(Synchronize with addition made to binutils sources):
[gcc.git] / gcc / cfgrtl.c
1 /* Control flow graph manipulation code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file contains low level functions to manipulate the CFG and analyze it
23 that are aware of the RTL intermediate language.
24
25 Available functionality:
26 - Basic CFG/RTL manipulation API documented in cfghooks.h
27 - CFG-aware instruction chain manipulation
28 delete_insn, delete_insn_chain
29 - Edge splitting and committing to edges
30 insert_insn_on_edge, commit_edge_insertions
31 - CFG updating after insn simplification
32 purge_dead_edges, purge_all_dead_edges
33
34 Functions not supposed for generic use:
35 - Infrastructure to determine quickly basic block for insn
36 compute_bb_for_insn, update_bb_for_insn, set_block_for_insn,
37 - Edge redirection with updating and optimizing of insn chain
38 block_label, tidy_fallthru_edge, force_nonfallthru */
39 \f
40 #include "config.h"
41 #include "system.h"
42 #include "coretypes.h"
43 #include "tm.h"
44 #include "tree.h"
45 #include "rtl.h"
46 #include "hard-reg-set.h"
47 #include "basic-block.h"
48 #include "regs.h"
49 #include "flags.h"
50 #include "output.h"
51 #include "function.h"
52 #include "except.h"
53 #include "toplev.h"
54 #include "tm_p.h"
55 #include "obstack.h"
56 #include "insn-attr.h"
57 #include "insn-config.h"
58 #include "cfglayout.h"
59 #include "expr.h"
60 #include "target.h"
61 #include "cfgloop.h"
62 #include "ggc.h"
63 #include "tree-pass.h"
64 #include "df.h"
65
66 static int can_delete_note_p (const_rtx);
67 static int can_delete_label_p (const_rtx);
68 static basic_block rtl_split_edge (edge);
69 static bool rtl_move_block_after (basic_block, basic_block);
70 static int rtl_verify_flow_info (void);
71 static basic_block cfg_layout_split_block (basic_block, void *);
72 static edge cfg_layout_redirect_edge_and_branch (edge, basic_block);
73 static basic_block cfg_layout_redirect_edge_and_branch_force (edge, basic_block);
74 static void cfg_layout_delete_block (basic_block);
75 static void rtl_delete_block (basic_block);
76 static basic_block rtl_redirect_edge_and_branch_force (edge, basic_block);
77 static edge rtl_redirect_edge_and_branch (edge, basic_block);
78 static basic_block rtl_split_block (basic_block, void *);
79 static void rtl_dump_bb (basic_block, FILE *, int, int);
80 static int rtl_verify_flow_info_1 (void);
81 static void rtl_make_forwarder_block (edge);
82 \f
83 /* Return true if NOTE is not one of the ones that must be kept paired,
84 so that we may simply delete it. */
85
86 static int
87 can_delete_note_p (const_rtx note)
88 {
89 return (NOTE_KIND (note) == NOTE_INSN_DELETED
90 || NOTE_KIND (note) == NOTE_INSN_BASIC_BLOCK);
91 }
92
93 /* True if a given label can be deleted. */
94
95 static int
96 can_delete_label_p (const_rtx label)
97 {
98 return (!LABEL_PRESERVE_P (label)
99 /* User declared labels must be preserved. */
100 && LABEL_NAME (label) == 0
101 && !in_expr_list_p (forced_labels, label));
102 }
103
104 /* Delete INSN by patching it out. Return the next insn. */
105
106 rtx
107 delete_insn (rtx insn)
108 {
109 rtx next = NEXT_INSN (insn);
110 rtx note;
111 bool really_delete = true;
112
113 if (LABEL_P (insn))
114 {
115 /* Some labels can't be directly removed from the INSN chain, as they
116 might be references via variables, constant pool etc.
117 Convert them to the special NOTE_INSN_DELETED_LABEL note. */
118 if (! can_delete_label_p (insn))
119 {
120 const char *name = LABEL_NAME (insn);
121
122 really_delete = false;
123 PUT_CODE (insn, NOTE);
124 NOTE_KIND (insn) = NOTE_INSN_DELETED_LABEL;
125 NOTE_DELETED_LABEL_NAME (insn) = name;
126 }
127
128 remove_node_from_expr_list (insn, &nonlocal_goto_handler_labels);
129 }
130
131 if (really_delete)
132 {
133 /* If this insn has already been deleted, something is very wrong. */
134 gcc_assert (!INSN_DELETED_P (insn));
135 remove_insn (insn);
136 INSN_DELETED_P (insn) = 1;
137 }
138
139 /* If deleting a jump, decrement the use count of the label. Deleting
140 the label itself should happen in the normal course of block merging. */
141 if (JUMP_P (insn))
142 {
143 if (JUMP_LABEL (insn)
144 && LABEL_P (JUMP_LABEL (insn)))
145 LABEL_NUSES (JUMP_LABEL (insn))--;
146
147 /* If there are more targets, remove them too. */
148 while ((note
149 = find_reg_note (insn, REG_LABEL_TARGET, NULL_RTX)) != NULL_RTX
150 && LABEL_P (XEXP (note, 0)))
151 {
152 LABEL_NUSES (XEXP (note, 0))--;
153 remove_note (insn, note);
154 }
155 }
156
157 /* Also if deleting any insn that references a label as an operand. */
158 while ((note = find_reg_note (insn, REG_LABEL_OPERAND, NULL_RTX)) != NULL_RTX
159 && LABEL_P (XEXP (note, 0)))
160 {
161 LABEL_NUSES (XEXP (note, 0))--;
162 remove_note (insn, note);
163 }
164
165 if (JUMP_P (insn)
166 && (GET_CODE (PATTERN (insn)) == ADDR_VEC
167 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC))
168 {
169 rtx pat = PATTERN (insn);
170 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
171 int len = XVECLEN (pat, diff_vec_p);
172 int i;
173
174 for (i = 0; i < len; i++)
175 {
176 rtx label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
177
178 /* When deleting code in bulk (e.g. removing many unreachable
179 blocks) we can delete a label that's a target of the vector
180 before deleting the vector itself. */
181 if (!NOTE_P (label))
182 LABEL_NUSES (label)--;
183 }
184 }
185
186 return next;
187 }
188
189 /* Like delete_insn but also purge dead edges from BB. */
190
191 rtx
192 delete_insn_and_edges (rtx insn)
193 {
194 rtx x;
195 bool purge = false;
196
197 if (INSN_P (insn)
198 && BLOCK_FOR_INSN (insn)
199 && BB_END (BLOCK_FOR_INSN (insn)) == insn)
200 purge = true;
201 x = delete_insn (insn);
202 if (purge)
203 purge_dead_edges (BLOCK_FOR_INSN (insn));
204 return x;
205 }
206
207 /* Unlink a chain of insns between START and FINISH, leaving notes
208 that must be paired. If CLEAR_BB is true, we set bb field for
209 insns that cannot be removed to NULL. */
210
211 void
212 delete_insn_chain (rtx start, rtx finish, bool clear_bb)
213 {
214 rtx next;
215
216 /* Unchain the insns one by one. It would be quicker to delete all of these
217 with a single unchaining, rather than one at a time, but we need to keep
218 the NOTE's. */
219 while (1)
220 {
221 next = NEXT_INSN (start);
222 if (NOTE_P (start) && !can_delete_note_p (start))
223 ;
224 else
225 next = delete_insn (start);
226
227 if (clear_bb && !INSN_DELETED_P (start))
228 set_block_for_insn (start, NULL);
229
230 if (start == finish)
231 break;
232 start = next;
233 }
234 }
235 \f
236 /* Create a new basic block consisting of the instructions between HEAD and END
237 inclusive. This function is designed to allow fast BB construction - reuses
238 the note and basic block struct in BB_NOTE, if any and do not grow
239 BASIC_BLOCK chain and should be used directly only by CFG construction code.
240 END can be NULL in to create new empty basic block before HEAD. Both END
241 and HEAD can be NULL to create basic block at the end of INSN chain.
242 AFTER is the basic block we should be put after. */
243
244 basic_block
245 create_basic_block_structure (rtx head, rtx end, rtx bb_note, basic_block after)
246 {
247 basic_block bb;
248
249 if (bb_note
250 && (bb = NOTE_BASIC_BLOCK (bb_note)) != NULL
251 && bb->aux == NULL)
252 {
253 /* If we found an existing note, thread it back onto the chain. */
254
255 rtx after;
256
257 if (LABEL_P (head))
258 after = head;
259 else
260 {
261 after = PREV_INSN (head);
262 head = bb_note;
263 }
264
265 if (after != bb_note && NEXT_INSN (after) != bb_note)
266 reorder_insns_nobb (bb_note, bb_note, after);
267 }
268 else
269 {
270 /* Otherwise we must create a note and a basic block structure. */
271
272 bb = alloc_block ();
273
274 init_rtl_bb_info (bb);
275 if (!head && !end)
276 head = end = bb_note
277 = emit_note_after (NOTE_INSN_BASIC_BLOCK, get_last_insn ());
278 else if (LABEL_P (head) && end)
279 {
280 bb_note = emit_note_after (NOTE_INSN_BASIC_BLOCK, head);
281 if (head == end)
282 end = bb_note;
283 }
284 else
285 {
286 bb_note = emit_note_before (NOTE_INSN_BASIC_BLOCK, head);
287 head = bb_note;
288 if (!end)
289 end = head;
290 }
291
292 NOTE_BASIC_BLOCK (bb_note) = bb;
293 }
294
295 /* Always include the bb note in the block. */
296 if (NEXT_INSN (end) == bb_note)
297 end = bb_note;
298
299 BB_HEAD (bb) = head;
300 BB_END (bb) = end;
301 bb->index = last_basic_block++;
302 bb->flags = BB_NEW | BB_RTL;
303 link_block (bb, after);
304 SET_BASIC_BLOCK (bb->index, bb);
305 df_bb_refs_record (bb->index, false);
306 update_bb_for_insn (bb);
307 BB_SET_PARTITION (bb, BB_UNPARTITIONED);
308
309 /* Tag the block so that we know it has been used when considering
310 other basic block notes. */
311 bb->aux = bb;
312
313 return bb;
314 }
315
316 /* Create new basic block consisting of instructions in between HEAD and END
317 and place it to the BB chain after block AFTER. END can be NULL in to
318 create new empty basic block before HEAD. Both END and HEAD can be NULL to
319 create basic block at the end of INSN chain. */
320
321 static basic_block
322 rtl_create_basic_block (void *headp, void *endp, basic_block after)
323 {
324 rtx head = (rtx) headp, end = (rtx) endp;
325 basic_block bb;
326
327 /* Grow the basic block array if needed. */
328 if ((size_t) last_basic_block >= VEC_length (basic_block, basic_block_info))
329 {
330 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
331 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, new_size);
332 }
333
334 n_basic_blocks++;
335
336 bb = create_basic_block_structure (head, end, NULL, after);
337 bb->aux = NULL;
338 return bb;
339 }
340
341 static basic_block
342 cfg_layout_create_basic_block (void *head, void *end, basic_block after)
343 {
344 basic_block newbb = rtl_create_basic_block (head, end, after);
345
346 return newbb;
347 }
348 \f
349 /* Delete the insns in a (non-live) block. We physically delete every
350 non-deleted-note insn, and update the flow graph appropriately.
351
352 Return nonzero if we deleted an exception handler. */
353
354 /* ??? Preserving all such notes strikes me as wrong. It would be nice
355 to post-process the stream to remove empty blocks, loops, ranges, etc. */
356
357 static void
358 rtl_delete_block (basic_block b)
359 {
360 rtx insn, end;
361
362 /* If the head of this block is a CODE_LABEL, then it might be the
363 label for an exception handler which can't be reached. We need
364 to remove the label from the exception_handler_label list. */
365 insn = BB_HEAD (b);
366
367 end = get_last_bb_insn (b);
368
369 /* Selectively delete the entire chain. */
370 BB_HEAD (b) = NULL;
371 delete_insn_chain (insn, end, true);
372
373
374 if (dump_file)
375 fprintf (dump_file, "deleting block %d\n", b->index);
376 df_bb_delete (b->index);
377 }
378 \f
379 /* Records the basic block struct in BLOCK_FOR_INSN for every insn. */
380
381 void
382 compute_bb_for_insn (void)
383 {
384 basic_block bb;
385
386 FOR_EACH_BB (bb)
387 {
388 rtx end = BB_END (bb);
389 rtx insn;
390
391 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
392 {
393 BLOCK_FOR_INSN (insn) = bb;
394 if (insn == end)
395 break;
396 }
397 }
398 }
399
400 /* Release the basic_block_for_insn array. */
401
402 unsigned int
403 free_bb_for_insn (void)
404 {
405 rtx insn;
406 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
407 if (!BARRIER_P (insn))
408 BLOCK_FOR_INSN (insn) = NULL;
409 return 0;
410 }
411
412 static unsigned int
413 rest_of_pass_free_cfg (void)
414 {
415 #ifdef DELAY_SLOTS
416 /* The resource.c machinery uses DF but the CFG isn't guaranteed to be
417 valid at that point so it would be too late to call df_analyze. */
418 if (optimize > 0 && flag_delayed_branch)
419 df_analyze ();
420 #endif
421
422 free_bb_for_insn ();
423 return 0;
424 }
425
426 struct rtl_opt_pass pass_free_cfg =
427 {
428 {
429 RTL_PASS,
430 NULL, /* name */
431 NULL, /* gate */
432 rest_of_pass_free_cfg, /* execute */
433 NULL, /* sub */
434 NULL, /* next */
435 0, /* static_pass_number */
436 TV_NONE, /* tv_id */
437 0, /* properties_required */
438 0, /* properties_provided */
439 PROP_cfg, /* properties_destroyed */
440 0, /* todo_flags_start */
441 0, /* todo_flags_finish */
442 }
443 };
444
445 /* Return RTX to emit after when we want to emit code on the entry of function. */
446 rtx
447 entry_of_function (void)
448 {
449 return (n_basic_blocks > NUM_FIXED_BLOCKS ?
