insns ());
4355 delete_dead_jumptables ();
4356
4357 if (flag_checking)
4358 verify_insn_chain ();
4359 checking_verify_flow_info ();
4360 }
4361
4362
4363 /* Same as split_block but update cfg_layout structures. */
4364
4365 static basic_block
4366 cfg_layout_split_block (basic_block bb, void *insnp)
4367 {
4368 rtx insn = (rtx) insnp;
4369 basic_block new_bb = rtl_split_block (bb, insn);
4370
4371 BB_FOOTER (new_bb) = BB_FOOTER (bb);
4372 BB_FOOTER (bb) = NULL;
4373
4374 return new_bb;
4375 }
4376
4377 /* Redirect Edge to DEST. */
4378 static edge
4379 cfg_layout_redirect_edge_and_branch (edge e, basic_block dest)
4380 {
4381 basic_block src = e->src;
4382 edge ret;
4383
4384 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
4385 return NULL;
4386
4387 if (e->dest == dest)
4388 return e;
4389
4390 if (e->flags & EDGE_CROSSING
4391 && BB_PARTITION (e->src) == BB_PARTITION (dest)
4392 && simplejump_p (BB_END (src)))
4393 {
4394 if (dump_file)
4395 fprintf (dump_file,
4396 "Removing crossing jump while redirecting edge form %i to %i\n",
4397 e->src->index, dest->index);
4398 delete_insn (BB_END (src));
4399 e->flags |= EDGE_FALLTHRU;
4400 }
4401
4402 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
4403 && (ret = try_redirect_by_replacing_jump (e, dest, true)))
4404 {
4405 df_set_bb_dirty (src);
4406 return ret;
4407 }
4408
4409 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
4410 && (e->flags & EDGE_FALLTHRU) && !(e->flags & EDGE_COMPLEX))
4411 {
4412 if (dump_file)
4413 fprintf (dump_file, "Redirecting entry edge from bb %i to %i\n",
4414 e->src->index, dest->index);
4415
4416 df_set_bb_dirty (e->src);
4417 redirect_edge_succ (e, dest);
4418 return e;
4419 }
4420
4421 /* Redirect_edge_and_branch may decide to turn branch into fallthru edge
4422 in the case the basic block appears to be in sequence. Avoid this
4423 transformation. */
4424
4425 if (e->flags & EDGE_FALLTHRU)
4426 {
4427 /* Redirect any branch edges unified with the fallthru one. */
4428 if (JUMP_P (BB_END (src))
4429 && label_is_jump_target_p (BB_HEAD (e->dest),
4430 BB_END (src)))
4431 {
4432 edge redirected;
4433
4434 if (dump_file)
4435 fprintf (dump_file, "Fallthru edge unified with branch "
4436 "%i->%i redirected to %i\n",
4437 e->src->index, e->dest->index, dest->index);
4438 e->flags &= ~EDGE_FALLTHRU;
4439 redirected = redirect_branch_edge (e, dest);
4440 gcc_assert (redirected);
4441 redirected->flags |= EDGE_FALLTHRU;
4442 df_set_bb_dirty (redirected->src);
4443 return redirected;
4444 }
4445 /* In case we are redirecting fallthru edge to the branch edge
4446 of conditional jump, remove it. */
4447 if (EDGE_COUNT (src->succs) == 2)
4448 {
4449 /* Find the edge that is different from E. */
4450 edge s = EDGE_SUCC (src, EDGE_SUCC (src, 0) == e);
4451
4452 if (s->dest == dest
4453 && any_condjump_p (BB_END (src))
4454 && onlyjump_p (BB_END (src)))
4455 delete_insn (BB_END (src));
4456 }
4457 if (dump_file)
4458 fprintf (dump_file, "Redirecting fallthru edge %i->%i to %i\n",
4459 e->src->index, e->dest->index, dest->index);
