Fix issue with NULL as_a in duplicate_insn_chain
[gcc.git] / gcc / cfgrtl.c
1 /* Control flow graph manipulation code for GNU compiler.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file contains low level functions to manipulate the CFG and analyze it
21 that are aware of the RTL intermediate language.
22
23 Available functionality:
24 - Basic CFG/RTL manipulation API documented in cfghooks.h
25 - CFG-aware instruction chain manipulation
26 delete_insn, delete_insn_chain
27 - Edge splitting and committing to edges
28 insert_insn_on_edge, commit_edge_insertions
29 - CFG updating after insn simplification
30 purge_dead_edges, purge_all_dead_edges
31 - CFG fixing after coarse manipulation
32 fixup_abnormal_edges
33
34 Functions not supposed for generic use:
35 - Infrastructure to determine quickly basic block for insn
36 compute_bb_for_insn, update_bb_for_insn, set_block_for_insn,
37 - Edge redirection with updating and optimizing of insn chain
38 block_label, tidy_fallthru_edge, force_nonfallthru */
39 \f
40 #include "config.h"
41 #include "system.h"
42 #include "coretypes.h"
43 #include "tm.h"
44 #include "tree.h"
45 #include "hard-reg-set.h"
46 #include "basic-block.h"
47 #include "bb-reorder.h"
48 #include "regs.h"
49 #include "flags.h"
50 #include "function.h"
51 #include "except.h"
52 #include "rtl-error.h"
53 #include "tm_p.h"
54 #include "obstack.h"
55 #include "insn-attr.h"
56 #include "insn-config.h"
57 #include "expr.h"
58 #include "target.h"
59 #include "common/common-target.h"
60 #include "cfgloop.h"
61 #include "ggc.h"
62 #include "tree-pass.h"
63 #include "df.h"
64
65 /* Holds the interesting leading and trailing notes for the function.
66 Only applicable if the CFG is in cfglayout mode. */
67 static GTY(()) rtx cfg_layout_function_footer;
68 static GTY(()) rtx cfg_layout_function_header;
69
70 static rtx skip_insns_after_block (basic_block);
71 static void record_effective_endpoints (void);
72 static rtx label_for_bb (basic_block);
73 static void fixup_reorder_chain (void);
74
75 void verify_insn_chain (void);
76 static void fixup_fallthru_exit_predecessor (void);
77 static int can_delete_note_p (const_rtx);
78 static int can_delete_label_p (const_rtx);
79 static basic_block rtl_split_edge (edge);
80 static bool rtl_move_block_after (basic_block, basic_block);
81 static int rtl_verify_flow_info (void);
82 static basic_block cfg_layout_split_block (basic_block, void *);
83 static edge cfg_layout_redirect_edge_and_branch (edge, basic_block);
84 static basic_block cfg_layout_redirect_edge_and_branch_force (edge, basic_block);
85 static void cfg_layout_delete_block (basic_block);
86 static void rtl_delete_block (basic_block);
87 static basic_block rtl_redirect_edge_and_branch_force (edge, basic_block);
88 static edge rtl_redirect_edge_and_branch (edge, basic_block);
89 static basic_block rtl_split_block (basic_block, void *);
90 static void rtl_dump_bb (FILE *, basic_block, int, int);
91 static int rtl_verify_flow_info_1 (void);
92 static void rtl_make_forwarder_block (edge);
93 \f
94 /* Return true if NOTE is not one of the ones that must be kept paired,
95 so that we may simply delete it. */
96
97 static int
98 can_delete_note_p (const_rtx note)
99 {
100 switch (NOTE_KIND (note))
101 {
102 case NOTE_INSN_DELETED:
103 case NOTE_INSN_BASIC_BLOCK:
104 case NOTE_INSN_EPILOGUE_BEG:
105 return true;
106
107 default:
108 return false;
109 }
110 }
111
112 /* True if a given label can be deleted. */
113
114 static int
115 can_delete_label_p (const_rtx label)
116 {
117 return (!LABEL_PRESERVE_P (label)
118 /* User declared labels must be preserved. */
119 && LABEL_NAME (label) == 0
120 && !in_expr_list_p (forced_labels, label));
121 }
122
123 /* Delete INSN by patching it out. */
124
125 void
126 delete_insn (rtx insn)
127 {
128 rtx note;
129 bool really_delete = true;
130
131 if (LABEL_P (insn))
132 {
133 /* Some labels can't be directly removed from the INSN chain, as they
134 might be references via variables, constant pool etc.
135 Convert them to the special NOTE_INSN_DELETED_LABEL note. */
136 if (! can_delete_label_p (insn))
137 {
138 const char *name = LABEL_NAME (insn);
139 basic_block bb = BLOCK_FOR_INSN (insn);
140 rtx bb_note = NEXT_INSN (insn);
141
142 really_delete = false;
143 PUT_CODE (insn, NOTE);
144 NOTE_KIND (insn) = NOTE_INSN_DELETED_LABEL;
145 NOTE_DELETED_LABEL_NAME (insn) = name;
146
147 /* If the note following the label starts a basic block, and the
148 label is a member of the same basic block, interchange the two. */
149 if (bb_note != NULL_RTX
150 && NOTE_INSN_BASIC_BLOCK_P (bb_note)
151 && bb != NULL
152 && bb == BLOCK_FOR_INSN (bb_note))
153 {
154 reorder_insns_nobb (insn, insn, bb_note);
155 SET_BB_HEAD (bb) = bb_note;
156 if (BB_END (bb) == bb_note)
157 SET_BB_END (bb) = insn;
158 }
159 }
160
161 remove_node_from_expr_list (insn, &nonlocal_goto_handler_labels);
162 }
163
164 if (really_delete)
165 {
166 /* If this insn has already been deleted, something is very wrong. */
167 gcc_assert (!INSN_DELETED_P (insn));
168 if (INSN_P (insn))
169 df_insn_delete (insn);
170 remove_insn (insn);
171 INSN_DELETED_P (insn) = 1;
172 }
173
174 /* If deleting a jump, decrement the use count of the label. Deleting
175 the label itself should happen in the normal course of block merging. */
176 if (JUMP_P (insn))
177 {
178 if (JUMP_LABEL (insn)
179 && LABEL_P (JUMP_LABEL (insn)))
180 LABEL_NUSES (JUMP_LABEL (insn))--;
181
182 /* If there are more targets, remove them too. */
183 while ((note
184 = find_reg_note (insn, REG_LABEL_TARGET, NULL_RTX)) != NULL_RTX
185 && LABEL_P (XEXP (note, 0)))
186 {
