target.h (globalize_decl_name): New.
[gcc.git] / gcc / cfgrtl.c
1 /* Control flow graph manipulation code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 /* This file contains low level functions to manipulate the CFG and analyze it
23 that are aware of the RTL intermediate language.
24
25 Available functionality:
26 - Basic CFG/RTL manipulation API documented in cfghooks.h
27 - CFG-aware instruction chain manipulation
28 delete_insn, delete_insn_chain
29 - Edge splitting and committing to edges
30 insert_insn_on_edge, commit_edge_insertions
31 - CFG updating after insn simplification
32 purge_dead_edges, purge_all_dead_edges
33
34 Functions not supposed for generic use:
35 - Infrastructure to determine quickly basic block for insn
36 compute_bb_for_insn, update_bb_for_insn, set_block_for_insn,
37 - Edge redirection with updating and optimizing of insn chain
38 block_label, tidy_fallthru_edge, force_nonfallthru */
39 \f
40 #include "config.h"
41 #include "system.h"
42 #include "coretypes.h"
43 #include "tm.h"
44 #include "tree.h"
45 #include "rtl.h"
46 #include "hard-reg-set.h"
47 #include "basic-block.h"
48 #include "regs.h"
49 #include "flags.h"
50 #include "output.h"
51 #include "function.h"
52 #include "except.h"
53 #include "toplev.h"
54 #include "tm_p.h"
55 #include "obstack.h"
56 #include "insn-config.h"
57 #include "cfglayout.h"
58 #include "expr.h"
59 #include "target.h"
60 #include "cfgloop.h"
61 #include "ggc.h"
62 #include "tree-pass.h"
63
64 static int can_delete_note_p (rtx);
65 static int can_delete_label_p (rtx);
66 static void commit_one_edge_insertion (edge);
67 static basic_block rtl_split_edge (edge);
68 static bool rtl_move_block_after (basic_block, basic_block);
69 static int rtl_verify_flow_info (void);
70 static basic_block cfg_layout_split_block (basic_block, void *);
71 static edge cfg_layout_redirect_edge_and_branch (edge, basic_block);
72 static basic_block cfg_layout_redirect_edge_and_branch_force (edge, basic_block);
73 static void cfg_layout_delete_block (basic_block);
74 static void rtl_delete_block (basic_block);
75 static basic_block rtl_redirect_edge_and_branch_force (edge, basic_block);
76 static edge rtl_redirect_edge_and_branch (edge, basic_block);
77 static basic_block rtl_split_block (basic_block, void *);
78 static void rtl_dump_bb (basic_block, FILE *, int);
79 static int rtl_verify_flow_info_1 (void);
80 static void rtl_make_forwarder_block (edge);
81 \f
82 /* Return true if NOTE is not one of the ones that must be kept paired,
83 so that we may simply delete it. */
84
85 static int
86 can_delete_note_p (rtx note)
87 {
88 return (NOTE_LINE_NUMBER (note) == NOTE_INSN_DELETED
89 || NOTE_LINE_NUMBER (note) == NOTE_INSN_BASIC_BLOCK);
90 }
91
92 /* True if a given label can be deleted. */
93
94 static int
95 can_delete_label_p (rtx label)
96 {
97 return (!LABEL_PRESERVE_P (label)
98 /* User declared labels must be preserved. */
99 && LABEL_NAME (label) == 0
100 && !in_expr_list_p (forced_labels, label));
101 }
102
103 /* Delete INSN by patching it out. Return the next insn. */
104
105 rtx
106 delete_insn (rtx insn)
107 {
108 rtx next = NEXT_INSN (insn);
109 rtx note;
110 bool really_delete = true;
111
112 if (LABEL_P (insn))
113 {
114 /* Some labels can't be directly removed from the INSN chain, as they
115 might be references via variables, constant pool etc.
116 Convert them to the special NOTE_INSN_DELETED_LABEL note. */
117 if (! can_delete_label_p (insn))
118 {
119 const char *name = LABEL_NAME (insn);
120
121 really_delete = false;
122 PUT_CODE (insn, NOTE);
123 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED_LABEL;
124 NOTE_DELETED_LABEL_NAME (insn) = name;
125 }
126
127 remove_node_from_expr_list (insn, &nonlocal_goto_handler_labels);
128 }
129
130 if (really_delete)
131 {
132 /* If this insn has already been deleted, something is very wrong. */
133 gcc_assert (!INSN_DELETED_P (insn));
134 remove_insn (insn);
135 INSN_DELETED_P (insn) = 1;
136 }
137
138 /* If deleting a jump, decrement the use count of the label. Deleting
139 the label itself should happen in the normal course of block merging. */
140 if (JUMP_P (insn)
141 && JUMP_LABEL (insn)
142 && LABEL_P (JUMP_LABEL (insn)))
143 LABEL_NUSES (JUMP_LABEL (insn))--;
144
145 /* Also if deleting an insn that references a label. */
146 else
147 {
148 while ((note = find_reg_note (insn, REG_LABEL, NULL_RTX)) != NULL_RTX
149 && LABEL_P (XEXP (note, 0)))
150 {
151 LABEL_NUSES (XEXP (note, 0))--;
152 remove_note (insn, note);
153 }
154 }
155
156 if (JUMP_P (insn)
157 && (GET_CODE (PATTERN (insn)) == ADDR_VEC
158 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC))
159 {
160 rtx pat = PATTERN (insn);
161 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
162 int len = XVECLEN (pat, diff_vec_p);
163 int i;
164
165 for (i = 0; i < len; i++)
166 {
167 rtx label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
168
169 /* When deleting code in bulk (e.g. removing many unreachable
170 blocks) we can delete a label that's a target of the vector
171 before deleting the vector itself. */
172 if (!NOTE_P (label))
173 LABEL_NUSES (label)--;
174 }
175 }
176
177 return next;
178 }
179
180 /* Like delete_insn but also purge dead edges from BB. */
181 rtx
182 delete_insn_and_edges (rtx insn)
183 {
184 rtx x;
185 bool purge = false;
186
187 if (INSN_P (insn)
188 && BLOCK_FOR_INSN (insn)
189 && BB_END (BLOCK_FOR_INSN (insn)) == insn)
190 purge = true;
191 x = delete_insn (insn);
192 if (purge)
193 purge_dead_edges (BLOCK_FOR_INSN (insn));
194 return x;
195 }
196
197 /* Unlink a chain of insns between START and FINISH, leaving notes
198 that must be paired. */
199
200 void
201 delete_insn_chain (rtx start, rtx finish)
202 {
203 rtx next;
204
205 /* Unchain the insns one by one. It would be quicker to delete all of these
206 with a single unchaining, rather than one at a time, but we need to keep
207 the NOTE's. */
208 while (1)
209 {
210 next = NEXT_INSN (start);
211 if (NOTE_P (start) && !can_delete_note_p (start))
212 ;
213 else
214 next = delete_insn (start);
215
216 if (start == finish)
217 break;
218 start = next;
219 }
220 }
221
222 /* Like delete_insn but also purge dead edges from BB. */
223 void
224 delete_insn_chain_and_edges (rtx first, rtx last)
225 {
226 bool purge = false;
227
228 if (INSN_P (last)
229 && BLOCK_FOR_INSN (last)
230 && BB_END (BLOCK_FOR_INSN (last)) == last)
231 purge = true;
232 delete_insn_chain (first, last);
233 if (purge)
234 purge_dead_edges (BLOCK_FOR_INSN (last));
235 }
236 \f
237 /* Create a new basic block consisting of the instructions between HEAD and END
238 inclusive. This function is designed to allow fast BB construction - reuses
239 the note and basic block struct in BB_NOTE, if any and do not grow
240 BASIC_BLOCK chain and should be used directly only by CFG construction code.
241 END can be NULL in to create new empty basic block before HEAD. Both END
242 and HEAD can be NULL to create basic block at the end of INSN chain.
243 AFTER is the basic block we should be put after. */
244
245 basic_block
246 create_basic_block_structure (rtx head, rtx end, rtx bb_note, basic_block after)
247 {
248 basic_block bb;
249
250 if (bb_note
251 && (bb = NOTE_BASIC_BLOCK (bb_note)) != NULL
252 && bb->aux == NULL)
253 {
254 /* If we found an existing note, thread it back onto the chain. */
255
256 rtx after;
257
258 if (LABEL_P (head))
259 after = head;
260 else
261 {
262 after = PREV_INSN (head);
263 head = bb_note;
264 }
265
266 if (after != bb_note && NEXT_INSN (after) != bb_note)
267 reorder_insns_nobb (bb_note, bb_note, after);
268 }
269 else
270 {
271 /* Otherwise we must create a note and a basic block structure. */
272
273 bb = alloc_block ();
274
275 init_rtl_bb_info (bb);
276 if (!head && !end)
277 head = end = bb_note
278 = emit_note_after (NOTE_INSN_BASIC_BLOCK, get_last_insn ());
279 else if (LABEL_P (head) && end)
280 {
281 bb_note = emit_note_after (NOTE_INSN_BASIC_BLOCK, head);
282 if (head == end)
283 end = bb_note;
284 }
285 else
286 {
287 bb_note = emit_note_before (NOTE_INSN_BASIC_BLOCK, head);
288 head = bb_note;
289 if (!end)
290 end = head;
291 }
292
293 NOTE_BASIC_BLOCK (bb_note) = bb;
294 }
295
296 /* Always include the bb note in the block. */
297 if (NEXT_INSN (end) == bb_note)
298 end = bb_note;
299
300 BB_HEAD (bb) = head;
301 BB_END (bb) = end;
302 bb->index = last_basic_block++;
303 bb->flags = BB_NEW | BB_RTL;
304 link_block (bb, after);
305 SET_BASIC_BLOCK (bb->index, bb);
306 update_bb_for_insn (bb);
307 BB_SET_PARTITION (bb, BB_UNPARTITIONED);
308
309 /* Tag the block so that we know it has been used when considering
310 other basic block notes. */
311 bb->aux = bb;
312
313 return bb;
314 }
315
316 /* Create new basic block consisting of instructions in between HEAD and END
317 and place it to the BB chain after block AFTER. END can be NULL in to
318 create new empty basic block before HEAD. Both END and HEAD can be NULL to
319 create basic block at the end of INSN chain. */
320
321 static basic_block
322 rtl_create_basic_block (void *headp, void *endp, basic_block after)
323 {
324 rtx head = headp, end = endp;
325 basic_block bb;
326
327 /* Grow the basic block array if needed. */
328 if ((size_t) last_basic_block >= VEC_length (basic_block, basic_block_info))
329 {
330 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
331 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, new_size);
332 }
333
334 n_basic_blocks++;
335
336 bb = create_basic_block_structure (head, end, NULL, after);
337 bb->aux = NULL;
338 return bb;
339 }
340
341 static basic_block
342 cfg_layout_create_basic_block (void *head, void *end, basic_block after)
343 {
344 basic_block newbb = rtl_create_basic_block (head, end, after);
345
346 return newbb;
347 }
348 \f
349 /* Delete the insns in a (non-live) block. We physically delete every
350 non-deleted-note insn, and update the flow graph appropriately.
351
352 Return nonzero if we deleted an exception handler. */
353
354 /* ??? Preserving all such notes strikes me as wrong. It would be nice
355 to post-process the stream to remove empty blocks, loops, ranges, etc. */
356
357 static void
358 rtl_delete_block (basic_block b)
359 {
360 rtx insn, end;
361
362 /* If the head of this block is a CODE_LABEL, then it might be the
363 label for an exception handler which can't be reached. We need
364 to remove the label from the exception_handler_label list. */
365 insn = BB_HEAD (b);
366 if (LABEL_P (insn))
367 maybe_remove_eh_handler (insn);
368
369 end = get_last_bb_insn (b);
370
371 /* Selectively delete the entire chain. */
372 BB_HEAD (b) = NULL;
373 delete_insn_chain (insn, end);
374 if (b->il.rtl->global_live_at_start)
375 {
376 FREE_REG_SET (b->il.rtl->global_live_at_start);
377 FREE_REG_SET (b->il.rtl->global_live_at_end);
378 b->il.rtl->global_live_at_start = NULL;
379 b->il.rtl->global_live_at_end = NULL;
380 }
381 }
382 \f
383 /* Records the basic block struct in BLOCK_FOR_INSN for every insn. */
384
385 void
386 compute_bb_for_insn (void)
387 {
388 basic_block bb;
389
390 FOR_EACH_BB (bb)
391 {
392 rtx end = BB_END (bb);
393 rtx insn;
394
395 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
396 {
397 BLOCK_FOR_INSN (insn) = bb;
398 if (insn == end)
399 break;
400 }
401 }
402 }
403
404 /* Release the basic_block_for_insn array. */
405
406 unsigned int
407 free_bb_for_insn (void)
408 {
409 rtx insn;
410 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
411 if (!BARRIER_P (insn))
412 BLOCK_FOR_INSN (insn) = NULL;
413 return 0;
414 }
415
416 struct tree_opt_pass pass_free_cfg =
417 {
418 NULL, /* name */
419 NULL, /* gate */
420 free_bb_for_insn, /* execute */
421 NULL, /* sub */
422 NULL, /* next */
423 0, /* static_pass_number */
424 0, /* tv_id */
425 0, /* properties_required */
426 0, /* properties_provided */
427 PROP_cfg, /* properties_destroyed */
428 0, /* todo_flags_start */
429 0, /* todo_flags_finish */
430 0 /* letter */
431 };
432
433 /* Return RTX to emit after when we want to emit code on the entry of function. */
434 rtx
435 entry_of_function (void)
436 {
437 return (n_basic_blocks > NUM_FIXED_BLOCKS ?