450 BB_HEAD (ENTRY_BLOCK_PTR->next_bb) : get_insns ());
451 }
452
453 /* Emit INSN at the entry point of the function, ensuring that it is only
454 executed once per function. */
455 void
456 emit_insn_at_entry (rtx insn)
457 {
458 edge_iterator ei = ei_start (ENTRY_BLOCK_PTR->succs);
459 edge e = ei_safe_edge (ei);
460 gcc_assert (e->flags & EDGE_FALLTHRU);
461
462 insert_insn_on_edge (insn, e);
463 commit_edge_insertions ();
464 }
465
466 /* Update BLOCK_FOR_INSN of insns between BEGIN and END
467 (or BARRIER if found) and notify df of the bb change.
468 The insn chain range is inclusive
469 (i.e. both BEGIN and END will be updated. */
470
471 static void
472 update_bb_for_insn_chain (rtx begin, rtx end, basic_block bb)
473 {
474 rtx insn;
475
476 end = NEXT_INSN (end);
477 for (insn = begin; insn != end; insn = NEXT_INSN (insn))
478 if (!BARRIER_P (insn))
479 df_insn_change_bb (insn, bb);
480 }
481
482 /* Update BLOCK_FOR_INSN of insns in BB to BB,
483 and notify df of the change. */
484
485 void
486 update_bb_for_insn (basic_block bb)
487 {
488 update_bb_for_insn_chain (BB_HEAD (bb), BB_END (bb), bb);
489 }
490
491 \f
492 /* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
493 note associated with the BLOCK. */
494
495 static rtx
496 first_insn_after_basic_block_note (basic_block block)
497 {
498 rtx insn;
499
500 /* Get the first instruction in the block. */
501 insn = BB_HEAD (block);
502
503 if (insn == NULL_RTX)
504 return NULL_RTX;
505 if (LABEL_P (insn))
506 insn = NEXT_INSN (insn);
507 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
508
509 return NEXT_INSN (insn);
510 }
511
512 /* Creates a new basic block just after basic block B by splitting
513 everything after specified instruction I. */
514
515 static basic_block
516 rtl_split_block (basic_block bb, void *insnp)
517 {
518 basic_block new_bb;
519 rtx insn = (rtx) insnp;
520 edge e;
521 edge_iterator ei;
522
523 if (!insn)
524 {
525 insn = first_insn_after_basic_block_note (bb);
526
527 if (insn)
528 insn = PREV_INSN (insn);
529 else
530 insn = get_last_insn ();
531 }
532
533 /* We probably should check type of the insn so that we do not create
534 inconsistent cfg. It is checked in verify_flow_info anyway, so do not
535 bother. */
536 if (insn == BB_END (bb))
537 emit_note_after (NOTE_INSN_DELETED, insn);
538
539 /* Create the new basic block. */
540 new_bb = create_basic_block (NEXT_INSN (insn), BB_END (bb), bb);
541 BB_COPY_PARTITION (new_bb, bb);
542 BB_END (bb) = insn;
543
544 /* Redirect the outgoing edges. */
545 new_bb->succs = bb->succs;
546 bb->succs = NULL;
547 FOR_EACH_EDGE (e, ei, new_bb->succs)
548 e->src = new_bb;
549
550 /* The new block starts off being dirty. */
551 df_set_bb_dirty (bb);
552 return new_bb;
553 }
554
555 /* Blocks A and B are to be merged into a single block A. The insns
556 are already contiguous. */
557
558 static void
559 rtl_merge_blocks (basic_block a, basic_block b)
560 {
561 rtx b_head = BB_HEAD (b), b_end = BB_END (b), a_end = BB_END (a);
562 rtx del_first = NULL_RTX, del_last = NULL_RTX;
563 int b_empty = 0;
564
565 if (dump_file)
566 fprintf (dump_file, "merging block %d into block %d\n", b->index, a->index);
567
568 /* If there was a CODE_LABEL beginning B, delete it. */
569 if (LABEL_P (b_head))
570 {
571 /* Detect basic blocks with nothing but a label. This can happen
572 in particular at the end of a function. */
573 if (b_head == b_end)
574 b_empty = 1;
575
576 del_first = del_last = b_head;
577 b_head = NEXT_INSN (b_head);
578 }
579
580 /* Delete the basic block note and handle blocks containing just that
581 note. */
582 if (NOTE_INSN_BASIC_BLOCK_P (b_head))
583 {
584 if (b_head == b_end)
585 b_empty = 1;
586 if (! del_last)
587 del_first = b_head;
588
589 del_last = b_head;
590 b_head = NEXT_INSN (b_head);
591 }
592
593 /* If there was a jump out of A, delete it. */
594 if (JUMP_P (a_end))
595 {
596 rtx prev;
597
598 for (prev = PREV_INSN (a_end); ; prev = PREV_INSN (prev))
599 if (!NOTE_P (prev)
600 || NOTE_INSN_BASIC_BLOCK_P (prev)
601 || prev == BB_HEAD (a))
602 break;
603
604 del_first = a_end;
605
606 #ifdef HAVE_cc0
607 /* If this was a conditional jump, we need to also delete
608 the insn that set cc0. */
609 if (only_sets_cc0_p (prev))
610 {
611 rtx tmp = prev;
612
613 prev = prev_nonnote_insn (prev);
614 if (!prev)
615 prev = BB_HEAD (a);
616 del_first = tmp;
617 }
618 #endif
619
620 a_end = PREV_INSN (del_first);
621 }
622 else if (BARRIER_P (NEXT_INSN (a_end)))
623 del_first = NEXT_INSN (a_end);
624
625 /* Delete everything marked above as well as crap that might be
626 hanging out between the two blocks. */
627 BB_HEAD (b) = NULL;
628 delete_insn_chain (del_first, del_last, true);
629
630 /* Reassociate the insns of B with A. */
631 if (!b_empty)
632 {
633 update_bb_for_insn_chain (a_end, b_end, a);
634
635 a_end = b_end;
636 }
637
638 df_bb_delete (b->index);
639 BB_END (a) = a_end;
640 }
641
642
643 /* Return true when block A and B can be merged. */
644
645 static bool
646 rtl_can_merge_blocks (basic_block a, basic_block b)
647 {
648 /* If we are partitioning hot/cold basic blocks, we don't want to
649 mess up unconditional or indirect jumps that cross between hot
650 and cold sections.
651
652 Basic block partitioning may result in some jumps that appear to
653 be optimizable (or blocks that appear to be mergeable), but which really
654 must be left untouched (they are required to make it safely across
655 partition boundaries). See the comments at the top of
656 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
657
658 if (BB_PARTITION (a) != BB_PARTITION (b))
659 return false;
660
661 /* There must be exactly one edge in between the blocks. */
662 return (single_succ_p (a)
663 && single_succ (a) == b
664 && single_pred_p (b)
665 && a != b
666 /* Must be simple edge. */
667 && !(single_succ_edge (a)->flags & EDGE_COMPLEX)
668 && a->next_bb == b
669 && a != ENTRY_BLOCK_PTR && b != EXIT_BLOCK_PTR
670 /* If the jump insn has side effects,
671 we can't kill the edge. */
672 && (!JUMP_P (BB_END (a))
673 || (reload_completed
674 ? simplejump_p (BB_END (a)) : onlyjump_p (BB_END (a)))));
675 }
676 \f
677 /* Return the label in the head of basic block BLOCK. Create one if it doesn't
678 exist. */
679
680 rtx
681 block_label (basic_block block)
682 {
683 if (block == EXIT_BLOCK_PTR)
684 return NULL_RTX;
685
686 if (!LABEL_P (BB_HEAD (block)))
687 {
688 BB_HEAD (block) = emit_label_before (gen_label_rtx (), BB_HEAD (block));
689 }
690
691 return BB_HEAD (block);
692 }
693
694 /* Attempt to perform edge redirection by replacing possibly complex jump
695 instruction by unconditional jump or removing jump completely. This can
696 apply only if all edges now point to the same block. The parameters and
697 return values are equivalent to redirect_edge_and_branch. */
698
699 edge
700 try_redirect_by_replacing_jump (edge e, basic_block target, bool in_cfglayout)
701 {
702 basic_block src = e->src;
703 rtx insn = BB_END (src), kill_from;
704 rtx set;
705 int fallthru = 0;
706
707 /* If we are partitioning hot/cold basic blocks, we don't want to
708 mess up unconditional or indirect jumps that cross between hot
709 and cold sections.
710
711 Basic block partitioning may result in some jumps that appear to
712 be optimizable (or blocks that appear to be mergeable), but which really
713 must be left untouched (they are required to make it safely across
714 partition boundaries). See the comments at the top of
715 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
716
717 if (find_reg_note (insn, REG_CROSSING_JUMP, NULL_RTX)
718 || BB_PARTITION (src) != BB_PARTITION (target))
719 return NULL;
720
721 /* We can replace or remove a complex jump only when we have exactly
722 two edges. Also, if we have exactly one outgoing edge, we can
723 redirect that. */
724 if (EDGE_COUNT (src->succs) >= 3
725 /* Verify that all targets will be TARGET. Specifically, the
726 edge that is not E must also go to TARGET. */
727 || (EDGE_COUNT (src->succs) == 2
728 && EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target))
729 return NULL;
730
731 if (!onlyjump_p (insn))
732 return NULL;
733 if ((!optimize || reload_completed) && tablejump_p (insn, NULL, NULL))
734 return NULL;
735
736 /* Avoid removing branch with side effects. */
737 set = single_set (insn);
738 if (!set || side_effects_p (set))
739 return NULL;
740
741 /* In case we zap a conditional jump, we'll need to kill
742 the cc0 setter too. */
743 kill_from = insn;
744 #ifdef HAVE_cc0
745 if (reg_mentioned_p (cc0_rtx, PATTERN (insn))
746 && only_sets_cc0_p (PREV_INSN (insn)))
747 kill_from = PREV_INSN (insn);
748 #endif
749
750 /* See if we can create the fallthru edge. */
751 if (in_cfglayout || can_fallthru (src, target))
752 {
753 if (dump_file)
754 fprintf (dump_file, "Removing jump %i.\n", INSN_UID (insn));
755 fallthru = 1;
756
757 /* Selectively unlink whole insn chain. */
758 if (in_cfglayout)
759 {
760 rtx insn = src->il.rtl->footer;
761
762 delete_insn_chain (kill_from, BB_END (src), false);
763
764 /* Remove barriers but keep jumptables. */
765 while (insn)
766 {
767 if (BARRIER_P (insn))
768 {
769 if (PREV_INSN (insn))
770 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
771 else
772 src->il.rtl->footer = NEXT_INSN (insn);
773 if (NEXT_INSN (insn))
774 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
775 }
776 if (LABEL_P (insn))
777 break;
778 insn = NEXT_INSN (insn);
779 }
780 }
781 else
782 delete_insn_chain (kill_from, PREV_INSN (BB_HEAD (target)),
783 false);
784 }
785
786 /* If this already is simplejump, redirect it. */
787 else if (simplejump_p (insn))
788 {
789 if (e->dest == target)
790 return NULL;
791 if (dump_file)
792 fprintf (dump_file, "Redirecting jump %i from %i to %i.\n",
793 INSN_UID (insn), e->dest->index, target->index);
794 if (!redirect_jump (insn, block_label (target), 0))
795 {
796 gcc_assert (target == EXIT_BLOCK_PTR);
797 return NULL;
798 }
799 }
800
801 /* Cannot do anything for target exit block. */
802 else if (target == EXIT_BLOCK_PTR)
803 return NULL;
804
805 /* Or replace possibly complicated jump insn by simple jump insn. */
806 else
807 {
808 rtx target_label = block_label (target);
809 rtx barrier, label, table;
810
811 emit_jump_insn_after_noloc (gen_jump (target_label), insn);
812 JUMP_LABEL (BB_END (src)) = target_label;
813 LABEL_NUSES (target_label)++;
814 if (dump_file)
815 fprintf (dump_file, "Replacing insn %i by jump %i\n",
816 INSN_UID (insn), INSN_UID (BB_END (src)));
817
818
819 delete_insn_chain (kill_from, insn, false);
820
821 /* Recognize a tablejump that we are converting to a
822 simple jump and remove its associated CODE_LABEL
823 and ADDR_VEC or ADDR_DIFF_VEC. */
824 if (tablejump_p (insn, &label, &table))
825 delete_insn_chain (label, table, false);
826
827 barrier = next_nonnote_insn (BB_END (src));
828 if (!barrier || !BARRIER_P (barrier))
829 emit_barrier_after (BB_END (src));
830 else
831 {
832 if (barrier != NEXT_INSN (BB_END (src)))
833 {
834 /* Move the jump before barrier so that the notes
835 which originally were or were created before jump table are
836 inside the basic block. */
837 rtx new_insn = BB_END (src);
838
839 update_bb_for_insn_chain (NEXT_INSN (BB_END (src)),
840 PREV_INSN (barrier), src);
841
842 NEXT_INSN (PREV_INSN (new_insn)) = NEXT_INSN (new_insn);
843 PREV_INSN (NEXT_INSN (new_insn)) = PREV_INSN (new_insn);
844
845 NEXT_INSN (new_insn) = barrier;
846 NEXT_INSN (PREV_INSN (barrier)) = new_insn;
847
848 PREV_INSN (new_insn) = PREV_INSN (barrier);
849 PREV_INSN (barrier) = new_insn;
850 }
851 }
852 }
853
854 /* Keep only one edge out and set proper flags. */
855 if (!single_succ_p (src))
856 remove_edge (e);
857 gcc_assert (single_succ_p (src));
858
859 e = single_succ_edge (src);
860 if (fallthru)
861 e->flags = EDGE_FALLTHRU;
862 else
863 e->flags = 0;
864
865 e->probability = REG_BR_PROB_BASE;
866 e->count = src->count;
867
868 if (e->dest != target)
869 redirect_edge_succ (e, target);
870 return e;
871 }
872
873 /* Subroutine of redirect_branch_edge that tries to patch the jump
874 instruction INSN so that it reaches block NEW. Do this
875 only when it originally reached block OLD. Return true if this
876 worked or the original target wasn't OLD, return false if redirection
877 doesn't work. */
878
879 static bool
880 patch_jump_insn (rtx insn, rtx old_label, basic_block new_bb)
881 {
882 rtx tmp;
883 /* Recognize a tablejump and adjust all matching cases. */
884 if (tablejump_p (insn, NULL, &tmp))
885 {
886 rtvec vec;
887 int j;
888 rtx new_label = block_label (new_bb);
889
890 if (new_bb == EXIT_BLOCK_PTR)
891 return false;
892 if (GET_CODE (PATTERN (tmp)) == ADDR_VEC)
893 vec = XVEC (PATTERN (tmp), 0);
894 else
895 vec = XVEC (PATTERN (tmp), 1);
896
897 for (j = GET_NUM_ELEM (vec) - 1; j >= 0; --j)
898 if (XEXP (RTVEC_ELT (vec, j), 0) == old_label)
899 {
900 RTVEC_ELT (vec, j) = gen_rtx_LABEL_REF (Pmode, new_label);
901 --LABEL_NUSES (old_label);
902 ++LABEL_NUSES (new_label);
903 }
904
905 /* Handle casesi dispatch insns. */
906 if ((tmp = single_set (insn)) != NULL
907 && SET_DEST (tmp) == pc_rtx
908 && GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE
909 && GET_CODE (XEXP (SET_SRC (tmp), 2)) == LABEL_REF
910 && XEXP (XEXP (SET_SRC (tmp), 2), 0) == old_label)
911 {
912 XEXP (SET_SRC (tmp), 2) = gen_rtx_LABEL_REF (Pmode,
913 new_label);
914 --LABEL_NUSES (old_label);
915 ++LABEL_NUSES (new_label);
916 }
917 }
918 else
919 {
920 /* ?? We may play the games with moving the named labels from
921 one basic block to the other in case only one computed_jump is
922 available. */
923 if (computed_jump_p (insn)
924 /* A return instruction can't be redirected. */
925 || returnjump_p (insn))
926 return false;
927
928 if (!currently_expanding_to_rtl || JUMP_LABEL (insn) == old_label)
929 {
930 /* If the insn doesn't go where we think, we're confused. */
931 gcc_assert (JUMP_LABEL (insn) == old_label);
932
933 /* If the substitution doesn't succeed, die. This can happen
934 if the back end emitted unrecognizable instructions or if
935 target is exit block on some arches. */
936 if (!redirect_jump (insn, block_label (new_bb), 0))
937 {
938 gcc_assert (new_bb == EXIT_BLOCK_PTR);
939 return false;
940 }
941 }
942 }
943 return true;
944 }
945
946
947 /* Redirect edge representing branch of (un)conditional jump or tablejump,
948 NULL on failure */
949 static edge
950 redirect_branch_edge (edge e, basic_block target)
951 {
952 rtx old_label = BB_HEAD (e->dest);
953 basic_block src = e->src;
954 rtx insn = BB_END (src);
955
956 /* We can only redirect non-fallthru edges of jump insn. */
957 if (e->flags & EDGE_FALLTHRU)
958 return NULL;
959 else if (!JUMP_P (insn) && !currently_expanding_to_rtl)
960 return NULL;
961
962 if (!currently_expanding_to_rtl)
963 {
964 if (!patch_jump_insn (insn, old_label, target))
965 return NULL;
966 }
967 else
968 /* When expanding this BB might actually contain multiple
969 jumps (i.e. not yet split by find_many_sub_basic_blocks).