4460 ret = redirect_edge_succ_nodup (e, dest);
4461 }
4462 else
4463 ret = redirect_branch_edge (e, dest);
4464
4465 if (!ret)
4466 return NULL;
4467
4468 fixup_partition_crossing (ret);
4469 /* We don't want simplejumps in the insn stream during cfglayout. */
4470 gcc_assert (!simplejump_p (BB_END (src)) || CROSSING_JUMP_P (BB_END (src)));
4471
4472 df_set_bb_dirty (src);
4473 return ret;
4474 }
4475
4476 /* Simple wrapper as we always can redirect fallthru edges. */
4477 static basic_block
4478 cfg_layout_redirect_edge_and_branch_force (edge e, basic_block dest)
4479 {
4480 edge redirected = cfg_layout_redirect_edge_and_branch (e, dest);
4481
4482 gcc_assert (redirected);
4483 return NULL;
4484 }
4485
4486 /* Same as delete_basic_block but update cfg_layout structures. */
4487
4488 static void
4489 cfg_layout_delete_block (basic_block bb)
4490 {
4491 rtx_insn *insn, *next, *prev = PREV_INSN (BB_HEAD (bb)), *remaints;
4492 rtx_insn **to;
4493
4494 if (BB_HEADER (bb))
4495 {
4496 next = BB_HEAD (bb);
4497 if (prev)
4498 SET_NEXT_INSN (prev) = BB_HEADER (bb);
4499 else
4500 set_first_insn (BB_HEADER (bb));
4501 SET_PREV_INSN (BB_HEADER (bb)) = prev;
4502 insn = BB_HEADER (bb);
4503 while (NEXT_INSN (insn))
4504 insn = NEXT_INSN (insn);
4505 SET_NEXT_INSN (insn) = next;
4506 SET_PREV_INSN (next) = insn;
4507 }
4508 next = NEXT_INSN (BB_END (bb));
4509 if (BB_FOOTER (bb))
4510 {
4511 insn = BB_FOOTER (bb);
4512 while (insn)
4513 {
4514 if (BARRIER_P (insn))
4515 {
4516 if (PREV_INSN (insn))
4517 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
4518 else
4519 BB_FOOTER (bb) = NEXT_INSN (insn);
4520 if (NEXT_INSN (insn))
4521 SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
4522 }
4523 if (LABEL_P (insn))
4524 break;
4525 insn = NEXT_INSN (insn);
4526 }
4527 if (BB_FOOTER (bb))
4528 {
4529 insn = BB_END (bb);
4530 SET_NEXT_INSN (insn) = BB_FOOTER (bb);
4531 SET_PREV_INSN (BB_FOOTER (bb)) = insn;
4532 while (NEXT_INSN (insn))
4533 insn = NEXT_INSN (insn);
4534 SET_NEXT_INSN (insn) = next;
4535 if (next)
4536 SET_PREV_INSN (next) = insn;
4537 else
4538 set_last_insn (insn);
4539 }
4540 }
4541 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
4542 to = &BB_HEADER (bb->next_bb);
4543 else
4544 to = &cfg_layout_function_footer;
4545
4546 rtl_delete_block (bb);
4547
4548 if (prev)
4549 prev = NEXT_INSN (prev);
4550 else
4551 prev = get_insns ();
4552 if (next)
4553 next = PREV_INSN (next);
4554 else
4555 next = get_last_insn ();
4556
4557 if (next && NEXT_INSN (next) != prev)
4558 {
4559 remaints = unlink_insn_chain (prev, next);
4560 insn = remaints;
4561 while (NEXT_INSN (insn))
4562 insn = NEXT_INSN (insn);
4563 SET_NEXT_INSN (insn) = *to;
4564 if (*to)
4565 SET_PREV_INSN (*to) = insn;
4566 *to = remaints;
4567 }
4568 }
4569
4570 /* Return true when blocks A and B can be safely merged. */
4571
4572 static bool
4573 cfg_layout_can_merge_blocks_p (basic_block a, basic_block b)
4574 {
4575 /* If we are partitioning hot/cold basic blocks, we don't want to
4576 mess up unconditional or indirect jumps that cross between hot
4577 and cold sections.
