re PR sanitizer/81929 (exponential slowdown in undefined behavior sanitizer for strea...
[gcc.git] / gcc / cfgrtl.c
1 /* Control flow graph manipulation code for GNU compiler.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file contains low level functions to manipulate the CFG and analyze it
21 that are aware of the RTL intermediate language.
22
23 Available functionality:
24 - Basic CFG/RTL manipulation API documented in cfghooks.h
25 - CFG-aware instruction chain manipulation
26 delete_insn, delete_insn_chain
27 - Edge splitting and committing to edges
28 insert_insn_on_edge, commit_edge_insertions
29 - CFG updating after insn simplification
30 purge_dead_edges, purge_all_dead_edges
31 - CFG fixing after coarse manipulation
32 fixup_abnormal_edges
33
34 Functions not supposed for generic use:
35 - Infrastructure to determine quickly basic block for insn
36 compute_bb_for_insn, update_bb_for_insn, set_block_for_insn,
37 - Edge redirection with updating and optimizing of insn chain
38 block_label, tidy_fallthru_edge, force_nonfallthru */
39 \f
40 #include "config.h"
41 #include "system.h"
42 #include "coretypes.h"
43 #include "backend.h"
44 #include "target.h"
45 #include "rtl.h"
46 #include "tree.h"
47 #include "cfghooks.h"
48 #include "df.h"
49 #include "insn-config.h"
50 #include "memmodel.h"
51 #include "emit-rtl.h"
52 #include "cfgrtl.h"
53 #include "cfganal.h"
54 #include "cfgbuild.h"
55 #include "cfgcleanup.h"
56 #include "bb-reorder.h"
57 #include "rtl-error.h"
58 #include "insn-attr.h"
59 #include "dojump.h"
60 #include "expr.h"
61 #include "cfgloop.h"
62 #include "tree-pass.h"
63 #include "print-rtl.h"
64
65 /* Holds the interesting leading and trailing notes for the function.
66 Only applicable if the CFG is in cfglayout mode. */
67 static GTY(()) rtx_insn *cfg_layout_function_footer;
68 static GTY(()) rtx_insn *cfg_layout_function_header;
69
70 static rtx_insn *skip_insns_after_block (basic_block);
71 static void record_effective_endpoints (void);
72 static void fixup_reorder_chain (void);
73
74 void verify_insn_chain (void);
75 static void fixup_fallthru_exit_predecessor (void);
76 static int can_delete_note_p (const rtx_note *);
77 static int can_delete_label_p (const rtx_code_label *);
78 static basic_block rtl_split_edge (edge);
79 static bool rtl_move_block_after (basic_block, basic_block);
80 static int rtl_verify_flow_info (void);
81 static basic_block cfg_layout_split_block (basic_block, void *);
82 static edge cfg_layout_redirect_edge_and_branch (edge, basic_block);
83 static basic_block cfg_layout_redirect_edge_and_branch_force (edge, basic_block);
84 static void cfg_layout_delete_block (basic_block);
85 static void rtl_delete_block (basic_block);
86 static basic_block rtl_redirect_edge_and_branch_force (edge, basic_block);
87 static edge rtl_redirect_edge_and_branch (edge, basic_block);
88 static basic_block rtl_split_block (basic_block, void *);
89 static void rtl_dump_bb (FILE *, basic_block, int, dump_flags_t);
90 static int rtl_verify_flow_info_1 (void);
91 static void rtl_make_forwarder_block (edge);
92 \f
93 /* Return true if NOTE is not one of the ones that must be kept paired,
94 so that we may simply delete it. */
95
96 static int
97 can_delete_note_p (const rtx_note *note)
98 {
99 switch (NOTE_KIND (note))
100 {
101 case NOTE_INSN_DELETED:
102 case NOTE_INSN_BASIC_BLOCK:
103 case NOTE_INSN_EPILOGUE_BEG:
104 return true;
105
106 default:
107 return false;
108 }
109 }
110
111 /* True if a given label can be deleted. */
112
113 static int
114 can_delete_label_p (const rtx_code_label *label)
115 {
116 return (!LABEL_PRESERVE_P (label)
117 /* User declared labels must be preserved. */
118 && LABEL_NAME (label) == 0
119 && !vec_safe_contains<rtx_insn *> (forced_labels,
120 const_cast<rtx_code_label *> (label)));
121 }
122
123 /* Delete INSN by patching it out. */
124
125 void
126 delete_insn (rtx_insn *insn)
127 {
128 rtx note;
129 bool really_delete = true;
130
131 if (LABEL_P (insn))
132 {
133 /* Some labels can't be directly removed from the INSN chain, as they
134 might be references via variables, constant pool etc.
135 Convert them to the special NOTE_INSN_DELETED_LABEL note. */
136 if (! can_delete_label_p (as_a <rtx_code_label *> (insn)))
137 {
138 const char *name = LABEL_NAME (insn);
139 basic_block bb = BLOCK_FOR_INSN (insn);
140 rtx_insn *bb_note = NEXT_INSN (insn);
141
142 really_delete = false;
143 PUT_CODE (insn, NOTE);
144 NOTE_KIND (insn) = NOTE_INSN_DELETED_LABEL;
145 NOTE_DELETED_LABEL_NAME (insn) = name;
146
147 /* If the note following the label starts a basic block, and the
148 label is a member of the same basic block, interchange the two. */
149 if (bb_note != NULL_RTX
150 && NOTE_INSN_BASIC_BLOCK_P (bb_note)
151 && bb != NULL
152 && bb == BLOCK_FOR_INSN (bb_note))
153 {
154 reorder_insns_nobb (insn, insn, bb_note);
155 BB_HEAD (bb) = bb_note;
156 if (BB_END (bb) == bb_note)
157 BB_END (bb) = insn;
158 }
159 }
160
161 remove_node_from_insn_list (insn, &nonlocal_goto_handler_labels);
162 }
163
164 if (really_delete)
165 {
166 /* If this insn has already been deleted, something is very wrong. */
167 gcc_assert (!insn->deleted ());
168 if (INSN_P (insn))
169 df_insn_delete (insn);
170 remove_insn (insn);
171 insn->set_deleted ();
172 }
173
174 /* If deleting a jump, decrement the use count of the label. Deleting
175 the label itself should happen in the normal course of block merging. */
176 if (JUMP_P (insn))
177 {
178 if (JUMP_LABEL (insn)
179 && LABEL_P (JUMP_LABEL (insn)))
180 LABEL_NUSES (JUMP_LABEL (insn))--;
181
182 /* If there are more targets, remove them too. */
183 while ((note
184 = find_reg_note (insn, REG_LABEL_TARGET, NULL_RTX)) != NULL_RTX
185 && LABEL_P (XEXP (note, 0)))
186 {
187 LABEL_NUSES (XEXP (note, 0))--;
188 remove_note (insn, note);
189 }
190 }
191
192 /* Also if deleting any insn that references a label as an operand. */
193 while ((note = find_reg_note (insn, REG_LABEL_OPERAND, NULL_RTX)) != NULL_RTX
194 && LABEL_P (XEXP (note, 0)))
195 {
196 LABEL_NUSES (XEXP (note, 0))--;
197 remove_note (insn, note);
198 }
199
200 if (rtx_jump_table_data *table = dyn_cast <rtx_jump_table_data *> (insn))
201 {
202 rtvec vec = table->get_labels ();
203 int len = GET_NUM_ELEM (vec);
204 int i;
205
206 for (i = 0; i < len; i++)
207 {
208 rtx label = XEXP (RTVEC_ELT (vec, i), 0);
209
210 /* When deleting code in bulk (e.g. removing many unreachable
211 blocks) we can delete a label that's a target of the vector
212 before deleting the vector itself. */
213 if (!NOTE_P (label))
214 LABEL_NUSES (label)--;
215 }
216 }
217 }
218
219 /* Like delete_insn but also purge dead edges from BB.
220 Return true if any edges are eliminated. */
221
222 bool
223 delete_insn_and_edges (rtx_insn *insn)
224 {
225 bool purge = false;
226
227 if (INSN_P (insn)
228 && BLOCK_FOR_INSN (insn)
229 && BB_END (BLOCK_FOR_INSN (insn)) == insn)
230 purge = true;
231 delete_insn (insn);
232 if (purge)
233 return purge_dead_edges (BLOCK_FOR_INSN (insn));
234 return false;
235 }
236
237 /* Unlink a chain of insns between START and FINISH, leaving notes
238 that must be paired. If CLEAR_BB is true, we set bb field for
239 insns that cannot be removed to NULL. */
240
241 void
242 delete_insn_chain (rtx start, rtx_insn *finish, bool clear_bb)
243 {
244 /* Unchain the insns one by one. It would be quicker to delete all of these
245 with a single unchaining, rather than one at a time, but we need to keep
246 the NOTE's. */
247 rtx_insn *current = finish;
248 while (1)
249 {
250 rtx_insn *prev = PREV_INSN (current);
251 if (NOTE_P (current) && !can_delete_note_p (as_a <rtx_note *> (current)))
252 ;
253 else
254 delete_insn (current);
255
256 if (clear_bb && !current->deleted ())
257 set_block_for_insn (current, NULL);
258
259 if (current == start)
260 break;
261 current = prev;
262 }
263 }
264 \f
265 /* Create a new basic block consisting of the instructions between HEAD and END
266 inclusive. This function is designed to allow fast BB construction - reuses
267 the note and basic block struct in BB_NOTE, if any and do not grow
268 BASIC_BLOCK chain and should be used directly only by CFG construction code.
269 END can be NULL in to create new empty basic block before HEAD. Both END
270 and HEAD can be NULL to create basic block at the end of INSN chain.
271 AFTER is the basic block we should be put after. */
272
273 basic_block
274 create_basic_block_structure (rtx_insn *head, rtx_insn *end, rtx_note *bb_note,
275 basic_block after)
276 {
277 basic_block bb;
278
279 if (bb_note
280 && (bb = NOTE_BASIC_BLOCK (bb_note)) != NULL
281 && bb->aux == NULL)
282 {
283 /* If we found an existing note, thread it back onto the chain. */
284
285 rtx_insn *after;
286
287 if (LABEL_P (head))
288 after = head;
289 else
290 {
291 after = PREV_INSN (head);
292 head = bb_note;
293 }
294
295 if (after != bb_note && NEXT_INSN (after) != bb_note)
296 reorder_insns_nobb (bb_note, bb_note, after);
297 }
298 else
299 {
300 /* Otherwise we must create a note and a basic block structure. */
301
302 bb = alloc_block ();
303
304 init_rtl_bb_info (bb);
305 if (!head && !end)
306 head = end = bb_note
307 = emit_note_after (NOTE_INSN_BASIC_BLOCK, get_last_insn ());
308 else if (LABEL_P (head) && end)
309 {
310 bb_note = emit_note_after (NOTE_INSN_BASIC_BLOCK, head);
311 if (head == end)
312 end = bb_note;
313 }
314 else
315 {
316 bb_note = emit_note_before (NOTE_INSN_BASIC_BLOCK, head);
317 head = bb_note;
318 if (!end)
319 end = head;
320 }
321
322 NOTE_BASIC_BLOCK (bb_note) = bb;
323 }
324
325 /* Always include the bb note in the block. */
326 if (NEXT_INSN (end) == bb_note)
327 end = bb_note;
328
329 BB_HEAD (bb) = head;
330 BB_END (bb) = end;
331 bb->index = last_basic_block_for_fn (cfun)++;
332 bb->flags = BB_NEW | BB_RTL;
333 link_block (bb, after);
334 SET_BASIC_BLOCK_FOR_FN (cfun, bb->index, bb);
335 df_bb_refs_record (bb->index, false);
336 update_bb_for_insn (bb);
337 BB_SET_PARTITION (bb, BB_UNPARTITIONED);
338
339 /* Tag the block so that we know it has been used when considering
340 other basic block notes. */
341 bb->aux = bb;
342
343 return bb;
344 }
345
346 /* Create new basic block consisting of instructions in between HEAD and END
347 and place it to the BB chain after block AFTER. END can be NULL to
348 create a new empty basic block before HEAD. Both END and HEAD can be
349 NULL to create basic block at the end of INSN chain. */
350
351 static basic_block
352 rtl_create_basic_block (void *headp, void *endp, basic_block after)
353 {
354 rtx_insn *head = (rtx_insn *) headp;
355 rtx_insn *end = (rtx_insn *) endp;
356 basic_block bb;
357
358 /* Grow the basic block array if needed. */
359 if ((size_t) last_basic_block_for_fn (cfun)
360 >= basic_block_info_for_fn (cfun)->length ())
361 {
362 size_t new_size =
363 (last_basic_block_for_fn (cfun)
364 + (last_basic_block_for_fn (cfun) + 3) / 4);
365 vec_safe_grow_cleared (basic_block_info_for_fn (cfun), new_size);
366 }
367
368 n_basic_blocks_for_fn (cfun)++;
369
370 bb = create_basic_block_structure (head, end, NULL, after);
371 bb->aux = NULL;
372 return bb;
373 }
374
375 static basic_block
376 cfg_layout_create_basic_block (void *head, void *end, basic_block after)
377 {
378 basic_block newbb = rtl_create_basic_block (head, end, after);
379
380 return newbb;
381 }
382 \f
383 /* Delete the insns in a (non-live) block. We physically delete every
384 non-deleted-note insn, and update the flow graph appropriately.
385
386 Return nonzero if we deleted an exception handler. */
387
388 /* ??? Preserving all such notes strikes me as wrong. It would be nice
389 to post-process the stream to remove empty blocks, loops, ranges, etc. */
390
391 static void
392 rtl_delete_block (basic_block b)
393 {
394 rtx_insn *insn, *end;
395
396 /* If the head of this block is a CODE_LABEL, then it might be the
397 label for an exception handler which can't be reached. We need
398 to remove the label from the exception_handler_label list. */
399 insn = BB_HEAD (b);
400
401 end = get_last_bb_insn (b);
402
403 /* Selectively delete the entire chain. */
404 BB_HEAD (b) = NULL;
405 delete_insn_chain (insn, end, true);
406
407
408 if (dump_file)
409 fprintf (dump_file, "deleting block %d\n", b->index);
410 df_bb_delete (b->index);
411 }
412 \f
413 /* Records the basic block struct in BLOCK_FOR_INSN for every insn. */
414
415 void
416 compute_bb_for_insn (void)
417 {
418 basic_block bb;
419
420 FOR_EACH_BB_FN (bb, cfun)
421 {
422 rtx_insn *end = BB_END (bb);
423 rtx_insn *insn;
424
425 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
426 {
427 BLOCK_FOR_INSN (insn) = bb;
428 if (insn == end)
429 break;
430 }
431 }
432 }
433
434 /* Release the basic_block_for_insn array. */
435
436 unsigned int
437 free_bb_for_insn (void)
438 {
439 rtx_insn *insn;
440 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
441 if (!BARRIER_P (insn))
442 BLOCK_FOR_INSN (insn) = NULL;
443 return 0;
444 }
445
446 namespace {
447
448 const pass_data pass_data_free_cfg =
449 {
450 RTL_PASS, /* type */
451 "*free_cfg", /* name */
452 OPTGROUP_NONE, /* optinfo_flags */
453 TV_NONE, /* tv_id */
454 0, /* properties_required */
455 0, /* properties_provided */
456 PROP_cfg, /* properties_destroyed */
457 0, /* todo_flags_start */
458 0, /* todo_flags_finish */
459 };
460
461 class pass_free_cfg : public rtl_opt_pass
462 {
463 public:
464 pass_free_cfg (gcc::context *ctxt)
465 : rtl_opt_pass (pass_data_free_cfg, ctxt)
466 {}
467
468 /* opt_pass methods: */
469 virtual unsigned int execute (function *);
470
471 }; // class pass_free_cfg
472
473 unsigned int
474 pass_free_cfg::execute (function *)
475 {
476 /* The resource.c machinery uses DF but the CFG isn't guaranteed to be
477 valid at that point so it would be too late to call df_analyze. */
478 if (DELAY_SLOTS && optimize > 0 && flag_delayed_branch)
479 {
480 df_note_add_problem ();
481 df_analyze ();
482 }
483
484 if (crtl->has_bb_partition)
485 insert_section_boundary_note ();
486
487 free_bb_for_insn ();
488 return 0;
489 }
490
491 } // anon namespace
492
493 rtl_opt_pass *
494 make_pass_free_cfg (gcc::context *ctxt)
495 {
496 return new pass_free_cfg (ctxt);
497 }
498
499 /* Return RTX to emit after when we want to emit code on the entry of function. */
500 rtx_insn *
501 entry_of_function (void)
502 {
503 return (n_basic_blocks_for_fn (cfun) > NUM_FIXED_BLOCKS ?
504 BB_HEAD (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb) : get_insns ());
505 }
506
507 /* Emit INSN at the entry point of the function, ensuring that it is only
508 executed once per function. */
509 void
510 emit_insn_at_entry (rtx insn)
511 {
512 edge_iterator ei = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
513 edge e = ei_safe_edge (ei);
514 gcc_assert (e->flags & EDGE_FALLTHRU);
515
516 insert_insn_on_edge (insn, e);
517 commit_edge_insertions ();
518 }
519
520 /* Update BLOCK_FOR_INSN of insns between BEGIN and END
521 (or BARRIER if found) and notify df of the bb change.