187 LABEL_NUSES (XEXP (note, 0))--;
188 remove_note (insn, note);
189 }
190 }
191
192 /* Also if deleting any insn that references a label as an operand. */
193 while ((note = find_reg_note (insn, REG_LABEL_OPERAND, NULL_RTX)) != NULL_RTX
194 && LABEL_P (XEXP (note, 0)))
195 {
196 LABEL_NUSES (XEXP (note, 0))--;
197 remove_note (insn, note);
198 }
199
200 if (JUMP_TABLE_DATA_P (insn))
201 {
202 rtx pat = PATTERN (insn);
203 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
204 int len = XVECLEN (pat, diff_vec_p);
205 int i;
206
207 for (i = 0; i < len; i++)
208 {
209 rtx label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
210
211 /* When deleting code in bulk (e.g. removing many unreachable
212 blocks) we can delete a label that's a target of the vector
213 before deleting the vector itself. */
214 if (!NOTE_P (label))
215 LABEL_NUSES (label)--;
216 }
217 }
218 }
219
220 /* Like delete_insn but also purge dead edges from BB. */
221
222 void
223 delete_insn_and_edges (rtx insn)
224 {
225 bool purge = false;
226
227 if (INSN_P (insn)
228 && BLOCK_FOR_INSN (insn)
229 && BB_END (BLOCK_FOR_INSN (insn)) == insn)
230 purge = true;
231 delete_insn (insn);
232 if (purge)
233 purge_dead_edges (BLOCK_FOR_INSN (insn));
234 }
235
236 /* Unlink a chain of insns between START and FINISH, leaving notes
237 that must be paired. If CLEAR_BB is true, we set bb field for
238 insns that cannot be removed to NULL. */
239
240 void
241 delete_insn_chain (rtx start, rtx finish, bool clear_bb)
242 {
243 rtx prev, current;
244
245 /* Unchain the insns one by one. It would be quicker to delete all of these
246 with a single unchaining, rather than one at a time, but we need to keep
247 the NOTE's. */
248 current = finish;
249 while (1)
250 {
251 prev = PREV_INSN (current);
252 if (NOTE_P (current) && !can_delete_note_p (current))
253 ;
254 else
255 delete_insn (current);
256
257 if (clear_bb && !INSN_DELETED_P (current))
258 set_block_for_insn (current, NULL);
259
260 if (current == start)
261 break;
262 current = prev;
263 }
264 }
265 \f
266 /* Create a new basic block consisting of the instructions between HEAD and END
267 inclusive. This function is designed to allow fast BB construction - reuses
268 the note and basic block struct in BB_NOTE, if any and do not grow
269 BASIC_BLOCK chain and should be used directly only by CFG construction code.
270 END can be NULL in to create new empty basic block before HEAD. Both END
271 and HEAD can be NULL to create basic block at the end of INSN chain.
272 AFTER is the basic block we should be put after. */
273
274 basic_block
275 create_basic_block_structure (rtx head, rtx end, rtx_note *bb_note,
276 basic_block after)
277 {
278 basic_block bb;
279
280 if (bb_note
281 && (bb = NOTE_BASIC_BLOCK (bb_note)) != NULL
282 && bb->aux == NULL)
283 {
284 /* If we found an existing note, thread it back onto the chain. */
285
286 rtx after;
287
288 if (LABEL_P (head))
289 after = head;
290 else
291 {
292 after = PREV_INSN (head);
293 head = bb_note;
294 }
295
296 if (after != bb_note && NEXT_INSN (after) != bb_note)
297 reorder_insns_nobb (bb_note, bb_note, after);
298 }
299 else
300 {
301 /* Otherwise we must create a note and a basic block structure. */
302
303 bb = alloc_block ();
304
305 init_rtl_bb_info (bb);
306 if (!head && !end)
307 head = end = bb_note
308 = emit_note_after (NOTE_INSN_BASIC_BLOCK, get_last_insn ());
309 else if (LABEL_P (head) && end)
310 {
311 bb_note = emit_note_after (NOTE_INSN_BASIC_BLOCK, head);
312 if (head == end)
313 end = bb_note;
314 }
315 else
316 {
317 bb_note = emit_note_before (NOTE_INSN_BASIC_BLOCK, head);
318 head = bb_note;
319 if (!end)
320 end = head;
321 }
322
323 NOTE_BASIC_BLOCK (bb_note) = bb;
324 }
325
326 /* Always include the bb note in the block. */
327 if (NEXT_INSN (end) == bb_note)
328 end = bb_note;
329
330 SET_BB_HEAD (bb) = head;
331 SET_BB_END (bb) = end;
332 bb->index = last_basic_block_for_fn (cfun)++;
333 bb->flags = BB_NEW | BB_RTL;
334 link_block (bb, after);
335 SET_BASIC_BLOCK_FOR_FN (cfun, bb->index, bb);
336 df_bb_refs_record (bb->index, false);
337 update_bb_for_insn (bb);
338 BB_SET_PARTITION (bb, BB_UNPARTITIONED);
339
340 /* Tag the block so that we know it has been used when considering
341 other basic block notes. */
342 bb->aux = bb;
343
344 return bb;
345 }
346
347 /* Create new basic block consisting of instructions in between HEAD and END
348 and place it to the BB chain after block AFTER. END can be NULL to
349 create a new empty basic block before HEAD. Both END and HEAD can be
350 NULL to create basic block at the end of INSN chain. */
351
352 static basic_block
353 rtl_create_basic_block (void *headp, void *endp, basic_block after)
354 {
355 rtx head = (rtx) headp, end = (rtx) endp;
356 basic_block bb;
357
358 /* Grow the basic block array if needed. */
359 if ((size_t) last_basic_block_for_fn (cfun)
360 >= basic_block_info_for_fn (cfun)->length ())
361 {
362 size_t new_size =
363 (last_basic_block_for_fn (cfun)
364 + (last_basic_block_for_fn (cfun) + 3) / 4);
365 vec_safe_grow_cleared (basic_block_info_for_fn (cfun), new_size);
366 }
367
368 n_basic_blocks_for_fn (cfun)++;
369
370 bb = create_basic_block_structure (head, end, NULL, after);
371 bb->aux = NULL;
372 return bb;
373 }
374
375 static basic_block
376 cfg_layout_create_basic_block (void *head, void *end, basic_block after)
377 {
378 basic_block newbb = rtl_create_basic_block (head, end, after);
379
380 return newbb;
381 }
382 \f
383 /* Delete the insns in a (non-live) block. We physically delete every
384 non-deleted-note insn, and update the flow graph appropriately.