970 Redirect all of those that match our label. */
971 for (insn = BB_HEAD (src); insn != NEXT_INSN (BB_END (src));
972 insn = NEXT_INSN (insn))
973 if (JUMP_P (insn) && !patch_jump_insn (insn, old_label, target))
974 return NULL;
975
976 if (dump_file)
977 fprintf (dump_file, "Edge %i->%i redirected to %i\n",
978 e->src->index, e->dest->index, target->index);
979
980 if (e->dest != target)
981 e = redirect_edge_succ_nodup (e, target);
982
983 return e;
984 }
985
986 /* Attempt to change code to redirect edge E to TARGET. Don't do that on
987 expense of adding new instructions or reordering basic blocks.
988
989 Function can be also called with edge destination equivalent to the TARGET.
990 Then it should try the simplifications and do nothing if none is possible.
991
992 Return edge representing the branch if transformation succeeded. Return NULL
993 on failure.
994 We still return NULL in case E already destinated TARGET and we didn't
995 managed to simplify instruction stream. */
996
997 static edge
998 rtl_redirect_edge_and_branch (edge e, basic_block target)
999 {
1000 edge ret;
1001 basic_block src = e->src;
1002
1003 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
1004 return NULL;
1005
1006 if (e->dest == target)
1007 return e;
1008
1009 if ((ret = try_redirect_by_replacing_jump (e, target, false)) != NULL)
1010 {
1011 df_set_bb_dirty (src);
1012 return ret;
1013 }
1014
1015 ret = redirect_branch_edge (e, target);
1016 if (!ret)
1017 return NULL;
1018
1019 df_set_bb_dirty (src);
1020 return ret;
1021 }
1022
1023 /* Like force_nonfallthru below, but additionally performs redirection
1024 Used by redirect_edge_and_branch_force. */
1025
1026 static basic_block
1027 force_nonfallthru_and_redirect (edge e, basic_block target)
1028 {
1029 basic_block jump_block, new_bb = NULL, src = e->src;
1030 rtx note;
1031 edge new_edge;
1032 int abnormal_edge_flags = 0;
1033 int loc;
1034
1035 /* In the case the last instruction is conditional jump to the next
1036 instruction, first redirect the jump itself and then continue
1037 by creating a basic block afterwards to redirect fallthru edge. */
1038 if (e->src != ENTRY_BLOCK_PTR && e->dest != EXIT_BLOCK_PTR
1039 && any_condjump_p (BB_END (e->src))
1040 && JUMP_LABEL (BB_END (e->src)) == BB_HEAD (e->dest))
1041 {
1042 rtx note;
1043 edge b = unchecked_make_edge (e->src, target, 0);
1044 bool redirected;
1045
1046 redirected = redirect_jump (BB_END (e->src), block_label (target), 0);
1047 gcc_assert (redirected);
1048
1049 note = find_reg_note (BB_END (e->src), REG_BR_PROB, NULL_RTX);
1050 if (note)
1051 {
1052 int prob = INTVAL (XEXP (note, 0));
1053
1054 b->probability = prob;
1055 b->count = e->count * prob / REG_BR_PROB_BASE;
1056 e->probability -= e->probability;
1057 e->count -= b->count;
1058 if (e->probability < 0)
1059 e->probability = 0;
1060 if (e->count < 0)
1061 e->count = 0;
1062 }
1063 }
1064
1065 if (e->flags & EDGE_ABNORMAL)
1066 {
1067 /* Irritating special case - fallthru edge to the same block as abnormal
1068 edge.
1069 We can't redirect abnormal edge, but we still can split the fallthru
1070 one and create separate abnormal edge to original destination.
1071 This allows bb-reorder to make such edge non-fallthru. */
1072 gcc_assert (e->dest == target);
1073 abnormal_edge_flags = e->flags & ~(EDGE_FALLTHRU | EDGE_CAN_FALLTHRU);
1074 e->flags &= EDGE_FALLTHRU | EDGE_CAN_FALLTHRU;
1075 }
1076 else
1077 {
1078 gcc_assert (e->flags & EDGE_FALLTHRU);
1079 if (e->src == ENTRY_BLOCK_PTR)
1080 {
1081 /* We can't redirect the entry block. Create an empty block
1082 at the start of the function which we use to add the new
1083 jump. */
1084 edge tmp;
1085 edge_iterator ei;
1086 bool found = false;
1087
1088 basic_block bb = create_basic_block (BB_HEAD (e->dest), NULL, ENTRY_BLOCK_PTR);
1089
1090 /* Change the existing edge's source to be the new block, and add
1091 a new edge from the entry block to the new block. */
1092 e->src = bb;
1093 for (ei = ei_start (ENTRY_BLOCK_PTR->succs); (tmp = ei_safe_edge (ei)); )
1094 {
1095 if (tmp == e)
1096 {
1097 VEC_unordered_remove (edge, ENTRY_BLOCK_PTR->succs, ei.index);
1098 found = true;
1099 break;
1100 }
1101 else
1102 ei_next (&ei);
1103 }
1104
1105 gcc_assert (found);
1106
1107 VEC_safe_push (edge, gc, bb->succs, e);
1108 make_single_succ_edge (ENTRY_BLOCK_PTR, bb, EDGE_FALLTHRU);
1109 }
1110 }
1111
1112 if (EDGE_COUNT (e->src->succs) >= 2 || abnormal_edge_flags)
1113 {
1114 /* Create the new structures. */
1115
1116 /* If the old block ended with a tablejump, skip its table
1117 by searching forward from there. Otherwise start searching
1118 forward from the last instruction of the old block. */
1119 if (!tablejump_p (BB_END (e->src), NULL, &note))
1120 note = BB_END (e->src);
1121 note = NEXT_INSN (note);
1122
1123 jump_block = create_basic_block (note, NULL, e->src);
1124 jump_block->count = e->count;
1125 jump_block->frequency = EDGE_FREQUENCY (e);
1126 jump_block->loop_depth = target->loop_depth;
1127
1128 /* Make sure new block ends up in correct hot/cold section. */
1129
1130 BB_COPY_PARTITION (jump_block, e->src);
1131 if (flag_reorder_blocks_and_partition
1132 && targetm.have_named_sections
1133 && JUMP_P (BB_END (jump_block))
1134 && !any_condjump_p (BB_END (jump_block))
1135 && (EDGE_SUCC (jump_block, 0)->flags & EDGE_CROSSING))
1136 add_reg_note (BB_END (jump_block), REG_CROSSING_JUMP, NULL_RTX);
1137
1138 /* Wire edge in. */
1139 new_edge = make_edge (e->src, jump_block, EDGE_FALLTHRU);
1140 new_edge->probability = e->probability;
1141 new_edge->count = e->count;
1142
1143 /* Redirect old edge. */
1144 redirect_edge_pred (e, jump_block);
1145 e->probability = REG_BR_PROB_BASE;
1146
1147 new_bb = jump_block;
1148 }
1149 else
1150 jump_block = e->src;
1151
1152 if (e->goto_locus && e->goto_block == NULL)
1153 loc = e->goto_locus;
1154 else
1155 loc = 0;
1156 e->flags &= ~EDGE_FALLTHRU;
1157 if (target == EXIT_BLOCK_PTR)
1158 {
1159 #ifdef HAVE_return
1160 emit_jump_insn_after_setloc (gen_return (), BB_END (jump_block), loc);
1161 #else
1162 gcc_unreachable ();
1163 #endif
1164 }
1165 else
1166 {
1167 rtx label = block_label (target);
1168 emit_jump_insn_after_setloc (gen_jump (label), BB_END (jump_block), loc);
1169 JUMP_LABEL (BB_END (jump_block)) = label;
1170 LABEL_NUSES (label)++;
1171 }
1172
1173 emit_barrier_after (BB_END (jump_block));
1174 redirect_edge_succ_nodup (e, target);
1175
1176 if (abnormal_edge_flags)
1177 make_edge (src, target, abnormal_edge_flags);
1178
1179 df_mark_solutions_dirty ();
1180 return new_bb;
1181 }
1182
1183 /* Edge E is assumed to be fallthru edge. Emit needed jump instruction
1184 (and possibly create new basic block) to make edge non-fallthru.
1185 Return newly created BB or NULL if none. */
1186
1187 basic_block
1188 force_nonfallthru (edge e)
1189 {
1190 return force_nonfallthru_and_redirect (e, e->dest);
1191 }
1192
1193 /* Redirect edge even at the expense of creating new jump insn or
1194 basic block. Return new basic block if created, NULL otherwise.
1195 Conversion must be possible. */
1196
1197 static basic_block
1198 rtl_redirect_edge_and_branch_force (edge e, basic_block target)
1199 {
1200 if (redirect_edge_and_branch (e, target)
1201 || e->dest == target)
1202 return NULL;
1203
1204 /* In case the edge redirection failed, try to force it to be non-fallthru
1205 and redirect newly created simplejump. */
1206 df_set_bb_dirty (e->src);
1207 return force_nonfallthru_and_redirect (e, target);
1208 }
1209
1210 /* The given edge should potentially be a fallthru edge. If that is in
1211 fact true, delete the jump and barriers that are in the way. */
1212
1213 static void
1214 rtl_tidy_fallthru_edge (edge e)
1215 {
1216 rtx q;
1217 basic_block b = e->src, c = b->next_bb;
1218
1219 /* ??? In a late-running flow pass, other folks may have deleted basic
1220 blocks by nopping out blocks, leaving multiple BARRIERs between here
1221 and the target label. They ought to be chastised and fixed.
1222
1223 We can also wind up with a sequence of undeletable labels between
1224 one block and the next.
1225
1226 So search through a sequence of barriers, labels, and notes for
1227 the head of block C and assert that we really do fall through. */
1228
1229 for (q = NEXT_INSN (BB_END (b)); q != BB_HEAD (c); q = NEXT_INSN (q))
1230 if (INSN_P (q))
1231 return;
1232
1233 /* Remove what will soon cease being the jump insn from the source block.
1234 If block B consisted only of this single jump, turn it into a deleted
1235 note. */
1236 q = BB_END (b);
1237 if (JUMP_P (q)
1238 && onlyjump_p (q)
1239 && (any_uncondjump_p (q)
1240 || single_succ_p (b)))
1241 {
1242 #ifdef HAVE_cc0
1243 /* If this was a conditional jump, we need to also delete
1244 the insn that set cc0. */
1245 if (any_condjump_p (q) && only_sets_cc0_p (PREV_INSN (q)))
1246 q = PREV_INSN (q);
1247 #endif
1248
1249 q = PREV_INSN (q);
1250 }
1251
1252 /* Selectively unlink the sequence. */
1253 if (q != PREV_INSN (BB_HEAD (c)))
1254 delete_insn_chain (NEXT_INSN (q), PREV_INSN (BB_HEAD (c)), false);
1255
1256 e->flags |= EDGE_FALLTHRU;
1257 }
1258 \f
1259 /* Should move basic block BB after basic block AFTER. NIY. */
1260
1261 static bool
1262 rtl_move_block_after (basic_block bb ATTRIBUTE_UNUSED,
1263 basic_block after ATTRIBUTE_UNUSED)
1264 {
1265 return false;
1266 }
1267
1268 /* Split a (typically critical) edge. Return the new block.