438 BB_HEAD (ENTRY_BLOCK_PTR->next_bb) : get_insns ());
439 }
440
441 /* Emit INSN at the entry point of the function, ensuring that it is only
442 executed once per function. */
443 void
444 emit_insn_at_entry (rtx insn)
445 {
446 edge_iterator ei = ei_start (ENTRY_BLOCK_PTR->succs);
447 edge e = ei_safe_edge (ei);
448 gcc_assert (e->flags & EDGE_FALLTHRU);
449
450 insert_insn_on_edge (insn, e);
451 commit_edge_insertions ();
452 }
453
454 /* Update insns block within BB. */
455
456 void
457 update_bb_for_insn (basic_block bb)
458 {
459 rtx insn;
460
461 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
462 {
463 if (!BARRIER_P (insn))
464 set_block_for_insn (insn, bb);
465 if (insn == BB_END (bb))
466 break;
467 }
468 }
469 \f
470 /* Creates a new basic block just after basic block B by splitting
471 everything after specified instruction I. */
472
473 static basic_block
474 rtl_split_block (basic_block bb, void *insnp)
475 {
476 basic_block new_bb;
477 rtx insn = insnp;
478 edge e;
479 edge_iterator ei;
480
481 if (!insn)
482 {
483 insn = first_insn_after_basic_block_note (bb);
484
485 if (insn)
486 insn = PREV_INSN (insn);
487 else
488 insn = get_last_insn ();
489 }
490
491 /* We probably should check type of the insn so that we do not create
492 inconsistent cfg. It is checked in verify_flow_info anyway, so do not
493 bother. */
494 if (insn == BB_END (bb))
495 emit_note_after (NOTE_INSN_DELETED, insn);
496
497 /* Create the new basic block. */
498 new_bb = create_basic_block (NEXT_INSN (insn), BB_END (bb), bb);
499 BB_COPY_PARTITION (new_bb, bb);
500 BB_END (bb) = insn;
501
502 /* Redirect the outgoing edges. */
503 new_bb->succs = bb->succs;
504 bb->succs = NULL;
505 FOR_EACH_EDGE (e, ei, new_bb->succs)
506 e->src = new_bb;
507
508 if (bb->il.rtl->global_live_at_start)
509 {
510 new_bb->il.rtl->global_live_at_start = ALLOC_REG_SET (&reg_obstack);
511 new_bb->il.rtl->global_live_at_end = ALLOC_REG_SET (&reg_obstack);
512 COPY_REG_SET (new_bb->il.rtl->global_live_at_end, bb->il.rtl->global_live_at_end);
513
514 /* We now have to calculate which registers are live at the end
515 of the split basic block and at the start of the new basic
516 block. Start with those registers that are known to be live
517 at the end of the original basic block and get
518 propagate_block to determine which registers are live. */
519 COPY_REG_SET (new_bb->il.rtl->global_live_at_start, bb->il.rtl->global_live_at_end);
520 propagate_block (new_bb, new_bb->il.rtl->global_live_at_start, NULL, NULL, 0);
521 COPY_REG_SET (bb->il.rtl->global_live_at_end,
522 new_bb->il.rtl->global_live_at_start);
523 #ifdef HAVE_conditional_execution
524 /* In the presence of conditional execution we are not able to update
525 liveness precisely. */
526 if (reload_completed)
527 {
528 bb->flags |= BB_DIRTY;
529 new_bb->flags |= BB_DIRTY;
530 }
531 #endif
532 }
533
534 return new_bb;
535 }
536
537 /* Blocks A and B are to be merged into a single block A. The insns
538 are already contiguous. */
539
540 static void
541 rtl_merge_blocks (basic_block a, basic_block b)
542 {
543 rtx b_head = BB_HEAD (b), b_end = BB_END (b), a_end = BB_END (a);
544 rtx del_first = NULL_RTX, del_last = NULL_RTX;
545 int b_empty = 0;
546
547 /* If there was a CODE_LABEL beginning B, delete it. */
548 if (LABEL_P (b_head))
549 {
550 /* This might have been an EH label that no longer has incoming
551 EH edges. Update data structures to match. */
552 maybe_remove_eh_handler (b_head);
553
554 /* Detect basic blocks with nothing but a label. This can happen
555 in particular at the end of a function. */
556 if (b_head == b_end)
557 b_empty = 1;
558
559 del_first = del_last = b_head;
560 b_head = NEXT_INSN (b_head);
561 }
562
563 /* Delete the basic block note and handle blocks containing just that
564 note. */
565 if (NOTE_INSN_BASIC_BLOCK_P (b_head))
566 {
567 if (b_head == b_end)
568 b_empty = 1;
569 if (! del_last)
570 del_first = b_head;
571
572 del_last = b_head;
573 b_head = NEXT_INSN (b_head);
574 }
575
576 /* If there was a jump out of A, delete it. */
577 if (JUMP_P (a_end))
578 {
579 rtx prev;
580
581 for (prev = PREV_INSN (a_end); ; prev = PREV_INSN (prev))
582 if (!NOTE_P (prev)
583 || NOTE_LINE_NUMBER (prev) == NOTE_INSN_BASIC_BLOCK
584 || prev == BB_HEAD (a))
585 break;
586
587 del_first = a_end;
588
589 #ifdef HAVE_cc0
590 /* If this was a conditional jump, we need to also delete
591 the insn that set cc0. */
592 if (only_sets_cc0_p (prev))
593 {
594 rtx tmp = prev;
595
596 prev = prev_nonnote_insn (prev);
597 if (!prev)
598 prev = BB_HEAD (a);
599 del_first = tmp;
600 }
601 #endif
602
603 a_end = PREV_INSN (del_first);
604 }
605 else if (BARRIER_P (NEXT_INSN (a_end)))
606 del_first = NEXT_INSN (a_end);
607
608 /* Delete everything marked above as well as crap that might be
609 hanging out between the two blocks. */
610 BB_HEAD (b) = NULL;
611 delete_insn_chain (del_first, del_last);
612
613 /* Reassociate the insns of B with A. */
614 if (!b_empty)
615 {
616 rtx x;
617
618 for (x = a_end; x != b_end; x = NEXT_INSN (x))
619 set_block_for_insn (x, a);
620
621 set_block_for_insn (b_end, a);
622
623 a_end = b_end;
624 }
625
626 BB_END (a) = a_end;
627 a->il.rtl->global_live_at_end = b->il.rtl->global_live_at_end;
628 }
629
630 /* Return true when block A and B can be merged. */
631 static bool
632 rtl_can_merge_blocks (basic_block a,basic_block b)
633 {
634 /* If we are partitioning hot/cold basic blocks, we don't want to
635 mess up unconditional or indirect jumps that cross between hot
636 and cold sections.
637
638 Basic block partitioning may result in some jumps that appear to
639 be optimizable (or blocks that appear to be mergeable), but which really
640 must be left untouched (they are required to make it safely across
641 partition boundaries). See the comments at the top of
642 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
643
644 if (BB_PARTITION (a) != BB_PARTITION (b))
645 return false;
646
647 /* There must be exactly one edge in between the blocks. */
648 return (single_succ_p (a)
649 && single_succ (a) == b
650 && single_pred_p (b)
651 && a != b
652 /* Must be simple edge. */
653 && !(single_succ_edge (a)->flags & EDGE_COMPLEX)
654 && a->next_bb == b
655 && a != ENTRY_BLOCK_PTR && b != EXIT_BLOCK_PTR
656 /* If the jump insn has side effects,
657 we can't kill the edge. */
658 && (!JUMP_P (BB_END (a))
659 || (reload_completed
660 ? simplejump_p (BB_END (a)) : onlyjump_p (BB_END (a)))));
661 }
662 \f
663 /* Return the label in the head of basic block BLOCK. Create one if it doesn't
664 exist. */
665
666 rtx
667 block_label (basic_block block)
668 {
669 if (block == EXIT_BLOCK_PTR)
670 return NULL_RTX;
671
672 if (!LABEL_P (BB_HEAD (block)))
673 {
674 BB_HEAD (block) = emit_label_before (gen_label_rtx (), BB_HEAD (block));
675 }
676
677 return BB_HEAD (block);
678 }
679
680 /* Attempt to perform edge redirection by replacing possibly complex jump
681 instruction by unconditional jump or removing jump completely. This can
682 apply only if all edges now point to the same block. The parameters and
683 return values are equivalent to redirect_edge_and_branch. */
684
685 edge
686 try_redirect_by_replacing_jump (edge e, basic_block target, bool in_cfglayout)
687 {
688 basic_block src = e->src;
689 rtx insn = BB_END (src), kill_from;
690 rtx set;
691 int fallthru = 0;
692
693 /* If we are partitioning hot/cold basic blocks, we don't want to
694 mess up unconditional or indirect jumps that cross between hot
695 and cold sections.
696
697 Basic block partitioning may result in some jumps that appear to
698 be optimizable (or blocks that appear to be mergeable), but which really
699 must be left untouched (they are required to make it safely across
700 partition boundaries). See the comments at the top of
701 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
702
703 if (find_reg_note (insn, REG_CROSSING_JUMP, NULL_RTX)
704 || BB_PARTITION (src) != BB_PARTITION (target))
705 return NULL;
706
707 /* We can replace or remove a complex jump only when we have exactly
708 two edges. Also, if we have exactly one outgoing edge, we can
709 redirect that. */
710 if (EDGE_COUNT (src->succs) >= 3
711 /* Verify that all targets will be TARGET. Specifically, the
712 edge that is not E must also go to TARGET. */
713 || (EDGE_COUNT (src->succs) == 2
714 && EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target))
715 return NULL;
716
717 if (!onlyjump_p (insn))
718 return NULL;
719 if ((!optimize || reload_completed) && tablejump_p (insn, NULL, NULL))
720 return NULL;
721
722 /* Avoid removing branch with side effects. */
723 set = single_set (insn);
724 if (!set || side_effects_p (set))
725 return NULL;
726
727 /* In case we zap a conditional jump, we'll need to kill
728 the cc0 setter too. */
729 kill_from = insn;
730 #ifdef HAVE_cc0
731 if (reg_mentioned_p (cc0_rtx, PATTERN (insn)))
732 kill_from = PREV_INSN (insn);
733 #endif
734
735 /* See if we can create the fallthru edge. */
736 if (in_cfglayout || can_fallthru (src, target))
737 {
738 if (dump_file)
739 fprintf (dump_file, "Removing jump %i.\n", INSN_UID (insn));
740 fallthru = 1;
741
742 /* Selectively unlink whole insn chain. */
743 if (in_cfglayout)
744 {
745 rtx insn = src->il.rtl->footer;
746
747 delete_insn_chain (kill_from, BB_END (src));
748
749 /* Remove barriers but keep jumptables. */
750 while (insn)
751 {
752 if (BARRIER_P (insn))
753 {
754 if (PREV_INSN (insn))
755 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
756 else
757 src->il.rtl->footer = NEXT_INSN (insn);
758 if (NEXT_INSN (insn))
759 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
760 }
761 if (LABEL_P (insn))
762 break;
763 insn = NEXT_INSN (insn);
764 }
765 }
766 else
767 delete_insn_chain (kill_from, PREV_INSN (BB_HEAD (target)));
768 }
769
770 /* If this already is simplejump, redirect it. */
771 else if (simplejump_p (insn))
772 {
773 if (e->dest == target)
774 return NULL;
775 if (dump_file)
776 fprintf (dump_file, "Redirecting jump %i from %i to %i.\n",
777 INSN_UID (insn), e->dest->index, target->index);
778 if (!redirect_jump (insn, block_label (target), 0))
779 {
780 gcc_assert (target == EXIT_BLOCK_PTR);
781 return NULL;
782 }
783 }
784
785 /* Cannot do anything for target exit block. */
786 else if (target == EXIT_BLOCK_PTR)
787 return NULL;
788
789 /* Or replace possibly complicated jump insn by simple jump insn. */
790 else
791 {
792 rtx target_label = block_label (target);
793 rtx barrier, label, table;
794
795 emit_jump_insn_after_noloc (gen_jump (target_label), insn);
796 JUMP_LABEL (BB_END (src)) = target_label;
797 LABEL_NUSES (target_label)++;
798 if (dump_file)
799 fprintf (dump_file, "Replacing insn %i by jump %i\n",
800 INSN_UID (insn), INSN_UID (BB_END (src)));
801
802
803 delete_insn_chain (kill_from, insn);
804
805 /* Recognize a tablejump that we are converting to a
806 simple jump and remove its associated CODE_LABEL
807 and ADDR_VEC or ADDR_DIFF_VEC. */
808 if (tablejump_p (insn, &label, &table))
809 delete_insn_chain (label, table);
810
811 barrier = next_nonnote_insn (BB_END (src));
812 if (!barrier || !BARRIER_P (barrier))
813 emit_barrier_after (BB_END (src));
814 else
815 {
816 if (barrier != NEXT_INSN (BB_END (src)))
817 {
818 /* Move the jump before barrier so that the notes
819 which originally were or were created before jump table are
820 inside the basic block. */
821 rtx new_insn = BB_END (src);
822 rtx tmp;
823
824 for (tmp = NEXT_INSN (BB_END (src)); tmp != barrier;
825 tmp = NEXT_INSN (tmp))
826 set_block_for_insn (tmp, src);
827
828 NEXT_INSN (PREV_INSN (new_insn)) = NEXT_INSN (new_insn);
829 PREV_INSN (NEXT_INSN (new_insn)) = PREV_INSN (new_insn);
830
831 NEXT_INSN (new_insn) = barrier;
832 NEXT_INSN (PREV_INSN (barrier)) = new_insn;
833
834 PREV_INSN (new_insn) = PREV_INSN (barrier);
835 PREV_INSN (barrier) = new_insn;
836 }
837 }
838 }
839
840 /* Keep only one edge out and set proper flags. */
841 if (!single_succ_p (src))
842 remove_edge (e);
843 gcc_assert (single_succ_p (src));
844
845 e = single_succ_edge (src);
846 if (fallthru)
847 e->flags = EDGE_FALLTHRU;
848 else
849 e->flags = 0;
850
851 e->probability = REG_BR_PROB_BASE;
852 e->count = src->count;
853
854 if (e->dest != target)
855 redirect_edge_succ (e, target);
856
857 return e;
858 }
859
860 /* Redirect edge representing branch of (un)conditional jump or tablejump,
861 NULL on failure */
862 static edge
863 redirect_branch_edge (edge e, basic_block target)
864 {
865 rtx tmp;
866 rtx old_label = BB_HEAD (e->dest);
867 basic_block src = e->src;
868 rtx insn = BB_END (src);
869
870 /* We can only redirect non-fallthru edges of jump insn. */
871 if (e->flags & EDGE_FALLTHRU)
872 return NULL;
873 else if (!JUMP_P (insn))
874 return NULL;
875
876 /* Recognize a tablejump and adjust all matching cases. */
877 if (tablejump_p (insn, NULL, &tmp))
878 {
879 rtvec vec;
880 int j;
881 rtx new_label = block_label (target);
882
883 if (target == EXIT_BLOCK_PTR)
884 return NULL;
885 if (GET_CODE (PATTERN (tmp)) == ADDR_VEC)
886 vec = XVEC (PATTERN (tmp), 0);
887 else
888 vec = XVEC (PATTERN (tmp), 1);
889
890 for (j = GET_NUM_ELEM (vec) - 1; j >= 0; --j)
891 if (XEXP (RTVEC_ELT (vec, j), 0) == old_label)
892 {
893 RTVEC_ELT (vec, j) = gen_rtx_LABEL_REF (Pmode, new_label);
894 --LABEL_NUSES (old_label);
895 ++LABEL_NUSES (new_label);
896 }
897
898 /* Handle casesi dispatch insns. */
899 if ((tmp = single_set (insn)) != NULL
900 && SET_DEST (tmp) == pc_rtx
901 && GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE
902 && GET_CODE (XEXP (SET_SRC (tmp), 2)) == LABEL_REF
903 && XEXP (XEXP (SET_SRC (tmp), 2), 0) == old_label)
904 {
905 XEXP (SET_SRC (tmp), 2) = gen_rtx_LABEL_REF (Pmode,
906 new_label);
907 --LABEL_NUSES (old_label);
908 ++LABEL_NUSES (new_label);
909 }
910 }
911 else
912 {
913 /* ?? We may play the games with moving the named labels from
914 one basic block to the other in case only one computed_jump is
915 available. */
916 if (computed_jump_p (insn)
917 /* A return instruction can't be redirected. */
918 || returnjump_p (insn))
919 return NULL;
920
921 /* If the insn doesn't go where we think, we're confused. */
922 gcc_assert (JUMP_LABEL (insn) == old_label);
923
924 /* If the substitution doesn't succeed, die. This can happen
925 if the back end emitted unrecognizable instructions or if
926 target is exit block on some arches. */
927 if (!redirect_jump (insn, block_label (target), 0))
928 {
929 gcc_assert (target == EXIT_BLOCK_PTR);
930 return NULL;
931 }
932 }
933
934 if (dump_file)
935 fprintf (dump_file, "Edge %i->%i redirected to %i\n",
936 e->src->index, e->dest->index, target->index);
937
938 if (e->dest != target)
939 e = redirect_edge_succ_nodup (e, target);
940 return e;
941 }
942
943 /* Attempt to change code to redirect edge E to TARGET. Don't do that on
944 expense of adding new instructions or reordering basic blocks.
