re PR ipa/60026 (ICE at -O3 on valid code (with the optimize pragma) on x86_64-linux...
[gcc.git] / gcc / cfgrtl.c
1 /* Control flow graph manipulation code for GNU compiler.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file contains low level functions to manipulate the CFG and analyze it
21 that are aware of the RTL intermediate language.
22
23 Available functionality:
24 - Basic CFG/RTL manipulation API documented in cfghooks.h
25 - CFG-aware instruction chain manipulation
26 delete_insn, delete_insn_chain
27 - Edge splitting and committing to edges
28 insert_insn_on_edge, commit_edge_insertions
29 - CFG updating after insn simplification
30 purge_dead_edges, purge_all_dead_edges
31 - CFG fixing after coarse manipulation
32 fixup_abnormal_edges
33
34 Functions not supposed for generic use:
35 - Infrastructure to determine quickly basic block for insn
36 compute_bb_for_insn, update_bb_for_insn, set_block_for_insn,
37 - Edge redirection with updating and optimizing of insn chain
38 block_label, tidy_fallthru_edge, force_nonfallthru */
39 \f
40 #include "config.h"
41 #include "system.h"
42 #include "coretypes.h"
43 #include "tm.h"
44 #include "tree.h"
45 #include "hard-reg-set.h"
46 #include "basic-block.h"
47 #include "bb-reorder.h"
48 #include "regs.h"
49 #include "flags.h"
50 #include "function.h"
51 #include "except.h"
52 #include "rtl-error.h"
53 #include "tm_p.h"
54 #include "obstack.h"
55 #include "insn-attr.h"
56 #include "insn-config.h"
57 #include "expr.h"
58 #include "target.h"
59 #include "common/common-target.h"
60 #include "cfgloop.h"
61 #include "ggc.h"
62 #include "tree-pass.h"
63 #include "df.h"
64
65 /* Holds the interesting leading and trailing notes for the function.
66 Only applicable if the CFG is in cfglayout mode. */
67 static GTY(()) rtx cfg_layout_function_footer;
68 static GTY(()) rtx cfg_layout_function_header;
69
70 static rtx skip_insns_after_block (basic_block);
71 static void record_effective_endpoints (void);
72 static rtx label_for_bb (basic_block);
73 static void fixup_reorder_chain (void);
74
75 void verify_insn_chain (void);
76 static void fixup_fallthru_exit_predecessor (void);
77 static int can_delete_note_p (const_rtx);
78 static int can_delete_label_p (const_rtx);
79 static basic_block rtl_split_edge (edge);
80 static bool rtl_move_block_after (basic_block, basic_block);
81 static int rtl_verify_flow_info (void);
82 static basic_block cfg_layout_split_block (basic_block, void *);
83 static edge cfg_layout_redirect_edge_and_branch (edge, basic_block);
84 static basic_block cfg_layout_redirect_edge_and_branch_force (edge, basic_block);
85 static void cfg_layout_delete_block (basic_block);
86 static void rtl_delete_block (basic_block);
87 static basic_block rtl_redirect_edge_and_branch_force (edge, basic_block);
88 static edge rtl_redirect_edge_and_branch (edge, basic_block);
89 static basic_block rtl_split_block (basic_block, void *);
90 static void rtl_dump_bb (FILE *, basic_block, int, int);
91 static int rtl_verify_flow_info_1 (void);
92 static void rtl_make_forwarder_block (edge);
93 \f
94 /* Return true if NOTE is not one of the ones that must be kept paired,
95 so that we may simply delete it. */
96
97 static int
98 can_delete_note_p (const_rtx note)
99 {
100 switch (NOTE_KIND (note))
101 {
102 case NOTE_INSN_DELETED:
103 case NOTE_INSN_BASIC_BLOCK:
104 case NOTE_INSN_EPILOGUE_BEG:
105 return true;
106
107 default:
108 return false;
109 }
110 }
111
112 /* True if a given label can be deleted. */
113
114 static int
115 can_delete_label_p (const_rtx label)
116 {
117 return (!LABEL_PRESERVE_P (label)
118 /* User declared labels must be preserved. */
119 && LABEL_NAME (label) == 0
120 && !in_expr_list_p (forced_labels, label));
121 }
122
123 /* Delete INSN by patching it out. */
124
125 void
126 delete_insn (rtx insn)
127 {
128 rtx note;
129 bool really_delete = true;
130
131 if (LABEL_P (insn))
132 {
133 /* Some labels can't be directly removed from the INSN chain, as they
134 might be references via variables, constant pool etc.
135 Convert them to the special NOTE_INSN_DELETED_LABEL note. */
136 if (! can_delete_label_p (insn))
137 {
138 const char *name = LABEL_NAME (insn);
139 basic_block bb = BLOCK_FOR_INSN (insn);
140 rtx bb_note = NEXT_INSN (insn);
141
142 really_delete = false;
143 PUT_CODE (insn, NOTE);
144 NOTE_KIND (insn) = NOTE_INSN_DELETED_LABEL;
145 NOTE_DELETED_LABEL_NAME (insn) = name;
146
147 /* If the note following the label starts a basic block, and the
148 label is a member of the same basic block, interchange the two. */
149 if (bb_note != NULL_RTX
150 && NOTE_INSN_BASIC_BLOCK_P (bb_note)
151 && bb != NULL
152 && bb == BLOCK_FOR_INSN (bb_note))
153 {
154 reorder_insns_nobb (insn, insn, bb_note);
155 BB_HEAD (bb) = bb_note;
156 if (BB_END (bb) == bb_note)
157 BB_END (bb) = insn;
158 }
159 }
160
161 remove_node_from_expr_list (insn, &nonlocal_goto_handler_labels);
162 }
163
164 if (really_delete)
165 {
166 /* If this insn has already been deleted, something is very wrong. */
167 gcc_assert (!INSN_DELETED_P (insn));
168 if (INSN_P (insn))
169 df_insn_delete (insn);
170 remove_insn (insn);
171 INSN_DELETED_P (insn) = 1;
172 }
173
174 /* If deleting a jump, decrement the use count of the label. Deleting
175 the label itself should happen in the normal course of block merging. */
176 if (JUMP_P (insn))
177 {
178 if (JUMP_LABEL (insn)
179 && LABEL_P (JUMP_LABEL (insn)))
180 LABEL_NUSES (JUMP_LABEL (insn))--;
181
182 /* If there are more targets, remove them too. */
183 while ((note
184 = find_reg_note (insn, REG_LABEL_TARGET, NULL_RTX)) != NULL_RTX
185 && LABEL_P (XEXP (note, 0)))
186 {
187 LABEL_NUSES (XEXP (note, 0))--;
188 remove_note (insn, note);
189 }
190 }
191
192 /* Also if deleting any insn that references a label as an operand. */
193 while ((note = find_reg_note (insn, REG_LABEL_OPERAND, NULL_RTX)) != NULL_RTX
194 && LABEL_P (XEXP (note, 0)))
195 {
196 LABEL_NUSES (XEXP (note, 0))--;
197 remove_note (insn, note);
198 }
199
200 if (JUMP_TABLE_DATA_P (insn))
201 {
202 rtx pat = PATTERN (insn);
203 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
204 int len = XVECLEN (pat, diff_vec_p);
205 int i;
206
207 for (i = 0; i < len; i++)
208 {
209 rtx label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
210
211 /* When deleting code in bulk (e.g. removing many unreachable
212 blocks) we can delete a label that's a target of the vector
213 before deleting the vector itself. */
214 if (!NOTE_P (label))
215 LABEL_NUSES (label)--;
216 }
217 }
218 }
219
220 /* Like delete_insn but also purge dead edges from BB. */
221
222 void
223 delete_insn_and_edges (rtx insn)
224 {
225 bool purge = false;
226
227 if (INSN_P (insn)
228 && BLOCK_FOR_INSN (insn)
229 && BB_END (BLOCK_FOR_INSN (insn)) == insn)
230 purge = true;
231 delete_insn (insn);
232 if (purge)
233 purge_dead_edges (BLOCK_FOR_INSN (insn));
234 }
235
236 /* Unlink a chain of insns between START and FINISH, leaving notes
237 that must be paired. If CLEAR_BB is true, we set bb field for
238 insns that cannot be removed to NULL. */
239
240 void
241 delete_insn_chain (rtx start, rtx finish, bool clear_bb)
242 {
243 rtx prev, current;
244
245 /* Unchain the insns one by one. It would be quicker to delete all of these
246 with a single unchaining, rather than one at a time, but we need to keep
247 the NOTE's. */
248 current = finish;
249 while (1)
250 {
251 prev = PREV_INSN (current);
252 if (NOTE_P (current) && !can_delete_note_p (current))
253 ;
254 else
255 delete_insn (current);
256
257 if (clear_bb && !INSN_DELETED_P (current))
258 set_block_for_insn (current, NULL);
259
260 if (current == start)
261 break;
262 current = prev;
263 }
264 }
265 \f
266 /* Create a new basic block consisting of the instructions between HEAD and END
267 inclusive. This function is designed to allow fast BB construction - reuses
268 the note and basic block struct in BB_NOTE, if any and do not grow
269 BASIC_BLOCK chain and should be used directly only by CFG construction code.
270 END can be NULL in to create new empty basic block before HEAD. Both END
271 and HEAD can be NULL to create basic block at the end of INSN chain.
272 AFTER is the basic block we should be put after. */
273
274 basic_block
275 create_basic_block_structure (rtx head, rtx end, rtx bb_note, basic_block after)
276 {
277 basic_block bb;
278
279 if (bb_note
280 && (bb = NOTE_BASIC_BLOCK (bb_note)) != NULL
281 && bb->aux == NULL)
282 {
283 /* If we found an existing note, thread it back onto the chain. */
284
285 rtx after;
286
287 if (LABEL_P (head))
288 after = head;
289 else
290 {
291 after = PREV_INSN (head);
292 head = bb_note;
293 }
294
295 if (after != bb_note && NEXT_INSN (after) != bb_note)
296 reorder_insns_nobb (bb_note, bb_note, after);
297 }
298 else
299 {
300 /* Otherwise we must create a note and a basic block structure. */
301
302 bb = alloc_block ();
303
304 init_rtl_bb_info (bb);
305 if (!head && !end)
306 head = end = bb_note
307 = emit_note_after (NOTE_INSN_BASIC_BLOCK, get_last_insn ());
308 else if (LABEL_P (head) && end)
309 {
310 bb_note = emit_note_after (NOTE_INSN_BASIC_BLOCK, head);
311 if (head == end)
312 end = bb_note;
313 }
314 else
315 {
316 bb_note = emit_note_before (NOTE_INSN_BASIC_BLOCK, head);
317 head = bb_note;
318 if (!end)
319 end = head;
320 }
321
322 NOTE_BASIC_BLOCK (bb_note) = bb;
323 }
324
325 /* Always include the bb note in the block. */
326 if (NEXT_INSN (end) == bb_note)
327 end = bb_note;
328
329 BB_HEAD (bb) = head;
330 BB_END (bb) = end;
331 bb->index = last_basic_block_for_fn (cfun)++;
332 bb->flags = BB_NEW | BB_RTL;
333 link_block (bb, after);
334 SET_BASIC_BLOCK_FOR_FN (cfun, bb->index, bb);
335 df_bb_refs_record (bb->index, false);
336 update_bb_for_insn (bb);
337 BB_SET_PARTITION (bb, BB_UNPARTITIONED);
338
339 /* Tag the block so that we know it has been used when considering
340 other basic block notes. */
341 bb->aux = bb;
342
343 return bb;
344 }
345
346 /* Create new basic block consisting of instructions in between HEAD and END
347 and place it to the BB chain after block AFTER. END can be NULL to
348 create a new empty basic block before HEAD. Both END and HEAD can be
349 NULL to create basic block at the end of INSN chain. */
350
351 static basic_block
352 rtl_create_basic_block (void *headp, void *endp, basic_block after)
353 {
354 rtx head = (rtx) headp, end = (rtx) endp;
355 basic_block bb;
356
357 /* Grow the basic block array if needed. */
358 if ((size_t) last_basic_block_for_fn (cfun)
359 >= basic_block_info_for_fn (cfun)->length ())
360 {
361 size_t new_size =
362 (last_basic_block_for_fn (cfun)
363 + (last_basic_block_for_fn (cfun) + 3) / 4);
364 vec_safe_grow_cleared (basic_block_info_for_fn (cfun), new_size);
365 }
366
367 n_basic_blocks_for_fn (cfun)++;
368
369 bb = create_basic_block_structure (head, end, NULL, after);
370 bb->aux = NULL;
371 return bb;
372 }
373
374 static basic_block
375 cfg_layout_create_basic_block (void *head, void *end, basic_block after)
376 {
377 basic_block newbb = rtl_create_basic_block (head, end, after);
378
379 return newbb;
380 }
381 \f
382 /* Delete the insns in a (non-live) block. We physically delete every
383 non-deleted-note insn, and update the flow graph appropriately.
384
385 Return nonzero if we deleted an exception handler. */
386
387 /* ??? Preserving all such notes strikes me as wrong. It would be nice
388 to post-process the stream to remove empty blocks, loops, ranges, etc. */
389
390 static void
391 rtl_delete_block (basic_block b)
392 {
393 rtx insn, end;
394
395 /* If the head of this block is a CODE_LABEL, then it might be the
396 label for an exception handler which can't be reached. We need
397 to remove the label from the exception_handler_label list. */
398 insn = BB_HEAD (b);
399
400 end = get_last_bb_insn (b);
401
402 /* Selectively delete the entire chain. */
403 BB_HEAD (b) = NULL;
404 delete_insn_chain (insn, end, true);
405
406
407 if (dump_file)
408 fprintf (dump_file, "deleting block %d\n", b->index);
409 df_bb_delete (b->index);
410 }
411 \f
412 /* Records the basic block struct in BLOCK_FOR_INSN for every insn. */
413
414 void
415 compute_bb_for_insn (void)
416 {
417 basic_block bb;
418
419 FOR_EACH_BB_FN (bb, cfun)
420 {
421 rtx end = BB_END (bb);
422 rtx insn;
423
424 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
425 {
426 BLOCK_FOR_INSN (insn) = bb;
427 if (insn == end)
428 break;
429 }
430 }
431 }
432
433 /* Release the basic_block_for_insn array. */
434
435 unsigned int
436 free_bb_for_insn (void)
437 {
438 rtx insn;
439 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
440 if (!BARRIER_P (insn))
441 BLOCK_FOR_INSN (insn) = NULL;
442 return 0;
443 }
444
445 static unsigned int
446 rest_of_pass_free_cfg (void)
447 {
448 #ifdef DELAY_SLOTS
449 /* The resource.c machinery uses DF but the CFG isn't guaranteed to be
450 valid at that point so it would be too late to call df_analyze. */
451 if (optimize > 0 && flag_delayed_branch)
452 {
453 df_note_add_problem ();
454 df_analyze ();
455 }
456 #endif
457
458 if (crtl->has_bb_partition)
459 insert_section_boundary_note ();
460
461 free_bb_for_insn ();
462 return 0;
463 }
464
465 namespace {
466
467 const pass_data pass_data_free_cfg =
468 {
469 RTL_PASS, /* type */
470 "*free_cfg", /* name */
471 OPTGROUP_NONE, /* optinfo_flags */
472 false, /* has_gate */
473 true, /* has_execute */
474 TV_NONE, /* tv_id */
475 0, /* properties_required */
476 0, /* properties_provided */
477 PROP_cfg, /* properties_destroyed */
478 0, /* todo_flags_start */
479 0, /* todo_flags_finish */
480 };
481
482 class pass_free_cfg : public rtl_opt_pass
483 {
484 public:
485 pass_free_cfg (gcc::context *ctxt)
486 : rtl_opt_pass (pass_data_free_cfg, ctxt)
487 {}
488
489 /* opt_pass methods: */
490 unsigned int execute () { return rest_of_pass_free_cfg (); }
491
492 }; // class pass_free_cfg
493
494 } // anon namespace
495
496 rtl_opt_pass *
497 make_pass_free_cfg (gcc::context *ctxt)
498 {
499 return new pass_free_cfg (ctxt);
500 }
501
502 /* Return RTX to emit after when we want to emit code on the entry of function. */
503 rtx
504 entry_of_function (void)
505 {
506 return (n_basic_blocks_for_fn (cfun) > NUM_FIXED_BLOCKS ?
507 BB_HEAD (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb) : get_insns ());
508 }
509
510 /* Emit INSN at the entry point of the function, ensuring that it is only
511 executed once per function. */
512 void
513 emit_insn_at_entry (rtx insn)
514 {
515 edge_iterator ei = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
516 edge e = ei_safe_edge (ei);
517 gcc_assert (e->flags & EDGE_FALLTHRU);
518
519 insert_insn_on_edge (insn, e);
520 commit_edge_insertions ();
521 }
522
523 /* Update BLOCK_FOR_INSN of insns between BEGIN and END
524 (or BARRIER if found) and notify df of the bb change.