1269 The edge must not be abnormal.
1270
1271 ??? The code generally expects to be called on critical edges.
1272 The case of a block ending in an unconditional jump to a
1273 block with multiple predecessors is not handled optimally. */
1274
1275 static basic_block
1276 rtl_split_edge (edge edge_in)
1277 {
1278 basic_block bb;
1279 rtx before;
1280
1281 /* Abnormal edges cannot be split. */
1282 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
1283
1284 /* We are going to place the new block in front of edge destination.
1285 Avoid existence of fallthru predecessors. */
1286 if ((edge_in->flags & EDGE_FALLTHRU) == 0)
1287 {
1288 edge e;
1289 edge_iterator ei;
1290
1291 FOR_EACH_EDGE (e, ei, edge_in->dest->preds)
1292 if (e->flags & EDGE_FALLTHRU)
1293 break;
1294
1295 if (e)
1296 force_nonfallthru (e);
1297 }
1298
1299 /* Create the basic block note. */
1300 if (edge_in->dest != EXIT_BLOCK_PTR)
1301 before = BB_HEAD (edge_in->dest);
1302 else
1303 before = NULL_RTX;
1304
1305 /* If this is a fall through edge to the exit block, the blocks might be
1306 not adjacent, and the right place is the after the source. */
1307 if (edge_in->flags & EDGE_FALLTHRU && edge_in->dest == EXIT_BLOCK_PTR)
1308 {
1309 before = NEXT_INSN (BB_END (edge_in->src));
1310 bb = create_basic_block (before, NULL, edge_in->src);
1311 BB_COPY_PARTITION (bb, edge_in->src);
1312 }
1313 else
1314 {
1315 bb = create_basic_block (before, NULL, edge_in->dest->prev_bb);
1316 /* ??? Why not edge_in->dest->prev_bb here? */
1317 BB_COPY_PARTITION (bb, edge_in->dest);
1318 }
1319
1320 make_single_succ_edge (bb, edge_in->dest, EDGE_FALLTHRU);
1321
1322 /* For non-fallthru edges, we must adjust the predecessor's
1323 jump instruction to target our new block. */
1324 if ((edge_in->flags & EDGE_FALLTHRU) == 0)
1325 {
1326 edge redirected = redirect_edge_and_branch (edge_in, bb);
1327 gcc_assert (redirected);
1328 }
1329 else
1330 redirect_edge_succ (edge_in, bb);
1331
1332 return bb;
1333 }
1334
1335 /* Queue instructions for insertion on an edge between two basic blocks.
1336 The new instructions and basic blocks (if any) will not appear in the
1337 CFG until commit_edge_insertions is called. */
1338
1339 void
1340 insert_insn_on_edge (rtx pattern, edge e)
1341 {
1342 /* We cannot insert instructions on an abnormal critical edge.
1343 It will be easier to find the culprit if we die now. */
1344 gcc_assert (!((e->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (e)));
1345
1346 if (e->insns.r == NULL_RTX)
1347 start_sequence ();
1348 else
1349 push_to_sequence (e->insns.r);
1350
1351 emit_insn (pattern);
1352
1353 e->insns.r = get_insns ();
1354 end_sequence ();
1355 }
1356
1357 /* Update the CFG for the instructions queued on edge E. */
1358
1359 void
1360 commit_one_edge_insertion (edge e)
1361 {
1362 rtx before = NULL_RTX, after = NULL_RTX, insns, tmp, last;
1363 basic_block bb = NULL;
1364
1365 /* Pull the insns off the edge now since the edge might go away. */
1366 insns = e->insns.r;
1367 e->insns.r = NULL_RTX;
1368
1369 if (!before && !after)
1370 {
1371 /* Figure out where to put these things. If the destination has
1372 one predecessor, insert there. Except for the exit block. */
1373 if (single_pred_p (e->dest) && e->dest != EXIT_BLOCK_PTR)
1374 {
1375 bb = e->dest;
1376
1377 /* Get the location correct wrt a code label, and "nice" wrt
1378 a basic block note, and before everything else. */
1379 tmp = BB_HEAD (bb);
1380 if (LABEL_P (tmp))
1381 tmp = NEXT_INSN (tmp);
1382 if (NOTE_INSN_BASIC_BLOCK_P (tmp))
1383 tmp = NEXT_INSN (tmp);
1384 if (tmp == BB_HEAD (bb))
1385 before = tmp;
1386 else if (tmp)
1387 after = PREV_INSN (tmp);
1388 else
1389 after = get_last_insn ();
1390 }
1391
1392 /* If the source has one successor and the edge is not abnormal,
1393 insert there. Except for the entry block. */
1394 else if ((e->flags & EDGE_ABNORMAL) == 0
1395 && single_succ_p (e->src)
1396 && e->src != ENTRY_BLOCK_PTR)
1397 {
1398 bb = e->src;
1399
1400 /* It is possible to have a non-simple jump here. Consider a target
1401 where some forms of unconditional jumps clobber a register. This
1402 happens on the fr30 for example.
1403
1404 We know this block has a single successor, so we can just emit
1405 the queued insns before the jump. */
1406 if (JUMP_P (BB_END (bb)))
1407 before = BB_END (bb);
1408 else
1409 {
1410 /* We'd better be fallthru, or we've lost track of
1411 what's what. */
1412 gcc_assert (e->flags & EDGE_FALLTHRU);
1413
1414 after = BB_END (bb);
1415 }
1416 }
1417 /* Otherwise we must split the edge. */
1418 else
1419 {
1420 bb = split_edge (e);
1421 after = BB_END (bb);
1422
1423 if (flag_reorder_blocks_and_partition
1424 && targetm.have_named_sections
1425 && e->src != ENTRY_BLOCK_PTR
1426 && BB_PARTITION (e->src) == BB_COLD_PARTITION
1427 && !(e->flags & EDGE_CROSSING))
1428 {
1429 rtx bb_note, cur_insn;
1430
1431 bb_note = NULL_RTX;
1432 for (cur_insn = BB_HEAD (bb); cur_insn != NEXT_INSN (BB_END (bb));
1433 cur_insn = NEXT_INSN (cur_insn))
1434 if (NOTE_INSN_BASIC_BLOCK_P (cur_insn))
1435 {
1436 bb_note = cur_insn;
1437 break;
1438 }
1439
1440 if (JUMP_P (BB_END (bb))
1441 && !any_condjump_p (BB_END (bb))
1442 && (single_succ_edge (bb)->flags & EDGE_CROSSING))
1443 add_reg_note (BB_END (bb), REG_CROSSING_JUMP, NULL_RTX);
1444 }
1445 }
1446 }
1447
1448 /* Now that we've found the spot, do the insertion. */
1449
1450 if (before)
1451 {
1452 emit_insn_before_noloc (insns, before, bb);
1453 last = prev_nonnote_insn (before);
1454 }
1455 else
1456 last = emit_insn_after_noloc (insns, after, bb);
1457
1458 if (returnjump_p (last))
1459 {
1460 /* ??? Remove all outgoing edges from BB and add one for EXIT.
1461 This is not currently a problem because this only happens
1462 for the (single) epilogue, which already has a fallthru edge
1463 to EXIT. */
1464
1465 e = single_succ_edge (bb);
1466 gcc_assert (e->dest == EXIT_BLOCK_PTR
1467 && single_succ_p (bb) && (e->flags & EDGE_FALLTHRU));
1468
1469 e->flags &= ~EDGE_FALLTHRU;
1470 emit_barrier_after (last);
1471
1472 if (before)
1473 delete_insn (before);
1474 }
1475 else
1476 gcc_assert (!JUMP_P (last));
1477
1478 /* Mark the basic block for find_many_sub_basic_blocks. */
1479 if (current_ir_type () != IR_RTL_CFGLAYOUT)
1480 bb->aux = &bb->aux;
1481 }
1482
1483 /* Update the CFG for all queued instructions. */
1484
1485 void
1486 commit_edge_insertions (void)
1487 {
1488 basic_block bb;
1489 sbitmap blocks;
1490 bool changed = false;
1491
1492 #ifdef ENABLE_CHECKING
1493 verify_flow_info ();
1494 #endif
1495
1496 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
1497 {
1498 edge e;
1499 edge_iterator ei;
1500
1501 FOR_EACH_EDGE (e, ei, bb->succs)
1502 if (e->insns.r)
1503 {
1504 changed = true;
1505 commit_one_edge_insertion (e);
1506 }
1507 }
1508
1509 if (!changed)
1510 return;
1511
1512 /* In the old rtl CFG API, it was OK to insert control flow on an
1513 edge, apparently? In cfglayout mode, this will *not* work, and
1514 the caller is responsible for making sure that control flow is
1515 valid at all times. */
1516 if (current_ir_type () == IR_RTL_CFGLAYOUT)
1517 return;
1518
1519 blocks = sbitmap_alloc (last_basic_block);
1520 sbitmap_zero (blocks);
1521 FOR_EACH_BB (bb)
1522 if (bb->aux)
1523 {
1524 SET_BIT (blocks, bb->index);
1525 /* Check for forgotten bb->aux values before commit_edge_insertions
1526 call. */
1527 gcc_assert (bb->aux == &bb->aux);
1528 bb->aux = NULL;
1529 }
1530 find_many_sub_basic_blocks (blocks);
1531 sbitmap_free (blocks);
1532 }
1533 \f
1534
1535 /* Print out RTL-specific basic block information (live information
1536 at start and end). */
1537
1538 static void
1539 rtl_dump_bb (basic_block bb, FILE *outf, int indent, int flags ATTRIBUTE_UNUSED)
1540 {
1541 rtx insn;
1542 rtx last;
1543 char *s_indent;
1544
1545 s_indent = (char *) alloca ((size_t) indent + 1);
1546 memset (s_indent, ' ', (size_t) indent);
1547 s_indent[indent] = '\0';
1548
1549 if (df)
1550 {
1551 df_dump_top (bb, outf);
1552 putc ('\n', outf);
1553 }
1554
1555 for (insn = BB_HEAD (bb), last = NEXT_INSN (BB_END (bb)); insn != last;
1556 insn = NEXT_INSN (insn))
1557 print_rtl_single (outf, insn);
1558
1559 if (df)
1560 {
1561 df_dump_bottom (bb, outf);
1562 putc ('\n', outf);
1563 }
1564
1565 }
1566 \f
1567 /* Like print_rtl, but also print out live information for the start of each
1568 basic block. */
1569
1570 void
1571 print_rtl_with_bb (FILE *outf, const_rtx rtx_first)
1572 {
1573 const_rtx tmp_rtx;
1574 if (rtx_first == 0)
1575 fprintf (outf, "(nil)\n");
1576 else
1577 {
1578 enum bb_state { NOT_IN_BB, IN_ONE_BB, IN_MULTIPLE_BB };
1579 int max_uid = get_max_uid ();
1580 basic_block *start = XCNEWVEC (basic_block, max_uid);
1581 basic_block *end = XCNEWVEC (basic_block, max_uid);
1582 enum bb_state *in_bb_p = XCNEWVEC (enum bb_state, max_uid);
1583
1584 basic_block bb;
1585
1586 if (df)
1587 df_dump_start (outf);
1588
1589 FOR_EACH_BB_REVERSE (bb)
1590 {
1591 rtx x;
1592
1593 start[INSN_UID (BB_HEAD (bb))] = bb;
1594 end[INSN_UID (BB_END (bb))] = bb;
1595 for (x = BB_HEAD (bb); x != NULL_RTX; x = NEXT_INSN (x))
1596 {
1597 enum bb_state state = IN_MULTIPLE_BB;
1598
1599 if (in_bb_p[INSN_UID (x)] == NOT_IN_BB)
1600 state = IN_ONE_BB;
1601 in_bb_p[INSN_UID (x)] = state;
1602
1603 if (x == BB_END (bb))
1604 break;
1605 }
1606 }
1607
1608 for (tmp_rtx = rtx_first; NULL != tmp_rtx; tmp_rtx = NEXT_INSN (tmp_rtx))
1609 {
1610 int did_output;
1611 if ((bb = start[INSN_UID (tmp_rtx)]) != NULL)
1612 {
1613 edge e;
1614 edge_iterator ei;
1615
1616 fprintf (outf, ";; Start of basic block (");
1617 FOR_EACH_EDGE (e, ei, bb->preds)
1618 fprintf (outf, " %d", e->src->index);
1619 fprintf (outf, ") -> %d\n", bb->index);
1620
1621 if (df)
1622 {
1623 df_dump_top (bb, outf);
1624 putc ('\n', outf);
1625 }
1626 FOR_EACH_EDGE (e, ei, bb->preds)
1627 {
1628 fputs (";; Pred edge ", outf);
1629 dump_edge_info (outf, e, 0);
1630 fputc ('\n', outf);
1631 }
1632 }
1633
1634 if (in_bb_p[INSN_UID (tmp_rtx)] == NOT_IN_BB
1635 && !NOTE_P (tmp_rtx)
1636 && !BARRIER_P (tmp_rtx))
1637 fprintf (outf, ";; Insn is not within a basic block\n");
1638 else if (in_bb_p[INSN_UID (tmp_rtx)] == IN_MULTIPLE_BB)
1639 fprintf (outf, ";; Insn is in multiple basic blocks\n");
1640
1641 did_output = print_rtl_single (outf, tmp_rtx);
1642
1643 if ((bb = end[INSN_UID (tmp_rtx)]) != NULL)
1644 {
1645 edge e;
1646 edge_iterator ei;
1647
1648 fprintf (outf, ";; End of basic block %d -> (", bb->index);
1649 FOR_EACH_EDGE (e, ei, bb->succs)
1650 fprintf (outf, " %d", e->dest->index);
1651 fprintf (outf, ")\n");
1652
1653 if (df)
1654 {
1655 df_dump_bottom (bb, outf);
1656 putc ('\n', outf);
1657 }
1658 putc ('\n', outf);
1659 FOR_EACH_EDGE (e, ei, bb->succs)
1660 {
1661 fputs (";; Succ edge ", outf);
1662 dump_edge_info (outf, e, 1);
1663 fputc ('\n', outf);
1664 }
1665 }
1666 if (did_output)
1667 putc ('\n', outf);
1668 }
1669
1670 free (start);
1671 free (end);
1672 free (in_bb_p);
1673 }
1674
1675 if (crtl->epilogue_delay_list != 0)
1676 {
1677 fprintf (outf, "\n;; Insns in epilogue delay list:\n\n");
1678 for (tmp_rtx = crtl->epilogue_delay_list; tmp_rtx != 0;
1679 tmp_rtx = XEXP (tmp_rtx, 1))
1680 print_rtl_single (outf, XEXP (tmp_rtx, 0));
1681 }
1682 }
1683 \f
1684 void
1685 update_br_prob_note (basic_block bb)
1686 {
1687 rtx note;
1688 if (!JUMP_P (BB_END (bb)))
1689 return;
1690 note = find_reg_note (BB_END (bb), REG_BR_PROB, NULL_RTX);
1691 if (!note || INTVAL (XEXP (note, 0)) == BRANCH_EDGE (bb)->probability)
1692 return;
1693 XEXP (note, 0) = GEN_INT (BRANCH_EDGE (bb)->probability);
1694 }
1695
1696 /* Get the last insn associated with block BB (that includes barriers and
1697 tablejumps after BB). */
1698 rtx
1699 get_last_bb_insn (basic_block bb)
1700 {
1701 rtx tmp;
1702 rtx end = BB_END (bb);
1703
1704 /* Include any jump table following the basic block. */
1705 if (tablejump_p (end, NULL, &tmp))
1706 end = tmp;
1707
1708 /* Include any barriers that may follow the basic block. */
1709 tmp = next_nonnote_insn (end);
1710 while (tmp && BARRIER_P (tmp))
1711 {
1712 end = tmp;
1713 tmp = next_nonnote_insn (end);
1714 }
1715
1716 return end;
1717 }
1718 \f
1719 /* Verify the CFG and RTL consistency common for both underlying RTL and
1720 cfglayout RTL.