945
946 Function can be also called with edge destination equivalent to the TARGET.
947 Then it should try the simplifications and do nothing if none is possible.
948
949 Return edge representing the branch if transformation succeeded. Return NULL
950 on failure.
951 We still return NULL in case E already destinated TARGET and we didn't
952 managed to simplify instruction stream. */
953
954 static edge
955 rtl_redirect_edge_and_branch (edge e, basic_block target)
956 {
957 edge ret;
958 basic_block src = e->src;
959
960 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
961 return NULL;
962
963 if (e->dest == target)
964 return e;
965
966 if ((ret = try_redirect_by_replacing_jump (e, target, false)) != NULL)
967 {
968 src->flags |= BB_DIRTY;
969 return ret;
970 }
971
972 ret = redirect_branch_edge (e, target);
973 if (!ret)
974 return NULL;
975
976 src->flags |= BB_DIRTY;
977 return ret;
978 }
979
980 /* Like force_nonfallthru below, but additionally performs redirection
981 Used by redirect_edge_and_branch_force. */
982
983 static basic_block
984 force_nonfallthru_and_redirect (edge e, basic_block target)
985 {
986 basic_block jump_block, new_bb = NULL, src = e->src;
987 rtx note;
988 edge new_edge;
989 int abnormal_edge_flags = 0;
990
991 /* In the case the last instruction is conditional jump to the next
992 instruction, first redirect the jump itself and then continue
993 by creating a basic block afterwards to redirect fallthru edge. */
994 if (e->src != ENTRY_BLOCK_PTR && e->dest != EXIT_BLOCK_PTR
995 && any_condjump_p (BB_END (e->src))
996 && JUMP_LABEL (BB_END (e->src)) == BB_HEAD (e->dest))
997 {
998 rtx note;
999 edge b = unchecked_make_edge (e->src, target, 0);
1000 bool redirected;
1001
1002 redirected = redirect_jump (BB_END (e->src), block_label (target), 0);
1003 gcc_assert (redirected);
1004
1005 note = find_reg_note (BB_END (e->src), REG_BR_PROB, NULL_RTX);
1006 if (note)
1007 {
1008 int prob = INTVAL (XEXP (note, 0));
1009
1010 b->probability = prob;
1011 b->count = e->count * prob / REG_BR_PROB_BASE;
1012 e->probability -= e->probability;
1013 e->count -= b->count;
1014 if (e->probability < 0)
1015 e->probability = 0;
1016 if (e->count < 0)
1017 e->count = 0;
1018 }
1019 }
1020
1021 if (e->flags & EDGE_ABNORMAL)
1022 {
1023 /* Irritating special case - fallthru edge to the same block as abnormal
1024 edge.
1025 We can't redirect abnormal edge, but we still can split the fallthru
1026 one and create separate abnormal edge to original destination.
1027 This allows bb-reorder to make such edge non-fallthru. */
1028 gcc_assert (e->dest == target);
1029 abnormal_edge_flags = e->flags & ~(EDGE_FALLTHRU | EDGE_CAN_FALLTHRU);
1030 e->flags &= EDGE_FALLTHRU | EDGE_CAN_FALLTHRU;
1031 }
1032 else
1033 {
1034 gcc_assert (e->flags & EDGE_FALLTHRU);
1035 if (e->src == ENTRY_BLOCK_PTR)
1036 {
1037 /* We can't redirect the entry block. Create an empty block
1038 at the start of the function which we use to add the new
1039 jump. */
1040 edge tmp;
1041 edge_iterator ei;
1042 bool found = false;
1043
1044 basic_block bb = create_basic_block (BB_HEAD (e->dest), NULL, ENTRY_BLOCK_PTR);
1045
1046 /* Change the existing edge's source to be the new block, and add
1047 a new edge from the entry block to the new block. */
1048 e->src = bb;
1049 for (ei = ei_start (ENTRY_BLOCK_PTR->succs); (tmp = ei_safe_edge (ei)); )
1050 {
1051 if (tmp == e)
1052 {
1053 VEC_unordered_remove (edge, ENTRY_BLOCK_PTR->succs, ei.index);
1054 found = true;
1055 break;
1056 }
1057 else
1058 ei_next (&ei);
1059 }
1060
1061 gcc_assert (found);
1062
1063 VEC_safe_push (edge, gc, bb->succs, e);
1064 make_single_succ_edge (ENTRY_BLOCK_PTR, bb, EDGE_FALLTHRU);
1065 }
1066 }
1067
1068 if (EDGE_COUNT (e->src->succs) >= 2 || abnormal_edge_flags)
1069 {
1070 /* Create the new structures. */
1071
1072 /* If the old block ended with a tablejump, skip its table
1073 by searching forward from there. Otherwise start searching
1074 forward from the last instruction of the old block. */
1075 if (!tablejump_p (BB_END (e->src), NULL, &note))
1076 note = BB_END (e->src);
1077 note = NEXT_INSN (note);
1078
1079 jump_block = create_basic_block (note, NULL, e->src);
1080 jump_block->count = e->count;
1081 jump_block->frequency = EDGE_FREQUENCY (e);
1082 jump_block->loop_depth = target->loop_depth;
1083
1084 if (target->il.rtl->global_live_at_start)
1085 {
1086 jump_block->il.rtl->global_live_at_start = ALLOC_REG_SET (&reg_obstack);
1087 jump_block->il.rtl->global_live_at_end = ALLOC_REG_SET (&reg_obstack);
1088 COPY_REG_SET (jump_block->il.rtl->global_live_at_start,
1089 target->il.rtl->global_live_at_start);
1090 COPY_REG_SET (jump_block->il.rtl->global_live_at_end,
1091 target->il.rtl->global_live_at_start);
1092 }
1093
1094 /* Make sure new block ends up in correct hot/cold section. */
1095
1096 BB_COPY_PARTITION (jump_block, e->src);
1097 if (flag_reorder_blocks_and_partition
1098 && targetm.have_named_sections
1099 && JUMP_P (BB_END (jump_block))
1100 && !any_condjump_p (BB_END (jump_block))
1101 && (EDGE_SUCC (jump_block, 0)->flags & EDGE_CROSSING))
1102 REG_NOTES (BB_END (jump_block)) = gen_rtx_EXPR_LIST (REG_CROSSING_JUMP,
1103 NULL_RTX,
1104 REG_NOTES
1105 (BB_END
1106 (jump_block)));
1107
1108 /* Wire edge in. */
1109 new_edge = make_edge (e->src, jump_block, EDGE_FALLTHRU);
1110 new_edge->probability = e->probability;
1111 new_edge->count = e->count;
1112
1113 /* Redirect old edge. */
1114 redirect_edge_pred (e, jump_block);
1115 e->probability = REG_BR_PROB_BASE;
1116
1117 new_bb = jump_block;
1118 }
1119 else
1120 jump_block = e->src;
1121
1122 e->flags &= ~EDGE_FALLTHRU;
1123 if (target == EXIT_BLOCK_PTR)
1124 {
1125 #ifdef HAVE_return
1126 emit_jump_insn_after_noloc (gen_return (), BB_END (jump_block));
1127 #else
1128 gcc_unreachable ();
1129 #endif
1130 }
1131 else
1132 {
1133 rtx label = block_label (target);
1134 emit_jump_insn_after_noloc (gen_jump (label), BB_END (jump_block));
1135 JUMP_LABEL (BB_END (jump_block)) = label;
1136 LABEL_NUSES (label)++;
1137 }
1138
1139 emit_barrier_after (BB_END (jump_block));
1140 redirect_edge_succ_nodup (e, target);
1141
1142 if (abnormal_edge_flags)
1143 make_edge (src, target, abnormal_edge_flags);
1144
1145 return new_bb;
1146 }
1147
1148 /* Edge E is assumed to be fallthru edge. Emit needed jump instruction
1149 (and possibly create new basic block) to make edge non-fallthru.
1150 Return newly created BB or NULL if none. */
1151
1152 basic_block
1153 force_nonfallthru (edge e)
1154 {
1155 return force_nonfallthru_and_redirect (e, e->dest);
1156 }
1157
1158 /* Redirect edge even at the expense of creating new jump insn or
1159 basic block. Return new basic block if created, NULL otherwise.
1160 Conversion must be possible. */
1161
1162 static basic_block
1163 rtl_redirect_edge_and_branch_force (edge e, basic_block target)
1164 {
1165 if (redirect_edge_and_branch (e, target)
1166 || e->dest == target)
1167 return NULL;
1168
1169 /* In case the edge redirection failed, try to force it to be non-fallthru
1170 and redirect newly created simplejump. */
1171 e->src->flags |= BB_DIRTY;
1172 return force_nonfallthru_and_redirect (e, target);
1173 }
1174
1175 /* The given edge should potentially be a fallthru edge. If that is in
1176 fact true, delete the jump and barriers that are in the way. */
1177
1178 static void
1179 rtl_tidy_fallthru_edge (edge e)
1180 {
1181 rtx q;
1182 basic_block b = e->src, c = b->next_bb;
1183
1184 /* ??? In a late-running flow pass, other folks may have deleted basic
1185 blocks by nopping out blocks, leaving multiple BARRIERs between here
1186 and the target label. They ought to be chastised and fixed.
1187
1188 We can also wind up with a sequence of undeletable labels between
1189 one block and the next.
1190
1191 So search through a sequence of barriers, labels, and notes for
1192 the head of block C and assert that we really do fall through. */
1193
1194 for (q = NEXT_INSN (BB_END (b)); q != BB_HEAD (c); q = NEXT_INSN (q))
1195 if (INSN_P (q))
1196 return;
1197
1198 /* Remove what will soon cease being the jump insn from the source block.