525 The insn chain range is inclusive
526 (i.e. both BEGIN and END will be updated. */
527
528 static void
529 update_bb_for_insn_chain (rtx begin, rtx end, basic_block bb)
530 {
531 rtx insn;
532
533 end = NEXT_INSN (end);
534 for (insn = begin; insn != end; insn = NEXT_INSN (insn))
535 if (!BARRIER_P (insn))
536 df_insn_change_bb (insn, bb);
537 }
538
539 /* Update BLOCK_FOR_INSN of insns in BB to BB,
540 and notify df of the change. */
541
542 void
543 update_bb_for_insn (basic_block bb)
544 {
545 update_bb_for_insn_chain (BB_HEAD (bb), BB_END (bb), bb);
546 }
547
548 \f
549 /* Like active_insn_p, except keep the return value clobber around
550 even after reload. */
551
552 static bool
553 flow_active_insn_p (const_rtx insn)
554 {
555 if (active_insn_p (insn))
556 return true;
557
558 /* A clobber of the function return value exists for buggy
559 programs that fail to return a value. Its effect is to
560 keep the return value from being live across the entire
561 function. If we allow it to be skipped, we introduce the
562 possibility for register lifetime confusion. */
563 if (GET_CODE (PATTERN (insn)) == CLOBBER
564 && REG_P (XEXP (PATTERN (insn), 0))
565 && REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))
566 return true;
567
568 return false;
569 }
570
571 /* Return true if the block has no effect and only forwards control flow to
572 its single destination. */
573
574 bool
575 contains_no_active_insn_p (const_basic_block bb)
576 {
577 rtx insn;
578
579 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun) || bb == ENTRY_BLOCK_PTR_FOR_FN (cfun)
580 || !single_succ_p (bb))
581 return false;
582
583 for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
584 if (INSN_P (insn) && flow_active_insn_p (insn))
585 return false;
586
587 return (!INSN_P (insn)
588 || (JUMP_P (insn) && simplejump_p (insn))
589 || !flow_active_insn_p (insn));
590 }
591
592 /* Likewise, but protect loop latches, headers and preheaders. */
593 /* FIXME: Make this a cfg hook. */
594
595 bool
596 forwarder_block_p (const_basic_block bb)
597 {
598 if (!contains_no_active_insn_p (bb))
599 return false;
600
601 /* Protect loop latches, headers and preheaders. */
602 if (current_loops)
603 {
604 basic_block dest;
605 if (bb->loop_father->header == bb)
606 return false;
607 dest = EDGE_SUCC (bb, 0)->dest;
608 if (dest->loop_father->header == dest)
609 return false;
610 }
611
612 return true;
613 }
614
615 /* Return nonzero if we can reach target from src by falling through. */
616 /* FIXME: Make this a cfg hook, the result is only valid in cfgrtl mode. */
617
618 bool
619 can_fallthru (basic_block src, basic_block target)
620 {
621 rtx insn = BB_END (src);
622 rtx insn2;
623 edge e;
624 edge_iterator ei;
625
626 if (target == EXIT_BLOCK_PTR_FOR_FN (cfun))
627 return true;
628 if (src->next_bb != target)
629 return false;
630
631 /* ??? Later we may add code to move jump tables offline. */
632 if (tablejump_p (insn, NULL, NULL))
633 return false;
634
635 FOR_EACH_EDGE (e, ei, src->succs)
636 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
637 && e->flags & EDGE_FALLTHRU)
638 return false;
639
640 insn2 = BB_HEAD (target);
641 if (!active_insn_p (insn2))
642 insn2 = next_active_insn (insn2);
643
644 return next_active_insn (insn) == insn2;
645 }
646
647 /* Return nonzero if we could reach target from src by falling through,
648 if the target was made adjacent. If we already have a fall-through
649 edge to the exit block, we can't do that. */
650 static bool
651 could_fall_through (basic_block src, basic_block target)
652 {
653 edge e;
654 edge_iterator ei;
655
656 if (target == EXIT_BLOCK_PTR_FOR_FN (cfun))
657 return true;
658 FOR_EACH_EDGE (e, ei, src->succs)
659 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
660 && e->flags & EDGE_FALLTHRU)
661 return 0;
662 return true;
663 }
664 \f
665 /* Return the NOTE_INSN_BASIC_BLOCK of BB. */
666 rtx
667 bb_note (basic_block bb)
668 {
669 rtx note;
670
671 note = BB_HEAD (bb);
672 if (LABEL_P (note))
673 note = NEXT_INSN (note);
674
675 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
676 return note;
677 }
678
679 /* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
680 note associated with the BLOCK. */
681
682 static rtx
683 first_insn_after_basic_block_note (basic_block block)
684 {
685 rtx insn;
686
687 /* Get the first instruction in the block. */
688 insn = BB_HEAD (block);
689
690 if (insn == NULL_RTX)
691 return NULL_RTX;
692 if (LABEL_P (insn))
693 insn = NEXT_INSN (insn);
694 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
695
696 return NEXT_INSN (insn);
697 }
698
699 /* Creates a new basic block just after basic block B by splitting
700 everything after specified instruction I. */
701
702 static basic_block
703 rtl_split_block (basic_block bb, void *insnp)
704 {
705 basic_block new_bb;
706 rtx insn = (rtx) insnp;
707 edge e;
708 edge_iterator ei;
709
710 if (!insn)
711 {
712 insn = first_insn_after_basic_block_note (bb);
713
714 if (insn)
715 {
716 rtx next = insn;
717
718 insn = PREV_INSN (insn);
719
720 /* If the block contains only debug insns, insn would have
721 been NULL in a non-debug compilation, and then we'd end
722 up emitting a DELETED note. For -fcompare-debug
723 stability, emit the note too. */
724 if (insn != BB_END (bb)
725 && DEBUG_INSN_P (next)
726 && DEBUG_INSN_P (BB_END (bb)))
727 {
728 while (next != BB_END (bb) && DEBUG_INSN_P (next))
729 next = NEXT_INSN (next);
730
731 if (next == BB_END (bb))
732 emit_note_after (NOTE_INSN_DELETED, next);
733 }
734 }
735 else
736 insn = get_last_insn ();
737 }
738
739 /* We probably should check type of the insn so that we do not create
740 inconsistent cfg. It is checked in verify_flow_info anyway, so do not
741 bother. */
742 if (insn == BB_END (bb))
743 emit_note_after (NOTE_INSN_DELETED, insn);
744
745 /* Create the new basic block. */
746 new_bb = create_basic_block (NEXT_INSN (insn), BB_END (bb), bb);
747 BB_COPY_PARTITION (new_bb, bb);
748 BB_END (bb) = insn;
749
750 /* Redirect the outgoing edges. */
751 new_bb->succs = bb->succs;
752 bb->succs = NULL;
753 FOR_EACH_EDGE (e, ei, new_bb->succs)
754 e->src = new_bb;
755
756 /* The new block starts off being dirty. */
757 df_set_bb_dirty (bb);
758 return new_bb;
759 }
760
761 /* Return true if the single edge between blocks A and B is the only place
762 in RTL which holds some unique locus. */
763
764 static bool
765 unique_locus_on_edge_between_p (basic_block a, basic_block b)
766 {
767 const location_t goto_locus = EDGE_SUCC (a, 0)->goto_locus;
768 rtx insn, end;
769
770 if (LOCATION_LOCUS (goto_locus) == UNKNOWN_LOCATION)
771 return false;
772
773 /* First scan block A backward. */
774 insn = BB_END (a);
775 end = PREV_INSN (BB_HEAD (a));
776 while (insn != end && (!NONDEBUG_INSN_P (insn) || !INSN_HAS_LOCATION (insn)))
777 insn = PREV_INSN (insn);
778
779 if (insn != end && INSN_LOCATION (insn) == goto_locus)
780 return false;
781
782 /* Then scan block B forward. */
783 insn = BB_HEAD (b);
784 if (insn)
785 {
786 end = NEXT_INSN (BB_END (b));
787 while (insn != end && !NONDEBUG_INSN_P (insn))
788 insn = NEXT_INSN (insn);
789
790 if (insn != end && INSN_HAS_LOCATION (insn)
791 && INSN_LOCATION (insn) == goto_locus)
792 return false;
793 }
794
795 return true;
796 }
797
798 /* If the single edge between blocks A and B is the only place in RTL which
799 holds some unique locus, emit a nop with that locus between the blocks. */
800
801 static void
802 emit_nop_for_unique_locus_between (basic_block a, basic_block b)
803 {
804 if (!unique_locus_on_edge_between_p (a, b))
805 return;
806
807 BB_END (a) = emit_insn_after_noloc (gen_nop (), BB_END (a), a);
808 INSN_LOCATION (BB_END (a)) = EDGE_SUCC (a, 0)->goto_locus;
809 }
810
811 /* Blocks A and B are to be merged into a single block A. The insns
812 are already contiguous. */
813
814 static void
815 rtl_merge_blocks (basic_block a, basic_block b)
816 {
817 rtx b_head = BB_HEAD (b), b_end = BB_END (b), a_end = BB_END (a);
818 rtx del_first = NULL_RTX, del_last = NULL_RTX;
819 rtx b_debug_start = b_end, b_debug_end = b_end;
820 bool forwarder_p = (b->flags & BB_FORWARDER_BLOCK) != 0;
821 int b_empty = 0;
822
823 if (dump_file)
824 fprintf (dump_file, "Merging block %d into block %d...\n", b->index,
825 a->index);
826
827 while (DEBUG_INSN_P (b_end))
828 b_end = PREV_INSN (b_debug_start = b_end);
829
830 /* If there was a CODE_LABEL beginning B, delete it. */
831 if (LABEL_P (b_head))
832 {
833 /* Detect basic blocks with nothing but a label. This can happen
834 in particular at the end of a function. */
835 if (b_head == b_end)
836 b_empty = 1;
837
838 del_first = del_last = b_head;
839 b_head = NEXT_INSN (b_head);
840 }
841
842 /* Delete the basic block note and handle blocks containing just that
843 note. */
844 if (NOTE_INSN_BASIC_BLOCK_P (b_head))
845 {
846 if (b_head == b_end)
847 b_empty = 1;
848 if (! del_last)
849 del_first = b_head;
850
851 del_last = b_head;
852 b_head = NEXT_INSN (b_head);
853 }
854
855 /* If there was a jump out of A, delete it. */
856 if (JUMP_P (a_end))
857 {
858 rtx prev;
859
860 for (prev = PREV_INSN (a_end); ; prev = PREV_INSN (prev))
861 if (!NOTE_P (prev)
862 || NOTE_INSN_BASIC_BLOCK_P (prev)
863 || prev == BB_HEAD (a))
864 break;
865
866 del_first = a_end;
867
868 #ifdef HAVE_cc0
869 /* If this was a conditional jump, we need to also delete
870 the insn that set cc0. */
871 if (only_sets_cc0_p (prev))
872 {
873 rtx tmp = prev;
874
875 prev = prev_nonnote_insn (prev);
876 if (!prev)
877 prev = BB_HEAD (a);
878 del_first = tmp;
879 }
880 #endif
881
882 a_end = PREV_INSN (del_first);
883 }
884 else if (BARRIER_P (NEXT_INSN (a_end)))
885 del_first = NEXT_INSN (a_end);
886
887 /* Delete everything marked above as well as crap that might be
888 hanging out between the two blocks. */
889 BB_END (a) = a_end;
890 BB_HEAD (b) = b_empty ? NULL_RTX : b_head;
891 delete_insn_chain (del_first, del_last, true);
892
893 /* When not optimizing CFG and the edge is the only place in RTL which holds
894 some unique locus, emit a nop with that locus in between. */
895 if (!optimize)
896 {
897 emit_nop_for_unique_locus_between (a, b);
898 a_end = BB_END (a);
899 }
900
901 /* Reassociate the insns of B with A. */
902 if (!b_empty)
903 {
904 update_bb_for_insn_chain (a_end, b_debug_end, a);
905
906 BB_END (a) = b_debug_end;
907 BB_HEAD (b) = NULL_RTX;
908 }
909 else if (b_end != b_debug_end)
910 {
911 /* Move any deleted labels and other notes between the end of A
912 and the debug insns that make up B after the debug insns,
913 bringing the debug insns into A while keeping the notes after
914 the end of A. */
915 if (NEXT_INSN (a_end) != b_debug_start)
916 reorder_insns_nobb (NEXT_INSN (a_end), PREV_INSN (b_debug_start),
917 b_debug_end);
918 update_bb_for_insn_chain (b_debug_start, b_debug_end, a);
919 BB_END (a) = b_debug_end;
920 }
921
922 df_bb_delete (b->index);
923
924 /* If B was a forwarder block, propagate the locus on the edge. */
925 if (forwarder_p
926 && LOCATION_LOCUS (EDGE_SUCC (b, 0)->goto_locus) == UNKNOWN_LOCATION)
927 EDGE_SUCC (b, 0)->goto_locus = EDGE_SUCC (a, 0)->goto_locus;
928
929 if (dump_file)
930 fprintf (dump_file, "Merged blocks %d and %d.\n", a->index, b->index);
931 }
932
933
934 /* Return true when block A and B can be merged. */
935
936 static bool
937 rtl_can_merge_blocks (basic_block a, basic_block b)
938 {
939 /* If we are partitioning hot/cold basic blocks, we don't want to
940 mess up unconditional or indirect jumps that cross between hot
941 and cold sections.
942
943 Basic block partitioning may result in some jumps that appear to
944 be optimizable (or blocks that appear to be mergeable), but which really
945 must be left untouched (they are required to make it safely across
946 partition boundaries). See the comments at the top of
947 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
948
949 if (BB_PARTITION (a) != BB_PARTITION (b))
950 return false;
951
952 /* Protect the loop latches. */
953 if (current_loops && b->loop_father->latch == b)
954 return false;
955
956 /* There must be exactly one edge in between the blocks. */
957 return (single_succ_p (a)
958 && single_succ (a) == b
959 && single_pred_p (b)
960 && a != b
961 /* Must be simple edge. */
962 && !(single_succ_edge (a)->flags & EDGE_COMPLEX)
963 && a->next_bb == b
964 && a != ENTRY_BLOCK_PTR_FOR_FN (cfun)
965 && b != EXIT_BLOCK_PTR_FOR_FN (cfun)
966 /* If the jump insn has side effects,
967 we can't kill the edge. */
968 && (!JUMP_P (BB_END (a))
969 || (reload_completed
970 ? simplejump_p (BB_END (a)) : onlyjump_p (BB_END (a)))));
971 }
972 \f
973 /* Return the label in the head of basic block BLOCK. Create one if it doesn't
974 exist. */
975
976 rtx
977 block_label (basic_block block)
978 {
979 if (block == EXIT_BLOCK_PTR_FOR_FN (cfun))
980 return NULL_RTX;
981
982 if (!LABEL_P (BB_HEAD (block)))
983 {
984 BB_HEAD (block) = emit_label_before (gen_label_rtx (), BB_HEAD (block));
985 }
986
987 return BB_HEAD (block);
988 }
989
990 /* Attempt to perform edge redirection by replacing possibly complex jump
991 instruction by unconditional jump or removing jump completely. This can
992 apply only if all edges now point to the same block. The parameters and
993 return values are equivalent to redirect_edge_and_branch. */
994
995 edge
996 try_redirect_by_replacing_jump (edge e, basic_block target, bool in_cfglayout)
997 {
998 basic_block src = e->src;
999 rtx insn = BB_END (src), kill_from;
1000 rtx set;
1001 int fallthru = 0;
1002
1003 /* If we are partitioning hot/cold basic blocks, we don't want to
1004 mess up unconditional or indirect jumps that cross between hot
1005 and cold sections.
1006
1007 Basic block partitioning may result in some jumps that appear to
1008 be optimizable (or blocks that appear to be mergeable), but which really
1009 must be left untouched (they are required to make it safely across
1010 partition boundaries). See the comments at the top of
1011 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
1012
1013 if (BB_PARTITION (src) != BB_PARTITION (target))
1014 return NULL;
1015
1016 /* We can replace or remove a complex jump only when we have exactly
1017 two edges. Also, if we have exactly one outgoing edge, we can
1018 redirect that. */
1019 if (EDGE_COUNT (src->succs) >= 3
1020 /* Verify that all targets will be TARGET. Specifically, the
1021 edge that is not E must also go to TARGET. */
1022 || (EDGE_COUNT (src->succs) == 2
1023 && EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target))
1024 return NULL;
1025
1026 if (!onlyjump_p (insn))
1027 return NULL;
1028 if ((!optimize || reload_completed) && tablejump_p (insn, NULL, NULL))
1029 return NULL;
1030
1031 /* Avoid removing branch with side effects. */
1032 set = single_set (insn);
1033 if (!set || side_effects_p (set))
1034 return NULL;
1035
1036 /* In case we zap a conditional jump, we'll need to kill
1037 the cc0 setter too. */
1038 kill_from = insn;
1039 #ifdef HAVE_cc0
1040 if (reg_mentioned_p (cc0_rtx, PATTERN (insn))
1041 && only_sets_cc0_p (PREV_INSN (insn)))
1042 kill_from = PREV_INSN (insn);
1043 #endif
1044
1045 /* See if we can create the fallthru edge. */
1046 if (in_cfglayout || can_fallthru (src, target))
1047 {
1048 if (dump_file)
1049 fprintf (dump_file, "Removing jump %i.\n", INSN_UID (insn));
1050 fallthru = 1;
1051
1052 /* Selectively unlink whole insn chain. */
1053 if (in_cfglayout)
1054 {
1055 rtx insn = BB_FOOTER (src);
1056
1057 delete_insn_chain (kill_from, BB_END (src), false);
1058
1059 /* Remove barriers but keep jumptables. */
1060 while (insn)
1061 {
1062 if (BARRIER_P (insn))
1063 {
1064 if (PREV_INSN (insn))
1065 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
1066 else
1067 BB_FOOTER (src) = NEXT_INSN (insn);
1068 if (NEXT_INSN (insn))
1069 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
1070 }
1071 if (LABEL_P (insn))
1072 break;
1073 insn = NEXT_INSN (insn);
1074 }
1075 }
1076 else
1077 delete_insn_chain (kill_from, PREV_INSN (BB_HEAD (target)),
1078 false);
1079 }
1080
1081 /* If this already is simplejump, redirect it. */
1082 else if (simplejump_p (insn))
1083 {
1084 if (e->dest == target)
1085 return NULL;
1086 if (dump_file)
1087 fprintf (dump_file, "Redirecting jump %i from %i to %i.\n",
1088 INSN_UID (insn), e->dest->index, target->index);
1089 if (!redirect_jump (insn, block_label (target), 0))
1090 {
1091 gcc_assert (target == EXIT_BLOCK_PTR_FOR_FN (cfun));
1092 return NULL;
1093 }
1094 }
1095
1096 /* Cannot do anything for target exit block. */
1097 else if (target == EXIT_BLOCK_PTR_FOR_FN (cfun))
1098 return NULL;
1099
1100 /* Or replace possibly complicated jump insn by simple jump insn. */
1101 else
1102 {
1103 rtx target_label = block_label (target);
1104 rtx barrier, label, table;
1105
1106 emit_jump_insn_after_noloc (gen_jump (target_label), insn);
1107 JUMP_LABEL (BB_END (src)) = target_label;
1108 LABEL_NUSES (target_label)++;
1109 if (dump_file)
1110 fprintf (dump_file, "Replacing insn %i by jump %i\n",
1111 INSN_UID (insn), INSN_UID (BB_END (src)));
1112
1113
1114 delete_insn_chain (kill_from, insn, false);
1115
1116 /* Recognize a tablejump that we are converting to a
1117 simple jump and remove its associated CODE_LABEL
1118 and ADDR_VEC or ADDR_DIFF_VEC. */
1119 if (tablejump_p (insn, &label, &table))
1120 delete_insn_chain (label, table, false);
1121
1122 barrier = next_nonnote_insn (BB_END (src));
1123 if (!barrier || !BARRIER_P (barrier))
1124 emit_barrier_after (BB_END (src));
1125 else
1126 {
1127 if (barrier != NEXT_INSN (BB_END (src)))
1128 {
1129 /* Move the jump before barrier so that the notes
1130 which originally were or were created before jump table are
1131 inside the basic block. */
1132 rtx new_insn = BB_END (src);
1133
1134 update_bb_for_insn_chain (NEXT_INSN (BB_END (src)),
1135 PREV_INSN (barrier), src);
1136
1137 NEXT_INSN (PREV_INSN (new_insn)) = NEXT_INSN (new_insn);
1138 PREV_INSN (NEXT_INSN (new_insn)) = PREV_INSN (new_insn);
1139
1140 NEXT_INSN (new_insn) = barrier;
1141 NEXT_INSN (PREV_INSN (barrier)) = new_insn;
1142
1143 PREV_INSN (new_insn) = PREV_INSN (barrier);
1144 PREV_INSN (barrier) = new_insn;
1145 }
1146 }
1147 }
1148
1149 /* Keep only one edge out and set proper flags. */
1150 if (!single_succ_p (src))
1151 remove_edge (e);
1152 gcc_assert (single_succ_p (src));
1153
1154 e = single_succ_edge (src);
1155 if (fallthru)
1156 e->flags = EDGE_FALLTHRU;
1157 else
1158 e->flags = 0;
1159
1160 e->probability = REG_BR_PROB_BASE;
1161 e->count = src->count;
1162
1163 if (e->dest != target)
1164 redirect_edge_succ (e, target);
1165 return e;
1166 }
1167
1168 /* Subroutine of redirect_branch_edge that tries to patch the jump
1169 instruction INSN so that it reaches block NEW. Do this
1170 only when it originally reached block OLD. Return true if this
1171 worked or the original target wasn't OLD, return false if redirection
1172 doesn't work. */
1173
1174 static bool
1175 patch_jump_insn (rtx insn, rtx old_label, basic_block new_bb)
1176 {
1177 rtx tmp;
1178 /* Recognize a tablejump and adjust all matching cases. */
1179 if (tablejump_p (insn, NULL, &tmp))
1180 {
1181 rtvec vec;
1182 int j;
1183 rtx new_label = block_label (new_bb);
1184
1185 if (new_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
1186 return false;
1187 if (GET_CODE (PATTERN (tmp)) == ADDR_VEC)
1188 vec = XVEC (PATTERN (tmp), 0);
1189 else
1190 vec = XVEC (PATTERN (tmp), 1);
1191
1192 for (j = GET_NUM_ELEM (vec) - 1; j >= 0; --j)
1193 if (XEXP (RTVEC_ELT (vec, j), 0) == old_label)
1194 {
1195 RTVEC_ELT (vec, j) = gen_rtx_LABEL_REF (Pmode, new_label);
1196 --LABEL_NUSES (old_label);
1197 ++LABEL_NUSES (new_label);
1198 }
1199
1200 /* Handle casesi dispatch insns. */
1201 if ((tmp = single_set (insn)) != NULL
1202 && SET_DEST (tmp) == pc_rtx
1203 && GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE
1204 && GET_CODE (XEXP (SET_SRC (tmp), 2)) == LABEL_REF
1205 && XEXP (XEXP (SET_SRC (tmp), 2), 0) == old_label)
1206 {
1207 XEXP (SET_SRC (tmp), 2) = gen_rtx_LABEL_REF (Pmode,
1208 new_label);
1209 --LABEL_NUSES (old_label);
1210 ++LABEL_NUSES (new_label);
1211 }
1212 }
1213 else if ((tmp = extract_asm_operands (PATTERN (insn))) != NULL)
1214 {
1215 int i, n = ASM_OPERANDS_LABEL_LENGTH (tmp);
1216 rtx new_label, note;
1217
1218 if (new_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
1219 return false;
1220 new_label = block_label (new_bb);
1221
1222 for (i = 0; i < n; ++i)
1223 {
1224 rtx old_ref = ASM_OPERANDS_LABEL (tmp, i);
1225 gcc_assert (GET_CODE (old_ref) == LABEL_REF);
1226 if (XEXP (old_ref, 0) == old_label)
1227 {
1228 ASM_OPERANDS_LABEL (tmp, i)
1229 = gen_rtx_LABEL_REF (Pmode, new_label);
1230 --LABEL_NUSES (old_label);
1231 ++LABEL_NUSES (new_label);
1232 }
1233 }
1234
1235 if (JUMP_LABEL (insn) == old_label)
1236 {
1237 JUMP_LABEL (insn) = new_label;
1238 note = find_reg_note (insn, REG_LABEL_TARGET, new_label);
1239 if (note)
1240 remove_note (insn, note);
1241 }
1242 else
1243 {
1244 note = find_reg_note (insn, REG_LABEL_TARGET, old_label);
1245 if (note)
1246 remove_note (insn, note);
1247 if (JUMP_LABEL (insn) != new_label
1248 && !find_reg_note (insn, REG_LABEL_TARGET, new_label))
1249 add_reg_note (insn, REG_LABEL_TARGET, new_label);
1250 }
1251 while ((note = find_reg_note (insn, REG_LABEL_OPERAND, old_label))
1252 != NULL_RTX)
1253 XEXP (note, 0) = new_label;
1254 }
1255 else
1256 {
1257 /* ?? We may play the games with moving the named labels from
1258 one basic block to the other in case only one computed_jump is
1259 available. */
1260 if (computed_jump_p (insn)
1261 /* A return instruction can't be redirected. */
1262 || returnjump_p (insn))
1263 return false;
1264
1265 if (!currently_expanding_to_rtl || JUMP_LABEL (insn) == old_label)
1266 {
1267 /* If the insn doesn't go where we think, we're confused. */
1268 gcc_assert (JUMP_LABEL (insn) == old_label);
1269
1270 /* If the substitution doesn't succeed, die. This can happen
1271 if the back end emitted unrecognizable instructions or if
1272 target is exit block on some arches. */
1273 if (!redirect_jump (insn, block_label (new_bb), 0))
1274 {
1275 gcc_assert (new_bb == EXIT_BLOCK_PTR_FOR_FN (cfun));
1276 return false;
1277 }
1278 }
1279 }
1280 return true;
1281 }
1282
1283
1284 /* Redirect edge representing branch of (un)conditional jump or tablejump,
1285 NULL on failure */
1286 static edge
1287 redirect_branch_edge (edge e, basic_block target)
1288 {
1289 rtx old_label = BB_HEAD (e->dest);
1290 basic_block src = e->src;
1291 rtx insn = BB_END (src);
1292
1293 /* We can only redirect non-fallthru edges of jump insn. */
1294 if (e->flags & EDGE_FALLTHRU)
1295 return NULL;
1296 else if (!JUMP_P (insn) && !currently_expanding_to_rtl)
1297 return NULL;
1298
1299 if (!currently_expanding_to_rtl)
1300 {
1301 if (!patch_jump_insn (insn, old_label, target))
1302 return NULL;
1303 }
1304 else
1305 /* When expanding this BB might actually contain multiple
1306 jumps (i.e. not yet split by find_many_sub_basic_blocks).
1307 Redirect all of those that match our label. */
1308 FOR_BB_INSNS (src, insn)
1309 if (JUMP_P (insn) && !patch_jump_insn (insn, old_label, target))
1310 return NULL;
1311
1312 if (dump_file)
1313 fprintf (dump_file, "Edge %i->%i redirected to %i\n",
1314 e->src->index, e->dest->index, target->index);
1315
1316 if (e->dest != target)
1317 e = redirect_edge_succ_nodup (e, target);
1318
1319 return e;
1320 }
1321
1322 /* Called when edge E has been redirected to a new destination,
1323 in order to update the region crossing flag on the edge and
1324 jump. */
1325
1326 static void
1327 fixup_partition_crossing (edge e)
1328 {
1329 rtx note;
1330
1331 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun) || e->dest
1332 == EXIT_BLOCK_PTR_FOR_FN (cfun))
1333 return;
1334 /* If we redirected an existing edge, it may already be marked
1335 crossing, even though the new src is missing a reg crossing note.
