real.h (struct real_format): Split the signbit field into two two fields, signbit_ro...
[gcc.git] / gcc / cfgrtl.c
1 /* Control flow graph manipulation code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains low level functions to manipulate the CFG and analyze it
23 that are aware of the RTL intermediate language.
24
25 Available functionality:
26 - Basic CFG/RTL manipulation API documented in cfghooks.h
27 - CFG-aware instruction chain manipulation
28 delete_insn, delete_insn_chain
29 - Edge splitting and committing to edges
30 insert_insn_on_edge, commit_edge_insertions
31 - CFG updating after insn simplification
32 purge_dead_edges, purge_all_dead_edges
33
34 Functions not supposed for generic use:
35 - Infrastructure to determine quickly basic block for insn
36 compute_bb_for_insn, update_bb_for_insn, set_block_for_insn,
37 - Edge redirection with updating and optimizing of insn chain
38 block_label, tidy_fallthru_edge, force_nonfallthru */
39 \f
40 #include "config.h"
41 #include "system.h"
42 #include "coretypes.h"
43 #include "tm.h"
44 #include "tree.h"
45 #include "rtl.h"
46 #include "hard-reg-set.h"
47 #include "basic-block.h"
48 #include "regs.h"
49 #include "flags.h"
50 #include "output.h"
51 #include "function.h"
52 #include "except.h"
53 #include "toplev.h"
54 #include "tm_p.h"
55 #include "obstack.h"
56 #include "insn-config.h"
57 #include "cfglayout.h"
58 #include "expr.h"
59 #include "target.h"
60
61
62 /* The labels mentioned in non-jump rtl. Valid during find_basic_blocks. */
63 /* ??? Should probably be using LABEL_NUSES instead. It would take a
64 bit of surgery to be able to use or co-opt the routines in jump. */
65 rtx label_value_list;
66
67 static int can_delete_note_p (rtx);
68 static int can_delete_label_p (rtx);
69 static void commit_one_edge_insertion (edge, int);
70 static rtx last_loop_beg_note (rtx);
71 static bool back_edge_of_syntactic_loop_p (basic_block, basic_block);
72 static basic_block rtl_split_edge (edge);
73 static bool rtl_move_block_after (basic_block, basic_block);
74 static int rtl_verify_flow_info (void);
75 static basic_block cfg_layout_split_block (basic_block, void *);
76 static edge cfg_layout_redirect_edge_and_branch (edge, basic_block);
77 static basic_block cfg_layout_redirect_edge_and_branch_force (edge, basic_block);
78 static void cfg_layout_delete_block (basic_block);
79 static void rtl_delete_block (basic_block);
80 static basic_block rtl_redirect_edge_and_branch_force (edge, basic_block);
81 static edge rtl_redirect_edge_and_branch (edge, basic_block);
82 static basic_block rtl_split_block (basic_block, void *);
83 static void rtl_dump_bb (basic_block, FILE *, int);
84 static int rtl_verify_flow_info_1 (void);
85 static void mark_killed_regs (rtx, rtx, void *);
86 static void rtl_make_forwarder_block (edge);
87 \f
88 /* Return true if NOTE is not one of the ones that must be kept paired,
89 so that we may simply delete it. */
90
91 static int
92 can_delete_note_p (rtx note)
93 {
94 return (NOTE_LINE_NUMBER (note) == NOTE_INSN_DELETED
95 || NOTE_LINE_NUMBER (note) == NOTE_INSN_BASIC_BLOCK
96 || NOTE_LINE_NUMBER (note) == NOTE_INSN_UNLIKELY_EXECUTED_CODE);
97 }
98
99 /* True if a given label can be deleted. */
100
101 static int
102 can_delete_label_p (rtx label)
103 {
104 return (!LABEL_PRESERVE_P (label)
105 /* User declared labels must be preserved. */
106 && LABEL_NAME (label) == 0
107 && !in_expr_list_p (forced_labels, label)
108 && !in_expr_list_p (label_value_list, label));
109 }
110
111 /* Delete INSN by patching it out. Return the next insn. */
112
113 rtx
114 delete_insn (rtx insn)
115 {
116 rtx next = NEXT_INSN (insn);
117 rtx note;
118 bool really_delete = true;
119
120 if (LABEL_P (insn))
121 {
122 /* Some labels can't be directly removed from the INSN chain, as they
123 might be references via variables, constant pool etc.
124 Convert them to the special NOTE_INSN_DELETED_LABEL note. */
125 if (! can_delete_label_p (insn))
126 {
127 const char *name = LABEL_NAME (insn);
128
129 really_delete = false;
130 PUT_CODE (insn, NOTE);
131 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED_LABEL;
132 NOTE_DELETED_LABEL_NAME (insn) = name;
133 }
134
135 remove_node_from_expr_list (insn, &nonlocal_goto_handler_labels);
136 }
137
138 if (really_delete)
139 {
140 /* If this insn has already been deleted, something is very wrong. */
141 gcc_assert (!INSN_DELETED_P (insn));
142 remove_insn (insn);
143 INSN_DELETED_P (insn) = 1;
144 }
145
146 /* If deleting a jump, decrement the use count of the label. Deleting
147 the label itself should happen in the normal course of block merging. */
148 if (JUMP_P (insn)
149 && JUMP_LABEL (insn)
150 && LABEL_P (JUMP_LABEL (insn)))
151 LABEL_NUSES (JUMP_LABEL (insn))--;
152
153 /* Also if deleting an insn that references a label. */
154 else
155 {
156 while ((note = find_reg_note (insn, REG_LABEL, NULL_RTX)) != NULL_RTX
157 && LABEL_P (XEXP (note, 0)))
158 {
159 LABEL_NUSES (XEXP (note, 0))--;
160 remove_note (insn, note);
161 }
162 }
163
164 if (JUMP_P (insn)
165 && (GET_CODE (PATTERN (insn)) == ADDR_VEC
166 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC))
167 {
168 rtx pat = PATTERN (insn);
169 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
170 int len = XVECLEN (pat, diff_vec_p);
171 int i;
172
173 for (i = 0; i < len; i++)
174 {
175 rtx label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
176
177 /* When deleting code in bulk (e.g. removing many unreachable
178 blocks) we can delete a label that's a target of the vector
179 before deleting the vector itself. */
180 if (!NOTE_P (label))
181 LABEL_NUSES (label)--;
182 }
183 }
184
185 return next;
186 }
187
188 /* Like delete_insn but also purge dead edges from BB. */
189 rtx
190 delete_insn_and_edges (rtx insn)
191 {
192 rtx x;
193 bool purge = false;
194
195 if (INSN_P (insn)
196 && BLOCK_FOR_INSN (insn)
197 && BB_END (BLOCK_FOR_INSN (insn)) == insn)
198 purge = true;
199 x = delete_insn (insn);
200 if (purge)
201 purge_dead_edges (BLOCK_FOR_INSN (insn));
202 return x;
203 }
204
205 /* Unlink a chain of insns between START and FINISH, leaving notes
206 that must be paired. */
207
208 void
209 delete_insn_chain (rtx start, rtx finish)
210 {
211 rtx next;
212
213 /* Unchain the insns one by one. It would be quicker to delete all of these
214 with a single unchaining, rather than one at a time, but we need to keep
215 the NOTE's. */
216 while (1)
217 {
218 next = NEXT_INSN (start);
219 if (NOTE_P (start) && !can_delete_note_p (start))
220 ;
221 else
222 next = delete_insn (start);
223
224 if (start == finish)
225 break;
226 start = next;
227 }
228 }
229
230 /* Like delete_insn but also purge dead edges from BB. */
231 void
232 delete_insn_chain_and_edges (rtx first, rtx last)
233 {
234 bool purge = false;
235
236 if (INSN_P (last)
237 && BLOCK_FOR_INSN (last)
238 && BB_END (BLOCK_FOR_INSN (last)) == last)
239 purge = true;
240 delete_insn_chain (first, last);
241 if (purge)
242 purge_dead_edges (BLOCK_FOR_INSN (last));
243 }
244 \f
245 /* Create a new basic block consisting of the instructions between HEAD and END
246 inclusive. This function is designed to allow fast BB construction - reuses
247 the note and basic block struct in BB_NOTE, if any and do not grow
248 BASIC_BLOCK chain and should be used directly only by CFG construction code.
249 END can be NULL in to create new empty basic block before HEAD. Both END
250 and HEAD can be NULL to create basic block at the end of INSN chain.
251 AFTER is the basic block we should be put after. */
252
253 basic_block
254 create_basic_block_structure (rtx head, rtx end, rtx bb_note, basic_block after)
255 {
256 basic_block bb;
257
258 if (bb_note
259 && (bb = NOTE_BASIC_BLOCK (bb_note)) != NULL
260 && bb->aux == NULL)
261 {
262 /* If we found an existing note, thread it back onto the chain. */
263
264 rtx after;
265
266 if (LABEL_P (head))
267 after = head;
268 else
269 {
270 after = PREV_INSN (head);
271 head = bb_note;
272 }
273
274 if (after != bb_note && NEXT_INSN (after) != bb_note)
275 reorder_insns_nobb (bb_note, bb_note, after);
276 }
277 else
278 {
279 /* Otherwise we must create a note and a basic block structure. */
280
281 bb = alloc_block ();
282
283 if (!head && !end)
284 head = end = bb_note
285 = emit_note_after (NOTE_INSN_BASIC_BLOCK, get_last_insn ());
286 else if (LABEL_P (head) && end)
287 {
288 bb_note = emit_note_after (NOTE_INSN_BASIC_BLOCK, head);
289 if (head == end)
290 end = bb_note;
291 }
292 else
293 {
294 bb_note = emit_note_before (NOTE_INSN_BASIC_BLOCK, head);
295 head = bb_note;
296 if (!end)
297 end = head;
298 }
299
300 NOTE_BASIC_BLOCK (bb_note) = bb;
301 }
302
303 /* Always include the bb note in the block. */
304 if (NEXT_INSN (end) == bb_note)
305 end = bb_note;
306
307 BB_HEAD (bb) = head;
308 BB_END (bb) = end;
309 bb->index = last_basic_block++;
310 bb->flags = BB_NEW;
311 link_block (bb, after);
312 BASIC_BLOCK (bb->index) = bb;
313 update_bb_for_insn (bb);
314 BB_SET_PARTITION (bb, BB_UNPARTITIONED);
315
316 /* Tag the block so that we know it has been used when considering
317 other basic block notes. */
318 bb->aux = bb;
319
320 return bb;
321 }
322
323 /* Create new basic block consisting of instructions in between HEAD and END
324 and place it to the BB chain after block AFTER. END can be NULL in to
325 create new empty basic block before HEAD. Both END and HEAD can be NULL to
326 create basic block at the end of INSN chain. */
327
328 static basic_block
329 rtl_create_basic_block (void *headp, void *endp, basic_block after)
330 {
331 rtx head = headp, end = endp;
332 basic_block bb;
333
334 /* Grow the basic block array if needed. */
335 if ((size_t) last_basic_block >= VARRAY_SIZE (basic_block_info))
336 {
337 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
338 VARRAY_GROW (basic_block_info, new_size);
339 }
340
341 n_basic_blocks++;
342
343 bb = create_basic_block_structure (head, end, NULL, after);
344 bb->aux = NULL;
345 return bb;
346 }
347
348 static basic_block
349 cfg_layout_create_basic_block (void *head, void *end, basic_block after)
350 {
351 basic_block newbb = rtl_create_basic_block (head, end, after);
352
353 initialize_bb_rbi (newbb);
354 return newbb;
355 }
356 \f
357 /* Delete the insns in a (non-live) block. We physically delete every
358 non-deleted-note insn, and update the flow graph appropriately.