522 The insn chain range is inclusive
523 (i.e. both BEGIN and END will be updated. */
524
525 static void
526 update_bb_for_insn_chain (rtx_insn *begin, rtx_insn *end, basic_block bb)
527 {
528 rtx_insn *insn;
529
530 end = NEXT_INSN (end);
531 for (insn = begin; insn != end; insn = NEXT_INSN (insn))
532 if (!BARRIER_P (insn))
533 df_insn_change_bb (insn, bb);
534 }
535
536 /* Update BLOCK_FOR_INSN of insns in BB to BB,
537 and notify df of the change. */
538
539 void
540 update_bb_for_insn (basic_block bb)
541 {
542 update_bb_for_insn_chain (BB_HEAD (bb), BB_END (bb), bb);
543 }
544
545 \f
546 /* Like active_insn_p, except keep the return value clobber around
547 even after reload. */
548
549 static bool
550 flow_active_insn_p (const rtx_insn *insn)
551 {
552 if (active_insn_p (insn))
553 return true;
554
555 /* A clobber of the function return value exists for buggy
556 programs that fail to return a value. Its effect is to
557 keep the return value from being live across the entire
558 function. If we allow it to be skipped, we introduce the
559 possibility for register lifetime confusion. */
560 if (GET_CODE (PATTERN (insn)) == CLOBBER
561 && REG_P (XEXP (PATTERN (insn), 0))
562 && REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))
563 return true;
564
565 return false;
566 }
567
568 /* Return true if the block has no effect and only forwards control flow to
569 its single destination. */
570
571 bool
572 contains_no_active_insn_p (const_basic_block bb)
573 {
574 rtx_insn *insn;
575
576 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
577 || bb == ENTRY_BLOCK_PTR_FOR_FN (cfun)
578 || !single_succ_p (bb)
579 || (single_succ_edge (bb)->flags & EDGE_FAKE) != 0)
580 return false;
581
582 for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
583 if (INSN_P (insn) && flow_active_insn_p (insn))
584 return false;
585
586 return (!INSN_P (insn)
587 || (JUMP_P (insn) && simplejump_p (insn))
588 || !flow_active_insn_p (insn));
589 }
590
591 /* Likewise, but protect loop latches, headers and preheaders. */
592 /* FIXME: Make this a cfg hook. */
593
594 bool
595 forwarder_block_p (const_basic_block bb)
596 {
597 if (!contains_no_active_insn_p (bb))
598 return false;
599
600 /* Protect loop latches, headers and preheaders. */
601 if (current_loops)
602 {
603 basic_block dest;
604 if (bb->loop_father->header == bb)
605 return false;
606 dest = EDGE_SUCC (bb, 0)->dest;
607 if (dest->loop_father->header == dest)
608 return false;
609 }
610
611 return true;
612 }
613
614 /* Return nonzero if we can reach target from src by falling through. */
615 /* FIXME: Make this a cfg hook, the result is only valid in cfgrtl mode. */
616
617 bool
618 can_fallthru (basic_block src, basic_block target)
619 {
620 rtx_insn *insn = BB_END (src);
621 rtx_insn *insn2;
622 edge e;
623 edge_iterator ei;
624
625 if (target == EXIT_BLOCK_PTR_FOR_FN (cfun))
626 return true;
627 if (src->next_bb != target)
628 return false;
629
630 /* ??? Later we may add code to move jump tables offline. */
631 if (tablejump_p (insn, NULL, NULL))
632 return false;
633
634 FOR_EACH_EDGE (e, ei, src->succs)
635 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
636 && e->flags & EDGE_FALLTHRU)
637 return false;
638
639 insn2 = BB_HEAD (target);
640 if (!active_insn_p (insn2))
641 insn2 = next_active_insn (insn2);
642
643 return next_active_insn (insn) == insn2;
644 }
645
646 /* Return nonzero if we could reach target from src by falling through,
647 if the target was made adjacent. If we already have a fall-through
648 edge to the exit block, we can't do that. */
649 static bool
650 could_fall_through (basic_block src, basic_block target)
651 {
652 edge e;
653 edge_iterator ei;
654
655 if (target == EXIT_BLOCK_PTR_FOR_FN (cfun))
656 return true;
657 FOR_EACH_EDGE (e, ei, src->succs)
658 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
659 && e->flags & EDGE_FALLTHRU)
660 return 0;
661 return true;
662 }
663 \f
664 /* Return the NOTE_INSN_BASIC_BLOCK of BB. */
665 rtx_note *
666 bb_note (basic_block bb)
667 {
668 rtx_insn *note;
669
670 note = BB_HEAD (bb);
671 if (LABEL_P (note))
672 note = NEXT_INSN (note);
673
674 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
675 return as_a <rtx_note *> (note);
676 }
677
678 /* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
679 note associated with the BLOCK. */
680
681 static rtx_insn *
682 first_insn_after_basic_block_note (basic_block block)
683 {
684 rtx_insn *insn;
685
686 /* Get the first instruction in the block. */
687 insn = BB_HEAD (block);
688
689 if (insn == NULL_RTX)
690 return NULL;
691 if (LABEL_P (insn))
692 insn = NEXT_INSN (insn);
693 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
694
695 return NEXT_INSN (insn);
696 }
697
698 /* Creates a new basic block just after basic block BB by splitting
699 everything after specified instruction INSNP. */
700
701 static basic_block
702 rtl_split_block (basic_block bb, void *insnp)
703 {
704 basic_block new_bb;
705 rtx_insn *insn = (rtx_insn *) insnp;
706 edge e;
707 edge_iterator ei;
708
709 if (!insn)
710 {
711 insn = first_insn_after_basic_block_note (bb);
712
713 if (insn)
714 {
715 rtx_insn *next = insn;
716
717 insn = PREV_INSN (insn);
718
719 /* If the block contains only debug insns, insn would have
720 been NULL in a non-debug compilation, and then we'd end
721 up emitting a DELETED note. For -fcompare-debug
722 stability, emit the note too. */
723 if (insn != BB_END (bb)
724 && DEBUG_INSN_P (next)
725 && DEBUG_INSN_P (BB_END (bb)))
726 {
727 while (next != BB_END (bb) && DEBUG_INSN_P (next))
728 next = NEXT_INSN (next);
729
730 if (next == BB_END (bb))
731 emit_note_after (NOTE_INSN_DELETED, next);
732 }
733 }
734 else
735 insn = get_last_insn ();
736 }
737
738 /* We probably should check type of the insn so that we do not create
739 inconsistent cfg. It is checked in verify_flow_info anyway, so do not
740 bother. */
741 if (insn == BB_END (bb))
742 emit_note_after (NOTE_INSN_DELETED, insn);
743
744 /* Create the new basic block. */
745 new_bb = create_basic_block (NEXT_INSN (insn), BB_END (bb), bb);
746 BB_COPY_PARTITION (new_bb, bb);
747 BB_END (bb) = insn;
748
749 /* Redirect the outgoing edges. */
750 new_bb->succs = bb->succs;
751 bb->succs = NULL;
752 FOR_EACH_EDGE (e, ei, new_bb->succs)
753 e->src = new_bb;
754
755 /* The new block starts off being dirty. */
756 df_set_bb_dirty (bb);
757 return new_bb;
758 }
759
760 /* Return true if the single edge between blocks A and B is the only place
761 in RTL which holds some unique locus. */
762
763 static bool
764 unique_locus_on_edge_between_p (basic_block a, basic_block b)
765 {
766 const location_t goto_locus = EDGE_SUCC (a, 0)->goto_locus;
767 rtx_insn *insn, *end;
768
769 if (LOCATION_LOCUS (goto_locus) == UNKNOWN_LOCATION)
770 return false;
771
772 /* First scan block A backward. */
773 insn = BB_END (a);
774 end = PREV_INSN (BB_HEAD (a));
775 while (insn != end && (!NONDEBUG_INSN_P (insn) || !INSN_HAS_LOCATION (insn)))
776 insn = PREV_INSN (insn);
777
778 if (insn != end && INSN_LOCATION (insn) == goto_locus)
779 return false;
780
781 /* Then scan block B forward. */
782 insn = BB_HEAD (b);
783 if (insn)
784 {
785 end = NEXT_INSN (BB_END (b));
786 while (insn != end && !NONDEBUG_INSN_P (insn))
787 insn = NEXT_INSN (insn);
788
789 if (insn != end && INSN_HAS_LOCATION (insn)
790 && INSN_LOCATION (insn) == goto_locus)
791 return false;
792 }
793
794 return true;
795 }
796
797 /* If the single edge between blocks A and B is the only place in RTL which
798 holds some unique locus, emit a nop with that locus between the blocks. */
799
800 static void
801 emit_nop_for_unique_locus_between (basic_block a, basic_block b)
802 {
803 if (!unique_locus_on_edge_between_p (a, b))
804 return;
805
806 BB_END (a) = emit_insn_after_noloc (gen_nop (), BB_END (a), a);
807 INSN_LOCATION (BB_END (a)) = EDGE_SUCC (a, 0)->goto_locus;
808 }
809
810 /* Blocks A and B are to be merged into a single block A. The insns
811 are already contiguous. */
812
813 static void
814 rtl_merge_blocks (basic_block a, basic_block b)
815 {
816 rtx_insn *b_head = BB_HEAD (b), *b_end = BB_END (b), *a_end = BB_END (a);
817 rtx_insn *del_first = NULL, *del_last = NULL;
818 rtx_insn *b_debug_start = b_end, *b_debug_end = b_end;
819 bool forwarder_p = (b->flags & BB_FORWARDER_BLOCK) != 0;
820 int b_empty = 0;
821
822 if (dump_file)
823 fprintf (dump_file, "Merging block %d into block %d...\n", b->index,
824 a->index);
825
826 while (DEBUG_INSN_P (b_end))
827 b_end = PREV_INSN (b_debug_start = b_end);
828
829 /* If there was a CODE_LABEL beginning B, delete it. */
830 if (LABEL_P (b_head))
831 {
832 /* Detect basic blocks with nothing but a label. This can happen
833 in particular at the end of a function. */
834 if (b_head == b_end)
835 b_empty = 1;
836
837 del_first = del_last = b_head;
838 b_head = NEXT_INSN (b_head);
839 }
840
841 /* Delete the basic block note and handle blocks containing just that
842 note. */
843 if (NOTE_INSN_BASIC_BLOCK_P (b_head))
844 {
845 if (b_head == b_end)
846 b_empty = 1;
847 if (! del_last)
848 del_first = b_head;
849
850 del_last = b_head;
851 b_head = NEXT_INSN (b_head);
852 }
853
854 /* If there was a jump out of A, delete it. */
855 if (JUMP_P (a_end))
856 {
857 rtx_insn *prev;
858
859 for (prev = PREV_INSN (a_end); ; prev = PREV_INSN (prev))
860 if (!NOTE_P (prev)
861 || NOTE_INSN_BASIC_BLOCK_P (prev)
862 || prev == BB_HEAD (a))
863 break;
864
865 del_first = a_end;
866
867 /* If this was a conditional jump, we need to also delete
868 the insn that set cc0. */
869 if (HAVE_cc0 && only_sets_cc0_p (prev))
870 {
871 rtx_insn *tmp = prev;
872
873 prev = prev_nonnote_insn (prev);
874 if (!prev)
875 prev = BB_HEAD (a);
876 del_first = tmp;
877 }
878
879 a_end = PREV_INSN (del_first);
880 }
881 else if (BARRIER_P (NEXT_INSN (a_end)))
882 del_first = NEXT_INSN (a_end);
883
884 /* Delete everything marked above as well as crap that might be
885 hanging out between the two blocks. */
886 BB_END (a) = a_end;
887 BB_HEAD (b) = b_empty ? NULL : b_head;
888 delete_insn_chain (del_first, del_last, true);
889
890 /* When not optimizing and the edge is the only place in RTL which holds
891 some unique locus, emit a nop with that locus in between. */
892 if (!optimize)
893 {
894 emit_nop_for_unique_locus_between (a, b);
895 a_end = BB_END (a);
896 }
897
898 /* Reassociate the insns of B with A. */
899 if (!b_empty)
900 {
901 update_bb_for_insn_chain (a_end, b_debug_end, a);
902
903 BB_END (a) = b_debug_end;
904 BB_HEAD (b) = NULL;
905 }
906 else if (b_end != b_debug_end)
907 {
908 /* Move any deleted labels and other notes between the end of A
909 and the debug insns that make up B after the debug insns,
910 bringing the debug insns into A while keeping the notes after
911 the end of A. */
912 if (NEXT_INSN (a_end) != b_debug_start)
913 reorder_insns_nobb (NEXT_INSN (a_end), PREV_INSN (b_debug_start),
914 b_debug_end);
915 update_bb_for_insn_chain (b_debug_start, b_debug_end, a);
916 BB_END (a) = b_debug_end;
917 }
918
919 df_bb_delete (b->index);
920
921 /* If B was a forwarder block, propagate the locus on the edge. */
922 if (forwarder_p
923 && LOCATION_LOCUS (EDGE_SUCC (b, 0)->goto_locus) == UNKNOWN_LOCATION)
924 EDGE_SUCC (b, 0)->goto_locus = EDGE_SUCC (a, 0)->goto_locus;
925
926 if (dump_file)
927 fprintf (dump_file, "Merged blocks %d and %d.\n", a->index, b->index);
928 }
929
930
931 /* Return true when block A and B can be merged. */
932
933 static bool
934 rtl_can_merge_blocks (basic_block a, basic_block b)
935 {
936 /* If we are partitioning hot/cold basic blocks, we don't want to
937 mess up unconditional or indirect jumps that cross between hot
938 and cold sections.
939
940 Basic block partitioning may result in some jumps that appear to
941 be optimizable (or blocks that appear to be mergeable), but which really
942 must be left untouched (they are required to make it safely across
943 partition boundaries). See the comments at the top of
944 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
945
946 if (BB_PARTITION (a) != BB_PARTITION (b))
947 return false;
948
949 /* Protect the loop latches. */
950 if (current_loops && b->loop_father->latch == b)
951 return false;
952
953 /* There must be exactly one edge in between the blocks. */
954 return (single_succ_p (a)
955 && single_succ (a) == b
956 && single_pred_p (b)
957 && a != b
958 /* Must be simple edge. */
959 && !(single_succ_edge (a)->flags & EDGE_COMPLEX)
960 && a->next_bb == b
961 && a != ENTRY_BLOCK_PTR_FOR_FN (cfun)
962 && b != EXIT_BLOCK_PTR_FOR_FN (cfun)
963 /* If the jump insn has side effects,
964 we can't kill the edge. */
965 && (!JUMP_P (BB_END (a))
966 || (reload_completed
967 ? simplejump_p (BB_END (a)) : onlyjump_p (BB_END (a)))));
968 }
969 \f
970 /* Return the label in the head of basic block BLOCK. Create one if it doesn't
971 exist. */
972
973 rtx_code_label *
974 block_label (basic_block block)
975 {
976 if (block == EXIT_BLOCK_PTR_FOR_FN (cfun))
977 return NULL;
978
979 if (!LABEL_P (BB_HEAD (block)))
980 {
981 BB_HEAD (block) = emit_label_before (gen_label_rtx (), BB_HEAD (block));
982 }
983
984 return as_a <rtx_code_label *> (BB_HEAD (block));
985 }
986
987 /* Attempt to perform edge redirection by replacing possibly complex jump
988 instruction by unconditional jump or removing jump completely. This can
989 apply only if all edges now point to the same block. The parameters and
990 return values are equivalent to redirect_edge_and_branch. */
991
992 edge
993 try_redirect_by_replacing_jump (edge e, basic_block target, bool in_cfglayout)
994 {
995 basic_block src = e->src;
996 rtx_insn *insn = BB_END (src), *kill_from;
997 rtx set;
998 int fallthru = 0;
999
1000 /* If we are partitioning hot/cold basic blocks, we don't want to
1001 mess up unconditional or indirect jumps that cross between hot
1002 and cold sections.
1003
1004 Basic block partitioning may result in some jumps that appear to
1005 be optimizable (or blocks that appear to be mergeable), but which really
1006 must be left untouched (they are required to make it safely across
1007 partition boundaries). See the comments at the top of
1008 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
1009
1010 if (BB_PARTITION (src) != BB_PARTITION (target))
1011 return NULL;
1012
1013 /* We can replace or remove a complex jump only when we have exactly
1014 two edges. Also, if we have exactly one outgoing edge, we can
1015 redirect that. */
1016 if (EDGE_COUNT (src->succs) >= 3
1017 /* Verify that all targets will be TARGET. Specifically, the
1018 edge that is not E must also go to TARGET. */
1019 || (EDGE_COUNT (src->succs) == 2
1020 && EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target))
1021 return NULL;
1022
1023 if (!onlyjump_p (insn))
1024 return NULL;
1025 if ((!optimize || reload_completed) && tablejump_p (insn, NULL, NULL))
1026 return NULL;
1027
1028 /* Avoid removing branch with side effects. */
1029 set = single_set (insn);
1030 if (!set || side_effects_p (set))
1031 return NULL;
1032
1033 /* In case we zap a conditional jump, we'll need to kill
1034 the cc0 setter too. */
1035 kill_from = insn;
1036 if (HAVE_cc0 && reg_mentioned_p (cc0_rtx, PATTERN (insn))
1037 && only_sets_cc0_p (PREV_INSN (insn)))
1038 kill_from = PREV_INSN (insn);
1039
1040 /* See if we can create the fallthru edge. */
1041 if (in_cfglayout || can_fallthru (src, target))
1042 {
1043 if (dump_file)
1044 fprintf (dump_file, "Removing jump %i.\n", INSN_UID (insn));
1045 fallthru = 1;
1046
1047 /* Selectively unlink whole insn chain. */
1048 if (in_cfglayout)
1049 {
1050 rtx_insn *insn = BB_FOOTER (src);
1051
1052 delete_insn_chain (kill_from, BB_END (src), false);
1053
1054 /* Remove barriers but keep jumptables. */
1055 while (insn)
1056 {
1057 if (BARRIER_P (insn))
1058 {
1059 if (PREV_INSN (insn))
1060 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
1061 else
1062 BB_FOOTER (src) = NEXT_INSN (insn);
1063 if (NEXT_INSN (insn))
1064 SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
1065 }
1066 if (LABEL_P (insn))
1067 break;
1068 insn = NEXT_INSN (insn);
1069 }
1070 }
1071 else
1072 delete_insn_chain (kill_from, PREV_INSN (BB_HEAD (target)),
1073 false);
1074 }
1075
1076 /* If this already is simplejump, redirect it. */
1077 else if (simplejump_p (insn))
1078 {
1079 if (e->dest == target)
1080 return NULL;
1081 if (dump_file)
1082 fprintf (dump_file, "Redirecting jump %i from %i to %i.\n",
1083 INSN_UID (insn), e->dest->index, target->index);
1084 if (!redirect_jump (as_a <rtx_jump_insn *> (insn),
1085 block_label (target), 0))
1086 {
1087 gcc_assert (target == EXIT_BLOCK_PTR_FOR_FN (cfun));
1088 return NULL;
1089 }
1090 }
1091
1092 /* Cannot do anything for target exit block. */
1093 else if (target == EXIT_BLOCK_PTR_FOR_FN (cfun))
1094 return NULL;
1095
1096 /* Or replace possibly complicated jump insn by simple jump insn. */
1097 else
1098 {
1099 rtx_code_label *target_label = block_label (target);
1100 rtx_insn *barrier;
1101 rtx_insn *label;
1102 rtx_jump_table_data *table;
1103
1104 emit_jump_insn_after_noloc (targetm.gen_jump (target_label), insn);
1105 JUMP_LABEL (BB_END (src)) = target_label;
1106 LABEL_NUSES (target_label)++;
1107 if (dump_file)
1108 fprintf (dump_file, "Replacing insn %i by jump %i\n",
1109 INSN_UID (insn), INSN_UID (BB_END (src)));
1110
1111
1112 delete_insn_chain (kill_from, insn, false);
1113
1114 /* Recognize a tablejump that we are converting to a
1115 simple jump and remove its associated CODE_LABEL
1116 and ADDR_VEC or ADDR_DIFF_VEC. */
1117 if (tablejump_p (insn, &label, &table))
1118 delete_insn_chain (label, table, false);
1119
1120 barrier = next_nonnote_insn (BB_END (src));
1121 if (!barrier || !BARRIER_P (barrier))
1122 emit_barrier_after (BB_END (src));
1123 else
1124 {
1125 if (barrier != NEXT_INSN (BB_END (src)))
1126 {
1127 /* Move the jump before barrier so that the notes
1128 which originally were or were created before jump table are
1129 inside the basic block. */
1130 rtx_insn *new_insn = BB_END (src);
1131
1132 update_bb_for_insn_chain (NEXT_INSN (BB_END (src)),
1133 PREV_INSN (barrier), src);
1134
1135 SET_NEXT_INSN (PREV_INSN (new_insn)) = NEXT_INSN (new_insn);
1136 SET_PREV_INSN (NEXT_INSN (new_insn)) = PREV_INSN (new_insn);
1137
1138 SET_NEXT_INSN (new_insn) = barrier;
1139 SET_NEXT_INSN (PREV_INSN (barrier)) = new_insn;
1140
1141 SET_PREV_INSN (new_insn) = PREV_INSN (barrier);
1142 SET_PREV_INSN (barrier) = new_insn;
1143 }
1144 }
1145 }
1146
1147 /* Keep only one edge out and set proper flags. */
1148 if (!single_succ_p (src))
1149 remove_edge (e);
1150 gcc_assert (single_succ_p (src));
1151
1152 e = single_succ_edge (src);
1153 if (fallthru)
1154 e->flags = EDGE_FALLTHRU;
1155 else
1156 e->flags = 0;
1157
1158 e->probability = profile_probability::always ();
1159 e->count = src->count;
1160
1161 if (e->dest != target)
1162 redirect_edge_succ (e, target);
1163 return e;
1164 }
1165
1166 /* Subroutine of redirect_branch_edge that tries to patch the jump
1167 instruction INSN so that it reaches block NEW. Do this
1168 only when it originally reached block OLD. Return true if this
1169 worked or the original target wasn't OLD, return false if redirection
1170 doesn't work. */
1171
1172 static bool
1173 patch_jump_insn (rtx_insn *insn, rtx_insn *old_label, basic_block new_bb)
1174 {
1175 rtx_jump_table_data *table;
1176 rtx tmp;
1177 /* Recognize a tablejump and adjust all matching cases. */
1178 if (tablejump_p (insn, NULL, &table))
1179 {
1180 rtvec vec;
1181 int j;
1182 rtx_code_label *new_label = block_label (new_bb);
1183
1184 if (new_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
1185 return false;
1186 vec = table->get_labels ();
1187
1188 for (j = GET_NUM_ELEM (vec) - 1; j >= 0; --j)
1189 if (XEXP (RTVEC_ELT (vec, j), 0) == old_label)
1190 {
1191 RTVEC_ELT (vec, j) = gen_rtx_LABEL_REF (Pmode, new_label);
1192 --LABEL_NUSES (old_label);
1193 ++LABEL_NUSES (new_label);
1194 }
1195
1196 /* Handle casesi dispatch insns. */
1197 if ((tmp = single_set (insn)) != NULL
1198 && SET_DEST (tmp) == pc_rtx
1199 && GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE
1200 && GET_CODE (XEXP (SET_SRC (tmp), 2)) == LABEL_REF
1201 && label_ref_label (XEXP (SET_SRC (tmp), 2)) == old_label)
1202 {
1203 XEXP (SET_SRC (tmp), 2) = gen_rtx_LABEL_REF (Pmode,
1204 new_label);
1205 --LABEL_NUSES (old_label);
1206 ++LABEL_NUSES (new_label);
1207 }
1208 }
1209 else if ((tmp = extract_asm_operands (PATTERN (insn))) != NULL)
1210 {
1211 int i, n = ASM_OPERANDS_LABEL_LENGTH (tmp);
1212 rtx note;
1213
1214 if (new_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
1215 return false;
1216 rtx_code_label *new_label = block_label (new_bb);
1217
1218 for (i = 0; i < n; ++i)
1219 {
1220 rtx old_ref = ASM_OPERANDS_LABEL (tmp, i);
1221 gcc_assert (GET_CODE (old_ref) == LABEL_REF);
1222 if (XEXP (old_ref, 0) == old_label)
1223 {
1224 ASM_OPERANDS_LABEL (tmp, i)
1225 = gen_rtx_LABEL_REF (Pmode, new_label);
1226 --LABEL_NUSES (old_label);
1227 ++LABEL_NUSES (new_label);
1228 }
1229 }
1230
1231 if (JUMP_LABEL (insn) == old_label)
1232 {
1233 JUMP_LABEL (insn) = new_label;
1234 note = find_reg_note (insn, REG_LABEL_TARGET, new_label);
1235 if (note)
1236 remove_note (insn, note);
1237 }
1238 else
1239 {
1240 note = find_reg_note (insn, REG_LABEL_TARGET, old_label);
1241 if (note)
1242 remove_note (insn, note);
1243 if (JUMP_LABEL (insn) != new_label
1244 && !find_reg_note (insn, REG_LABEL_TARGET, new_label))
1245 add_reg_note (insn, REG_LABEL_TARGET, new_label);
1246 }
1247 while ((note = find_reg_note (insn, REG_LABEL_OPERAND, old_label))
1248 != NULL_RTX)
1249 XEXP (note, 0) = new_label;
1250 }
1251 else
1252 {
1253 /* ?? We may play the games with moving the named labels from
1254 one basic block to the other in case only one computed_jump is
1255 available. */
1256 if (computed_jump_p (insn)
1257 /* A return instruction can't be redirected. */
1258 || returnjump_p (insn))
1259 return false;
1260
1261 if (!currently_expanding_to_rtl || JUMP_LABEL (insn) == old_label)
1262 {
1263 /* If the insn doesn't go where we think, we're confused. */
1264 gcc_assert (JUMP_LABEL (insn) == old_label);
1265
1266 /* If the substitution doesn't succeed, die. This can happen
1267 if the back end emitted unrecognizable instructions or if
1268 target is exit block on some arches. */
1269 if (!redirect_jump (as_a <rtx_jump_insn *> (insn),
1270 block_label (new_bb), 0))
1271 {
1272 gcc_assert (new_bb == EXIT_BLOCK_PTR_FOR_FN (cfun));
1273 return false;
1274 }
1275 }
1276 }
1277 return true;
1278 }
1279
1280
1281 /* Redirect edge representing branch of (un)conditional jump or tablejump,
1282 NULL on failure */
1283 static edge
1284 redirect_branch_edge (edge e, basic_block target)
1285 {
1286 rtx_insn *old_label = BB_HEAD (e->dest);
1287 basic_block src = e->src;
1288 rtx_insn *insn = BB_END (src);
1289
1290 /* We can only redirect non-fallthru edges of jump insn. */
1291 if (e->flags & EDGE_FALLTHRU)
1292 return NULL;
1293 else if (!JUMP_P (insn) && !currently_expanding_to_rtl)
1294 return NULL;
1295
1296 if (!currently_expanding_to_rtl)
1297 {
1298 if (!patch_jump_insn (as_a <rtx_jump_insn *> (insn), old_label, target))
1299 return NULL;
1300 }
1301 else
1302 /* When expanding this BB might actually contain multiple
1303 jumps (i.e. not yet split by find_many_sub_basic_blocks).
1304 Redirect all of those that match our label. */
1305 FOR_BB_INSNS (src, insn)
1306 if (JUMP_P (insn) && !patch_jump_insn (as_a <rtx_jump_insn *> (insn),
1307 old_label, target))
1308 return NULL;
1309
1310 if (dump_file)
1311 fprintf (dump_file, "Edge %i->%i redirected to %i\n",
1312 e->src->index, e->dest->index, target->index);
1313
1314 if (e->dest != target)
1315 e = redirect_edge_succ_nodup (e, target);
1316
1317 return e;
1318 }
1319
1320 /* Called when edge E has been redirected to a new destination,
1321 in order to update the region crossing flag on the edge and
1322 jump. */
1323
1324 static void
1325 fixup_partition_crossing (edge e)
1326 {
1327 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun) || e->dest
1328 == EXIT_BLOCK_PTR_FOR_FN (cfun))
1329 return;
1330 /* If we redirected an existing edge, it may already be marked
1331 crossing, even though the new src is missing a reg crossing note.