1336 But make sure reg crossing note doesn't already exist before
1337 inserting. */
1338 if (BB_PARTITION (e->src) != BB_PARTITION (e->dest))
1339 {
1340 e->flags |= EDGE_CROSSING;
1341 note = find_reg_note (BB_END (e->src), REG_CROSSING_JUMP, NULL_RTX);
1342 if (JUMP_P (BB_END (e->src))
1343 && !note)
1344 add_reg_note (BB_END (e->src), REG_CROSSING_JUMP, NULL_RTX);
1345 }
1346 else if (BB_PARTITION (e->src) == BB_PARTITION (e->dest))
1347 {
1348 e->flags &= ~EDGE_CROSSING;
1349 /* Remove the section crossing note from jump at end of
1350 src if it exists, and if no other successors are
1351 still crossing. */
1352 note = find_reg_note (BB_END (e->src), REG_CROSSING_JUMP, NULL_RTX);
1353 if (note)
1354 {
1355 bool has_crossing_succ = false;
1356 edge e2;
1357 edge_iterator ei;
1358 FOR_EACH_EDGE (e2, ei, e->src->succs)
1359 {
1360 has_crossing_succ |= (e2->flags & EDGE_CROSSING);
1361 if (has_crossing_succ)
1362 break;
1363 }
1364 if (!has_crossing_succ)
1365 remove_note (BB_END (e->src), note);
1366 }
1367 }
1368 }
1369
1370 /* Called when block BB has been reassigned to the cold partition,
1371 because it is now dominated by another cold block,
1372 to ensure that the region crossing attributes are updated. */
1373
1374 static void
1375 fixup_new_cold_bb (basic_block bb)
1376 {
1377 edge e;
1378 edge_iterator ei;
1379
1380 /* This is called when a hot bb is found to now be dominated
1381 by a cold bb and therefore needs to become cold. Therefore,
1382 its preds will no longer be region crossing. Any non-dominating
1383 preds that were previously hot would also have become cold
1384 in the caller for the same region. Any preds that were previously
1385 region-crossing will be adjusted in fixup_partition_crossing. */
1386 FOR_EACH_EDGE (e, ei, bb->preds)
1387 {
1388 fixup_partition_crossing (e);
1389 }
1390
1391 /* Possibly need to make bb's successor edges region crossing,
1392 or remove stale region crossing. */
1393 FOR_EACH_EDGE (e, ei, bb->succs)
1394 {
1395 /* We can't have fall-through edges across partition boundaries.
1396 Note that force_nonfallthru will do any necessary partition
1397 boundary fixup by calling fixup_partition_crossing itself. */
1398 if ((e->flags & EDGE_FALLTHRU)
1399 && BB_PARTITION (bb) != BB_PARTITION (e->dest)
1400 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1401 force_nonfallthru (e);
1402 else
1403 fixup_partition_crossing (e);
1404 }
1405 }
1406
1407 /* Attempt to change code to redirect edge E to TARGET. Don't do that on
1408 expense of adding new instructions or reordering basic blocks.
1409
1410 Function can be also called with edge destination equivalent to the TARGET.
1411 Then it should try the simplifications and do nothing if none is possible.
1412
1413 Return edge representing the branch if transformation succeeded. Return NULL
1414 on failure.
1415 We still return NULL in case E already destinated TARGET and we didn't
1416 managed to simplify instruction stream. */
1417
1418 static edge
1419 rtl_redirect_edge_and_branch (edge e, basic_block target)
1420 {
1421 edge ret;
1422 basic_block src = e->src;
1423 basic_block dest = e->dest;
1424
1425 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
1426 return NULL;
1427
1428 if (dest == target)
1429 return e;
1430
1431 if ((ret = try_redirect_by_replacing_jump (e, target, false)) != NULL)
1432 {
1433 df_set_bb_dirty (src);
1434 fixup_partition_crossing (ret);
1435 return ret;
1436 }
1437
1438 ret = redirect_branch_edge (e, target);
1439 if (!ret)
1440 return NULL;
1441
1442 df_set_bb_dirty (src);
1443 fixup_partition_crossing (ret);
1444 return ret;
1445 }
1446
1447 /* Emit a barrier after BB, into the footer if we are in CFGLAYOUT mode. */
1448
1449 void
1450 emit_barrier_after_bb (basic_block bb)
1451 {
1452 rtx barrier = emit_barrier_after (BB_END (bb));
1453 gcc_assert (current_ir_type () == IR_RTL_CFGRTL
1454 || current_ir_type () == IR_RTL_CFGLAYOUT);
1455 if (current_ir_type () == IR_RTL_CFGLAYOUT)
1456 BB_FOOTER (bb) = unlink_insn_chain (barrier, barrier);
1457 }
1458
1459 /* Like force_nonfallthru below, but additionally performs redirection
1460 Used by redirect_edge_and_branch_force. JUMP_LABEL is used only
1461 when redirecting to the EXIT_BLOCK, it is either ret_rtx or
1462 simple_return_rtx, indicating which kind of returnjump to create.
1463 It should be NULL otherwise. */
1464
1465 basic_block
1466 force_nonfallthru_and_redirect (edge e, basic_block target, rtx jump_label)
1467 {
1468 basic_block jump_block, new_bb = NULL, src = e->src;
1469 rtx note;
1470 edge new_edge;
1471 int abnormal_edge_flags = 0;
1472 bool asm_goto_edge = false;
1473 int loc;
1474
1475 /* In the case the last instruction is conditional jump to the next
1476 instruction, first redirect the jump itself and then continue
1477 by creating a basic block afterwards to redirect fallthru edge. */
1478 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
1479 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
1480 && any_condjump_p (BB_END (e->src))
1481 && JUMP_LABEL (BB_END (e->src)) == BB_HEAD (e->dest))
1482 {
1483 rtx note;
1484 edge b = unchecked_make_edge (e->src, target, 0);
1485 bool redirected;
1486
1487 redirected = redirect_jump (BB_END (e->src), block_label (target), 0);
1488 gcc_assert (redirected);
1489
1490 note = find_reg_note (BB_END (e->src), REG_BR_PROB, NULL_RTX);
1491 if (note)
1492 {
1493 int prob = XINT (note, 0);
1494
1495 b->probability = prob;
1496 /* Update this to use GCOV_COMPUTE_SCALE. */
1497 b->count = e->count * prob / REG_BR_PROB_BASE;
1498 e->probability -= e->probability;
1499 e->count -= b->count;
1500 if (e->probability < 0)
1501 e->probability = 0;
1502 if (e->count < 0)
1503 e->count = 0;
1504 }
1505 }
1506
1507 if (e->flags & EDGE_ABNORMAL)
1508 {
1509 /* Irritating special case - fallthru edge to the same block as abnormal
1510 edge.
1511 We can't redirect abnormal edge, but we still can split the fallthru
1512 one and create separate abnormal edge to original destination.
1513 This allows bb-reorder to make such edge non-fallthru. */
1514 gcc_assert (e->dest == target);
1515 abnormal_edge_flags = e->flags & ~EDGE_FALLTHRU;
1516 e->flags &= EDGE_FALLTHRU;
1517 }
1518 else
1519 {
1520 gcc_assert (e->flags & EDGE_FALLTHRU);
1521 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1522 {
1523 /* We can't redirect the entry block. Create an empty block
1524 at the start of the function which we use to add the new
1525 jump. */
1526 edge tmp;
1527 edge_iterator ei;
1528 bool found = false;
1529
1530 basic_block bb = create_basic_block (BB_HEAD (e->dest), NULL,
1531 ENTRY_BLOCK_PTR_FOR_FN (cfun));
1532
1533 /* Change the existing edge's source to be the new block, and add
1534 a new edge from the entry block to the new block. */
1535 e->src = bb;
1536 for (ei = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
1537 (tmp = ei_safe_edge (ei)); )
1538 {
1539 if (tmp == e)
1540 {
1541 ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs->unordered_remove (ei.index);
1542 found = true;
1543 break;
1544 }
1545 else
1546 ei_next (&ei);
1547 }
1548
1549 gcc_assert (found);
1550
1551 vec_safe_push (bb->succs, e);
1552 make_single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), bb,
1553 EDGE_FALLTHRU);
1554 }
1555 }
1556
1557 /* If e->src ends with asm goto, see if any of the ASM_OPERANDS_LABELs
1558 don't point to the target or fallthru label. */
1559 if (JUMP_P (BB_END (e->src))
1560 && target != EXIT_BLOCK_PTR_FOR_FN (cfun)
1561 && (e->flags & EDGE_FALLTHRU)
1562 && (note = extract_asm_operands (PATTERN (BB_END (e->src)))))
1563 {
1564 int i, n = ASM_OPERANDS_LABEL_LENGTH (note);
1565 bool adjust_jump_target = false;
1566
1567 for (i = 0; i < n; ++i)
1568 {
1569 if (XEXP (ASM_OPERANDS_LABEL (note, i), 0) == BB_HEAD (e->dest))
1570 {
1571 LABEL_NUSES (XEXP (ASM_OPERANDS_LABEL (note, i), 0))--;
1572 XEXP (ASM_OPERANDS_LABEL (note, i), 0) = block_label (target);
1573 LABEL_NUSES (XEXP (ASM_OPERANDS_LABEL (note, i), 0))++;
1574 adjust_jump_target = true;
1575 }
1576 if (XEXP (ASM_OPERANDS_LABEL (note, i), 0) == BB_HEAD (target))
1577 asm_goto_edge = true;
1578 }
1579 if (adjust_jump_target)
1580 {
1581 rtx insn = BB_END (e->src), note;
1582 rtx old_label = BB_HEAD (e->dest);
1583 rtx new_label = BB_HEAD (target);
1584
1585 if (JUMP_LABEL (insn) == old_label)
1586 {
1587 JUMP_LABEL (insn) = new_label;
1588 note = find_reg_note (insn, REG_LABEL_TARGET, new_label);
1589 if (note)
1590 remove_note (insn, note);
1591 }
1592 else
1593 {
1594 note = find_reg_note (insn, REG_LABEL_TARGET, old_label);
1595 if (note)
1596 remove_note (insn, note);
1597 if (JUMP_LABEL (insn) != new_label
1598 && !find_reg_note (insn, REG_LABEL_TARGET, new_label))
1599 add_reg_note (insn, REG_LABEL_TARGET, new_label);
1600 }
1601 while ((note = find_reg_note (insn, REG_LABEL_OPERAND, old_label))
1602 != NULL_RTX)
1603 XEXP (note, 0) = new_label;
1604 }
1605 }
1606
1607 if (EDGE_COUNT (e->src->succs) >= 2 || abnormal_edge_flags || asm_goto_edge)
1608 {
1609 gcov_type count = e->count;
1610 int probability = e->probability;
1611 /* Create the new structures. */
1612
1613 /* If the old block ended with a tablejump, skip its table
1614 by searching forward from there. Otherwise start searching
1615 forward from the last instruction of the old block. */
1616 if (!tablejump_p (BB_END (e->src), NULL, &note))
1617 note = BB_END (e->src);
1618 note = NEXT_INSN (note);
1619
1620 jump_block = create_basic_block (note, NULL, e->src);
1621 jump_block->count = count;
1622 jump_block->frequency = EDGE_FREQUENCY (e);
1623
1624 /* Make sure new block ends up in correct hot/cold section. */
1625
1626 BB_COPY_PARTITION (jump_block, e->src);
1627
1628 /* Wire edge in. */
1629 new_edge = make_edge (e->src, jump_block, EDGE_FALLTHRU);
1630 new_edge->probability = probability;
1631 new_edge->count = count;
1632
1633 /* Redirect old edge. */
1634 redirect_edge_pred (e, jump_block);
1635 e->probability = REG_BR_PROB_BASE;
1636
1637 /* If e->src was previously region crossing, it no longer is
1638 and the reg crossing note should be removed. */
1639 fixup_partition_crossing (new_edge);
1640
1641 /* If asm goto has any label refs to target's label,
1642 add also edge from asm goto bb to target. */
1643 if (asm_goto_edge)
1644 {
1645 new_edge->probability /= 2;
1646 new_edge->count /= 2;
1647 jump_block->count /= 2;
1648 jump_block->frequency /= 2;
1649 new_edge = make_edge (new_edge->src, target,
1650 e->flags & ~EDGE_FALLTHRU);
1651 new_edge->probability = probability - probability / 2;
1652 new_edge->count = count - count / 2;
1653 }
1654
1655 new_bb = jump_block;
1656 }
1657 else
1658 jump_block = e->src;
1659
1660 loc = e->goto_locus;
1661 e->flags &= ~EDGE_FALLTHRU;
1662 if (target == EXIT_BLOCK_PTR_FOR_FN (cfun))
1663 {
1664 if (jump_label == ret_rtx)
1665 {
1666 #ifdef HAVE_return
1667 emit_jump_insn_after_setloc (gen_return (), BB_END (jump_block), loc);
1668 #else
1669 gcc_unreachable ();
1670 #endif
1671 }
1672 else
1673 {
1674 gcc_assert (jump_label == simple_return_rtx);
1675 #ifdef HAVE_simple_return
1676 emit_jump_insn_after_setloc (gen_simple_return (),
1677 BB_END (jump_block), loc);
1678 #else
1679 gcc_unreachable ();
1680 #endif
1681 }
1682 set_return_jump_label (BB_END (jump_block));
1683 }
1684 else
1685 {
1686 rtx label = block_label (target);
1687 emit_jump_insn_after_setloc (gen_jump (label), BB_END (jump_block), loc);
1688 JUMP_LABEL (BB_END (jump_block)) = label;
1689 LABEL_NUSES (label)++;
1690 }
1691
1692 /* We might be in cfg layout mode, and if so, the following routine will
1693 insert the barrier correctly. */
1694 emit_barrier_after_bb (jump_block);
1695 redirect_edge_succ_nodup (e, target);
1696
1697 if (abnormal_edge_flags)
1698 make_edge (src, target, abnormal_edge_flags);
1699
1700 df_mark_solutions_dirty ();
1701 fixup_partition_crossing (e);
1702 return new_bb;
1703 }
1704
1705 /* Edge E is assumed to be fallthru edge. Emit needed jump instruction
1706 (and possibly create new basic block) to make edge non-fallthru.
1707 Return newly created BB or NULL if none. */
1708
1709 static basic_block
1710 rtl_force_nonfallthru (edge e)
1711 {
1712 return force_nonfallthru_and_redirect (e, e->dest, NULL_RTX);
1713 }
1714
1715 /* Redirect edge even at the expense of creating new jump insn or
1716 basic block. Return new basic block if created, NULL otherwise.
1717 Conversion must be possible. */
1718
1719 static basic_block
1720 rtl_redirect_edge_and_branch_force (edge e, basic_block target)
1721 {
1722 if (redirect_edge_and_branch (e, target)
1723 || e->dest == target)
1724 return NULL;
1725
1726 /* In case the edge redirection failed, try to force it to be non-fallthru
1727 and redirect newly created simplejump. */
1728 df_set_bb_dirty (e->src);
1729 return force_nonfallthru_and_redirect (e, target, NULL_RTX);
1730 }
1731
1732 /* The given edge should potentially be a fallthru edge. If that is in
1733 fact true, delete the jump and barriers that are in the way. */
1734
1735 static void
1736 rtl_tidy_fallthru_edge (edge e)
1737 {
1738 rtx q;
1739 basic_block b = e->src, c = b->next_bb;
1740
1741 /* ??? In a late-running flow pass, other folks may have deleted basic
1742 blocks by nopping out blocks, leaving multiple BARRIERs between here
1743 and the target label. They ought to be chastised and fixed.
1744
1745 We can also wind up with a sequence of undeletable labels between
1746 one block and the next.
1747
1748 So search through a sequence of barriers, labels, and notes for
1749 the head of block C and assert that we really do fall through. */
1750
1751 for (q = NEXT_INSN (BB_END (b)); q != BB_HEAD (c); q = NEXT_INSN (q))
1752 if (INSN_P (q))
1753 return;
1754
1755 /* Remove what will soon cease being the jump insn from the source block.
1756 If block B consisted only of this single jump, turn it into a deleted
1757 note. */
1758 q = BB_END (b);
1759 if (JUMP_P (q)
1760 && onlyjump_p (q)
1761 && (any_uncondjump_p (q)
1762 || single_succ_p (b)))
1763 {
1764 #ifdef HAVE_cc0
1765 /* If this was a conditional jump, we need to also delete
1766 the insn that set cc0. */
1767 if (any_condjump_p (q) && only_sets_cc0_p (PREV_INSN (q)))
1768 q = PREV_INSN (q);
1769 #endif
1770
1771 q = PREV_INSN (q);
1772 }
1773
1774 /* Selectively unlink the sequence. */
1775 if (q != PREV_INSN (BB_HEAD (c)))
1776 delete_insn_chain (NEXT_INSN (q), PREV_INSN (BB_HEAD (c)), false);
1777
1778 e->flags |= EDGE_FALLTHRU;
1779 }
1780 \f
1781 /* Should move basic block BB after basic block AFTER. NIY. */
1782
1783 static bool
1784 rtl_move_block_after (basic_block bb ATTRIBUTE_UNUSED,
1785 basic_block after ATTRIBUTE_UNUSED)
1786 {
1787 return false;
1788 }
1789
1790 /* Locate the last bb in the same partition as START_BB. */
1791
1792 static basic_block
1793 last_bb_in_partition (basic_block start_bb)
1794 {
1795 basic_block bb;
1796 FOR_BB_BETWEEN (bb, start_bb, EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
1797 {
1798 if (BB_PARTITION (start_bb) != BB_PARTITION (bb->next_bb))
1799 return bb;
1800 }
1801 /* Return bb before the exit block. */
1802 return bb->prev_bb;
1803 }
1804
1805 /* Split a (typically critical) edge. Return the new block.
1806 The edge must not be abnormal.
1807
1808 ??? The code generally expects to be called on critical edges.
1809 The case of a block ending in an unconditional jump to a
1810 block with multiple predecessors is not handled optimally. */
1811
1812 static basic_block
1813 rtl_split_edge (edge edge_in)
1814 {
1815 basic_block bb, new_bb;
1816 rtx before;
1817
1818 /* Abnormal edges cannot be split. */
1819 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
1820
1821 /* We are going to place the new block in front of edge destination.
1822 Avoid existence of fallthru predecessors. */
1823 if ((edge_in->flags & EDGE_FALLTHRU) == 0)
1824 {
1825 edge e = find_fallthru_edge (edge_in->dest->preds);
1826
1827 if (e)
1828 force_nonfallthru (e);
1829 }
1830
1831 /* Create the basic block note. */
1832 if (edge_in->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1833 before = BB_HEAD (edge_in->dest);
1834 else
1835 before = NULL_RTX;
1836
1837 /* If this is a fall through edge to the exit block, the blocks might be
1838 not adjacent, and the right place is after the source. */
1839 if ((edge_in->flags & EDGE_FALLTHRU)
1840 && edge_in->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1841 {
1842 before = NEXT_INSN (BB_END (edge_in->src));
1843 bb = create_basic_block (before, NULL, edge_in->src);
1844 BB_COPY_PARTITION (bb, edge_in->src);
1845 }
1846 else
1847 {
1848 if (edge_in->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1849 {
1850 bb = create_basic_block (before, NULL, edge_in->dest->prev_bb);
1851 BB_COPY_PARTITION (bb, edge_in->dest);
1852 }
1853 else
1854 {
1855 basic_block after = edge_in->dest->prev_bb;
1856 /* If this is post-bb reordering, and the edge crosses a partition
1857 boundary, the new block needs to be inserted in the bb chain
1858 at the end of the src partition (since we put the new bb into
1859 that partition, see below). Otherwise we may end up creating
1860 an extra partition crossing in the chain, which is illegal.
1861 It can't go after the src, because src may have a fall-through
1862 to a different block. */
1863 if (crtl->bb_reorder_complete
1864 && (edge_in->flags & EDGE_CROSSING))
1865 {
1866 after = last_bb_in_partition (edge_in->src);
1867 before = NEXT_INSN (BB_END (after));
1868 /* The instruction following the last bb in partition should
1869 be a barrier, since it cannot end in a fall-through. */
1870 gcc_checking_assert (BARRIER_P (before));
1871 before = NEXT_INSN (before);
1872 }
1873 bb = create_basic_block (before, NULL, after);
1874 /* Put the split bb into the src partition, to avoid creating
1875 a situation where a cold bb dominates a hot bb, in the case
1876 where src is cold and dest is hot. The src will dominate
1877 the new bb (whereas it might not have dominated dest). */
1878 BB_COPY_PARTITION (bb, edge_in->src);
1879 }
1880 }
1881
1882 make_single_succ_edge (bb, edge_in->dest, EDGE_FALLTHRU);
1883
1884 /* Can't allow a region crossing edge to be fallthrough. */
1885 if (BB_PARTITION (bb) != BB_PARTITION (edge_in->dest)
1886 && edge_in->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1887 {
1888 new_bb = force_nonfallthru (single_succ_edge (bb));
1889 gcc_assert (!new_bb);
1890 }
1891
1892 /* For non-fallthru edges, we must adjust the predecessor's
1893 jump instruction to target our new block. */
1894 if ((edge_in->flags & EDGE_FALLTHRU) == 0)
1895 {
1896 edge redirected = redirect_edge_and_branch (edge_in, bb);
1897 gcc_assert (redirected);
1898 }
1899 else
1900 {
1901 if (edge_in->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
1902 {
1903 /* For asm goto even splitting of fallthru edge might
1904 need insn patching, as other labels might point to the
1905 old label. */
1906 rtx last = BB_END (edge_in->src);
1907 if (last
1908 && JUMP_P (last)
1909 && edge_in->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
1910 && extract_asm_operands (PATTERN (last)) != NULL_RTX
1911 && patch_jump_insn (last, before, bb))
1912 df_set_bb_dirty (edge_in->src);
1913 }
1914 redirect_edge_succ (edge_in, bb);
1915 }
1916
1917 return bb;
1918 }
1919
1920 /* Queue instructions for insertion on an edge between two basic blocks.