1721
1722 Currently it does following checks:
1723
1724 - overlapping of basic blocks
1725 - insns with wrong BLOCK_FOR_INSN pointers
1726 - headers of basic blocks (the NOTE_INSN_BASIC_BLOCK note)
1727 - tails of basic blocks (ensure that boundary is necessary)
1728 - scans body of the basic block for JUMP_INSN, CODE_LABEL
1729 and NOTE_INSN_BASIC_BLOCK
1730 - verify that no fall_thru edge crosses hot/cold partition boundaries
1731 - verify that there are no pending RTL branch predictions
1732
1733 In future it can be extended check a lot of other stuff as well
1734 (reachability of basic blocks, life information, etc. etc.). */
1735
1736 static int
1737 rtl_verify_flow_info_1 (void)
1738 {
1739 rtx x;
1740 int err = 0;
1741 basic_block bb;
1742
1743 /* Check the general integrity of the basic blocks. */
1744 FOR_EACH_BB_REVERSE (bb)
1745 {
1746 rtx insn;
1747
1748 if (!(bb->flags & BB_RTL))
1749 {
1750 error ("BB_RTL flag not set for block %d", bb->index);
1751 err = 1;
1752 }
1753
1754 FOR_BB_INSNS (bb, insn)
1755 if (BLOCK_FOR_INSN (insn) != bb)
1756 {
1757 error ("insn %d basic block pointer is %d, should be %d",
1758 INSN_UID (insn),
1759 BLOCK_FOR_INSN (insn) ? BLOCK_FOR_INSN (insn)->index : 0,
1760 bb->index);
1761 err = 1;
1762 }
1763
1764 for (insn = bb->il.rtl->header; insn; insn = NEXT_INSN (insn))
1765 if (!BARRIER_P (insn)
1766 && BLOCK_FOR_INSN (insn) != NULL)
1767 {
1768 error ("insn %d in header of bb %d has non-NULL basic block",
1769 INSN_UID (insn), bb->index);
1770 err = 1;
1771 }
1772 for (insn = bb->il.rtl->footer; insn; insn = NEXT_INSN (insn))
1773 if (!BARRIER_P (insn)
1774 && BLOCK_FOR_INSN (insn) != NULL)
1775 {
1776 error ("insn %d in footer of bb %d has non-NULL basic block",
1777 INSN_UID (insn), bb->index);
1778 err = 1;
1779 }
1780 }
1781
1782 /* Now check the basic blocks (boundaries etc.) */
1783 FOR_EACH_BB_REVERSE (bb)
1784 {
1785 int n_fallthru = 0, n_eh = 0, n_call = 0, n_abnormal = 0, n_branch = 0;
1786 edge e, fallthru = NULL;
1787 rtx note;
1788 edge_iterator ei;
1789
1790 if (JUMP_P (BB_END (bb))
1791 && (note = find_reg_note (BB_END (bb), REG_BR_PROB, NULL_RTX))
1792 && EDGE_COUNT (bb->succs) >= 2
1793 && any_condjump_p (BB_END (bb)))
1794 {
1795 if (INTVAL (XEXP (note, 0)) != BRANCH_EDGE (bb)->probability
1796 && profile_status != PROFILE_ABSENT)
1797 {
1798 error ("verify_flow_info: REG_BR_PROB does not match cfg %wi %i",
1799 INTVAL (XEXP (note, 0)), BRANCH_EDGE (bb)->probability);
1800 err = 1;
1801 }
1802 }
1803 FOR_EACH_EDGE (e, ei, bb->succs)
1804 {
1805 if (e->flags & EDGE_FALLTHRU)
1806 {
1807 n_fallthru++, fallthru = e;
1808 if ((e->flags & EDGE_CROSSING)
1809 || (BB_PARTITION (e->src) != BB_PARTITION (e->dest)
1810 && e->src != ENTRY_BLOCK_PTR
1811 && e->dest != EXIT_BLOCK_PTR))
1812 {
1813 error ("fallthru edge crosses section boundary (bb %i)",
1814 e->src->index);
1815 err = 1;
1816 }
1817 }
1818
1819 if ((e->flags & ~(EDGE_DFS_BACK
1820 | EDGE_CAN_FALLTHRU
1821 | EDGE_IRREDUCIBLE_LOOP
1822 | EDGE_LOOP_EXIT
1823 | EDGE_CROSSING)) == 0)
1824 n_branch++;
1825
1826 if (e->flags & EDGE_ABNORMAL_CALL)
1827 n_call++;
1828
1829 if (e->flags & EDGE_EH)
1830 n_eh++;
1831 else if (e->flags & EDGE_ABNORMAL)
1832 n_abnormal++;
1833 }
1834
1835 if (n_eh && GET_CODE (PATTERN (BB_END (bb))) != RESX
1836 && !find_reg_note (BB_END (bb), REG_EH_REGION, NULL_RTX))
1837 {
1838 error ("missing REG_EH_REGION note in the end of bb %i", bb->index);
1839 err = 1;
1840 }
1841 if (n_branch
1842 && (!JUMP_P (BB_END (bb))
1843 || (n_branch > 1 && (any_uncondjump_p (BB_END (bb))
1844 || any_condjump_p (BB_END (bb))))))
1845 {
1846 error ("too many outgoing branch edges from bb %i", bb->index);
1847 err = 1;
1848 }
1849 if (n_fallthru && any_uncondjump_p (BB_END (bb)))
1850 {
1851 error ("fallthru edge after unconditional jump %i", bb->index);
1852 err = 1;
1853 }
1854 if (n_branch != 1 && any_uncondjump_p (BB_END (bb)))
1855 {
1856 error ("wrong amount of branch edges after unconditional jump %i", bb->index);
1857 err = 1;
1858 }
1859 if (n_branch != 1 && any_condjump_p (BB_END (bb))
1860 && JUMP_LABEL (BB_END (bb)) != BB_HEAD (fallthru->dest))
1861 {
1862 error ("wrong amount of branch edges after conditional jump %i",
1863 bb->index);
1864 err = 1;
1865 }
1866 if (n_call && !CALL_P (BB_END (bb)))
1867 {
1868 error ("call edges for non-call insn in bb %i", bb->index);
1869 err = 1;
1870 }
1871 if (n_abnormal
1872 && (!CALL_P (BB_END (bb)) && n_call != n_abnormal)
1873 && (!JUMP_P (BB_END (bb))
1874 || any_condjump_p (BB_END (bb))
1875 || any_uncondjump_p (BB_END (bb))))
1876 {
1877 error ("abnormal edges for no purpose in bb %i", bb->index);
1878 err = 1;
1879 }
1880
1881 for (x = BB_HEAD (bb); x != NEXT_INSN (BB_END (bb)); x = NEXT_INSN (x))
1882 /* We may have a barrier inside a basic block before dead code
1883 elimination. There is no BLOCK_FOR_INSN field in a barrier. */
1884 if (!BARRIER_P (x) && BLOCK_FOR_INSN (x) != bb)
1885 {
1886 debug_rtx (x);
1887 if (! BLOCK_FOR_INSN (x))
1888 error
1889 ("insn %d inside basic block %d but block_for_insn is NULL",
1890 INSN_UID (x), bb->index);
1891 else
1892 error
1893 ("insn %d inside basic block %d but block_for_insn is %i",
1894 INSN_UID (x), bb->index, BLOCK_FOR_INSN (x)->index);
1895
1896 err = 1;
1897 }
1898
1899 /* OK pointers are correct. Now check the header of basic
1900 block. It ought to contain optional CODE_LABEL followed
1901 by NOTE_BASIC_BLOCK. */
1902 x = BB_HEAD (bb);
1903 if (LABEL_P (x))
1904 {
1905 if (BB_END (bb) == x)
1906 {
1907 error ("NOTE_INSN_BASIC_BLOCK is missing for block %d",
1908 bb->index);
1909 err = 1;
1910 }
1911
1912 x = NEXT_INSN (x);
1913 }
1914
1915 if (!NOTE_INSN_BASIC_BLOCK_P (x) || NOTE_BASIC_BLOCK (x) != bb)
1916 {
1917 error ("NOTE_INSN_BASIC_BLOCK is missing for block %d",
1918 bb->index);
1919 err = 1;
1920 }
1921
1922 if (BB_END (bb) == x)
1923 /* Do checks for empty blocks here. */
1924 ;
1925 else
1926 for (x = NEXT_INSN (x); x; x = NEXT_INSN (x))
1927 {
1928 if (NOTE_INSN_BASIC_BLOCK_P (x))
1929 {
1930 error ("NOTE_INSN_BASIC_BLOCK %d in middle of basic block %d",
1931 INSN_UID (x), bb->index);
1932 err = 1;
1933 }
1934
1935 if (x == BB_END (bb))
1936 break;
1937
1938 if (control_flow_insn_p (x))
1939 {
1940 error ("in basic block %d:", bb->index);
1941 fatal_insn ("flow control insn inside a basic block", x);
1942 }
1943 }
1944 }
1945
1946 /* Clean up. */
1947 return err;
1948 }
1949
1950 /* Verify the CFG and RTL consistency common for both underlying RTL and
1951 cfglayout RTL.