1332 But make sure reg crossing note doesn't already exist before
1333 inserting. */
1334 if (BB_PARTITION (e->src) != BB_PARTITION (e->dest))
1335 {
1336 e->flags |= EDGE_CROSSING;
1337 if (JUMP_P (BB_END (e->src))
1338 && !CROSSING_JUMP_P (BB_END (e->src)))
1339 CROSSING_JUMP_P (BB_END (e->src)) = 1;
1340 }
1341 else if (BB_PARTITION (e->src) == BB_PARTITION (e->dest))
1342 {
1343 e->flags &= ~EDGE_CROSSING;
1344 /* Remove the section crossing note from jump at end of
1345 src if it exists, and if no other successors are
1346 still crossing. */
1347 if (JUMP_P (BB_END (e->src)) && CROSSING_JUMP_P (BB_END (e->src)))
1348 {
1349 bool has_crossing_succ = false;
1350 edge e2;
1351 edge_iterator ei;
1352 FOR_EACH_EDGE (e2, ei, e->src->succs)
1353 {
1354 has_crossing_succ |= (e2->flags & EDGE_CROSSING);
1355 if (has_crossing_succ)
1356 break;
1357 }
1358 if (!has_crossing_succ)
1359 CROSSING_JUMP_P (BB_END (e->src)) = 0;
1360 }
1361 }
1362 }
1363
1364 /* Called when block BB has been reassigned to the cold partition,
1365 because it is now dominated by another cold block,
1366 to ensure that the region crossing attributes are updated. */
1367
1368 static void
1369 fixup_new_cold_bb (basic_block bb)
1370 {
1371 edge e;
1372 edge_iterator ei;
1373
1374 /* This is called when a hot bb is found to now be dominated
1375 by a cold bb and therefore needs to become cold. Therefore,
1376 its preds will no longer be region crossing. Any non-dominating
1377 preds that were previously hot would also have become cold
1378 in the caller for the same region. Any preds that were previously
1379 region-crossing will be adjusted in fixup_partition_crossing. */
1380 FOR_EACH_EDGE (e, ei, bb->preds)
1381 {
1382 fixup_partition_crossing (e);
1383 }
1384
1385 /* Possibly need to make bb's successor edges region crossing,
1386 or remove stale region crossing. */
1387 FOR_EACH_EDGE (e, ei, bb->succs)
1388 {
1389 /* We can't have fall-through edges across partition boundaries.
1390 Note that force_nonfallthru will do any necessary partition
1391 boundary fixup by calling fixup_partition_crossing itself. */
1392 if ((e->flags & EDGE_FALLTHRU)
1393 && BB_PARTITION (bb) != BB_PARTITION (e->dest)
1394 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1395 force_nonfallthru (e);
1396 else
1397 fixup_partition_crossing (e);
1398 }
1399 }
1400
1401 /* Attempt to change code to redirect edge E to TARGET. Don't do that on
1402 expense of adding new instructions or reordering basic blocks.
1403
1404 Function can be also called with edge destination equivalent to the TARGET.
1405 Then it should try the simplifications and do nothing if none is possible.
1406
1407 Return edge representing the branch if transformation succeeded. Return NULL
1408 on failure.
1409 We still return NULL in case E already destinated TARGET and we didn't
1410 managed to simplify instruction stream. */
1411
1412 static edge
1413 rtl_redirect_edge_and_branch (edge e, basic_block target)
1414 {
1415 edge ret;
1416 basic_block src = e->src;
1417 basic_block dest = e->dest;
1418
1419 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
1420 return NULL;
1421
1422 if (dest == target)
1423 return e;
1424
1425 if ((ret = try_redirect_by_replacing_jump (e, target, false)) != NULL)
1426 {
1427 df_set_bb_dirty (src);
1428 fixup_partition_crossing (ret);
1429 return ret;
1430 }
1431
1432 ret = redirect_branch_edge (e, target);
1433 if (!ret)
1434 return NULL;
1435
1436 df_set_bb_dirty (src);
1437 fixup_partition_crossing (ret);
1438 return ret;
1439 }
1440
1441 /* Emit a barrier after BB, into the footer if we are in CFGLAYOUT mode. */
1442
1443 void
1444 emit_barrier_after_bb (basic_block bb)
1445 {
1446 rtx_barrier *barrier = emit_barrier_after (BB_END (bb));
1447 gcc_assert (current_ir_type () == IR_RTL_CFGRTL
1448 || current_ir_type () == IR_RTL_CFGLAYOUT);
1449 if (current_ir_type () == IR_RTL_CFGLAYOUT)
1450 {
1451 rtx_insn *insn = unlink_insn_chain (barrier, barrier);
1452
1453 if (BB_FOOTER (bb))
1454 {
1455 rtx_insn *footer_tail = BB_FOOTER (bb);
1456
1457 while (NEXT_INSN (footer_tail))
1458 footer_tail = NEXT_INSN (footer_tail);
1459 if (!BARRIER_P (footer_tail))
1460 {
1461 SET_NEXT_INSN (footer_tail) = insn;
1462 SET_PREV_INSN (insn) = footer_tail;
1463 }
1464 }
1465 else
1466 BB_FOOTER (bb) = insn;
1467 }
1468 }
1469
1470 /* Like force_nonfallthru below, but additionally performs redirection
1471 Used by redirect_edge_and_branch_force. JUMP_LABEL is used only
1472 when redirecting to the EXIT_BLOCK, it is either ret_rtx or
1473 simple_return_rtx, indicating which kind of returnjump to create.
1474 It should be NULL otherwise. */
1475
1476 basic_block
1477 force_nonfallthru_and_redirect (edge e, basic_block target, rtx jump_label)
1478 {
1479 basic_block jump_block, new_bb = NULL, src = e->src;
1480 rtx note;
1481 edge new_edge;
1482 int abnormal_edge_flags = 0;
1483 bool asm_goto_edge = false;
1484 int loc;
1485
1486 /* In the case the last instruction is conditional jump to the next
1487 instruction, first redirect the jump itself and then continue
1488 by creating a basic block afterwards to redirect fallthru edge. */
1489 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
1490 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
1491 && any_condjump_p (BB_END (e->src))
1492 && JUMP_LABEL (BB_END (e->src)) == BB_HEAD (e->dest))
1493 {
1494 rtx note;
1495 edge b = unchecked_make_edge (e->src, target, 0);
1496 bool redirected;
1497
1498 redirected = redirect_jump (as_a <rtx_jump_insn *> (BB_END (e->src)),
1499 block_label (target), 0);
1500 gcc_assert (redirected);
1501
1502 note = find_reg_note (BB_END (e->src), REG_BR_PROB, NULL_RTX);
1503 if (note)
1504 {
1505 int prob = XINT (note, 0);
1506
1507 b->probability = profile_probability::from_reg_br_prob_note (prob);
1508 b->count = e->count.apply_probability (b->probability);
1509 e->probability -= e->probability;
1510 e->count -= b->count;
1511 }
1512 }
1513
1514 if (e->flags & EDGE_ABNORMAL)
1515 {
1516 /* Irritating special case - fallthru edge to the same block as abnormal
1517 edge.
1518 We can't redirect abnormal edge, but we still can split the fallthru
1519 one and create separate abnormal edge to original destination.
1520 This allows bb-reorder to make such edge non-fallthru. */
1521 gcc_assert (e->dest == target);
1522 abnormal_edge_flags = e->flags & ~EDGE_FALLTHRU;
1523 e->flags &= EDGE_FALLTHRU;
1524 }
1525 else
1526 {
1527 gcc_assert (e->flags & EDGE_FALLTHRU);
1528 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1529 {
1530 /* We can't redirect the entry block. Create an empty block
1531 at the start of the function which we use to add the new
1532 jump. */
1533 edge tmp;
1534 edge_iterator ei;
1535 bool found = false;
1536
1537 basic_block bb = create_basic_block (BB_HEAD (e->dest), NULL,
1538 ENTRY_BLOCK_PTR_FOR_FN (cfun));
1539
1540 /* Change the existing edge's source to be the new block, and add
1541 a new edge from the entry block to the new block. */
1542 e->src = bb;
1543 for (ei = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
1544 (tmp = ei_safe_edge (ei)); )
1545 {
1546 if (tmp == e)
1547 {
1548 ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs->unordered_remove (ei.index);
1549 found = true;
1550 break;
1551 }
1552 else
1553 ei_next (&ei);
1554 }
1555
1556 gcc_assert (found);
1557
1558 vec_safe_push (bb->succs, e);
1559 make_single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), bb,
1560 EDGE_FALLTHRU);
1561 }
1562 }
1563
1564 /* If e->src ends with asm goto, see if any of the ASM_OPERANDS_LABELs
1565 don't point to the target or fallthru label. */
1566 if (JUMP_P (BB_END (e->src))
1567 && target != EXIT_BLOCK_PTR_FOR_FN (cfun)
1568 && (e->flags & EDGE_FALLTHRU)
1569 && (note = extract_asm_operands (PATTERN (BB_END (e->src)))))
1570 {
1571 int i, n = ASM_OPERANDS_LABEL_LENGTH (note);
1572 bool adjust_jump_target = false;
1573
1574 for (i = 0; i < n; ++i)
1575 {
1576 if (XEXP (ASM_OPERANDS_LABEL (note, i), 0) == BB_HEAD (e->dest))
1577 {
1578 LABEL_NUSES (XEXP (ASM_OPERANDS_LABEL (note, i), 0))--;
1579 XEXP (ASM_OPERANDS_LABEL (note, i), 0) = block_label (target);
1580 LABEL_NUSES (XEXP (ASM_OPERANDS_LABEL (note, i), 0))++;
1581 adjust_jump_target = true;
1582 }
1583 if (XEXP (ASM_OPERANDS_LABEL (note, i), 0) == BB_HEAD (target))
1584 asm_goto_edge = true;
1585 }
1586 if (adjust_jump_target)
1587 {
1588 rtx_insn *insn = BB_END (e->src);
1589 rtx note;
1590 rtx_insn *old_label = BB_HEAD (e->dest);
1591 rtx_insn *new_label = BB_HEAD (target);
1592
1593 if (JUMP_LABEL (insn) == old_label)
1594 {
1595 JUMP_LABEL (insn) = new_label;
1596 note = find_reg_note (insn, REG_LABEL_TARGET, new_label);
1597 if (note)
1598 remove_note (insn, note);
1599 }
1600 else
1601 {
1602 note = find_reg_note (insn, REG_LABEL_TARGET, old_label);
1603 if (note)
1604 remove_note (insn, note);
1605 if (JUMP_LABEL (insn) != new_label
1606 && !find_reg_note (insn, REG_LABEL_TARGET, new_label))
1607 add_reg_note (insn, REG_LABEL_TARGET, new_label);
1608 }
1609 while ((note = find_reg_note (insn, REG_LABEL_OPERAND, old_label))
1610 != NULL_RTX)
1611 XEXP (note, 0) = new_label;
1612 }
1613 }
1614
1615 if (EDGE_COUNT (e->src->succs) >= 2 || abnormal_edge_flags || asm_goto_edge)
1616 {
1617 rtx_insn *new_head;
1618 profile_count count = e->count;
1619 profile_probability probability = e->probability;
1620 /* Create the new structures. */
1621
1622 /* If the old block ended with a tablejump, skip its table
1623 by searching forward from there. Otherwise start searching
1624 forward from the last instruction of the old block. */
1625 rtx_jump_table_data *table;
1626 if (tablejump_p (BB_END (e->src), NULL, &table))
1627 new_head = table;
1628 else
1629 new_head = BB_END (e->src);
1630 new_head = NEXT_INSN (new_head);
1631
1632 jump_block = create_basic_block (new_head, NULL, e->src);
1633 jump_block->count = count;
1634 jump_block->frequency = EDGE_FREQUENCY (e);
1635
1636 /* Make sure new block ends up in correct hot/cold section. */
1637
1638 BB_COPY_PARTITION (jump_block, e->src);
1639
1640 /* Wire edge in. */
1641 new_edge = make_edge (e->src, jump_block, EDGE_FALLTHRU);
1642 new_edge->probability = probability;
1643 new_edge->count = count;
1644
1645 /* Redirect old edge. */
1646 redirect_edge_pred (e, jump_block);
1647 e->probability = profile_probability::always ();
1648
1649 /* If e->src was previously region crossing, it no longer is
1650 and the reg crossing note should be removed. */
1651 fixup_partition_crossing (new_edge);
1652
1653 /* If asm goto has any label refs to target's label,
1654 add also edge from asm goto bb to target. */
1655 if (asm_goto_edge)
1656 {
1657 new_edge->probability = new_edge->probability.apply_scale (1, 2);
1658 new_edge->count = new_edge->count.apply_scale (1, 2);
1659 jump_block->count = jump_block->count.apply_scale (1, 2);
1660 jump_block->frequency /= 2;
1661 edge new_edge2 = make_edge (new_edge->src, target,
1662 e->flags & ~EDGE_FALLTHRU);
1663 new_edge2->probability = probability - new_edge->probability;
1664 new_edge2->count = count - new_edge->count;
1665 }
1666
1667 new_bb = jump_block;
1668 }
1669 else
1670 jump_block = e->src;
1671
1672 loc = e->goto_locus;
1673 e->flags &= ~EDGE_FALLTHRU;
1674 if (target == EXIT_BLOCK_PTR_FOR_FN (cfun))
1675 {
1676 if (jump_label == ret_rtx)
1677 emit_jump_insn_after_setloc (targetm.gen_return (),
1678 BB_END (jump_block), loc);
1679 else
1680 {
1681 gcc_assert (jump_label == simple_return_rtx);
1682 emit_jump_insn_after_setloc (targetm.gen_simple_return (),
1683 BB_END (jump_block), loc);
1684 }
1685 set_return_jump_label (BB_END (jump_block));
1686 }
1687 else
1688 {
1689 rtx_code_label *label = block_label (target);
1690 emit_jump_insn_after_setloc (targetm.gen_jump (label),
1691 BB_END (jump_block), loc);
1692 JUMP_LABEL (BB_END (jump_block)) = label;
1693 LABEL_NUSES (label)++;
1694 }
1695
1696 /* We might be in cfg layout mode, and if so, the following routine will
1697 insert the barrier correctly. */
1698 emit_barrier_after_bb (jump_block);
1699 redirect_edge_succ_nodup (e, target);
1700
1701 if (abnormal_edge_flags)
1702 make_edge (src, target, abnormal_edge_flags);
1703
1704 df_mark_solutions_dirty ();
1705 fixup_partition_crossing (e);
1706 return new_bb;
1707 }
1708
1709 /* Edge E is assumed to be fallthru edge. Emit needed jump instruction
1710 (and possibly create new basic block) to make edge non-fallthru.
1711 Return newly created BB or NULL if none. */
1712
1713 static basic_block
1714 rtl_force_nonfallthru (edge e)
1715 {
1716 return force_nonfallthru_and_redirect (e, e->dest, NULL_RTX);
1717 }
1718
1719 /* Redirect edge even at the expense of creating new jump insn or
1720 basic block. Return new basic block if created, NULL otherwise.
1721 Conversion must be possible. */
1722
1723 static basic_block
1724 rtl_redirect_edge_and_branch_force (edge e, basic_block target)
1725 {
1726 if (redirect_edge_and_branch (e, target)
1727 || e->dest == target)
1728 return NULL;
1729
1730 /* In case the edge redirection failed, try to force it to be non-fallthru
1731 and redirect newly created simplejump. */
1732 df_set_bb_dirty (e->src);
1733 return force_nonfallthru_and_redirect (e, target, NULL_RTX);
1734 }
1735
1736 /* The given edge should potentially be a fallthru edge. If that is in
1737 fact true, delete the jump and barriers that are in the way. */
1738
1739 static void
1740 rtl_tidy_fallthru_edge (edge e)
1741 {
1742 rtx_insn *q;
1743 basic_block b = e->src, c = b->next_bb;
1744
1745 /* ??? In a late-running flow pass, other folks may have deleted basic
1746 blocks by nopping out blocks, leaving multiple BARRIERs between here
1747 and the target label. They ought to be chastised and fixed.
1748
1749 We can also wind up with a sequence of undeletable labels between
1750 one block and the next.
1751
1752 So search through a sequence of barriers, labels, and notes for
1753 the head of block C and assert that we really do fall through. */
1754
1755 for (q = NEXT_INSN (BB_END (b)); q != BB_HEAD (c); q = NEXT_INSN (q))
1756 if (INSN_P (q))
1757 return;
1758
1759 /* Remove what will soon cease being the jump insn from the source block.
1760 If block B consisted only of this single jump, turn it into a deleted
1761 note. */
1762 q = BB_END (b);
1763 if (JUMP_P (q)
1764 && onlyjump_p (q)
1765 && (any_uncondjump_p (q)
1766 || single_succ_p (b)))
1767 {
1768 rtx_insn *label;
1769 rtx_jump_table_data *table;
1770
1771 if (tablejump_p (q, &label, &table))
1772 {
1773 /* The label is likely mentioned in some instruction before
1774 the tablejump and might not be DCEd, so turn it into
1775 a note instead and move before the tablejump that is going to
1776 be deleted. */
1777 const char *name = LABEL_NAME (label);
1778 PUT_CODE (label, NOTE);
1779 NOTE_KIND (label) = NOTE_INSN_DELETED_LABEL;
1780 NOTE_DELETED_LABEL_NAME (label) = name;
1781 reorder_insns (label, label, PREV_INSN (q));
1782 delete_insn (table);
1783 }
1784
1785 /* If this was a conditional jump, we need to also delete
1786 the insn that set cc0. */
1787 if (HAVE_cc0 && any_condjump_p (q) && only_sets_cc0_p (PREV_INSN (q)))
1788 q = PREV_INSN (q);
1789
1790 q = PREV_INSN (q);
1791 }
1792 /* Unconditional jumps with side-effects (i.e. which we can't just delete
1793 together with the barrier) should never have a fallthru edge. */
1794 else if (JUMP_P (q) && any_uncondjump_p (q))
1795 return;
1796
1797 /* Selectively unlink the sequence. */
1798 if (q != PREV_INSN (BB_HEAD (c)))
1799 delete_insn_chain (NEXT_INSN (q), PREV_INSN (BB_HEAD (c)), false);
1800
1801 e->flags |= EDGE_FALLTHRU;
1802 }
1803 \f
1804 /* Should move basic block BB after basic block AFTER. NIY. */
1805
1806 static bool
1807 rtl_move_block_after (basic_block bb ATTRIBUTE_UNUSED,
1808 basic_block after ATTRIBUTE_UNUSED)
1809 {
1810 return false;
1811 }
1812
1813 /* Locate the last bb in the same partition as START_BB. */
1814
1815 static basic_block
1816 last_bb_in_partition (basic_block start_bb)
1817 {
1818 basic_block bb;
1819 FOR_BB_BETWEEN (bb, start_bb, EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
1820 {
1821 if (BB_PARTITION (start_bb) != BB_PARTITION (bb->next_bb))
1822 return bb;
1823 }
1824 /* Return bb before the exit block. */
1825 return bb->prev_bb;
1826 }
1827
1828 /* Split a (typically critical) edge. Return the new block.
1829 The edge must not be abnormal.
1830
1831 ??? The code generally expects to be called on critical edges.
1832 The case of a block ending in an unconditional jump to a
1833 block with multiple predecessors is not handled optimally. */
1834
1835 static basic_block
1836 rtl_split_edge (edge edge_in)
1837 {
1838 basic_block bb, new_bb;
1839 rtx_insn *before;
1840
1841 /* Abnormal edges cannot be split. */
1842 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
1843
1844 /* We are going to place the new block in front of edge destination.
1845 Avoid existence of fallthru predecessors. */
1846 if ((edge_in->flags & EDGE_FALLTHRU) == 0)
1847 {
1848 edge e = find_fallthru_edge (edge_in->dest->preds);
1849
1850 if (e)
1851 force_nonfallthru (e);
1852 }
1853
1854 /* Create the basic block note. */
1855 if (edge_in->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1856 before = BB_HEAD (edge_in->dest);
1857 else
1858 before = NULL;
1859
1860 /* If this is a fall through edge to the exit block, the blocks might be
1861 not adjacent, and the right place is after the source. */
1862 if ((edge_in->flags & EDGE_FALLTHRU)
1863 && edge_in->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1864 {
1865 before = NEXT_INSN (BB_END (edge_in->src));
1866 bb = create_basic_block (before, NULL, edge_in->src);
1867 BB_COPY_PARTITION (bb, edge_in->src);
1868 }
1869 else
1870 {
1871 if (edge_in->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1872 {
1873 bb = create_basic_block (before, NULL, edge_in->dest->prev_bb);
1874 BB_COPY_PARTITION (bb, edge_in->dest);
1875 }
1876 else
1877 {
1878 basic_block after = edge_in->dest->prev_bb;
1879 /* If this is post-bb reordering, and the edge crosses a partition
1880 boundary, the new block needs to be inserted in the bb chain
1881 at the end of the src partition (since we put the new bb into
1882 that partition, see below). Otherwise we may end up creating
1883 an extra partition crossing in the chain, which is illegal.
1884 It can't go after the src, because src may have a fall-through
1885 to a different block. */
1886 if (crtl->bb_reorder_complete
1887 && (edge_in->flags & EDGE_CROSSING))
1888 {
1889 after = last_bb_in_partition (edge_in->src);
1890 before = get_last_bb_insn (after);
1891 /* The instruction following the last bb in partition should
1892 be a barrier, since it cannot end in a fall-through. */
1893 gcc_checking_assert (BARRIER_P (before));
1894 before = NEXT_INSN (before);
1895 }
1896 bb = create_basic_block (before, NULL, after);
1897 /* Put the split bb into the src partition, to avoid creating
1898 a situation where a cold bb dominates a hot bb, in the case
1899 where src is cold and dest is hot. The src will dominate
1900 the new bb (whereas it might not have dominated dest). */
1901 BB_COPY_PARTITION (bb, edge_in->src);
1902 }
1903 }
1904
1905 make_single_succ_edge (bb, edge_in->dest, EDGE_FALLTHRU);
1906
1907 /* Can't allow a region crossing edge to be fallthrough. */
1908 if (BB_PARTITION (bb) != BB_PARTITION (edge_in->dest)
1909 && edge_in->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1910 {
1911 new_bb = force_nonfallthru (single_succ_edge (bb));
1912 gcc_assert (!new_bb);
1913 }
1914
1915 /* For non-fallthru edges, we must adjust the predecessor's
1916 jump instruction to target our new block. */
1917 if ((edge_in->flags & EDGE_FALLTHRU) == 0)
1918 {
1919 edge redirected = redirect_edge_and_branch (edge_in, bb);
1920 gcc_assert (redirected);
1921 }
1922 else
1923 {
1924 if (edge_in->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
1925 {
1926 /* For asm goto even splitting of fallthru edge might
1927 need insn patching, as other labels might point to the
1928 old label. */
1929 rtx_insn *last = BB_END (edge_in->src);
1930 if (last
1931 && JUMP_P (last)
1932 && edge_in->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
1933 && (extract_asm_operands (PATTERN (last))
1934 || JUMP_LABEL (last) == before)
1935 && patch_jump_insn (last, before, bb))
1936 df_set_bb_dirty (edge_in->src);
1937 }
1938 redirect_edge_succ (edge_in, bb);
1939 }
1940
1941 return bb;
1942 }
1943
1944 /* Queue instructions for insertion on an edge between two basic blocks.