385
386 Return nonzero if we deleted an exception handler. */
387
388 /* ??? Preserving all such notes strikes me as wrong. It would be nice
389 to post-process the stream to remove empty blocks, loops, ranges, etc. */
390
391 static void
392 rtl_delete_block (basic_block b)
393 {
394 rtx insn, end;
395
396 /* If the head of this block is a CODE_LABEL, then it might be the
397 label for an exception handler which can't be reached. We need
398 to remove the label from the exception_handler_label list. */
399 insn = BB_HEAD (b);
400
401 end = get_last_bb_insn (b);
402
403 /* Selectively delete the entire chain. */
404 SET_BB_HEAD (b) = NULL;
405 delete_insn_chain (insn, end, true);
406
407
408 if (dump_file)
409 fprintf (dump_file, "deleting block %d\n", b->index);
410 df_bb_delete (b->index);
411 }
412 \f
413 /* Records the basic block struct in BLOCK_FOR_INSN for every insn. */
414
415 void
416 compute_bb_for_insn (void)
417 {
418 basic_block bb;
419
420 FOR_EACH_BB_FN (bb, cfun)
421 {
422 rtx end = BB_END (bb);
423 rtx insn;
424
425 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
426 {
427 BLOCK_FOR_INSN (insn) = bb;
428 if (insn == end)
429 break;
430 }
431 }
432 }
433
434 /* Release the basic_block_for_insn array. */
435
436 unsigned int
437 free_bb_for_insn (void)
438 {
439 rtx insn;
440 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
441 if (!BARRIER_P (insn))
442 BLOCK_FOR_INSN (insn) = NULL;
443 return 0;
444 }
445
446 namespace {
447
448 const pass_data pass_data_free_cfg =
449 {
450 RTL_PASS, /* type */
451 "*free_cfg", /* name */
452 OPTGROUP_NONE, /* optinfo_flags */
453 TV_NONE, /* tv_id */
454 0, /* properties_required */
455 0, /* properties_provided */
456 PROP_cfg, /* properties_destroyed */
457 0, /* todo_flags_start */
458 0, /* todo_flags_finish */
459 };
460
461 class pass_free_cfg : public rtl_opt_pass
462 {
463 public:
464 pass_free_cfg (gcc::context *ctxt)
465 : rtl_opt_pass (pass_data_free_cfg, ctxt)
466 {}
467
468 /* opt_pass methods: */
469 virtual unsigned int execute (function *);
470
471 }; // class pass_free_cfg
472
473 unsigned int
474 pass_free_cfg::execute (function *)
475 {
476 #ifdef DELAY_SLOTS
477 /* The resource.c machinery uses DF but the CFG isn't guaranteed to be
478 valid at that point so it would be too late to call df_analyze. */
479 if (optimize > 0 && flag_delayed_branch)
480 {
481 df_note_add_problem ();
482 df_analyze ();
483 }
484 #endif
485
486 if (crtl->has_bb_partition)
487 insert_section_boundary_note ();
488
489 free_bb_for_insn ();
490 return 0;
491 }
492
493 } // anon namespace
494
495 rtl_opt_pass *
496 make_pass_free_cfg (gcc::context *ctxt)
497 {
498 return new pass_free_cfg (ctxt);
499 }
500
501 /* Return RTX to emit after when we want to emit code on the entry of function. */
502 rtx_insn *
503 entry_of_function (void)
504 {
505 return (n_basic_blocks_for_fn (cfun) > NUM_FIXED_BLOCKS ?
506 BB_HEAD (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb) : get_insns ());
507 }
508
509 /* Emit INSN at the entry point of the function, ensuring that it is only
510 executed once per function. */
511 void
512 emit_insn_at_entry (rtx insn)
513 {
514 edge_iterator ei = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
515 edge e = ei_safe_edge (ei);
516 gcc_assert (e->flags & EDGE_FALLTHRU);
517
518 insert_insn_on_edge (insn, e);
519 commit_edge_insertions ();
520 }
521
522 /* Update BLOCK_FOR_INSN of insns between BEGIN and END
523 (or BARRIER if found) and notify df of the bb change.
524 The insn chain range is inclusive
525 (i.e. both BEGIN and END will be updated. */
526
527 static void
528 update_bb_for_insn_chain (rtx begin, rtx end, basic_block bb)
529 {
530 rtx insn;
531
532 end = NEXT_INSN (end);
533 for (insn = begin; insn != end; insn = NEXT_INSN (insn))
534 if (!BARRIER_P (insn))
535 df_insn_change_bb (insn, bb);
536 }
537
538 /* Update BLOCK_FOR_INSN of insns in BB to BB,
539 and notify df of the change. */
540
541 void
542 update_bb_for_insn (basic_block bb)
543 {
544 update_bb_for_insn_chain (BB_HEAD (bb), BB_END (bb), bb);
545 }
546
547 \f
548 /* Like active_insn_p, except keep the return value clobber around
549 even after reload. */
550
551 static bool
552 flow_active_insn_p (const_rtx insn)
553 {
554 if (active_insn_p (insn))
555 return true;
556
557 /* A clobber of the function return value exists for buggy
558 programs that fail to return a value. Its effect is to
559 keep the return value from being live across the entire
560 function. If we allow it to be skipped, we introduce the
561 possibility for register lifetime confusion. */
562 if (GET_CODE (PATTERN (insn)) == CLOBBER
563 && REG_P (XEXP (PATTERN (insn), 0))
564 && REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))
565 return true;
566
567 return false;
568 }
569
570 /* Return true if the block has no effect and only forwards control flow to
571 its single destination. */
572
573 bool
574 contains_no_active_insn_p (const_basic_block bb)
575 {
576 rtx insn;
577
578 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun) || bb == ENTRY_BLOCK_PTR_FOR_FN (cfun)
579 || !single_succ_p (bb))
580 return false;
581
582 for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
583 if (INSN_P (insn) && flow_active_insn_p (insn))
584 return false;
585
586 return (!INSN_P (insn)
587 || (JUMP_P (insn) && simplejump_p (insn))
588 || !flow_active_insn_p (insn));
589 }
590
591 /* Likewise, but protect loop latches, headers and preheaders. */
592 /* FIXME: Make this a cfg hook. */
593
594 bool
595 forwarder_block_p (const_basic_block bb)
596 {
597 if (!contains_no_active_insn_p (bb))
598 return false;
599
600 /* Protect loop latches, headers and preheaders. */
601 if (current_loops)
602 {
603 basic_block dest;