1921 The new instructions and basic blocks (if any) will not appear in the
1922 CFG until commit_edge_insertions is called. */
1923
1924 void
1925 insert_insn_on_edge (rtx pattern, edge e)
1926 {
1927 /* We cannot insert instructions on an abnormal critical edge.
1928 It will be easier to find the culprit if we die now. */
1929 gcc_assert (!((e->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (e)));
1930
1931 if (e->insns.r == NULL_RTX)
1932 start_sequence ();
1933 else
1934 push_to_sequence (e->insns.r);
1935
1936 emit_insn (pattern);
1937
1938 e->insns.r = get_insns ();
1939 end_sequence ();
1940 }
1941
1942 /* Update the CFG for the instructions queued on edge E. */
1943
1944 void
1945 commit_one_edge_insertion (edge e)
1946 {
1947 rtx before = NULL_RTX, after = NULL_RTX, insns, tmp, last;
1948 basic_block bb;
1949
1950 /* Pull the insns off the edge now since the edge might go away. */
1951 insns = e->insns.r;
1952 e->insns.r = NULL_RTX;
1953
1954 /* Figure out where to put these insns. If the destination has
1955 one predecessor, insert there. Except for the exit block. */
1956 if (single_pred_p (e->dest) && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1957 {
1958 bb = e->dest;
1959
1960 /* Get the location correct wrt a code label, and "nice" wrt
1961 a basic block note, and before everything else. */
1962 tmp = BB_HEAD (bb);
1963 if (LABEL_P (tmp))
1964 tmp = NEXT_INSN (tmp);
1965 if (NOTE_INSN_BASIC_BLOCK_P (tmp))
1966 tmp = NEXT_INSN (tmp);
1967 if (tmp == BB_HEAD (bb))
1968 before = tmp;
1969 else if (tmp)
1970 after = PREV_INSN (tmp);
1971 else
1972 after = get_last_insn ();
1973 }
1974
1975 /* If the source has one successor and the edge is not abnormal,
1976 insert there. Except for the entry block.
1977 Don't do this if the predecessor ends in a jump other than
1978 unconditional simple jump. E.g. for asm goto that points all
1979 its labels at the fallthru basic block, we can't insert instructions
1980 before the asm goto, as the asm goto can have various of side effects,
1981 and can't emit instructions after the asm goto, as it must end
1982 the basic block. */
1983 else if ((e->flags & EDGE_ABNORMAL) == 0
1984 && single_succ_p (e->src)
1985 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
1986 && (!JUMP_P (BB_END (e->src))
1987 || simplejump_p (BB_END (e->src))))
1988 {
1989 bb = e->src;
1990
1991 /* It is possible to have a non-simple jump here. Consider a target
1992 where some forms of unconditional jumps clobber a register. This
1993 happens on the fr30 for example.
1994
1995 We know this block has a single successor, so we can just emit
1996 the queued insns before the jump. */
1997 if (JUMP_P (BB_END (bb)))
1998 before = BB_END (bb);
1999 else
2000 {
2001 /* We'd better be fallthru, or we've lost track of what's what. */
2002 gcc_assert (e->flags & EDGE_FALLTHRU);
2003
2004 after = BB_END (bb);
2005 }
2006 }
2007
2008 /* Otherwise we must split the edge. */
2009 else
2010 {
2011 bb = split_edge (e);
2012
2013 /* If E crossed a partition boundary, we needed to make bb end in
2014 a region-crossing jump, even though it was originally fallthru. */
2015 if (JUMP_P (BB_END (bb)))
2016 before = BB_END (bb);
2017 else
2018 after = BB_END (bb);
2019 }
2020
2021 /* Now that we've found the spot, do the insertion. */
2022 if (before)
2023 {
2024 emit_insn_before_noloc (insns, before, bb);
2025 last = prev_nonnote_insn (before);
2026 }
2027 else
2028 last = emit_insn_after_noloc (insns, after, bb);
2029
2030 if (returnjump_p (last))
2031 {
2032 /* ??? Remove all outgoing edges from BB and add one for EXIT.
2033 This is not currently a problem because this only happens
2034 for the (single) epilogue, which already has a fallthru edge
2035 to EXIT. */
2036
2037 e = single_succ_edge (bb);
2038 gcc_assert (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
2039 && single_succ_p (bb) && (e->flags & EDGE_FALLTHRU));
2040
2041 e->flags &= ~EDGE_FALLTHRU;
2042 emit_barrier_after (last);
2043
2044 if (before)
2045 delete_insn (before);
2046 }
2047 else
2048 gcc_assert (!JUMP_P (last));
2049 }
2050
2051 /* Update the CFG for all queued instructions. */
2052
2053 void
2054 commit_edge_insertions (void)
2055 {
2056 basic_block bb;
2057
2058 /* Optimization passes that invoke this routine can cause hot blocks
2059 previously reached by both hot and cold blocks to become dominated only
2060 by cold blocks. This will cause the verification below to fail,
2061 and lead to now cold code in the hot section. In some cases this
2062 may only be visible after newly unreachable blocks are deleted,
2063 which will be done by fixup_partitions. */
2064 fixup_partitions ();
2065
2066 #ifdef ENABLE_CHECKING
2067 verify_flow_info ();
2068 #endif
2069
2070 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
2071 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
2072 {
2073 edge e;
2074 edge_iterator ei;
2075
2076 FOR_EACH_EDGE (e, ei, bb->succs)
2077 if (e->insns.r)
2078 commit_one_edge_insertion (e);
2079 }
2080 }
2081 \f
2082
2083 /* Print out RTL-specific basic block information (live information
2084 at start and end with TDF_DETAILS). FLAGS are the TDF_* masks
2085 documented in dumpfile.h. */
2086
2087 static void
2088 rtl_dump_bb (FILE *outf, basic_block bb, int indent, int flags)
2089 {
2090 rtx insn;
2091 rtx last;
2092 char *s_indent;
2093
2094 s_indent = (char *) alloca ((size_t) indent + 1);
2095 memset (s_indent, ' ', (size_t) indent);
2096 s_indent[indent] = '\0';
2097
2098 if (df && (flags & TDF_DETAILS))
2099 {
2100 df_dump_top (bb, outf);
2101 putc ('\n', outf);
2102 }
2103
2104 if (bb->index != ENTRY_BLOCK && bb->index != EXIT_BLOCK)
2105 for (insn = BB_HEAD (bb), last = NEXT_INSN (BB_END (bb)); insn != last;
2106 insn = NEXT_INSN (insn))
2107 {
2108 if (flags & TDF_DETAILS)
2109 df_dump_insn_top (insn, outf);
2110 if (! (flags & TDF_SLIM))
2111 print_rtl_single (outf, insn);
2112 else
2113 dump_insn_slim (outf, insn);
2114 if (flags & TDF_DETAILS)
2115 df_dump_insn_bottom (insn, outf);
2116 }
2117
2118 if (df && (flags & TDF_DETAILS))
2119 {
2120 df_dump_bottom (bb, outf);
2121 putc ('\n', outf);
2122 }
2123
2124 }
2125 \f
2126 /* Like dump_function_to_file, but for RTL. Print out dataflow information
2127 for the start of each basic block. FLAGS are the TDF_* masks documented
2128 in dumpfile.h. */
2129
2130 void
2131 print_rtl_with_bb (FILE *outf, const_rtx rtx_first, int flags)
2132 {
2133 const_rtx tmp_rtx;
2134 if (rtx_first == 0)
2135 fprintf (outf, "(nil)\n");
2136 else
2137 {
2138 enum bb_state { NOT_IN_BB, IN_ONE_BB, IN_MULTIPLE_BB };
2139 int max_uid = get_max_uid ();
2140 basic_block *start = XCNEWVEC (basic_block, max_uid);
2141 basic_block *end = XCNEWVEC (basic_block, max_uid);
2142 enum bb_state *in_bb_p = XCNEWVEC (enum bb_state, max_uid);
2143 basic_block bb;
2144
2145 /* After freeing the CFG, we still have BLOCK_FOR_INSN set on most
2146 insns, but the CFG is not maintained so the basic block info
2147 is not reliable. Therefore it's omitted from the dumps. */
2148 if (! (cfun->curr_properties & PROP_cfg))
2149 flags &= ~TDF_BLOCKS;
2150
2151 if (df)
2152 df_dump_start (outf);
2153
2154 if (flags & TDF_BLOCKS)
2155 {
2156 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2157 {
2158 rtx x;
2159
2160 start[INSN_UID (BB_HEAD (bb))] = bb;
2161 end[INSN_UID (BB_END (bb))] = bb;
2162 for (x = BB_HEAD (bb); x != NULL_RTX; x = NEXT_INSN (x))
2163 {
2164 enum bb_state state = IN_MULTIPLE_BB;
2165
2166 if (in_bb_p[INSN_UID (x)] == NOT_IN_BB)
2167 state = IN_ONE_BB;
2168 in_bb_p[INSN_UID (x)] = state;
2169
2170 if (x == BB_END (bb))
2171 break;
2172 }
2173 }
2174 }
2175
2176 for (tmp_rtx = rtx_first; NULL != tmp_rtx; tmp_rtx = NEXT_INSN (tmp_rtx))
2177 {
2178 if (flags & TDF_BLOCKS)
2179 {
2180 bb = start[INSN_UID (tmp_rtx)];
2181 if (bb != NULL)
2182 {
2183 dump_bb_info (outf, bb, 0, dump_flags | TDF_COMMENT, true, false);
2184 if (df && (flags & TDF_DETAILS))
2185 df_dump_top (bb, outf);
2186 }
2187
2188 if (in_bb_p[INSN_UID (tmp_rtx)] == NOT_IN_BB
2189 && !NOTE_P (tmp_rtx)
2190 && !BARRIER_P (tmp_rtx))
2191 fprintf (outf, ";; Insn is not within a basic block\n");
2192 else if (in_bb_p[INSN_UID (tmp_rtx)] == IN_MULTIPLE_BB)
2193 fprintf (outf, ";; Insn is in multiple basic blocks\n");
2194 }
2195
2196 if (flags & TDF_DETAILS)
2197 df_dump_insn_top (tmp_rtx, outf);
2198 if (! (flags & TDF_SLIM))
2199 print_rtl_single (outf, tmp_rtx);
2200 else
2201 dump_insn_slim (outf, tmp_rtx);
2202 if (flags & TDF_DETAILS)
2203 df_dump_insn_bottom (tmp_rtx, outf);
2204
2205 if (flags & TDF_BLOCKS)
2206 {
2207 bb = end[INSN_UID (tmp_rtx)];
2208 if (bb != NULL)
2209 {
2210 dump_bb_info (outf, bb, 0, dump_flags | TDF_COMMENT, false, true);
2211 if (df && (flags & TDF_DETAILS))
2212 df_dump_bottom (bb, outf);
2213 putc ('\n', outf);
2214 }
2215 }
2216 }
2217
2218 free (start);
2219 free (end);
2220 free (in_bb_p);
2221 }
2222 }
2223 \f
2224 /* Update the branch probability of BB if a REG_BR_PROB is present. */
2225
2226 void
2227 update_br_prob_note (basic_block bb)
2228 {
2229 rtx note;
2230 if (!JUMP_P (BB_END (bb)))
2231 return;
2232 note = find_reg_note (BB_END (bb), REG_BR_PROB, NULL_RTX);
2233 if (!note || XINT (note, 0) == BRANCH_EDGE (bb)->probability)
2234 return;
2235 XINT (note, 0) = BRANCH_EDGE (bb)->probability;
2236 }
2237
2238 /* Get the last insn associated with block BB (that includes barriers and
2239 tablejumps after BB). */
2240 rtx
2241 get_last_bb_insn (basic_block bb)
2242 {
2243 rtx tmp;
2244 rtx end = BB_END (bb);
2245
2246 /* Include any jump table following the basic block. */
2247 if (tablejump_p (end, NULL, &tmp))
2248 end = tmp;
2249
2250 /* Include any barriers that may follow the basic block. */
2251 tmp = next_nonnote_insn_bb (end);
2252 while (tmp && BARRIER_P (tmp))
2253 {
2254 end = tmp;
2255 tmp = next_nonnote_insn_bb (end);
2256 }
2257
2258 return end;
2259 }
2260
2261 /* Sanity check partition hotness to ensure that basic blocks in
2262   the cold partition don't dominate basic blocks in the hot partition.
2263 If FLAG_ONLY is true, report violations as errors. Otherwise
2264 re-mark the dominated blocks as cold, since this is run after
2265 cfg optimizations that may make hot blocks previously reached
2266 by both hot and cold blocks now only reachable along cold paths. */
2267
2268 static vec<basic_block>
2269 find_partition_fixes (bool flag_only)
2270 {
2271 basic_block bb;
2272 vec<basic_block> bbs_in_cold_partition = vNULL;
2273 vec<basic_block> bbs_to_fix = vNULL;
2274
2275 /* Callers check this. */
2276 gcc_checking_assert (crtl->has_bb_partition);
2277
2278 FOR_EACH_BB_FN (bb, cfun)
2279 if ((BB_PARTITION (bb) == BB_COLD_PARTITION))
2280 bbs_in_cold_partition.safe_push (bb);
2281
2282 if (bbs_in_cold_partition.is_empty ())
2283 return vNULL;
2284
2285 bool dom_calculated_here = !dom_info_available_p (CDI_DOMINATORS);
2286
2287 if (dom_calculated_here)
2288 calculate_dominance_info (CDI_DOMINATORS);
2289
2290 while (! bbs_in_cold_partition.is_empty ())
2291 {
2292 bb = bbs_in_cold_partition.pop ();
2293 /* Any blocks dominated by a block in the cold section
2294 must also be cold. */
2295 basic_block son;
2296 for (son = first_dom_son (CDI_DOMINATORS, bb);
2297 son;
2298 son = next_dom_son (CDI_DOMINATORS, son))
2299 {
2300 /* If son is not yet cold, then mark it cold here and
2301 enqueue it for further processing. */
2302 if ((BB_PARTITION (son) != BB_COLD_PARTITION))
2303 {
2304 if (flag_only)
2305 error ("non-cold basic block %d dominated "
2306 "by a block in the cold partition (%d)", son->index, bb->index);
2307 else
2308 BB_SET_PARTITION (son, BB_COLD_PARTITION);
2309 bbs_to_fix.safe_push (son);
2310 bbs_in_cold_partition.safe_push (son);
2311 }
2312 }
2313 }
2314
2315 if (dom_calculated_here)
2316 free_dominance_info (CDI_DOMINATORS);
2317
2318 return bbs_to_fix;
2319 }
2320
2321 /* Perform cleanup on the hot/cold bb partitioning after optimization
2322 passes that modify the cfg. */
2323
2324 void
2325 fixup_partitions (void)
2326 {
2327 basic_block bb;
2328
2329 if (!crtl->has_bb_partition)
2330 return;
2331
2332 /* Delete any blocks that became unreachable and weren't
2333 already cleaned up, for example during edge forwarding
2334 and convert_jumps_to_returns. This will expose more
2335 opportunities for fixing the partition boundaries here.
2336 Also, the calculation of the dominance graph during verification
2337 will assert if there are unreachable nodes. */
2338 delete_unreachable_blocks ();
2339
2340 /* If there are partitions, do a sanity check on them: A basic block in
2341   a cold partition cannot dominate a basic block in a hot partition.
2342 Fixup any that now violate this requirement, as a result of edge
2343 forwarding and unreachable block deletion.  */
2344 vec<basic_block> bbs_to_fix = find_partition_fixes (false);
2345
2346 /* Do the partition fixup after all necessary blocks have been converted to
2347 cold, so that we only update the region crossings the minimum number of
2348 places, which can require forcing edges to be non fallthru. */
2349 while (! bbs_to_fix.is_empty ())
2350 {
2351 bb = bbs_to_fix.pop ();
2352 fixup_new_cold_bb (bb);
2353 }
2354 }
2355
2356 /* Verify, in the basic block chain, that there is at most one switch
2357 between hot/cold partitions. This condition will not be true until
2358 after reorder_basic_blocks is called. */
2359
2360 static int
2361 verify_hot_cold_block_grouping (void)
2362 {
2363 basic_block bb;
2364 int err = 0;
2365 bool switched_sections = false;
2366 int current_partition = BB_UNPARTITIONED;
2367
2368 /* Even after bb reordering is complete, we go into cfglayout mode
2369 again (in compgoto). Ensure we don't call this before going back
2370 into linearized RTL when any layout fixes would have been committed. */
2371 if (!crtl->bb_reorder_complete
2372 || current_ir_type () != IR_RTL_CFGRTL)
2373 return err;
2374
2375 FOR_EACH_BB_FN (bb, cfun)
2376 {
2377 if (current_partition != BB_UNPARTITIONED
2378 && BB_PARTITION (bb) != current_partition)
2379 {
2380 if (switched_sections)
2381 {
2382 error ("multiple hot/cold transitions found (bb %i)",
2383 bb->index);
2384 err = 1;
2385 }
2386 else
2387 switched_sections = true;
2388
2389 if (!crtl->has_bb_partition)
2390 error ("partition found but function partition flag not set");
2391 }
2392 current_partition = BB_PARTITION (bb);
2393 }
2394
2395 return err;
2396 }
2397 \f
2398
2399 /* Perform several checks on the edges out of each block, such as
2400 the consistency of the branch probabilities, the correctness
2401 of hot/cold partition crossing edges, and the number of expected
2402 successor edges. Also verify that the dominance relationship
2403 between hot/cold blocks is sane. */
2404
2405 static int
2406 rtl_verify_edges (void)
2407 {
2408 int err = 0;
2409 basic_block bb;
2410
2411 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2412 {
2413 int n_fallthru = 0, n_branch = 0, n_abnormal_call = 0, n_sibcall = 0;
2414 int n_eh = 0, n_abnormal = 0;
2415 edge e, fallthru = NULL;
2416 edge_iterator ei;
2417 rtx note;
2418 bool has_crossing_edge = false;
2419
2420 if (JUMP_P (BB_END (bb))
2421 && (note = find_reg_note (BB_END (bb), REG_BR_PROB, NULL_RTX))
2422 && EDGE_COUNT (bb->succs) >= 2
2423 && any_condjump_p (BB_END (bb)))
2424 {
2425 if (XINT (note, 0) != BRANCH_EDGE (bb)->probability
2426 && profile_status_for_fn (cfun) != PROFILE_ABSENT)
2427 {
2428 error ("verify_flow_info: REG_BR_PROB does not match cfg %i %i",
2429 XINT (note, 0), BRANCH_EDGE (bb)->probability);
2430 err = 1;
2431 }
2432 }
2433
2434 FOR_EACH_EDGE (e, ei, bb->succs)
2435 {
2436 bool is_crossing;
2437
2438 if (e->flags & EDGE_FALLTHRU)
2439 n_fallthru++, fallthru = e;
2440
2441 is_crossing = (BB_PARTITION (e->src) != BB_PARTITION (e->dest)
2442 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
2443 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun));
2444 has_crossing_edge |= is_crossing;
2445 if (e->flags & EDGE_CROSSING)
2446 {
2447 if (!is_crossing)
2448 {
2449 error ("EDGE_CROSSING incorrectly set across same section");
2450 err = 1;
2451 }
2452 if (e->flags & EDGE_FALLTHRU)
2453 {
2454 error ("fallthru edge crosses section boundary in bb %i",
2455 e->src->index);
2456 err = 1;
2457 }
2458 if (e->flags & EDGE_EH)
2459 {
2460 error ("EH edge crosses section boundary in bb %i",
2461 e->src->index);
2462 err = 1;
2463 }
2464 if (JUMP_P (BB_END (bb))
2465 && !find_reg_note (BB_END (bb), REG_CROSSING_JUMP, NULL_RTX))
2466 {
2467 error ("No region crossing jump at section boundary in bb %i",
2468 bb->index);
2469 err = 1;
2470 }
2471 }
2472 else if (is_crossing)
2473 {
2474 error ("EDGE_CROSSING missing across section boundary");
2475 err = 1;
2476 }
2477
2478 if ((e->flags & ~(EDGE_DFS_BACK
2479 | EDGE_CAN_FALLTHRU
2480 | EDGE_IRREDUCIBLE_LOOP
2481 | EDGE_LOOP_EXIT
2482 | EDGE_CROSSING
2483 | EDGE_PRESERVE)) == 0)
2484 n_branch++;
2485
2486 if (e->flags & EDGE_ABNORMAL_CALL)
2487 n_abnormal_call++;
2488
2489 if (e->flags & EDGE_SIBCALL)
2490 n_sibcall++;
2491
2492 if (e->flags & EDGE_EH)
2493 n_eh++;
2494
2495 if (e->flags & EDGE_ABNORMAL)
2496 n_abnormal++;
2497 }
2498
2499 if (!has_crossing_edge
2500 && find_reg_note (BB_END (bb), REG_CROSSING_JUMP, NULL_RTX))
2501 {
2502 print_rtl_with_bb (stderr, get_insns (), TDF_RTL | TDF_BLOCKS | TDF_DETAILS);
2503 error ("Region crossing jump across same section in bb %i",
2504 bb->index);
2505 err = 1;
2506 }
2507
2508 if (n_eh && !find_reg_note (BB_END (bb), REG_EH_REGION, NULL_RTX))
2509 {
2510 error ("missing REG_EH_REGION note at the end of bb %i", bb->index);
2511 err = 1;
2512 }
2513 if (n_eh > 1)
2514 {
2515 error ("too many exception handling edges in bb %i", bb->index);
2516 err = 1;
2517 }
2518 if (n_branch
2519 && (!JUMP_P (BB_END (bb))
2520 || (n_branch > 1 && (any_uncondjump_p (BB_END (bb))
2521 || any_condjump_p (BB_END (bb))))))
2522 {
2523 error ("too many outgoing branch edges from bb %i", bb->index);
2524 err = 1;
2525 }
2526 if (n_fallthru && any_uncondjump_p (BB_END (bb)))
2527 {
2528 error ("fallthru edge after unconditional jump in bb %i", bb->index);
2529 err = 1;
2530 }
2531 if (n_branch != 1 && any_uncondjump_p (BB_END (bb)))
2532 {
2533 error ("wrong number of branch edges after unconditional jump"
2534 " in bb %i", bb->index);
2535 err = 1;
2536 }
2537 if (n_branch != 1 && any_condjump_p (BB_END (bb))
2538 && JUMP_LABEL (BB_END (bb)) != BB_HEAD (fallthru->dest))
2539 {
2540 error ("wrong amount of branch edges after conditional jump"
2541 " in bb %i", bb->index);
2542 err = 1;
2543 }
2544 if (n_abnormal_call && !CALL_P (BB_END (bb)))
2545 {
2546 error ("abnormal call edges for non-call insn in bb %i", bb->index);
2547 err = 1;
2548 }
2549 if (n_sibcall && !CALL_P (BB_END (bb)))
2550 {
2551 error ("sibcall edges for non-call insn in bb %i", bb->index);
2552 err = 1;
2553 }
2554 if (n_abnormal > n_eh
2555 && !(CALL_P (BB_END (bb))
2556 && n_abnormal == n_abnormal_call + n_sibcall)
2557 && (!JUMP_P (BB_END (bb))
2558 || any_condjump_p (BB_END (bb))
2559 || any_uncondjump_p (BB_END (bb))))
2560 {
2561 error ("abnormal edges for no purpose in bb %i", bb->index);
2562 err = 1;
2563 }
2564 }
2565
2566 /* If there are partitions, do a sanity check on them: A basic block in
2567   a cold partition cannot dominate a basic block in a hot partition.  */
2568 if (crtl->has_bb_partition && !err)
2569 {
2570 vec<basic_block> bbs_to_fix = find_partition_fixes (true);
2571 err = !bbs_to_fix.is_empty ();
2572 }
2573
2574 /* Clean up. */
2575 return err;
2576 }
2577
2578 /* Checks on the instructions within blocks. Currently checks that each
2579 block starts with a basic block note, and that basic block notes and
2580 control flow jumps are not found in the middle of the block. */
2581
2582 static int
2583 rtl_verify_bb_insns (void)
2584 {
2585 rtx x;
2586 int err = 0;
2587 basic_block bb;
2588
2589 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2590 {
2591 /* Now check the header of basic
2592 block. It ought to contain optional CODE_LABEL followed
2593 by NOTE_BASIC_BLOCK. */
2594 x = BB_HEAD (bb);
2595 if (LABEL_P (x))
2596 {
2597 if (BB_END (bb) == x)
2598 {
2599 error ("NOTE_INSN_BASIC_BLOCK is missing for block %d",
2600 bb->index);
2601 err = 1;
2602 }
2603
2604 x = NEXT_INSN (x);
2605 }
2606
2607 if (!NOTE_INSN_BASIC_BLOCK_P (x) || NOTE_BASIC_BLOCK (x) != bb)
2608 {
2609 error ("NOTE_INSN_BASIC_BLOCK is missing for block %d",
2610 bb->index);
2611 err = 1;
2612 }
2613
2614 if (BB_END (bb) == x)
2615 /* Do checks for empty blocks here. */
2616 ;
2617 else
2618 for (x = NEXT_INSN (x); x; x = NEXT_INSN (x))
2619 {
2620 if (NOTE_INSN_BASIC_BLOCK_P (x))
2621 {
2622 error ("NOTE_INSN_BASIC_BLOCK %d in middle of basic block %d",
2623 INSN_UID (x), bb->index);
2624 err = 1;
2625 }
2626
2627 if (x == BB_END (bb))
2628 break;
2629
2630 if (control_flow_insn_p (x))
2631 {
2632 error ("in basic block %d:", bb->index);
2633 fatal_insn ("flow control insn inside a basic block", x);
2634 }
2635 }
2636 }
2637
2638 /* Clean up. */
2639 return err;
2640 }
2641
2642 /* Verify that block pointers for instructions in basic blocks, headers and
2643 footers are set appropriately. */
2644
2645 static int
2646 rtl_verify_bb_pointers (void)
2647 {
2648 int err = 0;
2649 basic_block bb;
2650
2651 /* Check the general integrity of the basic blocks. */
2652 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2653 {
2654 rtx insn;
2655
2656 if (!(bb->flags & BB_RTL))
2657 {
2658 error ("BB_RTL flag not set for block %d", bb->index);
2659 err = 1;
2660 }
2661
2662 FOR_BB_INSNS (bb, insn)
2663 if (BLOCK_FOR_INSN (insn) != bb)
2664 {
2665 error ("insn %d basic block pointer is %d, should be %d",
2666 INSN_UID (insn),
2667 BLOCK_FOR_INSN (insn) ? BLOCK_FOR_INSN (insn)->index : 0,
2668 bb->index);
2669 err = 1;
2670 }
2671
2672 for (insn = BB_HEADER (bb); insn; insn = NEXT_INSN (insn))
2673 if (!BARRIER_P (insn)
2674 && BLOCK_FOR_INSN (insn) != NULL)
2675 {
2676 error ("insn %d in header of bb %d has non-NULL basic block",
2677 INSN_UID (insn), bb->index);
2678 err = 1;
2679 }
2680 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2681 if (!BARRIER_P (insn)
2682 && BLOCK_FOR_INSN (insn) != NULL)
2683 {
2684 error ("insn %d in footer of bb %d has non-NULL basic block",
2685 INSN_UID (insn), bb->index);
2686 err = 1;
2687 }
2688 }
2689
2690 /* Clean up. */
2691 return err;
2692 }
2693
2694 /* Verify the CFG and RTL consistency common for both underlying RTL and
2695 cfglayout RTL.