1945 The new instructions and basic blocks (if any) will not appear in the
1946 CFG until commit_edge_insertions is called. */
1947
1948 void
1949 insert_insn_on_edge (rtx pattern, edge e)
1950 {
1951 /* We cannot insert instructions on an abnormal critical edge.
1952 It will be easier to find the culprit if we die now. */
1953 gcc_assert (!((e->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (e)));
1954
1955 if (e->insns.r == NULL_RTX)
1956 start_sequence ();
1957 else
1958 push_to_sequence (e->insns.r);
1959
1960 emit_insn (pattern);
1961
1962 e->insns.r = get_insns ();
1963 end_sequence ();
1964 }
1965
1966 /* Update the CFG for the instructions queued on edge E. */
1967
1968 void
1969 commit_one_edge_insertion (edge e)
1970 {
1971 rtx_insn *before = NULL, *after = NULL, *insns, *tmp, *last;
1972 basic_block bb;
1973
1974 /* Pull the insns off the edge now since the edge might go away. */
1975 insns = e->insns.r;
1976 e->insns.r = NULL;
1977
1978 /* Figure out where to put these insns. If the destination has
1979 one predecessor, insert there. Except for the exit block. */
1980 if (single_pred_p (e->dest) && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1981 {
1982 bb = e->dest;
1983
1984 /* Get the location correct wrt a code label, and "nice" wrt
1985 a basic block note, and before everything else. */
1986 tmp = BB_HEAD (bb);
1987 if (LABEL_P (tmp))
1988 tmp = NEXT_INSN (tmp);
1989 if (NOTE_INSN_BASIC_BLOCK_P (tmp))
1990 tmp = NEXT_INSN (tmp);
1991 if (tmp == BB_HEAD (bb))
1992 before = tmp;
1993 else if (tmp)
1994 after = PREV_INSN (tmp);
1995 else
1996 after = get_last_insn ();
1997 }
1998
1999 /* If the source has one successor and the edge is not abnormal,
2000 insert there. Except for the entry block.
2001 Don't do this if the predecessor ends in a jump other than
2002 unconditional simple jump. E.g. for asm goto that points all
2003 its labels at the fallthru basic block, we can't insert instructions
2004 before the asm goto, as the asm goto can have various of side effects,
2005 and can't emit instructions after the asm goto, as it must end
2006 the basic block. */
2007 else if ((e->flags & EDGE_ABNORMAL) == 0
2008 && single_succ_p (e->src)
2009 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
2010 && (!JUMP_P (BB_END (e->src))
2011 || simplejump_p (BB_END (e->src))))
2012 {
2013 bb = e->src;
2014
2015 /* It is possible to have a non-simple jump here. Consider a target
2016 where some forms of unconditional jumps clobber a register. This
2017 happens on the fr30 for example.
2018
2019 We know this block has a single successor, so we can just emit
2020 the queued insns before the jump. */
2021 if (JUMP_P (BB_END (bb)))
2022 before = BB_END (bb);
2023 else
2024 {
2025 /* We'd better be fallthru, or we've lost track of what's what. */
2026 gcc_assert (e->flags & EDGE_FALLTHRU);
2027
2028 after = BB_END (bb);
2029 }
2030 }
2031
2032 /* Otherwise we must split the edge. */
2033 else
2034 {
2035 bb = split_edge (e);
2036
2037 /* If E crossed a partition boundary, we needed to make bb end in
2038 a region-crossing jump, even though it was originally fallthru. */
2039 if (JUMP_P (BB_END (bb)))
2040 before = BB_END (bb);
2041 else
2042 after = BB_END (bb);
2043 }
2044
2045 /* Now that we've found the spot, do the insertion. */
2046 if (before)
2047 {
2048 emit_insn_before_noloc (insns, before, bb);
2049 last = prev_nonnote_insn (before);
2050 }
2051 else
2052 last = emit_insn_after_noloc (insns, after, bb);
2053
2054 if (returnjump_p (last))
2055 {
2056 /* ??? Remove all outgoing edges from BB and add one for EXIT.
2057 This is not currently a problem because this only happens
2058 for the (single) epilogue, which already has a fallthru edge
2059 to EXIT. */
2060
2061 e = single_succ_edge (bb);
2062 gcc_assert (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
2063 && single_succ_p (bb) && (e->flags & EDGE_FALLTHRU));
2064
2065 e->flags &= ~EDGE_FALLTHRU;
2066 emit_barrier_after (last);
2067
2068 if (before)
2069 delete_insn (before);
2070 }
2071 else
2072 gcc_assert (!JUMP_P (last));
2073 }
2074
2075 /* Update the CFG for all queued instructions. */
2076
2077 void
2078 commit_edge_insertions (void)
2079 {
2080 basic_block bb;
2081
2082 /* Optimization passes that invoke this routine can cause hot blocks
2083 previously reached by both hot and cold blocks to become dominated only
2084 by cold blocks. This will cause the verification below to fail,
2085 and lead to now cold code in the hot section. In some cases this
2086 may only be visible after newly unreachable blocks are deleted,
2087 which will be done by fixup_partitions. */
2088 fixup_partitions ();
2089
2090 checking_verify_flow_info ();
2091
2092 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
2093 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
2094 {
2095 edge e;
2096 edge_iterator ei;
2097
2098 FOR_EACH_EDGE (e, ei, bb->succs)
2099 if (e->insns.r)
2100 commit_one_edge_insertion (e);
2101 }
2102 }
2103 \f
2104
2105 /* Print out RTL-specific basic block information (live information
2106 at start and end with TDF_DETAILS). FLAGS are the TDF_* masks
2107 documented in dumpfile.h. */
2108
2109 static void
2110 rtl_dump_bb (FILE *outf, basic_block bb, int indent, dump_flags_t flags)
2111 {
2112 char *s_indent;
2113
2114 s_indent = (char *) alloca ((size_t) indent + 1);
2115 memset (s_indent, ' ', (size_t) indent);
2116 s_indent[indent] = '\0';
2117
2118 if (df && (flags & TDF_DETAILS))
2119 {
2120 df_dump_top (bb, outf);
2121 putc ('\n', outf);
2122 }
2123
2124 if (bb->index != ENTRY_BLOCK && bb->index != EXIT_BLOCK)
2125 {
2126 rtx_insn *last = BB_END (bb);
2127 if (last)
2128 last = NEXT_INSN (last);
2129 for (rtx_insn *insn = BB_HEAD (bb); insn != last; insn = NEXT_INSN (insn))
2130 {
2131 if (flags & TDF_DETAILS)
2132 df_dump_insn_top (insn, outf);
2133 if (! (flags & TDF_SLIM))
2134 print_rtl_single (outf, insn);
2135 else
2136 dump_insn_slim (outf, insn);
2137 if (flags & TDF_DETAILS)
2138 df_dump_insn_bottom (insn, outf);
2139 }
2140 }
2141
2142 if (df && (flags & TDF_DETAILS))
2143 {
2144 df_dump_bottom (bb, outf);
2145 putc ('\n', outf);
2146 }
2147
2148 }
2149 \f
2150 /* Like dump_function_to_file, but for RTL. Print out dataflow information
2151 for the start of each basic block. FLAGS are the TDF_* masks documented
2152 in dumpfile.h. */
2153
2154 void
2155 print_rtl_with_bb (FILE *outf, const rtx_insn *rtx_first, dump_flags_t flags)
2156 {
2157 const rtx_insn *tmp_rtx;
2158 if (rtx_first == 0)
2159 fprintf (outf, "(nil)\n");
2160 else
2161 {
2162 enum bb_state { NOT_IN_BB, IN_ONE_BB, IN_MULTIPLE_BB };
2163 int max_uid = get_max_uid ();
2164 basic_block *start = XCNEWVEC (basic_block, max_uid);
2165 basic_block *end = XCNEWVEC (basic_block, max_uid);
2166 enum bb_state *in_bb_p = XCNEWVEC (enum bb_state, max_uid);
2167 basic_block bb;
2168
2169 /* After freeing the CFG, we still have BLOCK_FOR_INSN set on most
2170 insns, but the CFG is not maintained so the basic block info
2171 is not reliable. Therefore it's omitted from the dumps. */
2172 if (! (cfun->curr_properties & PROP_cfg))
2173 flags &= ~TDF_BLOCKS;
2174
2175 if (df)
2176 df_dump_start (outf);
2177
2178 if (flags & TDF_BLOCKS)
2179 {
2180 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2181 {
2182 rtx_insn *x;
2183
2184 start[INSN_UID (BB_HEAD (bb))] = bb;
2185 end[INSN_UID (BB_END (bb))] = bb;
2186 for (x = BB_HEAD (bb); x != NULL_RTX; x = NEXT_INSN (x))
2187 {
2188 enum bb_state state = IN_MULTIPLE_BB;
2189
2190 if (in_bb_p[INSN_UID (x)] == NOT_IN_BB)
2191 state = IN_ONE_BB;
2192 in_bb_p[INSN_UID (x)] = state;
2193
2194 if (x == BB_END (bb))
2195 break;
2196 }
2197 }
2198 }
2199
2200 for (tmp_rtx = rtx_first; NULL != tmp_rtx; tmp_rtx = NEXT_INSN (tmp_rtx))
2201 {
2202 if (flags & TDF_BLOCKS)
2203 {
2204 bb = start[INSN_UID (tmp_rtx)];
2205 if (bb != NULL)
2206 {
2207 dump_bb_info (outf, bb, 0, dump_flags, true, false);
2208 if (df && (flags & TDF_DETAILS))
2209 df_dump_top (bb, outf);
2210 }
2211
2212 if (in_bb_p[INSN_UID (tmp_rtx)] == NOT_IN_BB
2213 && !NOTE_P (tmp_rtx)
2214 && !BARRIER_P (tmp_rtx))
2215 fprintf (outf, ";; Insn is not within a basic block\n");
2216 else if (in_bb_p[INSN_UID (tmp_rtx)] == IN_MULTIPLE_BB)
2217 fprintf (outf, ";; Insn is in multiple basic blocks\n");
2218 }
2219
2220 if (flags & TDF_DETAILS)
2221 df_dump_insn_top (tmp_rtx, outf);
2222 if (! (flags & TDF_SLIM))
2223 print_rtl_single (outf, tmp_rtx);
2224 else
2225 dump_insn_slim (outf, tmp_rtx);
2226 if (flags & TDF_DETAILS)
2227 df_dump_insn_bottom (tmp_rtx, outf);
2228
2229 if (flags & TDF_BLOCKS)
2230 {
2231 bb = end[INSN_UID (tmp_rtx)];
2232 if (bb != NULL)
2233 {
2234 dump_bb_info (outf, bb, 0, dump_flags, false, true);
2235 if (df && (flags & TDF_DETAILS))
2236 df_dump_bottom (bb, outf);
2237 putc ('\n', outf);
2238 }
2239 }
2240 }
2241
2242 free (start);
2243 free (end);
2244 free (in_bb_p);
2245 }
2246 }
2247 \f
2248 /* Update the branch probability of BB if a REG_BR_PROB is present. */
2249
2250 void
2251 update_br_prob_note (basic_block bb)
2252 {
2253 rtx note;
2254 if (!JUMP_P (BB_END (bb)) || !BRANCH_EDGE (bb)->probability.initialized_p ())
2255 return;
2256 note = find_reg_note (BB_END (bb), REG_BR_PROB, NULL_RTX);
2257 if (!note
2258 || XINT (note, 0) == BRANCH_EDGE (bb)->probability.to_reg_br_prob_note ())
2259 return;
2260 XINT (note, 0) = BRANCH_EDGE (bb)->probability.to_reg_br_prob_note ();
2261 }
2262
2263 /* Get the last insn associated with block BB (that includes barriers and
2264 tablejumps after BB). */
2265 rtx_insn *
2266 get_last_bb_insn (basic_block bb)
2267 {
2268 rtx_jump_table_data *table;
2269 rtx_insn *tmp;
2270 rtx_insn *end = BB_END (bb);
2271
2272 /* Include any jump table following the basic block. */
2273 if (tablejump_p (end, NULL, &table))
2274 end = table;
2275
2276 /* Include any barriers that may follow the basic block. */
2277 tmp = next_nonnote_insn_bb (end);
2278 while (tmp && BARRIER_P (tmp))
2279 {
2280 end = tmp;
2281 tmp = next_nonnote_insn_bb (end);
2282 }
2283
2284 return end;
2285 }
2286
2287 /* Add all BBs reachable from entry via hot paths into the SET. */
2288
2289 void
2290 find_bbs_reachable_by_hot_paths (hash_set<basic_block> *set)
2291 {
2292 auto_vec<basic_block, 64> worklist;
2293
2294 set->add (ENTRY_BLOCK_PTR_FOR_FN (cfun));
2295 worklist.safe_push (ENTRY_BLOCK_PTR_FOR_FN (cfun));
2296
2297 while (worklist.length () > 0)
2298 {
2299 basic_block bb = worklist.pop ();
2300 edge_iterator ei;
2301 edge e;
2302
2303 FOR_EACH_EDGE (e, ei, bb->succs)
2304 if (BB_PARTITION (e->dest) != BB_COLD_PARTITION
2305 && !set->add (e->dest))
2306 worklist.safe_push (e->dest);
2307 }
2308 }
2309
2310 /* Sanity check partition hotness to ensure that basic blocks in
2311   the cold partition don't dominate basic blocks in the hot partition.
2312 If FLAG_ONLY is true, report violations as errors. Otherwise
2313 re-mark the dominated blocks as cold, since this is run after
2314 cfg optimizations that may make hot blocks previously reached
2315 by both hot and cold blocks now only reachable along cold paths. */
2316
2317 static vec<basic_block>
2318 find_partition_fixes (bool flag_only)
2319 {
2320 basic_block bb;
2321 vec<basic_block> bbs_in_cold_partition = vNULL;
2322 vec<basic_block> bbs_to_fix = vNULL;
2323 hash_set<basic_block> set;
2324
2325 /* Callers check this. */
2326 gcc_checking_assert (crtl->has_bb_partition);
2327
2328 find_bbs_reachable_by_hot_paths (&set);
2329
2330 FOR_EACH_BB_FN (bb, cfun)
2331 if (!set.contains (bb)
2332 && BB_PARTITION (bb) != BB_COLD_PARTITION)
2333 {
2334 if (flag_only)
2335 error ("non-cold basic block %d reachable only "
2336 "by paths crossing the cold partition", bb->index);
2337 else
2338 BB_SET_PARTITION (bb, BB_COLD_PARTITION);
2339 bbs_to_fix.safe_push (bb);
2340 bbs_in_cold_partition.safe_push (bb);
2341 }
2342
2343 return bbs_to_fix;
2344 }
2345
2346 /* Perform cleanup on the hot/cold bb partitioning after optimization
2347 passes that modify the cfg. */
2348
2349 void
2350 fixup_partitions (void)
2351 {
2352 basic_block bb;
2353
2354 if (!crtl->has_bb_partition)
2355 return;
2356
2357 /* Delete any blocks that became unreachable and weren't
2358 already cleaned up, for example during edge forwarding
2359 and convert_jumps_to_returns. This will expose more
2360 opportunities for fixing the partition boundaries here.
2361 Also, the calculation of the dominance graph during verification
2362 will assert if there are unreachable nodes. */
2363 delete_unreachable_blocks ();
2364
2365 /* If there are partitions, do a sanity check on them: A basic block in
2366   a cold partition cannot dominate a basic block in a hot partition.
2367 Fixup any that now violate this requirement, as a result of edge
2368 forwarding and unreachable block deletion.  */
2369 vec<basic_block> bbs_to_fix = find_partition_fixes (false);
2370
2371 /* Do the partition fixup after all necessary blocks have been converted to
2372 cold, so that we only update the region crossings the minimum number of
2373 places, which can require forcing edges to be non fallthru. */
2374 while (! bbs_to_fix.is_empty ())
2375 {
2376 bb = bbs_to_fix.pop ();
2377 fixup_new_cold_bb (bb);
2378 }
2379 }
2380
2381 /* Verify, in the basic block chain, that there is at most one switch
2382 between hot/cold partitions. This condition will not be true until
2383 after reorder_basic_blocks is called. */
2384
2385 static int
2386 verify_hot_cold_block_grouping (void)
2387 {
2388 basic_block bb;
2389 int err = 0;
2390 bool switched_sections = false;
2391 int current_partition = BB_UNPARTITIONED;
2392
2393 /* Even after bb reordering is complete, we go into cfglayout mode
2394 again (in compgoto). Ensure we don't call this before going back
2395 into linearized RTL when any layout fixes would have been committed. */
2396 if (!crtl->bb_reorder_complete
2397 || current_ir_type () != IR_RTL_CFGRTL)
2398 return err;
2399
2400 FOR_EACH_BB_FN (bb, cfun)
2401 {
2402 if (current_partition != BB_UNPARTITIONED
2403 && BB_PARTITION (bb) != current_partition)
2404 {
2405 if (switched_sections)
2406 {
2407 error ("multiple hot/cold transitions found (bb %i)",
2408 bb->index);
2409 err = 1;
2410 }
2411 else
2412 switched_sections = true;
2413
2414 if (!crtl->has_bb_partition)
2415 error ("partition found but function partition flag not set");
2416 }
2417 current_partition = BB_PARTITION (bb);
2418 }
2419
2420 return err;
2421 }
2422 \f
2423
2424 /* Perform several checks on the edges out of each block, such as
2425 the consistency of the branch probabilities, the correctness
2426 of hot/cold partition crossing edges, and the number of expected
2427 successor edges. Also verify that the dominance relationship
2428 between hot/cold blocks is sane. */
2429
2430 static int
2431 rtl_verify_edges (void)
2432 {
2433 int err = 0;
2434 basic_block bb;
2435
2436 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2437 {
2438 int n_fallthru = 0, n_branch = 0, n_abnormal_call = 0, n_sibcall = 0;
2439 int n_eh = 0, n_abnormal = 0;
2440 edge e, fallthru = NULL;
2441 edge_iterator ei;
2442 rtx note;
2443 bool has_crossing_edge = false;
2444
2445 if (JUMP_P (BB_END (bb))
2446 && (note = find_reg_note (BB_END (bb), REG_BR_PROB, NULL_RTX))
2447 && EDGE_COUNT (bb->succs) >= 2
2448 && any_condjump_p (BB_END (bb)))
2449 {
2450 if (!BRANCH_EDGE (bb)->probability.initialized_p ())
2451 {
2452 if (profile_status_for_fn (cfun) != PROFILE_ABSENT)
2453 {
2454 error ("verify_flow_info: "
2455 "REG_BR_PROB is set but cfg probability is not");
2456 err = 1;
2457 }
2458 }
2459 else if (XINT (note, 0)
2460 != BRANCH_EDGE (bb)->probability.to_reg_br_prob_note ()
2461 && profile_status_for_fn (cfun) != PROFILE_ABSENT)
2462 {
2463 error ("verify_flow_info: REG_BR_PROB does not match cfg %i %i",
2464 XINT (note, 0),
2465 BRANCH_EDGE (bb)->probability.to_reg_br_prob_note ());
2466 err = 1;
2467 }
2468 }
2469
2470 FOR_EACH_EDGE (e, ei, bb->succs)
2471 {
2472 bool is_crossing;
2473
2474 if (e->flags & EDGE_FALLTHRU)
2475 n_fallthru++, fallthru = e;
2476
2477 is_crossing = (BB_PARTITION (e->src) != BB_PARTITION (e->dest)
2478 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
2479 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun));
2480 has_crossing_edge |= is_crossing;
2481 if (e->flags & EDGE_CROSSING)
2482 {
2483 if (!is_crossing)
2484 {
2485 error ("EDGE_CROSSING incorrectly set across same section");
2486 err = 1;
2487 }
2488 if (e->flags & EDGE_FALLTHRU)
2489 {
2490 error ("fallthru edge crosses section boundary in bb %i",
2491 e->src->index);
2492 err = 1;
2493 }
2494 if (e->flags & EDGE_EH)
2495 {
2496 error ("EH edge crosses section boundary in bb %i",
2497 e->src->index);
2498 err = 1;
2499 }
2500 if (JUMP_P (BB_END (bb)) && !CROSSING_JUMP_P (BB_END (bb)))
2501 {
2502 error ("No region crossing jump at section boundary in bb %i",
2503 bb->index);
2504 err = 1;
2505 }
2506 }
2507 else if (is_crossing)
2508 {
2509 error ("EDGE_CROSSING missing across section boundary");
2510 err = 1;
2511 }
2512
2513 if ((e->flags & ~(EDGE_DFS_BACK
2514 | EDGE_CAN_FALLTHRU
2515 | EDGE_IRREDUCIBLE_LOOP
2516 | EDGE_LOOP_EXIT
2517 | EDGE_CROSSING
2518 | EDGE_PRESERVE)) == 0)
2519 n_branch++;
2520
2521 if (e->flags & EDGE_ABNORMAL_CALL)
2522 n_abnormal_call++;
2523
2524 if (e->flags & EDGE_SIBCALL)
2525 n_sibcall++;
2526
2527 if (e->flags & EDGE_EH)
2528 n_eh++;
2529
2530 if (e->flags & EDGE_ABNORMAL)
2531 n_abnormal++;
2532 }
2533
2534 if (!has_crossing_edge
2535 && JUMP_P (BB_END (bb))
2536 && CROSSING_JUMP_P (BB_END (bb)))
2537 {
2538 print_rtl_with_bb (stderr, get_insns (), TDF_BLOCKS | TDF_DETAILS);
2539 error ("Region crossing jump across same section in bb %i",
2540 bb->index);
2541 err = 1;
2542 }
2543
2544 if (n_eh && !find_reg_note (BB_END (bb), REG_EH_REGION, NULL_RTX))
2545 {
2546 error ("missing REG_EH_REGION note at the end of bb %i", bb->index);
2547 err = 1;
2548 }
2549 if (n_eh > 1)
2550 {
2551 error ("too many exception handling edges in bb %i", bb->index);
2552 err = 1;
2553 }
2554 if (n_branch
2555 && (!JUMP_P (BB_END (bb))
2556 || (n_branch > 1 && (any_uncondjump_p (BB_END (bb))
2557 || any_condjump_p (BB_END (bb))))))
2558 {
2559 error ("too many outgoing branch edges from bb %i", bb->index);
2560 err = 1;
2561 }
2562 if (n_fallthru && any_uncondjump_p (BB_END (bb)))
2563 {
2564 error ("fallthru edge after unconditional jump in bb %i", bb->index);
2565 err = 1;
2566 }
2567 if (n_branch != 1 && any_uncondjump_p (BB_END (bb)))
2568 {
2569 error ("wrong number of branch edges after unconditional jump"
2570 " in bb %i", bb->index);
2571 err = 1;
2572 }
2573 if (n_branch != 1 && any_condjump_p (BB_END (bb))
2574 && JUMP_LABEL (BB_END (bb)) != BB_HEAD (fallthru->dest))
2575 {
2576 error ("wrong amount of branch edges after conditional jump"
2577 " in bb %i", bb->index);
2578 err = 1;
2579 }
2580 if (n_abnormal_call && !CALL_P (BB_END (bb)))
2581 {
2582 error ("abnormal call edges for non-call insn in bb %i", bb->index);
2583 err = 1;
2584 }
2585 if (n_sibcall && !CALL_P (BB_END (bb)))
2586 {
2587 error ("sibcall edges for non-call insn in bb %i", bb->index);
2588 err = 1;
2589 }
2590 if (n_abnormal > n_eh
2591 && !(CALL_P (BB_END (bb))
2592 && n_abnormal == n_abnormal_call + n_sibcall)
2593 && (!JUMP_P (BB_END (bb))
2594 || any_condjump_p (BB_END (bb))
2595 || any_uncondjump_p (BB_END (bb))))
2596 {
2597 error ("abnormal edges for no purpose in bb %i", bb->index);
2598 err = 1;
2599 }
2600 }
2601
2602 /* If there are partitions, do a sanity check on them: A basic block in
2603   a cold partition cannot dominate a basic block in a hot partition.  */
2604 if (crtl->has_bb_partition && !err)
2605 {
2606 vec<basic_block> bbs_to_fix = find_partition_fixes (true);
2607 err = !bbs_to_fix.is_empty ();
2608 }
2609
2610 /* Clean up. */
2611 return err;
2612 }
2613
2614 /* Checks on the instructions within blocks. Currently checks that each
2615 block starts with a basic block note, and that basic block notes and
2616 control flow jumps are not found in the middle of the block. */
2617
2618 static int
2619 rtl_verify_bb_insns (void)
2620 {
2621 rtx_insn *x;
2622 int err = 0;
2623 basic_block bb;
2624
2625 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2626 {
2627 /* Now check the header of basic
2628 block. It ought to contain optional CODE_LABEL followed
2629 by NOTE_BASIC_BLOCK. */
2630 x = BB_HEAD (bb);
2631 if (LABEL_P (x))
2632 {
2633 if (BB_END (bb) == x)
2634 {
2635 error ("NOTE_INSN_BASIC_BLOCK is missing for block %d",
2636 bb->index);
2637 err = 1;
2638 }
2639
2640 x = NEXT_INSN (x);
2641 }
2642
2643 if (!NOTE_INSN_BASIC_BLOCK_P (x) || NOTE_BASIC_BLOCK (x) != bb)
2644 {
2645 error ("NOTE_INSN_BASIC_BLOCK is missing for block %d",
2646 bb->index);
2647 err = 1;
2648 }
2649
2650 if (BB_END (bb) == x)
2651 /* Do checks for empty blocks here. */
2652 ;
2653 else
2654 for (x = NEXT_INSN (x); x; x = NEXT_INSN (x))
2655 {
2656 if (NOTE_INSN_BASIC_BLOCK_P (x))
2657 {
2658 error ("NOTE_INSN_BASIC_BLOCK %d in middle of basic block %d",
2659 INSN_UID (x), bb->index);
2660 err = 1;
2661 }
2662
2663 if (x == BB_END (bb))
2664 break;
2665
2666 if (control_flow_insn_p (x))
2667 {
2668 error ("in basic block %d:", bb->index);
2669 fatal_insn ("flow control insn inside a basic block", x);
2670 }
2671 }
2672 }
2673
2674 /* Clean up. */
2675 return err;
2676 }
2677
2678 /* Verify that block pointers for instructions in basic blocks, headers and
2679 footers are set appropriately. */
2680
2681 static int
2682 rtl_verify_bb_pointers (void)
2683 {
2684 int err = 0;
2685 basic_block bb;
2686
2687 /* Check the general integrity of the basic blocks. */
2688 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2689 {
2690 rtx_insn *insn;
2691
2692 if (!(bb->flags & BB_RTL))
2693 {
2694 error ("BB_RTL flag not set for block %d", bb->index);
2695 err = 1;
2696 }
2697
2698 FOR_BB_INSNS (bb, insn)
2699 if (BLOCK_FOR_INSN (insn) != bb)
2700 {
2701 error ("insn %d basic block pointer is %d, should be %d",
2702 INSN_UID (insn),
2703 BLOCK_FOR_INSN (insn) ? BLOCK_FOR_INSN (insn)->index : 0,
2704 bb->index);
2705 err = 1;
2706 }
2707
2708 for (insn = BB_HEADER (bb); insn; insn = NEXT_INSN (insn))
2709 if (!BARRIER_P (insn)
2710 && BLOCK_FOR_INSN (insn) != NULL)
2711 {
2712 error ("insn %d in header of bb %d has non-NULL basic block",
2713 INSN_UID (insn), bb->index);
2714 err = 1;
2715 }
2716 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2717 if (!BARRIER_P (insn)
2718 && BLOCK_FOR_INSN (insn) != NULL)
2719 {
2720 error ("insn %d in footer of bb %d has non-NULL basic block",
2721 INSN_UID (insn), bb->index);
2722 err = 1;
2723 }
2724 }
2725
2726 /* Clean up. */
2727 return err;
2728 }
2729
2730 /* Verify the CFG and RTL consistency common for both underlying RTL and
2731 cfglayout RTL.