359
360 Return nonzero if we deleted an exception handler. */
361
362 /* ??? Preserving all such notes strikes me as wrong. It would be nice
363 to post-process the stream to remove empty blocks, loops, ranges, etc. */
364
365 static void
366 rtl_delete_block (basic_block b)
367 {
368 rtx insn, end, tmp;
369
370 /* If the head of this block is a CODE_LABEL, then it might be the
371 label for an exception handler which can't be reached. We need
372 to remove the label from the exception_handler_label list. */
373 insn = BB_HEAD (b);
374 if (LABEL_P (insn))
375 maybe_remove_eh_handler (insn);
376
377 /* Include any jump table following the basic block. */
378 end = BB_END (b);
379 if (tablejump_p (end, NULL, &tmp))
380 end = tmp;
381
382 /* Include any barriers that may follow the basic block. */
383 tmp = next_nonnote_insn (end);
384 while (tmp && BARRIER_P (tmp))
385 {
386 end = tmp;
387 tmp = next_nonnote_insn (end);
388 }
389
390 /* Selectively delete the entire chain. */
391 BB_HEAD (b) = NULL;
392 delete_insn_chain (insn, end);
393 }
394 \f
395 /* Records the basic block struct in BLOCK_FOR_INSN for every insn. */
396
397 void
398 compute_bb_for_insn (void)
399 {
400 basic_block bb;
401
402 FOR_EACH_BB (bb)
403 {
404 rtx end = BB_END (bb);
405 rtx insn;
406
407 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
408 {
409 BLOCK_FOR_INSN (insn) = bb;
410 if (insn == end)
411 break;
412 }
413 }
414 }
415
416 /* Release the basic_block_for_insn array. */
417
418 void
419 free_bb_for_insn (void)
420 {
421 rtx insn;
422 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
423 if (!BARRIER_P (insn))
424 BLOCK_FOR_INSN (insn) = NULL;
425 }
426
427 /* Return RTX to emit after when we want to emit code on the entry of function. */
428 rtx
429 entry_of_function (void)
430 {
431 return (n_basic_blocks ? BB_HEAD (ENTRY_BLOCK_PTR->next_bb) : get_insns ());
432 }
433
434 /* Update insns block within BB. */
435
436 void
437 update_bb_for_insn (basic_block bb)
438 {
439 rtx insn;
440
441 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
442 {
443 if (!BARRIER_P (insn))
444 set_block_for_insn (insn, bb);
445 if (insn == BB_END (bb))
446 break;
447 }
448 }
449 \f
450 /* Creates a new basic block just after basic block B by splitting
451 everything after specified instruction I. */
452
453 static basic_block
454 rtl_split_block (basic_block bb, void *insnp)
455 {
456 basic_block new_bb;
457 rtx insn = insnp;
458 edge e;
459 edge_iterator ei;
460
461 if (!insn)
462 {
463 insn = first_insn_after_basic_block_note (bb);
464
465 if (insn)
466 insn = PREV_INSN (insn);
467 else
468 insn = get_last_insn ();
469 }
470
471 /* We probably should check type of the insn so that we do not create
472 inconsistent cfg. It is checked in verify_flow_info anyway, so do not
473 bother. */
474 if (insn == BB_END (bb))
475 emit_note_after (NOTE_INSN_DELETED, insn);
476
477 /* Create the new basic block. */
478 new_bb = create_basic_block (NEXT_INSN (insn), BB_END (bb), bb);
479 BB_COPY_PARTITION (new_bb, bb);
480 BB_END (bb) = insn;
481
482 /* Redirect the outgoing edges. */
483 new_bb->succs = bb->succs;
484 bb->succs = NULL;
485 FOR_EACH_EDGE (e, ei, new_bb->succs)
486 e->src = new_bb;
487
488 if (bb->global_live_at_start)
489 {
490 new_bb->global_live_at_start = ALLOC_REG_SET (&reg_obstack);
491 new_bb->global_live_at_end = ALLOC_REG_SET (&reg_obstack);
492 COPY_REG_SET (new_bb->global_live_at_end, bb->global_live_at_end);
493
494 /* We now have to calculate which registers are live at the end
495 of the split basic block and at the start of the new basic
496 block. Start with those registers that are known to be live
497 at the end of the original basic block and get
498 propagate_block to determine which registers are live. */
499 COPY_REG_SET (new_bb->global_live_at_start, bb->global_live_at_end);
500 propagate_block (new_bb, new_bb->global_live_at_start, NULL, NULL, 0);
501 COPY_REG_SET (bb->global_live_at_end,
502 new_bb->global_live_at_start);
503 #ifdef HAVE_conditional_execution
504 /* In the presence of conditional execution we are not able to update
505 liveness precisely. */
506 if (reload_completed)
507 {
508 bb->flags |= BB_DIRTY;
509 new_bb->flags |= BB_DIRTY;
510 }
511 #endif
512 }
513
514 return new_bb;
515 }
516
517 /* Blocks A and B are to be merged into a single block A. The insns
518 are already contiguous. */
519
520 static void
521 rtl_merge_blocks (basic_block a, basic_block b)
522 {
523 rtx b_head = BB_HEAD (b), b_end = BB_END (b), a_end = BB_END (a);
524 rtx del_first = NULL_RTX, del_last = NULL_RTX;
525 int b_empty = 0;
526
527 /* If there was a CODE_LABEL beginning B, delete it. */
528 if (LABEL_P (b_head))
529 {
530 /* Detect basic blocks with nothing but a label. This can happen
531 in particular at the end of a function. */
532 if (b_head == b_end)
533 b_empty = 1;
534
535 del_first = del_last = b_head;
536 b_head = NEXT_INSN (b_head);
537 }
538
539 /* Delete the basic block note and handle blocks containing just that
540 note. */
541 if (NOTE_INSN_BASIC_BLOCK_P (b_head))
542 {
543 if (b_head == b_end)
544 b_empty = 1;
545 if (! del_last)
546 del_first = b_head;
547
548 del_last = b_head;
549 b_head = NEXT_INSN (b_head);
550 }
551
552 /* If there was a jump out of A, delete it. */
553 if (JUMP_P (a_end))
554 {
555 rtx prev;
556
557 for (prev = PREV_INSN (a_end); ; prev = PREV_INSN (prev))
558 if (!NOTE_P (prev)
559 || NOTE_LINE_NUMBER (prev) == NOTE_INSN_BASIC_BLOCK
560 || prev == BB_HEAD (a))
561 break;
562
563 del_first = a_end;
564
565 #ifdef HAVE_cc0
566 /* If this was a conditional jump, we need to also delete
567 the insn that set cc0. */
568 if (only_sets_cc0_p (prev))
569 {
570 rtx tmp = prev;
571
572 prev = prev_nonnote_insn (prev);
573 if (!prev)
574 prev = BB_HEAD (a);
575 del_first = tmp;
576 }
577 #endif
578
579 a_end = PREV_INSN (del_first);
580 }
581 else if (BARRIER_P (NEXT_INSN (a_end)))
582 del_first = NEXT_INSN (a_end);
583
584 /* Delete everything marked above as well as crap that might be
585 hanging out between the two blocks. */
586 BB_HEAD (b) = NULL;
587 delete_insn_chain (del_first, del_last);
588
589 /* Reassociate the insns of B with A. */
590 if (!b_empty)
591 {
592 rtx x;
593
594 for (x = a_end; x != b_end; x = NEXT_INSN (x))
595 set_block_for_insn (x, a);
596
597 set_block_for_insn (b_end, a);
598
599 a_end = b_end;
600 }
601
602 BB_END (a) = a_end;
603 }
604
605 /* Return true when block A and B can be merged. */
606 static bool
607 rtl_can_merge_blocks (basic_block a,basic_block b)
608 {
609 /* If we are partitioning hot/cold basic blocks, we don't want to
610 mess up unconditional or indirect jumps that cross between hot
611 and cold sections.
612
613 Basic block partitioning may result in some jumps that appear to
614 be optimizable (or blocks that appear to be mergeable), but which really
615 must be left untouched (they are required to make it safely across
616 partition boundaries). See the comments at the top of
617 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
618
619 if (flag_reorder_blocks_and_partition
620 && (find_reg_note (BB_END (a), REG_CROSSING_JUMP, NULL_RTX)
621 || find_reg_note (BB_END (b), REG_CROSSING_JUMP, NULL_RTX)
622 || BB_PARTITION (a) != BB_PARTITION (b)))
623 return false;
624
625 /* There must be exactly one edge in between the blocks. */
626 return (single_succ_p (a)
627 && single_succ (a) == b
628 && single_pred_p (b)
629 && a != b
630 /* Must be simple edge. */
631 && !(single_succ_edge (a)->flags & EDGE_COMPLEX)
632 && a->next_bb == b
633 && a != ENTRY_BLOCK_PTR && b != EXIT_BLOCK_PTR
634 /* If the jump insn has side effects,
635 we can't kill the edge. */
636 && (!JUMP_P (BB_END (a))
637 || (reload_completed
638 ? simplejump_p (BB_END (a)) : onlyjump_p (BB_END (a)))));
639 }
640 \f
641 /* Return the label in the head of basic block BLOCK. Create one if it doesn't
642 exist. */
643
644 rtx
645 block_label (basic_block block)
646 {
647 if (block == EXIT_BLOCK_PTR)
648 return NULL_RTX;
649
650 if (!LABEL_P (BB_HEAD (block)))
651 {
652 BB_HEAD (block) = emit_label_before (gen_label_rtx (), BB_HEAD (block));
653 }
654
655 return BB_HEAD (block);
656 }
657
658 /* Attempt to perform edge redirection by replacing possibly complex jump
659 instruction by unconditional jump or removing jump completely. This can
660 apply only if all edges now point to the same block. The parameters and
661 return values are equivalent to redirect_edge_and_branch. */
662
663 edge
664 try_redirect_by_replacing_jump (edge e, basic_block target, bool in_cfglayout)
665 {
666 basic_block src = e->src;
667 rtx insn = BB_END (src), kill_from;
668 rtx set;
669 int fallthru = 0;
670
671 /* If we are partitioning hot/cold basic blocks, we don't want to
672 mess up unconditional or indirect jumps that cross between hot
673 and cold sections.
674
675 Basic block partitioning may result in some jumps that appear to
676 be optimizable (or blocks that appear to be mergeable), but which really
677 must be left untouched (they are required to make it safely across
678 partition boundaries). See the comments at the top of
679 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
680
681 if (flag_reorder_blocks_and_partition
682 && (find_reg_note (insn, REG_CROSSING_JUMP, NULL_RTX)
683 || BB_PARTITION (src) != BB_PARTITION (target)))
684 return NULL;
685
686 /* We can replace or remove a complex jump only when we have exactly
687 two edges. Also, if we have exactly one outgoing edge, we can
688 redirect that. */
689 if (EDGE_COUNT (src->succs) >= 3
690 /* Verify that all targets will be TARGET. Specifically, the
691 edge that is not E must also go to TARGET. */
692 || (EDGE_COUNT (src->succs) == 2
693 && EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target))
694 return NULL;
695
696 if (!onlyjump_p (insn))
697 return NULL;
698 if ((!optimize || reload_completed) && tablejump_p (insn, NULL, NULL))
699 return NULL;
700
701 /* Avoid removing branch with side effects. */
702 set = single_set (insn);
703 if (!set || side_effects_p (set))
704 return NULL;
705
706 /* In case we zap a conditional jump, we'll need to kill
707 the cc0 setter too. */
708 kill_from = insn;
709 #ifdef HAVE_cc0
710 if (reg_mentioned_p (cc0_rtx, PATTERN (insn)))
711 kill_from = PREV_INSN (insn);
712 #endif
713
714 /* See if we can create the fallthru edge. */
715 if (in_cfglayout || can_fallthru (src, target))
716 {
717 if (dump_file)
718 fprintf (dump_file, "Removing jump %i.\n", INSN_UID (insn));
719 fallthru = 1;
720
721 /* Selectively unlink whole insn chain. */
722 if (in_cfglayout)
723 {
724 rtx insn = src->rbi->footer;
725
726 delete_insn_chain (kill_from, BB_END (src));
727
728 /* Remove barriers but keep jumptables. */
729 while (insn)
730 {
731 if (BARRIER_P (insn))
732 {
733 if (PREV_INSN (insn))
734 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
735 else
736 src->rbi->footer = NEXT_INSN (insn);
737 if (NEXT_INSN (insn))
738 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
739 }
740 if (LABEL_P (insn))
741 break;
742 insn = NEXT_INSN (insn);
743 }
744 }
745 else
746 delete_insn_chain (kill_from, PREV_INSN (BB_HEAD (target)));
747 }
748
749 /* If this already is simplejump, redirect it. */
750 else if (simplejump_p (insn))
751 {
752 if (e->dest == target)
753 return NULL;
754 if (dump_file)
755 fprintf (dump_file, "Redirecting jump %i from %i to %i.\n",
756 INSN_UID (insn), e->dest->index, target->index);
757 if (!redirect_jump (insn, block_label (target), 0))
758 {
759 gcc_assert (target == EXIT_BLOCK_PTR);
760 return NULL;
761 }
762 }
763
764 /* Cannot do anything for target exit block. */
765 else if (target == EXIT_BLOCK_PTR)
766 return NULL;
767
768 /* Or replace possibly complicated jump insn by simple jump insn. */
769 else
770 {
771 rtx target_label = block_label (target);
772 rtx barrier, label, table;
773
774 emit_jump_insn_after_noloc (gen_jump (target_label), insn);
775 JUMP_LABEL (BB_END (src)) = target_label;
776 LABEL_NUSES (target_label)++;
777 if (dump_file)
778 fprintf (dump_file, "Replacing insn %i by jump %i\n",
779 INSN_UID (insn), INSN_UID (BB_END (src)));
780
781
782 delete_insn_chain (kill_from, insn);
783
784 /* Recognize a tablejump that we are converting to a
785 simple jump and remove its associated CODE_LABEL
786 and ADDR_VEC or ADDR_DIFF_VEC. */
787 if (tablejump_p (insn, &label, &table))
788 delete_insn_chain (label, table);
789
790 barrier = next_nonnote_insn (BB_END (src));
791 if (!barrier || !BARRIER_P (barrier))
792 emit_barrier_after (BB_END (src));
793 else
794 {
795 if (barrier != NEXT_INSN (BB_END (src)))
796 {
797 /* Move the jump before barrier so that the notes
798 which originally were or were created before jump table are
799 inside the basic block. */
800 rtx new_insn = BB_END (src);
801 rtx tmp;
802
803 for (tmp = NEXT_INSN (BB_END (src)); tmp != barrier;
804 tmp = NEXT_INSN (tmp))
805 set_block_for_insn (tmp, src);
806
807 NEXT_INSN (PREV_INSN (new_insn)) = NEXT_INSN (new_insn);
808 PREV_INSN (NEXT_INSN (new_insn)) = PREV_INSN (new_insn);
809
810 NEXT_INSN (new_insn) = barrier;
811 NEXT_INSN (PREV_INSN (barrier)) = new_insn;
812
813 PREV_INSN (new_insn) = PREV_INSN (barrier);
814 PREV_INSN (barrier) = new_insn;
815 }
816 }
817 }
818
819 /* Keep only one edge out and set proper flags. */
820 if (!single_succ_p (src))
821 remove_edge (e);
822 gcc_assert (single_succ_p (src));
823
824 e = single_succ_edge (src);
825 if (fallthru)
826 e->flags = EDGE_FALLTHRU;
827 else
828 e->flags = 0;
829
830 e->probability = REG_BR_PROB_BASE;
831 e->count = src->count;
832
833 /* We don't want a block to end on a line-number note since that has
834 the potential of changing the code between -g and not -g. */
835 while (NOTE_P (BB_END (e->src))
836 && NOTE_LINE_NUMBER (BB_END (e->src)) >= 0)
837 delete_insn (BB_END (e->src));
838
839 if (e->dest != target)
840 redirect_edge_succ (e, target);
841
842 return e;
843 }
844
845 /* Return last loop_beg note appearing after INSN, before start of next
846 basic block. Return INSN if there are no such notes.