1199 If block B consisted only of this single jump, turn it into a deleted
1200 note. */
1201 q = BB_END (b);
1202 if (JUMP_P (q)
1203 && onlyjump_p (q)
1204 && (any_uncondjump_p (q)
1205 || single_succ_p (b)))
1206 {
1207 #ifdef HAVE_cc0
1208 /* If this was a conditional jump, we need to also delete
1209 the insn that set cc0. */
1210 if (any_condjump_p (q) && only_sets_cc0_p (PREV_INSN (q)))
1211 q = PREV_INSN (q);
1212 #endif
1213
1214 q = PREV_INSN (q);
1215 }
1216
1217 /* Selectively unlink the sequence. */
1218 if (q != PREV_INSN (BB_HEAD (c)))
1219 delete_insn_chain (NEXT_INSN (q), PREV_INSN (BB_HEAD (c)));
1220
1221 e->flags |= EDGE_FALLTHRU;
1222 }
1223 \f
1224 /* Should move basic block BB after basic block AFTER. NIY. */
1225
1226 static bool
1227 rtl_move_block_after (basic_block bb ATTRIBUTE_UNUSED,
1228 basic_block after ATTRIBUTE_UNUSED)
1229 {
1230 return false;
1231 }
1232
1233 /* Split a (typically critical) edge. Return the new block.
1234 The edge must not be abnormal.
1235
1236 ??? The code generally expects to be called on critical edges.
1237 The case of a block ending in an unconditional jump to a
1238 block with multiple predecessors is not handled optimally. */
1239
1240 static basic_block
1241 rtl_split_edge (edge edge_in)
1242 {
1243 basic_block bb;
1244 rtx before;
1245
1246 /* Abnormal edges cannot be split. */
1247 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
1248
1249 /* We are going to place the new block in front of edge destination.
1250 Avoid existence of fallthru predecessors. */
1251 if ((edge_in->flags & EDGE_FALLTHRU) == 0)
1252 {
1253 edge e;
1254 edge_iterator ei;
1255
1256 FOR_EACH_EDGE (e, ei, edge_in->dest->preds)
1257 if (e->flags & EDGE_FALLTHRU)
1258 break;
1259
1260 if (e)
1261 force_nonfallthru (e);
1262 }
1263
1264 /* Create the basic block note. */
1265 if (edge_in->dest != EXIT_BLOCK_PTR)
1266 before = BB_HEAD (edge_in->dest);
1267 else
1268 before = NULL_RTX;
1269
1270 /* If this is a fall through edge to the exit block, the blocks might be
1271 not adjacent, and the right place is the after the source. */
1272 if (edge_in->flags & EDGE_FALLTHRU && edge_in->dest == EXIT_BLOCK_PTR)
1273 {
1274 before = NEXT_INSN (BB_END (edge_in->src));
1275 bb = create_basic_block (before, NULL, edge_in->src);
1276 BB_COPY_PARTITION (bb, edge_in->src);
1277 }
1278 else
1279 {
1280 bb = create_basic_block (before, NULL, edge_in->dest->prev_bb);
1281 /* ??? Why not edge_in->dest->prev_bb here? */
1282 BB_COPY_PARTITION (bb, edge_in->dest);
1283 }
1284
1285 /* ??? This info is likely going to be out of date very soon. */
1286 if (edge_in->dest->il.rtl->global_live_at_start)
1287 {
1288 bb->il.rtl->global_live_at_start = ALLOC_REG_SET (&reg_obstack);
1289 bb->il.rtl->global_live_at_end = ALLOC_REG_SET (&reg_obstack);
1290 COPY_REG_SET (bb->il.rtl->global_live_at_start,
1291 edge_in->dest->il.rtl->global_live_at_start);
1292 COPY_REG_SET (bb->il.rtl->global_live_at_end,
1293 edge_in->dest->il.rtl->global_live_at_start);
1294 }
1295
1296 make_single_succ_edge (bb, edge_in->dest, EDGE_FALLTHRU);
1297
1298 /* For non-fallthru edges, we must adjust the predecessor's
1299 jump instruction to target our new block. */
1300 if ((edge_in->flags & EDGE_FALLTHRU) == 0)
1301 {
1302 edge redirected = redirect_edge_and_branch (edge_in, bb);
1303 gcc_assert (redirected);
1304 }
1305 else
1306 redirect_edge_succ (edge_in, bb);
1307
1308 return bb;
1309 }
1310
1311 /* Queue instructions for insertion on an edge between two basic blocks.
1312 The new instructions and basic blocks (if any) will not appear in the
1313 CFG until commit_edge_insertions is called. */
1314
1315 void
1316 insert_insn_on_edge (rtx pattern, edge e)
1317 {
1318 /* We cannot insert instructions on an abnormal critical edge.
1319 It will be easier to find the culprit if we die now. */
1320 gcc_assert (!((e->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (e)));
1321
1322 if (e->insns.r == NULL_RTX)
1323 start_sequence ();
1324 else
1325 push_to_sequence (e->insns.r);
1326
1327 emit_insn (pattern);
1328
1329 e->insns.r = get_insns ();
1330 end_sequence ();
1331 }
1332
1333 /* Update the CFG for the instructions queued on edge E. */
1334
1335 static void
1336 commit_one_edge_insertion (edge e)
1337 {
1338 rtx before = NULL_RTX, after = NULL_RTX, insns, tmp, last;
1339 basic_block bb = NULL;
1340
1341 /* Pull the insns off the edge now since the edge might go away. */
1342 insns = e->insns.r;
1343 e->insns.r = NULL_RTX;
1344
1345 if (!before && !after)
1346 {
1347 /* Figure out where to put these things. If the destination has
1348 one predecessor, insert there. Except for the exit block. */
1349 if (single_pred_p (e->dest) && e->dest != EXIT_BLOCK_PTR)
1350 {
1351 bb = e->dest;
1352
1353 /* Get the location correct wrt a code label, and "nice" wrt
1354 a basic block note, and before everything else. */
1355 tmp = BB_HEAD (bb);
1356 if (LABEL_P (tmp))
1357 tmp = NEXT_INSN (tmp);
1358 if (NOTE_INSN_BASIC_BLOCK_P (tmp))
1359 tmp = NEXT_INSN (tmp);
1360 if (tmp == BB_HEAD (bb))
1361 before = tmp;
1362 else if (tmp)
1363 after = PREV_INSN (tmp);
1364 else
1365 after = get_last_insn ();
1366 }
1367
1368 /* If the source has one successor and the edge is not abnormal,
1369 insert there. Except for the entry block. */
1370 else if ((e->flags & EDGE_ABNORMAL) == 0
1371 && single_succ_p (e->src)
1372 && e->src != ENTRY_BLOCK_PTR)
1373 {
1374 bb = e->src;
1375
1376 /* It is possible to have a non-simple jump here. Consider a target
1377 where some forms of unconditional jumps clobber a register. This
1378 happens on the fr30 for example.
1379
1380 We know this block has a single successor, so we can just emit
1381 the queued insns before the jump. */
1382 if (JUMP_P (BB_END (bb)))
1383 before = BB_END (bb);
1384 else
1385 {
1386 /* We'd better be fallthru, or we've lost track of
1387 what's what. */
1388 gcc_assert (e->flags & EDGE_FALLTHRU);
1389
1390 after = BB_END (bb);
1391 }
1392 }
1393 /* Otherwise we must split the edge. */
1394 else
1395 {
1396 bb = split_edge (e);
1397 after = BB_END (bb);
1398
1399 if (flag_reorder_blocks_and_partition
1400 && targetm.have_named_sections
1401 && e->src != ENTRY_BLOCK_PTR
1402 && BB_PARTITION (e->src) == BB_COLD_PARTITION
1403 && !(e->flags & EDGE_CROSSING))
1404 {
1405 rtx bb_note, cur_insn;
1406
1407 bb_note = NULL_RTX;
1408 for (cur_insn = BB_HEAD (bb); cur_insn != NEXT_INSN (BB_END (bb));
1409 cur_insn = NEXT_INSN (cur_insn))
1410 if (NOTE_P (cur_insn)
1411 && NOTE_LINE_NUMBER (cur_insn) == NOTE_INSN_BASIC_BLOCK)
1412 {
1413 bb_note = cur_insn;
1414 break;
1415 }
1416
1417 if (JUMP_P (BB_END (bb))
1418 && !any_condjump_p (BB_END (bb))
1419 && (single_succ_edge (bb)->flags & EDGE_CROSSING))
1420 REG_NOTES (BB_END (bb)) = gen_rtx_EXPR_LIST
1421 (REG_CROSSING_JUMP, NULL_RTX, REG_NOTES (BB_END (bb)));
1422 }
1423 }
1424 }
1425
1426 /* Now that we've found the spot, do the insertion. */
1427
1428 if (before)
1429 {
1430 emit_insn_before_noloc (insns, before);
1431 last = prev_nonnote_insn (before);
1432 }
1433 else
1434 last = emit_insn_after_noloc (insns, after);
1435
1436 if (returnjump_p (last))
1437 {
1438 /* ??? Remove all outgoing edges from BB and add one for EXIT.
1439 This is not currently a problem because this only happens
1440 for the (single) epilogue, which already has a fallthru edge
1441 to EXIT. */
1442
1443 e = single_succ_edge (bb);
1444 gcc_assert (e->dest == EXIT_BLOCK_PTR
1445 && single_succ_p (bb) && (e->flags & EDGE_FALLTHRU));
1446
1447 e->flags &= ~EDGE_FALLTHRU;
1448 emit_barrier_after (last);
1449
1450 if (before)
1451 delete_insn (before);
1452 }
1453 else
1454 gcc_assert (!JUMP_P (last));
1455
1456 /* Mark the basic block for find_many_sub_basic_blocks. */
1457 if (current_ir_type () != IR_RTL_CFGLAYOUT)
1458 bb->aux = &bb->aux;
1459 }
1460
1461 /* Update the CFG for all queued instructions. */
1462
1463 void
1464 commit_edge_insertions (void)
1465 {
1466 basic_block bb;
1467 sbitmap blocks;
1468 bool changed = false;
1469
1470 #ifdef ENABLE_CHECKING
1471 verify_flow_info ();
1472 #endif
1473
1474 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
1475 {
1476 edge e;
1477 edge_iterator ei;
1478
1479 FOR_EACH_EDGE (e, ei, bb->succs)
1480 if (e->insns.r)
1481 {
1482 changed = true;
1483 commit_one_edge_insertion (e);
1484 }
1485 }
1486
1487 if (!changed)
1488 return;
1489
1490 /* In the old rtl CFG API, it was OK to insert control flow on an
1491 edge, apparently? In cfglayout mode, this will *not* work, and
1492 the caller is responsible for making sure that control flow is
1493 valid at all times. */
1494 if (current_ir_type () == IR_RTL_CFGLAYOUT)
1495 return;
1496
1497 blocks = sbitmap_alloc (last_basic_block);
1498 sbitmap_zero (blocks);
1499 FOR_EACH_BB (bb)
1500 if (bb->aux)
1501 {
1502 SET_BIT (blocks, bb->index);
1503 /* Check for forgotten bb->aux values before commit_edge_insertions
1504 call. */
1505 gcc_assert (bb->aux == &bb->aux);
1506 bb->aux = NULL;
1507 }
1508 find_many_sub_basic_blocks (blocks);
1509 sbitmap_free (blocks);
1510 }
1511 \f
1512 /* Print out RTL-specific basic block information (live information
1513 at start and end). */
1514
1515 static void
1516 rtl_dump_bb (basic_block bb, FILE *outf, int indent)
1517 {
1518 rtx insn;
1519 rtx last;
1520 char *s_indent;
1521
1522 s_indent = alloca ((size_t) indent + 1);
1523 memset (s_indent, ' ', (size_t) indent);
1524 s_indent[indent] = '\0';
1525
1526 fprintf (outf, ";;%s Registers live at start: ", s_indent);
1527 dump_regset (bb->il.rtl->global_live_at_start, outf);
1528 putc ('\n', outf);
1529
1530 for (insn = BB_HEAD (bb), last = NEXT_INSN (BB_END (bb)); insn != last;
1531 insn = NEXT_INSN (insn))
1532 print_rtl_single (outf, insn);
1533
1534 fprintf (outf, ";;%s Registers live at end: ", s_indent);
1535 dump_regset (bb->il.rtl->global_live_at_end, outf);
1536 putc ('\n', outf);
1537 }
1538 \f
1539 /* Like print_rtl, but also print out live information for the start of each
1540 basic block. */
1541
1542 void
1543 print_rtl_with_bb (FILE *outf, rtx rtx_first)
1544 {
1545 rtx tmp_rtx;
1546
1547 if (rtx_first == 0)
1548 fprintf (outf, "(nil)\n");
1549 else
1550 {
1551 enum bb_state { NOT_IN_BB, IN_ONE_BB, IN_MULTIPLE_BB };