1952
1953 Currently it does following checks:
1954 - all checks of rtl_verify_flow_info_1
1955 - test head/end pointers
1956 - check that all insns are in the basic blocks
1957 (except the switch handling code, barriers and notes)
1958 - check that all returns are followed by barriers
1959 - check that all fallthru edge points to the adjacent blocks. */
1960
1961 static int
1962 rtl_verify_flow_info (void)
1963 {
1964 basic_block bb;
1965 int err = rtl_verify_flow_info_1 ();
1966 rtx x;
1967 rtx last_head = get_last_insn ();
1968 basic_block *bb_info;
1969 int num_bb_notes;
1970 const rtx rtx_first = get_insns ();
1971 basic_block last_bb_seen = ENTRY_BLOCK_PTR, curr_bb = NULL;
1972 const int max_uid = get_max_uid ();
1973
1974 bb_info = XCNEWVEC (basic_block, max_uid);
1975
1976 FOR_EACH_BB_REVERSE (bb)
1977 {
1978 edge e;
1979 edge_iterator ei;
1980 rtx head = BB_HEAD (bb);
1981 rtx end = BB_END (bb);
1982
1983 for (x = last_head; x != NULL_RTX; x = PREV_INSN (x))
1984 {
1985 /* Verify the end of the basic block is in the INSN chain. */
1986 if (x == end)
1987 break;
1988
1989 /* And that the code outside of basic blocks has NULL bb field. */
1990 if (!BARRIER_P (x)
1991 && BLOCK_FOR_INSN (x) != NULL)
1992 {
1993 error ("insn %d outside of basic blocks has non-NULL bb field",
1994 INSN_UID (x));
1995 err = 1;
1996 }
1997 }
1998
1999 if (!x)
2000 {
2001 error ("end insn %d for block %d not found in the insn stream",
2002 INSN_UID (end), bb->index);
2003 err = 1;
2004 }
2005
2006 /* Work backwards from the end to the head of the basic block
2007 to verify the head is in the RTL chain. */
2008 for (; x != NULL_RTX; x = PREV_INSN (x))
2009 {
2010 /* While walking over the insn chain, verify insns appear
2011 in only one basic block. */
2012 if (bb_info[INSN_UID (x)] != NULL)
2013 {
2014 error ("insn %d is in multiple basic blocks (%d and %d)",
2015 INSN_UID (x), bb->index, bb_info[INSN_UID (x)]->index);
2016 err = 1;
2017 }
2018
2019 bb_info[INSN_UID (x)] = bb;
2020
2021 if (x == head)
2022 break;
2023 }
2024 if (!x)
2025 {
2026 error ("head insn %d for block %d not found in the insn stream",
2027 INSN_UID (head), bb->index);
2028 err = 1;
2029 }
2030
2031 last_head = PREV_INSN (x);
2032
2033 FOR_EACH_EDGE (e, ei, bb->succs)
2034 if (e->flags & EDGE_FALLTHRU)
2035 break;
2036 if (!e)
2037 {
2038 rtx insn;
2039
2040 /* Ensure existence of barrier in BB with no fallthru edges. */
2041 for (insn = BB_END (bb); !insn || !BARRIER_P (insn);
2042 insn = NEXT_INSN (insn))
2043 if (!insn
2044 || NOTE_INSN_BASIC_BLOCK_P (insn))
2045 {
2046 error ("missing barrier after block %i", bb->index);
2047 err = 1;
2048 break;
2049 }
2050 }
2051 else if (e->src != ENTRY_BLOCK_PTR
2052 && e->dest != EXIT_BLOCK_PTR)
2053 {
2054 rtx insn;
2055
2056 if (e->src->next_bb != e->dest)
2057 {
2058 error
2059 ("verify_flow_info: Incorrect blocks for fallthru %i->%i",
2060 e->src->index, e->dest->index);
2061 err = 1;
2062 }
2063 else
2064 for (insn = NEXT_INSN (BB_END (e->src)); insn != BB_HEAD (e->dest);
2065 insn = NEXT_INSN (insn))
2066 if (BARRIER_P (insn) || INSN_P (insn))
2067 {
2068 error ("verify_flow_info: Incorrect fallthru %i->%i",
2069 e->src->index, e->dest->index);
2070 fatal_insn ("wrong insn in the fallthru edge", insn);
2071 err = 1;
2072 }
2073 }
2074 }
2075
2076 for (x = last_head; x != NULL_RTX; x = PREV_INSN (x))
2077 {
2078 /* Check that the code before the first basic block has NULL
2079 bb field. */
2080 if (!BARRIER_P (x)
2081 && BLOCK_FOR_INSN (x) != NULL)
2082 {
2083 error ("insn %d outside of basic blocks has non-NULL bb field",
2084 INSN_UID (x));
2085 err = 1;
2086 }
2087 }
2088 free (bb_info);
2089
2090 num_bb_notes = 0;
2091 last_bb_seen = ENTRY_BLOCK_PTR;
2092
2093 for (x = rtx_first; x; x = NEXT_INSN (x))
2094 {
2095 if (NOTE_INSN_BASIC_BLOCK_P (x))
2096 {
2097 bb = NOTE_BASIC_BLOCK (x);
2098
2099 num_bb_notes++;
2100 if (bb != last_bb_seen->next_bb)
2101 internal_error ("basic blocks not laid down consecutively");
2102
2103 curr_bb = last_bb_seen = bb;
2104 }
2105
2106 if (!curr_bb)
2107 {
2108 switch (GET_CODE (x))
2109 {
2110 case BARRIER:
2111 case NOTE:
2112 break;
2113
2114 case CODE_LABEL:
2115 /* An addr_vec is placed outside any basic block. */
2116 if (NEXT_INSN (x)
2117 && JUMP_P (NEXT_INSN (x))
2118 && (GET_CODE (PATTERN (NEXT_INSN (x))) == ADDR_DIFF_VEC
2119 || GET_CODE (PATTERN (NEXT_INSN (x))) == ADDR_VEC))
2120 x = NEXT_INSN (x);
2121
2122 /* But in any case, non-deletable labels can appear anywhere. */
2123 break;
2124
2125 default:
2126 fatal_insn ("insn outside basic block", x);
2127 }
2128 }
2129
2130 if (JUMP_P (x)
2131 && returnjump_p (x) && ! condjump_p (x)
2132 && ! (next_nonnote_insn (x) && BARRIER_P (next_nonnote_insn (x))))
2133 fatal_insn ("return not followed by barrier", x);
2134 if (curr_bb && x == BB_END (curr_bb))
2135 curr_bb = NULL;
2136 }
2137
2138 if (num_bb_notes != n_basic_blocks - NUM_FIXED_BLOCKS)
2139 internal_error
2140 ("number of bb notes in insn chain (%d) != n_basic_blocks (%d)",
2141 num_bb_notes, n_basic_blocks);
2142
2143 return err;
2144 }
2145 \f
2146 /* Assume that the preceding pass has possibly eliminated jump instructions
2147 or converted the unconditional jumps. Eliminate the edges from CFG.
2148 Return true if any edges are eliminated. */
2149
2150 bool
2151 purge_dead_edges (basic_block bb)
2152 {
2153 edge e;
2154 rtx insn = BB_END (bb), note;
2155 bool purged = false;
2156 bool found;
2157 edge_iterator ei;
2158
2159 /* If this instruction cannot trap, remove REG_EH_REGION notes. */
2160 if (NONJUMP_INSN_P (insn)
2161 && (note = find_reg_note (insn, REG_EH_REGION, NULL)))
2162 {
2163 rtx eqnote;
2164
2165 if (! may_trap_p (PATTERN (insn))
2166 || ((eqnote = find_reg_equal_equiv_note (insn))
2167 && ! may_trap_p (XEXP (eqnote, 0))))
2168 remove_note (insn, note);
2169 }
2170
2171 /* Cleanup abnormal edges caused by exceptions or non-local gotos. */
2172 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
2173 {
2174 /* There are three types of edges we need to handle correctly here: EH
2175 edges, abnormal call EH edges, and abnormal call non-EH edges. The
2176 latter can appear when nonlocal gotos are used. */
2177 if (e->flags & EDGE_EH)
2178 {
2179 if (can_throw_internal (BB_END (bb))
2180 /* If this is a call edge, verify that this is a call insn. */
2181 && (! (e->flags & EDGE_ABNORMAL_CALL)
2182 || CALL_P (BB_END (bb))))
2183 {
2184 ei_next (&ei);
2185 continue;
2186 }
2187 }
2188 else if (e->flags & EDGE_ABNORMAL_CALL)
2189 {
2190 if (CALL_P (BB_END (bb))
2191 && (! (note = find_reg_note (insn, REG_EH_REGION, NULL))
2192 || INTVAL (XEXP (note, 0)) >= 0))
2193 {
2194 ei_next (&ei);
2195 continue;
2196 }
2197 }
2198 else
2199 {
2200 ei_next (&ei);
2201 continue;
2202 }
2203
2204 remove_edge (e);
2205 df_set_bb_dirty (bb);
2206 purged = true;
2207 }
2208
2209 if (JUMP_P (insn))
2210 {
2211 rtx note;
2212 edge b,f;
2213 edge_iterator ei;
2214
2215 /* We do care only about conditional jumps and simplejumps. */
2216 if (!any_condjump_p (insn)
2217 && !returnjump_p (insn)
2218 && !simplejump_p (insn))
2219 return purged;
2220
2221 /* Branch probability/prediction notes are defined only for
2222 condjumps. We've possibly turned condjump into simplejump. */
2223 if (simplejump_p (insn))
2224 {
2225 note = find_reg_note (insn, REG_BR_PROB, NULL);
2226 if (note)
2227 remove_note (insn, note);
2228 while ((note = find_reg_note (insn, REG_BR_PRED, NULL)))
2229 remove_note (insn, note);
2230 }
2231
2232 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
2233 {
2234 /* Avoid abnormal flags to leak from computed jumps turned
2235 into simplejumps. */
2236
2237 e->flags &= ~EDGE_ABNORMAL;
2238
2239 /* See if this edge is one we should keep. */
2240 if ((e->flags & EDGE_FALLTHRU) && any_condjump_p (insn))
2241 /* A conditional jump can fall through into the next
2242 block, so we should keep the edge. */
2243 {
2244 ei_next (&ei);
2245 continue;
2246 }
2247 else if (e->dest != EXIT_BLOCK_PTR
2248 && BB_HEAD (e->dest) == JUMP_LABEL (insn))
2249 /* If the destination block is the target of the jump,
2250 keep the edge. */
2251 {
2252 ei_next (&ei);
2253 continue;
2254 }
2255 else if (e->dest == EXIT_BLOCK_PTR && returnjump_p (insn))
2256 /* If the destination block is the exit block, and this
2257 instruction is a return, then keep the edge. */
2258 {
2259 ei_next (&ei);
2260 continue;
2261 }
2262 else if ((e->flags & EDGE_EH) && can_throw_internal (insn))
2263 /* Keep the edges that correspond to exceptions thrown by
2264 this instruction and rematerialize the EDGE_ABNORMAL
2265 flag we just cleared above. */
2266 {
2267 e->flags |= EDGE_ABNORMAL;
2268 ei_next (&ei);
2269 continue;
2270 }
2271
2272 /* We do not need this edge. */
2273 df_set_bb_dirty (bb);
2274 purged = true;
2275 remove_edge (e);
2276 }
2277
2278 if (EDGE_COUNT (bb->succs) == 0 || !purged)
2279 return purged;
2280
2281 if (dump_file)
2282 fprintf (dump_file, "Purged edges from bb %i\n", bb->index);
2283
2284 if (!optimize)
2285 return purged;
2286
2287 /* Redistribute probabilities. */
2288 if (single_succ_p (bb))
2289 {
2290 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
2291 single_succ_edge (bb)->count = bb->count;
2292 }
2293 else
2294 {
2295 note = find_reg_note (insn, REG_BR_PROB, NULL);
2296 if (!note)
2297 return purged;
2298
2299 b = BRANCH_EDGE (bb);
2300 f = FALLTHRU_EDGE (bb);
2301 b->probability = INTVAL (XEXP (note, 0));
2302 f->probability = REG_BR_PROB_BASE - b->probability;
2303 b->count = bb->count * b->probability / REG_BR_PROB_BASE;
2304 f->count = bb->count * f->probability / REG_BR_PROB_BASE;
2305 }
2306
2307 return purged;
2308 }
2309 else if (CALL_P (insn) && SIBLING_CALL_P (insn))
2310 {
2311 /* First, there should not be any EH or ABCALL edges resulting
2312 from non-local gotos and the like. If there were, we shouldn't
2313 have created the sibcall in the first place. Second, there
2314 should of course never have been a fallthru edge. */
2315 gcc_assert (single_succ_p (bb));
2316 gcc_assert (single_succ_edge (bb)->flags
2317 == (EDGE_SIBCALL | EDGE_ABNORMAL));
2318
2319 return 0;
2320 }
2321
2322 /* If we don't see a jump insn, we don't know exactly why the block would
2323 have been broken at this point. Look for a simple, non-fallthru edge,
2324 as these are only created by conditional branches. If we find such an
2325 edge we know that there used to be a jump here and can then safely
2326 remove all non-fallthru edges. */
2327 found = false;
2328 FOR_EACH_EDGE (e, ei, bb->succs)
2329 if (! (e->flags & (EDGE_COMPLEX | EDGE_FALLTHRU)))
2330 {
2331 found = true;
2332 break;
2333 }
2334
2335 if (!found)
2336 return purged;
2337
2338 /* Remove all but the fake and fallthru edges. The fake edge may be
2339 the only successor for this block in the case of noreturn
2340 calls. */
2341 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
2342 {
2343 if (!(e->flags & (EDGE_FALLTHRU | EDGE_FAKE)))
2344 {
2345 df_set_bb_dirty (bb);
2346 remove_edge (e);
2347 purged = true;
2348 }
2349 else
2350 ei_next (&ei);
2351 }
2352
2353 gcc_assert (single_succ_p (bb));
2354
2355 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
2356 single_succ_edge (bb)->count = bb->count;
2357
2358 if (dump_file)
2359 fprintf (dump_file, "Purged non-fallthru edges from bb %i\n",
2360 bb->index);
2361 return purged;
2362 }
2363
2364 /* Search all basic blocks for potentially dead edges and purge them. Return
2365 true if some edge has been eliminated. */
2366
2367 bool
2368 purge_all_dead_edges (void)
2369 {
2370 int purged = false;
2371 basic_block bb;
2372
2373 FOR_EACH_BB (bb)
2374 {
2375 bool purged_here = purge_dead_edges (bb);
2376
2377 purged |= purged_here;
2378 }
2379
2380 return purged;
2381 }
2382
2383 /* Same as split_block but update cfg_layout structures. */
2384
2385 static basic_block
2386 cfg_layout_split_block (basic_block bb, void *insnp)
2387 {
2388 rtx insn = (rtx) insnp;
2389 basic_block new_bb = rtl_split_block (bb, insn);
2390
2391 new_bb->il.rtl->footer = bb->il.rtl->footer;
2392 bb->il.rtl->footer = NULL;
2393
2394 return new_bb;
2395 }
2396
2397 /* Redirect Edge to DEST. */