847
848 When emitting jump to redirect a fallthru edge, it should always appear
849 after the LOOP_BEG notes, as loop optimizer expect loop to either start by
850 fallthru edge or jump following the LOOP_BEG note jumping to the loop exit
851 test. */
852
853 static rtx
854 last_loop_beg_note (rtx insn)
855 {
856 rtx last = insn;
857
858 for (insn = NEXT_INSN (insn); insn && NOTE_P (insn)
859 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK;
860 insn = NEXT_INSN (insn))
861 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
862 last = insn;
863
864 return last;
865 }
866
867 /* Redirect edge representing branch of (un)conditional jump or tablejump,
868 NULL on failure */
869 static edge
870 redirect_branch_edge (edge e, basic_block target)
871 {
872 rtx tmp;
873 rtx old_label = BB_HEAD (e->dest);
874 basic_block src = e->src;
875 rtx insn = BB_END (src);
876
877 /* We can only redirect non-fallthru edges of jump insn. */
878 if (e->flags & EDGE_FALLTHRU)
879 return NULL;
880 else if (!JUMP_P (insn))
881 return NULL;
882
883 /* Recognize a tablejump and adjust all matching cases. */
884 if (tablejump_p (insn, NULL, &tmp))
885 {
886 rtvec vec;
887 int j;
888 rtx new_label = block_label (target);
889
890 if (target == EXIT_BLOCK_PTR)
891 return NULL;
892 if (GET_CODE (PATTERN (tmp)) == ADDR_VEC)
893 vec = XVEC (PATTERN (tmp), 0);
894 else
895 vec = XVEC (PATTERN (tmp), 1);
896
897 for (j = GET_NUM_ELEM (vec) - 1; j >= 0; --j)
898 if (XEXP (RTVEC_ELT (vec, j), 0) == old_label)
899 {
900 RTVEC_ELT (vec, j) = gen_rtx_LABEL_REF (Pmode, new_label);
901 --LABEL_NUSES (old_label);
902 ++LABEL_NUSES (new_label);
903 }
904
905 /* Handle casesi dispatch insns. */
906 if ((tmp = single_set (insn)) != NULL
907 && SET_DEST (tmp) == pc_rtx
908 && GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE
909 && GET_CODE (XEXP (SET_SRC (tmp), 2)) == LABEL_REF
910 && XEXP (XEXP (SET_SRC (tmp), 2), 0) == old_label)
911 {
912 XEXP (SET_SRC (tmp), 2) = gen_rtx_LABEL_REF (VOIDmode,
913 new_label);
914 --LABEL_NUSES (old_label);
915 ++LABEL_NUSES (new_label);
916 }
917 }
918 else
919 {
920 /* ?? We may play the games with moving the named labels from
921 one basic block to the other in case only one computed_jump is
922 available. */
923 if (computed_jump_p (insn)
924 /* A return instruction can't be redirected. */
925 || returnjump_p (insn))
926 return NULL;
927
928 /* If the insn doesn't go where we think, we're confused. */
929 gcc_assert (JUMP_LABEL (insn) == old_label);
930
931 /* If the substitution doesn't succeed, die. This can happen
932 if the back end emitted unrecognizable instructions or if
933 target is exit block on some arches. */
934 if (!redirect_jump (insn, block_label (target), 0))
935 {
936 gcc_assert (target == EXIT_BLOCK_PTR);
937 return NULL;
938 }
939 }
940
941 if (dump_file)
942 fprintf (dump_file, "Edge %i->%i redirected to %i\n",
943 e->src->index, e->dest->index, target->index);
944
945 if (e->dest != target)
946 e = redirect_edge_succ_nodup (e, target);
947 return e;
948 }
949
950 /* Attempt to change code to redirect edge E to TARGET. Don't do that on
951 expense of adding new instructions or reordering basic blocks.
952
953 Function can be also called with edge destination equivalent to the TARGET.
954 Then it should try the simplifications and do nothing if none is possible.
955
956 Return edge representing the branch if transformation succeeded. Return NULL
957 on failure.
958 We still return NULL in case E already destinated TARGET and we didn't
959 managed to simplify instruction stream. */
960
961 static edge
962 rtl_redirect_edge_and_branch (edge e, basic_block target)
963 {
964 edge ret;
965 basic_block src = e->src;
966
967 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
968 return NULL;
969
970 if (e->dest == target)
971 return e;
972
973 if ((ret = try_redirect_by_replacing_jump (e, target, false)) != NULL)
974 {
975 src->flags |= BB_DIRTY;
976 return ret;
977 }
978
979 ret = redirect_branch_edge (e, target);
980 if (!ret)
981 return NULL;
982
983 src->flags |= BB_DIRTY;
984 return ret;
985 }
986
987 /* Like force_nonfallthru below, but additionally performs redirection
988 Used by redirect_edge_and_branch_force. */
989
990 static basic_block
991 force_nonfallthru_and_redirect (edge e, basic_block target)
992 {
993 basic_block jump_block, new_bb = NULL, src = e->src;
994 rtx note;
995 edge new_edge;
996 int abnormal_edge_flags = 0;
997
998 /* In the case the last instruction is conditional jump to the next
999 instruction, first redirect the jump itself and then continue
1000 by creating a basic block afterwards to redirect fallthru edge. */
1001 if (e->src != ENTRY_BLOCK_PTR && e->dest != EXIT_BLOCK_PTR
1002 && any_condjump_p (BB_END (e->src))
1003 /* When called from cfglayout, fallthru edges do not
1004 necessarily go to the next block. */
1005 && e->src->next_bb == e->dest
1006 && JUMP_LABEL (BB_END (e->src)) == BB_HEAD (e->dest))
1007 {
1008 rtx note;
1009 edge b = unchecked_make_edge (e->src, target, 0);
1010 bool redirected;
1011
1012 redirected = redirect_jump (BB_END (e->src), block_label (target), 0);
1013 gcc_assert (redirected);
1014
1015 note = find_reg_note (BB_END (e->src), REG_BR_PROB, NULL_RTX);
1016 if (note)
1017 {
1018 int prob = INTVAL (XEXP (note, 0));
1019
1020 b->probability = prob;
1021 b->count = e->count * prob / REG_BR_PROB_BASE;
1022 e->probability -= e->probability;
1023 e->count -= b->count;
1024 if (e->probability < 0)
1025 e->probability = 0;
1026 if (e->count < 0)
1027 e->count = 0;
1028 }
1029 }
1030
1031 if (e->flags & EDGE_ABNORMAL)
1032 {
1033 /* Irritating special case - fallthru edge to the same block as abnormal
1034 edge.
1035 We can't redirect abnormal edge, but we still can split the fallthru
1036 one and create separate abnormal edge to original destination.
1037 This allows bb-reorder to make such edge non-fallthru. */
1038 gcc_assert (e->dest == target);
1039 abnormal_edge_flags = e->flags & ~(EDGE_FALLTHRU | EDGE_CAN_FALLTHRU);
1040 e->flags &= EDGE_FALLTHRU | EDGE_CAN_FALLTHRU;
1041 }
1042 else
1043 {
1044 gcc_assert (e->flags & EDGE_FALLTHRU);
1045 if (e->src == ENTRY_BLOCK_PTR)
1046 {
1047 /* We can't redirect the entry block. Create an empty block
1048 at the start of the function which we use to add the new
1049 jump. */
1050 edge tmp;
1051 edge_iterator ei;
1052 bool found = false;
1053
1054 basic_block bb = create_basic_block (BB_HEAD (e->dest), NULL, ENTRY_BLOCK_PTR);
1055
1056 /* Change the existing edge's source to be the new block, and add
1057 a new edge from the entry block to the new block. */
1058 e->src = bb;
1059 for (ei = ei_start (ENTRY_BLOCK_PTR->succs); (tmp = ei_safe_edge (ei)); )
1060 {
1061 if (tmp == e)
1062 {
1063 VEC_unordered_remove (edge, ENTRY_BLOCK_PTR->succs, ei.index);
1064 found = true;
1065 break;
1066 }
1067 else
1068 ei_next (&ei);
1069 }
1070
1071 gcc_assert (found);
1072
1073 VEC_safe_push (edge, bb->succs, e);
1074 make_single_succ_edge (ENTRY_BLOCK_PTR, bb, EDGE_FALLTHRU);
1075 }
1076 }
1077
1078 if (EDGE_COUNT (e->src->succs) >= 2 || abnormal_edge_flags)
1079 {
1080 /* Create the new structures. */
1081
1082 /* If the old block ended with a tablejump, skip its table
1083 by searching forward from there. Otherwise start searching
1084 forward from the last instruction of the old block. */
1085 if (!tablejump_p (BB_END (e->src), NULL, &note))
1086 note = BB_END (e->src);
1087
1088 /* Position the new block correctly relative to loop notes. */
1089 note = last_loop_beg_note (note);
1090 note = NEXT_INSN (note);
1091
1092 jump_block = create_basic_block (note, NULL, e->src);
1093 jump_block->count = e->count;
1094 jump_block->frequency = EDGE_FREQUENCY (e);
1095 jump_block->loop_depth = target->loop_depth;
1096
1097 if (target->global_live_at_start)
1098 {
1099 jump_block->global_live_at_start = ALLOC_REG_SET (&reg_obstack);
1100 jump_block->global_live_at_end = ALLOC_REG_SET (&reg_obstack);
1101 COPY_REG_SET (jump_block->global_live_at_start,
1102 target->global_live_at_start);
1103 COPY_REG_SET (jump_block->global_live_at_end,
1104 target->global_live_at_start);
1105 }
1106
1107 /* Make sure new block ends up in correct hot/cold section. */
1108
1109 BB_COPY_PARTITION (jump_block, e->src);
1110 if (flag_reorder_blocks_and_partition
1111 && targetm.have_named_sections)
1112 {
1113 if (BB_PARTITION (jump_block) == BB_COLD_PARTITION)
1114 {
1115 rtx bb_note, new_note;
1116 for (bb_note = BB_HEAD (jump_block);
1117 bb_note && bb_note != NEXT_INSN (BB_END (jump_block));
1118 bb_note = NEXT_INSN (bb_note))
1119 if (NOTE_P (bb_note)
1120 && NOTE_LINE_NUMBER (bb_note) == NOTE_INSN_BASIC_BLOCK)
1121 break;
1122 new_note = emit_note_after (NOTE_INSN_UNLIKELY_EXECUTED_CODE,
1123 bb_note);
1124 NOTE_BASIC_BLOCK (new_note) = jump_block;
1125 }
1126 if (JUMP_P (BB_END (jump_block))
1127 && !any_condjump_p (BB_END (jump_block))
1128 && (single_succ_edge (jump_block)->flags & EDGE_CROSSING))
1129 REG_NOTES (BB_END (jump_block)) = gen_rtx_EXPR_LIST
1130 (REG_CROSSING_JUMP, NULL_RTX,
1131 REG_NOTES (BB_END (jump_block)));
1132 }
1133
1134 /* Wire edge in. */
1135 new_edge = make_edge (e->src, jump_block, EDGE_FALLTHRU);
1136 new_edge->probability = e->probability;
1137 new_edge->count = e->count;
1138
1139 /* Redirect old edge. */
1140 redirect_edge_pred (e, jump_block);
1141 e->probability = REG_BR_PROB_BASE;
1142
1143 new_bb = jump_block;
1144 }
1145 else
1146 jump_block = e->src;
1147
1148 e->flags &= ~EDGE_FALLTHRU;
1149 if (target == EXIT_BLOCK_PTR)
1150 {
1151 #ifdef HAVE_return
1152 emit_jump_insn_after_noloc (gen_return (), BB_END (jump_block));
1153 #else
1154 gcc_unreachable ();
1155 #endif
1156 }
1157 else
1158 {
1159 rtx label = block_label (target);
1160 emit_jump_insn_after_noloc (gen_jump (label), BB_END (jump_block));
1161 JUMP_LABEL (BB_END (jump_block)) = label;
1162 LABEL_NUSES (label)++;
1163 }
1164
1165 emit_barrier_after (BB_END (jump_block));
1166 redirect_edge_succ_nodup (e, target);
1167
1168 if (abnormal_edge_flags)
1169 make_edge (src, target, abnormal_edge_flags);
1170
1171 return new_bb;
1172 }
1173
1174 /* Edge E is assumed to be fallthru edge. Emit needed jump instruction
1175 (and possibly create new basic block) to make edge non-fallthru.
1176 Return newly created BB or NULL if none. */
1177
1178 basic_block
1179 force_nonfallthru (edge e)
1180 {
1181 return force_nonfallthru_and_redirect (e, e->dest);
1182 }
1183
1184 /* Redirect edge even at the expense of creating new jump insn or
1185 basic block. Return new basic block if created, NULL otherwise.
1186 Abort if conversion is impossible. */
1187
1188 static basic_block
1189 rtl_redirect_edge_and_branch_force (edge e, basic_block target)
1190 {
1191 if (redirect_edge_and_branch (e, target)
1192 || e->dest == target)
1193 return NULL;
1194
1195 /* In case the edge redirection failed, try to force it to be non-fallthru
1196 and redirect newly created simplejump. */
1197 return force_nonfallthru_and_redirect (e, target);
1198 }
1199
1200 /* The given edge should potentially be a fallthru edge. If that is in
1201 fact true, delete the jump and barriers that are in the way. */
1202
1203 static void
1204 rtl_tidy_fallthru_edge (edge e)
1205 {
1206 rtx q;
1207 basic_block b = e->src, c = b->next_bb;
1208
1209 /* ??? In a late-running flow pass, other folks may have deleted basic
1210 blocks by nopping out blocks, leaving multiple BARRIERs between here
1211 and the target label. They ought to be chastized and fixed.