604 if (bb->loop_father->header == bb)
605 return false;
606 dest = EDGE_SUCC (bb, 0)->dest;
607 if (dest->loop_father->header == dest)
608 return false;
609 }
610
611 return true;
612 }
613
614 /* Return nonzero if we can reach target from src by falling through. */
615 /* FIXME: Make this a cfg hook, the result is only valid in cfgrtl mode. */
616
617 bool
618 can_fallthru (basic_block src, basic_block target)
619 {
620 rtx insn = BB_END (src);
621 rtx insn2;
622 edge e;
623 edge_iterator ei;
624
625 if (target == EXIT_BLOCK_PTR_FOR_FN (cfun))
626 return true;
627 if (src->next_bb != target)
628 return false;
629
630 /* ??? Later we may add code to move jump tables offline. */
631 if (tablejump_p (insn, NULL, NULL))
632 return false;
633
634 FOR_EACH_EDGE (e, ei, src->succs)
635 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
636 && e->flags & EDGE_FALLTHRU)
637 return false;
638
639 insn2 = BB_HEAD (target);
640 if (!active_insn_p (insn2))
641 insn2 = next_active_insn (insn2);
642
643 return next_active_insn (insn) == insn2;
644 }
645
646 /* Return nonzero if we could reach target from src by falling through,
647 if the target was made adjacent. If we already have a fall-through
648 edge to the exit block, we can't do that. */
649 static bool
650 could_fall_through (basic_block src, basic_block target)
651 {
652 edge e;
653 edge_iterator ei;
654
655 if (target == EXIT_BLOCK_PTR_FOR_FN (cfun))
656 return true;
657 FOR_EACH_EDGE (e, ei, src->succs)
658 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
659 && e->flags & EDGE_FALLTHRU)
660 return 0;
661 return true;
662 }
663 \f
664 /* Return the NOTE_INSN_BASIC_BLOCK of BB. */
665 rtx_note *
666 bb_note (basic_block bb)
667 {
668 rtx note;
669
670 note = BB_HEAD (bb);
671 if (LABEL_P (note))
672 note = NEXT_INSN (note);
673
674 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
675 return as_a <rtx_note *> (note);
676 }
677
678 /* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
679 note associated with the BLOCK. */
680
681 static rtx
682 first_insn_after_basic_block_note (basic_block block)
683 {
684 rtx insn;
685
686 /* Get the first instruction in the block. */
687 insn = BB_HEAD (block);
688
689 if (insn == NULL_RTX)
690 return NULL_RTX;
691 if (LABEL_P (insn))
692 insn = NEXT_INSN (insn);
693 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
694
695 return NEXT_INSN (insn);
696 }
697
698 /* Creates a new basic block just after basic block B by splitting
699 everything after specified instruction I. */
700
701 static basic_block
702 rtl_split_block (basic_block bb, void *insnp)
703 {
704 basic_block new_bb;
705 rtx insn = (rtx) insnp;
706 edge e;
707 edge_iterator ei;
708
709 if (!insn)
710 {
711 insn = first_insn_after_basic_block_note (bb);
712
713 if (insn)
714 {
715 rtx next = insn;
716
717 insn = PREV_INSN (insn);
718
719 /* If the block contains only debug insns, insn would have
720 been NULL in a non-debug compilation, and then we'd end
721 up emitting a DELETED note. For -fcompare-debug
722 stability, emit the note too. */
723 if (insn != BB_END (bb)
724 && DEBUG_INSN_P (next)
725 && DEBUG_INSN_P (BB_END (bb)))
726 {
727 while (next != BB_END (bb) && DEBUG_INSN_P (next))
728 next = NEXT_INSN (next);
729
730 if (next == BB_END (bb))
731 emit_note_after (NOTE_INSN_DELETED, next);
732 }
733 }
734 else
735 insn = get_last_insn ();
736 }
737
738 /* We probably should check type of the insn so that we do not create
739 inconsistent cfg. It is checked in verify_flow_info anyway, so do not
740 bother. */
741 if (insn == BB_END (bb))
742 emit_note_after (NOTE_INSN_DELETED, insn);
743
744 /* Create the new basic block. */
745 new_bb = create_basic_block (NEXT_INSN (insn), BB_END (bb), bb);
746 BB_COPY_PARTITION (new_bb, bb);
747 SET_BB_END (bb) = insn;
748
749 /* Redirect the outgoing edges. */
750 new_bb->succs = bb->succs;
751 bb->succs = NULL;
752 FOR_EACH_EDGE (e, ei, new_bb->succs)
753 e->src = new_bb;
754
755 /* The new block starts off being dirty. */
756 df_set_bb_dirty (bb);
757 return new_bb;
758 }
759
760 /* Return true if the single edge between blocks A and B is the only place
761 in RTL which holds some unique locus. */
762
763 static bool
764 unique_locus_on_edge_between_p (basic_block a, basic_block b)
765 {
766 const location_t goto_locus = EDGE_SUCC (a, 0)->goto_locus;
767 rtx insn, end;
768
769 if (LOCATION_LOCUS (goto_locus) == UNKNOWN_LOCATION)
770 return false;
771
772 /* First scan block A backward. */
773 insn = BB_END (a);
774 end = PREV_INSN (BB_HEAD (a));
775 while (insn != end && (!NONDEBUG_INSN_P (insn) || !INSN_HAS_LOCATION (insn)))
776 insn = PREV_INSN (insn);
777
778 if (insn != end && INSN_LOCATION (insn) == goto_locus)
779 return false;
780
781 /* Then scan block B forward. */
782 insn = BB_HEAD (b);
783 if (insn)
784 {
785 end = NEXT_INSN (BB_END (b));
786 while (insn != end && !NONDEBUG_INSN_P (insn))
787 insn = NEXT_INSN (insn);
788
789 if (insn != end && INSN_HAS_LOCATION (insn)
790 && INSN_LOCATION (insn) == goto_locus)
791 return false;
792 }
793
794 return true;
795 }
796
797 /* If the single edge between blocks A and B is the only place in RTL which
798 holds some unique locus, emit a nop with that locus between the blocks. */
799
800 static void
801 emit_nop_for_unique_locus_between (basic_block a, basic_block b)
802 {
803 if (!unique_locus_on_edge_between_p (a, b))
804 return;
805
806 SET_BB_END (a) = emit_insn_after_noloc (gen_nop (), BB_END (a), a);
807 INSN_LOCATION (BB_END (a)) = EDGE_SUCC (a, 0)->goto_locus;
808 }
809
810 /* Blocks A and B are to be merged into a single block A. The insns
811 are already contiguous. */
812
813 static void
814 rtl_merge_blocks (basic_block a, basic_block b)
815 {