4578
4579 Basic block partitioning may result in some jumps that appear to
4580 be optimizable (or blocks that appear to be mergeable), but which really
4581 must be left untouched (they are required to make it safely across
4582 partition boundaries). See the comments at the top of
4583 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
4584
4585 if (BB_PARTITION (a) != BB_PARTITION (b))
4586 return false;
4587
4588 /* Protect the loop latches. */
4589 if (current_loops && b->loop_father->latch == b)
4590 return false;
4591
4592 /* If we would end up moving B's instructions, make sure it doesn't fall
4593 through into the exit block, since we cannot recover from a fallthrough
4594 edge into the exit block occurring in the middle of a function. */
4595 if (NEXT_INSN (BB_END (a)) != BB_HEAD (b))
4596 {
4597 edge e = find_fallthru_edge (b->succs);
4598 if (e && e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
4599 return false;
4600 }
4601
4602 /* There must be exactly one edge in between the blocks. */
4603 return (single_succ_p (a)
4604 && single_succ (a) == b
4605 && single_pred_p (b) == 1
4606 && a != b
4607 /* Must be simple edge. */
4608 && !(single_succ_edge (a)->flags & EDGE_COMPLEX)
4609 && a != ENTRY_BLOCK_PTR_FOR_FN (cfun)
4610 && b != EXIT_BLOCK_PTR_FOR_FN (cfun)
4611 /* If the jump insn has side effects, we can't kill the edge.
4612 When not optimizing, try_redirect_by_replacing_jump will
4613 not allow us to redirect an edge by replacing a table jump. */
4614 && (!JUMP_P (BB_END (a))
4615 || ((!optimize || reload_completed)
4616 ? simplejump_p (BB_END (a)) : onlyjump_p (BB_END (a)))));
4617 }
4618
4619 /* Merge block A and B. The blocks must be mergeable. */
4620
4621 static void
4622 cfg_layout_merge_blocks (basic_block a, basic_block b)
4623 {
4624 /* If B is a forwarder block whose outgoing edge has no location, we'll
4625 propagate the locus of the edge between A and B onto it. */
4626 const bool forward_edge_locus
4627 = (b->flags & BB_FORWARDER_BLOCK) != 0
4628 && LOCATION_LOCUS (EDGE_SUCC (b, 0)->goto_locus) == UNKNOWN_LOCATION;
4629 rtx_insn *insn;
4630
4631 gcc_checking_assert (cfg_layout_can_merge_blocks_p (a, b));
4632
4633 if (dump_file)
4634 fprintf (dump_file, "Merging block %d into block %d...\n", b->index,
4635 a->index);
4636
4637 /* If there was a CODE_LABEL beginning B, delete it. */
4638 if (LABEL_P (BB_HEAD (b)))
4639 {
4640 delete_insn (BB_HEAD (b));
4641 }
4642
4643 /* We should have fallthru edge in a, or we can do dummy redirection to get
4644 it cleaned up. */
4645 if (JUMP_P (BB_END (a)))
4646 try_redirect_by_replacing_jump (EDGE_SUCC (a, 0), b, true);
4647 gcc_assert (!JUMP_P (BB_END (a)));
4648
4649 /* If not optimizing, preserve the locus of the single edge between
4650 blocks A and B if necessary by emitting a nop. */
4651 if (!optimize
4652 && !forward_edge_locus
4653 && !DECL_IGNORED_P (current_function_decl))
4654 emit_nop_for_unique_locus_between (a, b);
4655
4656 /* Move things from b->footer after a->footer. */
4657 if (BB_FOOTER (b))
4658 {
4659 if (!BB_FOOTER (a))
4660 BB_FOOTER (a) = BB_FOOTER (b);
4661 else
4662 {
4663 rtx_insn *last = BB_FOOTER (a);
4664
4665 while (NEXT_INSN (last))
4666 last = NEXT_INSN (last);
4667 SET_NEXT_INSN (last) = BB_FOOTER (b);
4668 SET_PREV_INSN (BB_FOOTER (b)) = last;
4669 }
4670 BB_FOOTER (b) = NULL;
4671 }
4672
4673 /* Move things from b->header before a->footer.