1212
1213 We can also wind up with a sequence of undeletable labels between
1214 one block and the next.
1215
1216 So search through a sequence of barriers, labels, and notes for
1217 the head of block C and assert that we really do fall through. */
1218
1219 for (q = NEXT_INSN (BB_END (b)); q != BB_HEAD (c); q = NEXT_INSN (q))
1220 if (INSN_P (q))
1221 return;
1222
1223 /* Remove what will soon cease being the jump insn from the source block.
1224 If block B consisted only of this single jump, turn it into a deleted
1225 note. */
1226 q = BB_END (b);
1227 if (JUMP_P (q)
1228 && onlyjump_p (q)
1229 && (any_uncondjump_p (q)
1230 || single_succ_p (b)))
1231 {
1232 #ifdef HAVE_cc0
1233 /* If this was a conditional jump, we need to also delete
1234 the insn that set cc0. */
1235 if (any_condjump_p (q) && only_sets_cc0_p (PREV_INSN (q)))
1236 q = PREV_INSN (q);
1237 #endif
1238
1239 q = PREV_INSN (q);
1240
1241 /* We don't want a block to end on a line-number note since that has
1242 the potential of changing the code between -g and not -g. */
1243 while (NOTE_P (q) && NOTE_LINE_NUMBER (q) >= 0)
1244 q = PREV_INSN (q);
1245 }
1246
1247 /* Selectively unlink the sequence. */
1248 if (q != PREV_INSN (BB_HEAD (c)))
1249 delete_insn_chain (NEXT_INSN (q), PREV_INSN (BB_HEAD (c)));
1250
1251 e->flags |= EDGE_FALLTHRU;
1252 }
1253 \f
1254 /* Helper function for split_edge. Return true in case edge BB2 to BB1
1255 is back edge of syntactic loop. */
1256
1257 static bool
1258 back_edge_of_syntactic_loop_p (basic_block bb1, basic_block bb2)
1259 {
1260 rtx insn;
1261 int count = 0;
1262 basic_block bb;
1263
1264 if (bb1 == bb2)
1265 return true;
1266
1267 /* ??? Could we guarantee that bb indices are monotone, so that we could
1268 just compare them? */
1269 for (bb = bb1; bb && bb != bb2; bb = bb->next_bb)
1270 continue;
1271
1272 if (!bb)
1273 return false;
1274
1275 for (insn = BB_END (bb1); insn != BB_HEAD (bb2) && count >= 0;
1276 insn = NEXT_INSN (insn))
1277 if (NOTE_P (insn))
1278 {
1279 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
1280 count++;
1281 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
1282 count--;
1283 }
1284
1285 return count >= 0;
1286 }
1287
1288 /* Should move basic block BB after basic block AFTER. NIY. */
1289
1290 static bool
1291 rtl_move_block_after (basic_block bb ATTRIBUTE_UNUSED,
1292 basic_block after ATTRIBUTE_UNUSED)
1293 {
1294 return false;
1295 }
1296
1297 /* Split a (typically critical) edge. Return the new block.
1298 Abort on abnormal edges.
1299
1300 ??? The code generally expects to be called on critical edges.
1301 The case of a block ending in an unconditional jump to a
1302 block with multiple predecessors is not handled optimally. */
1303
1304 static basic_block
1305 rtl_split_edge (edge edge_in)
1306 {
1307 basic_block bb;
1308 rtx before;
1309
1310 /* Abnormal edges cannot be split. */
1311 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
1312
1313 /* We are going to place the new block in front of edge destination.
1314 Avoid existence of fallthru predecessors. */
1315 if ((edge_in->flags & EDGE_FALLTHRU) == 0)
1316 {
1317 edge e;
1318 edge_iterator ei;
1319
1320 FOR_EACH_EDGE (e, ei, edge_in->dest->preds)
1321 if (e->flags & EDGE_FALLTHRU)
1322 break;
1323
1324 if (e)
1325 force_nonfallthru (e);
1326 }
1327
1328 /* Create the basic block note.
1329
1330 Where we place the note can have a noticeable impact on the generated
1331 code. Consider this cfg:
1332
1333 E
1334 |
1335 0
1336 / \
1337 +->1-->2--->E
1338 | |
1339 +--+
1340
1341 If we need to insert an insn on the edge from block 0 to block 1,
1342 we want to ensure the instructions we insert are outside of any
1343 loop notes that physically sit between block 0 and block 1. Otherwise
1344 we confuse the loop optimizer into thinking the loop is a phony. */
1345
1346 if (edge_in->dest != EXIT_BLOCK_PTR
1347 && PREV_INSN (BB_HEAD (edge_in->dest))
1348 && NOTE_P (PREV_INSN (BB_HEAD (edge_in->dest)))
1349 && (NOTE_LINE_NUMBER (PREV_INSN (BB_HEAD (edge_in->dest)))
1350 == NOTE_INSN_LOOP_BEG)
1351 && !back_edge_of_syntactic_loop_p (edge_in->dest, edge_in->src))
1352 before = PREV_INSN (BB_HEAD (edge_in->dest));
1353 else if (edge_in->dest != EXIT_BLOCK_PTR)
1354 before = BB_HEAD (edge_in->dest);
1355 else
1356 before = NULL_RTX;
1357
1358 /* If this is a fall through edge to the exit block, the blocks might be
1359 not adjacent, and the right place is the after the source. */
1360 if (edge_in->flags & EDGE_FALLTHRU && edge_in->dest == EXIT_BLOCK_PTR)
1361 {
1362 before = NEXT_INSN (BB_END (edge_in->src));
1363 if (before
1364 && NOTE_P (before)
1365 && NOTE_LINE_NUMBER (before) == NOTE_INSN_LOOP_END)
1366 before = NEXT_INSN (before);
1367 bb = create_basic_block (before, NULL, edge_in->src);
1368 BB_COPY_PARTITION (bb, edge_in->src);
1369 }
1370 else
1371 {
1372 bb = create_basic_block (before, NULL, edge_in->dest->prev_bb);
1373 /* ??? Why not edge_in->dest->prev_bb here? */
1374 BB_COPY_PARTITION (bb, edge_in->dest);
1375 }
1376
1377 /* ??? This info is likely going to be out of date very soon. */
1378 if (edge_in->dest->global_live_at_start)
1379 {
1380 bb->global_live_at_start = ALLOC_REG_SET (&reg_obstack);
1381 bb->global_live_at_end = ALLOC_REG_SET (&reg_obstack);
1382 COPY_REG_SET (bb->global_live_at_start,
1383 edge_in->dest->global_live_at_start);
1384 COPY_REG_SET (bb->global_live_at_end,
1385 edge_in->dest->global_live_at_start);
1386 }
1387
1388 make_single_succ_edge (bb, edge_in->dest, EDGE_FALLTHRU);
1389
1390 /* For non-fallthru edges, we must adjust the predecessor's
1391 jump instruction to target our new block. */
1392 if ((edge_in->flags & EDGE_FALLTHRU) == 0)
1393 {
1394 edge redirected = redirect_edge_and_branch (edge_in, bb);
1395 gcc_assert (redirected);
1396 }
1397 else
1398 redirect_edge_succ (edge_in, bb);
1399
1400 return bb;
1401 }
1402
1403 /* Queue instructions for insertion on an edge between two basic blocks.
1404 The new instructions and basic blocks (if any) will not appear in the
1405 CFG until commit_edge_insertions is called. */
1406
1407 void
1408 insert_insn_on_edge (rtx pattern, edge e)
1409 {
1410 /* We cannot insert instructions on an abnormal critical edge.
1411 It will be easier to find the culprit if we die now. */
1412 gcc_assert (!((e->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (e)));
1413
1414 if (e->insns.r == NULL_RTX)
1415 start_sequence ();
1416 else
1417 push_to_sequence (e->insns.r);
1418
1419 emit_insn (pattern);
1420
1421 e->insns.r = get_insns ();
1422 end_sequence ();
1423 }
1424
1425 /* Called from safe_insert_insn_on_edge through note_stores, marks live
1426 registers that are killed by the store. */
1427 static void
1428 mark_killed_regs (rtx reg, rtx set ATTRIBUTE_UNUSED, void *data)
1429 {
1430 regset killed = data;
1431 int regno, i;
1432
1433 if (GET_CODE (reg) == SUBREG)
1434 reg = SUBREG_REG (reg);
1435 if (!REG_P (reg))
1436 return;
1437 regno = REGNO (reg);
1438 if (regno >= FIRST_PSEUDO_REGISTER)
1439 SET_REGNO_REG_SET (killed, regno);
1440 else
1441 {
1442 for (i = 0; i < (int) hard_regno_nregs[regno][GET_MODE (reg)]; i++)
1443 SET_REGNO_REG_SET (killed, regno + i);
1444 }
1445 }
1446
1447 /* Similar to insert_insn_on_edge, tries to put INSN to edge E. Additionally
1448 it checks whether this will not clobber the registers that are live on the
1449 edge (i.e. it requires liveness information to be up-to-date) and if there
1450 are some, then it tries to save and restore them. Returns true if
1451 successful. */
1452 bool
1453 safe_insert_insn_on_edge (rtx insn, edge e)
1454 {
1455 rtx x;
1456 regset killed;
1457 rtx save_regs = NULL_RTX;
1458 unsigned regno;
1459 int noccmode;
1460 enum machine_mode mode;
1461 reg_set_iterator rsi;
1462
1463 #ifdef AVOID_CCMODE_COPIES
1464 noccmode = true;
1465 #else
1466 noccmode = false;
1467 #endif
1468
1469 killed = ALLOC_REG_SET (&reg_obstack);
1470
1471 for (x = insn; x; x = NEXT_INSN (x))
1472 if (INSN_P (x))
1473 note_stores (PATTERN (x), mark_killed_regs, killed);
1474
1475 /* Mark all hard registers as killed. Register allocator/reload cannot
1476 cope with the situation when life range of hard register spans operation
1477 for that the appropriate register is needed, i.e. it would be unsafe to
1478 extend the life ranges of hard registers. */
1479 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
1480 if (!fixed_regs[regno]
1481 && !REGNO_PTR_FRAME_P (regno))
1482 SET_REGNO_REG_SET (killed, regno);
1483
1484 bitmap_and_into (killed, e->dest->global_live_at_start);
1485
1486 EXECUTE_IF_SET_IN_REG_SET (killed, 0, regno, rsi)
1487 {
1488 mode = regno < FIRST_PSEUDO_REGISTER
1489 ? reg_raw_mode[regno]
1490 : GET_MODE (regno_reg_rtx[regno]);
1491 if (mode == VOIDmode)
1492 return false;
1493
1494 if (noccmode && mode == CCmode)
1495 return false;
1496
1497 save_regs = alloc_EXPR_LIST (0,
1498 alloc_EXPR_LIST (0,
1499 gen_reg_rtx (mode),
1500 gen_raw_REG (mode, regno)),
1501 save_regs);
1502 }
1503
1504 if (save_regs)
1505 {
1506 rtx from, to;
1507
1508 start_sequence ();
1509 for (x = save_regs; x; x = XEXP (x, 1))
1510 {
1511 from = XEXP (XEXP (x, 0), 1);
1512 to = XEXP (XEXP (x, 0), 0);
1513 emit_move_insn (to, from);
1514 }
1515 emit_insn (insn);
1516 for (x = save_regs; x; x = XEXP (x, 1))
1517 {
1518 from = XEXP (XEXP (x, 0), 0);
1519 to = XEXP (XEXP (x, 0), 1);
1520 emit_move_insn (to, from);
1521 }
1522 insn = get_insns ();
1523 end_sequence ();
1524 free_EXPR_LIST_list (&save_regs);
1525 }
1526 insert_insn_on_edge (insn, e);
1527
1528 FREE_REG_SET (killed);
1529
1530 return true;
1531 }
1532
1533 /* Update the CFG for the instructions queued on edge E. */
1534
1535 static void
1536 commit_one_edge_insertion (edge e, int watch_calls)
1537 {
1538 rtx before = NULL_RTX, after = NULL_RTX, insns, tmp, last;
1539 basic_block bb = NULL;
1540
1541 /* Pull the insns off the edge now since the edge might go away. */
1542 insns = e->insns.r;
1543 e->insns.r = NULL_RTX;
1544
1545 /* Special case -- avoid inserting code between call and storing
1546 its return value. */
1547 if (watch_calls && (e->flags & EDGE_FALLTHRU)
1548 && single_pred_p (e->dest)
1549 && e->src != ENTRY_BLOCK_PTR
1550 && CALL_P (BB_END (e->src)))
1551 {
1552 rtx next = next_nonnote_insn (BB_END (e->src));
1553
1554 after = BB_HEAD (e->dest);
1555 /* The first insn after the call may be a stack pop, skip it. */
1556 while (next
1557 && keep_with_call_p (next))
1558 {
1559 after = next;
1560 next = next_nonnote_insn (next);
1561 }
1562 bb = e->dest;
1563 }
1564 if (!before && !after)
1565 {
1566 /* Figure out where to put these things. If the destination has
1567 one predecessor, insert there. Except for the exit block. */
1568 if (single_pred_p (e->dest) && e->dest != EXIT_BLOCK_PTR)
1569 {
1570 bb = e->dest;
1571
1572 /* Get the location correct wrt a code label, and "nice" wrt
1573 a basic block note, and before everything else. */
1574 tmp = BB_HEAD (bb);
1575 if (LABEL_P (tmp))
1576 tmp = NEXT_INSN (tmp);
1577 if (NOTE_INSN_BASIC_BLOCK_P (tmp))
1578 tmp = NEXT_INSN (tmp);
1579 if (tmp
1580 && NOTE_P (tmp)
1581 && NOTE_LINE_NUMBER (tmp) == NOTE_INSN_UNLIKELY_EXECUTED_CODE)
1582 tmp = NEXT_INSN (tmp);
1583 if (tmp == BB_HEAD (bb))
1584 before = tmp;
1585 else if (tmp)
1586 after = PREV_INSN (tmp);
1587 else
1588 after = get_last_insn ();
1589 }
1590
1591 /* If the source has one successor and the edge is not abnormal,
1592 insert there. Except for the entry block. */
1593 else if ((e->flags & EDGE_ABNORMAL) == 0
1594 && single_succ_p (e->src)
1595 && e->src != ENTRY_BLOCK_PTR)
1596 {
1597 bb = e->src;
1598
1599 /* It is possible to have a non-simple jump here. Consider a target
1600 where some forms of unconditional jumps clobber a register. This
1601 happens on the fr30 for example.