816 rtx b_head = BB_HEAD (b), b_end = BB_END (b), a_end = BB_END (a);
817 rtx del_first = NULL_RTX, del_last = NULL_RTX;
818 rtx b_debug_start = b_end, b_debug_end = b_end;
819 bool forwarder_p = (b->flags & BB_FORWARDER_BLOCK) != 0;
820 int b_empty = 0;
821
822 if (dump_file)
823 fprintf (dump_file, "Merging block %d into block %d...\n", b->index,
824 a->index);
825
826 while (DEBUG_INSN_P (b_end))
827 b_end = PREV_INSN (b_debug_start = b_end);
828
829 /* If there was a CODE_LABEL beginning B, delete it. */
830 if (LABEL_P (b_head))
831 {
832 /* Detect basic blocks with nothing but a label. This can happen
833 in particular at the end of a function. */
834 if (b_head == b_end)
835 b_empty = 1;
836
837 del_first = del_last = b_head;
838 b_head = NEXT_INSN (b_head);
839 }
840
841 /* Delete the basic block note and handle blocks containing just that
842 note. */
843 if (NOTE_INSN_BASIC_BLOCK_P (b_head))
844 {
845 if (b_head == b_end)
846 b_empty = 1;
847 if (! del_last)
848 del_first = b_head;
849
850 del_last = b_head;
851 b_head = NEXT_INSN (b_head);
852 }
853
854 /* If there was a jump out of A, delete it. */
855 if (JUMP_P (a_end))
856 {
857 rtx prev;
858
859 for (prev = PREV_INSN (a_end); ; prev = PREV_INSN (prev))
860 if (!NOTE_P (prev)
861 || NOTE_INSN_BASIC_BLOCK_P (prev)
862 || prev == BB_HEAD (a))
863 break;
864
865 del_first = a_end;
866
867 #ifdef HAVE_cc0
868 /* If this was a conditional jump, we need to also delete
869 the insn that set cc0. */
870 if (only_sets_cc0_p (prev))
871 {
872 rtx tmp = prev;
873
874 prev = prev_nonnote_insn (prev);
875 if (!prev)
876 prev = BB_HEAD (a);
877 del_first = tmp;
878 }
879 #endif
880
881 a_end = PREV_INSN (del_first);
882 }
883 else if (BARRIER_P (NEXT_INSN (a_end)))
884 del_first = NEXT_INSN (a_end);
885
886 /* Delete everything marked above as well as crap that might be
887 hanging out between the two blocks. */
888 SET_BB_END (a) = a_end;
889 SET_BB_HEAD (b) = b_empty ? NULL_RTX : b_head;
890 delete_insn_chain (del_first, del_last, true);
891
892 /* When not optimizing and the edge is the only place in RTL which holds
893 some unique locus, emit a nop with that locus in between. */
894 if (!optimize)
895 {
896 emit_nop_for_unique_locus_between (a, b);
897 a_end = BB_END (a);
898 }
899
900 /* Reassociate the insns of B with A. */
901 if (!b_empty)
902 {
903 update_bb_for_insn_chain (a_end, b_debug_end, a);
904
905 SET_BB_END (a) = b_debug_end;
906 SET_BB_HEAD (b) = NULL_RTX;
907 }
908 else if (b_end != b_debug_end)
909 {
910 /* Move any deleted labels and other notes between the end of A
911 and the debug insns that make up B after the debug insns,
912 bringing the debug insns into A while keeping the notes after
913 the end of A. */
914 if (NEXT_INSN (a_end) != b_debug_start)
915 reorder_insns_nobb (NEXT_INSN (a_end), PREV_INSN (b_debug_start),
916 b_debug_end);
917 update_bb_for_insn_chain (b_debug_start, b_debug_end, a);
918 SET_BB_END (a) = b_debug_end;
919 }
920
921 df_bb_delete (b->index);
922
923 /* If B was a forwarder block, propagate the locus on the edge. */
924 if (forwarder_p
925 && LOCATION_LOCUS (EDGE_SUCC (b, 0)->goto_locus) == UNKNOWN_LOCATION)
926 EDGE_SUCC (b, 0)->goto_locus = EDGE_SUCC (a, 0)->goto_locus;
927
928 if (dump_file)
929 fprintf (dump_file, "Merged blocks %d and %d.\n", a->index, b->index);
930 }
931
932
933 /* Return true when block A and B can be merged. */
934
935 static bool
936 rtl_can_merge_blocks (basic_block a, basic_block b)
937 {
938 /* If we are partitioning hot/cold basic blocks, we don't want to
939 mess up unconditional or indirect jumps that cross between hot
940 and cold sections.
941
942 Basic block partitioning may result in some jumps that appear to
943 be optimizable (or blocks that appear to be mergeable), but which really
944 must be left untouched (they are required to make it safely across
945 partition boundaries). See the comments at the top of
946 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
947
948 if (BB_PARTITION (a) != BB_PARTITION (b))
949 return false;
950
951 /* Protect the loop latches. */
952 if (current_loops && b->loop_father->latch == b)
953 return false;
954
955 /* There must be exactly one edge in between the blocks. */
956 return (single_succ_p (a)
957 && single_succ (a) == b
958 && single_pred_p (b)
959 && a != b
960 /* Must be simple edge. */
961 && !(single_succ_edge (a)->flags & EDGE_COMPLEX)
962 && a->next_bb == b
963 && a != ENTRY_BLOCK_PTR_FOR_FN (cfun)
964 && b != EXIT_BLOCK_PTR_FOR_FN (cfun)
965 /* If the jump insn has side effects,
966 we can't kill the edge. */
967 && (!JUMP_P (BB_END (a))
968 || (reload_completed
969 ? simplejump_p (BB_END (a)) : onlyjump_p (BB_END (a)))));
970 }
971 \f
972 /* Return the label in the head of basic block BLOCK. Create one if it doesn't
973 exist. */
974
975 rtx
976 block_label (basic_block block)
977 {
978 if (block == EXIT_BLOCK_PTR_FOR_FN (cfun))
979 return NULL_RTX;
980
981 if (!LABEL_P (BB_HEAD (block)))
982 {
983 SET_BB_HEAD (block) = emit_label_before (gen_label_rtx (), BB_HEAD (block));
984 }
985
986 return BB_HEAD (block);
987 }
988
989 /* Attempt to perform edge redirection by replacing possibly complex jump
990 instruction by unconditional jump or removing jump completely. This can
991 apply only if all edges now point to the same block. The parameters and
992 return values are equivalent to redirect_edge_and_branch. */
993
994 edge
995 try_redirect_by_replacing_jump (edge e, basic_block target, bool in_cfglayout)
996 {
997 basic_block src = e->src;
998 rtx insn = BB_END (src), kill_from;
999 rtx set;
1000 int fallthru = 0;
1001
1002 /* If we are partitioning hot/cold basic blocks, we don't want to
1003 mess up unconditional or indirect jumps that cross between hot
1004 and cold sections.