1552 int max_uid = get_max_uid ();
1553 basic_block *start = XCNEWVEC (basic_block, max_uid);
1554 basic_block *end = XCNEWVEC (basic_block, max_uid);
1555 enum bb_state *in_bb_p = XCNEWVEC (enum bb_state, max_uid);
1556
1557 basic_block bb;
1558
1559 FOR_EACH_BB_REVERSE (bb)
1560 {
1561 rtx x;
1562
1563 start[INSN_UID (BB_HEAD (bb))] = bb;
1564 end[INSN_UID (BB_END (bb))] = bb;
1565 for (x = BB_HEAD (bb); x != NULL_RTX; x = NEXT_INSN (x))
1566 {
1567 enum bb_state state = IN_MULTIPLE_BB;
1568
1569 if (in_bb_p[INSN_UID (x)] == NOT_IN_BB)
1570 state = IN_ONE_BB;
1571 in_bb_p[INSN_UID (x)] = state;
1572
1573 if (x == BB_END (bb))
1574 break;
1575 }
1576 }
1577
1578 for (tmp_rtx = rtx_first; NULL != tmp_rtx; tmp_rtx = NEXT_INSN (tmp_rtx))
1579 {
1580 int did_output;
1581 edge_iterator ei;
1582 edge e;
1583
1584 if ((bb = start[INSN_UID (tmp_rtx)]) != NULL)
1585 {
1586 fprintf (outf, ";; Start of basic block %d, registers live:",
1587 bb->index);
1588 dump_regset (bb->il.rtl->global_live_at_start, outf);
1589 putc ('\n', outf);
1590 FOR_EACH_EDGE (e, ei, bb->preds)
1591 {
1592 fputs (";; Pred edge ", outf);
1593 dump_edge_info (outf, e, 0);
1594 fputc ('\n', outf);
1595 }
1596 }
1597
1598 if (in_bb_p[INSN_UID (tmp_rtx)] == NOT_IN_BB
1599 && !NOTE_P (tmp_rtx)
1600 && !BARRIER_P (tmp_rtx))
1601 fprintf (outf, ";; Insn is not within a basic block\n");
1602 else if (in_bb_p[INSN_UID (tmp_rtx)] == IN_MULTIPLE_BB)
1603 fprintf (outf, ";; Insn is in multiple basic blocks\n");
1604
1605 did_output = print_rtl_single (outf, tmp_rtx);
1606
1607 if ((bb = end[INSN_UID (tmp_rtx)]) != NULL)
1608 {
1609 fprintf (outf, ";; End of basic block %d, registers live:",
1610 bb->index);
1611 dump_regset (bb->il.rtl->global_live_at_end, outf);
1612 putc ('\n', outf);
1613 FOR_EACH_EDGE (e, ei, bb->succs)
1614 {
1615 fputs (";; Succ edge ", outf);
1616 dump_edge_info (outf, e, 1);
1617 fputc ('\n', outf);
1618 }
1619 }
1620
1621 if (did_output)
1622 putc ('\n', outf);
1623 }
1624
1625 free (start);
1626 free (end);
1627 free (in_bb_p);
1628 }
1629
1630 if (current_function_epilogue_delay_list != 0)
1631 {
1632 fprintf (outf, "\n;; Insns in epilogue delay list:\n\n");
1633 for (tmp_rtx = current_function_epilogue_delay_list; tmp_rtx != 0;
1634 tmp_rtx = XEXP (tmp_rtx, 1))
1635 print_rtl_single (outf, XEXP (tmp_rtx, 0));
1636 }
1637 }
1638 \f
1639 void
1640 update_br_prob_note (basic_block bb)
1641 {
1642 rtx note;
1643 if (!JUMP_P (BB_END (bb)))
1644 return;
1645 note = find_reg_note (BB_END (bb), REG_BR_PROB, NULL_RTX);
1646 if (!note || INTVAL (XEXP (note, 0)) == BRANCH_EDGE (bb)->probability)
1647 return;
1648 XEXP (note, 0) = GEN_INT (BRANCH_EDGE (bb)->probability);
1649 }
1650
1651 /* Get the last insn associated with block BB (that includes barriers and
1652 tablejumps after BB). */
1653 rtx
1654 get_last_bb_insn (basic_block bb)
1655 {
1656 rtx tmp;
1657 rtx end = BB_END (bb);
1658
1659 /* Include any jump table following the basic block. */
1660 if (tablejump_p (end, NULL, &tmp))
1661 end = tmp;
1662
1663 /* Include any barriers that may follow the basic block. */
1664 tmp = next_nonnote_insn (end);
1665 while (tmp && BARRIER_P (tmp))
1666 {
1667 end = tmp;
1668 tmp = next_nonnote_insn (end);
1669 }
1670
1671 return end;
1672 }
1673 \f
1674 /* Verify the CFG and RTL consistency common for both underlying RTL and
1675 cfglayout RTL.
1676
1677 Currently it does following checks:
1678
1679 - test head/end pointers
1680 - overlapping of basic blocks
1681 - headers of basic blocks (the NOTE_INSN_BASIC_BLOCK note)
1682 - tails of basic blocks (ensure that boundary is necessary)
1683 - scans body of the basic block for JUMP_INSN, CODE_LABEL
1684 and NOTE_INSN_BASIC_BLOCK
1685 - verify that no fall_thru edge crosses hot/cold partition boundaries
1686
1687 In future it can be extended check a lot of other stuff as well
1688 (reachability of basic blocks, life information, etc. etc.). */
1689
1690 static int
1691 rtl_verify_flow_info_1 (void)
1692 {
1693 const int max_uid = get_max_uid ();
1694 rtx last_head = get_last_insn ();
1695 basic_block *bb_info;
1696 rtx x;
1697 int err = 0;
1698 basic_block bb;
1699
1700 bb_info = XCNEWVEC (basic_block, max_uid);
1701
1702 FOR_EACH_BB_REVERSE (bb)
1703 {
1704 rtx head = BB_HEAD (bb);
1705 rtx end = BB_END (bb);
1706
1707 /* Verify the end of the basic block is in the INSN chain. */
1708 for (x = last_head; x != NULL_RTX; x = PREV_INSN (x))
1709 if (x == end)
1710 break;
1711
1712 if (!(bb->flags & BB_RTL))
1713 {
1714 error ("BB_RTL flag not set for block %d", bb->index);
1715 err = 1;
1716 }
1717
1718 if (!x)
1719 {
1720 error ("end insn %d for block %d not found in the insn stream",
1721 INSN_UID (end), bb->index);
1722 err = 1;
1723 }
1724
1725 /* Work backwards from the end to the head of the basic block
1726 to verify the head is in the RTL chain. */
1727 for (; x != NULL_RTX; x = PREV_INSN (x))
1728 {
1729 /* While walking over the insn chain, verify insns appear
1730 in only one basic block and initialize the BB_INFO array
1731 used by other passes. */
1732 if (bb_info[INSN_UID (x)] != NULL)
1733 {
1734 error ("insn %d is in multiple basic blocks (%d and %d)",
1735 INSN_UID (x), bb->index, bb_info[INSN_UID (x)]->index);
1736 err = 1;
1737 }
1738
1739 bb_info[INSN_UID (x)] = bb;
1740
1741 if (x == head)
1742 break;
1743 }
1744 if (!x)
1745 {
1746 error ("head insn %d for block %d not found in the insn stream",
1747 INSN_UID (head), bb->index);
1748 err = 1;
1749 }
1750
1751 last_head = x;
1752 }
1753
1754 /* Now check the basic blocks (boundaries etc.) */
1755 FOR_EACH_BB_REVERSE (bb)
1756 {
1757 int n_fallthru = 0, n_eh = 0, n_call = 0, n_abnormal = 0, n_branch = 0;
1758 edge e, fallthru = NULL;
1759 rtx note;
1760 edge_iterator ei;
1761
1762 if (JUMP_P (BB_END (bb))
1763 && (note = find_reg_note (BB_END (bb), REG_BR_PROB, NULL_RTX))
1764 && EDGE_COUNT (bb->succs) >= 2
1765 && any_condjump_p (BB_END (bb)))
1766 {
1767 if (INTVAL (XEXP (note, 0)) != BRANCH_EDGE (bb)->probability
1768 && profile_status != PROFILE_ABSENT)
1769 {
1770 error ("verify_flow_info: REG_BR_PROB does not match cfg %wi %i",
1771 INTVAL (XEXP (note, 0)), BRANCH_EDGE (bb)->probability);
1772 err = 1;
1773 }
1774 }
1775 FOR_EACH_EDGE (e, ei, bb->succs)
1776 {
1777 if (e->flags & EDGE_FALLTHRU)
1778 {
1779 n_fallthru++, fallthru = e;
1780 if ((e->flags & EDGE_CROSSING)
1781 || (BB_PARTITION (e->src) != BB_PARTITION (e->dest)
1782 && e->src != ENTRY_BLOCK_PTR
1783 && e->dest != EXIT_BLOCK_PTR))
1784 {
1785 error ("fallthru edge crosses section boundary (bb %i)",
1786 e->src->index);
1787 err = 1;
1788 }
1789 }
1790
1791 if ((e->flags & ~(EDGE_DFS_BACK
1792 | EDGE_CAN_FALLTHRU
1793 | EDGE_IRREDUCIBLE_LOOP
1794 | EDGE_LOOP_EXIT
1795 | EDGE_CROSSING)) == 0)
1796 n_branch++;
1797
1798 if (e->flags & EDGE_ABNORMAL_CALL)
1799 n_call++;
1800
1801 if (e->flags & EDGE_EH)
1802 n_eh++;
1803 else if (e->flags & EDGE_ABNORMAL)
1804 n_abnormal++;
1805 }
1806
1807 if (n_eh && GET_CODE (PATTERN (BB_END (bb))) != RESX
1808 && !find_reg_note (BB_END (bb), REG_EH_REGION, NULL_RTX))
1809 {
1810 error ("missing REG_EH_REGION note in the end of bb %i", bb->index);
1811 err = 1;
1812 }
1813 if (n_branch
1814 && (!JUMP_P (BB_END (bb))
1815 || (n_branch > 1 && (any_uncondjump_p (BB_END (bb))
1816 || any_condjump_p (BB_END (bb))))))
1817 {
1818 error ("too many outgoing branch edges from bb %i", bb->index);
1819 err = 1;
1820 }
1821 if (n_fallthru && any_uncondjump_p (BB_END (bb)))
1822 {
1823 error ("fallthru edge after unconditional jump %i", bb->index);
1824 err = 1;
1825 }
1826 if (n_branch != 1 && any_uncondjump_p (BB_END (bb)))
1827 {
1828 error ("wrong amount of branch edges after unconditional jump %i", bb->index);
1829 err = 1;
1830 }
1831 if (n_branch != 1 && any_condjump_p (BB_END (bb))
1832 && JUMP_LABEL (BB_END (bb)) != BB_HEAD (fallthru->dest))
1833 {
1834 error ("wrong amount of branch edges after conditional jump %i",
1835 bb->index);
1836 err = 1;
1837 }
1838 if (n_call && !CALL_P (BB_END (bb)))
1839 {
1840 error ("call edges for non-call insn in bb %i", bb->index);
1841 err = 1;
1842 }
1843 if (n_abnormal
1844 && (!CALL_P (BB_END (bb)) && n_call != n_abnormal)
1845 && (!JUMP_P (BB_END (bb))
1846 || any_condjump_p (BB_END (bb))
1847 || any_uncondjump_p (BB_END (bb))))
1848 {
1849 error ("abnormal edges for no purpose in bb %i", bb->index);
1850 err = 1;
1851 }
1852
1853 for (x = BB_HEAD (bb); x != NEXT_INSN (BB_END (bb)); x = NEXT_INSN (x))
1854 /* We may have a barrier inside a basic block before dead code
1855 elimination. There is no BLOCK_FOR_INSN field in a barrier. */
1856 if (!BARRIER_P (x) && BLOCK_FOR_INSN (x) != bb)
1857 {
1858 debug_rtx (x);
1859 if (! BLOCK_FOR_INSN (x))
1860 error
1861 ("insn %d inside basic block %d but block_for_insn is NULL",
1862 INSN_UID (x), bb->index);
1863 else
1864 error
1865 ("insn %d inside basic block %d but block_for_insn is %i",
1866 INSN_UID (x), bb->index, BLOCK_FOR_INSN (x)->index);
1867
1868 err = 1;
1869 }
1870
1871 /* OK pointers are correct. Now check the header of basic
1872 block. It ought to contain optional CODE_LABEL followed
1873 by NOTE_BASIC_BLOCK. */
1874 x = BB_HEAD (bb);
1875 if (LABEL_P (x))
1876 {
1877 if (BB_END (bb) == x)
1878 {
1879 error ("NOTE_INSN_BASIC_BLOCK is missing for block %d",
1880 bb->index);
1881 err = 1;
1882 }
1883
1884 x = NEXT_INSN (x);
1885 }
1886
1887 if (!NOTE_INSN_BASIC_BLOCK_P (x) || NOTE_BASIC_BLOCK (x) != bb)
1888 {
1889 error ("NOTE_INSN_BASIC_BLOCK is missing for block %d",
1890 bb->index);
1891 err = 1;
1892 }
1893
1894 if (BB_END (bb) == x)
1895 /* Do checks for empty blocks here. */
1896 ;
1897 else
1898 for (x = NEXT_INSN (x); x; x = NEXT_INSN (x))
1899 {
1900 if (NOTE_INSN_BASIC_BLOCK_P (x))
1901 {
1902 error ("NOTE_INSN_BASIC_BLOCK %d in middle of basic block %d",
1903 INSN_UID (x), bb->index);
1904 err = 1;
1905 }
1906
1907 if (x == BB_END (bb))
1908 break;
1909
1910 if (control_flow_insn_p (x))
1911 {
1912 error ("in basic block %d:", bb->index);
1913 fatal_insn ("flow control insn inside a basic block", x);
1914 }
1915 }
1916 }
1917
1918 /* Clean up. */
1919 free (bb_info);
1920 return err;
1921 }
1922
1923 /* Verify the CFG and RTL consistency common for both underlying RTL and
1924 cfglayout RTL.