1602
1603 We know this block has a single successor, so we can just emit
1604 the queued insns before the jump. */
1605 if (JUMP_P (BB_END (bb)))
1606 for (before = BB_END (bb);
1607 NOTE_P (PREV_INSN (before))
1608 && NOTE_LINE_NUMBER (PREV_INSN (before)) ==
1609 NOTE_INSN_LOOP_BEG; before = PREV_INSN (before))
1610 ;
1611 else
1612 {
1613 /* We'd better be fallthru, or we've lost track of
1614 what's what. */
1615 gcc_assert (e->flags & EDGE_FALLTHRU);
1616
1617 after = BB_END (bb);
1618 }
1619 }
1620 /* Otherwise we must split the edge. */
1621 else
1622 {
1623 bb = split_edge (e);
1624 after = BB_END (bb);
1625
1626 if (flag_reorder_blocks_and_partition
1627 && targetm.have_named_sections
1628 && e->src != ENTRY_BLOCK_PTR
1629 && BB_PARTITION (e->src) == BB_COLD_PARTITION
1630 && !(e->flags & EDGE_CROSSING))
1631 {
1632 rtx bb_note, new_note, cur_insn;
1633
1634 bb_note = NULL_RTX;
1635 for (cur_insn = BB_HEAD (bb); cur_insn != NEXT_INSN (BB_END (bb));
1636 cur_insn = NEXT_INSN (cur_insn))
1637 if (NOTE_P (cur_insn)
1638 && NOTE_LINE_NUMBER (cur_insn) == NOTE_INSN_BASIC_BLOCK)
1639 {
1640 bb_note = cur_insn;
1641 break;
1642 }
1643
1644 new_note = emit_note_after (NOTE_INSN_UNLIKELY_EXECUTED_CODE,
1645 bb_note);
1646 NOTE_BASIC_BLOCK (new_note) = bb;
1647 if (JUMP_P (BB_END (bb))
1648 && !any_condjump_p (BB_END (bb))
1649 && (single_succ_edge (bb)->flags & EDGE_CROSSING))
1650 REG_NOTES (BB_END (bb)) = gen_rtx_EXPR_LIST
1651 (REG_CROSSING_JUMP, NULL_RTX, REG_NOTES (BB_END (bb)));
1652 if (after == bb_note)
1653 after = new_note;
1654 }
1655 }
1656 }
1657
1658 /* Now that we've found the spot, do the insertion. */
1659
1660 if (before)
1661 {
1662 emit_insn_before_noloc (insns, before);
1663 last = prev_nonnote_insn (before);
1664 }
1665 else
1666 last = emit_insn_after_noloc (insns, after);
1667
1668 if (returnjump_p (last))
1669 {
1670 /* ??? Remove all outgoing edges from BB and add one for EXIT.
1671 This is not currently a problem because this only happens
1672 for the (single) epilogue, which already has a fallthru edge
1673 to EXIT. */
1674
1675 e = single_succ_edge (bb);
1676 gcc_assert (e->dest == EXIT_BLOCK_PTR
1677 && single_succ_p (bb) && (e->flags & EDGE_FALLTHRU));
1678
1679 e->flags &= ~EDGE_FALLTHRU;
1680 emit_barrier_after (last);
1681
1682 if (before)
1683 delete_insn (before);
1684 }
1685 else
1686 gcc_assert (!JUMP_P (last));
1687
1688 /* Mark the basic block for find_many_sub_basic_blocks. */
1689 bb->aux = &bb->aux;
1690 }
1691
1692 /* Update the CFG for all queued instructions. */
1693
1694 void
1695 commit_edge_insertions (void)
1696 {
1697 basic_block bb;
1698 sbitmap blocks;
1699 bool changed = false;
1700
1701 #ifdef ENABLE_CHECKING
1702 verify_flow_info ();
1703 #endif
1704
1705 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
1706 {
1707 edge e;
1708 edge_iterator ei;
1709
1710 FOR_EACH_EDGE (e, ei, bb->succs)
1711 if (e->insns.r)
1712 {
1713 changed = true;
1714 commit_one_edge_insertion (e, false);
1715 }
1716 }
1717
1718 if (!changed)
1719 return;
1720
1721 blocks = sbitmap_alloc (last_basic_block);
1722 sbitmap_zero (blocks);
1723 FOR_EACH_BB (bb)
1724 if (bb->aux)
1725 {
1726 SET_BIT (blocks, bb->index);
1727 /* Check for forgotten bb->aux values before commit_edge_insertions
1728 call. */
1729 gcc_assert (bb->aux == &bb->aux);
1730 bb->aux = NULL;
1731 }
1732 find_many_sub_basic_blocks (blocks);
1733 sbitmap_free (blocks);
1734 }
1735 \f
1736 /* Update the CFG for all queued instructions, taking special care of inserting
1737 code on edges between call and storing its return value. */
1738
1739 void
1740 commit_edge_insertions_watch_calls (void)
1741 {
1742 basic_block bb;
1743 sbitmap blocks;
1744 bool changed = false;
1745
1746 #ifdef ENABLE_CHECKING
1747 verify_flow_info ();
1748 #endif
1749
1750 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
1751 {
1752 edge e;
1753 edge_iterator ei;
1754
1755 FOR_EACH_EDGE (e, ei, bb->succs)
1756 if (e->insns.r)
1757 {
1758 changed = true;
1759 commit_one_edge_insertion (e, true);
1760 }
1761 }
1762
1763 if (!changed)
1764 return;
1765
1766 blocks = sbitmap_alloc (last_basic_block);
1767 sbitmap_zero (blocks);
1768 FOR_EACH_BB (bb)
1769 if (bb->aux)
1770 {
1771 SET_BIT (blocks, bb->index);
1772 /* Check for forgotten bb->aux values before commit_edge_insertions
1773 call. */
1774 gcc_assert (bb->aux == &bb->aux);
1775 bb->aux = NULL;
1776 }
1777 find_many_sub_basic_blocks (blocks);
1778 sbitmap_free (blocks);
1779 }
1780 \f
1781 /* Print out RTL-specific basic block information (live information
1782 at start and end). */
1783
1784 static void
1785 rtl_dump_bb (basic_block bb, FILE *outf, int indent)
1786 {
1787 rtx insn;
1788 rtx last;
1789 char *s_indent;
1790
1791 s_indent = alloca ((size_t) indent + 1);
1792 memset (s_indent, ' ', (size_t) indent);
1793 s_indent[indent] = '\0';
1794
1795 fprintf (outf, ";;%s Registers live at start: ", s_indent);
1796 dump_regset (bb->global_live_at_start, outf);
1797 putc ('\n', outf);
1798
1799 for (insn = BB_HEAD (bb), last = NEXT_INSN (BB_END (bb)); insn != last;
1800 insn = NEXT_INSN (insn))
1801 print_rtl_single (outf, insn);
1802
1803 fprintf (outf, ";;%s Registers live at end: ", s_indent);
1804 dump_regset (bb->global_live_at_end, outf);
1805 putc ('\n', outf);
1806 }
1807 \f
1808 /* Like print_rtl, but also print out live information for the start of each
1809 basic block. */
1810
1811 void
1812 print_rtl_with_bb (FILE *outf, rtx rtx_first)
1813 {
1814 rtx tmp_rtx;
1815
1816 if (rtx_first == 0)
1817 fprintf (outf, "(nil)\n");
1818 else
1819 {
1820 enum bb_state { NOT_IN_BB, IN_ONE_BB, IN_MULTIPLE_BB };
1821 int max_uid = get_max_uid ();
1822 basic_block *start = xcalloc (max_uid, sizeof (basic_block));
1823 basic_block *end = xcalloc (max_uid, sizeof (basic_block));
1824 enum bb_state *in_bb_p = xcalloc (max_uid, sizeof (enum bb_state));
1825
1826 basic_block bb;
1827
1828 FOR_EACH_BB_REVERSE (bb)
1829 {
1830 rtx x;
1831
1832 start[INSN_UID (BB_HEAD (bb))] = bb;
1833 end[INSN_UID (BB_END (bb))] = bb;
1834 for (x = BB_HEAD (bb); x != NULL_RTX; x = NEXT_INSN (x))
1835 {
1836 enum bb_state state = IN_MULTIPLE_BB;
1837
1838 if (in_bb_p[INSN_UID (x)] == NOT_IN_BB)
1839 state = IN_ONE_BB;
1840 in_bb_p[INSN_UID (x)] = state;
1841
1842 if (x == BB_END (bb))
1843 break;
1844 }
1845 }
1846
1847 for (tmp_rtx = rtx_first; NULL != tmp_rtx; tmp_rtx = NEXT_INSN (tmp_rtx))
1848 {
1849 int did_output;
1850
1851 if ((bb = start[INSN_UID (tmp_rtx)]) != NULL)
1852 {
1853 fprintf (outf, ";; Start of basic block %d, registers live:",
1854 bb->index);
1855 dump_regset (bb->global_live_at_start, outf);
1856 putc ('\n', outf);
1857 }
1858
1859 if (in_bb_p[INSN_UID (tmp_rtx)] == NOT_IN_BB
1860 && !NOTE_P (tmp_rtx)
1861 && !BARRIER_P (tmp_rtx))
1862 fprintf (outf, ";; Insn is not within a basic block\n");
1863 else if (in_bb_p[INSN_UID (tmp_rtx)] == IN_MULTIPLE_BB)
1864 fprintf (outf, ";; Insn is in multiple basic blocks\n");
1865
1866 did_output = print_rtl_single (outf, tmp_rtx);
1867
1868 if ((bb = end[INSN_UID (tmp_rtx)]) != NULL)
1869 {
1870 fprintf (outf, ";; End of basic block %d, registers live:\n",
1871 bb->index);
1872 dump_regset (bb->global_live_at_end, outf);
1873 putc ('\n', outf);
1874 }
1875
1876 if (did_output)
1877 putc ('\n', outf);
1878 }
1879
1880 free (start);
1881 free (end);
1882 free (in_bb_p);
1883 }
1884
1885 if (current_function_epilogue_delay_list != 0)
1886 {
1887 fprintf (outf, "\n;; Insns in epilogue delay list:\n\n");
1888 for (tmp_rtx = current_function_epilogue_delay_list; tmp_rtx != 0;
1889 tmp_rtx = XEXP (tmp_rtx, 1))
1890 print_rtl_single (outf, XEXP (tmp_rtx, 0));
1891 }
1892 }
1893 \f
1894 void
1895 update_br_prob_note (basic_block bb)
1896 {
1897 rtx note;
1898 if (!JUMP_P (BB_END (bb)))
1899 return;
1900 note = find_reg_note (BB_END (bb), REG_BR_PROB, NULL_RTX);
1901 if (!note || INTVAL (XEXP (note, 0)) == BRANCH_EDGE (bb)->probability)
1902 return;
1903 XEXP (note, 0) = GEN_INT (BRANCH_EDGE (bb)->probability);
1904 }
1905 \f
1906 /* Verify the CFG and RTL consistency common for both underlying RTL and
1907 cfglayout RTL.