4674 Note that this may include dead tablejump data, but we don't clean
4675 those up until we go out of cfglayout mode. */
4676 if (BB_HEADER (b))
4677 {
4678 if (! BB_FOOTER (a))
4679 BB_FOOTER (a) = BB_HEADER (b);
4680 else
4681 {
4682 rtx_insn *last = BB_HEADER (b);
4683
4684 while (NEXT_INSN (last))
4685 last = NEXT_INSN (last);
4686 SET_NEXT_INSN (last) = BB_FOOTER (a);
4687 SET_PREV_INSN (BB_FOOTER (a)) = last;
4688 BB_FOOTER (a) = BB_HEADER (b);
4689 }
4690 BB_HEADER (b) = NULL;
4691 }
4692
4693 /* In the case basic blocks are not adjacent, move them around. */
4694 if (NEXT_INSN (BB_END (a)) != BB_HEAD (b))
4695 {
4696 insn = unlink_insn_chain (BB_HEAD (b), BB_END (b));
4697
4698 emit_insn_after_noloc (insn, BB_END (a), a);
4699 }
4700 /* Otherwise just re-associate the instructions. */
4701 else
4702 {
4703 insn = BB_HEAD (b);
4704 BB_END (a) = BB_END (b);
4705 }
4706
4707 /* emit_insn_after_noloc doesn't call df_insn_change_bb.
4708 We need to explicitly call. */
4709 update_bb_for_insn_chain (insn, BB_END (b), a);
4710
4711 /* Skip possible DELETED_LABEL insn. */
4712 if (!NOTE_INSN_BASIC_BLOCK_P (insn))
4713 insn = NEXT_INSN (insn);
4714 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
4715 BB_HEAD (b) = BB_END (b) = NULL;
4716 delete_insn (insn);
4717
4718 df_bb_delete (b->index);
4719
4720 if (forward_edge_locus)
4721 EDGE_SUCC (b, 0)->goto_locus = EDGE_SUCC (a, 0)->goto_locus;
4722
4723 if (dump_file)
4724 fprintf (dump_file, "Merged blocks %d and %d.\n", a->index, b->index);
4725 }
4726
4727 /* Split edge E. */
4728
4729 static basic_block
4730 cfg_layout_split_edge (edge e)
4731 {
4732 basic_block new_bb =
4733 create_basic_block (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
4734 ? NEXT_INSN (BB_END (e->src)) : get_insns (),
4735 NULL_RTX, e->src);
4736
4737 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
4738 BB_COPY_PARTITION (new_bb, e->src);
4739 else
4740 BB_COPY_PARTITION (new_bb, e->dest);
4741 make_edge (new_bb, e->dest, EDGE_FALLTHRU);
4742 redirect_edge_and_branch_force (e, new_bb);
4743
4744 return new_bb;
4745 }
4746
4747 /* Do postprocessing after making a forwarder block joined by edge FALLTHRU. */
4748
4749 static void
4750 rtl_make_forwarder_block (edge fallthru ATTRIBUTE_UNUSED)
4751 {
4752 }
4753
4754 /* Return true if BB contains only labels or non-executable
4755 instructions. */
4756
4757 static bool
4758 rtl_block_empty_p (basic_block bb)
4759 {
4760 rtx_insn *insn;
4761
4762 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun)
4763 || bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4764 return true;
4765
4766 FOR_BB_INSNS (bb, insn)
4767 if (NONDEBUG_INSN_P (insn) && !any_uncondjump_p (insn))
4768 return false;
4769
4770 return true;
4771 }
4772
4773 /* Split a basic block if it ends with a conditional branch and if
4774 the other part of the block is not empty. */
4775
4776 static basic_block
4777 rtl_split_block_before_cond_jump (basic_block bb)
4778 {
4779 rtx_insn *insn;
4780 rtx_insn *split_point = NULL;
4781 rtx_insn *last = NULL;