1925
1926 Currently it does following checks:
1927 - all checks of rtl_verify_flow_info_1
1928 - check that all insns are in the basic blocks
1929 (except the switch handling code, barriers and notes)
1930 - check that all returns are followed by barriers
1931 - check that all fallthru edge points to the adjacent blocks. */
1932 static int
1933 rtl_verify_flow_info (void)
1934 {
1935 basic_block bb;
1936 int err = rtl_verify_flow_info_1 ();
1937 rtx x;
1938 int num_bb_notes;
1939 const rtx rtx_first = get_insns ();
1940 basic_block last_bb_seen = ENTRY_BLOCK_PTR, curr_bb = NULL;
1941
1942 FOR_EACH_BB_REVERSE (bb)
1943 {
1944 edge e;
1945 edge_iterator ei;
1946
1947 if (bb->predictions)
1948 {
1949 error ("bb prediction set for block %i, but it is not used in RTL land", bb->index);
1950 err = 1;
1951 }
1952
1953 FOR_EACH_EDGE (e, ei, bb->succs)
1954 if (e->flags & EDGE_FALLTHRU)
1955 break;
1956 if (!e)
1957 {
1958 rtx insn;
1959
1960 /* Ensure existence of barrier in BB with no fallthru edges. */
1961 for (insn = BB_END (bb); !insn || !BARRIER_P (insn);
1962 insn = NEXT_INSN (insn))
1963 if (!insn
1964 || (NOTE_P (insn)
1965 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_BASIC_BLOCK))
1966 {
1967 error ("missing barrier after block %i", bb->index);
1968 err = 1;
1969 break;
1970 }
1971 }
1972 else if (e->src != ENTRY_BLOCK_PTR
1973 && e->dest != EXIT_BLOCK_PTR)
1974 {
1975 rtx insn;
1976
1977 if (e->src->next_bb != e->dest)
1978 {
1979 error
1980 ("verify_flow_info: Incorrect blocks for fallthru %i->%i",
1981 e->src->index, e->dest->index);
1982 err = 1;
1983 }
1984 else
1985 for (insn = NEXT_INSN (BB_END (e->src)); insn != BB_HEAD (e->dest);
1986 insn = NEXT_INSN (insn))
1987 if (BARRIER_P (insn) || INSN_P (insn))
1988 {
1989 error ("verify_flow_info: Incorrect fallthru %i->%i",
1990 e->src->index, e->dest->index);
1991 fatal_insn ("wrong insn in the fallthru edge", insn);
1992 err = 1;
1993 }
1994 }
1995 }
1996
1997 num_bb_notes = 0;
1998 last_bb_seen = ENTRY_BLOCK_PTR;
1999
2000 for (x = rtx_first; x; x = NEXT_INSN (x))
2001 {
2002 if (NOTE_INSN_BASIC_BLOCK_P (x))
2003 {
2004 bb = NOTE_BASIC_BLOCK (x);
2005
2006 num_bb_notes++;
2007 if (bb != last_bb_seen->next_bb)
2008 internal_error ("basic blocks not laid down consecutively");
2009
2010 curr_bb = last_bb_seen = bb;
2011 }
2012
2013 if (!curr_bb)
2014 {
2015 switch (GET_CODE (x))
2016 {
2017 case BARRIER:
2018 case NOTE:
2019 break;
2020
2021 case CODE_LABEL:
2022 /* An addr_vec is placed outside any basic block. */
2023 if (NEXT_INSN (x)
2024 && JUMP_P (NEXT_INSN (x))
2025 && (GET_CODE (PATTERN (NEXT_INSN (x))) == ADDR_DIFF_VEC
2026 || GET_CODE (PATTERN (NEXT_INSN (x))) == ADDR_VEC))
2027 x = NEXT_INSN (x);
2028
2029 /* But in any case, non-deletable labels can appear anywhere. */
2030 break;
2031
2032 default:
2033 fatal_insn ("insn outside basic block", x);
2034 }
2035 }
2036
2037 if (JUMP_P (x)
2038 && returnjump_p (x) && ! condjump_p (x)
2039 && ! (NEXT_INSN (x) && BARRIER_P (NEXT_INSN (x))))
2040 fatal_insn ("return not followed by barrier", x);
2041 if (curr_bb && x == BB_END (curr_bb))
2042 curr_bb = NULL;
2043 }
2044
2045 if (num_bb_notes != n_basic_blocks - NUM_FIXED_BLOCKS)
2046 internal_error
2047 ("number of bb notes in insn chain (%d) != n_basic_blocks (%d)",
2048 num_bb_notes, n_basic_blocks);
2049
2050 return err;
2051 }
2052 \f
2053 /* Assume that the preceding pass has possibly eliminated jump instructions
2054 or converted the unconditional jumps. Eliminate the edges from CFG.
2055 Return true if any edges are eliminated. */
2056
2057 bool
2058 purge_dead_edges (basic_block bb)
2059 {
2060 edge e;
2061 rtx insn = BB_END (bb), note;
2062 bool purged = false;
2063 bool found;
2064 edge_iterator ei;
2065
2066 /* If this instruction cannot trap, remove REG_EH_REGION notes. */
2067 if (NONJUMP_INSN_P (insn)
2068 && (note = find_reg_note (insn, REG_EH_REGION, NULL)))
2069 {
2070 rtx eqnote;
2071
2072 if (! may_trap_p (PATTERN (insn))
2073 || ((eqnote = find_reg_equal_equiv_note (insn))
2074 && ! may_trap_p (XEXP (eqnote, 0))))
2075 remove_note (insn, note);
2076 }
2077
2078 /* Cleanup abnormal edges caused by exceptions or non-local gotos. */
2079 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
2080 {
2081 /* There are three types of edges we need to handle correctly here: EH
2082 edges, abnormal call EH edges, and abnormal call non-EH edges. The
2083 latter can appear when nonlocal gotos are used. */
2084 if (e->flags & EDGE_EH)
2085 {
2086 if (can_throw_internal (BB_END (bb))
2087 /* If this is a call edge, verify that this is a call insn. */
2088 && (! (e->flags & EDGE_ABNORMAL_CALL)
2089 || CALL_P (BB_END (bb))))
2090 {
2091 ei_next (&ei);
2092 continue;
2093 }
2094 }
2095 else if (e->flags & EDGE_ABNORMAL_CALL)
2096 {
2097 if (CALL_P (BB_END (bb))
2098 && (! (note = find_reg_note (insn, REG_EH_REGION, NULL))
2099 || INTVAL (XEXP (note, 0)) >= 0))
2100 {
2101 ei_next (&ei);
2102 continue;
2103 }
2104 }
2105 else
2106 {
2107 ei_next (&ei);
2108 continue;
2109 }
2110
2111 remove_edge (e);
2112 bb->flags |= BB_DIRTY;
2113 purged = true;
2114 }
2115
2116 if (JUMP_P (insn))
2117 {
2118 rtx note;
2119 edge b,f;
2120 edge_iterator ei;
2121
2122 /* We do care only about conditional jumps and simplejumps. */
2123 if (!any_condjump_p (insn)
2124 && !returnjump_p (insn)
2125 && !simplejump_p (insn))
2126 return purged;
2127
2128 /* Branch probability/prediction notes are defined only for
2129 condjumps. We've possibly turned condjump into simplejump. */
2130 if (simplejump_p (insn))
2131 {
2132 note = find_reg_note (insn, REG_BR_PROB, NULL);
2133 if (note)
2134 remove_note (insn, note);
2135 while ((note = find_reg_note (insn, REG_BR_PRED, NULL)))
2136 remove_note (insn, note);
2137 }
2138
2139 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
2140 {
2141 /* Avoid abnormal flags to leak from computed jumps turned
2142 into simplejumps. */
2143
2144 e->flags &= ~EDGE_ABNORMAL;
2145
2146 /* See if this edge is one we should keep. */
2147 if ((e->flags & EDGE_FALLTHRU) && any_condjump_p (insn))
2148 /* A conditional jump can fall through into the next
2149 block, so we should keep the edge. */
2150 {
2151 ei_next (&ei);
2152 continue;
2153 }
2154 else if (e->dest != EXIT_BLOCK_PTR
2155 && BB_HEAD (e->dest) == JUMP_LABEL (insn))
2156 /* If the destination block is the target of the jump,
2157 keep the edge. */
2158 {
2159 ei_next (&ei);
2160 continue;
2161 }
2162 else if (e->dest == EXIT_BLOCK_PTR && returnjump_p (insn))
2163 /* If the destination block is the exit block, and this
2164 instruction is a return, then keep the edge. */
2165 {
2166 ei_next (&ei);
2167 continue;
2168 }
2169 else if ((e->flags & EDGE_EH) && can_throw_internal (insn))
2170 /* Keep the edges that correspond to exceptions thrown by
2171 this instruction and rematerialize the EDGE_ABNORMAL
2172 flag we just cleared above. */
2173 {
2174 e->flags |= EDGE_ABNORMAL;
2175 ei_next (&ei);
2176 continue;
2177 }
2178
2179 /* We do not need this edge. */
2180 bb->flags |= BB_DIRTY;
2181 purged = true;
2182 remove_edge (e);
2183 }
2184
2185 if (EDGE_COUNT (bb->succs) == 0 || !purged)
2186 return purged;
2187
2188 if (dump_file)
2189 fprintf (dump_file, "Purged edges from bb %i\n", bb->index);
2190
2191 if (!optimize)
2192 return purged;
2193
2194 /* Redistribute probabilities. */
2195 if (single_succ_p (bb))
2196 {
2197 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
2198 single_succ_edge (bb)->count = bb->count;
2199 }
2200 else
2201 {
2202 note = find_reg_note (insn, REG_BR_PROB, NULL);
2203 if (!note)
2204 return purged;
2205
2206 b = BRANCH_EDGE (bb);
2207 f = FALLTHRU_EDGE (bb);
2208 b->probability = INTVAL (XEXP (note, 0));
2209 f->probability = REG_BR_PROB_BASE - b->probability;
2210 b->count = bb->count * b->probability / REG_BR_PROB_BASE;
2211 f->count = bb->count * f->probability / REG_BR_PROB_BASE;
2212 }
2213
2214 return purged;
2215 }
2216 else if (CALL_P (insn) && SIBLING_CALL_P (insn))
2217 {
2218 /* First, there should not be any EH or ABCALL edges resulting
2219 from non-local gotos and the like. If there were, we shouldn't
2220 have created the sibcall in the first place. Second, there
2221 should of course never have been a fallthru edge. */
2222 gcc_assert (single_succ_p (bb));
2223 gcc_assert (single_succ_edge (bb)->flags
2224 == (EDGE_SIBCALL | EDGE_ABNORMAL));
2225
2226 return 0;
2227 }
2228
2229 /* If we don't see a jump insn, we don't know exactly why the block would
2230 have been broken at this point. Look for a simple, non-fallthru edge,
2231 as these are only created by conditional branches. If we find such an
2232 edge we know that there used to be a jump here and can then safely
2233 remove all non-fallthru edges. */
2234 found = false;
2235 FOR_EACH_EDGE (e, ei, bb->succs)
2236 if (! (e->flags & (EDGE_COMPLEX | EDGE_FALLTHRU)))
2237 {
2238 found = true;
2239 break;
2240 }
2241
2242 if (!found)
2243 return purged;
2244
2245 /* Remove all but the fake and fallthru edges. The fake edge may be
2246 the only successor for this block in the case of noreturn
2247 calls. */
2248 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
2249 {
2250 if (!(e->flags & (EDGE_FALLTHRU | EDGE_FAKE)))
2251 {
2252 bb->flags |= BB_DIRTY;
2253 remove_edge (e);
2254 purged = true;
2255 }
2256 else
2257 ei_next (&ei);
2258 }
2259
2260 gcc_assert (single_succ_p (bb));
2261
2262 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
2263 single_succ_edge (bb)->count = bb->count;
2264
2265 if (dump_file)
2266 fprintf (dump_file, "Purged non-fallthru edges from bb %i\n",
2267 bb->index);
2268 return purged;
2269 }
2270
2271 /* Search all basic blocks for potentially dead edges and purge them. Return
2272 true if some edge has been eliminated. */
2273
2274 bool
2275 purge_all_dead_edges (void)
2276 {
2277 int purged = false;
2278 basic_block bb;
2279
2280 FOR_EACH_BB (bb)
2281 {
2282 bool purged_here = purge_dead_edges (bb);
2283
2284 purged |= purged_here;
2285 }
2286
2287 return purged;
2288 }
2289
2290 /* Same as split_block but update cfg_layout structures. */
2291
2292 static basic_block
2293 cfg_layout_split_block (basic_block bb, void *insnp)
2294 {
2295 rtx insn = insnp;
2296 basic_block new_bb = rtl_split_block (bb, insn);
2297
2298 new_bb->il.rtl->footer = bb->il.rtl->footer;
2299 bb->il.rtl->footer = NULL;
2300
2301 return new_bb;
2302 }
2303
2304
2305 /* Redirect Edge to DEST. */
2306 static edge
2307 cfg_layout_redirect_edge_and_branch (edge e, basic_block dest)
2308 {
2309 basic_block src = e->src;
2310 edge ret;
2311
2312 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
2313 return NULL;
2314
2315 if (e->dest == dest)
2316 return e;
2317
2318 if (e->src != ENTRY_BLOCK_PTR
2319 && (ret = try_redirect_by_replacing_jump (e, dest, true)))
2320 {
2321 src->flags |= BB_DIRTY;
2322 return ret;
2323 }
2324
2325 if (e->src == ENTRY_BLOCK_PTR