2732
2733 Currently it does following checks:
2734
2735 - overlapping of basic blocks
2736 - insns with wrong BLOCK_FOR_INSN pointers
2737 - headers of basic blocks (the NOTE_INSN_BASIC_BLOCK note)
2738 - tails of basic blocks (ensure that boundary is necessary)
2739 - scans body of the basic block for JUMP_INSN, CODE_LABEL
2740 and NOTE_INSN_BASIC_BLOCK
2741 - verify that no fall_thru edge crosses hot/cold partition boundaries
2742 - verify that there are no pending RTL branch predictions
2743 - verify that hot blocks are not dominated by cold blocks
2744
2745 In future it can be extended check a lot of other stuff as well
2746 (reachability of basic blocks, life information, etc. etc.). */
2747
2748 static int
2749 rtl_verify_flow_info_1 (void)
2750 {
2751 int err = 0;
2752
2753 err |= rtl_verify_bb_pointers ();
2754
2755 err |= rtl_verify_bb_insns ();
2756
2757 err |= rtl_verify_edges ();
2758
2759 return err;
2760 }
2761
2762 /* Walk the instruction chain and verify that bb head/end pointers
2763 are correct, and that instructions are in exactly one bb and have
2764 correct block pointers. */
2765
2766 static int
2767 rtl_verify_bb_insn_chain (void)
2768 {
2769 basic_block bb;
2770 int err = 0;
2771 rtx_insn *x;
2772 rtx_insn *last_head = get_last_insn ();
2773 basic_block *bb_info;
2774 const int max_uid = get_max_uid ();
2775
2776 bb_info = XCNEWVEC (basic_block, max_uid);
2777
2778 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2779 {
2780 rtx_insn *head = BB_HEAD (bb);
2781 rtx_insn *end = BB_END (bb);
2782
2783 for (x = last_head; x != NULL_RTX; x = PREV_INSN (x))
2784 {
2785 /* Verify the end of the basic block is in the INSN chain. */
2786 if (x == end)
2787 break;
2788
2789 /* And that the code outside of basic blocks has NULL bb field. */
2790 if (!BARRIER_P (x)
2791 && BLOCK_FOR_INSN (x) != NULL)
2792 {
2793 error ("insn %d outside of basic blocks has non-NULL bb field",
2794 INSN_UID (x));
2795 err = 1;
2796 }
2797 }
2798
2799 if (!x)
2800 {
2801 error ("end insn %d for block %d not found in the insn stream",
2802 INSN_UID (end), bb->index);
2803 err = 1;
2804 }
2805
2806 /* Work backwards from the end to the head of the basic block
2807 to verify the head is in the RTL chain. */
2808 for (; x != NULL_RTX; x = PREV_INSN (x))
2809 {
2810 /* While walking over the insn chain, verify insns appear
2811 in only one basic block. */
2812 if (bb_info[INSN_UID (x)] != NULL)
2813 {
2814 error ("insn %d is in multiple basic blocks (%d and %d)",
2815 INSN_UID (x), bb->index, bb_info[INSN_UID (x)]->index);
2816 err = 1;
2817 }
2818
2819 bb_info[INSN_UID (x)] = bb;
2820
2821 if (x == head)
2822 break;
2823 }
2824 if (!x)
2825 {
2826 error ("head insn %d for block %d not found in the insn stream",
2827 INSN_UID (head), bb->index);
2828 err = 1;
2829 }
2830
2831 last_head = PREV_INSN (x);
2832 }
2833
2834 for (x = last_head; x != NULL_RTX; x = PREV_INSN (x))
2835 {
2836 /* Check that the code before the first basic block has NULL
2837 bb field. */
2838 if (!BARRIER_P (x)
2839 && BLOCK_FOR_INSN (x) != NULL)
2840 {
2841 error ("insn %d outside of basic blocks has non-NULL bb field",
2842 INSN_UID (x));
2843 err = 1;
2844 }
2845 }
2846 free (bb_info);
2847
2848 return err;
2849 }
2850
2851 /* Verify that fallthru edges point to adjacent blocks in layout order and
2852 that barriers exist after non-fallthru blocks. */
2853
2854 static int
2855 rtl_verify_fallthru (void)
2856 {
2857 basic_block bb;
2858 int err = 0;
2859
2860 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2861 {
2862 edge e;
2863
2864 e = find_fallthru_edge (bb->succs);
2865 if (!e)
2866 {
2867 rtx_insn *insn;
2868
2869 /* Ensure existence of barrier in BB with no fallthru edges. */
2870 for (insn = NEXT_INSN (BB_END (bb)); ; insn = NEXT_INSN (insn))
2871 {
2872 if (!insn || NOTE_INSN_BASIC_BLOCK_P (insn))
2873 {
2874 error ("missing barrier after block %i", bb->index);
2875 err = 1;
2876 break;
2877 }
2878 if (BARRIER_P (insn))
2879 break;
2880 }
2881 }
2882 else if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
2883 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
2884 {
2885 rtx_insn *insn;
2886
2887 if (e->src->next_bb != e->dest)
2888 {
2889 error
2890 ("verify_flow_info: Incorrect blocks for fallthru %i->%i",
2891 e->src->index, e->dest->index);
2892 err = 1;
2893 }
2894 else
2895 for (insn = NEXT_INSN (BB_END (e->src)); insn != BB_HEAD (e->dest);
2896 insn = NEXT_INSN (insn))
2897 if (BARRIER_P (insn) || INSN_P (insn))
2898 {
2899 error ("verify_flow_info: Incorrect fallthru %i->%i",
2900 e->src->index, e->dest->index);
2901 fatal_insn ("wrong insn in the fallthru edge", insn);
2902 err = 1;
2903 }
2904 }
2905 }
2906
2907 return err;
2908 }
2909
2910 /* Verify that blocks are laid out in consecutive order. While walking the
2911 instructions, verify that all expected instructions are inside the basic
2912 blocks, and that all returns are followed by barriers. */
2913
2914 static int
2915 rtl_verify_bb_layout (void)
2916 {
2917 basic_block bb;
2918 int err = 0;
2919 rtx_insn *x;
2920 int num_bb_notes;
2921 rtx_insn * const rtx_first = get_insns ();
2922 basic_block last_bb_seen = ENTRY_BLOCK_PTR_FOR_FN (cfun), curr_bb = NULL;
2923
2924 num_bb_notes = 0;
2925 last_bb_seen = ENTRY_BLOCK_PTR_FOR_FN (cfun);
2926
2927 for (x = rtx_first; x; x = NEXT_INSN (x))
2928 {
2929 if (NOTE_INSN_BASIC_BLOCK_P (x))
2930 {
2931 bb = NOTE_BASIC_BLOCK (x);
2932
2933 num_bb_notes++;
2934 if (bb != last_bb_seen->next_bb)
2935 internal_error ("basic blocks not laid down consecutively");
2936
2937 curr_bb = last_bb_seen = bb;
2938 }
2939
2940 if (!curr_bb)
2941 {
2942 switch (GET_CODE (x))
2943 {
2944 case BARRIER:
2945 case NOTE:
2946 break;
2947
2948 case CODE_LABEL:
2949 /* An ADDR_VEC is placed outside any basic block. */
2950 if (NEXT_INSN (x)
2951 && JUMP_TABLE_DATA_P (NEXT_INSN (x)))
2952 x = NEXT_INSN (x);
2953
2954 /* But in any case, non-deletable labels can appear anywhere. */
2955 break;
2956
2957 default:
2958 fatal_insn ("insn outside basic block", x);
2959 }
2960 }
2961
2962 if (JUMP_P (x)
2963 && returnjump_p (x) && ! condjump_p (x)
2964 && ! (next_nonnote_insn (x) && BARRIER_P (next_nonnote_insn (x))))
2965 fatal_insn ("return not followed by barrier", x);
2966
2967 if (curr_bb && x == BB_END (curr_bb))
2968 curr_bb = NULL;
2969 }
2970
2971 if (num_bb_notes != n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS)
2972 internal_error
2973 ("number of bb notes in insn chain (%d) != n_basic_blocks (%d)",
2974 num_bb_notes, n_basic_blocks_for_fn (cfun));
2975
2976 return err;
2977 }
2978
2979 /* Verify the CFG and RTL consistency common for both underlying RTL and
2980 cfglayout RTL, plus consistency checks specific to linearized RTL mode.
2981
2982 Currently it does following checks:
2983 - all checks of rtl_verify_flow_info_1
2984 - test head/end pointers
2985 - check that blocks are laid out in consecutive order
2986 - check that all insns are in the basic blocks
2987 (except the switch handling code, barriers and notes)
2988 - check that all returns are followed by barriers
2989 - check that all fallthru edge points to the adjacent blocks
2990 - verify that there is a single hot/cold partition boundary after bbro */
2991
2992 static int
2993 rtl_verify_flow_info (void)
2994 {
2995 int err = 0;
2996
2997 err |= rtl_verify_flow_info_1 ();
2998
2999 err |= rtl_verify_bb_insn_chain ();
3000
3001 err |= rtl_verify_fallthru ();
3002
3003 err |= rtl_verify_bb_layout ();
3004
3005 err |= verify_hot_cold_block_grouping ();
3006
3007 return err;
3008 }
3009 \f
3010 /* Assume that the preceding pass has possibly eliminated jump instructions
3011 or converted the unconditional jumps. Eliminate the edges from CFG.
3012 Return true if any edges are eliminated. */
3013
3014 bool
3015 purge_dead_edges (basic_block bb)
3016 {
3017 edge e;
3018 rtx_insn *insn = BB_END (bb);
3019 rtx note;
3020 bool purged = false;
3021 bool found;
3022 edge_iterator ei;
3023
3024 if (DEBUG_INSN_P (insn) && insn != BB_HEAD (bb))
3025 do
3026 insn = PREV_INSN (insn);
3027 while ((DEBUG_INSN_P (insn) || NOTE_P (insn)) && insn != BB_HEAD (bb));
3028
3029 /* If this instruction cannot trap, remove REG_EH_REGION notes. */
3030 if (NONJUMP_INSN_P (insn)
3031 && (note = find_reg_note (insn, REG_EH_REGION, NULL)))
3032 {
3033 rtx eqnote;
3034
3035 if (! may_trap_p (PATTERN (insn))
3036 || ((eqnote = find_reg_equal_equiv_note (insn))
3037 && ! may_trap_p (XEXP (eqnote, 0))))
3038 remove_note (insn, note);
3039 }
3040
3041 /* Cleanup abnormal edges caused by exceptions or non-local gotos. */
3042 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
3043 {
3044 bool remove = false;
3045
3046 /* There are three types of edges we need to handle correctly here: EH
3047 edges, abnormal call EH edges, and abnormal call non-EH edges. The
3048 latter can appear when nonlocal gotos are used. */
3049 if (e->flags & EDGE_ABNORMAL_CALL)
3050 {
3051 if (!CALL_P (insn))
3052 remove = true;
3053 else if (can_nonlocal_goto (insn))
3054 ;
3055 else if ((e->flags & EDGE_EH) && can_throw_internal (insn))
3056 ;
3057 else if (flag_tm && find_reg_note (insn, REG_TM, NULL))
3058 ;
3059 else
3060 remove = true;
3061 }
3062 else if (e->flags & EDGE_EH)
3063 remove = !can_throw_internal (insn);
3064
3065 if (remove)
3066 {
3067 remove_edge (e);
3068 df_set_bb_dirty (bb);
3069 purged = true;
3070 }
3071 else
3072 ei_next (&ei);
3073 }
3074
3075 if (JUMP_P (insn))
3076 {
3077 rtx note;
3078 edge b,f;
3079 edge_iterator ei;
3080
3081 /* We do care only about conditional jumps and simplejumps. */
3082 if (!any_condjump_p (insn)
3083 && !returnjump_p (insn)
3084 && !simplejump_p (insn))
3085 return purged;
3086
3087 /* Branch probability/prediction notes are defined only for
3088 condjumps. We've possibly turned condjump into simplejump. */
3089 if (simplejump_p (insn))
3090 {
3091 note = find_reg_note (insn, REG_BR_PROB, NULL);
3092 if (note)
3093 remove_note (insn, note);
3094 while ((note = find_reg_note (insn, REG_BR_PRED, NULL)))
3095 remove_note (insn, note);
3096 }
3097
3098 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
3099 {
3100 /* Avoid abnormal flags to leak from computed jumps turned
3101 into simplejumps. */
3102
3103 e->flags &= ~EDGE_ABNORMAL;
3104
3105 /* See if this edge is one we should keep. */
3106 if ((e->flags & EDGE_FALLTHRU) && any_condjump_p (insn))
3107 /* A conditional jump can fall through into the next
3108 block, so we should keep the edge. */
3109 {
3110 ei_next (&ei);
3111 continue;
3112 }
3113 else if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
3114 && BB_HEAD (e->dest) == JUMP_LABEL (insn))
3115 /* If the destination block is the target of the jump,
3116 keep the edge. */
3117 {
3118 ei_next (&ei);
3119 continue;
3120 }
3121 else if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
3122 && returnjump_p (insn))
3123 /* If the destination block is the exit block, and this
3124 instruction is a return, then keep the edge. */
3125 {
3126 ei_next (&ei);
3127 continue;
3128 }
3129 else if ((e->flags & EDGE_EH) && can_throw_internal (insn))
3130 /* Keep the edges that correspond to exceptions thrown by
3131 this instruction and rematerialize the EDGE_ABNORMAL
3132 flag we just cleared above. */
3133 {
3134 e->flags |= EDGE_ABNORMAL;
3135 ei_next (&ei);
3136 continue;
3137 }
3138
3139 /* We do not need this edge. */
3140 df_set_bb_dirty (bb);
3141 purged = true;
3142 remove_edge (e);
3143 }
3144
3145 if (EDGE_COUNT (bb->succs) == 0 || !purged)
3146 return purged;
3147
3148 if (dump_file)
3149 fprintf (dump_file, "Purged edges from bb %i\n", bb->index);
3150
3151 if (!optimize)
3152 return purged;
3153
3154 /* Redistribute probabilities. */
3155 if (single_succ_p (bb))
3156 {
3157 single_succ_edge (bb)->probability = profile_probability::always ();
3158 single_succ_edge (bb)->count = bb->count;
3159 }
3160 else
3161 {
3162 note = find_reg_note (insn, REG_BR_PROB, NULL);
3163 if (!note)
3164 return purged;
3165
3166 b = BRANCH_EDGE (bb);
3167 f = FALLTHRU_EDGE (bb);
3168 b->probability = profile_probability::from_reg_br_prob_note
3169 (XINT (note, 0));
3170 f->probability = b->probability.invert ();
3171 b->count = bb->count.apply_probability (b->probability);
3172 f->count = bb->count.apply_probability (f->probability);
3173 }
3174
3175 return purged;
3176 }
3177 else if (CALL_P (insn) && SIBLING_CALL_P (insn))
3178 {
3179 /* First, there should not be any EH or ABCALL edges resulting
3180 from non-local gotos and the like. If there were, we shouldn't
3181 have created the sibcall in the first place. Second, there
3182 should of course never have been a fallthru edge. */
3183 gcc_assert (single_succ_p (bb));
3184 gcc_assert (single_succ_edge (bb)->flags
3185 == (EDGE_SIBCALL | EDGE_ABNORMAL));
3186
3187 return 0;
3188 }
3189
3190 /* If we don't see a jump insn, we don't know exactly why the block would
3191 have been broken at this point. Look for a simple, non-fallthru edge,
3192 as these are only created by conditional branches. If we find such an
3193 edge we know that there used to be a jump here and can then safely
3194 remove all non-fallthru edges. */
3195 found = false;
3196 FOR_EACH_EDGE (e, ei, bb->succs)
3197 if (! (e->flags & (EDGE_COMPLEX | EDGE_FALLTHRU)))
3198 {
3199 found = true;
3200 break;
3201 }
3202
3203 if (!found)
3204 return purged;
3205
3206 /* Remove all but the fake and fallthru edges. The fake edge may be
3207 the only successor for this block in the case of noreturn
3208 calls. */
3209 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
3210 {
3211 if (!(e->flags & (EDGE_FALLTHRU | EDGE_FAKE)))
3212 {
3213 df_set_bb_dirty (bb);
3214 remove_edge (e);
3215 purged = true;
3216 }
3217 else
3218 ei_next (&ei);
3219 }
3220
3221 gcc_assert (single_succ_p (bb));
3222
3223 single_succ_edge (bb)->probability = profile_probability::always ();
3224 single_succ_edge (bb)->count = bb->count;
3225
3226 if (dump_file)
3227 fprintf (dump_file, "Purged non-fallthru edges from bb %i\n",
3228 bb->index);
3229 return purged;
3230 }
3231
3232 /* Search all basic blocks for potentially dead edges and purge them. Return
3233 true if some edge has been eliminated. */
3234
3235 bool
3236 purge_all_dead_edges (void)
3237 {
3238 int purged = false;
3239 basic_block bb;
3240
3241 FOR_EACH_BB_FN (bb, cfun)
3242 {
3243 bool purged_here = purge_dead_edges (bb);
3244
3245 purged |= purged_here;
3246 }
3247
3248 return purged;
3249 }
3250
3251 /* This is used by a few passes that emit some instructions after abnormal
3252 calls, moving the basic block's end, while they in fact do want to emit
3253 them on the fallthru edge. Look for abnormal call edges, find backward
3254 the call in the block and insert the instructions on the edge instead.