4782 bool found_code = false;
4783
4784 FOR_BB_INSNS (bb, insn)
4785 {
4786 if (any_condjump_p (insn))
4787 split_point = last;
4788 else if (NONDEBUG_INSN_P (insn))
4789 found_code = true;
4790 last = insn;
4791 }
4792
4793 /* Did not find everything. */
4794 if (found_code && split_point)
4795 return split_block (bb, split_point)->dest;
4796 else
4797 return NULL;
4798 }
4799
4800 /* Return 1 if BB ends with a call, possibly followed by some
4801 instructions that must stay with the call, 0 otherwise. */
4802
4803 static bool
4804 rtl_block_ends_with_call_p (basic_block bb)
4805 {
4806 rtx_insn *insn = BB_END (bb);
4807
4808 while (!CALL_P (insn)
4809 && insn != BB_HEAD (bb)
4810 && (keep_with_call_p (insn)
4811 || NOTE_P (insn)
4812 || DEBUG_INSN_P (insn)))
4813 insn = PREV_INSN (insn);
4814 return (CALL_P (insn));
4815 }
4816
4817 /* Return 1 if BB ends with a conditional branch, 0 otherwise. */
4818
4819 static bool
4820 rtl_block_ends_with_condjump_p (const_basic_block bb)
4821 {
4822 return any_condjump_p (BB_END (bb));
4823 }
4824
4825 /* Return true if we need to add fake edge to exit.
4826 Helper function for rtl_flow_call_edges_add. */
4827
4828 static bool
4829 need_fake_edge_p (const rtx_insn *insn)
4830 {
4831 if (!INSN_P (insn))
4832 return false;
4833
4834 if ((CALL_P (insn)
4835 && !SIBLING_CALL_P (insn)
4836 && !find_reg_note (insn, REG_NORETURN, NULL)
4837 && !(RTL_CONST_OR_PURE_CALL_P (insn))))
4838 return true;
4839
4840 return ((GET_CODE (PATTERN (insn)) == ASM_OPERANDS
4841 && MEM_VOLATILE_P (PATTERN (insn)))
4842 || (GET_CODE (PATTERN (insn)) == PARALLEL
4843 && asm_noperands (insn) != -1
4844 && MEM_VOLATILE_P (XVECEXP (PATTERN (insn), 0, 0)))
4845 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
4846 }
4847
4848 /* Add fake edges to the function exit for any non constant and non noreturn
4849 calls, volatile inline assembly in the bitmap of blocks specified by
4850 BLOCKS or to the whole CFG if BLOCKS is zero. Return the number of blocks
4851 that were split.
4852
4853 The goal is to expose cases in which entering a basic block does not imply
4854 that all subsequent instructions must be executed. */
4855
4856 static int
4857 rtl_flow_call_edges_add (sbitmap blocks)
4858 {
4859 int i;
4860 int blocks_split = 0;
4861 int last_bb = last_basic_block_for_fn (cfun);
4862 bool check_last_block = false;
4863
4864 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
4865 return 0;
4866
4867 if (! blocks)
4868 check_last_block = true;
4869 else
4870 check_last_block = bitmap_bit_p (blocks,
4871 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb->index);
4872
4873 /* In the last basic block, before epilogue generation, there will be
4874 a fallthru edge to EXIT. Special care is required if the last insn
4875 of the last basic block is a call because make_edge folds duplicate
4876 edges, which would result in the fallthru edge also being marked
4877 fake, which would result in the fallthru edge being removed by
4878 remove_fake_edges, which would result in an invalid CFG.