2696
2697 Currently it does following checks:
2698
2699 - overlapping of basic blocks
2700 - insns with wrong BLOCK_FOR_INSN pointers
2701 - headers of basic blocks (the NOTE_INSN_BASIC_BLOCK note)
2702 - tails of basic blocks (ensure that boundary is necessary)
2703 - scans body of the basic block for JUMP_INSN, CODE_LABEL
2704 and NOTE_INSN_BASIC_BLOCK
2705 - verify that no fall_thru edge crosses hot/cold partition boundaries
2706 - verify that there are no pending RTL branch predictions
2707 - verify that hot blocks are not dominated by cold blocks
2708
2709 In future it can be extended check a lot of other stuff as well
2710 (reachability of basic blocks, life information, etc. etc.). */
2711
2712 static int
2713 rtl_verify_flow_info_1 (void)
2714 {
2715 int err = 0;
2716
2717 err |= rtl_verify_bb_pointers ();
2718
2719 err |= rtl_verify_bb_insns ();
2720
2721 err |= rtl_verify_edges ();
2722
2723 return err;
2724 }
2725
2726 /* Walk the instruction chain and verify that bb head/end pointers
2727 are correct, and that instructions are in exactly one bb and have
2728 correct block pointers. */
2729
2730 static int
2731 rtl_verify_bb_insn_chain (void)
2732 {
2733 basic_block bb;
2734 int err = 0;
2735 rtx x;
2736 rtx last_head = get_last_insn ();
2737 basic_block *bb_info;
2738 const int max_uid = get_max_uid ();
2739
2740 bb_info = XCNEWVEC (basic_block, max_uid);
2741
2742 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2743 {
2744 rtx head = BB_HEAD (bb);
2745 rtx end = BB_END (bb);
2746
2747 for (x = last_head; x != NULL_RTX; x = PREV_INSN (x))
2748 {
2749 /* Verify the end of the basic block is in the INSN chain. */
2750 if (x == end)
2751 break;
2752
2753 /* And that the code outside of basic blocks has NULL bb field. */
2754 if (!BARRIER_P (x)
2755 && BLOCK_FOR_INSN (x) != NULL)
2756 {
2757 error ("insn %d outside of basic blocks has non-NULL bb field",
2758 INSN_UID (x));
2759 err = 1;
2760 }
2761 }
2762
2763 if (!x)
2764 {
2765 error ("end insn %d for block %d not found in the insn stream",
2766 INSN_UID (end), bb->index);
2767 err = 1;
2768 }
2769
2770 /* Work backwards from the end to the head of the basic block
2771 to verify the head is in the RTL chain. */
2772 for (; x != NULL_RTX; x = PREV_INSN (x))
2773 {
2774 /* While walking over the insn chain, verify insns appear
2775 in only one basic block. */
2776 if (bb_info[INSN_UID (x)] != NULL)
2777 {
2778 error ("insn %d is in multiple basic blocks (%d and %d)",
2779 INSN_UID (x), bb->index, bb_info[INSN_UID (x)]->index);
2780 err = 1;
2781 }
2782
2783 bb_info[INSN_UID (x)] = bb;
2784
2785 if (x == head)
2786 break;
2787 }
2788 if (!x)
2789 {
2790 error ("head insn %d for block %d not found in the insn stream",
2791 INSN_UID (head), bb->index);
2792 err = 1;
2793 }
2794
2795 last_head = PREV_INSN (x);
2796 }
2797
2798 for (x = last_head; x != NULL_RTX; x = PREV_INSN (x))
2799 {
2800 /* Check that the code before the first basic block has NULL
2801 bb field. */
2802 if (!BARRIER_P (x)
2803 && BLOCK_FOR_INSN (x) != NULL)
2804 {
2805 error ("insn %d outside of basic blocks has non-NULL bb field",
2806 INSN_UID (x));
2807 err = 1;
2808 }
2809 }
2810 free (bb_info);
2811
2812 return err;
2813 }
2814
2815 /* Verify that fallthru edges point to adjacent blocks in layout order and
2816 that barriers exist after non-fallthru blocks. */
2817
2818 static int
2819 rtl_verify_fallthru (void)
2820 {
2821 basic_block bb;
2822 int err = 0;
2823
2824 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2825 {
2826 edge e;
2827
2828 e = find_fallthru_edge (bb->succs);
2829 if (!e)
2830 {
2831 rtx insn;
2832
2833 /* Ensure existence of barrier in BB with no fallthru edges. */
2834 for (insn = NEXT_INSN (BB_END (bb)); ; insn = NEXT_INSN (insn))
2835 {
2836 if (!insn || NOTE_INSN_BASIC_BLOCK_P (insn))
2837 {
2838 error ("missing barrier after block %i", bb->index);
2839 err = 1;
2840 break;
2841 }
2842 if (BARRIER_P (insn))
2843 break;
2844 }
2845 }
2846 else if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
2847 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
2848 {
2849 rtx insn;
2850
2851 if (e->src->next_bb != e->dest)
2852 {
2853 error
2854 ("verify_flow_info: Incorrect blocks for fallthru %i->%i",
2855 e->src->index, e->dest->index);
2856 err = 1;
2857 }
2858 else
2859 for (insn = NEXT_INSN (BB_END (e->src)); insn != BB_HEAD (e->dest);
2860 insn = NEXT_INSN (insn))
2861 if (BARRIER_P (insn) || INSN_P (insn))
2862 {
2863 error ("verify_flow_info: Incorrect fallthru %i->%i",
2864 e->src->index, e->dest->index);
2865 fatal_insn ("wrong insn in the fallthru edge", insn);
2866 err = 1;
2867 }
2868 }
2869 }
2870
2871 return err;
2872 }
2873
2874 /* Verify that blocks are laid out in consecutive order. While walking the
2875 instructions, verify that all expected instructions are inside the basic
2876 blocks, and that all returns are followed by barriers. */
2877
2878 static int
2879 rtl_verify_bb_layout (void)
2880 {
2881 basic_block bb;
2882 int err = 0;
2883 rtx x;
2884 int num_bb_notes;
2885 const rtx rtx_first = get_insns ();
2886 basic_block last_bb_seen = ENTRY_BLOCK_PTR_FOR_FN (cfun), curr_bb = NULL;
2887
2888 num_bb_notes = 0;
2889 last_bb_seen = ENTRY_BLOCK_PTR_FOR_FN (cfun);
2890
2891 for (x = rtx_first; x; x = NEXT_INSN (x))
2892 {
2893 if (NOTE_INSN_BASIC_BLOCK_P (x))
2894 {
2895 bb = NOTE_BASIC_BLOCK (x);
2896
2897 num_bb_notes++;
2898 if (bb != last_bb_seen->next_bb)
2899 internal_error ("basic blocks not laid down consecutively");
2900
2901 curr_bb = last_bb_seen = bb;
2902 }
2903
2904 if (!curr_bb)
2905 {
2906 switch (GET_CODE (x))
2907 {
2908 case BARRIER:
2909 case NOTE:
2910 break;
2911
2912 case CODE_LABEL:
2913 /* An ADDR_VEC is placed outside any basic block. */
2914 if (NEXT_INSN (x)
2915 && JUMP_TABLE_DATA_P (NEXT_INSN (x)))
2916 x = NEXT_INSN (x);
2917
2918 /* But in any case, non-deletable labels can appear anywhere. */
2919 break;
2920
2921 default:
2922 fatal_insn ("insn outside basic block", x);
2923 }
2924 }
2925
2926 if (JUMP_P (x)
2927 && returnjump_p (x) && ! condjump_p (x)
2928 && ! (next_nonnote_insn (x) && BARRIER_P (next_nonnote_insn (x))))
2929 fatal_insn ("return not followed by barrier", x);
2930
2931 if (curr_bb && x == BB_END (curr_bb))
2932 curr_bb = NULL;
2933 }
2934
2935 if (num_bb_notes != n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS)
2936 internal_error
2937 ("number of bb notes in insn chain (%d) != n_basic_blocks (%d)",
2938 num_bb_notes, n_basic_blocks_for_fn (cfun));
2939
2940 return err;
2941 }
2942
2943 /* Verify the CFG and RTL consistency common for both underlying RTL and
2944 cfglayout RTL, plus consistency checks specific to linearized RTL mode.
2945
2946 Currently it does following checks:
2947 - all checks of rtl_verify_flow_info_1
2948 - test head/end pointers
2949 - check that blocks are laid out in consecutive order
2950 - check that all insns are in the basic blocks
2951 (except the switch handling code, barriers and notes)
2952 - check that all returns are followed by barriers
2953 - check that all fallthru edge points to the adjacent blocks
2954 - verify that there is a single hot/cold partition boundary after bbro */
2955
2956 static int
2957 rtl_verify_flow_info (void)
2958 {
2959 int err = 0;
2960
2961 err |= rtl_verify_flow_info_1 ();
2962
2963 err |= rtl_verify_bb_insn_chain ();
2964
2965 err |= rtl_verify_fallthru ();
2966
2967 err |= rtl_verify_bb_layout ();
2968
2969 err |= verify_hot_cold_block_grouping ();
2970
2971 return err;
2972 }
2973 \f
2974 /* Assume that the preceding pass has possibly eliminated jump instructions
2975 or converted the unconditional jumps. Eliminate the edges from CFG.
2976 Return true if any edges are eliminated. */
2977
2978 bool
2979 purge_dead_edges (basic_block bb)
2980 {
2981 edge e;
2982 rtx insn = BB_END (bb), note;
2983 bool purged = false;
2984 bool found;
2985 edge_iterator ei;
2986
2987 if (DEBUG_INSN_P (insn) && insn != BB_HEAD (bb))
2988 do
2989 insn = PREV_INSN (insn);
2990 while ((DEBUG_INSN_P (insn) || NOTE_P (insn)) && insn != BB_HEAD (bb));
2991
2992 /* If this instruction cannot trap, remove REG_EH_REGION notes. */
2993 if (NONJUMP_INSN_P (insn)
2994 && (note = find_reg_note (insn, REG_EH_REGION, NULL)))
2995 {
2996 rtx eqnote;
2997
2998 if (! may_trap_p (PATTERN (insn))
2999 || ((eqnote = find_reg_equal_equiv_note (insn))
3000 && ! may_trap_p (XEXP (eqnote, 0))))
3001 remove_note (insn, note);
3002 }
3003
3004 /* Cleanup abnormal edges caused by exceptions or non-local gotos. */
3005 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
3006 {
3007 bool remove = false;
3008
3009 /* There are three types of edges we need to handle correctly here: EH
3010 edges, abnormal call EH edges, and abnormal call non-EH edges. The
3011 latter can appear when nonlocal gotos are used. */
3012 if (e->flags & EDGE_ABNORMAL_CALL)
3013 {
3014 if (!CALL_P (insn))
3015 remove = true;
3016 else if (can_nonlocal_goto (insn))
3017 ;
3018 else if ((e->flags & EDGE_EH) && can_throw_internal (insn))
3019 ;
3020 else if (flag_tm && find_reg_note (insn, REG_TM, NULL))
3021 ;
3022 else
3023 remove = true;
3024 }
3025 else if (e->flags & EDGE_EH)
3026 remove = !can_throw_internal (insn);
3027
3028 if (remove)
3029 {
3030 remove_edge (e);
3031 df_set_bb_dirty (bb);
3032 purged = true;
3033 }
3034 else
3035 ei_next (&ei);
3036 }
3037
3038 if (JUMP_P (insn))
3039 {
3040 rtx note;
3041 edge b,f;
3042 edge_iterator ei;
3043
3044 /* We do care only about conditional jumps and simplejumps. */
3045 if (!any_condjump_p (insn)
3046 && !returnjump_p (insn)
3047 && !simplejump_p (insn))
3048 return purged;
3049
3050 /* Branch probability/prediction notes are defined only for
3051 condjumps. We've possibly turned condjump into simplejump. */
3052 if (simplejump_p (insn))
3053 {
3054 note = find_reg_note (insn, REG_BR_PROB, NULL);
3055 if (note)
3056 remove_note (insn, note);
3057 while ((note = find_reg_note (insn, REG_BR_PRED, NULL)))
3058 remove_note (insn, note);
3059 }
3060
3061 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
3062 {
3063 /* Avoid abnormal flags to leak from computed jumps turned
3064 into simplejumps. */
3065
3066 e->flags &= ~EDGE_ABNORMAL;
3067
3068 /* See if this edge is one we should keep. */
3069 if ((e->flags & EDGE_FALLTHRU) && any_condjump_p (insn))
3070 /* A conditional jump can fall through into the next
3071 block, so we should keep the edge. */
3072 {
3073 ei_next (&ei);
3074 continue;
3075 }
3076 else if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
3077 && BB_HEAD (e->dest) == JUMP_LABEL (insn))
3078 /* If the destination block is the target of the jump,
3079 keep the edge. */
3080 {
3081 ei_next (&ei);
3082 continue;
3083 }
3084 else if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
3085 && returnjump_p (insn))
3086 /* If the destination block is the exit block, and this
3087 instruction is a return, then keep the edge. */
3088 {
3089 ei_next (&ei);
3090 continue;
3091 }
3092 else if ((e->flags & EDGE_EH) && can_throw_internal (insn))
3093 /* Keep the edges that correspond to exceptions thrown by
3094 this instruction and rematerialize the EDGE_ABNORMAL
3095 flag we just cleared above. */
3096 {
3097 e->flags |= EDGE_ABNORMAL;
3098 ei_next (&ei);
3099 continue;
3100 }
3101
3102 /* We do not need this edge. */
3103 df_set_bb_dirty (bb);
3104 purged = true;
3105 remove_edge (e);
3106 }
3107
3108 if (EDGE_COUNT (bb->succs) == 0 || !purged)
3109 return purged;
3110
3111 if (dump_file)
3112 fprintf (dump_file, "Purged edges from bb %i\n", bb->index);
3113
3114 if (!optimize)
3115 return purged;
3116
3117 /* Redistribute probabilities. */
3118 if (single_succ_p (bb))
3119 {
3120 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
3121 single_succ_edge (bb)->count = bb->count;
3122 }
3123 else
3124 {
3125 note = find_reg_note (insn, REG_BR_PROB, NULL);
3126 if (!note)
3127 return purged;
3128
3129 b = BRANCH_EDGE (bb);
3130 f = FALLTHRU_EDGE (bb);
3131 b->probability = XINT (note, 0);
3132 f->probability = REG_BR_PROB_BASE - b->probability;
3133 /* Update these to use GCOV_COMPUTE_SCALE. */
3134 b->count = bb->count * b->probability / REG_BR_PROB_BASE;
3135 f->count = bb->count * f->probability / REG_BR_PROB_BASE;
3136 }
3137
3138 return purged;
3139 }
3140 else if (CALL_P (insn) && SIBLING_CALL_P (insn))
3141 {
3142 /* First, there should not be any EH or ABCALL edges resulting
3143 from non-local gotos and the like. If there were, we shouldn't
3144 have created the sibcall in the first place. Second, there
3145 should of course never have been a fallthru edge. */
3146 gcc_assert (single_succ_p (bb));
3147 gcc_assert (single_succ_edge (bb)->flags
3148 == (EDGE_SIBCALL | EDGE_ABNORMAL));
3149
3150 return 0;
3151 }
3152
3153 /* If we don't see a jump insn, we don't know exactly why the block would
3154 have been broken at this point. Look for a simple, non-fallthru edge,
3155 as these are only created by conditional branches. If we find such an
3156 edge we know that there used to be a jump here and can then safely
3157 remove all non-fallthru edges. */
3158 found = false;
3159 FOR_EACH_EDGE (e, ei, bb->succs)
3160 if (! (e->flags & (EDGE_COMPLEX | EDGE_FALLTHRU)))
3161 {
3162 found = true;
3163 break;
3164 }
3165
3166 if (!found)
3167 return purged;
3168
3169 /* Remove all but the fake and fallthru edges. The fake edge may be
3170 the only successor for this block in the case of noreturn
3171 calls. */
3172 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
3173 {
3174 if (!(e->flags & (EDGE_FALLTHRU | EDGE_FAKE)))
3175 {
3176 df_set_bb_dirty (bb);
3177 remove_edge (e);
3178 purged = true;
3179 }
3180 else
3181 ei_next (&ei);
3182 }
3183
3184 gcc_assert (single_succ_p (bb));
3185
3186 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
3187 single_succ_edge (bb)->count = bb->count;
3188
3189 if (dump_file)
3190 fprintf (dump_file, "Purged non-fallthru edges from bb %i\n",
3191 bb->index);
3192 return purged;
3193 }
3194
3195 /* Search all basic blocks for potentially dead edges and purge them. Return
3196 true if some edge has been eliminated. */
3197
3198 bool
3199 purge_all_dead_edges (void)
3200 {
3201 int purged = false;
3202 basic_block bb;
3203
3204 FOR_EACH_BB_FN (bb, cfun)
3205 {
3206 bool purged_here = purge_dead_edges (bb);
3207
3208 purged |= purged_here;
3209 }
3210
3211 return purged;
3212 }
3213
3214 /* This is used by a few passes that emit some instructions after abnormal
3215 calls, moving the basic block's end, while they in fact do want to emit
3216 them on the fallthru edge. Look for abnormal call edges, find backward
3217 the call in the block and insert the instructions on the edge instead.