1005
1006 Basic block partitioning may result in some jumps that appear to
1007 be optimizable (or blocks that appear to be mergeable), but which really
1008 must be left untouched (they are required to make it safely across
1009 partition boundaries). See the comments at the top of
1010 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
1011
1012 if (BB_PARTITION (src) != BB_PARTITION (target))
1013 return NULL;
1014
1015 /* We can replace or remove a complex jump only when we have exactly
1016 two edges. Also, if we have exactly one outgoing edge, we can
1017 redirect that. */
1018 if (EDGE_COUNT (src->succs) >= 3
1019 /* Verify that all targets will be TARGET. Specifically, the
1020 edge that is not E must also go to TARGET. */
1021 || (EDGE_COUNT (src->succs) == 2
1022 && EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target))
1023 return NULL;
1024
1025 if (!onlyjump_p (insn))
1026 return NULL;
1027 if ((!optimize || reload_completed) && tablejump_p (insn, NULL, NULL))
1028 return NULL;
1029
1030 /* Avoid removing branch with side effects. */
1031 set = single_set (insn);
1032 if (!set || side_effects_p (set))
1033 return NULL;
1034
1035 /* In case we zap a conditional jump, we'll need to kill
1036 the cc0 setter too. */
1037 kill_from = insn;
1038 #ifdef HAVE_cc0
1039 if (reg_mentioned_p (cc0_rtx, PATTERN (insn))
1040 && only_sets_cc0_p (PREV_INSN (insn)))
1041 kill_from = PREV_INSN (insn);
1042 #endif
1043
1044 /* See if we can create the fallthru edge. */
1045 if (in_cfglayout || can_fallthru (src, target))
1046 {
1047 if (dump_file)
1048 fprintf (dump_file, "Removing jump %i.\n", INSN_UID (insn));
1049 fallthru = 1;
1050
1051 /* Selectively unlink whole insn chain. */
1052 if (in_cfglayout)
1053 {
1054 rtx insn = BB_FOOTER (src);
1055
1056 delete_insn_chain (kill_from, BB_END (src), false);
1057
1058 /* Remove barriers but keep jumptables. */
1059 while (insn)
1060 {
1061 if (BARRIER_P (insn))
1062 {
1063 if (PREV_INSN (insn))
1064 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
1065 else
1066 SET_BB_FOOTER (src) = NEXT_INSN (insn);
1067 if (NEXT_INSN (insn))
1068 SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
1069 }
1070 if (LABEL_P (insn))
1071 break;
1072 insn = NEXT_INSN (insn);
1073 }
1074 }
1075 else
1076 delete_insn_chain (kill_from, PREV_INSN (BB_HEAD (target)),
1077 false);
1078 }
1079
1080 /* If this already is simplejump, redirect it. */
1081 else if (simplejump_p (insn))
1082 {
1083 if (e->dest == target)
1084 return NULL;
1085 if (dump_file)
1086 fprintf (dump_file, "Redirecting jump %i from %i to %i.\n",
1087 INSN_UID (insn), e->dest->index, target->index);
1088 if (!redirect_jump (insn, block_label (target), 0))
1089 {
1090 gcc_assert (target == EXIT_BLOCK_PTR_FOR_FN (cfun));
1091 return NULL;
1092 }
1093 }
1094
1095 /* Cannot do anything for target exit block. */
1096 else if (target == EXIT_BLOCK_PTR_FOR_FN (cfun))
1097 return NULL;
1098
1099 /* Or replace possibly complicated jump insn by simple jump insn. */
1100 else
1101 {
1102 rtx target_label = block_label (target);
1103 rtx barrier, label;
1104 rtx_jump_table_data *table;
1105
1106 emit_jump_insn_after_noloc (gen_jump (target_label), insn);
1107 JUMP_LABEL (BB_END (src)) = target_label;
1108 LABEL_NUSES (target_label)++;
1109 if (dump_file)
1110 fprintf (dump_file, "Replacing insn %i by jump %i\n",
1111 INSN_UID (insn), INSN_UID (BB_END (src)));
1112
1113
1114 delete_insn_chain (kill_from, insn, false);
1115
1116 /* Recognize a tablejump that we are converting to a
1117 simple jump and remove its associated CODE_LABEL
1118 and ADDR_VEC or ADDR_DIFF_VEC. */
1119 if (tablejump_p (insn, &label, &table))
1120 delete_insn_chain (label, table, false);
1121
1122 barrier = next_nonnote_insn (BB_END (src));
1123 if (!barrier || !BARRIER_P (barrier))
1124 emit_barrier_after (BB_END (src));
1125 else
1126 {
1127 if (barrier != NEXT_INSN (BB_END (src)))
1128 {
1129 /* Move the jump before barrier so that the notes
1130 which originally were or were created before jump table are
1131 inside the basic block. */
1132 rtx new_insn = BB_END (src);
1133
1134 update_bb_for_insn_chain (NEXT_INSN (BB_END (src)),
1135 PREV_INSN (barrier), src);
1136
1137 SET_NEXT_INSN (PREV_INSN (new_insn)) = NEXT_INSN (new_insn);
1138 SET_PREV_INSN (NEXT_INSN (new_insn)) = PREV_INSN (new_insn);
1139
1140 SET_NEXT_INSN (new_insn) = barrier;
1141 SET_NEXT_INSN (PREV_INSN (barrier)) = new_insn;
1142
1143 SET_PREV_INSN (new_insn) = PREV_INSN (barrier);
1144 SET_PREV_INSN (barrier) = new_insn;
1145 }
1146 }
1147 }
1148
1149 /* Keep only one edge out and set proper flags. */
1150 if (!single_succ_p (src))
1151 remove_edge (e);
1152 gcc_assert (single_succ_p (src));
1153
1154 e = single_succ_edge (src);
1155 if (fallthru)
1156 e->flags = EDGE_FALLTHRU;
1157 else
1158 e->flags = 0;
1159
1160 e->probability = REG_BR_PROB_BASE;
1161 e->count = src->count;
1162
1163 if (e->dest != target)
1164 redirect_edge_succ (e, target);
1165 return e;
1166 }
1167
1168 /* Subroutine of redirect_branch_edge that tries to patch the jump
1169 instruction INSN so that it reaches block NEW. Do this