4879
4880 Moreover, we can't elide the outgoing fake edge, since the block
4881 profiler needs to take this into account in order to solve the minimal
4882 spanning tree in the case that the call doesn't return.
4883
4884 Handle this by adding a dummy instruction in a new last basic block. */
4885 if (check_last_block)
4886 {
4887 basic_block bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
4888 rtx_insn *insn = BB_END (bb);
4889
4890 /* Back up past insns that must be kept in the same block as a call. */
4891 while (insn != BB_HEAD (bb)
4892 && keep_with_call_p (insn))
4893 insn = PREV_INSN (insn);
4894
4895 if (need_fake_edge_p (insn))
4896 {
4897 edge e;
4898
4899 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
4900 if (e)
4901 {
4902 insert_insn_on_edge (gen_use (const0_rtx), e);
4903 commit_edge_insertions ();
4904 }
4905 }
4906 }
4907
4908 /* Now add fake edges to the function exit for any non constant
4909 calls since there is no way that we can determine if they will
4910 return or not... */
4911
4912 for (i = NUM_FIXED_BLOCKS; i < last_bb; i++)
4913 {
4914 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
4915 rtx_insn *insn;
4916 rtx_insn *prev_insn;
4917
4918 if (!bb)
4919 continue;
4920
4921 if (blocks && !bitmap_bit_p (blocks, i))
4922 continue;
4923
4924 for (insn = BB_END (bb); ; insn = prev_insn)
4925 {
4926 prev_insn = PREV_INSN (insn);
4927 if (need_fake_edge_p (insn))
4928 {
4929 edge e;
4930 rtx_insn *split_at_insn = insn;
4931
4932 /* Don't split the block between a call and an insn that should
4933 remain in the same block as the call. */
4934 if (CALL_P (insn))
4935 while (split_at_insn != BB_END (bb)
4936 && keep_with_call_p (NEXT_INSN (split_at_insn)))
4937 split_at_insn = NEXT_INSN (split_at_insn);
4938
4939 /* The handling above of the final block before the epilogue
4940 should be enough to verify that there is no edge to the exit
4941 block in CFG already. Calling make_edge in such case would
4942 cause us to mark that edge as fake and remove it later. */
4943
4944 if (flag_checking && split_at_insn == BB_END (bb))
4945 {
4946 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
4947 gcc_assert (e == NULL);
4948 }
4949
4950 /* Note that the following may create a new basic block
4951 and renumber the existing basic blocks. */
4952 if (split_at_insn != BB_END (bb))
4953 {
4954 e = split_block (bb, split_at_insn);
4955 if (e)
4956 blocks_split++;
4957 }
4958
4959 edge ne = make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
4960 ne->probability = profile_probability::guessed_never ();
4961 }
4962
4963 if (insn == BB_HEAD (bb))
4964 break;
4965 }
4966 }
4967
4968 if (blocks_split)
4969 verify_flow_info ();
4970
4971 return blocks_split;
4972 }
4973
4974 /* Add COMP_RTX as a condition at end of COND_BB. FIRST_HEAD is
4975 the conditional branch target, SECOND_HEAD should be the fall-thru
4976 there is no need to handle this here the loop versioning code handles
4977 this. the reason for SECON_HEAD is that it is needed for condition