3218
3219 Similarly, handle instructions throwing exceptions internally.
3220
3221 Return true when instructions have been found and inserted on edges. */
3222
3223 bool
3224 fixup_abnormal_edges (void)
3225 {
3226 bool inserted = false;
3227 basic_block bb;
3228
3229 FOR_EACH_BB_FN (bb, cfun)
3230 {
3231 edge e;
3232 edge_iterator ei;
3233
3234 /* Look for cases we are interested in - calls or instructions causing
3235 exceptions. */
3236 FOR_EACH_EDGE (e, ei, bb->succs)
3237 if ((e->flags & EDGE_ABNORMAL_CALL)
3238 || ((e->flags & (EDGE_ABNORMAL | EDGE_EH))
3239 == (EDGE_ABNORMAL | EDGE_EH)))
3240 break;
3241
3242 if (e && !CALL_P (BB_END (bb)) && !can_throw_internal (BB_END (bb)))
3243 {
3244 rtx insn;
3245
3246 /* Get past the new insns generated. Allow notes, as the insns
3247 may be already deleted. */
3248 insn = BB_END (bb);
3249 while ((NONJUMP_INSN_P (insn) || NOTE_P (insn))
3250 && !can_throw_internal (insn)
3251 && insn != BB_HEAD (bb))
3252 insn = PREV_INSN (insn);
3253
3254 if (CALL_P (insn) || can_throw_internal (insn))
3255 {
3256 rtx stop, next;
3257
3258 e = find_fallthru_edge (bb->succs);
3259
3260 stop = NEXT_INSN (BB_END (bb));
3261 BB_END (bb) = insn;
3262
3263 for (insn = NEXT_INSN (insn); insn != stop; insn = next)
3264 {
3265 next = NEXT_INSN (insn);
3266 if (INSN_P (insn))
3267 {
3268 delete_insn (insn);
3269
3270 /* Sometimes there's still the return value USE.
3271 If it's placed after a trapping call (i.e. that
3272 call is the last insn anyway), we have no fallthru
3273 edge. Simply delete this use and don't try to insert
3274 on the non-existent edge. */
3275 if (GET_CODE (PATTERN (insn)) != USE)
3276 {
3277 /* We're not deleting it, we're moving it. */
3278 INSN_DELETED_P (insn) = 0;
3279 PREV_INSN (insn) = NULL_RTX;
3280 NEXT_INSN (insn) = NULL_RTX;
3281
3282 insert_insn_on_edge (insn, e);
3283 inserted = true;
3284 }
3285 }
3286 else if (!BARRIER_P (insn))
3287 set_block_for_insn (insn, NULL);
3288 }
3289 }
3290
3291 /* It may be that we don't find any trapping insn. In this
3292 case we discovered quite late that the insn that had been
3293 marked as can_throw_internal in fact couldn't trap at all.
3294 So we should in fact delete the EH edges out of the block. */
3295 else
3296 purge_dead_edges (bb);
3297 }
3298 }
3299
3300 return inserted;
3301 }
3302 \f
3303 /* Cut the insns from FIRST to LAST out of the insns stream. */
3304
3305 rtx
3306 unlink_insn_chain (rtx first, rtx last)
3307 {
3308 rtx prevfirst = PREV_INSN (first);
3309 rtx nextlast = NEXT_INSN (last);
3310
3311 PREV_INSN (first) = NULL;
3312 NEXT_INSN (last) = NULL;
3313 if (prevfirst)
3314 NEXT_INSN (prevfirst) = nextlast;
3315 if (nextlast)
3316 PREV_INSN (nextlast) = prevfirst;
3317 else
3318 set_last_insn (prevfirst);
3319 if (!prevfirst)
3320 set_first_insn (nextlast);
3321 return first;
3322 }
3323 \f
3324 /* Skip over inter-block insns occurring after BB which are typically
3325 associated with BB (e.g., barriers). If there are any such insns,
3326 we return the last one. Otherwise, we return the end of BB. */
3327
3328 static rtx
3329 skip_insns_after_block (basic_block bb)
3330 {
3331 rtx insn, last_insn, next_head, prev;
3332
3333 next_head = NULL_RTX;
3334 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3335 next_head = BB_HEAD (bb->next_bb);
3336
3337 for (last_insn = insn = BB_END (bb); (insn = NEXT_INSN (insn)) != 0; )
3338 {
3339 if (insn == next_head)
3340 break;
3341
3342 switch (GET_CODE (insn))
3343 {
3344 case BARRIER:
3345 last_insn = insn;
3346 continue;
3347
3348 case NOTE:
3349 switch (NOTE_KIND (insn))
3350 {
3351 case NOTE_INSN_BLOCK_END:
3352 gcc_unreachable ();
3353 continue;
3354 default:
3355 continue;
3356 break;
3357 }
3358 break;
3359
3360 case CODE_LABEL:
3361 if (NEXT_INSN (insn)
3362 && JUMP_TABLE_DATA_P (NEXT_INSN (insn)))
3363 {
3364 insn = NEXT_INSN (insn);
3365 last_insn = insn;
3366 continue;
3367 }
3368 break;
3369
3370 default:
3371 break;
3372 }
3373
3374 break;
3375 }
3376
3377 /* It is possible to hit contradictory sequence. For instance:
3378
3379 jump_insn
3380 NOTE_INSN_BLOCK_BEG
3381 barrier
3382
3383 Where barrier belongs to jump_insn, but the note does not. This can be
3384 created by removing the basic block originally following
3385 NOTE_INSN_BLOCK_BEG. In such case reorder the notes. */
3386
3387 for (insn = last_insn; insn != BB_END (bb); insn = prev)
3388 {
3389 prev = PREV_INSN (insn);
3390 if (NOTE_P (insn))
3391 switch (NOTE_KIND (insn))
3392 {
3393 case NOTE_INSN_BLOCK_END:
3394 gcc_unreachable ();
3395 break;
3396 case NOTE_INSN_DELETED:
3397 case NOTE_INSN_DELETED_LABEL:
3398 case NOTE_INSN_DELETED_DEBUG_LABEL:
3399 continue;
3400 default:
3401 reorder_insns (insn, insn, last_insn);
3402 }
3403 }
3404
3405 return last_insn;
3406 }
3407
3408 /* Locate or create a label for a given basic block. */
3409
3410 static rtx
3411 label_for_bb (basic_block bb)
3412 {
3413 rtx label = BB_HEAD (bb);
3414
3415 if (!LABEL_P (label))
3416 {
3417 if (dump_file)
3418 fprintf (dump_file, "Emitting label for block %d\n", bb->index);
3419
3420 label = block_label (bb);
3421 }
3422
3423 return label;
3424 }
3425
3426 /* Locate the effective beginning and end of the insn chain for each
3427 block, as defined by skip_insns_after_block above. */
3428
3429 static void
3430 record_effective_endpoints (void)
3431 {
3432 rtx next_insn;
3433 basic_block bb;
3434 rtx insn;
3435
3436 for (insn = get_insns ();
3437 insn
3438 && NOTE_P (insn)
3439 && NOTE_KIND (insn) != NOTE_INSN_BASIC_BLOCK;
3440 insn = NEXT_INSN (insn))
3441 continue;
3442 /* No basic blocks at all? */
3443 gcc_assert (insn);
3444
3445 if (PREV_INSN (insn))
3446 cfg_layout_function_header =
3447 unlink_insn_chain (get_insns (), PREV_INSN (insn));
3448 else
3449 cfg_layout_function_header = NULL_RTX;
3450
3451 next_insn = get_insns ();
3452 FOR_EACH_BB_FN (bb, cfun)
3453 {
3454 rtx end;
3455
3456 if (PREV_INSN (BB_HEAD (bb)) && next_insn != BB_HEAD (bb))
3457 BB_HEADER (bb) = unlink_insn_chain (next_insn,
3458 PREV_INSN (BB_HEAD (bb)));
3459 end = skip_insns_after_block (bb);
3460 if (NEXT_INSN (BB_END (bb)) && BB_END (bb) != end)
3461 BB_FOOTER (bb) = unlink_insn_chain (NEXT_INSN (BB_END (bb)), end);
3462 next_insn = NEXT_INSN (BB_END (bb));
3463 }
3464
3465 cfg_layout_function_footer = next_insn;
3466 if (cfg_layout_function_footer)
3467 cfg_layout_function_footer = unlink_insn_chain (cfg_layout_function_footer, get_last_insn ());
3468 }
3469 \f
3470 static unsigned int
3471 into_cfg_layout_mode (void)
3472 {
3473 cfg_layout_initialize (0);
3474 return 0;
3475 }
3476
3477 static unsigned int
3478 outof_cfg_layout_mode (void)
3479 {
3480 basic_block bb;
3481
3482 FOR_EACH_BB_FN (bb, cfun)
3483 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3484 bb->aux = bb->next_bb;
3485
3486 cfg_layout_finalize ();
3487
3488 return 0;
3489 }
3490
3491 namespace {
3492
3493 const pass_data pass_data_into_cfg_layout_mode =
3494 {
3495 RTL_PASS, /* type */
3496 "into_cfglayout", /* name */
3497 OPTGROUP_NONE, /* optinfo_flags */
3498 false, /* has_gate */
3499 true, /* has_execute */
3500 TV_CFG, /* tv_id */
3501 0, /* properties_required */
3502 PROP_cfglayout, /* properties_provided */
3503 0, /* properties_destroyed */
3504 0, /* todo_flags_start */
3505 0, /* todo_flags_finish */
3506 };
3507
3508 class pass_into_cfg_layout_mode : public rtl_opt_pass
3509 {
3510 public:
3511 pass_into_cfg_layout_mode (gcc::context *ctxt)
3512 : rtl_opt_pass (pass_data_into_cfg_layout_mode, ctxt)
3513 {}
3514
3515 /* opt_pass methods: */
3516 unsigned int execute () { return into_cfg_layout_mode (); }
3517
3518 }; // class pass_into_cfg_layout_mode
3519
3520 } // anon namespace
3521
3522 rtl_opt_pass *
3523 make_pass_into_cfg_layout_mode (gcc::context *ctxt)
3524 {
3525 return new pass_into_cfg_layout_mode (ctxt);
3526 }
3527
3528 namespace {
3529
3530 const pass_data pass_data_outof_cfg_layout_mode =
3531 {
3532 RTL_PASS, /* type */
3533 "outof_cfglayout", /* name */
3534 OPTGROUP_NONE, /* optinfo_flags */
3535 false, /* has_gate */
3536 true, /* has_execute */
3537 TV_CFG, /* tv_id */
3538 0, /* properties_required */
3539 0, /* properties_provided */
3540 PROP_cfglayout, /* properties_destroyed */
3541 0, /* todo_flags_start */
3542 0, /* todo_flags_finish */
3543 };
3544
3545 class pass_outof_cfg_layout_mode : public rtl_opt_pass
3546 {
3547 public:
3548 pass_outof_cfg_layout_mode (gcc::context *ctxt)
3549 : rtl_opt_pass (pass_data_outof_cfg_layout_mode, ctxt)
3550 {}
3551
3552 /* opt_pass methods: */
3553 unsigned int execute () { return outof_cfg_layout_mode (); }
3554
3555 }; // class pass_outof_cfg_layout_mode
3556
3557 } // anon namespace
3558
3559 rtl_opt_pass *
3560 make_pass_outof_cfg_layout_mode (gcc::context *ctxt)
3561 {
3562 return new pass_outof_cfg_layout_mode (ctxt);
3563 }
3564 \f
3565
3566 /* Link the basic blocks in the correct order, compacting the basic
3567 block queue while at it. If STAY_IN_CFGLAYOUT_MODE is false, this
3568 function also clears the basic block header and footer fields.
3569
3570 This function is usually called after a pass (e.g. tracer) finishes
3571 some transformations while in cfglayout mode. The required sequence
3572 of the basic blocks is in a linked list along the bb->aux field.
3573 This functions re-links the basic block prev_bb and next_bb pointers
3574 accordingly, and it compacts and renumbers the blocks.
3575
3576 FIXME: This currently works only for RTL, but the only RTL-specific
3577 bits are the STAY_IN_CFGLAYOUT_MODE bits. The tracer pass was moved
3578 to GIMPLE a long time ago, but it doesn't relink the basic block
3579 chain. It could do that (to give better initial RTL) if this function
3580 is made IR-agnostic (and moved to cfganal.c or cfg.c while at it). */
3581
3582 void
3583 relink_block_chain (bool stay_in_cfglayout_mode)
3584 {
3585 basic_block bb, prev_bb;
3586 int index;
3587
3588 /* Maybe dump the re-ordered sequence. */
3589 if (dump_file)
3590 {
3591 fprintf (dump_file, "Reordered sequence:\n");
3592 for (bb = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb, index =
3593 NUM_FIXED_BLOCKS;
3594 bb;
3595 bb = (basic_block) bb->aux, index++)
3596 {
3597 fprintf (dump_file, " %i ", index);
3598 if (get_bb_original (bb))
3599 fprintf (dump_file, "duplicate of %i ",
3600 get_bb_original (bb)->index);
3601 else if (forwarder_block_p (bb)
3602 && !LABEL_P (BB_HEAD (bb)))
3603 fprintf (dump_file, "compensation ");
3604 else
3605 fprintf (dump_file, "bb %i ", bb->index);
3606 fprintf (dump_file, " [%i]\n", bb->frequency);
3607 }
3608 }
3609
3610 /* Now reorder the blocks. */
3611 prev_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
3612 bb = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb;
3613 for (; bb; prev_bb = bb, bb = (basic_block) bb->aux)
3614 {
3615 bb->prev_bb = prev_bb;
3616 prev_bb->next_bb = bb;
3617 }
3618 prev_bb->next_bb = EXIT_BLOCK_PTR_FOR_FN (cfun);
3619 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb = prev_bb;
3620
3621 /* Then, clean up the aux fields. */
3622 FOR_ALL_BB_FN (bb, cfun)
3623 {
3624 bb->aux = NULL;
3625 if (!stay_in_cfglayout_mode)
3626 BB_HEADER (bb) = BB_FOOTER (bb) = NULL;
3627 }
3628
3629 /* Maybe reset the original copy tables, they are not valid anymore
3630 when we renumber the basic blocks in compact_blocks. If we are
3631 are going out of cfglayout mode, don't re-allocate the tables. */
3632 free_original_copy_tables ();
3633 if (stay_in_cfglayout_mode)
3634 initialize_original_copy_tables ();
3635
3636 /* Finally, put basic_block_info in the new order. */
3637 compact_blocks ();
3638 }
3639 \f
3640
3641 /* Given a reorder chain, rearrange the code to match. */
3642
3643 static void
3644 fixup_reorder_chain (void)
3645 {
3646 basic_block bb;
3647 rtx insn = NULL;
3648
3649 if (cfg_layout_function_header)
3650 {
3651 set_first_insn (cfg_layout_function_header);
3652 insn = cfg_layout_function_header;
3653 while (NEXT_INSN (insn))
3654 insn = NEXT_INSN (insn);
3655 }
3656
3657 /* First do the bulk reordering -- rechain the blocks without regard to
3658 the needed changes to jumps and labels. */
3659
3660 for (bb = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb; bb; bb = (basic_block)
3661 bb->aux)
3662 {
3663 if (BB_HEADER (bb))
3664 {
3665 if (insn)
3666 NEXT_INSN (insn) = BB_HEADER (bb);
3667 else
3668 set_first_insn (BB_HEADER (bb));
3669 PREV_INSN (BB_HEADER (bb)) = insn;
3670 insn = BB_HEADER (bb);
3671 while (NEXT_INSN (insn))
3672 insn = NEXT_INSN (insn);
3673 }
3674 if (insn)
3675 NEXT_INSN (insn) = BB_HEAD (bb);
3676 else
3677 set_first_insn (BB_HEAD (bb));
3678 PREV_INSN (BB_HEAD (bb)) = insn;
3679 insn = BB_END (bb);
3680 if (BB_FOOTER (bb))
3681 {
3682 NEXT_INSN (insn) = BB_FOOTER (bb);
3683 PREV_INSN (BB_FOOTER (bb)) = insn;
3684 while (NEXT_INSN (insn))
3685 insn = NEXT_INSN (insn);
3686 }
3687 }
3688
3689 NEXT_INSN (insn) = cfg_layout_function_footer;
3690 if (cfg_layout_function_footer)
3691 PREV_INSN (cfg_layout_function_footer) = insn;
3692
3693 while (NEXT_INSN (insn))
3694 insn = NEXT_INSN (insn);
3695
3696 set_last_insn (insn);
3697 #ifdef ENABLE_CHECKING
3698 verify_insn_chain ();
3699 #endif
3700
3701 /* Now add jumps and labels as needed to match the blocks new
3702 outgoing edges. */
3703
3704 for (bb = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb; bb ; bb = (basic_block)
3705 bb->aux)
3706 {
3707 edge e_fall, e_taken, e;
3708 rtx bb_end_insn;
3709 rtx ret_label = NULL_RTX;
3710 basic_block nb;
3711 edge_iterator ei;
3712
3713 if (EDGE_COUNT (bb->succs) == 0)
3714 continue;
3715
3716 /* Find the old fallthru edge, and another non-EH edge for
3717 a taken jump. */
3718 e_taken = e_fall = NULL;
3719
3720 FOR_EACH_EDGE (e, ei, bb->succs)
3721 if (e->flags & EDGE_FALLTHRU)
3722 e_fall = e;
3723 else if (! (e->flags & EDGE_EH))
3724 e_taken = e;
3725
3726 bb_end_insn = BB_END (bb);
3727 if (JUMP_P (bb_end_insn))
3728 {
3729 ret_label = JUMP_LABEL (bb_end_insn);
3730 if (any_condjump_p (bb_end_insn))
3731 {
3732 /* This might happen if the conditional jump has side
3733 effects and could therefore not be optimized away.
3734 Make the basic block to end with a barrier in order
3735 to prevent rtl_verify_flow_info from complaining. */
3736 if (!e_fall)
3737 {
3738 gcc_assert (!onlyjump_p (bb_end_insn)
3739 || returnjump_p (bb_end_insn)
3740 || (e_taken->flags & EDGE_CROSSING));
3741 emit_barrier_after (bb_end_insn);
3742 continue;
3743 }
3744
3745 /* If the old fallthru is still next, nothing to do. */
3746 if (bb->aux == e_fall->dest
3747 || e_fall->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
3748 continue;
3749
3750 /* The degenerated case of conditional jump jumping to the next
3751 instruction can happen for jumps with side effects. We need
3752 to construct a forwarder block and this will be done just
3753 fine by force_nonfallthru below. */
3754 if (!e_taken)
3755 ;
3756
3757 /* There is another special case: if *neither* block is next,
3758 such as happens at the very end of a function, then we'll
3759 need to add a new unconditional jump. Choose the taken
3760 edge based on known or assumed probability. */
3761 else if (bb->aux != e_taken->dest)
3762 {
3763 rtx note = find_reg_note (bb_end_insn, REG_BR_PROB, 0);
3764
3765 if (note
3766 && XINT (note, 0) < REG_BR_PROB_BASE / 2
3767 && invert_jump (bb_end_insn,
3768 (e_fall->dest
3769 == EXIT_BLOCK_PTR_FOR_FN (cfun)
3770 ? NULL_RTX
3771 : label_for_bb (e_fall->dest)), 0))
3772 {
3773 e_fall->flags &= ~EDGE_FALLTHRU;
3774 gcc_checking_assert (could_fall_through
3775 (e_taken->src, e_taken->dest));
3776 e_taken->flags |= EDGE_FALLTHRU;
3777 update_br_prob_note (bb);
3778 e = e_fall, e_fall = e_taken, e_taken = e;
3779 }
3780 }
3781
3782 /* If the "jumping" edge is a crossing edge, and the fall
3783 through edge is non-crossing, leave things as they are. */
3784 else if ((e_taken->flags & EDGE_CROSSING)
3785 && !(e_fall->flags & EDGE_CROSSING))
3786 continue;
3787
3788 /* Otherwise we can try to invert the jump. This will
3789 basically never fail, however, keep up the pretense. */
3790 else if (invert_jump (bb_end_insn,
3791 (e_fall->dest
3792 == EXIT_BLOCK_PTR_FOR_FN (cfun)
3793 ? NULL_RTX
3794 : label_for_bb (e_fall->dest)), 0))
3795 {
3796 e_fall->flags &= ~EDGE_FALLTHRU;
3797 gcc_checking_assert (could_fall_through
3798 (e_taken->src, e_taken->dest));
3799 e_taken->flags |= EDGE_FALLTHRU;
3800 update_br_prob_note (bb);
3801 if (LABEL_NUSES (ret_label) == 0
3802 && single_pred_p (e_taken->dest))
3803 delete_insn (ret_label);
3804 continue;
3805 }
3806 }
3807 else if (extract_asm_operands (PATTERN (bb_end_insn)) != NULL)
3808 {
3809 /* If the old fallthru is still next or if
3810 asm goto doesn't have a fallthru (e.g. when followed by
3811 __builtin_unreachable ()), nothing to do. */
3812 if (! e_fall
3813 || bb->aux == e_fall->dest
3814 || e_fall->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
3815 continue;
3816
3817 /* Otherwise we'll have to use the fallthru fixup below. */
3818 }
3819 else
3820 {
3821 /* Otherwise we have some return, switch or computed
3822 jump. In the 99% case, there should not have been a
3823 fallthru edge. */
3824 gcc_assert (returnjump_p (bb_end_insn) || !e_fall);
3825 continue;
3826 }
3827 }
3828 else
3829 {
3830 /* No fallthru implies a noreturn function with EH edges, or
3831 something similarly bizarre. In any case, we don't need to
3832 do anything. */
3833 if (! e_fall)
3834 continue;
3835
3836 /* If the fallthru block is still next, nothing to do. */
3837 if (bb->aux == e_fall->dest)
3838 continue;
3839
3840 /* A fallthru to exit block. */
3841 if (e_fall->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
3842 continue;
3843 }
3844
3845 /* We got here if we need to add a new jump insn.