1170 only when it originally reached block OLD. Return true if this
1171 worked or the original target wasn't OLD, return false if redirection
1172 doesn't work. */
1173
1174 static bool
1175 patch_jump_insn (rtx insn, rtx old_label, basic_block new_bb)
1176 {
1177 rtx_jump_table_data *table;
1178 rtx tmp;
1179 /* Recognize a tablejump and adjust all matching cases. */
1180 if (tablejump_p (insn, NULL, &table))
1181 {
1182 rtvec vec;
1183 int j;
1184 rtx new_label = block_label (new_bb);
1185
1186 if (new_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
1187 return false;
1188 if (GET_CODE (PATTERN (table)) == ADDR_VEC)
1189 vec = XVEC (PATTERN (table), 0);
1190 else
1191 vec = XVEC (PATTERN (table), 1);
1192
1193 for (j = GET_NUM_ELEM (vec) - 1; j >= 0; --j)
1194 if (XEXP (RTVEC_ELT (vec, j), 0) == old_label)
1195 {
1196 RTVEC_ELT (vec, j) = gen_rtx_LABEL_REF (Pmode, new_label);
1197 --LABEL_NUSES (old_label);
1198 ++LABEL_NUSES (new_label);
1199 }
1200
1201 /* Handle casesi dispatch insns. */
1202 if ((tmp = single_set (insn)) != NULL
1203 && SET_DEST (tmp) == pc_rtx
1204 && GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE
1205 && GET_CODE (XEXP (SET_SRC (tmp), 2)) == LABEL_REF
1206 && XEXP (XEXP (SET_SRC (tmp), 2), 0) == old_label)
1207 {
1208 XEXP (SET_SRC (tmp), 2) = gen_rtx_LABEL_REF (Pmode,
1209 new_label);
1210 --LABEL_NUSES (old_label);
1211 ++LABEL_NUSES (new_label);
1212 }
1213 }
1214 else if ((tmp = extract_asm_operands (PATTERN (insn))) != NULL)
1215 {
1216 int i, n = ASM_OPERANDS_LABEL_LENGTH (tmp);
1217 rtx new_label, note;
1218
1219 if (new_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
1220 return false;
1221 new_label = block_label (new_bb);
1222
1223 for (i = 0; i < n; ++i)
1224 {
1225 rtx old_ref = ASM_OPERANDS_LABEL (tmp, i);
1226 gcc_assert (GET_CODE (old_ref) == LABEL_REF);
1227 if (XEXP (old_ref, 0) == old_label)
1228 {
1229 ASM_OPERANDS_LABEL (tmp, i)
1230 = gen_rtx_LABEL_REF (Pmode, new_label);
1231 --LABEL_NUSES (old_label);
1232 ++LABEL_NUSES (new_label);
1233 }
1234 }
1235
1236 if (JUMP_LABEL (insn) == old_label)
1237 {
1238 JUMP_LABEL (insn) = new_label;
1239 note = find_reg_note (insn, REG_LABEL_TARGET, new_label);
1240 if (note)
1241 remove_note (insn, note);
1242 }
1243 else
1244 {
1245 note = find_reg_note (insn, REG_LABEL_TARGET, old_label);
1246 if (note)
1247 remove_note (insn, note);
1248 if (JUMP_LABEL (insn) != new_label
1249 && !find_reg_note (insn, REG_LABEL_TARGET, new_label))
1250 add_reg_note (insn, REG_LABEL_TARGET, new_label);
1251 }
1252 while ((note = find_reg_note (insn, REG_LABEL_OPERAND, old_label))
1253 != NULL_RTX)
1254 XEXP (note, 0) = new_label;
1255 }
1256 else
1257 {
1258 /* ?? We may play the games with moving the named labels from
1259 one basic block to the other in case only one computed_jump is
1260 available. */
1261 if (computed_jump_p (insn)
1262 /* A return instruction can't be redirected. */
1263 || returnjump_p (insn))
1264 return false;
1265
1266 if (!currently_expanding_to_rtl || JUMP_LABEL (insn) == old_label)
1267 {
1268 /* If the insn doesn't go where we think, we're confused. */
1269 gcc_assert (JUMP_LABEL (insn) == old_label);
1270
1271 /* If the substitution doesn't succeed, die. This can happen
1272 if the back end emitted unrecognizable instructions or if
1273 target is exit block on some arches. */
1274 if (!redirect_jump (insn, block_label (new_bb), 0))
1275 {
1276 gcc_assert (new_bb == EXIT_BLOCK_PTR_FOR_FN (cfun));
1277 return false;
1278 }
1279 }
1280 }
1281 return true;
1282 }
1283
1284
1285 /* Redirect edge representing branch of (un)conditional jump or tablejump,
1286 NULL on failure */
1287 static edge
1288 redirect_branch_edge (edge e, basic_block target)
1289 {
1290 rtx old_label = BB_HEAD (e->dest);
1291 basic_block src = e->src;
1292 rtx insn = BB_END (src);
1293
1294 /* We can only redirect non-fallthru edges of jump insn. */
1295 if (e->flags & EDGE_FALLTHRU)
1296 return NULL;
1297 else if (!JUMP_P (insn) && !currently_expanding_to_rtl)
1298 return NULL;
1299
1300 if (!currently_expanding_to_rtl)
1301 {
1302 if (!patch_jump_insn (insn, old_label, target))
1303 return NULL;
1304 }
1305 else
1306 /* When expanding this BB might actually contain multiple
1307 jumps (i.e. not yet split by find_many_sub_basic_blocks).
1308 Redirect all of those that match our label. */
1309 FOR_BB_INSNS (src, insn)
1310 if (JUMP_P (insn) && !patch_jump_insn (insn, old_label, target))
1311 return NULL;
1312
1313 if (dump_file)
1314 fprintf (dump_file, "Edge %i->%i redirected to %i\n",
1315 e->src->index, e->dest->index, target->index);
1316
1317 if (e->dest != target)
1318 e = redirect_edge_succ_nodup (e, target);
1319
1320 return e;
1321 }
1322
1323 /* Called when edge E has been redirected to a new destination,
1324 in order to update the region crossing flag on the edge and
1325 jump. */
1326
1327 static void
1328 fixup_partition_crossing (edge e)
1329 {
1330 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun) || e->dest
1331 == EXIT_BLOCK_PTR_FOR_FN (cfun))
1332 return;
1333 /* If we redirected an existing edge, it may already be marked
1334 crossing, even though the new src is missing a reg crossing note.