1908
1909 Currently it does following checks:
1910
1911 - test head/end pointers
1912 - overlapping of basic blocks
1913 - headers of basic blocks (the NOTE_INSN_BASIC_BLOCK note)
1914 - tails of basic blocks (ensure that boundary is necessary)
1915 - scans body of the basic block for JUMP_INSN, CODE_LABEL
1916 and NOTE_INSN_BASIC_BLOCK
1917 - verify that no fall_thru edge crosses hot/cold partition boundaries
1918
1919 In future it can be extended check a lot of other stuff as well
1920 (reachability of basic blocks, life information, etc. etc.). */
1921
1922 static int
1923 rtl_verify_flow_info_1 (void)
1924 {
1925 const int max_uid = get_max_uid ();
1926 rtx last_head = get_last_insn ();
1927 basic_block *bb_info;
1928 rtx x;
1929 int err = 0;
1930 basic_block bb;
1931
1932 bb_info = xcalloc (max_uid, sizeof (basic_block));
1933
1934 FOR_EACH_BB_REVERSE (bb)
1935 {
1936 rtx head = BB_HEAD (bb);
1937 rtx end = BB_END (bb);
1938
1939 /* Verify the end of the basic block is in the INSN chain. */
1940 for (x = last_head; x != NULL_RTX; x = PREV_INSN (x))
1941 if (x == end)
1942 break;
1943
1944 if (!x)
1945 {
1946 error ("end insn %d for block %d not found in the insn stream",
1947 INSN_UID (end), bb->index);
1948 err = 1;
1949 }
1950
1951 /* Work backwards from the end to the head of the basic block
1952 to verify the head is in the RTL chain. */
1953 for (; x != NULL_RTX; x = PREV_INSN (x))
1954 {
1955 /* While walking over the insn chain, verify insns appear
1956 in only one basic block and initialize the BB_INFO array
1957 used by other passes. */
1958 if (bb_info[INSN_UID (x)] != NULL)
1959 {
1960 error ("insn %d is in multiple basic blocks (%d and %d)",
1961 INSN_UID (x), bb->index, bb_info[INSN_UID (x)]->index);
1962 err = 1;
1963 }
1964
1965 bb_info[INSN_UID (x)] = bb;
1966
1967 if (x == head)
1968 break;
1969 }
1970 if (!x)
1971 {
1972 error ("head insn %d for block %d not found in the insn stream",
1973 INSN_UID (head), bb->index);
1974 err = 1;
1975 }
1976
1977 last_head = x;
1978 }
1979
1980 /* Now check the basic blocks (boundaries etc.) */
1981 FOR_EACH_BB_REVERSE (bb)
1982 {
1983 int n_fallthru = 0, n_eh = 0, n_call = 0, n_abnormal = 0, n_branch = 0;
1984 edge e, fallthru = NULL;
1985 rtx note;
1986 edge_iterator ei;
1987
1988 if (JUMP_P (BB_END (bb))
1989 && (note = find_reg_note (BB_END (bb), REG_BR_PROB, NULL_RTX))
1990 && EDGE_COUNT (bb->succs) >= 2
1991 && any_condjump_p (BB_END (bb)))
1992 {
1993 if (INTVAL (XEXP (note, 0)) != BRANCH_EDGE (bb)->probability
1994 && profile_status != PROFILE_ABSENT)
1995 {
1996 error ("verify_flow_info: REG_BR_PROB does not match cfg %wi %i",
1997 INTVAL (XEXP (note, 0)), BRANCH_EDGE (bb)->probability);
1998 err = 1;
1999 }
2000 }
2001 FOR_EACH_EDGE (e, ei, bb->succs)
2002 {
2003 if (e->flags & EDGE_FALLTHRU)
2004 {
2005 n_fallthru++, fallthru = e;
2006 if ((e->flags & EDGE_CROSSING)
2007 || (BB_PARTITION (e->src) != BB_PARTITION (e->dest)
2008 && e->src != ENTRY_BLOCK_PTR
2009 && e->dest != EXIT_BLOCK_PTR))
2010 {
2011 error ("Fallthru edge crosses section boundary (bb %i)",
2012 e->src->index);
2013 err = 1;
2014 }
2015 }
2016
2017 if ((e->flags & ~(EDGE_DFS_BACK
2018 | EDGE_CAN_FALLTHRU
2019 | EDGE_IRREDUCIBLE_LOOP
2020 | EDGE_LOOP_EXIT
2021 | EDGE_CROSSING)) == 0)
2022 n_branch++;
2023
2024 if (e->flags & EDGE_ABNORMAL_CALL)
2025 n_call++;
2026
2027 if (e->flags & EDGE_EH)
2028 n_eh++;
2029 else if (e->flags & EDGE_ABNORMAL)
2030 n_abnormal++;
2031 }
2032
2033 if (n_eh && GET_CODE (PATTERN (BB_END (bb))) != RESX
2034 && !find_reg_note (BB_END (bb), REG_EH_REGION, NULL_RTX))
2035 {
2036 error ("Missing REG_EH_REGION note in the end of bb %i", bb->index);
2037 err = 1;
2038 }
2039 if (n_branch
2040 && (!JUMP_P (BB_END (bb))
2041 || (n_branch > 1 && (any_uncondjump_p (BB_END (bb))
2042 || any_condjump_p (BB_END (bb))))))
2043 {
2044 error ("Too many outgoing branch edges from bb %i", bb->index);
2045 err = 1;
2046 }
2047 if (n_fallthru && any_uncondjump_p (BB_END (bb)))
2048 {
2049 error ("Fallthru edge after unconditional jump %i", bb->index);
2050 err = 1;
2051 }
2052 if (n_branch != 1 && any_uncondjump_p (BB_END (bb)))
2053 {
2054 error ("Wrong amount of branch edges after unconditional jump %i", bb->index);
2055 err = 1;
2056 }
2057 if (n_branch != 1 && any_condjump_p (BB_END (bb))
2058 && JUMP_LABEL (BB_END (bb)) != BB_HEAD (fallthru->dest))
2059 {
2060 error ("Wrong amount of branch edges after conditional jump %i", bb->index);
2061 err = 1;
2062 }
2063 if (n_call && !CALL_P (BB_END (bb)))
2064 {
2065 error ("Call edges for non-call insn in bb %i", bb->index);
2066 err = 1;
2067 }
2068 if (n_abnormal
2069 && (!CALL_P (BB_END (bb)) && n_call != n_abnormal)
2070 && (!JUMP_P (BB_END (bb))
2071 || any_condjump_p (BB_END (bb))
2072 || any_uncondjump_p (BB_END (bb))))
2073 {
2074 error ("Abnormal edges for no purpose in bb %i", bb->index);
2075 err = 1;
2076 }
2077
2078 for (x = BB_HEAD (bb); x != NEXT_INSN (BB_END (bb)); x = NEXT_INSN (x))
2079 /* We may have a barrier inside a basic block before dead code
2080 elimination. There is no BLOCK_FOR_INSN field in a barrier. */
2081 if (!BARRIER_P (x) && BLOCK_FOR_INSN (x) != bb)
2082 {
2083 debug_rtx (x);
2084 if (! BLOCK_FOR_INSN (x))
2085 error
2086 ("insn %d inside basic block %d but block_for_insn is NULL",
2087 INSN_UID (x), bb->index);
2088 else
2089 error
2090 ("insn %d inside basic block %d but block_for_insn is %i",
2091 INSN_UID (x), bb->index, BLOCK_FOR_INSN (x)->index);
2092
2093 err = 1;
2094 }
2095
2096 /* OK pointers are correct. Now check the header of basic
2097 block. It ought to contain optional CODE_LABEL followed
2098 by NOTE_BASIC_BLOCK. */
2099 x = BB_HEAD (bb);
2100 if (LABEL_P (x))
2101 {
2102 if (BB_END (bb) == x)
2103 {
2104 error ("NOTE_INSN_BASIC_BLOCK is missing for block %d",
2105 bb->index);
2106 err = 1;
2107 }
2108
2109 x = NEXT_INSN (x);
2110 }
2111
2112 if (!NOTE_INSN_BASIC_BLOCK_P (x) || NOTE_BASIC_BLOCK (x) != bb)
2113 {
2114 error ("NOTE_INSN_BASIC_BLOCK is missing for block %d",
2115 bb->index);
2116 err = 1;
2117 }
2118
2119 if (BB_END (bb) == x)
2120 /* Do checks for empty blocks here. */
2121 ;
2122 else
2123 for (x = NEXT_INSN (x); x; x = NEXT_INSN (x))
2124 {
2125 if (NOTE_INSN_BASIC_BLOCK_P (x))
2126 {
2127 error ("NOTE_INSN_BASIC_BLOCK %d in middle of basic block %d",
2128 INSN_UID (x), bb->index);
2129 err = 1;
2130 }
2131
2132 if (x == BB_END (bb))
2133 break;
2134
2135 if (control_flow_insn_p (x))
2136 {
2137 error ("in basic block %d:", bb->index);
2138 fatal_insn ("flow control insn inside a basic block", x);
2139 }
2140 }
2141 }
2142
2143 /* Clean up. */
2144 free (bb_info);
2145 return err;
2146 }
2147
2148 /* Verify the CFG and RTL consistency common for both underlying RTL and
2149 cfglayout RTL.
2150
2151 Currently it does following checks:
2152 - all checks of rtl_verify_flow_info_1
2153 - check that all insns are in the basic blocks
2154 (except the switch handling code, barriers and notes)
2155 - check that all returns are followed by barriers
2156 - check that all fallthru edge points to the adjacent blocks. */
2157 static int
2158 rtl_verify_flow_info (void)
2159 {
2160 basic_block bb;
2161 int err = rtl_verify_flow_info_1 ();
2162 rtx x;
2163 int num_bb_notes;
2164 const rtx rtx_first = get_insns ();
2165 basic_block last_bb_seen = ENTRY_BLOCK_PTR, curr_bb = NULL;
2166
2167 FOR_EACH_BB_REVERSE (bb)
2168 {
2169 edge e;
2170 edge_iterator ei;
2171
2172 FOR_EACH_EDGE (e, ei, bb->succs)
2173 if (e->flags & EDGE_FALLTHRU)
2174 break;
2175 if (!e)
2176 {
2177 rtx insn;
2178
2179 /* Ensure existence of barrier in BB with no fallthru edges. */
2180 for (insn = BB_END (bb); !insn || !BARRIER_P (insn);
2181 insn = NEXT_INSN (insn))
2182 if (!insn
2183 || (NOTE_P (insn)
2184 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_BASIC_BLOCK))
2185 {
2186 error ("missing barrier after block %i", bb->index);
2187 err = 1;
2188 break;
2189 }
2190 }
2191 else if (e->src != ENTRY_BLOCK_PTR
2192 && e->dest != EXIT_BLOCK_PTR)
2193 {
2194 rtx insn;
2195
2196 if (e->src->next_bb != e->dest)
2197 {
2198 error
2199 ("verify_flow_info: Incorrect blocks for fallthru %i->%i",
2200 e->src->index, e->dest->index);
2201 err = 1;
2202 }
2203 else
2204 for (insn = NEXT_INSN (BB_END (e->src)); insn != BB_HEAD (e->dest);
2205 insn = NEXT_INSN (insn))
2206 if (BARRIER_P (insn) || INSN_P (insn))
2207 {
2208 error ("verify_flow_info: Incorrect fallthru %i->%i",
2209 e->src->index, e->dest->index);
2210 fatal_insn ("wrong insn in the fallthru edge", insn);
2211 err = 1;
2212 }
2213 }
2214 }
2215
2216 num_bb_notes = 0;
2217 last_bb_seen = ENTRY_BLOCK_PTR;
2218
2219 for (x = rtx_first; x; x = NEXT_INSN (x))
2220 {
2221 if (NOTE_INSN_BASIC_BLOCK_P (x))
2222 {
2223 bb = NOTE_BASIC_BLOCK (x);
2224
2225 num_bb_notes++;
2226 if (bb != last_bb_seen->next_bb)
2227 internal_error ("basic blocks not laid down consecutively");
2228
2229 curr_bb = last_bb_seen = bb;
2230 }
2231
2232 if (!curr_bb)
2233 {
2234 switch (GET_CODE (x))
2235 {
2236 case BARRIER:
2237 case NOTE:
2238 break;
2239
2240 case CODE_LABEL:
2241 /* An addr_vec is placed outside any basic block. */
2242 if (NEXT_INSN (x)
2243 && JUMP_P (NEXT_INSN (x))
2244 && (GET_CODE (PATTERN (NEXT_INSN (x))) == ADDR_DIFF_VEC
2245 || GET_CODE (PATTERN (NEXT_INSN (x))) == ADDR_VEC))
2246 x = NEXT_INSN (x);
2247
2248 /* But in any case, non-deletable labels can appear anywhere. */
2249 break;
2250
2251 default:
2252 fatal_insn ("insn outside basic block", x);
2253 }
2254 }
2255
2256 if (JUMP_P (x)
2257 && returnjump_p (x) && ! condjump_p (x)
2258 && ! (NEXT_INSN (x) && BARRIER_P (NEXT_INSN (x))))
2259 fatal_insn ("return not followed by barrier", x);
2260 if (curr_bb && x == BB_END (curr_bb))
2261 curr_bb = NULL;
2262 }
2263
2264 if (num_bb_notes != n_basic_blocks)
2265 internal_error
2266 ("number of bb notes in insn chain (%d) != n_basic_blocks (%d)",
2267 num_bb_notes, n_basic_blocks);
2268
2269 return err;
2270 }
2271 \f
2272 /* Assume that the preceding pass has possibly eliminated jump instructions
2273 or converted the unconditional jumps. Eliminate the edges from CFG.