2398 static edge
2399 cfg_layout_redirect_edge_and_branch (edge e, basic_block dest)
2400 {
2401 basic_block src = e->src;
2402 edge ret;
2403
2404 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
2405 return NULL;
2406
2407 if (e->dest == dest)
2408 return e;
2409
2410 if (e->src != ENTRY_BLOCK_PTR
2411 && (ret = try_redirect_by_replacing_jump (e, dest, true)))
2412 {
2413 df_set_bb_dirty (src);
2414 return ret;
2415 }
2416
2417 if (e->src == ENTRY_BLOCK_PTR
2418 && (e->flags & EDGE_FALLTHRU) && !(e->flags & EDGE_COMPLEX))
2419 {
2420 if (dump_file)
2421 fprintf (dump_file, "Redirecting entry edge from bb %i to %i\n",
2422 e->src->index, dest->index);
2423
2424 df_set_bb_dirty (e->src);
2425 redirect_edge_succ (e, dest);
2426 return e;
2427 }
2428
2429 /* Redirect_edge_and_branch may decide to turn branch into fallthru edge
2430 in the case the basic block appears to be in sequence. Avoid this
2431 transformation. */
2432
2433 if (e->flags & EDGE_FALLTHRU)
2434 {
2435 /* Redirect any branch edges unified with the fallthru one. */
2436 if (JUMP_P (BB_END (src))
2437 && label_is_jump_target_p (BB_HEAD (e->dest),
2438 BB_END (src)))
2439 {
2440 edge redirected;
2441
2442 if (dump_file)
2443 fprintf (dump_file, "Fallthru edge unified with branch "
2444 "%i->%i redirected to %i\n",
2445 e->src->index, e->dest->index, dest->index);
2446 e->flags &= ~EDGE_FALLTHRU;
2447 redirected = redirect_branch_edge (e, dest);
2448 gcc_assert (redirected);
2449 e->flags |= EDGE_FALLTHRU;
2450 df_set_bb_dirty (e->src);
2451 return e;
2452 }
2453 /* In case we are redirecting fallthru edge to the branch edge
2454 of conditional jump, remove it. */
2455 if (EDGE_COUNT (src->succs) == 2)
2456 {
2457 /* Find the edge that is different from E. */
2458 edge s = EDGE_SUCC (src, EDGE_SUCC (src, 0) == e);
2459
2460 if (s->dest == dest
2461 && any_condjump_p (BB_END (src))
2462 && onlyjump_p (BB_END (src)))
2463 delete_insn (BB_END (src));
2464 }
2465 ret = redirect_edge_succ_nodup (e, dest);
2466 if (dump_file)
2467 fprintf (dump_file, "Fallthru edge %i->%i redirected to %i\n",
2468 e->src->index, e->dest->index, dest->index);
2469 }
2470 else
2471 ret = redirect_branch_edge (e, dest);
2472
2473 /* We don't want simplejumps in the insn stream during cfglayout. */
2474 gcc_assert (!simplejump_p (BB_END (src)));
2475
2476 df_set_bb_dirty (src);
2477 return ret;
2478 }
2479
2480 /* Simple wrapper as we always can redirect fallthru edges. */
2481 static basic_block
2482 cfg_layout_redirect_edge_and_branch_force (edge e, basic_block dest)
2483 {
2484 edge redirected = cfg_layout_redirect_edge_and_branch (e, dest);
2485
2486 gcc_assert (redirected);
2487 return NULL;
2488 }
2489
2490 /* Same as delete_basic_block but update cfg_layout structures. */
2491
2492 static void
2493 cfg_layout_delete_block (basic_block bb)
2494 {
2495 rtx insn, next, prev = PREV_INSN (BB_HEAD (bb)), *to, remaints;
2496
2497 if (bb->il.rtl->header)
2498 {
2499 next = BB_HEAD (bb);
2500 if (prev)
2501 NEXT_INSN (prev) = bb->il.rtl->header;
2502 else
2503 set_first_insn (bb->il.rtl->header);
2504 PREV_INSN (bb->il.rtl->header) = prev;
2505 insn = bb->il.rtl->header;
2506 while (NEXT_INSN (insn))
2507 insn = NEXT_INSN (insn);
2508 NEXT_INSN (insn) = next;
2509 PREV_INSN (next) = insn;
2510 }
2511 next = NEXT_INSN (BB_END (bb));
2512 if (bb->il.rtl->footer)
2513 {
2514 insn = bb->il.rtl->footer;
2515 while (insn)
2516 {
2517 if (BARRIER_P (insn))
2518 {
2519 if (PREV_INSN (insn))
2520 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2521 else
2522 bb->il.rtl->footer = NEXT_INSN (insn);
2523 if (NEXT_INSN (insn))
2524 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2525 }
2526 if (LABEL_P (insn))
2527 break;
2528 insn = NEXT_INSN (insn);
2529 }
2530 if (bb->il.rtl->footer)
2531 {
2532 insn = BB_END (bb);
2533 NEXT_INSN (insn) = bb->il.rtl->footer;
2534 PREV_INSN (bb->il.rtl->footer) = insn;
2535 while (NEXT_INSN (insn))
2536 insn = NEXT_INSN (insn);
2537 NEXT_INSN (insn) = next;
2538 if (next)
2539 PREV_INSN (next) = insn;
2540 else
2541 set_last_insn (insn);
2542 }
2543 }
2544 if (bb->next_bb != EXIT_BLOCK_PTR)
2545 to = &bb->next_bb->il.rtl->header;
2546 else
2547 to = &cfg_layout_function_footer;
2548
2549 rtl_delete_block (bb);
2550
2551 if (prev)
2552 prev = NEXT_INSN (prev);
2553 else
2554 prev = get_insns ();
2555 if (next)
2556 next = PREV_INSN (next);
2557 else
2558 next = get_last_insn ();
2559
2560 if (next && NEXT_INSN (next) != prev)
2561 {
2562 remaints = unlink_insn_chain (prev, next);
2563 insn = remaints;
2564 while (NEXT_INSN (insn))
2565 insn = NEXT_INSN (insn);
2566 NEXT_INSN (insn) = *to;
2567 if (*to)
2568 PREV_INSN (*to) = insn;
2569 *to = remaints;
2570 }
2571 }
2572
2573 /* Return true when blocks A and B can be safely merged. */
2574
2575 static bool
2576 cfg_layout_can_merge_blocks_p (basic_block a, basic_block b)
2577 {
2578 /* If we are partitioning hot/cold basic blocks, we don't want to
2579 mess up unconditional or indirect jumps that cross between hot
2580 and cold sections.
2581
2582 Basic block partitioning may result in some jumps that appear to
2583 be optimizable (or blocks that appear to be mergeable), but which really
2584 must be left untouched (they are required to make it safely across
2585 partition boundaries). See the comments at the top of
2586 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
2587
2588 if (BB_PARTITION (a) != BB_PARTITION (b))
2589 return false;
2590
2591 /* There must be exactly one edge in between the blocks. */
2592 return (single_succ_p (a)
2593 && single_succ (a) == b
2594 && single_pred_p (b) == 1
2595 && a != b
2596 /* Must be simple edge. */
2597 && !(single_succ_edge (a)->flags & EDGE_COMPLEX)
2598 && a != ENTRY_BLOCK_PTR && b != EXIT_BLOCK_PTR
2599 /* If the jump insn has side effects, we can't kill the edge.
2600 When not optimizing, try_redirect_by_replacing_jump will
2601 not allow us to redirect an edge by replacing a table jump. */
2602 && (!JUMP_P (BB_END (a))
2603 || ((!optimize || reload_completed)
2604 ? simplejump_p (BB_END (a)) : onlyjump_p (BB_END (a)))));
2605 }
2606
2607 /* Merge block A and B. The blocks must be mergeable. */
2608
2609 static void
2610 cfg_layout_merge_blocks (basic_block a, basic_block b)
2611 {
2612 #ifdef ENABLE_CHECKING
2613 gcc_assert (cfg_layout_can_merge_blocks_p (a, b));
2614 #endif
2615
2616 if (dump_file)
2617 fprintf (dump_file, "merging block %d into block %d\n", b->index, a->index);
2618
2619 /* If there was a CODE_LABEL beginning B, delete it. */
2620 if (LABEL_P (BB_HEAD (b)))
2621 {
2622 delete_insn (BB_HEAD (b));
2623 }
2624
2625 /* We should have fallthru edge in a, or we can do dummy redirection to get
2626 it cleaned up. */
2627 if (JUMP_P (BB_END (a)))
2628 try_redirect_by_replacing_jump (EDGE_SUCC (a, 0), b, true);
2629 gcc_assert (!JUMP_P (BB_END (a)));
2630
2631 /* When not optimizing and the edge is the only place in RTL which holds
2632 some unique locus, emit a nop with that locus in between. */
2633 if (!optimize && EDGE_SUCC (a, 0)->goto_locus)
2634 {
2635 rtx insn = BB_END (a), end = PREV_INSN (BB_HEAD (a));
2636 int goto_locus = EDGE_SUCC (a, 0)->goto_locus;
2637
2638 while (insn != end && (!INSN_P (insn) || INSN_LOCATOR (insn) == 0))
2639 insn = PREV_INSN (insn);
2640 if (insn != end && locator_eq (INSN_LOCATOR (insn), goto_locus))
2641 goto_locus = 0;
2642 else
2643 {
2644 insn = BB_HEAD (b);
2645 end = NEXT_INSN (BB_END (b));
2646 while (insn != end && !INSN_P (insn))
2647 insn = NEXT_INSN (insn);
2648 if (insn != end && INSN_LOCATOR (insn) != 0
2649 && locator_eq (INSN_LOCATOR (insn), goto_locus))
2650 goto_locus = 0;
2651 }
2652 if (goto_locus)
2653 {
2654 BB_END (a) = emit_insn_after_noloc (gen_nop (), BB_END (a), a);
2655 INSN_LOCATOR (BB_END (a)) = goto_locus;
2656 }
2657 }
2658
2659 /* Possible line number notes should appear in between. */
2660 if (b->il.rtl->header)
2661 {
2662 rtx first = BB_END (a), last;
2663
2664 last = emit_insn_after_noloc (b->il.rtl->header, BB_END (a), a);
2665 delete_insn_chain (NEXT_INSN (first), last, false);
2666 b->il.rtl->header = NULL;
2667 }
2668
2669 /* In the case basic blocks are not adjacent, move them around. */
2670 if (NEXT_INSN (BB_END (a)) != BB_HEAD (b))
2671 {
2672 rtx first = unlink_insn_chain (BB_HEAD (b), BB_END (b));
2673
2674 emit_insn_after_noloc (first, BB_END (a), a);
2675 /* Skip possible DELETED_LABEL insn. */
2676 if (!NOTE_INSN_BASIC_BLOCK_P (first))
2677 first = NEXT_INSN (first);
2678 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (first));
2679 BB_HEAD (b) = NULL;
2680
2681 /* emit_insn_after_noloc doesn't call df_insn_change_bb.
2682 We need to explicitly call. */
2683 update_bb_for_insn_chain (NEXT_INSN (first),
2684 BB_END (b),
2685 a);
2686
2687 delete_insn (first);
2688 }
2689 /* Otherwise just re-associate the instructions. */
2690 else
2691 {
2692 rtx insn;
2693
2694 update_bb_for_insn_chain (BB_HEAD (b), BB_END (b), a);
2695
2696 insn = BB_HEAD (b);
2697 /* Skip possible DELETED_LABEL insn. */
2698 if (!NOTE_INSN_BASIC_BLOCK_P (insn))
2699 insn = NEXT_INSN (insn);
2700 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
2701 BB_HEAD (b) = NULL;
2702 BB_END (a) = BB_END (b);
2703 delete_insn (insn);
2704 }
2705
2706 df_bb_delete (b->index);
2707
2708 /* Possible tablejumps and barriers should appear after the block. */
2709 if (b->il.rtl->footer)
2710 {
2711 if (!a->il.rtl->footer)
2712 a->il.rtl->footer = b->il.rtl->footer;
2713 else
2714 {
2715 rtx last = a->il.rtl->footer;
2716
2717 while (NEXT_INSN (last))
2718 last = NEXT_INSN (last);
2719 NEXT_INSN (last) = b->il.rtl->footer;
2720 PREV_INSN (b->il.rtl->footer) = last;
2721 }
2722 b->il.rtl->footer = NULL;
2723 }
2724
2725 if (dump_file)
2726 fprintf (dump_file, "Merged blocks %d and %d.\n",
2727 a->index, b->index);
2728 }
2729
2730 /* Split edge E. */
2731
2732 static basic_block
2733 cfg_layout_split_edge (edge e)
2734 {
2735 basic_block new_bb =
2736 create_basic_block (e->src != ENTRY_BLOCK_PTR
2737 ? NEXT_INSN (BB_END (e->src)) : get_insns (),
2738 NULL_RTX, e->src);
2739
2740 if (e->dest == EXIT_BLOCK_PTR)
2741 BB_COPY_PARTITION (new_bb, e->src);
2742 else
2743 BB_COPY_PARTITION (new_bb, e->dest);
2744 make_edge (new_bb, e->dest, EDGE_FALLTHRU);
2745 redirect_edge_and_branch_force (e, new_bb);
2746
2747 return new_bb;
2748 }
2749
2750 /* Do postprocessing after making a forwarder block joined by edge FALLTHRU. */
2751
2752 static void
2753 rtl_make_forwarder_block (edge fallthru ATTRIBUTE_UNUSED)
2754 {
2755 }
2756
2757 /* Return 1 if BB ends with a call, possibly followed by some
2758 instructions that must stay with the call, 0 otherwise. */
2759
2760 static bool
2761 rtl_block_ends_with_call_p (basic_block bb)
2762 {
2763 rtx insn = BB_END (bb);
2764
2765 while (!CALL_P (insn)
2766 && insn != BB_HEAD (bb)
2767 && (keep_with_call_p (insn)
2768 || NOTE_P (insn)))
2769 insn = PREV_INSN (insn);
2770 return (CALL_P (insn));
2771 }
2772
2773 /* Return 1 if BB ends with a conditional branch, 0 otherwise. */
2774
2775 static bool
2776 rtl_block_ends_with_condjump_p (const_basic_block bb)
2777 {
2778 return any_condjump_p (BB_END (bb));
2779 }
2780
2781 /* Return true if we need to add fake edge to exit.
2782 Helper function for rtl_flow_call_edges_add. */
2783
2784 static bool
2785 need_fake_edge_p (const_rtx insn)
2786 {
2787 if (!INSN_P (insn))
2788 return false;
2789
2790 if ((CALL_P (insn)
2791 && !SIBLING_CALL_P (insn)
2792 && !find_reg_note (insn, REG_NORETURN, NULL)
2793 && !(RTL_CONST_OR_PURE_CALL_P (insn))))
2794 return true;
2795
2796 return ((GET_CODE (PATTERN (insn)) == ASM_OPERANDS
2797 && MEM_VOLATILE_P (PATTERN (insn)))
2798 || (GET_CODE (PATTERN (insn)) == PARALLEL
2799 && asm_noperands (insn) != -1
2800 && MEM_VOLATILE_P (XVECEXP (PATTERN (insn), 0, 0)))
2801 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
2802 }
2803
2804 /* Add fake edges to the function exit for any non constant and non noreturn
2805 calls, volatile inline assembly in the bitmap of blocks specified by
2806 BLOCKS or to the whole CFG if BLOCKS is zero. Return the number of blocks
2807 that were split.