2326 && (e->flags & EDGE_FALLTHRU) && !(e->flags & EDGE_COMPLEX))
2327 {
2328 if (dump_file)
2329 fprintf (dump_file, "Redirecting entry edge from bb %i to %i\n",
2330 e->src->index, dest->index);
2331
2332 e->src->flags |= BB_DIRTY;
2333 redirect_edge_succ (e, dest);
2334 return e;
2335 }
2336
2337 /* Redirect_edge_and_branch may decide to turn branch into fallthru edge
2338 in the case the basic block appears to be in sequence. Avoid this
2339 transformation. */
2340
2341 if (e->flags & EDGE_FALLTHRU)
2342 {
2343 /* Redirect any branch edges unified with the fallthru one. */
2344 if (JUMP_P (BB_END (src))
2345 && label_is_jump_target_p (BB_HEAD (e->dest),
2346 BB_END (src)))
2347 {
2348 edge redirected;
2349
2350 if (dump_file)
2351 fprintf (dump_file, "Fallthru edge unified with branch "
2352 "%i->%i redirected to %i\n",
2353 e->src->index, e->dest->index, dest->index);
2354 e->flags &= ~EDGE_FALLTHRU;
2355 redirected = redirect_branch_edge (e, dest);
2356 gcc_assert (redirected);
2357 e->flags |= EDGE_FALLTHRU;
2358 e->src->flags |= BB_DIRTY;
2359 return e;
2360 }
2361 /* In case we are redirecting fallthru edge to the branch edge
2362 of conditional jump, remove it. */
2363 if (EDGE_COUNT (src->succs) == 2)
2364 {
2365 /* Find the edge that is different from E. */
2366 edge s = EDGE_SUCC (src, EDGE_SUCC (src, 0) == e);
2367
2368 if (s->dest == dest
2369 && any_condjump_p (BB_END (src))
2370 && onlyjump_p (BB_END (src)))
2371 delete_insn (BB_END (src));
2372 }
2373 ret = redirect_edge_succ_nodup (e, dest);
2374 if (dump_file)
2375 fprintf (dump_file, "Fallthru edge %i->%i redirected to %i\n",
2376 e->src->index, e->dest->index, dest->index);
2377 }
2378 else
2379 ret = redirect_branch_edge (e, dest);
2380
2381 /* We don't want simplejumps in the insn stream during cfglayout. */
2382 gcc_assert (!simplejump_p (BB_END (src)));
2383
2384 src->flags |= BB_DIRTY;
2385 return ret;
2386 }
2387
2388 /* Simple wrapper as we always can redirect fallthru edges. */
2389 static basic_block
2390 cfg_layout_redirect_edge_and_branch_force (edge e, basic_block dest)
2391 {
2392 edge redirected = cfg_layout_redirect_edge_and_branch (e, dest);
2393
2394 gcc_assert (redirected);
2395 return NULL;
2396 }
2397
2398 /* Same as delete_basic_block but update cfg_layout structures. */
2399
2400 static void
2401 cfg_layout_delete_block (basic_block bb)
2402 {
2403 rtx insn, next, prev = PREV_INSN (BB_HEAD (bb)), *to, remaints;
2404
2405 if (bb->il.rtl->header)
2406 {
2407 next = BB_HEAD (bb);
2408 if (prev)
2409 NEXT_INSN (prev) = bb->il.rtl->header;
2410 else
2411 set_first_insn (bb->il.rtl->header);
2412 PREV_INSN (bb->il.rtl->header) = prev;
2413 insn = bb->il.rtl->header;
2414 while (NEXT_INSN (insn))
2415 insn = NEXT_INSN (insn);
2416 NEXT_INSN (insn) = next;
2417 PREV_INSN (next) = insn;
2418 }
2419 next = NEXT_INSN (BB_END (bb));
2420 if (bb->il.rtl->footer)
2421 {
2422 insn = bb->il.rtl->footer;
2423 while (insn)
2424 {
2425 if (BARRIER_P (insn))
2426 {
2427 if (PREV_INSN (insn))
2428 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2429 else
2430 bb->il.rtl->footer = NEXT_INSN (insn);
2431 if (NEXT_INSN (insn))
2432 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2433 }
2434 if (LABEL_P (insn))
2435 break;
2436 insn = NEXT_INSN (insn);
2437 }
2438 if (bb->il.rtl->footer)
2439 {
2440 insn = BB_END (bb);
2441 NEXT_INSN (insn) = bb->il.rtl->footer;
2442 PREV_INSN (bb->il.rtl->footer) = insn;
2443 while (NEXT_INSN (insn))
2444 insn = NEXT_INSN (insn);
2445 NEXT_INSN (insn) = next;
2446 if (next)
2447 PREV_INSN (next) = insn;
2448 else
2449 set_last_insn (insn);
2450 }
2451 }
2452 if (bb->next_bb != EXIT_BLOCK_PTR)
2453 to = &bb->next_bb->il.rtl->header;
2454 else
2455 to = &cfg_layout_function_footer;
2456
2457 rtl_delete_block (bb);
2458
2459 if (prev)
2460 prev = NEXT_INSN (prev);
2461 else
2462 prev = get_insns ();
2463 if (next)
2464 next = PREV_INSN (next);
2465 else
2466 next = get_last_insn ();
2467
2468 if (next && NEXT_INSN (next) != prev)
2469 {
2470 remaints = unlink_insn_chain (prev, next);
2471 insn = remaints;
2472 while (NEXT_INSN (insn))
2473 insn = NEXT_INSN (insn);
2474 NEXT_INSN (insn) = *to;
2475 if (*to)
2476 PREV_INSN (*to) = insn;
2477 *to = remaints;
2478 }
2479 }
2480
2481 /* Return true when blocks A and B can be safely merged. */
2482 static bool
2483 cfg_layout_can_merge_blocks_p (basic_block a, basic_block b)
2484 {
2485 /* If we are partitioning hot/cold basic blocks, we don't want to
2486 mess up unconditional or indirect jumps that cross between hot
2487 and cold sections.
2488
2489 Basic block partitioning may result in some jumps that appear to
2490 be optimizable (or blocks that appear to be mergeable), but which really
2491 must be left untouched (they are required to make it safely across
2492 partition boundaries). See the comments at the top of
2493 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
2494
2495 if (BB_PARTITION (a) != BB_PARTITION (b))
2496 return false;
2497
2498 /* There must be exactly one edge in between the blocks. */
2499 return (single_succ_p (a)
2500 && single_succ (a) == b
2501 && single_pred_p (b) == 1
2502 && a != b
2503 /* Must be simple edge. */
2504 && !(single_succ_edge (a)->flags & EDGE_COMPLEX)
2505 && a != ENTRY_BLOCK_PTR && b != EXIT_BLOCK_PTR
2506 /* If the jump insn has side effects,
2507 we can't kill the edge. */
2508 && (!JUMP_P (BB_END (a))
2509 || (reload_completed
2510 ? simplejump_p (BB_END (a)) : onlyjump_p (BB_END (a)))));
2511 }
2512
2513 /* Merge block A and B. The blocks must be mergeable. */
2514
2515 static void
2516 cfg_layout_merge_blocks (basic_block a, basic_block b)
2517 {
2518 #ifdef ENABLE_CHECKING
2519 gcc_assert (cfg_layout_can_merge_blocks_p (a, b));
2520 #endif
2521
2522 /* If there was a CODE_LABEL beginning B, delete it. */
2523 if (LABEL_P (BB_HEAD (b)))
2524 {
2525 /* This might have been an EH label that no longer has incoming
2526 EH edges. Update data structures to match. */
2527 maybe_remove_eh_handler (BB_HEAD (b));
2528
2529 delete_insn (BB_HEAD (b));
2530 }
2531
2532 /* We should have fallthru edge in a, or we can do dummy redirection to get
2533 it cleaned up. */
2534 if (JUMP_P (BB_END (a)))
2535 try_redirect_by_replacing_jump (EDGE_SUCC (a, 0), b, true);
2536 gcc_assert (!JUMP_P (BB_END (a)));
2537
2538 /* Possible line number notes should appear in between. */
2539 if (b->il.rtl->header)
2540 {
2541 rtx first = BB_END (a), last;
2542
2543 last = emit_insn_after_noloc (b->il.rtl->header, BB_END (a));
2544 delete_insn_chain (NEXT_INSN (first), last);
2545 b->il.rtl->header = NULL;
2546 }
2547
2548 /* In the case basic blocks are not adjacent, move them around. */
2549 if (NEXT_INSN (BB_END (a)) != BB_HEAD (b))
2550 {
2551 rtx first = unlink_insn_chain (BB_HEAD (b), BB_END (b));
2552
2553 emit_insn_after_noloc (first, BB_END (a));
2554 /* Skip possible DELETED_LABEL insn. */
2555 if (!NOTE_INSN_BASIC_BLOCK_P (first))
2556 first = NEXT_INSN (first);
2557 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (first));
2558 BB_HEAD (b) = NULL;
2559 delete_insn (first);
2560 }
2561 /* Otherwise just re-associate the instructions. */
2562 else
2563 {
2564 rtx insn;
2565
2566 for (insn = BB_HEAD (b);
2567 insn != NEXT_INSN (BB_END (b));
2568 insn = NEXT_INSN (insn))
2569 set_block_for_insn (insn, a);
2570 insn = BB_HEAD (b);
2571 /* Skip possible DELETED_LABEL insn. */
2572 if (!NOTE_INSN_BASIC_BLOCK_P (insn))
2573 insn = NEXT_INSN (insn);
2574 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
2575 BB_HEAD (b) = NULL;
2576 BB_END (a) = BB_END (b);
2577 delete_insn (insn);
2578 }
2579
2580 /* Possible tablejumps and barriers should appear after the block. */
2581 if (b->il.rtl->footer)
2582 {
2583 if (!a->il.rtl->footer)
2584 a->il.rtl->footer = b->il.rtl->footer;
2585 else
2586 {
2587 rtx last = a->il.rtl->footer;
2588
2589 while (NEXT_INSN (last))
2590 last = NEXT_INSN (last);
2591 NEXT_INSN (last) = b->il.rtl->footer;
2592 PREV_INSN (b->il.rtl->footer) = last;
2593 }
2594 b->il.rtl->footer = NULL;
2595 }
2596 a->il.rtl->global_live_at_end = b->il.rtl->global_live_at_end;
2597
2598 if (dump_file)
2599 fprintf (dump_file, "Merged blocks %d and %d.\n",
2600 a->index, b->index);
2601 }
2602
2603 /* Split edge E. */
2604
2605 static basic_block
2606 cfg_layout_split_edge (edge e)
2607 {
2608 basic_block new_bb =
2609 create_basic_block (e->src != ENTRY_BLOCK_PTR
2610 ? NEXT_INSN (BB_END (e->src)) : get_insns (),
2611 NULL_RTX, e->src);
2612
2613 /* ??? This info is likely going to be out of date very soon, but we must
2614 create it to avoid getting an ICE later. */
2615 if (e->dest->il.rtl->global_live_at_start)
2616 {
2617 new_bb->il.rtl->global_live_at_start = ALLOC_REG_SET (&reg_obstack);
2618 new_bb->il.rtl->global_live_at_end = ALLOC_REG_SET (&reg_obstack);
2619 COPY_REG_SET (new_bb->il.rtl->global_live_at_start,
2620 e->dest->il.rtl->global_live_at_start);
2621 COPY_REG_SET (new_bb->il.rtl->global_live_at_end,
2622 e->dest->il.rtl->global_live_at_start);
2623 }
2624
2625 make_edge (new_bb, e->dest, EDGE_FALLTHRU);
2626 redirect_edge_and_branch_force (e, new_bb);
2627
2628 return new_bb;
2629 }
2630
2631 /* Do postprocessing after making a forwarder block joined by edge FALLTHRU. */
2632
2633 static void
2634 rtl_make_forwarder_block (edge fallthru ATTRIBUTE_UNUSED)
2635 {
2636 }
2637
2638 /* Return 1 if BB ends with a call, possibly followed by some
2639 instructions that must stay with the call, 0 otherwise. */
2640
2641 static bool
2642 rtl_block_ends_with_call_p (basic_block bb)
2643 {
2644 rtx insn = BB_END (bb);
2645
2646 while (!CALL_P (insn)
2647 && insn != BB_HEAD (bb)
2648 && keep_with_call_p (insn))
2649 insn = PREV_INSN (insn);
2650 return (CALL_P (insn));
2651 }
2652
2653 /* Return 1 if BB ends with a conditional branch, 0 otherwise. */
2654
2655 static bool
2656 rtl_block_ends_with_condjump_p (basic_block bb)
2657 {
2658 return any_condjump_p (BB_END (bb));
2659 }
2660
2661 /* Return true if we need to add fake edge to exit.
2662 Helper function for rtl_flow_call_edges_add. */
2663
2664 static bool
2665 need_fake_edge_p (rtx insn)
2666 {
2667 if (!INSN_P (insn))
2668 return false;
2669
2670 if ((CALL_P (insn)
2671 && !SIBLING_CALL_P (insn)
2672 && !find_reg_note (insn, REG_NORETURN, NULL)
2673 && !CONST_OR_PURE_CALL_P (insn)))
2674 return true;
2675
2676 return ((GET_CODE (PATTERN (insn)) == ASM_OPERANDS
2677 && MEM_VOLATILE_P (PATTERN (insn)))
2678 || (GET_CODE (PATTERN (insn)) == PARALLEL
2679 && asm_noperands (insn) != -1
2680 && MEM_VOLATILE_P (XVECEXP (PATTERN (insn), 0, 0)))
2681 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
2682 }
2683
2684 /* Add fake edges to the function exit for any non constant and non noreturn
2685 calls, volatile inline assembly in the bitmap of blocks specified by
2686 BLOCKS or to the whole CFG if BLOCKS is zero. Return the number of blocks
2687 that were split.