2274 Return true if any edges are eliminated. */
2275
2276 bool
2277 purge_dead_edges (basic_block bb)
2278 {
2279 edge e;
2280 rtx insn = BB_END (bb), note;
2281 bool purged = false;
2282 bool found;
2283 edge_iterator ei;
2284
2285 /* If this instruction cannot trap, remove REG_EH_REGION notes. */
2286 if (NONJUMP_INSN_P (insn)
2287 && (note = find_reg_note (insn, REG_EH_REGION, NULL)))
2288 {
2289 rtx eqnote;
2290
2291 if (! may_trap_p (PATTERN (insn))
2292 || ((eqnote = find_reg_equal_equiv_note (insn))
2293 && ! may_trap_p (XEXP (eqnote, 0))))
2294 remove_note (insn, note);
2295 }
2296
2297 /* Cleanup abnormal edges caused by exceptions or non-local gotos. */
2298 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
2299 {
2300 if (e->flags & EDGE_EH)
2301 {
2302 if (can_throw_internal (BB_END (bb)))
2303 {
2304 ei_next (&ei);
2305 continue;
2306 }
2307 }
2308 else if (e->flags & EDGE_ABNORMAL_CALL)
2309 {
2310 if (CALL_P (BB_END (bb))
2311 && (! (note = find_reg_note (insn, REG_EH_REGION, NULL))
2312 || INTVAL (XEXP (note, 0)) >= 0))
2313 {
2314 ei_next (&ei);
2315 continue;
2316 }
2317 }
2318 else
2319 {
2320 ei_next (&ei);
2321 continue;
2322 }
2323
2324 remove_edge (e);
2325 bb->flags |= BB_DIRTY;
2326 purged = true;
2327 }
2328
2329 if (JUMP_P (insn))
2330 {
2331 rtx note;
2332 edge b,f;
2333 edge_iterator ei;
2334
2335 /* We do care only about conditional jumps and simplejumps. */
2336 if (!any_condjump_p (insn)
2337 && !returnjump_p (insn)
2338 && !simplejump_p (insn))
2339 return purged;
2340
2341 /* Branch probability/prediction notes are defined only for
2342 condjumps. We've possibly turned condjump into simplejump. */
2343 if (simplejump_p (insn))
2344 {
2345 note = find_reg_note (insn, REG_BR_PROB, NULL);
2346 if (note)
2347 remove_note (insn, note);
2348 while ((note = find_reg_note (insn, REG_BR_PRED, NULL)))
2349 remove_note (insn, note);
2350 }
2351
2352 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
2353 {
2354 /* Avoid abnormal flags to leak from computed jumps turned
2355 into simplejumps. */
2356
2357 e->flags &= ~EDGE_ABNORMAL;
2358
2359 /* See if this edge is one we should keep. */
2360 if ((e->flags & EDGE_FALLTHRU) && any_condjump_p (insn))
2361 /* A conditional jump can fall through into the next
2362 block, so we should keep the edge. */
2363 {
2364 ei_next (&ei);
2365 continue;
2366 }
2367 else if (e->dest != EXIT_BLOCK_PTR
2368 && BB_HEAD (e->dest) == JUMP_LABEL (insn))
2369 /* If the destination block is the target of the jump,
2370 keep the edge. */
2371 {
2372 ei_next (&ei);
2373 continue;
2374 }
2375 else if (e->dest == EXIT_BLOCK_PTR && returnjump_p (insn))
2376 /* If the destination block is the exit block, and this
2377 instruction is a return, then keep the edge. */
2378 {
2379 ei_next (&ei);
2380 continue;
2381 }
2382 else if ((e->flags & EDGE_EH) && can_throw_internal (insn))
2383 /* Keep the edges that correspond to exceptions thrown by
2384 this instruction and rematerialize the EDGE_ABNORMAL
2385 flag we just cleared above. */
2386 {
2387 e->flags |= EDGE_ABNORMAL;
2388 ei_next (&ei);
2389 continue;
2390 }
2391
2392 /* We do not need this edge. */
2393 bb->flags |= BB_DIRTY;
2394 purged = true;
2395 remove_edge (e);
2396 }
2397
2398 if (EDGE_COUNT (bb->succs) == 0 || !purged)
2399 return purged;
2400
2401 if (dump_file)
2402 fprintf (dump_file, "Purged edges from bb %i\n", bb->index);
2403
2404 if (!optimize)
2405 return purged;
2406
2407 /* Redistribute probabilities. */
2408 if (single_succ_p (bb))
2409 {
2410 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
2411 single_succ_edge (bb)->count = bb->count;
2412 }
2413 else
2414 {
2415 note = find_reg_note (insn, REG_BR_PROB, NULL);
2416 if (!note)
2417 return purged;
2418
2419 b = BRANCH_EDGE (bb);
2420 f = FALLTHRU_EDGE (bb);
2421 b->probability = INTVAL (XEXP (note, 0));
2422 f->probability = REG_BR_PROB_BASE - b->probability;
2423 b->count = bb->count * b->probability / REG_BR_PROB_BASE;
2424 f->count = bb->count * f->probability / REG_BR_PROB_BASE;
2425 }
2426
2427 return purged;
2428 }
2429 else if (CALL_P (insn) && SIBLING_CALL_P (insn))
2430 {
2431 /* First, there should not be any EH or ABCALL edges resulting
2432 from non-local gotos and the like. If there were, we shouldn't
2433 have created the sibcall in the first place. Second, there
2434 should of course never have been a fallthru edge. */
2435 gcc_assert (single_succ_p (bb));
2436 gcc_assert (single_succ_edge (bb)->flags
2437 == (EDGE_SIBCALL | EDGE_ABNORMAL));
2438
2439 return 0;
2440 }
2441
2442 /* If we don't see a jump insn, we don't know exactly why the block would
2443 have been broken at this point. Look for a simple, non-fallthru edge,
2444 as these are only created by conditional branches. If we find such an
2445 edge we know that there used to be a jump here and can then safely
2446 remove all non-fallthru edges. */
2447 found = false;
2448 FOR_EACH_EDGE (e, ei, bb->succs)
2449 if (! (e->flags & (EDGE_COMPLEX | EDGE_FALLTHRU)))
2450 {
2451 found = true;
2452 break;
2453 }
2454
2455 if (!found)
2456 return purged;
2457
2458 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
2459 {
2460 if (!(e->flags & EDGE_FALLTHRU))
2461 {
2462 bb->flags |= BB_DIRTY;
2463 remove_edge (e);
2464 purged = true;
2465 }
2466 else
2467 ei_next (&ei);
2468 }
2469
2470 gcc_assert (single_succ_p (bb));
2471
2472 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
2473 single_succ_edge (bb)->count = bb->count;
2474
2475 if (dump_file)
2476 fprintf (dump_file, "Purged non-fallthru edges from bb %i\n",
2477 bb->index);
2478 return purged;
2479 }
2480
2481 /* Search all basic blocks for potentially dead edges and purge them. Return
2482 true if some edge has been eliminated. */
2483
2484 bool
2485 purge_all_dead_edges (int update_life_p)
2486 {
2487 int purged = false;
2488 sbitmap blocks = 0;
2489 basic_block bb;
2490
2491 if (update_life_p)
2492 {
2493 blocks = sbitmap_alloc (last_basic_block);
2494 sbitmap_zero (blocks);
2495 }
2496
2497 FOR_EACH_BB (bb)
2498 {
2499 bool purged_here = purge_dead_edges (bb);
2500
2501 purged |= purged_here;
2502 if (purged_here && update_life_p)
2503 SET_BIT (blocks, bb->index);
2504 }
2505
2506 if (update_life_p && purged)
2507 update_life_info (blocks, UPDATE_LIFE_GLOBAL,
2508 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
2509 | PROP_KILL_DEAD_CODE);
2510
2511 if (update_life_p)
2512 sbitmap_free (blocks);
2513 return purged;
2514 }
2515
2516 /* Same as split_block but update cfg_layout structures. */
2517
2518 static basic_block
2519 cfg_layout_split_block (basic_block bb, void *insnp)
2520 {
2521 rtx insn = insnp;
2522 basic_block new_bb = rtl_split_block (bb, insn);
2523
2524 new_bb->rbi->footer = bb->rbi->footer;
2525 bb->rbi->footer = NULL;
2526
2527 return new_bb;
2528 }
2529
2530
2531 /* Redirect Edge to DEST. */
2532 static edge
2533 cfg_layout_redirect_edge_and_branch (edge e, basic_block dest)
2534 {
2535 basic_block src = e->src;
2536 edge ret;
2537
2538 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
2539 return NULL;
2540
2541 if (e->dest == dest)
2542 return e;
2543
2544 if (e->src != ENTRY_BLOCK_PTR
2545 && (ret = try_redirect_by_replacing_jump (e, dest, true)))
2546 {
2547 src->flags |= BB_DIRTY;
2548 return ret;
2549 }
2550
2551 if (e->src == ENTRY_BLOCK_PTR
2552 && (e->flags & EDGE_FALLTHRU) && !(e->flags & EDGE_COMPLEX))
2553 {
2554 if (dump_file)
2555 fprintf (dump_file, "Redirecting entry edge from bb %i to %i\n",
2556 e->src->index, dest->index);
2557
2558 e->src->flags |= BB_DIRTY;
2559 redirect_edge_succ (e, dest);
2560 return e;
2561 }
2562
2563 /* Redirect_edge_and_branch may decide to turn branch into fallthru edge
2564 in the case the basic block appears to be in sequence. Avoid this
2565 transformation. */
2566
2567 if (e->flags & EDGE_FALLTHRU)
2568 {
2569 /* Redirect any branch edges unified with the fallthru one. */
2570 if (JUMP_P (BB_END (src))
2571 && label_is_jump_target_p (BB_HEAD (e->dest),
2572 BB_END (src)))
2573 {
2574 edge redirected;
2575
2576 if (dump_file)
2577 fprintf (dump_file, "Fallthru edge unified with branch "
2578 "%i->%i redirected to %i\n",
2579 e->src->index, e->dest->index, dest->index);
2580 e->flags &= ~EDGE_FALLTHRU;
2581 redirected = redirect_branch_edge (e, dest);
2582 gcc_assert (redirected);
2583 e->flags |= EDGE_FALLTHRU;
2584 e->src->flags |= BB_DIRTY;
2585 return e;
2586 }
2587 /* In case we are redirecting fallthru edge to the branch edge
2588 of conditional jump, remove it. */
2589 if (EDGE_COUNT (src->succs) == 2)
2590 {
2591 /* Find the edge that is different from E. */
2592 edge s = EDGE_SUCC (src, EDGE_SUCC (src, 0) == e);
2593
2594 if (s->dest == dest
2595 && any_condjump_p (BB_END (src))
2596 && onlyjump_p (BB_END (src)))
2597 delete_insn (BB_END (src));
2598 }
2599 ret = redirect_edge_succ_nodup (e, dest);
2600 if (dump_file)
2601 fprintf (dump_file, "Fallthru edge %i->%i redirected to %i\n",
2602 e->src->index, e->dest->index, dest->index);
2603 }
2604 else
2605 ret = redirect_branch_edge (e, dest);
2606
2607 /* We don't want simplejumps in the insn stream during cfglayout. */
2608 gcc_assert (!simplejump_p (BB_END (src)));
2609
2610 src->flags |= BB_DIRTY;
2611 return ret;
2612 }
2613
2614 /* Simple wrapper as we always can redirect fallthru edges. */
2615 static basic_block
2616 cfg_layout_redirect_edge_and_branch_force (edge e, basic_block dest)
2617 {
2618 edge redirected = cfg_layout_redirect_edge_and_branch (e, dest);
2619
2620 gcc_assert (redirected);
2621 return NULL;
2622 }
2623
2624 /* Same as delete_basic_block but update cfg_layout structures. */
2625
2626 static void
2627 cfg_layout_delete_block (basic_block bb)
2628 {
2629 rtx insn, next, prev = PREV_INSN (BB_HEAD (bb)), *to, remaints;
2630
2631 if (bb->rbi->header)
2632 {
2633 next = BB_HEAD (bb);
2634 if (prev)
2635 NEXT_INSN (prev) = bb->rbi->header;
2636 else
2637 set_first_insn (bb->rbi->header);
2638 PREV_INSN (bb->rbi->header) = prev;
2639 insn = bb->rbi->header;
2640 while (NEXT_INSN (insn))
2641 insn = NEXT_INSN (insn);
2642 NEXT_INSN (insn) = next;
2643 PREV_INSN (next) = insn;
2644 }
2645 next = NEXT_INSN (BB_END (bb));
2646 if (bb->rbi->footer)
2647 {
2648 insn = bb->rbi->footer;
2649 while (insn)
2650 {
2651 if (BARRIER_P (insn))
2652 {
2653 if (PREV_INSN (insn))
2654 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2655 else
2656 bb->rbi->footer = NEXT_INSN (insn);
2657 if (NEXT_INSN (insn))
2658 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2659 }
2660 if (LABEL_P (insn))
2661 break;
2662 insn = NEXT_INSN (insn);
2663 }
2664 if (bb->rbi->footer)
2665 {
2666 insn = BB_END (bb);
2667 NEXT_INSN (insn) = bb->rbi->footer;
2668 PREV_INSN (bb->rbi->footer) = insn;
2669 while (NEXT_INSN (insn))
2670 insn = NEXT_INSN (insn);
2671 NEXT_INSN (insn) = next;
2672 if (next)
2673 PREV_INSN (next) = insn;
2674 else
2675 set_last_insn (insn);
2676 }
2677 }
2678 if (bb->next_bb != EXIT_BLOCK_PTR)
2679 to = &bb->next_bb->rbi->header;
2680 else
2681 to = &cfg_layout_function_footer;
2682 rtl_delete_block (bb);
2683
2684 if (prev)
2685 prev = NEXT_INSN (prev);
2686 else
2687 prev = get_insns ();
2688 if (next)
2689 next = PREV_INSN (next);
2690 else
2691 next = get_last_insn ();
2692
2693 if (next && NEXT_INSN (next) != prev)
2694 {
2695 remaints = unlink_insn_chain (prev, next);
2696 insn = remaints;
2697 while (NEXT_INSN (insn))
2698 insn = NEXT_INSN (insn);
2699 NEXT_INSN (insn) = *to;
2700 if (*to)
2701 PREV_INSN (*to) = insn;
2702 *to = remaints;
2703 }
2704 }
2705
2706 /* Return true when blocks A and B can be safely merged. */
2707 static bool
2708 cfg_layout_can_merge_blocks_p (basic_block a, basic_block b)
2709 {
2710 /* If we are partitioning hot/cold basic blocks, we don't want to
2711 mess up unconditional or indirect jumps that cross between hot
2712 and cold sections.