4978 in trees, and this should be of the same type since it is a hook. */
4979 static void
4980 rtl_lv_add_condition_to_bb (basic_block first_head ,
4981 basic_block second_head ATTRIBUTE_UNUSED,
4982 basic_block cond_bb, void *comp_rtx)
4983 {
4984 rtx_code_label *label;
4985 rtx_insn *seq, *jump;
4986 rtx op0 = XEXP ((rtx)comp_rtx, 0);
4987 rtx op1 = XEXP ((rtx)comp_rtx, 1);
4988 enum rtx_code comp = GET_CODE ((rtx)comp_rtx);
4989 machine_mode mode;
4990
4991
4992 label = block_label (first_head);
4993 mode = GET_MODE (op0);
4994 if (mode == VOIDmode)
4995 mode = GET_MODE (op1);
4996
4997 start_sequence ();
4998 op0 = force_operand (op0, NULL_RTX);
4999 op1 = force_operand (op1, NULL_RTX);
5000 do_compare_rtx_and_jump (op0, op1, comp, 0, mode, NULL_RTX, NULL, label,
5001 profile_probability::uninitialized ());
5002 jump = get_last_insn ();
5003 JUMP_LABEL (jump) = label;
5004 LABEL_NUSES (label)++;
5005 seq = get_insns ();
5006 end_sequence ();
5007
5008 /* Add the new cond, in the new head. */
5009 emit_insn_after (seq, BB_END (cond_bb));
5010 }
5011
5012
5013 /* Given a block B with unconditional branch at its end, get the
5014 store the return the branch edge and the fall-thru edge in
5015 BRANCH_EDGE and FALLTHRU_EDGE respectively. */
5016 static void
5017 rtl_extract_cond_bb_edges (basic_block b, edge *branch_edge,
5018 edge *fallthru_edge)
5019 {
5020 edge e = EDGE_SUCC (b, 0);
5021
5022 if (e->flags & EDGE_FALLTHRU)
5023 {
5024 *fallthru_edge = e;
5025 *branch_edge = EDGE_SUCC (b, 1);
5026 }
5027 else
5028 {
5029 *branch_edge = e;
5030 *fallthru_edge = EDGE_SUCC (b, 1);
5031 }
5032 }
5033
5034 void
5035 init_rtl_bb_info (basic_block bb)
5036 {
5037 gcc_assert (!bb->il.x.rtl);
5038 bb->il.x.head_ = NULL;
5039 bb->il.x.rtl = ggc_cleared_alloc<rtl_bb_info> ();
5040 }
5041
5042 /* Returns true if it is possible to remove edge E by redirecting
5043 it to the destination of the other edge from E->src. */
5044
5045 static bool
5046 rtl_can_remove_branch_p (const_edge e)
5047 {
5048 const_basic_block src = e->src;
5049 const_basic_block target = EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest;
5050 const rtx_insn *insn = BB_END (src);
5051 rtx set;
5052
5053 /* The conditions are taken from try_redirect_by_replacing_jump. */
5054 if (target == EXIT_BLOCK_PTR_FOR_FN (cfun))
5055 return false;
5056
5057 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
5058 return false;
5059
5060 if (BB_PARTITION (src) != BB_PARTITION (target))
5061 return false;
5062
5063 if (!onlyjump_p (insn)
5064 || tablejump_p (insn, NULL, NULL))
5065 return false;
5066
5067 set = single_set (insn);
5068 if (!set || side_effects_p (set))
5069 return false;
5070
5071 return true;
5072 }
5073
5074 static basic_block
5075 rtl_duplicate_bb (basic_block bb)
5076 {
5077 bb = cfg_layout_duplicate_bb (bb);
5078 bb->aux = NULL;
5079 return bb;
5080 }
5081
5082 /* Do book-keeping of basic block BB for the profile consistency checker.