3255
3256 Similarly, handle instructions throwing exceptions internally.
3257
3258 Return true when instructions have been found and inserted on edges. */
3259
3260 bool
3261 fixup_abnormal_edges (void)
3262 {
3263 bool inserted = false;
3264 basic_block bb;
3265
3266 FOR_EACH_BB_FN (bb, cfun)
3267 {
3268 edge e;
3269 edge_iterator ei;
3270
3271 /* Look for cases we are interested in - calls or instructions causing
3272 exceptions. */
3273 FOR_EACH_EDGE (e, ei, bb->succs)
3274 if ((e->flags & EDGE_ABNORMAL_CALL)
3275 || ((e->flags & (EDGE_ABNORMAL | EDGE_EH))
3276 == (EDGE_ABNORMAL | EDGE_EH)))
3277 break;
3278
3279 if (e && !CALL_P (BB_END (bb)) && !can_throw_internal (BB_END (bb)))
3280 {
3281 rtx_insn *insn;
3282
3283 /* Get past the new insns generated. Allow notes, as the insns
3284 may be already deleted. */
3285 insn = BB_END (bb);
3286 while ((NONJUMP_INSN_P (insn) || NOTE_P (insn))
3287 && !can_throw_internal (insn)
3288 && insn != BB_HEAD (bb))
3289 insn = PREV_INSN (insn);
3290
3291 if (CALL_P (insn) || can_throw_internal (insn))
3292 {
3293 rtx_insn *stop, *next;
3294
3295 e = find_fallthru_edge (bb->succs);
3296
3297 stop = NEXT_INSN (BB_END (bb));
3298 BB_END (bb) = insn;
3299
3300 for (insn = NEXT_INSN (insn); insn != stop; insn = next)
3301 {
3302 next = NEXT_INSN (insn);
3303 if (INSN_P (insn))
3304 {
3305 delete_insn (insn);
3306
3307 /* Sometimes there's still the return value USE.
3308 If it's placed after a trapping call (i.e. that
3309 call is the last insn anyway), we have no fallthru
3310 edge. Simply delete this use and don't try to insert
3311 on the non-existent edge. */
3312 if (GET_CODE (PATTERN (insn)) != USE)
3313 {
3314 /* We're not deleting it, we're moving it. */
3315 insn->set_undeleted ();
3316 SET_PREV_INSN (insn) = NULL_RTX;
3317 SET_NEXT_INSN (insn) = NULL_RTX;
3318
3319 insert_insn_on_edge (insn, e);
3320 inserted = true;
3321 }
3322 }
3323 else if (!BARRIER_P (insn))
3324 set_block_for_insn (insn, NULL);
3325 }
3326 }
3327
3328 /* It may be that we don't find any trapping insn. In this
3329 case we discovered quite late that the insn that had been
3330 marked as can_throw_internal in fact couldn't trap at all.
3331 So we should in fact delete the EH edges out of the block. */
3332 else
3333 purge_dead_edges (bb);
3334 }
3335 }
3336
3337 return inserted;
3338 }
3339 \f
3340 /* Cut the insns from FIRST to LAST out of the insns stream. */
3341
3342 rtx_insn *
3343 unlink_insn_chain (rtx_insn *first, rtx_insn *last)
3344 {
3345 rtx_insn *prevfirst = PREV_INSN (first);
3346 rtx_insn *nextlast = NEXT_INSN (last);
3347
3348 SET_PREV_INSN (first) = NULL;
3349 SET_NEXT_INSN (last) = NULL;
3350 if (prevfirst)
3351 SET_NEXT_INSN (prevfirst) = nextlast;
3352 if (nextlast)
3353 SET_PREV_INSN (nextlast) = prevfirst;
3354 else
3355 set_last_insn (prevfirst);
3356 if (!prevfirst)
3357 set_first_insn (nextlast);
3358 return first;
3359 }
3360 \f
3361 /* Skip over inter-block insns occurring after BB which are typically
3362 associated with BB (e.g., barriers). If there are any such insns,
3363 we return the last one. Otherwise, we return the end of BB. */
3364
3365 static rtx_insn *
3366 skip_insns_after_block (basic_block bb)
3367 {
3368 rtx_insn *insn, *last_insn, *next_head, *prev;
3369
3370 next_head = NULL;
3371 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3372 next_head = BB_HEAD (bb->next_bb);
3373
3374 for (last_insn = insn = BB_END (bb); (insn = NEXT_INSN (insn)) != 0; )
3375 {
3376 if (insn == next_head)
3377 break;
3378
3379 switch (GET_CODE (insn))
3380 {
3381 case BARRIER:
3382 last_insn = insn;
3383 continue;
3384
3385 case NOTE:
3386 switch (NOTE_KIND (insn))
3387 {
3388 case NOTE_INSN_BLOCK_END:
3389 gcc_unreachable ();
3390 continue;
3391 default:
3392 continue;
3393 break;
3394 }
3395 break;
3396
3397 case CODE_LABEL:
3398 if (NEXT_INSN (insn)
3399 && JUMP_TABLE_DATA_P (NEXT_INSN (insn)))
3400 {
3401 insn = NEXT_INSN (insn);
3402 last_insn = insn;
3403 continue;
3404 }
3405 break;
3406
3407 default:
3408 break;
3409 }
3410
3411 break;
3412 }
3413
3414 /* It is possible to hit contradictory sequence. For instance:
3415
3416 jump_insn
3417 NOTE_INSN_BLOCK_BEG
3418 barrier
3419
3420 Where barrier belongs to jump_insn, but the note does not. This can be
3421 created by removing the basic block originally following
3422 NOTE_INSN_BLOCK_BEG. In such case reorder the notes. */
3423
3424 for (insn = last_insn; insn != BB_END (bb); insn = prev)
3425 {
3426 prev = PREV_INSN (insn);
3427 if (NOTE_P (insn))
3428 switch (NOTE_KIND (insn))
3429 {
3430 case NOTE_INSN_BLOCK_END:
3431 gcc_unreachable ();
3432 break;
3433 case NOTE_INSN_DELETED:
3434 case NOTE_INSN_DELETED_LABEL:
3435 case NOTE_INSN_DELETED_DEBUG_LABEL:
3436 continue;
3437 default:
3438 reorder_insns (insn, insn, last_insn);
3439 }
3440 }
3441
3442 return last_insn;
3443 }
3444
3445 /* Locate or create a label for a given basic block. */
3446
3447 static rtx_insn *
3448 label_for_bb (basic_block bb)
3449 {
3450 rtx_insn *label = BB_HEAD (bb);
3451
3452 if (!LABEL_P (label))
3453 {
3454 if (dump_file)
3455 fprintf (dump_file, "Emitting label for block %d\n", bb->index);
3456
3457 label = block_label (bb);
3458 }
3459
3460 return label;
3461 }
3462
3463 /* Locate the effective beginning and end of the insn chain for each
3464 block, as defined by skip_insns_after_block above. */
3465
3466 static void
3467 record_effective_endpoints (void)
3468 {
3469 rtx_insn *next_insn;
3470 basic_block bb;
3471 rtx_insn *insn;
3472
3473 for (insn = get_insns ();
3474 insn
3475 && NOTE_P (insn)
3476 && NOTE_KIND (insn) != NOTE_INSN_BASIC_BLOCK;
3477 insn = NEXT_INSN (insn))
3478 continue;
3479 /* No basic blocks at all? */
3480 gcc_assert (insn);
3481
3482 if (PREV_INSN (insn))
3483 cfg_layout_function_header =
3484 unlink_insn_chain (get_insns (), PREV_INSN (insn));
3485 else
3486 cfg_layout_function_header = NULL;
3487
3488 next_insn = get_insns ();
3489 FOR_EACH_BB_FN (bb, cfun)
3490 {
3491 rtx_insn *end;
3492
3493 if (PREV_INSN (BB_HEAD (bb)) && next_insn != BB_HEAD (bb))
3494 BB_HEADER (bb) = unlink_insn_chain (next_insn,
3495 PREV_INSN (BB_HEAD (bb)));
3496 end = skip_insns_after_block (bb);
3497 if (NEXT_INSN (BB_END (bb)) && BB_END (bb) != end)
3498 BB_FOOTER (bb) = unlink_insn_chain (NEXT_INSN (BB_END (bb)), end);
3499 next_insn = NEXT_INSN (BB_END (bb));
3500 }
3501
3502 cfg_layout_function_footer = next_insn;
3503 if (cfg_layout_function_footer)
3504 cfg_layout_function_footer = unlink_insn_chain (cfg_layout_function_footer, get_last_insn ());
3505 }
3506 \f
3507 namespace {
3508
3509 const pass_data pass_data_into_cfg_layout_mode =
3510 {
3511 RTL_PASS, /* type */
3512 "into_cfglayout", /* name */
3513 OPTGROUP_NONE, /* optinfo_flags */
3514 TV_CFG, /* tv_id */
3515 0, /* properties_required */
3516 PROP_cfglayout, /* properties_provided */
3517 0, /* properties_destroyed */
3518 0, /* todo_flags_start */
3519 0, /* todo_flags_finish */
3520 };
3521
3522 class pass_into_cfg_layout_mode : public rtl_opt_pass
3523 {
3524 public:
3525 pass_into_cfg_layout_mode (gcc::context *ctxt)
3526 : rtl_opt_pass (pass_data_into_cfg_layout_mode, ctxt)
3527 {}
3528
3529 /* opt_pass methods: */
3530 virtual unsigned int execute (function *)
3531 {
3532 cfg_layout_initialize (0);
3533 return 0;
3534 }
3535
3536 }; // class pass_into_cfg_layout_mode
3537
3538 } // anon namespace
3539
3540 rtl_opt_pass *
3541 make_pass_into_cfg_layout_mode (gcc::context *ctxt)
3542 {
3543 return new pass_into_cfg_layout_mode (ctxt);
3544 }
3545
3546 namespace {
3547
3548 const pass_data pass_data_outof_cfg_layout_mode =
3549 {
3550 RTL_PASS, /* type */
3551 "outof_cfglayout", /* name */
3552 OPTGROUP_NONE, /* optinfo_flags */
3553 TV_CFG, /* tv_id */
3554 0, /* properties_required */
3555 0, /* properties_provided */
3556 PROP_cfglayout, /* properties_destroyed */
3557 0, /* todo_flags_start */
3558 0, /* todo_flags_finish */
3559 };
3560
3561 class pass_outof_cfg_layout_mode : public rtl_opt_pass
3562 {
3563 public:
3564 pass_outof_cfg_layout_mode (gcc::context *ctxt)
3565 : rtl_opt_pass (pass_data_outof_cfg_layout_mode, ctxt)
3566 {}
3567
3568 /* opt_pass methods: */
3569 virtual unsigned int execute (function *);
3570
3571 }; // class pass_outof_cfg_layout_mode
3572
3573 unsigned int
3574 pass_outof_cfg_layout_mode::execute (function *fun)
3575 {
3576 basic_block bb;
3577
3578 FOR_EACH_BB_FN (bb, fun)
3579 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (fun))
3580 bb->aux = bb->next_bb;
3581
3582 cfg_layout_finalize ();
3583
3584 return 0;
3585 }
3586
3587 } // anon namespace
3588
3589 rtl_opt_pass *
3590 make_pass_outof_cfg_layout_mode (gcc::context *ctxt)
3591 {
3592 return new pass_outof_cfg_layout_mode (ctxt);
3593 }
3594 \f
3595
3596 /* Link the basic blocks in the correct order, compacting the basic
3597 block queue while at it. If STAY_IN_CFGLAYOUT_MODE is false, this
3598 function also clears the basic block header and footer fields.
3599
3600 This function is usually called after a pass (e.g. tracer) finishes
3601 some transformations while in cfglayout mode. The required sequence
3602 of the basic blocks is in a linked list along the bb->aux field.
3603 This functions re-links the basic block prev_bb and next_bb pointers
3604 accordingly, and it compacts and renumbers the blocks.
3605
3606 FIXME: This currently works only for RTL, but the only RTL-specific
3607 bits are the STAY_IN_CFGLAYOUT_MODE bits. The tracer pass was moved
3608 to GIMPLE a long time ago, but it doesn't relink the basic block
3609 chain. It could do that (to give better initial RTL) if this function
3610 is made IR-agnostic (and moved to cfganal.c or cfg.c while at it). */
3611
3612 void
3613 relink_block_chain (bool stay_in_cfglayout_mode)
3614 {
3615 basic_block bb, prev_bb;
3616 int index;
3617
3618 /* Maybe dump the re-ordered sequence. */
3619 if (dump_file)
3620 {
3621 fprintf (dump_file, "Reordered sequence:\n");
3622 for (bb = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb, index =
3623 NUM_FIXED_BLOCKS;
3624 bb;
3625 bb = (basic_block) bb->aux, index++)
3626 {
3627 fprintf (dump_file, " %i ", index);
3628 if (get_bb_original (bb))
3629 fprintf (dump_file, "duplicate of %i ",
3630 get_bb_original (bb)->index);
3631 else if (forwarder_block_p (bb)
3632 && !LABEL_P (BB_HEAD (bb)))
3633 fprintf (dump_file, "compensation ");
3634 else
3635 fprintf (dump_file, "bb %i ", bb->index);
3636 fprintf (dump_file, " [%i]\n", bb->frequency);
3637 }
3638 }
3639
3640 /* Now reorder the blocks. */
3641 prev_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
3642 bb = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb;
3643 for (; bb; prev_bb = bb, bb = (basic_block) bb->aux)
3644 {
3645 bb->prev_bb = prev_bb;
3646 prev_bb->next_bb = bb;
3647 }
3648 prev_bb->next_bb = EXIT_BLOCK_PTR_FOR_FN (cfun);
3649 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb = prev_bb;
3650
3651 /* Then, clean up the aux fields. */
3652 FOR_ALL_BB_FN (bb, cfun)
3653 {
3654 bb->aux = NULL;
3655 if (!stay_in_cfglayout_mode)
3656 BB_HEADER (bb) = BB_FOOTER (bb) = NULL;
3657 }
3658
3659 /* Maybe reset the original copy tables, they are not valid anymore
3660 when we renumber the basic blocks in compact_blocks. If we are
3661 are going out of cfglayout mode, don't re-allocate the tables. */
3662 if (original_copy_tables_initialized_p ())
3663 free_original_copy_tables ();
3664 if (stay_in_cfglayout_mode)
3665 initialize_original_copy_tables ();
3666
3667 /* Finally, put basic_block_info in the new order. */
3668 compact_blocks ();
3669 }
3670 \f
3671
3672 /* Given a reorder chain, rearrange the code to match. */
3673
3674 static void
3675 fixup_reorder_chain (void)
3676 {
3677 basic_block bb;
3678 rtx_insn *insn = NULL;
3679
3680 if (cfg_layout_function_header)
3681 {
3682 set_first_insn (cfg_layout_function_header);
3683 insn = cfg_layout_function_header;
3684 while (NEXT_INSN (insn))
3685 insn = NEXT_INSN (insn);
3686 }
3687
3688 /* First do the bulk reordering -- rechain the blocks without regard to
3689 the needed changes to jumps and labels. */
3690
3691 for (bb = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb; bb; bb = (basic_block)
3692 bb->aux)
3693 {
3694 if (BB_HEADER (bb))
3695 {
3696 if (insn)
3697 SET_NEXT_INSN (insn) = BB_HEADER (bb);
3698 else
3699 set_first_insn (BB_HEADER (bb));
3700 SET_PREV_INSN (BB_HEADER (bb)) = insn;
3701 insn = BB_HEADER (bb);
3702 while (NEXT_INSN (insn))
3703 insn = NEXT_INSN (insn);
3704 }
3705 if (insn)
3706 SET_NEXT_INSN (insn) = BB_HEAD (bb);
3707 else
3708 set_first_insn (BB_HEAD (bb));
3709 SET_PREV_INSN (BB_HEAD (bb)) = insn;
3710 insn = BB_END (bb);
3711 if (BB_FOOTER (bb))
3712 {
3713 SET_NEXT_INSN (insn) = BB_FOOTER (bb);
3714 SET_PREV_INSN (BB_FOOTER (bb)) = insn;
3715 while (NEXT_INSN (insn))
3716 insn = NEXT_INSN (insn);
3717 }
3718 }
3719
3720 SET_NEXT_INSN (insn) = cfg_layout_function_footer;
3721 if (cfg_layout_function_footer)
3722 SET_PREV_INSN (cfg_layout_function_footer) = insn;
3723
3724 while (NEXT_INSN (insn))
3725 insn = NEXT_INSN (insn);
3726
3727 set_last_insn (insn);
3728 if (flag_checking)
3729 verify_insn_chain ();
3730
3731 /* Now add jumps and labels as needed to match the blocks new
3732 outgoing edges. */
3733
3734 for (bb = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb; bb ; bb = (basic_block)
3735 bb->aux)
3736 {
3737 edge e_fall, e_taken, e;
3738 rtx_insn *bb_end_insn;
3739 rtx ret_label = NULL_RTX;
3740 basic_block nb;
3741 edge_iterator ei;
3742
3743 if (EDGE_COUNT (bb->succs) == 0)
3744 continue;
3745
3746 /* Find the old fallthru edge, and another non-EH edge for
3747 a taken jump. */
3748 e_taken = e_fall = NULL;
3749
3750 FOR_EACH_EDGE (e, ei, bb->succs)
3751 if (e->flags & EDGE_FALLTHRU)
3752 e_fall = e;
3753 else if (! (e->flags & EDGE_EH))
3754 e_taken = e;
3755
3756 bb_end_insn = BB_END (bb);
3757 if (rtx_jump_insn *bb_end_jump = dyn_cast <rtx_jump_insn *> (bb_end_insn))
3758 {
3759 ret_label = JUMP_LABEL (bb_end_jump);
3760 if (any_condjump_p (bb_end_jump))
3761 {
3762 /* This might happen if the conditional jump has side
3763 effects and could therefore not be optimized away.
3764 Make the basic block to end with a barrier in order
3765 to prevent rtl_verify_flow_info from complaining. */
3766 if (!e_fall)
3767 {
3768 gcc_assert (!onlyjump_p (bb_end_jump)
3769 || returnjump_p (bb_end_jump)
3770 || (e_taken->flags & EDGE_CROSSING));
3771 emit_barrier_after (bb_end_jump);
3772 continue;
3773 }
3774
3775 /* If the old fallthru is still next, nothing to do. */
3776 if (bb->aux == e_fall->dest
3777 || e_fall->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
3778 continue;
3779
3780 /* The degenerated case of conditional jump jumping to the next
3781 instruction can happen for jumps with side effects. We need
3782 to construct a forwarder block and this will be done just
3783 fine by force_nonfallthru below. */
3784 if (!e_taken)
3785 ;
3786
3787 /* There is another special case: if *neither* block is next,
3788 such as happens at the very end of a function, then we'll
3789 need to add a new unconditional jump. Choose the taken
3790 edge based on known or assumed probability. */
3791 else if (bb->aux != e_taken->dest)
3792 {
3793 rtx note = find_reg_note (bb_end_jump, REG_BR_PROB, 0);
3794
3795 if (note
3796 && profile_probability::from_reg_br_prob_note
3797 (XINT (note, 0)) < profile_probability::even ()
3798 && invert_jump (bb_end_jump,
3799 (e_fall->dest
3800 == EXIT_BLOCK_PTR_FOR_FN (cfun)
3801 ? NULL_RTX
3802 : label_for_bb (e_fall->dest)), 0))
3803 {
3804 e_fall->flags &= ~EDGE_FALLTHRU;
3805 gcc_checking_assert (could_fall_through
3806 (e_taken->src, e_taken->dest));
3807 e_taken->flags |= EDGE_FALLTHRU;
3808 update_br_prob_note (bb);
3809 e = e_fall, e_fall = e_taken, e_taken = e;
3810 }
3811 }
3812
3813 /* If the "jumping" edge is a crossing edge, and the fall
3814 through edge is non-crossing, leave things as they are. */
3815 else if ((e_taken->flags & EDGE_CROSSING)
3816 && !(e_fall->flags & EDGE_CROSSING))
3817 continue;
3818
3819 /* Otherwise we can try to invert the jump. This will
3820 basically never fail, however, keep up the pretense. */
3821 else if (invert_jump (bb_end_jump,
3822 (e_fall->dest
3823 == EXIT_BLOCK_PTR_FOR_FN (cfun)
3824 ? NULL_RTX
3825 : label_for_bb (e_fall->dest)), 0))
3826 {
3827 e_fall->flags &= ~EDGE_FALLTHRU;
3828 gcc_checking_assert (could_fall_through
3829 (e_taken->src, e_taken->dest));
3830 e_taken->flags |= EDGE_FALLTHRU;
3831 update_br_prob_note (bb);
3832 if (LABEL_NUSES (ret_label) == 0
3833 && single_pred_p (e_taken->dest))
3834 delete_insn (as_a<rtx_insn *> (ret_label));
3835 continue;
3836 }
3837 }
3838 else if (extract_asm_operands (PATTERN (bb_end_insn)) != NULL)
3839 {
3840 /* If the old fallthru is still next or if
3841 asm goto doesn't have a fallthru (e.g. when followed by
3842 __builtin_unreachable ()), nothing to do. */
3843 if (! e_fall
3844 || bb->aux == e_fall->dest
3845 || e_fall->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
3846 continue;
3847
3848 /* Otherwise we'll have to use the fallthru fixup below. */
3849 }
3850 else
3851 {
3852 /* Otherwise we have some return, switch or computed
3853 jump. In the 99% case, there should not have been a
3854 fallthru edge. */
3855 gcc_assert (returnjump_p (bb_end_insn) || !e_fall);
3856 continue;
3857 }
3858 }
3859 else
3860 {
3861 /* No fallthru implies a noreturn function with EH edges, or
3862 something similarly bizarre. In any case, we don't need to
3863 do anything. */
3864 if (! e_fall)
3865 continue;
3866
3867 /* If the fallthru block is still next, nothing to do. */
3868 if (bb->aux == e_fall->dest)
3869 continue;
3870
3871 /* A fallthru to exit block. */
3872 if (e_fall->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
3873 continue;
3874 }
3875
3876 /* We got here if we need to add a new jump insn.