2808
2809 The goal is to expose cases in which entering a basic block does not imply
2810 that all subsequent instructions must be executed. */
2811
2812 static int
2813 rtl_flow_call_edges_add (sbitmap blocks)
2814 {
2815 int i;
2816 int blocks_split = 0;
2817 int last_bb = last_basic_block;
2818 bool check_last_block = false;
2819
2820 if (n_basic_blocks == NUM_FIXED_BLOCKS)
2821 return 0;
2822
2823 if (! blocks)
2824 check_last_block = true;
2825 else
2826 check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);
2827
2828 /* In the last basic block, before epilogue generation, there will be
2829 a fallthru edge to EXIT. Special care is required if the last insn
2830 of the last basic block is a call because make_edge folds duplicate
2831 edges, which would result in the fallthru edge also being marked
2832 fake, which would result in the fallthru edge being removed by
2833 remove_fake_edges, which would result in an invalid CFG.
2834
2835 Moreover, we can't elide the outgoing fake edge, since the block
2836 profiler needs to take this into account in order to solve the minimal
2837 spanning tree in the case that the call doesn't return.
2838
2839 Handle this by adding a dummy instruction in a new last basic block. */
2840 if (check_last_block)
2841 {
2842 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
2843 rtx insn = BB_END (bb);
2844
2845 /* Back up past insns that must be kept in the same block as a call. */
2846 while (insn != BB_HEAD (bb)
2847 && keep_with_call_p (insn))
2848 insn = PREV_INSN (insn);
2849
2850 if (need_fake_edge_p (insn))
2851 {
2852 edge e;
2853
2854 e = find_edge (bb, EXIT_BLOCK_PTR);
2855 if (e)
2856 {
2857 insert_insn_on_edge (gen_use (const0_rtx), e);
2858 commit_edge_insertions ();
2859 }
2860 }
2861 }
2862
2863 /* Now add fake edges to the function exit for any non constant
2864 calls since there is no way that we can determine if they will
2865 return or not... */
2866
2867 for (i = NUM_FIXED_BLOCKS; i < last_bb; i++)
2868 {
2869 basic_block bb = BASIC_BLOCK (i);
2870 rtx insn;
2871 rtx prev_insn;
2872
2873 if (!bb)
2874 continue;
2875
2876 if (blocks && !TEST_BIT (blocks, i))
2877 continue;
2878
2879 for (insn = BB_END (bb); ; insn = prev_insn)
2880 {
2881 prev_insn = PREV_INSN (insn);
2882 if (need_fake_edge_p (insn))
2883 {
2884 edge e;
2885 rtx split_at_insn = insn;
2886
2887 /* Don't split the block between a call and an insn that should
2888 remain in the same block as the call. */
2889 if (CALL_P (insn))
2890 while (split_at_insn != BB_END (bb)
2891 && keep_with_call_p (NEXT_INSN (split_at_insn)))
2892 split_at_insn = NEXT_INSN (split_at_insn);
2893
2894 /* The handling above of the final block before the epilogue
2895 should be enough to verify that there is no edge to the exit
2896 block in CFG already. Calling make_edge in such case would
2897 cause us to mark that edge as fake and remove it later. */
2898
2899 #ifdef ENABLE_CHECKING
2900 if (split_at_insn == BB_END (bb))
2901 {
2902 e = find_edge (bb, EXIT_BLOCK_PTR);
2903 gcc_assert (e == NULL);
2904 }
2905 #endif
2906
2907 /* Note that the following may create a new basic block
2908 and renumber the existing basic blocks. */
2909 if (split_at_insn != BB_END (bb))
2910 {
2911 e = split_block (bb, split_at_insn);
2912 if (e)
2913 blocks_split++;
2914 }
2915
2916 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
2917 }
2918
2919 if (insn == BB_HEAD (bb))
2920 break;
2921 }
2922 }
2923
2924 if (blocks_split)
2925 verify_flow_info ();
2926
2927 return blocks_split;
2928 }
2929
2930 /* Add COMP_RTX as a condition at end of COND_BB. FIRST_HEAD is
2931 the conditional branch target, SECOND_HEAD should be the fall-thru
2932 there is no need to handle this here the loop versioning code handles
2933 this. the reason for SECON_HEAD is that it is needed for condition
2934 in trees, and this should be of the same type since it is a hook. */
2935 static void
2936 rtl_lv_add_condition_to_bb (basic_block first_head ,
2937 basic_block second_head ATTRIBUTE_UNUSED,
2938 basic_block cond_bb, void *comp_rtx)
2939 {
2940 rtx label, seq, jump;
2941 rtx op0 = XEXP ((rtx)comp_rtx, 0);
2942 rtx op1 = XEXP ((rtx)comp_rtx, 1);
2943 enum rtx_code comp = GET_CODE ((rtx)comp_rtx);
2944 enum machine_mode mode;
2945
2946
2947 label = block_label (first_head);
2948 mode = GET_MODE (op0);
2949 if (mode == VOIDmode)
2950 mode = GET_MODE (op1);
2951
2952 start_sequence ();
2953 op0 = force_operand (op0, NULL_RTX);
2954 op1 = force_operand (op1, NULL_RTX);
2955 do_compare_rtx_and_jump (op0, op1, comp, 0,
2956 mode, NULL_RTX, NULL_RTX, label);
2957 jump = get_last_insn ();
2958 JUMP_LABEL (jump) = label;
2959 LABEL_NUSES (label)++;
2960 seq = get_insns ();
2961 end_sequence ();
2962
2963 /* Add the new cond , in the new head. */
2964 emit_insn_after(seq, BB_END(cond_bb));
2965 }
2966
2967
2968 /* Given a block B with unconditional branch at its end, get the
2969 store the return the branch edge and the fall-thru edge in
2970 BRANCH_EDGE and FALLTHRU_EDGE respectively. */
2971 static void
2972 rtl_extract_cond_bb_edges (basic_block b, edge *branch_edge,
2973 edge *fallthru_edge)
2974 {
2975 edge e = EDGE_SUCC (b, 0);
2976
2977 if (e->flags & EDGE_FALLTHRU)
2978 {
2979 *fallthru_edge = e;
2980 *branch_edge = EDGE_SUCC (b, 1);
2981 }
2982 else
2983 {
2984 *branch_edge = e;
2985 *fallthru_edge = EDGE_SUCC (b, 1);
2986 }
2987 }
2988
2989 void
2990 init_rtl_bb_info (basic_block bb)
2991 {
2992 gcc_assert (!bb->il.rtl);
2993 bb->il.rtl = GGC_CNEW (struct rtl_bb_info);
2994 }
2995
2996
2997 /* Add EXPR to the end of basic block BB. */
2998
2999 rtx
3000 insert_insn_end_bb_new (rtx pat, basic_block bb)
3001 {
3002 rtx insn = BB_END (bb);
3003 rtx new_insn;
3004 rtx pat_end = pat;
3005
3006 while (NEXT_INSN (pat_end) != NULL_RTX)
3007 pat_end = NEXT_INSN (pat_end);
3008
3009 /* If the last insn is a jump, insert EXPR in front [taking care to
3010 handle cc0, etc. properly]. Similarly we need to care trapping
3011 instructions in presence of non-call exceptions. */
3012
3013 if (JUMP_P (insn)
3014 || (NONJUMP_INSN_P (insn)
3015 && (!single_succ_p (bb)
3016 || single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
3017 {
3018 #ifdef HAVE_cc0
3019 rtx note;
3020 #endif
3021 /* If this is a jump table, then we can't insert stuff here. Since
3022 we know the previous real insn must be the tablejump, we insert
3023 the new instruction just before the tablejump. */
3024 if (GET_CODE (PATTERN (insn)) == ADDR_VEC
3025 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
3026 insn = prev_real_insn (insn);
3027
3028 #ifdef HAVE_cc0
3029 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
3030 if cc0 isn't set. */
3031 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3032 if (note)
3033 insn = XEXP (note, 0);
3034 else
3035 {
3036 rtx maybe_cc0_setter = prev_nonnote_insn (insn);
3037 if (maybe_cc0_setter
3038 && INSN_P (maybe_cc0_setter)
3039 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
3040 insn = maybe_cc0_setter;
3041 }
3042 #endif
3043 /* FIXME: What if something in cc0/jump uses value set in new
3044 insn? */
3045 new_insn = emit_insn_before_noloc (pat, insn, bb);
3046 }
3047
3048 /* Likewise if the last insn is a call, as will happen in the presence
3049 of exception handling. */
3050 else if (CALL_P (insn)
3051 && (!single_succ_p (bb)
3052 || single_succ_edge (bb)->flags & EDGE_ABNORMAL))
3053 {
3054 /* Keeping in mind SMALL_REGISTER_CLASSES and parameters in registers,
3055 we search backward and place the instructions before the first
3056 parameter is loaded. Do this for everyone for consistency and a
3057 presumption that we'll get better code elsewhere as well. */
3058
3059 /* Since different machines initialize their parameter registers
3060 in different orders, assume nothing. Collect the set of all
3061 parameter registers. */
3062 insn = find_first_parameter_load (insn, BB_HEAD (bb));
3063
3064 /* If we found all the parameter loads, then we want to insert
3065 before the first parameter load.
3066
3067 If we did not find all the parameter loads, then we might have
3068 stopped on the head of the block, which could be a CODE_LABEL.
3069 If we inserted before the CODE_LABEL, then we would be putting
3070 the insn in the wrong basic block. In that case, put the insn
3071 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
3072 while (LABEL_P (insn)
3073 || NOTE_INSN_BASIC_BLOCK_P (insn))
3074 insn = NEXT_INSN (insn);
3075
3076 new_insn = emit_insn_before_noloc (pat, insn, bb);
3077 }
3078 else
3079 new_insn = emit_insn_after_noloc (pat, insn, bb);
3080
3081 return new_insn;
3082 }
3083
3084 /* Returns true if it is possible to remove edge E by redirecting
3085 it to the destination of the other edge from E->src. */
3086
3087 static bool
3088 rtl_can_remove_branch_p (const_edge e)
3089 {
3090 const_basic_block src = e->src;
3091 const_basic_block target = EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest;
3092 const_rtx insn = BB_END (src), set;
3093
3094 /* The conditions are taken from try_redirect_by_replacing_jump. */
3095 if (target == EXIT_BLOCK_PTR)
3096 return false;
3097
3098 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
3099 return false;
3100
3101 if (find_reg_note (insn, REG_CROSSING_JUMP, NULL_RTX)
3102 || BB_PARTITION (src) != BB_PARTITION (target))
3103 return false;
3104
3105 if (!onlyjump_p (insn)
3106 || tablejump_p (insn, NULL, NULL))
3107 return false;
3108
3109 set = single_set (insn);
3110 if (!set || side_effects_p (set))
3111 return false;
3112
3113 return true;
3114 }
3115
3116 /* Implementation of CFG manipulation for linearized RTL. */
3117 struct cfg_hooks rtl_cfg_hooks = {
3118 "rtl",
3119 rtl_verify_flow_info,
3120 rtl_dump_bb,
3121 rtl_create_basic_block,
3122 rtl_redirect_edge_and_branch,
3123 rtl_redirect_edge_and_branch_force,
3124 rtl_can_remove_branch_p,
3125 rtl_delete_block,
3126 rtl_split_block,
3127 rtl_move_block_after,
3128 rtl_can_merge_blocks, /* can_merge_blocks_p */
3129 rtl_merge_blocks,
3130 rtl_predict_edge,
3131 rtl_predicted_by_p,
3132 NULL, /* can_duplicate_block_p */
3133 NULL, /* duplicate_block */
3134 rtl_split_edge,
3135 rtl_make_forwarder_block,
3136 rtl_tidy_fallthru_edge,
3137 rtl_block_ends_with_call_p,
3138 rtl_block_ends_with_condjump_p,
3139 rtl_flow_call_edges_add,
3140 NULL, /* execute_on_growing_pred */
3141 NULL, /* execute_on_shrinking_pred */
3142 NULL, /* duplicate loop for trees */
3143 NULL, /* lv_add_condition_to_bb */
3144 NULL, /* lv_adjust_loop_header_phi*/
3145 NULL, /* extract_cond_bb_edges */
3146 NULL /* flush_pending_stmts */
3147 };
3148
3149 /* Implementation of CFG manipulation for cfg layout RTL, where
3150 basic block connected via fallthru edges does not have to be adjacent.
3151 This representation will hopefully become the default one in future
3152 version of the compiler. */
3153
3154 /* We do not want to declare these functions in a header file, since they
3155 should only be used through the cfghooks interface, and we do not want to
3156 move them here since it would require also moving quite a lot of related
3157 code. They are in cfglayout.c. */
3158 extern bool cfg_layout_can_duplicate_bb_p (const_basic_block);
3159 extern basic_block cfg_layout_duplicate_bb (basic_block);
3160
3161 struct cfg_hooks cfg_layout_rtl_cfg_hooks = {
3162 "cfglayout mode",
3163 rtl_verify_flow_info_1,
3164 rtl_dump_bb,
3165 cfg_layout_create_basic_block,
3166 cfg_layout_redirect_edge_and_branch,
3167 cfg_layout_redirect_edge_and_branch_force,
3168 rtl_can_remove_branch_p,
3169 cfg_layout_delete_block,
3170 cfg_layout_split_block,
3171 rtl_move_block_after,
3172 cfg_layout_can_merge_blocks_p,
3173 cfg_layout_merge_blocks,
3174 rtl_predict_edge,
3175 rtl_predicted_by_p,
3176 cfg_layout_can_duplicate_bb_p,
3177 cfg_layout_duplicate_bb,
3178 cfg_layout_split_edge,
3179 rtl_make_forwarder_block,
3180 NULL,
3181 rtl_block_ends_with_call_p,
3182 rtl_block_ends_with_condjump_p,
3183 rtl_flow_call_edges_add,
3184 NULL, /* execute_on_growing_pred */
3185 NULL, /* execute_on_shrinking_pred */
3186 duplicate_loop_to_header_edge, /* duplicate loop for trees */
3187 rtl_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
3188 NULL, /* lv_adjust_loop_header_phi*/
3189 rtl_extract_cond_bb_edges, /* extract_cond_bb_edges */
3190 NULL /* flush_pending_stmts */
3191 };