5083 Store the counting in RECORD. */
5084 static void
5085 rtl_account_profile_record (basic_block bb, struct profile_record *record)
5086 {
5087 rtx_insn *insn;
5088 FOR_BB_INSNS (bb, insn)
5089 if (INSN_P (insn))
5090 {
5091 record->size += insn_cost (insn, false);
5092 if (bb->count.initialized_p ())
5093 record->time
5094 += insn_cost (insn, true) * bb->count.to_gcov_type ();
5095 else if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
5096 record->time
5097 += insn_cost (insn, true) * bb->count.to_frequency (cfun);
5098 }
5099 }
5100
5101 /* Implementation of CFG manipulation for linearized RTL. */
5102 struct cfg_hooks rtl_cfg_hooks = {
5103 "rtl",
5104 rtl_verify_flow_info,
5105 rtl_dump_bb,
5106 rtl_dump_bb_for_graph,
5107 rtl_create_basic_block,
5108 rtl_redirect_edge_and_branch,
5109 rtl_redirect_edge_and_branch_force,
5110 rtl_can_remove_branch_p,
5111 rtl_delete_block,
5112 rtl_split_block,
5113 rtl_move_block_after,
5114 rtl_can_merge_blocks, /* can_merge_blocks_p */
5115 rtl_merge_blocks,
5116 rtl_predict_edge,
5117 rtl_predicted_by_p,
5118 cfg_layout_can_duplicate_bb_p,
5119 rtl_duplicate_bb,
5120 rtl_split_edge,
5121 rtl_make_forwarder_block,
5122 rtl_tidy_fallthru_edge,
5123 rtl_force_nonfallthru,
5124 rtl_block_ends_with_call_p,
5125 rtl_block_ends_with_condjump_p,
5126 rtl_flow_call_edges_add,
5127 NULL, /* execute_on_growing_pred */
5128 NULL, /* execute_on_shrinking_pred */
5129 NULL, /* duplicate loop for trees */
5130 NULL, /* lv_add_condition_to_bb */
5131 NULL, /* lv_adjust_loop_header_phi*/
5132 NULL, /* extract_cond_bb_edges */
5133 NULL, /* flush_pending_stmts */
5134 rtl_block_empty_p, /* block_empty_p */
5135 rtl_split_block_before_cond_jump, /* split_block_before_cond_jump */
5136 rtl_account_profile_record,
5137 };
5138
5139 /* Implementation of CFG manipulation for cfg layout RTL, where
5140 basic block connected via fallthru edges does not have to be adjacent.
5141 This representation will hopefully become the default one in future
5142 version of the compiler. */
5143
5144 struct cfg_hooks cfg_layout_rtl_cfg_hooks = {
5145 "cfglayout mode",
5146 rtl_verify_flow_info_1,
5147 rtl_dump_bb,
5148 rtl_dump_bb_for_graph,
5149 cfg_layout_create_basic_block,
5150 cfg_layout_redirect_edge_and_branch,
5151 cfg_layout_redirect_edge_and_branch_force,
5152 rtl_can_remove_branch_p,
5153 cfg_layout_delete_block,
5154 cfg_layout_split_block,
5155 rtl_move_block_after,
5156 cfg_layout_can_merge_blocks_p,
5157 cfg_layout_merge_blocks,
5158 rtl_predict_edge,
5159 rtl_predicted_by_p,
5160 cfg_layout_can_duplicate_bb_p,
5161 cfg_layout_duplicate_bb,
5162 cfg_layout_split_edge,
5163 rtl_make_forwarder_block,
5164 NULL, /* tidy_fallthru_edge */
5165 rtl_force_nonfallthru,
5166 rtl_block_ends_with_call_p,
5167 rtl_block_ends_with_condjump_p,
5168 rtl_flow_call_edges_add,
5169 NULL, /* execute_on_growing_pred */
5170 NULL, /* execute_on_shrinking_pred */
5171 duplicate_loop_to_header_edge, /* duplicate loop for trees */
5172 rtl_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
5173 NULL, /* lv_adjust_loop_header_phi*/
5174 rtl_extract_cond_bb_edges, /* extract_cond_bb_edges */
5175 NULL, /* flush_pending_stmts */
5176 rtl_block_empty_p, /* block_empty_p */
5177 rtl_split_block_before_cond_jump, /* split_block_before_cond_jump */
5178 rtl_account_profile_record,
5179 };
5180
5181 #include "gt-cfgrtl.h"