3846 Note force_nonfallthru can delete E_FALL and thus we have to
3847 save E_FALL->src prior to the call to force_nonfallthru. */
3848 nb = force_nonfallthru_and_redirect (e_fall, e_fall->dest, ret_label);
3849 if (nb)
3850 {
3851 nb->aux = bb->aux;
3852 bb->aux = nb;
3853 /* Don't process this new block. */
3854 bb = nb;
3855 }
3856 }
3857
3858 relink_block_chain (/*stay_in_cfglayout_mode=*/false);
3859
3860 /* Annoying special case - jump around dead jumptables left in the code. */
3861 FOR_EACH_BB_FN (bb, cfun)
3862 {
3863 edge e = find_fallthru_edge (bb->succs);
3864
3865 if (e && !can_fallthru (e->src, e->dest))
3866 force_nonfallthru (e);
3867 }
3868
3869 /* Ensure goto_locus from edges has some instructions with that locus
3870 in RTL. */
3871 if (!optimize)
3872 FOR_EACH_BB_FN (bb, cfun)
3873 {
3874 edge e;
3875 edge_iterator ei;
3876
3877 FOR_EACH_EDGE (e, ei, bb->succs)
3878 if (LOCATION_LOCUS (e->goto_locus) != UNKNOWN_LOCATION
3879 && !(e->flags & EDGE_ABNORMAL))
3880 {
3881 edge e2;
3882 edge_iterator ei2;
3883 basic_block dest, nb;
3884 rtx end;
3885
3886 insn = BB_END (e->src);
3887 end = PREV_INSN (BB_HEAD (e->src));
3888 while (insn != end
3889 && (!NONDEBUG_INSN_P (insn) || !INSN_HAS_LOCATION (insn)))
3890 insn = PREV_INSN (insn);
3891 if (insn != end
3892 && INSN_LOCATION (insn) == e->goto_locus)
3893 continue;
3894 if (simplejump_p (BB_END (e->src))
3895 && !INSN_HAS_LOCATION (BB_END (e->src)))
3896 {
3897 INSN_LOCATION (BB_END (e->src)) = e->goto_locus;
3898 continue;
3899 }
3900 dest = e->dest;
3901 if (dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
3902 {
3903 /* Non-fallthru edges to the exit block cannot be split. */
3904 if (!(e->flags & EDGE_FALLTHRU))
3905 continue;
3906 }
3907 else
3908 {
3909 insn = BB_HEAD (dest);
3910 end = NEXT_INSN (BB_END (dest));
3911 while (insn != end && !NONDEBUG_INSN_P (insn))
3912 insn = NEXT_INSN (insn);
3913 if (insn != end && INSN_HAS_LOCATION (insn)
3914 && INSN_LOCATION (insn) == e->goto_locus)
3915 continue;
3916 }
3917 nb = split_edge (e);
3918 if (!INSN_P (BB_END (nb)))
3919 BB_END (nb) = emit_insn_after_noloc (gen_nop (), BB_END (nb),
3920 nb);
3921 INSN_LOCATION (BB_END (nb)) = e->goto_locus;
3922
3923 /* If there are other incoming edges to the destination block
3924 with the same goto locus, redirect them to the new block as
3925 well, this can prevent other such blocks from being created
3926 in subsequent iterations of the loop. */
3927 for (ei2 = ei_start (dest->preds); (e2 = ei_safe_edge (ei2)); )
3928 if (LOCATION_LOCUS (e2->goto_locus) != UNKNOWN_LOCATION
3929 && !(e2->flags & (EDGE_ABNORMAL | EDGE_FALLTHRU))
3930 && e->goto_locus == e2->goto_locus)
3931 redirect_edge_and_branch (e2, nb);
3932 else
3933 ei_next (&ei2);
3934 }
3935 }
3936 }
3937 \f
3938 /* Perform sanity checks on the insn chain.
3939 1. Check that next/prev pointers are consistent in both the forward and
3940 reverse direction.
3941 2. Count insns in chain, going both directions, and check if equal.
3942 3. Check that get_last_insn () returns the actual end of chain. */
3943
3944 DEBUG_FUNCTION void
3945 verify_insn_chain (void)
3946 {
3947 rtx x, prevx, nextx;
3948 int insn_cnt1, insn_cnt2;
3949
3950 for (prevx = NULL, insn_cnt1 = 1, x = get_insns ();
3951 x != 0;
3952 prevx = x, insn_cnt1++, x = NEXT_INSN (x))
3953 gcc_assert (PREV_INSN (x) == prevx);
3954
3955 gcc_assert (prevx == get_last_insn ());
3956
3957 for (nextx = NULL, insn_cnt2 = 1, x = get_last_insn ();
3958 x != 0;
3959 nextx = x, insn_cnt2++, x = PREV_INSN (x))
3960 gcc_assert (NEXT_INSN (x) == nextx);
3961
3962 gcc_assert (insn_cnt1 == insn_cnt2);
3963 }
3964 \f
3965 /* If we have assembler epilogues, the block falling through to exit must
3966 be the last one in the reordered chain when we reach final. Ensure
3967 that this condition is met. */
3968 static void
3969 fixup_fallthru_exit_predecessor (void)
3970 {
3971 edge e;
3972 basic_block bb = NULL;
3973
3974 /* This transformation is not valid before reload, because we might
3975 separate a call from the instruction that copies the return
3976 value. */
3977 gcc_assert (reload_completed);
3978
3979 e = find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
3980 if (e)
3981 bb = e->src;
3982
3983 if (bb && bb->aux)
3984 {
3985 basic_block c = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb;
3986
3987 /* If the very first block is the one with the fall-through exit
3988 edge, we have to split that block. */
3989 if (c == bb)
3990 {
3991 bb = split_block (bb, NULL)->dest;
3992 bb->aux = c->aux;
3993 c->aux = bb;
3994 BB_FOOTER (bb) = BB_FOOTER (c);
3995 BB_FOOTER (c) = NULL;
3996 }
3997
3998 while (c->aux != bb)
3999 c = (basic_block) c->aux;
4000
4001 c->aux = bb->aux;
4002 while (c->aux)
4003 c = (basic_block) c->aux;
4004
4005 c->aux = bb;
4006 bb->aux = NULL;
4007 }
4008 }
4009
4010 /* In case there are more than one fallthru predecessors of exit, force that
4011 there is only one. */
4012
4013 static void
4014 force_one_exit_fallthru (void)
4015 {
4016 edge e, predecessor = NULL;
4017 bool more = false;
4018 edge_iterator ei;
4019 basic_block forwarder, bb;
4020
4021 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
4022 if (e->flags & EDGE_FALLTHRU)
4023 {
4024 if (predecessor == NULL)
4025 predecessor = e;
4026 else
4027 {
4028 more = true;
4029 break;
4030 }
4031 }
4032
4033 if (!more)
4034 return;
4035
4036 /* Exit has several fallthru predecessors. Create a forwarder block for
4037 them. */
4038 forwarder = split_edge (predecessor);
4039 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
4040 (e = ei_safe_edge (ei)); )
4041 {
4042 if (e->src == forwarder
4043 || !(e->flags & EDGE_FALLTHRU))
4044 ei_next (&ei);
4045 else
4046 redirect_edge_and_branch_force (e, forwarder);
4047 }
4048
4049 /* Fix up the chain of blocks -- make FORWARDER immediately precede the
4050 exit block. */
4051 FOR_EACH_BB_FN (bb, cfun)
4052 {
4053 if (bb->aux == NULL && bb != forwarder)
4054 {
4055 bb->aux = forwarder;
4056 break;
4057 }
4058 }
4059 }
4060 \f
4061 /* Return true in case it is possible to duplicate the basic block BB. */
4062
4063 static bool
4064 cfg_layout_can_duplicate_bb_p (const_basic_block bb)
4065 {
4066 /* Do not attempt to duplicate tablejumps, as we need to unshare
4067 the dispatch table. This is difficult to do, as the instructions
4068 computing jump destination may be hoisted outside the basic block. */
4069 if (tablejump_p (BB_END (bb), NULL, NULL))
4070 return false;
4071
4072 /* Do not duplicate blocks containing insns that can't be copied. */
4073 if (targetm.cannot_copy_insn_p)
4074 {
4075 rtx insn = BB_HEAD (bb);
4076 while (1)
4077 {
4078 if (INSN_P (insn) && targetm.cannot_copy_insn_p (insn))
4079 return false;
4080 if (insn == BB_END (bb))
4081 break;
4082 insn = NEXT_INSN (insn);
4083 }
4084 }
4085
4086 return true;
4087 }
4088
4089 rtx
4090 duplicate_insn_chain (rtx from, rtx to)
4091 {
4092 rtx insn, next, last, copy;
4093
4094 /* Avoid updating of boundaries of previous basic block. The
4095 note will get removed from insn stream in fixup. */
4096 last = emit_note (NOTE_INSN_DELETED);
4097
4098 /* Create copy at the end of INSN chain. The chain will
4099 be reordered later. */
4100 for (insn = from; insn != NEXT_INSN (to); insn = NEXT_INSN (insn))
4101 {
4102 switch (GET_CODE (insn))
4103 {
4104 case DEBUG_INSN:
4105 /* Don't duplicate label debug insns. */
4106 if (TREE_CODE (INSN_VAR_LOCATION_DECL (insn)) == LABEL_DECL)
4107 break;
4108 /* FALLTHRU */
4109 case INSN:
4110 case CALL_INSN:
4111 case JUMP_INSN:
4112 copy = emit_copy_of_insn_after (insn, get_last_insn ());
4113 if (JUMP_P (insn) && JUMP_LABEL (insn) != NULL_RTX
4114 && ANY_RETURN_P (JUMP_LABEL (insn)))
4115 JUMP_LABEL (copy) = JUMP_LABEL (insn);
4116 maybe_copy_prologue_epilogue_insn (insn, copy);
4117 break;
4118
4119 case JUMP_TABLE_DATA:
4120 /* Avoid copying of dispatch tables. We never duplicate
4121 tablejumps, so this can hit only in case the table got
4122 moved far from original jump.
4123 Avoid copying following barrier as well if any
4124 (and debug insns in between). */
4125 for (next = NEXT_INSN (insn);
4126 next != NEXT_INSN (to);
4127 next = NEXT_INSN (next))
4128 if (!DEBUG_INSN_P (next))
4129 break;
4130 if (next != NEXT_INSN (to) && BARRIER_P (next))
4131 insn = next;
4132 break;
4133
4134 case CODE_LABEL:
4135 break;
4136
4137 case BARRIER:
4138 emit_barrier ();
4139 break;
4140
4141 case NOTE:
4142 switch (NOTE_KIND (insn))
4143 {
4144 /* In case prologue is empty and function contain label
4145 in first BB, we may want to copy the block. */
4146 case NOTE_INSN_PROLOGUE_END:
4147
4148 case NOTE_INSN_DELETED:
4149 case NOTE_INSN_DELETED_LABEL:
4150 case NOTE_INSN_DELETED_DEBUG_LABEL:
4151 /* No problem to strip these. */
4152 case NOTE_INSN_FUNCTION_BEG:
4153 /* There is always just single entry to function. */
4154 case NOTE_INSN_BASIC_BLOCK:
4155 /* We should only switch text sections once. */
4156 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
4157 break;
4158
4159 case NOTE_INSN_EPILOGUE_BEG:
4160 emit_note_copy (insn);
4161 break;
4162
4163 default:
4164 /* All other notes should have already been eliminated. */
4165 gcc_unreachable ();
4166 }
4167 break;
4168 default:
4169 gcc_unreachable ();
4170 }
4171 }
4172 insn = NEXT_INSN (last);
4173 delete_insn (last);
4174 return insn;
4175 }
4176
4177 /* Create a duplicate of the basic block BB. */
4178
4179 static basic_block
4180 cfg_layout_duplicate_bb (basic_block bb)
4181 {
4182 rtx insn;
4183 basic_block new_bb;
4184
4185 insn = duplicate_insn_chain (BB_HEAD (bb), BB_END (bb));
4186 new_bb = create_basic_block (insn,
4187 insn ? get_last_insn () : NULL,
4188 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
4189
4190 BB_COPY_PARTITION (new_bb, bb);
4191 if (BB_HEADER (bb))
4192 {
4193 insn = BB_HEADER (bb);
4194 while (NEXT_INSN (insn))
4195 insn = NEXT_INSN (insn);
4196 insn = duplicate_insn_chain (BB_HEADER (bb), insn);
4197 if (insn)
4198 BB_HEADER (new_bb) = unlink_insn_chain (insn, get_last_insn ());
4199 }
4200
4201 if (BB_FOOTER (bb))
4202 {
4203 insn = BB_FOOTER (bb);
4204 while (NEXT_INSN (insn))
4205 insn = NEXT_INSN (insn);
4206 insn = duplicate_insn_chain (BB_FOOTER (bb), insn);
4207 if (insn)
4208 BB_FOOTER (new_bb) = unlink_insn_chain (insn, get_last_insn ());
4209 }
4210
4211 return new_bb;
4212 }
4213
4214 \f
4215 /* Main entry point to this module - initialize the datastructures for
4216 CFG layout changes. It keeps LOOPS up-to-date if not null.
4217
4218 FLAGS is a set of additional flags to pass to cleanup_cfg(). */
4219
4220 void
4221 cfg_layout_initialize (unsigned int flags)
4222 {
4223 rtx x;
4224 basic_block bb;
4225
4226 /* Once bb reordering is complete, cfg layout mode should not be re-entered.
4227 Entering cfg layout mode will perform optimizations on the cfg that
4228 could affect the bb layout negatively or even require fixups. An
4229 example of the latter is if edge forwarding performed when optimizing
4230 the cfg layout required moving a block from the hot to the cold section
4231 under -freorder-blocks-and-partition. This would create an illegal
4232 partitioning unless some manual fixup was performed. */
4233 gcc_assert (!crtl->bb_reorder_complete);
4234
4235 initialize_original_copy_tables ();
4236
4237 cfg_layout_rtl_register_cfg_hooks ();
4238
4239 record_effective_endpoints ();
4240
4241 /* Make sure that the targets of non local gotos are marked. */
4242 for (x = nonlocal_goto_handler_labels; x; x = XEXP (x, 1))
4243 {
4244 bb = BLOCK_FOR_INSN (XEXP (x, 0));
4245 bb->flags |= BB_NON_LOCAL_GOTO_TARGET;
4246 }
4247
4248 cleanup_cfg (CLEANUP_CFGLAYOUT | flags);
4249 }
4250
4251 /* Splits superblocks. */
4252 void
4253 break_superblocks (void)
4254 {
4255 sbitmap superblocks;
4256 bool need = false;
4257 basic_block bb;
4258
4259 superblocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
4260 bitmap_clear (superblocks);
4261
4262 FOR_EACH_BB_FN (bb, cfun)
4263 if (bb->flags & BB_SUPERBLOCK)
4264 {
4265 bb->flags &= ~BB_SUPERBLOCK;
4266 bitmap_set_bit (superblocks, bb->index);
4267 need = true;
4268 }
4269
4270 if (need)
4271 {
4272 rebuild_jump_labels (get_insns ());
4273 find_many_sub_basic_blocks (superblocks);
4274 }
4275
4276 free (superblocks);
4277 }
4278
4279 /* Finalize the changes: reorder insn list according to the sequence specified
4280 by aux pointers, enter compensation code, rebuild scope forest. */
4281
4282 void
4283 cfg_layout_finalize (void)
4284 {
4285 #ifdef ENABLE_CHECKING
4286 verify_flow_info ();
4287 #endif
4288 force_one_exit_fallthru ();
4289 rtl_register_cfg_hooks ();
4290 if (reload_completed
4291 #ifdef HAVE_epilogue
4292 && !HAVE_epilogue
4293 #endif
4294 )
4295 fixup_fallthru_exit_predecessor ();
4296 fixup_reorder_chain ();
4297
4298 rebuild_jump_labels (get_insns ());
4299 delete_dead_jumptables ();
4300
4301 #ifdef ENABLE_CHECKING
4302 verify_insn_chain ();
4303 verify_flow_info ();
4304 #endif
4305 }
4306
4307
4308 /* Same as split_block but update cfg_layout structures. */
4309
4310 static basic_block
4311 cfg_layout_split_block (basic_block bb, void *insnp)
4312 {
4313 rtx insn = (rtx) insnp;
4314 basic_block new_bb = rtl_split_block (bb, insn);
4315
4316 BB_FOOTER (new_bb) = BB_FOOTER (bb);
4317 BB_FOOTER (bb) = NULL;
4318
4319 return new_bb;
4320 }
4321
4322 /* Redirect Edge to DEST. */
4323 static edge
4324 cfg_layout_redirect_edge_and_branch (edge e, basic_block dest)
4325 {
4326 basic_block src = e->src;
4327 edge ret;
4328
4329 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
4330 return NULL;
4331
4332 if (e->dest == dest)
4333 return e;
4334
4335 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
4336 && (ret = try_redirect_by_replacing_jump (e, dest, true)))
4337 {
4338 df_set_bb_dirty (src);
4339 return ret;
4340 }
4341
4342 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
4343 && (e->flags & EDGE_FALLTHRU) && !(e->flags & EDGE_COMPLEX))
4344 {
4345 if (dump_file)
4346 fprintf (dump_file, "Redirecting entry edge from bb %i to %i\n",
4347 e->src->index, dest->index);
4348
4349 df_set_bb_dirty (e->src);
4350 redirect_edge_succ (e, dest);
4351 return e;
4352 }
4353
4354 /* Redirect_edge_and_branch may decide to turn branch into fallthru edge
4355 in the case the basic block appears to be in sequence. Avoid this
4356 transformation. */
4357
4358 if (e->flags & EDGE_FALLTHRU)
4359 {
4360 /* Redirect any branch edges unified with the fallthru one. */
4361 if (JUMP_P (BB_END (src))
4362 && label_is_jump_target_p (BB_HEAD (e->dest),
4363 BB_END (src)))
4364 {
4365 edge redirected;
4366
4367 if (dump_file)
4368 fprintf (dump_file, "Fallthru edge unified with branch "
4369 "%i->%i redirected to %i\n",
4370 e->src->index, e->dest->index, dest->index);
4371 e->flags &= ~EDGE_FALLTHRU;
4372 redirected = redirect_branch_edge (e, dest);
4373 gcc_assert (redirected);
4374 redirected->flags |= EDGE_FALLTHRU;
4375 df_set_bb_dirty (redirected->src);
4376 return redirected;
4377 }
4378 /* In case we are redirecting fallthru edge to the branch edge
4379 of conditional jump, remove it. */
4380 if (EDGE_COUNT (src->succs) == 2)
4381 {
4382 /* Find the edge that is different from E. */
4383 edge s = EDGE_SUCC (src, EDGE_SUCC (src, 0) == e);
4384
4385 if (s->dest == dest
4386 && any_condjump_p (BB_END (src))
4387 && onlyjump_p (BB_END (src)))
4388 delete_insn (BB_END (src));
4389 }
4390 if (dump_file)
4391 fprintf (dump_file, "Redirecting fallthru edge %i->%i to %i\n",
4392 e->src->index, e->dest->index, dest->index);
4393 ret = redirect_edge_succ_nodup (e, dest);
4394 }
4395 else
4396 ret = redirect_branch_edge (e, dest);
4397
4398 /* We don't want simplejumps in the insn stream during cfglayout. */
4399 gcc_assert (!simplejump_p (BB_END (src)));
4400
4401 df_set_bb_dirty (src);
4402 return ret;
4403 }
4404
4405 /* Simple wrapper as we always can redirect fallthru edges. */
4406 static basic_block
4407 cfg_layout_redirect_edge_and_branch_force (edge e, basic_block dest)
4408 {
4409 edge redirected = cfg_layout_redirect_edge_and_branch (e, dest);
4410
4411 gcc_assert (redirected);
4412 return NULL;
4413 }
4414
4415 /* Same as delete_basic_block but update cfg_layout structures. */
4416
4417 static void
4418 cfg_layout_delete_block (basic_block bb)
4419 {
4420 rtx insn, next, prev = PREV_INSN (BB_HEAD (bb)), *to, remaints;
4421
4422 if (BB_HEADER (bb))
4423 {
4424 next = BB_HEAD (bb);
4425 if (prev)
4426 NEXT_INSN (prev) = BB_HEADER (bb);
4427 else
4428 set_first_insn (BB_HEADER (bb));
4429 PREV_INSN (BB_HEADER (bb)) = prev;
4430 insn = BB_HEADER (bb);
4431 while (NEXT_INSN (insn))
4432 insn = NEXT_INSN (insn);
4433 NEXT_INSN (insn) = next;
4434 PREV_INSN (next) = insn;
4435 }
4436 next = NEXT_INSN (BB_END (bb));
4437 if (BB_FOOTER (bb))
4438 {
4439 insn = BB_FOOTER (bb);
4440 while (insn)
4441 {
4442 if (BARRIER_P (insn))
4443 {
4444 if (PREV_INSN (insn))
4445 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
4446 else
4447 BB_FOOTER (bb) = NEXT_INSN (insn);
4448 if (NEXT_INSN (insn))
4449 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
4450 }
4451 if (LABEL_P (insn))
4452 break;
4453 insn = NEXT_INSN (insn);
4454 }
4455 if (BB_FOOTER (bb))
4456 {
4457 insn = BB_END (bb);
4458 NEXT_INSN (insn) = BB_FOOTER (bb);
4459 PREV_INSN (BB_FOOTER (bb)) = insn;
4460 while (NEXT_INSN (insn))
4461 insn = NEXT_INSN (insn);
4462 NEXT_INSN (insn) = next;
4463 if (next)
4464 PREV_INSN (next) = insn;
4465 else
4466 set_last_insn (insn);
4467 }
4468 }
4469 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
4470 to = &BB_HEADER (bb->next_bb);
4471 else
4472 to = &cfg_layout_function_footer;
4473
4474 rtl_delete_block (bb);
4475
4476 if (prev)
4477 prev = NEXT_INSN (prev);
4478 else
4479 prev = get_insns ();
4480 if (next)
4481 next = PREV_INSN (next);
4482 else
4483 next = get_last_insn ();
4484
4485 if (next && NEXT_INSN (next) != prev)
4486 {
4487 remaints = unlink_insn_chain (prev, next);
4488 insn = remaints;
4489 while (NEXT_INSN (insn))
4490 insn = NEXT_INSN (insn);
4491 NEXT_INSN (insn) = *to;
4492 if (*to)
4493 PREV_INSN (*to) = insn;
4494 *to = remaints;
4495 }
4496 }
4497
4498 /* Return true when blocks A and B can be safely merged. */
4499
4500 static bool
4501 cfg_layout_can_merge_blocks_p (basic_block a, basic_block b)
4502 {
4503 /* If we are partitioning hot/cold basic blocks, we don't want to
4504 mess up unconditional or indirect jumps that cross between hot
4505 and cold sections.