2713
2714 Basic block partitioning may result in some jumps that appear to
2715 be optimizable (or blocks that appear to be mergeable), but which really
2716 must be left untouched (they are required to make it safely across
2717 partition boundaries). See the comments at the top of
2718 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
2719
2720 if (flag_reorder_blocks_and_partition
2721 && (find_reg_note (BB_END (a), REG_CROSSING_JUMP, NULL_RTX)
2722 || find_reg_note (BB_END (b), REG_CROSSING_JUMP, NULL_RTX)
2723 || BB_PARTITION (a) != BB_PARTITION (b)))
2724 return false;
2725
2726 /* There must be exactly one edge in between the blocks. */
2727 return (single_succ_p (a)
2728 && single_succ (a) == b
2729 && single_pred_p (b) == 1
2730 && a != b
2731 /* Must be simple edge. */
2732 && !(single_succ_edge (a)->flags & EDGE_COMPLEX)
2733 && a != ENTRY_BLOCK_PTR && b != EXIT_BLOCK_PTR
2734 /* If the jump insn has side effects,
2735 we can't kill the edge. */
2736 && (!JUMP_P (BB_END (a))
2737 || (reload_completed
2738 ? simplejump_p (BB_END (a)) : onlyjump_p (BB_END (a)))));
2739 }
2740
2741 /* Merge block A and B, abort when it is not possible. */
2742 static void
2743 cfg_layout_merge_blocks (basic_block a, basic_block b)
2744 {
2745 #ifdef ENABLE_CHECKING
2746 gcc_assert (cfg_layout_can_merge_blocks_p (a, b));
2747 #endif
2748
2749 /* If there was a CODE_LABEL beginning B, delete it. */
2750 if (LABEL_P (BB_HEAD (b)))
2751 delete_insn (BB_HEAD (b));
2752
2753 /* We should have fallthru edge in a, or we can do dummy redirection to get
2754 it cleaned up. */
2755 if (JUMP_P (BB_END (a)))
2756 try_redirect_by_replacing_jump (EDGE_SUCC (a, 0), b, true);
2757 gcc_assert (!JUMP_P (BB_END (a)));
2758
2759 /* Possible line number notes should appear in between. */
2760 if (b->rbi->header)
2761 {
2762 rtx first = BB_END (a), last;
2763
2764 last = emit_insn_after_noloc (b->rbi->header, BB_END (a));
2765 delete_insn_chain (NEXT_INSN (first), last);
2766 b->rbi->header = NULL;
2767 }
2768
2769 /* In the case basic blocks are not adjacent, move them around. */
2770 if (NEXT_INSN (BB_END (a)) != BB_HEAD (b))
2771 {
2772 rtx first = unlink_insn_chain (BB_HEAD (b), BB_END (b));
2773
2774 emit_insn_after_noloc (first, BB_END (a));
2775 /* Skip possible DELETED_LABEL insn. */
2776 if (!NOTE_INSN_BASIC_BLOCK_P (first))
2777 first = NEXT_INSN (first);
2778 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (first));
2779 BB_HEAD (b) = NULL;
2780 delete_insn (first);
2781 }
2782 /* Otherwise just re-associate the instructions. */
2783 else
2784 {
2785 rtx insn;
2786
2787 for (insn = BB_HEAD (b);
2788 insn != NEXT_INSN (BB_END (b));
2789 insn = NEXT_INSN (insn))
2790 set_block_for_insn (insn, a);
2791 insn = BB_HEAD (b);
2792 /* Skip possible DELETED_LABEL insn. */
2793 if (!NOTE_INSN_BASIC_BLOCK_P (insn))
2794 insn = NEXT_INSN (insn);
2795 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
2796 BB_HEAD (b) = NULL;
2797 BB_END (a) = BB_END (b);
2798 delete_insn (insn);
2799 }
2800
2801 /* Possible tablejumps and barriers should appear after the block. */
2802 if (b->rbi->footer)
2803 {
2804 if (!a->rbi->footer)
2805 a->rbi->footer = b->rbi->footer;
2806 else
2807 {
2808 rtx last = a->rbi->footer;
2809
2810 while (NEXT_INSN (last))
2811 last = NEXT_INSN (last);
2812 NEXT_INSN (last) = b->rbi->footer;
2813 PREV_INSN (b->rbi->footer) = last;
2814 }
2815 b->rbi->footer = NULL;
2816 }
2817
2818 if (dump_file)
2819 fprintf (dump_file, "Merged blocks %d and %d.\n",
2820 a->index, b->index);
2821 }
2822
2823 /* Split edge E. */
2824
2825 static basic_block
2826 cfg_layout_split_edge (edge e)
2827 {
2828 basic_block new_bb =
2829 create_basic_block (e->src != ENTRY_BLOCK_PTR
2830 ? NEXT_INSN (BB_END (e->src)) : get_insns (),
2831 NULL_RTX, e->src);
2832
2833 /* ??? This info is likely going to be out of date very soon, but we must
2834 create it to avoid getting an ICE later. */
2835 if (e->dest->global_live_at_start)
2836 {
2837 new_bb->global_live_at_start = ALLOC_REG_SET (&reg_obstack);
2838 new_bb->global_live_at_end = ALLOC_REG_SET (&reg_obstack);
2839 COPY_REG_SET (new_bb->global_live_at_start,
2840 e->dest->global_live_at_start);
2841 COPY_REG_SET (new_bb->global_live_at_end,
2842 e->dest->global_live_at_start);
2843 }
2844
2845 make_edge (new_bb, e->dest, EDGE_FALLTHRU);
2846 redirect_edge_and_branch_force (e, new_bb);
2847
2848 return new_bb;
2849 }
2850
2851 /* Do postprocessing after making a forwarder block joined by edge FALLTHRU. */
2852
2853 static void
2854 rtl_make_forwarder_block (edge fallthru ATTRIBUTE_UNUSED)
2855 {
2856 }
2857
2858 /* Return 1 if BB ends with a call, possibly followed by some
2859 instructions that must stay with the call, 0 otherwise. */
2860
2861 static bool
2862 rtl_block_ends_with_call_p (basic_block bb)
2863 {
2864 rtx insn = BB_END (bb);
2865
2866 while (!CALL_P (insn)
2867 && insn != BB_HEAD (bb)
2868 && keep_with_call_p (insn))
2869 insn = PREV_INSN (insn);
2870 return (CALL_P (insn));
2871 }
2872
2873 /* Return 1 if BB ends with a conditional branch, 0 otherwise. */
2874
2875 static bool
2876 rtl_block_ends_with_condjump_p (basic_block bb)
2877 {
2878 return any_condjump_p (BB_END (bb));
2879 }
2880
2881 /* Return true if we need to add fake edge to exit.
2882 Helper function for rtl_flow_call_edges_add. */
2883
2884 static bool
2885 need_fake_edge_p (rtx insn)
2886 {
2887 if (!INSN_P (insn))
2888 return false;
2889
2890 if ((CALL_P (insn)
2891 && !SIBLING_CALL_P (insn)
2892 && !find_reg_note (insn, REG_NORETURN, NULL)
2893 && !CONST_OR_PURE_CALL_P (insn)))
2894 return true;
2895
2896 return ((GET_CODE (PATTERN (insn)) == ASM_OPERANDS
2897 && MEM_VOLATILE_P (PATTERN (insn)))
2898 || (GET_CODE (PATTERN (insn)) == PARALLEL
2899 && asm_noperands (insn) != -1
2900 && MEM_VOLATILE_P (XVECEXP (PATTERN (insn), 0, 0)))
2901 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
2902 }
2903
2904 /* Add fake edges to the function exit for any non constant and non noreturn
2905 calls, volatile inline assembly in the bitmap of blocks specified by
2906 BLOCKS or to the whole CFG if BLOCKS is zero. Return the number of blocks
2907 that were split.
2908
2909 The goal is to expose cases in which entering a basic block does not imply
2910 that all subsequent instructions must be executed. */
2911
2912 static int
2913 rtl_flow_call_edges_add (sbitmap blocks)
2914 {
2915 int i;
2916 int blocks_split = 0;
2917 int last_bb = last_basic_block;
2918 bool check_last_block = false;
2919
2920 if (n_basic_blocks == 0)
2921 return 0;
2922
2923 if (! blocks)
2924 check_last_block = true;
2925 else
2926 check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);
2927
2928 /* In the last basic block, before epilogue generation, there will be
2929 a fallthru edge to EXIT. Special care is required if the last insn
2930 of the last basic block is a call because make_edge folds duplicate
2931 edges, which would result in the fallthru edge also being marked
2932 fake, which would result in the fallthru edge being removed by
2933 remove_fake_edges, which would result in an invalid CFG.
2934
2935 Moreover, we can't elide the outgoing fake edge, since the block
2936 profiler needs to take this into account in order to solve the minimal
2937 spanning tree in the case that the call doesn't return.
2938
2939 Handle this by adding a dummy instruction in a new last basic block. */
2940 if (check_last_block)
2941 {
2942 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
2943 rtx insn = BB_END (bb);
2944
2945 /* Back up past insns that must be kept in the same block as a call. */
2946 while (insn != BB_HEAD (bb)
2947 && keep_with_call_p (insn))
2948 insn = PREV_INSN (insn);
2949
2950 if (need_fake_edge_p (insn))
2951 {
2952 edge e;
2953
2954 e = find_edge (bb, EXIT_BLOCK_PTR);
2955 if (e)
2956 {
2957 insert_insn_on_edge (gen_rtx_USE (VOIDmode, const0_rtx), e);
2958 commit_edge_insertions ();
2959 }
2960 }
2961 }
2962
2963 /* Now add fake edges to the function exit for any non constant
2964 calls since there is no way that we can determine if they will
2965 return or not... */
2966
2967 for (i = 0; i < last_bb; i++)
2968 {
2969 basic_block bb = BASIC_BLOCK (i);
2970 rtx insn;
2971 rtx prev_insn;
2972
2973 if (!bb)
2974 continue;
2975
2976 if (blocks && !TEST_BIT (blocks, i))
2977 continue;
2978
2979 for (insn = BB_END (bb); ; insn = prev_insn)
2980 {
2981 prev_insn = PREV_INSN (insn);
2982 if (need_fake_edge_p (insn))
2983 {
2984 edge e;
2985 rtx split_at_insn = insn;
2986
2987 /* Don't split the block between a call and an insn that should
2988 remain in the same block as the call. */
2989 if (CALL_P (insn))
2990 while (split_at_insn != BB_END (bb)
2991 && keep_with_call_p (NEXT_INSN (split_at_insn)))
2992 split_at_insn = NEXT_INSN (split_at_insn);
2993
2994 /* The handling above of the final block before the epilogue
2995 should be enough to verify that there is no edge to the exit
2996 block in CFG already. Calling make_edge in such case would
2997 cause us to mark that edge as fake and remove it later. */
2998
2999 #ifdef ENABLE_CHECKING
3000 if (split_at_insn == BB_END (bb))
3001 {
3002 e = find_edge (bb, EXIT_BLOCK_PTR);
3003 gcc_assert (e == NULL);
3004 }
3005 #endif
3006
3007 /* Note that the following may create a new basic block
3008 and renumber the existing basic blocks. */
3009 if (split_at_insn != BB_END (bb))
3010 {
3011 e = split_block (bb, split_at_insn);
3012 if (e)
3013 blocks_split++;
3014 }
3015
3016 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
3017 }
3018
3019 if (insn == BB_HEAD (bb))
3020 break;
3021 }
3022 }
3023
3024 if (blocks_split)
3025 verify_flow_info ();
3026
3027 return blocks_split;
3028 }
3029
3030 /* Implementation of CFG manipulation for linearized RTL. */
3031 struct cfg_hooks rtl_cfg_hooks = {
3032 "rtl",
3033 rtl_verify_flow_info,
3034 rtl_dump_bb,
3035 rtl_create_basic_block,
3036 rtl_redirect_edge_and_branch,
3037 rtl_redirect_edge_and_branch_force,
3038 rtl_delete_block,
3039 rtl_split_block,
3040 rtl_move_block_after,
3041 rtl_can_merge_blocks, /* can_merge_blocks_p */
3042 rtl_merge_blocks,
3043 rtl_predict_edge,
3044 rtl_predicted_by_p,
3045 NULL, /* can_duplicate_block_p */
3046 NULL, /* duplicate_block */
3047 rtl_split_edge,
3048 rtl_make_forwarder_block,
3049 rtl_tidy_fallthru_edge,
3050 rtl_block_ends_with_call_p,
3051 rtl_block_ends_with_condjump_p,
3052 rtl_flow_call_edges_add,
3053 NULL, /* execute_on_growing_pred */
3054 NULL /* execute_on_shrinking_pred */
3055 };
3056
3057 /* Implementation of CFG manipulation for cfg layout RTL, where
3058 basic block connected via fallthru edges does not have to be adjacent.
3059 This representation will hopefully become the default one in future
3060 version of the compiler. */
3061
3062 /* We do not want to declare these functions in a header file, since they
3063 should only be used through the cfghooks interface, and we do not want to
3064 move them here since it would require also moving quite a lot of related
3065 code. */
3066 extern bool cfg_layout_can_duplicate_bb_p (basic_block);
3067 extern basic_block cfg_layout_duplicate_bb (basic_block);
3068
3069 struct cfg_hooks cfg_layout_rtl_cfg_hooks = {
3070 "cfglayout mode",
3071 rtl_verify_flow_info_1,
3072 rtl_dump_bb,
3073 cfg_layout_create_basic_block,
3074 cfg_layout_redirect_edge_and_branch,
3075 cfg_layout_redirect_edge_and_branch_force,
3076 cfg_layout_delete_block,
3077 cfg_layout_split_block,
3078 rtl_move_block_after,
3079 cfg_layout_can_merge_blocks_p,
3080 cfg_layout_merge_blocks,
3081 rtl_predict_edge,
3082 rtl_predicted_by_p,
3083 cfg_layout_can_duplicate_bb_p,
3084 cfg_layout_duplicate_bb,
3085 cfg_layout_split_edge,
3086 rtl_make_forwarder_block,
3087 NULL,
3088 rtl_block_ends_with_call_p,
3089 rtl_block_ends_with_condjump_p,
3090 rtl_flow_call_edges_add,
3091 NULL, /* execute_on_growing_pred */
3092 NULL /* execute_on_shrinking_pred */
3093 };
3094