3877 Note force_nonfallthru can delete E_FALL and thus we have to
3878 save E_FALL->src prior to the call to force_nonfallthru. */
3879 nb = force_nonfallthru_and_redirect (e_fall, e_fall->dest, ret_label);
3880 if (nb)
3881 {
3882 nb->aux = bb->aux;
3883 bb->aux = nb;
3884 /* Don't process this new block. */
3885 bb = nb;
3886 }
3887 }
3888
3889 relink_block_chain (/*stay_in_cfglayout_mode=*/false);
3890
3891 /* Annoying special case - jump around dead jumptables left in the code. */
3892 FOR_EACH_BB_FN (bb, cfun)
3893 {
3894 edge e = find_fallthru_edge (bb->succs);
3895
3896 if (e && !can_fallthru (e->src, e->dest))
3897 force_nonfallthru (e);
3898 }
3899
3900 /* Ensure goto_locus from edges has some instructions with that locus
3901 in RTL. */
3902 if (!optimize)
3903 FOR_EACH_BB_FN (bb, cfun)
3904 {
3905 edge e;
3906 edge_iterator ei;
3907
3908 FOR_EACH_EDGE (e, ei, bb->succs)
3909 if (LOCATION_LOCUS (e->goto_locus) != UNKNOWN_LOCATION
3910 && !(e->flags & EDGE_ABNORMAL))
3911 {
3912 edge e2;
3913 edge_iterator ei2;
3914 basic_block dest, nb;
3915 rtx_insn *end;
3916
3917 insn = BB_END (e->src);
3918 end = PREV_INSN (BB_HEAD (e->src));
3919 while (insn != end
3920 && (!NONDEBUG_INSN_P (insn) || !INSN_HAS_LOCATION (insn)))
3921 insn = PREV_INSN (insn);
3922 if (insn != end
3923 && INSN_LOCATION (insn) == e->goto_locus)
3924 continue;
3925 if (simplejump_p (BB_END (e->src))
3926 && !INSN_HAS_LOCATION (BB_END (e->src)))
3927 {
3928 INSN_LOCATION (BB_END (e->src)) = e->goto_locus;
3929 continue;
3930 }
3931 dest = e->dest;
3932 if (dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
3933 {
3934 /* Non-fallthru edges to the exit block cannot be split. */
3935 if (!(e->flags & EDGE_FALLTHRU))
3936 continue;
3937 }
3938 else
3939 {
3940 insn = BB_HEAD (dest);
3941 end = NEXT_INSN (BB_END (dest));
3942 while (insn != end && !NONDEBUG_INSN_P (insn))
3943 insn = NEXT_INSN (insn);
3944 if (insn != end && INSN_HAS_LOCATION (insn)
3945 && INSN_LOCATION (insn) == e->goto_locus)
3946 continue;
3947 }
3948 nb = split_edge (e);
3949 if (!INSN_P (BB_END (nb)))
3950 BB_END (nb) = emit_insn_after_noloc (gen_nop (), BB_END (nb),
3951 nb);
3952 INSN_LOCATION (BB_END (nb)) = e->goto_locus;
3953
3954 /* If there are other incoming edges to the destination block
3955 with the same goto locus, redirect them to the new block as
3956 well, this can prevent other such blocks from being created
3957 in subsequent iterations of the loop. */
3958 for (ei2 = ei_start (dest->preds); (e2 = ei_safe_edge (ei2)); )
3959 if (LOCATION_LOCUS (e2->goto_locus) != UNKNOWN_LOCATION
3960 && !(e2->flags & (EDGE_ABNORMAL | EDGE_FALLTHRU))
3961 && e->goto_locus == e2->goto_locus)
3962 redirect_edge_and_branch (e2, nb);
3963 else
3964 ei_next (&ei2);
3965 }
3966 }
3967 }
3968 \f
3969 /* Perform sanity checks on the insn chain.
3970 1. Check that next/prev pointers are consistent in both the forward and
3971 reverse direction.
3972 2. Count insns in chain, going both directions, and check if equal.
3973 3. Check that get_last_insn () returns the actual end of chain. */
3974
3975 DEBUG_FUNCTION void
3976 verify_insn_chain (void)
3977 {
3978 rtx_insn *x, *prevx, *nextx;
3979 int insn_cnt1, insn_cnt2;
3980
3981 for (prevx = NULL, insn_cnt1 = 1, x = get_insns ();
3982 x != 0;
3983 prevx = x, insn_cnt1++, x = NEXT_INSN (x))
3984 gcc_assert (PREV_INSN (x) == prevx);
3985
3986 gcc_assert (prevx == get_last_insn ());
3987
3988 for (nextx = NULL, insn_cnt2 = 1, x = get_last_insn ();
3989 x != 0;
3990 nextx = x, insn_cnt2++, x = PREV_INSN (x))
3991 gcc_assert (NEXT_INSN (x) == nextx);
3992
3993 gcc_assert (insn_cnt1 == insn_cnt2);
3994 }
3995 \f
3996 /* If we have assembler epilogues, the block falling through to exit must
3997 be the last one in the reordered chain when we reach final. Ensure
3998 that this condition is met. */
3999 static void
4000 fixup_fallthru_exit_predecessor (void)
4001 {
4002 edge e;
4003 basic_block bb = NULL;
4004
4005 /* This transformation is not valid before reload, because we might
4006 separate a call from the instruction that copies the return
4007 value. */
4008 gcc_assert (reload_completed);
4009
4010 e = find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
4011 if (e)
4012 bb = e->src;
4013
4014 if (bb && bb->aux)
4015 {
4016 basic_block c = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb;
4017
4018 /* If the very first block is the one with the fall-through exit
4019 edge, we have to split that block. */
4020 if (c == bb)
4021 {
4022 bb = split_block_after_labels (bb)->dest;
4023 bb->aux = c->aux;
4024 c->aux = bb;
4025 BB_FOOTER (bb) = BB_FOOTER (c);
4026 BB_FOOTER (c) = NULL;
4027 }
4028
4029 while (c->aux != bb)
4030 c = (basic_block) c->aux;
4031
4032 c->aux = bb->aux;
4033 while (c->aux)
4034 c = (basic_block) c->aux;
4035
4036 c->aux = bb;
4037 bb->aux = NULL;
4038 }
4039 }
4040
4041 /* In case there are more than one fallthru predecessors of exit, force that
4042 there is only one. */
4043
4044 static void
4045 force_one_exit_fallthru (void)
4046 {
4047 edge e, predecessor = NULL;
4048 bool more = false;
4049 edge_iterator ei;
4050 basic_block forwarder, bb;
4051
4052 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
4053 if (e->flags & EDGE_FALLTHRU)
4054 {
4055 if (predecessor == NULL)
4056 predecessor = e;
4057 else
4058 {
4059 more = true;
4060 break;
4061 }
4062 }
4063
4064 if (!more)
4065 return;
4066
4067 /* Exit has several fallthru predecessors. Create a forwarder block for
4068 them. */
4069 forwarder = split_edge (predecessor);
4070 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
4071 (e = ei_safe_edge (ei)); )
4072 {
4073 if (e->src == forwarder
4074 || !(e->flags & EDGE_FALLTHRU))
4075 ei_next (&ei);
4076 else
4077 redirect_edge_and_branch_force (e, forwarder);
4078 }
4079
4080 /* Fix up the chain of blocks -- make FORWARDER immediately precede the
4081 exit block. */
4082 FOR_EACH_BB_FN (bb, cfun)
4083 {
4084 if (bb->aux == NULL && bb != forwarder)
4085 {
4086 bb->aux = forwarder;
4087 break;
4088 }
4089 }
4090 }
4091 \f
4092 /* Return true in case it is possible to duplicate the basic block BB. */
4093
4094 static bool
4095 cfg_layout_can_duplicate_bb_p (const_basic_block bb)
4096 {
4097 /* Do not attempt to duplicate tablejumps, as we need to unshare
4098 the dispatch table. This is difficult to do, as the instructions
4099 computing jump destination may be hoisted outside the basic block. */
4100 if (tablejump_p (BB_END (bb), NULL, NULL))
4101 return false;
4102
4103 /* Do not duplicate blocks containing insns that can't be copied. */
4104 if (targetm.cannot_copy_insn_p)
4105 {
4106 rtx_insn *insn = BB_HEAD (bb);
4107 while (1)
4108 {
4109 if (INSN_P (insn) && targetm.cannot_copy_insn_p (insn))
4110 return false;
4111 if (insn == BB_END (bb))
4112 break;
4113 insn = NEXT_INSN (insn);
4114 }
4115 }
4116
4117 return true;
4118 }
4119
4120 rtx_insn *
4121 duplicate_insn_chain (rtx_insn *from, rtx_insn *to)
4122 {
4123 rtx_insn *insn, *next, *copy;
4124 rtx_note *last;
4125
4126 /* Avoid updating of boundaries of previous basic block. The
4127 note will get removed from insn stream in fixup. */
4128 last = emit_note (NOTE_INSN_DELETED);
4129
4130 /* Create copy at the end of INSN chain. The chain will
4131 be reordered later. */
4132 for (insn = from; insn != NEXT_INSN (to); insn = NEXT_INSN (insn))
4133 {
4134 switch (GET_CODE (insn))
4135 {
4136 case DEBUG_INSN:
4137 /* Don't duplicate label debug insns. */
4138 if (TREE_CODE (INSN_VAR_LOCATION_DECL (insn)) == LABEL_DECL)
4139 break;
4140 /* FALLTHRU */
4141 case INSN:
4142 case CALL_INSN:
4143 case JUMP_INSN:
4144 copy = emit_copy_of_insn_after (insn, get_last_insn ());
4145 if (JUMP_P (insn) && JUMP_LABEL (insn) != NULL_RTX
4146 && ANY_RETURN_P (JUMP_LABEL (insn)))
4147 JUMP_LABEL (copy) = JUMP_LABEL (insn);
4148 maybe_copy_prologue_epilogue_insn (insn, copy);
4149 break;
4150
4151 case JUMP_TABLE_DATA:
4152 /* Avoid copying of dispatch tables. We never duplicate
4153 tablejumps, so this can hit only in case the table got
4154 moved far from original jump.
4155 Avoid copying following barrier as well if any
4156 (and debug insns in between). */
4157 for (next = NEXT_INSN (insn);
4158 next != NEXT_INSN (to);
4159 next = NEXT_INSN (next))
4160 if (!DEBUG_INSN_P (next))
4161 break;
4162 if (next != NEXT_INSN (to) && BARRIER_P (next))
4163 insn = next;
4164 break;
4165
4166 case CODE_LABEL:
4167 break;
4168
4169 case BARRIER:
4170 emit_barrier ();
4171 break;
4172
4173 case NOTE:
4174 switch (NOTE_KIND (insn))
4175 {
4176 /* In case prologue is empty and function contain label
4177 in first BB, we may want to copy the block. */
4178 case NOTE_INSN_PROLOGUE_END:
4179
4180 case NOTE_INSN_DELETED:
4181 case NOTE_INSN_DELETED_LABEL:
4182 case NOTE_INSN_DELETED_DEBUG_LABEL:
4183 /* No problem to strip these. */
4184 case NOTE_INSN_FUNCTION_BEG:
4185 /* There is always just single entry to function. */
4186 case NOTE_INSN_BASIC_BLOCK:
4187 /* We should only switch text sections once. */
4188 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
4189 break;
4190
4191 case NOTE_INSN_EPILOGUE_BEG:
4192 case NOTE_INSN_UPDATE_SJLJ_CONTEXT:
4193 emit_note_copy (as_a <rtx_note *> (insn));
4194 break;
4195
4196 default:
4197 /* All other notes should have already been eliminated. */
4198 gcc_unreachable ();
4199 }
4200 break;
4201 default:
4202 gcc_unreachable ();
4203 }
4204 }
4205 insn = NEXT_INSN (last);
4206 delete_insn (last);
4207 return insn;
4208 }
4209
4210 /* Create a duplicate of the basic block BB. */
4211
4212 static basic_block
4213 cfg_layout_duplicate_bb (basic_block bb)
4214 {
4215 rtx_insn *insn;
4216 basic_block new_bb;
4217
4218 insn = duplicate_insn_chain (BB_HEAD (bb), BB_END (bb));
4219 new_bb = create_basic_block (insn,
4220 insn ? get_last_insn () : NULL,
4221 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
4222
4223 BB_COPY_PARTITION (new_bb, bb);
4224 if (BB_HEADER (bb))
4225 {
4226 insn = BB_HEADER (bb);
4227 while (NEXT_INSN (insn))
4228 insn = NEXT_INSN (insn);
4229 insn = duplicate_insn_chain (BB_HEADER (bb), insn);
4230 if (insn)
4231 BB_HEADER (new_bb) = unlink_insn_chain (insn, get_last_insn ());
4232 }
4233
4234 if (BB_FOOTER (bb))
4235 {
4236 insn = BB_FOOTER (bb);
4237 while (NEXT_INSN (insn))
4238 insn = NEXT_INSN (insn);
4239 insn = duplicate_insn_chain (BB_FOOTER (bb), insn);
4240 if (insn)
4241 BB_FOOTER (new_bb) = unlink_insn_chain (insn, get_last_insn ());
4242 }
4243
4244 return new_bb;
4245 }
4246
4247 \f
4248 /* Main entry point to this module - initialize the datastructures for
4249 CFG layout changes. It keeps LOOPS up-to-date if not null.
4250
4251 FLAGS is a set of additional flags to pass to cleanup_cfg(). */
4252
4253 void
4254 cfg_layout_initialize (int flags)
4255 {
4256 rtx_insn_list *x;
4257 basic_block bb;
4258
4259 /* Once bb partitioning is complete, cfg layout mode should not be
4260 re-entered. Entering cfg layout mode may require fixups. As an
4261 example, if edge forwarding performed when optimizing the cfg
4262 layout required moving a block from the hot to the cold
4263 section. This would create an illegal partitioning unless some
4264 manual fixup was performed. */
4265 gcc_assert (!crtl->bb_reorder_complete || !crtl->has_bb_partition);
4266
4267 initialize_original_copy_tables ();
4268
4269 cfg_layout_rtl_register_cfg_hooks ();
4270
4271 record_effective_endpoints ();
4272
4273 /* Make sure that the targets of non local gotos are marked. */
4274 for (x = nonlocal_goto_handler_labels; x; x = x->next ())
4275 {
4276 bb = BLOCK_FOR_INSN (x->insn ());
4277 bb->flags |= BB_NON_LOCAL_GOTO_TARGET;
4278 }
4279
4280 cleanup_cfg (CLEANUP_CFGLAYOUT | flags);
4281 }
4282
4283 /* Splits superblocks. */
4284 void
4285 break_superblocks (void)
4286 {
4287 bool need = false;
4288 basic_block bb;
4289
4290 auto_sbitmap superblocks (last_basic_block_for_fn (cfun));
4291 bitmap_clear (superblocks);
4292
4293 FOR_EACH_BB_FN (bb, cfun)
4294 if (bb->flags & BB_SUPERBLOCK)
4295 {
4296 bb->flags &= ~BB_SUPERBLOCK;
4297 bitmap_set_bit (superblocks, bb->index);
4298 need = true;
4299 }
4300
4301 if (need)
4302 {
4303 rebuild_jump_labels (get_insns ());
4304 find_many_sub_basic_blocks (superblocks);
4305 }
4306 }
4307
4308 /* Finalize the changes: reorder insn list according to the sequence specified
4309 by aux pointers, enter compensation code, rebuild scope forest. */
4310
4311 void
4312 cfg_layout_finalize (void)
4313 {
4314 checking_verify_flow_info ();
4315 free_dominance_info (CDI_DOMINATORS);
4316 force_one_exit_fallthru ();
4317 rtl_register_cfg_hooks ();
4318 if (reload_completed && !targetm.have_epilogue ())
4319 fixup_fallthru_exit_predecessor ();
4320 fixup_reorder_chain ();
4321
4322 rebuild_jump_labels (get_insns ());
4323 delete_dead_jumptables ();
4324
4325 if (flag_checking)
4326 verify_insn_chain ();
4327 checking_verify_flow_info ();
4328 }
4329
4330
4331 /* Same as split_block but update cfg_layout structures. */
4332
4333 static basic_block
4334 cfg_layout_split_block (basic_block bb, void *insnp)
4335 {
4336 rtx insn = (rtx) insnp;
4337 basic_block new_bb = rtl_split_block (bb, insn);
4338
4339 BB_FOOTER (new_bb) = BB_FOOTER (bb);
4340 BB_FOOTER (bb) = NULL;
4341
4342 return new_bb;
4343 }
4344
4345 /* Redirect Edge to DEST. */
4346 static edge
4347 cfg_layout_redirect_edge_and_branch (edge e, basic_block dest)
4348 {
4349 basic_block src = e->src;
4350 edge ret;
4351
4352 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
4353 return NULL;
4354
4355 if (e->dest == dest)
4356 return e;
4357
4358 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
4359 && (ret = try_redirect_by_replacing_jump (e, dest, true)))
4360 {
4361 df_set_bb_dirty (src);
4362 return ret;
4363 }
4364
4365 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
4366 && (e->flags & EDGE_FALLTHRU) && !(e->flags & EDGE_COMPLEX))
4367 {
4368 if (dump_file)
4369 fprintf (dump_file, "Redirecting entry edge from bb %i to %i\n",
4370 e->src->index, dest->index);
4371
4372 df_set_bb_dirty (e->src);
4373 redirect_edge_succ (e, dest);
4374 return e;
4375 }
4376
4377 /* Redirect_edge_and_branch may decide to turn branch into fallthru edge
4378 in the case the basic block appears to be in sequence. Avoid this
4379 transformation. */
4380
4381 if (e->flags & EDGE_FALLTHRU)
4382 {
4383 /* Redirect any branch edges unified with the fallthru one. */
4384 if (JUMP_P (BB_END (src))
4385 && label_is_jump_target_p (BB_HEAD (e->dest),
4386 BB_END (src)))
4387 {
4388 edge redirected;
4389
4390 if (dump_file)
4391 fprintf (dump_file, "Fallthru edge unified with branch "
4392 "%i->%i redirected to %i\n",
4393 e->src->index, e->dest->index, dest->index);
4394 e->flags &= ~EDGE_FALLTHRU;
4395 redirected = redirect_branch_edge (e, dest);
4396 gcc_assert (redirected);
4397 redirected->flags |= EDGE_FALLTHRU;
4398 df_set_bb_dirty (redirected->src);
4399 return redirected;
4400 }
4401 /* In case we are redirecting fallthru edge to the branch edge
4402 of conditional jump, remove it. */
4403 if (EDGE_COUNT (src->succs) == 2)
4404 {
4405 /* Find the edge that is different from E. */
4406 edge s = EDGE_SUCC (src, EDGE_SUCC (src, 0) == e);
4407
4408 if (s->dest == dest
4409 && any_condjump_p (BB_END (src))
4410 && onlyjump_p (BB_END (src)))
4411 delete_insn (BB_END (src));
4412 }
4413 if (dump_file)
4414 fprintf (dump_file, "Redirecting fallthru edge %i->%i to %i\n",
4415 e->src->index, e->dest->index, dest->index);
4416 ret = redirect_edge_succ_nodup (e, dest);
4417 }
4418 else
4419 ret = redirect_branch_edge (e, dest);
4420
4421 /* We don't want simplejumps in the insn stream during cfglayout. */
4422 gcc_assert (!simplejump_p (BB_END (src)));
4423
4424 df_set_bb_dirty (src);
4425 return ret;
4426 }
4427
4428 /* Simple wrapper as we always can redirect fallthru edges. */
4429 static basic_block
4430 cfg_layout_redirect_edge_and_branch_force (edge e, basic_block dest)
4431 {
4432 edge redirected = cfg_layout_redirect_edge_and_branch (e, dest);
4433
4434 gcc_assert (redirected);
4435 return NULL;
4436 }
4437
4438 /* Same as delete_basic_block but update cfg_layout structures. */
4439
4440 static void
4441 cfg_layout_delete_block (basic_block bb)
4442 {
4443 rtx_insn *insn, *next, *prev = PREV_INSN (BB_HEAD (bb)), *remaints;
4444 rtx_insn **to;
4445
4446 if (BB_HEADER (bb))
4447 {
4448 next = BB_HEAD (bb);
4449 if (prev)
4450 SET_NEXT_INSN (prev) = BB_HEADER (bb);
4451 else
4452 set_first_insn (BB_HEADER (bb));
4453 SET_PREV_INSN (BB_HEADER (bb)) = prev;
4454 insn = BB_HEADER (bb);
4455 while (NEXT_INSN (insn))
4456 insn = NEXT_INSN (insn);
4457 SET_NEXT_INSN (insn) = next;
4458 SET_PREV_INSN (next) = insn;
4459 }
4460 next = NEXT_INSN (BB_END (bb));
4461 if (BB_FOOTER (bb))
4462 {
4463 insn = BB_FOOTER (bb);
4464 while (insn)
4465 {
4466 if (BARRIER_P (insn))
4467 {
4468 if (PREV_INSN (insn))
4469 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
4470 else
4471 BB_FOOTER (bb) = NEXT_INSN (insn);
4472 if (NEXT_INSN (insn))
4473 SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
4474 }
4475 if (LABEL_P (insn))
4476 break;
4477 insn = NEXT_INSN (insn);
4478 }
4479 if (BB_FOOTER (bb))
4480 {
4481 insn = BB_END (bb);
4482 SET_NEXT_INSN (insn) = BB_FOOTER (bb);
4483 SET_PREV_INSN (BB_FOOTER (bb)) = insn;
4484 while (NEXT_INSN (insn))
4485 insn = NEXT_INSN (insn);
4486 SET_NEXT_INSN (insn) = next;
4487 if (next)
4488 SET_PREV_INSN (next) = insn;
4489 else
4490 set_last_insn (insn);
4491 }
4492 }
4493 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
4494 to = &BB_HEADER (bb->next_bb);
4495 else
4496 to = &cfg_layout_function_footer;
4497
4498 rtl_delete_block (bb);
4499
4500 if (prev)
4501 prev = NEXT_INSN (prev);
4502 else
4503 prev = get_insns ();
4504 if (next)
4505 next = PREV_INSN (next);
4506 else
4507 next = get_last_insn ();
4508
4509 if (next && NEXT_INSN (next) != prev)
4510 {
4511 remaints = unlink_insn_chain (prev, next);
4512 insn = remaints;
4513 while (NEXT_INSN (insn))
4514 insn = NEXT_INSN (insn);
4515 SET_NEXT_INSN (insn) = *to;
4516 if (*to)
4517 SET_PREV_INSN (*to) = insn;
4518 *to = remaints;
4519 }
4520 }
4521
4522 /* Return true when blocks A and B can be safely merged. */
4523
4524 static bool
4525 cfg_layout_can_merge_blocks_p (basic_block a, basic_block b)
4526 {
4527 /* If we are partitioning hot/cold basic blocks, we don't want to
4528 mess up unconditional or indirect jumps that cross between hot
4529 and cold sections.