4506
4507 Basic block partitioning may result in some jumps that appear to
4508 be optimizable (or blocks that appear to be mergeable), but which really
4509 must be left untouched (they are required to make it safely across
4510 partition boundaries). See the comments at the top of
4511 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
4512
4513 if (BB_PARTITION (a) != BB_PARTITION (b))
4514 return false;
4515
4516 /* Protect the loop latches. */
4517 if (current_loops && b->loop_father->latch == b)
4518 return false;
4519
4520 /* If we would end up moving B's instructions, make sure it doesn't fall
4521 through into the exit block, since we cannot recover from a fallthrough
4522 edge into the exit block occurring in the middle of a function. */
4523 if (NEXT_INSN (BB_END (a)) != BB_HEAD (b))
4524 {
4525 edge e = find_fallthru_edge (b->succs);
4526 if (e && e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
4527 return false;
4528 }
4529
4530 /* There must be exactly one edge in between the blocks. */
4531 return (single_succ_p (a)
4532 && single_succ (a) == b
4533 && single_pred_p (b) == 1
4534 && a != b
4535 /* Must be simple edge. */
4536 && !(single_succ_edge (a)->flags & EDGE_COMPLEX)
4537 && a != ENTRY_BLOCK_PTR_FOR_FN (cfun)
4538 && b != EXIT_BLOCK_PTR_FOR_FN (cfun)
4539 /* If the jump insn has side effects, we can't kill the edge.
4540 When not optimizing, try_redirect_by_replacing_jump will
4541 not allow us to redirect an edge by replacing a table jump. */
4542 && (!JUMP_P (BB_END (a))
4543 || ((!optimize || reload_completed)
4544 ? simplejump_p (BB_END (a)) : onlyjump_p (BB_END (a)))));
4545 }
4546
4547 /* Merge block A and B. The blocks must be mergeable. */
4548
4549 static void
4550 cfg_layout_merge_blocks (basic_block a, basic_block b)
4551 {
4552 bool forwarder_p = (b->flags & BB_FORWARDER_BLOCK) != 0;
4553 rtx insn;
4554
4555 gcc_checking_assert (cfg_layout_can_merge_blocks_p (a, b));
4556
4557 if (dump_file)
4558 fprintf (dump_file, "Merging block %d into block %d...\n", b->index,
4559 a->index);
4560
4561 /* If there was a CODE_LABEL beginning B, delete it. */
4562 if (LABEL_P (BB_HEAD (b)))
4563 {
4564 delete_insn (BB_HEAD (b));
4565 }
4566
4567 /* We should have fallthru edge in a, or we can do dummy redirection to get
4568 it cleaned up. */
4569 if (JUMP_P (BB_END (a)))
4570 try_redirect_by_replacing_jump (EDGE_SUCC (a, 0), b, true);
4571 gcc_assert (!JUMP_P (BB_END (a)));
4572
4573 /* When not optimizing CFG and the edge is the only place in RTL which holds
4574 some unique locus, emit a nop with that locus in between. */
4575 if (!optimize)
4576 emit_nop_for_unique_locus_between (a, b);
4577
4578 /* Move things from b->footer after a->footer. */
4579 if (BB_FOOTER (b))
4580 {
4581 if (!BB_FOOTER (a))
4582 BB_FOOTER (a) = BB_FOOTER (b);
4583 else
4584 {
4585 rtx last = BB_FOOTER (a);
4586
4587 while (NEXT_INSN (last))
4588 last = NEXT_INSN (last);
4589 NEXT_INSN (last) = BB_FOOTER (b);
4590 PREV_INSN (BB_FOOTER (b)) = last;
4591 }
4592 BB_FOOTER (b) = NULL;
4593 }
4594
4595 /* Move things from b->header before a->footer.
4596 Note that this may include dead tablejump data, but we don't clean
4597 those up until we go out of cfglayout mode. */
4598 if (BB_HEADER (b))
4599 {
4600 if (! BB_FOOTER (a))
4601 BB_FOOTER (a) = BB_HEADER (b);
4602 else
4603 {
4604 rtx last = BB_HEADER (b);
4605
4606 while (NEXT_INSN (last))
4607 last = NEXT_INSN (last);
4608 NEXT_INSN (last) = BB_FOOTER (a);
4609 PREV_INSN (BB_FOOTER (a)) = last;
4610 BB_FOOTER (a) = BB_HEADER (b);
4611 }
4612 BB_HEADER (b) = NULL;
4613 }
4614
4615 /* In the case basic blocks are not adjacent, move them around. */
4616 if (NEXT_INSN (BB_END (a)) != BB_HEAD (b))
4617 {
4618 insn = unlink_insn_chain (BB_HEAD (b), BB_END (b));
4619
4620 emit_insn_after_noloc (insn, BB_END (a), a);
4621 }
4622 /* Otherwise just re-associate the instructions. */
4623 else
4624 {
4625 insn = BB_HEAD (b);
4626 BB_END (a) = BB_END (b);
4627 }
4628
4629 /* emit_insn_after_noloc doesn't call df_insn_change_bb.
4630 We need to explicitly call. */
4631 update_bb_for_insn_chain (insn, BB_END (b), a);
4632
4633 /* Skip possible DELETED_LABEL insn. */
4634 if (!NOTE_INSN_BASIC_BLOCK_P (insn))
4635 insn = NEXT_INSN (insn);
4636 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
4637 BB_HEAD (b) = BB_END (b) = NULL;
4638 delete_insn (insn);
4639
4640 df_bb_delete (b->index);
4641
4642 /* If B was a forwarder block, propagate the locus on the edge. */
4643 if (forwarder_p
4644 && LOCATION_LOCUS (EDGE_SUCC (b, 0)->goto_locus) == UNKNOWN_LOCATION)
4645 EDGE_SUCC (b, 0)->goto_locus = EDGE_SUCC (a, 0)->goto_locus;
4646
4647 if (dump_file)
4648 fprintf (dump_file, "Merged blocks %d and %d.\n", a->index, b->index);
4649 }
4650
4651 /* Split edge E. */
4652
4653 static basic_block
4654 cfg_layout_split_edge (edge e)
4655 {
4656 basic_block new_bb =
4657 create_basic_block (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
4658 ? NEXT_INSN (BB_END (e->src)) : get_insns (),
4659 NULL_RTX, e->src);
4660
4661 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
4662 BB_COPY_PARTITION (new_bb, e->src);
4663 else
4664 BB_COPY_PARTITION (new_bb, e->dest);
4665 make_edge (new_bb, e->dest, EDGE_FALLTHRU);
4666 redirect_edge_and_branch_force (e, new_bb);
4667
4668 return new_bb;
4669 }
4670
4671 /* Do postprocessing after making a forwarder block joined by edge FALLTHRU. */
4672
4673 static void
4674 rtl_make_forwarder_block (edge fallthru ATTRIBUTE_UNUSED)
4675 {
4676 }
4677
4678 /* Return true if BB contains only labels or non-executable
4679 instructions. */
4680
4681 static bool
4682 rtl_block_empty_p (basic_block bb)
4683 {
4684 rtx insn;
4685
4686 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun)
4687 || bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4688 return true;
4689
4690 FOR_BB_INSNS (bb, insn)
4691 if (NONDEBUG_INSN_P (insn) && !any_uncondjump_p (insn))
4692 return false;
4693
4694 return true;
4695 }
4696
4697 /* Split a basic block if it ends with a conditional branch and if
4698 the other part of the block is not empty. */
4699
4700 static basic_block
4701 rtl_split_block_before_cond_jump (basic_block bb)
4702 {
4703 rtx insn;
4704 rtx split_point = NULL;
4705 rtx last = NULL;
4706 bool found_code = false;
4707
4708 FOR_BB_INSNS (bb, insn)
4709 {
4710 if (any_condjump_p (insn))
4711 split_point = last;
4712 else if (NONDEBUG_INSN_P (insn))
4713 found_code = true;
4714 last = insn;
4715 }
4716
4717 /* Did not find everything. */
4718 if (found_code && split_point)
4719 return split_block (bb, split_point)->dest;
4720 else
4721 return NULL;
4722 }
4723
4724 /* Return 1 if BB ends with a call, possibly followed by some
4725 instructions that must stay with the call, 0 otherwise. */
4726
4727 static bool
4728 rtl_block_ends_with_call_p (basic_block bb)
4729 {
4730 rtx insn = BB_END (bb);
4731
4732 while (!CALL_P (insn)
4733 && insn != BB_HEAD (bb)
4734 && (keep_with_call_p (insn)
4735 || NOTE_P (insn)
4736 || DEBUG_INSN_P (insn)))
4737 insn = PREV_INSN (insn);
4738 return (CALL_P (insn));
4739 }
4740
4741 /* Return 1 if BB ends with a conditional branch, 0 otherwise. */
4742
4743 static bool
4744 rtl_block_ends_with_condjump_p (const_basic_block bb)
4745 {
4746 return any_condjump_p (BB_END (bb));
4747 }
4748
4749 /* Return true if we need to add fake edge to exit.
4750 Helper function for rtl_flow_call_edges_add. */
4751
4752 static bool
4753 need_fake_edge_p (const_rtx insn)
4754 {
4755 if (!INSN_P (insn))
4756 return false;
4757
4758 if ((CALL_P (insn)
4759 && !SIBLING_CALL_P (insn)
4760 && !find_reg_note (insn, REG_NORETURN, NULL)
4761 && !(RTL_CONST_OR_PURE_CALL_P (insn))))
4762 return true;
4763
4764 return ((GET_CODE (PATTERN (insn)) == ASM_OPERANDS
4765 && MEM_VOLATILE_P (PATTERN (insn)))
4766 || (GET_CODE (PATTERN (insn)) == PARALLEL
4767 && asm_noperands (insn) != -1
4768 && MEM_VOLATILE_P (XVECEXP (PATTERN (insn), 0, 0)))
4769 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
4770 }
4771
4772 /* Add fake edges to the function exit for any non constant and non noreturn
4773 calls, volatile inline assembly in the bitmap of blocks specified by
4774 BLOCKS or to the whole CFG if BLOCKS is zero. Return the number of blocks
4775 that were split.
4776
4777 The goal is to expose cases in which entering a basic block does not imply
4778 that all subsequent instructions must be executed. */
4779
4780 static int
4781 rtl_flow_call_edges_add (sbitmap blocks)
4782 {
4783 int i;
4784 int blocks_split = 0;
4785 int last_bb = last_basic_block_for_fn (cfun);
4786 bool check_last_block = false;
4787
4788 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
4789 return 0;
4790
4791 if (! blocks)
4792 check_last_block = true;
4793 else
4794 check_last_block = bitmap_bit_p (blocks,
4795 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb->index);
4796
4797 /* In the last basic block, before epilogue generation, there will be
4798 a fallthru edge to EXIT. Special care is required if the last insn
4799 of the last basic block is a call because make_edge folds duplicate
4800 edges, which would result in the fallthru edge also being marked
4801 fake, which would result in the fallthru edge being removed by
4802 remove_fake_edges, which would result in an invalid CFG.
4803
4804 Moreover, we can't elide the outgoing fake edge, since the block
4805 profiler needs to take this into account in order to solve the minimal
4806 spanning tree in the case that the call doesn't return.
4807
4808 Handle this by adding a dummy instruction in a new last basic block. */
4809 if (check_last_block)
4810 {
4811 basic_block bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
4812 rtx insn = BB_END (bb);
4813
4814 /* Back up past insns that must be kept in the same block as a call. */
4815 while (insn != BB_HEAD (bb)
4816 && keep_with_call_p (insn))
4817 insn = PREV_INSN (insn);
4818
4819 if (need_fake_edge_p (insn))
4820 {
4821 edge e;
4822
4823 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
4824 if (e)
4825 {
4826 insert_insn_on_edge (gen_use (const0_rtx), e);
4827 commit_edge_insertions ();
4828 }
4829 }
4830 }
4831
4832 /* Now add fake edges to the function exit for any non constant
4833 calls since there is no way that we can determine if they will
4834 return or not... */
4835
4836 for (i = NUM_FIXED_BLOCKS; i < last_bb; i++)
4837 {
4838 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
4839 rtx insn;
4840 rtx prev_insn;
4841
4842 if (!bb)
4843 continue;
4844
4845 if (blocks && !bitmap_bit_p (blocks, i))
4846 continue;
4847
4848 for (insn = BB_END (bb); ; insn = prev_insn)
4849 {
4850 prev_insn = PREV_INSN (insn);
4851 if (need_fake_edge_p (insn))
4852 {
4853 edge e;
4854 rtx split_at_insn = insn;
4855
4856 /* Don't split the block between a call and an insn that should
4857 remain in the same block as the call. */
4858 if (CALL_P (insn))
4859 while (split_at_insn != BB_END (bb)
4860 && keep_with_call_p (NEXT_INSN (split_at_insn)))
4861 split_at_insn = NEXT_INSN (split_at_insn);
4862
4863 /* The handling above of the final block before the epilogue
4864 should be enough to verify that there is no edge to the exit
4865 block in CFG already. Calling make_edge in such case would
4866 cause us to mark that edge as fake and remove it later. */
4867
4868 #ifdef ENABLE_CHECKING
4869 if (split_at_insn == BB_END (bb))
4870 {
4871 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
4872 gcc_assert (e == NULL);
4873 }
4874 #endif
4875
4876 /* Note that the following may create a new basic block
4877 and renumber the existing basic blocks. */
4878 if (split_at_insn != BB_END (bb))
4879 {
4880 e = split_block (bb, split_at_insn);
4881 if (e)
4882 blocks_split++;
4883 }
4884
4885 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
4886 }
4887
4888 if (insn == BB_HEAD (bb))
4889 break;
4890 }
4891 }
4892
4893 if (blocks_split)
4894 verify_flow_info ();
4895
4896 return blocks_split;
4897 }
4898
4899 /* Add COMP_RTX as a condition at end of COND_BB. FIRST_HEAD is
4900 the conditional branch target, SECOND_HEAD should be the fall-thru
4901 there is no need to handle this here the loop versioning code handles
4902 this. the reason for SECON_HEAD is that it is needed for condition
4903 in trees, and this should be of the same type since it is a hook. */
4904 static void
4905 rtl_lv_add_condition_to_bb (basic_block first_head ,
4906 basic_block second_head ATTRIBUTE_UNUSED,
4907 basic_block cond_bb, void *comp_rtx)
4908 {
4909 rtx label, seq, jump;
4910 rtx op0 = XEXP ((rtx)comp_rtx, 0);
4911 rtx op1 = XEXP ((rtx)comp_rtx, 1);
4912 enum rtx_code comp = GET_CODE ((rtx)comp_rtx);
4913 enum machine_mode mode;
4914
4915
4916 label = block_label (first_head);
4917 mode = GET_MODE (op0);
4918 if (mode == VOIDmode)
4919 mode = GET_MODE (op1);
4920
4921 start_sequence ();
4922 op0 = force_operand (op0, NULL_RTX);
4923 op1 = force_operand (op1, NULL_RTX);
4924 do_compare_rtx_and_jump (op0, op1, comp, 0,
4925 mode, NULL_RTX, NULL_RTX, label, -1);
4926 jump = get_last_insn ();
4927 JUMP_LABEL (jump) = label;
4928 LABEL_NUSES (label)++;
4929 seq = get_insns ();
4930 end_sequence ();
4931
4932 /* Add the new cond , in the new head. */
4933 emit_insn_after (seq, BB_END (cond_bb));
4934 }
4935
4936
4937 /* Given a block B with unconditional branch at its end, get the
4938 store the return the branch edge and the fall-thru edge in
4939 BRANCH_EDGE and FALLTHRU_EDGE respectively. */
4940 static void
4941 rtl_extract_cond_bb_edges (basic_block b, edge *branch_edge,
4942 edge *fallthru_edge)
4943 {
4944 edge e = EDGE_SUCC (b, 0);
4945
4946 if (e->flags & EDGE_FALLTHRU)
4947 {
4948 *fallthru_edge = e;
4949 *branch_edge = EDGE_SUCC (b, 1);
4950 }
4951 else
4952 {
4953 *branch_edge = e;
4954 *fallthru_edge = EDGE_SUCC (b, 1);
4955 }
4956 }
4957
4958 void
4959 init_rtl_bb_info (basic_block bb)
4960 {
4961 gcc_assert (!bb->il.x.rtl);
4962 bb->il.x.head_ = NULL;
4963 bb->il.x.rtl = ggc_alloc_cleared_rtl_bb_info ();
4964 }
4965
4966 /* Returns true if it is possible to remove edge E by redirecting
4967 it to the destination of the other edge from E->src. */
4968
4969 static bool
4970 rtl_can_remove_branch_p (const_edge e)
4971 {
4972 const_basic_block src = e->src;
4973 const_basic_block target = EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest;
4974 const_rtx insn = BB_END (src), set;
4975
4976 /* The conditions are taken from try_redirect_by_replacing_jump. */
4977 if (target == EXIT_BLOCK_PTR_FOR_FN (cfun))
4978 return false;
4979
4980 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
4981 return false;
4982
4983 if (BB_PARTITION (src) != BB_PARTITION (target))
4984 return false;
4985
4986 if (!onlyjump_p (insn)
4987 || tablejump_p (insn, NULL, NULL))
4988 return false;
4989
4990 set = single_set (insn);
4991 if (!set || side_effects_p (set))
4992 return false;
4993
4994 return true;
4995 }
4996
4997 static basic_block
4998 rtl_duplicate_bb (basic_block bb)
4999 {
5000 bb = cfg_layout_duplicate_bb (bb);
5001 bb->aux = NULL;
5002 return bb;
5003 }
5004
5005 /* Do book-keeping of basic block BB for the profile consistency checker.
5006 If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
5007 then do post-pass accounting. Store the counting in RECORD. */
5008 static void
5009 rtl_account_profile_record (basic_block bb, int after_pass,
5010 struct profile_record *record)
5011 {
5012 rtx insn;
5013 FOR_BB_INSNS (bb, insn)
5014 if (INSN_P (insn))
5015 {
5016 record->size[after_pass]
5017 += insn_rtx_cost (PATTERN (insn), false);
5018 if (profile_status_for_fn (cfun) == PROFILE_READ)
5019 record->time[after_pass]
5020 += insn_rtx_cost (PATTERN (insn), true) * bb->count;
5021 else if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
5022 record->time[after_pass]
5023 += insn_rtx_cost (PATTERN (insn), true) * bb->frequency;
5024 }
5025 }
5026
5027 /* Implementation of CFG manipulation for linearized RTL. */
5028 struct cfg_hooks rtl_cfg_hooks = {
5029 "rtl",
5030 rtl_verify_flow_info,
5031 rtl_dump_bb,
5032 rtl_dump_bb_for_graph,
5033 rtl_create_basic_block,
5034 rtl_redirect_edge_and_branch,
5035 rtl_redirect_edge_and_branch_force,
5036 rtl_can_remove_branch_p,
5037 rtl_delete_block,
5038 rtl_split_block,
5039 rtl_move_block_after,
5040 rtl_can_merge_blocks, /* can_merge_blocks_p */
5041 rtl_merge_blocks,
5042 rtl_predict_edge,
5043 rtl_predicted_by_p,
5044 cfg_layout_can_duplicate_bb_p,
5045 rtl_duplicate_bb,
5046 rtl_split_edge,
5047 rtl_make_forwarder_block,
5048 rtl_tidy_fallthru_edge,
5049 rtl_force_nonfallthru,
5050 rtl_block_ends_with_call_p,
5051 rtl_block_ends_with_condjump_p,
5052 rtl_flow_call_edges_add,
5053 NULL, /* execute_on_growing_pred */
5054 NULL, /* execute_on_shrinking_pred */
5055 NULL, /* duplicate loop for trees */
5056 NULL, /* lv_add_condition_to_bb */
5057 NULL, /* lv_adjust_loop_header_phi*/
5058 NULL, /* extract_cond_bb_edges */
5059 NULL, /* flush_pending_stmts */
5060 rtl_block_empty_p, /* block_empty_p */
5061 rtl_split_block_before_cond_jump, /* split_block_before_cond_jump */
5062 rtl_account_profile_record,
5063 };
5064
5065 /* Implementation of CFG manipulation for cfg layout RTL, where
5066 basic block connected via fallthru edges does not have to be adjacent.
5067 This representation will hopefully become the default one in future
5068 version of the compiler. */
5069
5070 struct cfg_hooks cfg_layout_rtl_cfg_hooks = {
5071 "cfglayout mode",
5072 rtl_verify_flow_info_1,
5073 rtl_dump_bb,
5074 rtl_dump_bb_for_graph,
5075 cfg_layout_create_basic_block,
5076 cfg_layout_redirect_edge_and_branch,
5077 cfg_layout_redirect_edge_and_branch_force,
5078 rtl_can_remove_branch_p,
5079 cfg_layout_delete_block,
5080 cfg_layout_split_block,
5081 rtl_move_block_after,
5082 cfg_layout_can_merge_blocks_p,
5083 cfg_layout_merge_blocks,
5084 rtl_predict_edge,
5085 rtl_predicted_by_p,
5086 cfg_layout_can_duplicate_bb_p,
5087 cfg_layout_duplicate_bb,
5088 cfg_layout_split_edge,
5089 rtl_make_forwarder_block,
5090 NULL, /* tidy_fallthru_edge */
5091 rtl_force_nonfallthru,
5092 rtl_block_ends_with_call_p,
5093 rtl_block_ends_with_condjump_p,
5094 rtl_flow_call_edges_add,
5095 NULL, /* execute_on_growing_pred */
5096 NULL, /* execute_on_shrinking_pred */
5097 duplicate_loop_to_header_edge, /* duplicate loop for trees */
5098 rtl_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
5099 NULL, /* lv_adjust_loop_header_phi*/
5100 rtl_extract_cond_bb_edges, /* extract_cond_bb_edges */
5101 NULL, /* flush_pending_stmts */
5102 rtl_block_empty_p, /* block_empty_p */
5103 rtl_split_block_before_cond_jump, /* split_block_before_cond_jump */
5104 rtl_account_profile_record,
5105 };
5106
5107 #include "gt-cfgrtl.h"