2688
2689 The goal is to expose cases in which entering a basic block does not imply
2690 that all subsequent instructions must be executed. */
2691
2692 static int
2693 rtl_flow_call_edges_add (sbitmap blocks)
2694 {
2695 int i;
2696 int blocks_split = 0;
2697 int last_bb = last_basic_block;
2698 bool check_last_block = false;
2699
2700 if (n_basic_blocks == NUM_FIXED_BLOCKS)
2701 return 0;
2702
2703 if (! blocks)
2704 check_last_block = true;
2705 else
2706 check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);
2707
2708 /* In the last basic block, before epilogue generation, there will be
2709 a fallthru edge to EXIT. Special care is required if the last insn
2710 of the last basic block is a call because make_edge folds duplicate
2711 edges, which would result in the fallthru edge also being marked
2712 fake, which would result in the fallthru edge being removed by
2713 remove_fake_edges, which would result in an invalid CFG.
2714
2715 Moreover, we can't elide the outgoing fake edge, since the block
2716 profiler needs to take this into account in order to solve the minimal
2717 spanning tree in the case that the call doesn't return.
2718
2719 Handle this by adding a dummy instruction in a new last basic block. */
2720 if (check_last_block)
2721 {
2722 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
2723 rtx insn = BB_END (bb);
2724
2725 /* Back up past insns that must be kept in the same block as a call. */
2726 while (insn != BB_HEAD (bb)
2727 && keep_with_call_p (insn))
2728 insn = PREV_INSN (insn);
2729
2730 if (need_fake_edge_p (insn))
2731 {
2732 edge e;
2733
2734 e = find_edge (bb, EXIT_BLOCK_PTR);
2735 if (e)
2736 {
2737 insert_insn_on_edge (gen_rtx_USE (VOIDmode, const0_rtx), e);
2738 commit_edge_insertions ();
2739 }
2740 }
2741 }
2742
2743 /* Now add fake edges to the function exit for any non constant
2744 calls since there is no way that we can determine if they will
2745 return or not... */
2746
2747 for (i = NUM_FIXED_BLOCKS; i < last_bb; i++)
2748 {
2749 basic_block bb = BASIC_BLOCK (i);
2750 rtx insn;
2751 rtx prev_insn;
2752
2753 if (!bb)
2754 continue;
2755
2756 if (blocks && !TEST_BIT (blocks, i))
2757 continue;
2758
2759 for (insn = BB_END (bb); ; insn = prev_insn)
2760 {
2761 prev_insn = PREV_INSN (insn);
2762 if (need_fake_edge_p (insn))
2763 {
2764 edge e;
2765 rtx split_at_insn = insn;
2766
2767 /* Don't split the block between a call and an insn that should
2768 remain in the same block as the call. */
2769 if (CALL_P (insn))
2770 while (split_at_insn != BB_END (bb)
2771 && keep_with_call_p (NEXT_INSN (split_at_insn)))
2772 split_at_insn = NEXT_INSN (split_at_insn);
2773
2774 /* The handling above of the final block before the epilogue
2775 should be enough to verify that there is no edge to the exit
2776 block in CFG already. Calling make_edge in such case would
2777 cause us to mark that edge as fake and remove it later. */
2778
2779 #ifdef ENABLE_CHECKING
2780 if (split_at_insn == BB_END (bb))
2781 {
2782 e = find_edge (bb, EXIT_BLOCK_PTR);
2783 gcc_assert (e == NULL);
2784 }
2785 #endif
2786
2787 /* Note that the following may create a new basic block
2788 and renumber the existing basic blocks. */
2789 if (split_at_insn != BB_END (bb))
2790 {
2791 e = split_block (bb, split_at_insn);
2792 if (e)
2793 blocks_split++;
2794 }
2795
2796 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
2797 }
2798
2799 if (insn == BB_HEAD (bb))
2800 break;
2801 }
2802 }
2803
2804 if (blocks_split)
2805 verify_flow_info ();
2806
2807 return blocks_split;
2808 }
2809
2810 /* Add COMP_RTX as a condition at end of COND_BB. FIRST_HEAD is
2811 the conditional branch target, SECOND_HEAD should be the fall-thru
2812 there is no need to handle this here the loop versioning code handles
2813 this. the reason for SECON_HEAD is that it is needed for condition
2814 in trees, and this should be of the same type since it is a hook. */
2815 static void
2816 rtl_lv_add_condition_to_bb (basic_block first_head ,
2817 basic_block second_head ATTRIBUTE_UNUSED,
2818 basic_block cond_bb, void *comp_rtx)
2819 {
2820 rtx label, seq, jump;
2821 rtx op0 = XEXP ((rtx)comp_rtx, 0);
2822 rtx op1 = XEXP ((rtx)comp_rtx, 1);
2823 enum rtx_code comp = GET_CODE ((rtx)comp_rtx);
2824 enum machine_mode mode;
2825
2826
2827 label = block_label (first_head);
2828 mode = GET_MODE (op0);
2829 if (mode == VOIDmode)
2830 mode = GET_MODE (op1);
2831
2832 start_sequence ();
2833 op0 = force_operand (op0, NULL_RTX);
2834 op1 = force_operand (op1, NULL_RTX);
2835 do_compare_rtx_and_jump (op0, op1, comp, 0,
2836 mode, NULL_RTX, NULL_RTX, label);
2837 jump = get_last_insn ();
2838 JUMP_LABEL (jump) = label;
2839 LABEL_NUSES (label)++;
2840 seq = get_insns ();
2841 end_sequence ();
2842
2843 /* Add the new cond , in the new head. */
2844 emit_insn_after(seq, BB_END(cond_bb));
2845 }
2846
2847
2848 /* Given a block B with unconditional branch at its end, get the
2849 store the return the branch edge and the fall-thru edge in
2850 BRANCH_EDGE and FALLTHRU_EDGE respectively. */
2851 static void
2852 rtl_extract_cond_bb_edges (basic_block b, edge *branch_edge,
2853 edge *fallthru_edge)
2854 {
2855 edge e = EDGE_SUCC (b, 0);
2856
2857 if (e->flags & EDGE_FALLTHRU)
2858 {
2859 *fallthru_edge = e;
2860 *branch_edge = EDGE_SUCC (b, 1);
2861 }
2862 else
2863 {
2864 *branch_edge = e;
2865 *fallthru_edge = EDGE_SUCC (b, 1);
2866 }
2867 }
2868
2869 void
2870 init_rtl_bb_info (basic_block bb)
2871 {
2872 gcc_assert (!bb->il.rtl);
2873 bb->il.rtl = ggc_alloc_cleared (sizeof (struct rtl_bb_info));
2874 }
2875
2876
2877 /* Add EXPR to the end of basic block BB. */
2878
2879 rtx
2880 insert_insn_end_bb_new (rtx pat, basic_block bb)
2881 {
2882 rtx insn = BB_END (bb);
2883 rtx new_insn;
2884 rtx pat_end = pat;
2885
2886 while (NEXT_INSN (pat_end) != NULL_RTX)
2887 pat_end = NEXT_INSN (pat_end);
2888
2889 /* If the last insn is a jump, insert EXPR in front [taking care to
2890 handle cc0, etc. properly]. Similarly we need to care trapping
2891 instructions in presence of non-call exceptions. */
2892
2893 if (JUMP_P (insn)
2894 || (NONJUMP_INSN_P (insn)
2895 && (!single_succ_p (bb)
2896 || single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
2897 {
2898 #ifdef HAVE_cc0
2899 rtx note;
2900 #endif
2901 /* If this is a jump table, then we can't insert stuff here. Since
2902 we know the previous real insn must be the tablejump, we insert
2903 the new instruction just before the tablejump. */
2904 if (GET_CODE (PATTERN (insn)) == ADDR_VEC
2905 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
2906 insn = prev_real_insn (insn);
2907
2908 #ifdef HAVE_cc0
2909 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
2910 if cc0 isn't set. */
2911 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2912 if (note)
2913 insn = XEXP (note, 0);
2914 else
2915 {
2916 rtx maybe_cc0_setter = prev_nonnote_insn (insn);
2917 if (maybe_cc0_setter
2918 && INSN_P (maybe_cc0_setter)
2919 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
2920 insn = maybe_cc0_setter;
2921 }
2922 #endif
2923 /* FIXME: What if something in cc0/jump uses value set in new
2924 insn? */
2925 new_insn = emit_insn_before_noloc (pat, insn);
2926 }
2927
2928 /* Likewise if the last insn is a call, as will happen in the presence
2929 of exception handling. */
2930 else if (CALL_P (insn)
2931 && (!single_succ_p (bb)
2932 || single_succ_edge (bb)->flags & EDGE_ABNORMAL))
2933 {
2934 /* Keeping in mind SMALL_REGISTER_CLASSES and parameters in registers,
2935 we search backward and place the instructions before the first
2936 parameter is loaded. Do this for everyone for consistency and a
2937 presumption that we'll get better code elsewhere as well. */
2938
2939 /* Since different machines initialize their parameter registers
2940 in different orders, assume nothing. Collect the set of all
2941 parameter registers. */
2942 insn = find_first_parameter_load (insn, BB_HEAD (bb));
2943
2944 /* If we found all the parameter loads, then we want to insert
2945 before the first parameter load.
2946
2947 If we did not find all the parameter loads, then we might have
2948 stopped on the head of the block, which could be a CODE_LABEL.
2949 If we inserted before the CODE_LABEL, then we would be putting
2950 the insn in the wrong basic block. In that case, put the insn
2951 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
2952 while (LABEL_P (insn)
2953 || NOTE_INSN_BASIC_BLOCK_P (insn))
2954 insn = NEXT_INSN (insn);
2955
2956 new_insn = emit_insn_before_noloc (pat, insn);
2957 }
2958 else
2959 new_insn = emit_insn_after_noloc (pat, insn);
2960
2961 return new_insn;
2962 }
2963
2964 /* Implementation of CFG manipulation for linearized RTL. */
2965 struct cfg_hooks rtl_cfg_hooks = {
2966 "rtl",
2967 rtl_verify_flow_info,
2968 rtl_dump_bb,
2969 rtl_create_basic_block,
2970 rtl_redirect_edge_and_branch,
2971 rtl_redirect_edge_and_branch_force,
2972 rtl_delete_block,
2973 rtl_split_block,
2974 rtl_move_block_after,
2975 rtl_can_merge_blocks, /* can_merge_blocks_p */
2976 rtl_merge_blocks,
2977 rtl_predict_edge,
2978 rtl_predicted_by_p,
2979 NULL, /* can_duplicate_block_p */
2980 NULL, /* duplicate_block */
2981 rtl_split_edge,
2982 rtl_make_forwarder_block,
2983 rtl_tidy_fallthru_edge,
2984 rtl_block_ends_with_call_p,
2985 rtl_block_ends_with_condjump_p,
2986 rtl_flow_call_edges_add,
2987 NULL, /* execute_on_growing_pred */
2988 NULL, /* execute_on_shrinking_pred */
2989 NULL, /* duplicate loop for trees */
2990 NULL, /* lv_add_condition_to_bb */
2991 NULL, /* lv_adjust_loop_header_phi*/
2992 NULL, /* extract_cond_bb_edges */
2993 NULL /* flush_pending_stmts */
2994 };
2995
2996 /* Implementation of CFG manipulation for cfg layout RTL, where
2997 basic block connected via fallthru edges does not have to be adjacent.
2998 This representation will hopefully become the default one in future
2999 version of the compiler. */
3000
3001 /* We do not want to declare these functions in a header file, since they
3002 should only be used through the cfghooks interface, and we do not want to
3003 move them here since it would require also moving quite a lot of related
3004 code. */
3005 extern bool cfg_layout_can_duplicate_bb_p (basic_block);
3006 extern basic_block cfg_layout_duplicate_bb (basic_block);
3007
3008 struct cfg_hooks cfg_layout_rtl_cfg_hooks = {
3009 "cfglayout mode",
3010 rtl_verify_flow_info_1,
3011 rtl_dump_bb,
3012 cfg_layout_create_basic_block,
3013 cfg_layout_redirect_edge_and_branch,
3014 cfg_layout_redirect_edge_and_branch_force,
3015 cfg_layout_delete_block,
3016 cfg_layout_split_block,
3017 rtl_move_block_after,
3018 cfg_layout_can_merge_blocks_p,
3019 cfg_layout_merge_blocks,
3020 rtl_predict_edge,
3021 rtl_predicted_by_p,
3022 cfg_layout_can_duplicate_bb_p,
3023 cfg_layout_duplicate_bb,
3024 cfg_layout_split_edge,
3025 rtl_make_forwarder_block,
3026 NULL,
3027 rtl_block_ends_with_call_p,
3028 rtl_block_ends_with_condjump_p,
3029 rtl_flow_call_edges_add,
3030 NULL, /* execute_on_growing_pred */
3031 NULL, /* execute_on_shrinking_pred */
3032 duplicate_loop_to_header_edge, /* duplicate loop for trees */
3033 rtl_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
3034 NULL, /* lv_adjust_loop_header_phi*/
3035 rtl_extract_cond_bb_edges, /* extract_cond_bb_edges */
3036 NULL /* flush_pending_stmts */
3037 };