4530
4531 Basic block partitioning may result in some jumps that appear to
4532 be optimizable (or blocks that appear to be mergeable), but which really
4533 must be left untouched (they are required to make it safely across
4534 partition boundaries). See the comments at the top of
4535 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
4536
4537 if (BB_PARTITION (a) != BB_PARTITION (b))
4538 return false;
4539
4540 /* Protect the loop latches. */
4541 if (current_loops && b->loop_father->latch == b)
4542 return false;
4543
4544 /* If we would end up moving B's instructions, make sure it doesn't fall
4545 through into the exit block, since we cannot recover from a fallthrough
4546 edge into the exit block occurring in the middle of a function. */
4547 if (NEXT_INSN (BB_END (a)) != BB_HEAD (b))
4548 {
4549 edge e = find_fallthru_edge (b->succs);
4550 if (e && e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
4551 return false;
4552 }
4553
4554 /* There must be exactly one edge in between the blocks. */
4555 return (single_succ_p (a)
4556 && single_succ (a) == b
4557 && single_pred_p (b) == 1
4558 && a != b
4559 /* Must be simple edge. */
4560 && !(single_succ_edge (a)->flags & EDGE_COMPLEX)
4561 && a != ENTRY_BLOCK_PTR_FOR_FN (cfun)
4562 && b != EXIT_BLOCK_PTR_FOR_FN (cfun)
4563 /* If the jump insn has side effects, we can't kill the edge.
4564 When not optimizing, try_redirect_by_replacing_jump will
4565 not allow us to redirect an edge by replacing a table jump. */
4566 && (!JUMP_P (BB_END (a))
4567 || ((!optimize || reload_completed)
4568 ? simplejump_p (BB_END (a)) : onlyjump_p (BB_END (a)))));
4569 }
4570
4571 /* Merge block A and B. The blocks must be mergeable. */
4572
4573 static void
4574 cfg_layout_merge_blocks (basic_block a, basic_block b)
4575 {
4576 bool forwarder_p = (b->flags & BB_FORWARDER_BLOCK) != 0;
4577 rtx_insn *insn;
4578
4579 gcc_checking_assert (cfg_layout_can_merge_blocks_p (a, b));
4580
4581 if (dump_file)
4582 fprintf (dump_file, "Merging block %d into block %d...\n", b->index,
4583 a->index);
4584
4585 /* If there was a CODE_LABEL beginning B, delete it. */
4586 if (LABEL_P (BB_HEAD (b)))
4587 {
4588 delete_insn (BB_HEAD (b));
4589 }
4590
4591 /* We should have fallthru edge in a, or we can do dummy redirection to get
4592 it cleaned up. */
4593 if (JUMP_P (BB_END (a)))
4594 try_redirect_by_replacing_jump (EDGE_SUCC (a, 0), b, true);
4595 gcc_assert (!JUMP_P (BB_END (a)));
4596
4597 /* When not optimizing and the edge is the only place in RTL which holds
4598 some unique locus, emit a nop with that locus in between. */
4599 if (!optimize)
4600 emit_nop_for_unique_locus_between (a, b);
4601
4602 /* Move things from b->footer after a->footer. */
4603 if (BB_FOOTER (b))
4604 {
4605 if (!BB_FOOTER (a))
4606 BB_FOOTER (a) = BB_FOOTER (b);
4607 else
4608 {
4609 rtx_insn *last = BB_FOOTER (a);
4610
4611 while (NEXT_INSN (last))
4612 last = NEXT_INSN (last);
4613 SET_NEXT_INSN (last) = BB_FOOTER (b);
4614 SET_PREV_INSN (BB_FOOTER (b)) = last;
4615 }
4616 BB_FOOTER (b) = NULL;
4617 }
4618
4619 /* Move things from b->header before a->footer.
4620 Note that this may include dead tablejump data, but we don't clean
4621 those up until we go out of cfglayout mode. */
4622 if (BB_HEADER (b))
4623 {
4624 if (! BB_FOOTER (a))
4625 BB_FOOTER (a) = BB_HEADER (b);
4626 else
4627 {
4628 rtx_insn *last = BB_HEADER (b);
4629
4630 while (NEXT_INSN (last))
4631 last = NEXT_INSN (last);
4632 SET_NEXT_INSN (last) = BB_FOOTER (a);
4633 SET_PREV_INSN (BB_FOOTER (a)) = last;
4634 BB_FOOTER (a) = BB_HEADER (b);
4635 }
4636 BB_HEADER (b) = NULL;
4637 }
4638
4639 /* In the case basic blocks are not adjacent, move them around. */
4640 if (NEXT_INSN (BB_END (a)) != BB_HEAD (b))
4641 {
4642 insn = unlink_insn_chain (BB_HEAD (b), BB_END (b));
4643
4644 emit_insn_after_noloc (insn, BB_END (a), a);
4645 }
4646 /* Otherwise just re-associate the instructions. */
4647 else
4648 {
4649 insn = BB_HEAD (b);
4650 BB_END (a) = BB_END (b);
4651 }
4652
4653 /* emit_insn_after_noloc doesn't call df_insn_change_bb.
4654 We need to explicitly call. */
4655 update_bb_for_insn_chain (insn, BB_END (b), a);
4656
4657 /* Skip possible DELETED_LABEL insn. */
4658 if (!NOTE_INSN_BASIC_BLOCK_P (insn))
4659 insn = NEXT_INSN (insn);
4660 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
4661 BB_HEAD (b) = BB_END (b) = NULL;
4662 delete_insn (insn);
4663
4664 df_bb_delete (b->index);
4665
4666 /* If B was a forwarder block, propagate the locus on the edge. */
4667 if (forwarder_p
4668 && LOCATION_LOCUS (EDGE_SUCC (b, 0)->goto_locus) == UNKNOWN_LOCATION)
4669 EDGE_SUCC (b, 0)->goto_locus = EDGE_SUCC (a, 0)->goto_locus;
4670
4671 if (dump_file)
4672 fprintf (dump_file, "Merged blocks %d and %d.\n", a->index, b->index);
4673 }
4674
4675 /* Split edge E. */
4676
4677 static basic_block
4678 cfg_layout_split_edge (edge e)
4679 {
4680 basic_block new_bb =
4681 create_basic_block (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
4682 ? NEXT_INSN (BB_END (e->src)) : get_insns (),
4683 NULL_RTX, e->src);
4684
4685 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
4686 BB_COPY_PARTITION (new_bb, e->src);
4687 else
4688 BB_COPY_PARTITION (new_bb, e->dest);
4689 make_edge (new_bb, e->dest, EDGE_FALLTHRU);
4690 redirect_edge_and_branch_force (e, new_bb);
4691
4692 return new_bb;
4693 }
4694
4695 /* Do postprocessing after making a forwarder block joined by edge FALLTHRU. */
4696
4697 static void
4698 rtl_make_forwarder_block (edge fallthru ATTRIBUTE_UNUSED)
4699 {
4700 }
4701
4702 /* Return true if BB contains only labels or non-executable
4703 instructions. */
4704
4705 static bool
4706 rtl_block_empty_p (basic_block bb)
4707 {
4708 rtx_insn *insn;
4709
4710 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun)
4711 || bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4712 return true;
4713
4714 FOR_BB_INSNS (bb, insn)
4715 if (NONDEBUG_INSN_P (insn) && !any_uncondjump_p (insn))
4716 return false;
4717
4718 return true;
4719 }
4720
4721 /* Split a basic block if it ends with a conditional branch and if
4722 the other part of the block is not empty. */
4723
4724 static basic_block
4725 rtl_split_block_before_cond_jump (basic_block bb)
4726 {
4727 rtx_insn *insn;
4728 rtx_insn *split_point = NULL;
4729 rtx_insn *last = NULL;
4730 bool found_code = false;
4731
4732 FOR_BB_INSNS (bb, insn)
4733 {
4734 if (any_condjump_p (insn))
4735 split_point = last;
4736 else if (NONDEBUG_INSN_P (insn))
4737 found_code = true;
4738 last = insn;
4739 }
4740
4741 /* Did not find everything. */
4742 if (found_code && split_point)
4743 return split_block (bb, split_point)->dest;
4744 else
4745 return NULL;
4746 }
4747
4748 /* Return 1 if BB ends with a call, possibly followed by some
4749 instructions that must stay with the call, 0 otherwise. */
4750
4751 static bool
4752 rtl_block_ends_with_call_p (basic_block bb)
4753 {
4754 rtx_insn *insn = BB_END (bb);
4755
4756 while (!CALL_P (insn)
4757 && insn != BB_HEAD (bb)
4758 && (keep_with_call_p (insn)
4759 || NOTE_P (insn)
4760 || DEBUG_INSN_P (insn)))
4761 insn = PREV_INSN (insn);
4762 return (CALL_P (insn));
4763 }
4764
4765 /* Return 1 if BB ends with a conditional branch, 0 otherwise. */
4766
4767 static bool
4768 rtl_block_ends_with_condjump_p (const_basic_block bb)
4769 {
4770 return any_condjump_p (BB_END (bb));
4771 }
4772
4773 /* Return true if we need to add fake edge to exit.
4774 Helper function for rtl_flow_call_edges_add. */
4775
4776 static bool
4777 need_fake_edge_p (const rtx_insn *insn)
4778 {
4779 if (!INSN_P (insn))
4780 return false;
4781
4782 if ((CALL_P (insn)
4783 && !SIBLING_CALL_P (insn)
4784 && !find_reg_note (insn, REG_NORETURN, NULL)
4785 && !(RTL_CONST_OR_PURE_CALL_P (insn))))
4786 return true;
4787
4788 return ((GET_CODE (PATTERN (insn)) == ASM_OPERANDS
4789 && MEM_VOLATILE_P (PATTERN (insn)))
4790 || (GET_CODE (PATTERN (insn)) == PARALLEL
4791 && asm_noperands (insn) != -1
4792 && MEM_VOLATILE_P (XVECEXP (PATTERN (insn), 0, 0)))
4793 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
4794 }
4795
4796 /* Add fake edges to the function exit for any non constant and non noreturn
4797 calls, volatile inline assembly in the bitmap of blocks specified by
4798 BLOCKS or to the whole CFG if BLOCKS is zero. Return the number of blocks
4799 that were split.
4800
4801 The goal is to expose cases in which entering a basic block does not imply
4802 that all subsequent instructions must be executed. */
4803
4804 static int
4805 rtl_flow_call_edges_add (sbitmap blocks)
4806 {
4807 int i;
4808 int blocks_split = 0;
4809 int last_bb = last_basic_block_for_fn (cfun);
4810 bool check_last_block = false;
4811
4812 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
4813 return 0;
4814
4815 if (! blocks)
4816 check_last_block = true;
4817 else
4818 check_last_block = bitmap_bit_p (blocks,
4819 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb->index);
4820
4821 /* In the last basic block, before epilogue generation, there will be
4822 a fallthru edge to EXIT. Special care is required if the last insn
4823 of the last basic block is a call because make_edge folds duplicate
4824 edges, which would result in the fallthru edge also being marked
4825 fake, which would result in the fallthru edge being removed by
4826 remove_fake_edges, which would result in an invalid CFG.
4827
4828 Moreover, we can't elide the outgoing fake edge, since the block
4829 profiler needs to take this into account in order to solve the minimal
4830 spanning tree in the case that the call doesn't return.
4831
4832 Handle this by adding a dummy instruction in a new last basic block. */
4833 if (check_last_block)
4834 {
4835 basic_block bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
4836 rtx_insn *insn = BB_END (bb);
4837
4838 /* Back up past insns that must be kept in the same block as a call. */
4839 while (insn != BB_HEAD (bb)
4840 && keep_with_call_p (insn))
4841 insn = PREV_INSN (insn);
4842
4843 if (need_fake_edge_p (insn))
4844 {
4845 edge e;
4846
4847 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
4848 if (e)
4849 {
4850 insert_insn_on_edge (gen_use (const0_rtx), e);
4851 commit_edge_insertions ();
4852 }
4853 }
4854 }
4855
4856 /* Now add fake edges to the function exit for any non constant
4857 calls since there is no way that we can determine if they will
4858 return or not... */
4859
4860 for (i = NUM_FIXED_BLOCKS; i < last_bb; i++)
4861 {
4862 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
4863 rtx_insn *insn;
4864 rtx_insn *prev_insn;
4865
4866 if (!bb)
4867 continue;
4868
4869 if (blocks && !bitmap_bit_p (blocks, i))
4870 continue;
4871
4872 for (insn = BB_END (bb); ; insn = prev_insn)
4873 {
4874 prev_insn = PREV_INSN (insn);
4875 if (need_fake_edge_p (insn))
4876 {
4877 edge e;
4878 rtx_insn *split_at_insn = insn;
4879
4880 /* Don't split the block between a call and an insn that should
4881 remain in the same block as the call. */
4882 if (CALL_P (insn))
4883 while (split_at_insn != BB_END (bb)
4884 && keep_with_call_p (NEXT_INSN (split_at_insn)))
4885 split_at_insn = NEXT_INSN (split_at_insn);
4886
4887 /* The handling above of the final block before the epilogue
4888 should be enough to verify that there is no edge to the exit
4889 block in CFG already. Calling make_edge in such case would
4890 cause us to mark that edge as fake and remove it later. */
4891
4892 if (flag_checking && split_at_insn == BB_END (bb))
4893 {
4894 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
4895 gcc_assert (e == NULL);
4896 }
4897
4898 /* Note that the following may create a new basic block
4899 and renumber the existing basic blocks. */
4900 if (split_at_insn != BB_END (bb))
4901 {
4902 e = split_block (bb, split_at_insn);
4903 if (e)
4904 blocks_split++;
4905 }
4906
4907 edge ne = make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
4908 ne->probability = profile_probability::guessed_never ();
4909 ne->count = profile_count::guessed_zero ();
4910 }
4911
4912 if (insn == BB_HEAD (bb))
4913 break;
4914 }
4915 }
4916
4917 if (blocks_split)
4918 verify_flow_info ();
4919
4920 return blocks_split;
4921 }
4922
4923 /* Add COMP_RTX as a condition at end of COND_BB. FIRST_HEAD is
4924 the conditional branch target, SECOND_HEAD should be the fall-thru
4925 there is no need to handle this here the loop versioning code handles
4926 this. the reason for SECON_HEAD is that it is needed for condition
4927 in trees, and this should be of the same type since it is a hook. */
4928 static void
4929 rtl_lv_add_condition_to_bb (basic_block first_head ,
4930 basic_block second_head ATTRIBUTE_UNUSED,
4931 basic_block cond_bb, void *comp_rtx)
4932 {
4933 rtx_code_label *label;
4934 rtx_insn *seq, *jump;
4935 rtx op0 = XEXP ((rtx)comp_rtx, 0);
4936 rtx op1 = XEXP ((rtx)comp_rtx, 1);
4937 enum rtx_code comp = GET_CODE ((rtx)comp_rtx);
4938 machine_mode mode;
4939
4940
4941 label = block_label (first_head);
4942 mode = GET_MODE (op0);
4943 if (mode == VOIDmode)
4944 mode = GET_MODE (op1);
4945
4946 start_sequence ();
4947 op0 = force_operand (op0, NULL_RTX);
4948 op1 = force_operand (op1, NULL_RTX);
4949 do_compare_rtx_and_jump (op0, op1, comp, 0, mode, NULL_RTX, NULL, label,
4950 profile_probability::uninitialized ());
4951 jump = get_last_insn ();
4952 JUMP_LABEL (jump) = label;
4953 LABEL_NUSES (label)++;
4954 seq = get_insns ();
4955 end_sequence ();
4956
4957 /* Add the new cond, in the new head. */
4958 emit_insn_after (seq, BB_END (cond_bb));
4959 }
4960
4961
4962 /* Given a block B with unconditional branch at its end, get the
4963 store the return the branch edge and the fall-thru edge in
4964 BRANCH_EDGE and FALLTHRU_EDGE respectively. */
4965 static void
4966 rtl_extract_cond_bb_edges (basic_block b, edge *branch_edge,
4967 edge *fallthru_edge)
4968 {
4969 edge e = EDGE_SUCC (b, 0);
4970
4971 if (e->flags & EDGE_FALLTHRU)
4972 {
4973 *fallthru_edge = e;
4974 *branch_edge = EDGE_SUCC (b, 1);
4975 }
4976 else
4977 {
4978 *branch_edge = e;
4979 *fallthru_edge = EDGE_SUCC (b, 1);
4980 }
4981 }
4982
4983 void
4984 init_rtl_bb_info (basic_block bb)
4985 {
4986 gcc_assert (!bb->il.x.rtl);
4987 bb->il.x.head_ = NULL;
4988 bb->il.x.rtl = ggc_cleared_alloc<rtl_bb_info> ();
4989 }
4990
4991 /* Returns true if it is possible to remove edge E by redirecting
4992 it to the destination of the other edge from E->src. */
4993
4994 static bool
4995 rtl_can_remove_branch_p (const_edge e)
4996 {
4997 const_basic_block src = e->src;
4998 const_basic_block target = EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest;
4999 const rtx_insn *insn = BB_END (src);
5000 rtx set;
5001
5002 /* The conditions are taken from try_redirect_by_replacing_jump. */
5003 if (target == EXIT_BLOCK_PTR_FOR_FN (cfun))
5004 return false;
5005
5006 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
5007 return false;
5008
5009 if (BB_PARTITION (src) != BB_PARTITION (target))
5010 return false;
5011
5012 if (!onlyjump_p (insn)
5013 || tablejump_p (insn, NULL, NULL))
5014 return false;
5015
5016 set = single_set (insn);
5017 if (!set || side_effects_p (set))
5018 return false;
5019
5020 return true;
5021 }
5022
5023 static basic_block
5024 rtl_duplicate_bb (basic_block bb)
5025 {
5026 bb = cfg_layout_duplicate_bb (bb);
5027 bb->aux = NULL;
5028 return bb;
5029 }
5030
5031 /* Do book-keeping of basic block BB for the profile consistency checker.
5032 If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
5033 then do post-pass accounting. Store the counting in RECORD. */
5034 static void
5035 rtl_account_profile_record (basic_block bb, int after_pass,
5036 struct profile_record *record)
5037 {
5038 rtx_insn *insn;
5039 FOR_BB_INSNS (bb, insn)
5040 if (INSN_P (insn))
5041 {
5042 record->size[after_pass]
5043 += insn_rtx_cost (PATTERN (insn), false);
5044 if (bb->count.initialized_p ())
5045 record->time[after_pass]
5046 += insn_rtx_cost (PATTERN (insn), true) * bb->count.to_gcov_type ();
5047 else if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
5048 record->time[after_pass]
5049 += insn_rtx_cost (PATTERN (insn), true) * bb->frequency;
5050 }
5051 }
5052
5053 /* Implementation of CFG manipulation for linearized RTL. */
5054 struct cfg_hooks rtl_cfg_hooks = {
5055 "rtl",
5056 rtl_verify_flow_info,
5057 rtl_dump_bb,
5058 rtl_dump_bb_for_graph,
5059 rtl_create_basic_block,
5060 rtl_redirect_edge_and_branch,
5061 rtl_redirect_edge_and_branch_force,
5062 rtl_can_remove_branch_p,
5063 rtl_delete_block,
5064 rtl_split_block,
5065 rtl_move_block_after,
5066 rtl_can_merge_blocks, /* can_merge_blocks_p */
5067 rtl_merge_blocks,
5068 rtl_predict_edge,
5069 rtl_predicted_by_p,
5070 cfg_layout_can_duplicate_bb_p,
5071 rtl_duplicate_bb,
5072 rtl_split_edge,
5073 rtl_make_forwarder_block,
5074 rtl_tidy_fallthru_edge,
5075 rtl_force_nonfallthru,
5076 rtl_block_ends_with_call_p,
5077 rtl_block_ends_with_condjump_p,
5078 rtl_flow_call_edges_add,
5079 NULL, /* execute_on_growing_pred */
5080 NULL, /* execute_on_shrinking_pred */
5081 NULL, /* duplicate loop for trees */
5082 NULL, /* lv_add_condition_to_bb */
5083 NULL, /* lv_adjust_loop_header_phi*/
5084 NULL, /* extract_cond_bb_edges */
5085 NULL, /* flush_pending_stmts */
5086 rtl_block_empty_p, /* block_empty_p */
5087 rtl_split_block_before_cond_jump, /* split_block_before_cond_jump */
5088 rtl_account_profile_record,
5089 };
5090
5091 /* Implementation of CFG manipulation for cfg layout RTL, where
5092 basic block connected via fallthru edges does not have to be adjacent.
5093 This representation will hopefully become the default one in future
5094 version of the compiler. */
5095
5096 struct cfg_hooks cfg_layout_rtl_cfg_hooks = {
5097 "cfglayout mode",
5098 rtl_verify_flow_info_1,
5099 rtl_dump_bb,
5100 rtl_dump_bb_for_graph,
5101 cfg_layout_create_basic_block,
5102 cfg_layout_redirect_edge_and_branch,
5103 cfg_layout_redirect_edge_and_branch_force,
5104 rtl_can_remove_branch_p,
5105 cfg_layout_delete_block,
5106 cfg_layout_split_block,
5107 rtl_move_block_after,
5108 cfg_layout_can_merge_blocks_p,
5109 cfg_layout_merge_blocks,
5110 rtl_predict_edge,
5111 rtl_predicted_by_p,
5112 cfg_layout_can_duplicate_bb_p,
5113 cfg_layout_duplicate_bb,
5114 cfg_layout_split_edge,
5115 rtl_make_forwarder_block,
5116 NULL, /* tidy_fallthru_edge */
5117 rtl_force_nonfallthru,
5118 rtl_block_ends_with_call_p,
5119 rtl_block_ends_with_condjump_p,
5120 rtl_flow_call_edges_add,
5121 NULL, /* execute_on_growing_pred */
5122 NULL, /* execute_on_shrinking_pred */
5123 duplicate_loop_to_header_edge, /* duplicate loop for trees */
5124 rtl_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
5125 NULL, /* lv_adjust_loop_header_phi*/
5126 rtl_extract_cond_bb_edges, /* extract_cond_bb_edges */
5127 NULL, /* flush_pending_stmts */
5128 rtl_block_empty_p, /* block_empty_p */
5129 rtl_split_block_before_cond_jump, /* split_block_before_cond_jump */
5130 rtl_account_profile_record,
5131 };
5132
5133 #include "gt-cfgrtl.h"