1335 But make sure reg crossing note doesn't already exist before
1336 inserting. */
1337 if (BB_PARTITION (e->src) != BB_PARTITION (e->dest))
1338 {
1339 e->flags |= EDGE_CROSSING;
1340 if (JUMP_P (BB_END (e->src))
1341 && !CROSSING_JUMP_P (BB_END (e->src)))
1342 CROSSING_JUMP_P (BB_END (e->src)) = 1;
1343 }
1344 else if (BB_PARTITION (e->src) == BB_PARTITION (e->dest))
1345 {
1346 e->flags &= ~EDGE_CROSSING;
1347 /* Remove the section crossing note from jump at end of
1348 src if it exists, and if no other successors are
1349 still crossing. */
1350 if (JUMP_P (BB_END (e->src)) && CROSSING_JUMP_P (BB_END (e->src)))
1351 {
1352 bool has_crossing_succ = false;
1353 edge e2;
1354 edge_iterator ei;
1355 FOR_EACH_EDGE (e2, ei, e->src->succs)
1356 {
1357 has_crossing_succ |= (e2->flags & EDGE_CROSSING);
1358 if (has_crossing_succ)
1359 break;
1360 }
1361 if (!has_crossing_succ)
1362 CROSSING_JUMP_P (BB_END (e->src)) = 0;
1363 }
1364 }
1365 }
1366
1367 /* Called when block BB has been reassigned to the cold partition,
1368 because it is now dominated by another cold block,
1369 to ensure that the region crossing attributes are updated. */
1370
1371 static void
1372 fixup_new_cold_bb (basic_block bb)
1373 {
1374 edge e;
1375 edge_iterator ei;
1376
1377 /* This is called when a hot bb is found to now be dominated
1378 by a cold bb and therefore needs to become cold. Therefore,
1379 its preds will no longer be region crossing. Any non-dominating
1380 preds that were previously hot would also have become cold
1381 in the caller for the same region. Any preds that were previously
1382 region-crossing will be adjusted in fixup_partition_crossing. */
1383 FOR_EACH_EDGE (e, ei, bb->preds)
1384 {
1385 fixup_partition_crossing (e);
1386 }
1387
1388 /* Possibly need to make bb's successor edges region crossing,
1389 or remove stale region crossing. */
1390 FOR_EACH_EDGE (e, ei, bb->succs)
1391 {
1392 /* We can't have fall-through edges across partition boundaries.
1393 Note that force_nonfallthru will do any necessary partition
1394 boundary fixup by calling fixup_partition_crossing itself. */
1395 if ((e->flags & EDGE_FALLTHRU)
1396 && BB_PARTITION (bb) != BB_PARTITION (e->dest)
1397 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1398 force_nonfallthru (e);
1399 else
1400 fixup_partition_crossing (e);
1401 }
1402 }
1403
1404 /* Attempt to change code to redirect edge E to TARGET. Don't do that on
1405 expense of adding new instructions or reordering basic blocks.
1406
1407 Function can be also called with edge destination equivalent to the TARGET.
1408 Then it should try the simplifications and do nothing if none is possible.
1409
1410 Return edge representing the branch if transformation succeeded. Return NULL
1411 on failure.
1412 We still return NULL in case E already destinated TARGET and we didn't
1413 managed to simplify instruction stream. */
1414
1415 static edge
1416 rtl_redirect_edge_and_branch (edge e, basic_block target)
1417 {
1418 edge ret;
1419 basic_block src = e->src;
1420 basic_block dest = e->dest;
1421
1422 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
1423 return NULL;
1424
1425 if (dest == target)
1426 return e;
1427
1428 if ((ret = try_redirect_by_replacing_jump (e, target, false)) != NULL)
1429 {
1430 df_set_bb_dirty (src);
1431 fixup_partition_crossing (ret);
1432 return ret;
1433 }
1434
1435 ret = redirect_branch_edge (e, target);
1436 if (!ret)
1437 return NULL;
1438
1439 df_set_bb_dirty (src);
1440 fixup_partition_crossing (ret);
1441 return ret;
1442 }
1443
1444 /* Emit a barrier after BB, into the footer if we are in CFGLAYOUT mode. */
1445
1446 void
1447 emit_barrier_after_bb (basic_block bb)
1448 {
1449 rtx_barrier *barrier = emit_barrier_after (BB_END (bb));
1450 gcc_assert (current_ir_type () == IR_RTL_CFGRTL
1451 || current_ir_type () == IR_RTL_CFGLAYOUT);
1452 if (current_ir_type () == IR_RTL_CFGLAYOUT)
1453 SET_BB_FOOTER (bb) = unlink_insn_chain (barrier, barrier);
1454 }
1455
1456 /* Like force_nonfallthru below, but additionally performs redirection
1457 Used by redirect_edge_and_branch_force. JUMP_LABEL is used only
1458 when redirecting to the EXIT_BLOCK, it is either ret_rtx or
1459 simple_return_rtx, indicating which kind of returnjump to create.
1460 It should be NULL otherwise. */
1461
1462 basic_block
1463 force_nonfallthru_and_redirect (edge e, basic_block target, rtx jump_label)
1464 {
1465 basic_block jump_block, new_bb = NULL, src = e->src;
1466 rtx note;
1467 edge new_edge;
1468 int abnormal_edge_flags = 0;
1469 bool asm_goto_edge = false;
1470 int loc;
1471
1472 /* In the case the last instruction is conditional jump to the next
1473 instruction, first redirect the jump itself and then continue
1474 by creating a basic block afterwards to redirect fallthru edge. */
1475 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
1476 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
1477 && any_condjump_p (BB_END (e->src))
1478 && JUMP_LABEL (BB_END (e->src)) == BB_HEAD (e->dest))
1479 {
1480 rtx note;
1481 edge b = unchecked_make_edge (e->src, target, 0);
1482 bool redirected;
1483
1484 redirected = redirect_jump (BB_END (e->src), block_label (target), 0);
1485 gcc_assert (redirected);
1486
1487 note = find_reg_note (BB_END (e->src), REG_BR_PROB, NULL_RTX);
1488 if (note)
1489 {
1490 int prob = XINT (note, 0);
1491
1492 b->probability = prob;
1493 /* Update this to use GCOV_COMPUTE_SCALE. */
1494 b->count = e->count * prob / REG_BR_PROB_BASE;
1495 e->probability -= e->probability;
1496 e->count -= b->count;
1497 if (e->probability < 0)
1498 e->probability = 0;
1499 if (e->count < 0)
1500 e->count = 0;
1501 }
1502 }
1503
1504 if (e->flags & EDGE_ABNORMAL)
1505 {
1506 /* Irritating special case - fallthru edge to the same block as abnormal
1507 edge.
1508 We can't redirect abnormal edge, but we still can split the fallthru
1509 one and create separate abnormal edge to original destination.
1510 This allows bb-reorder to make such edge non-fallthru. */
1511 gcc_assert (e->dest == target);
1512 abnormal_edge_flags = e->flags & ~EDGE_FALLTHRU;
1513 e->flags &= EDGE_FALLTHRU;
1514 }
1515 else
1516 {
1517 gcc_assert (e->flags & EDGE_FALLTHRU);
1518 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1519 {
1520 /* We can't redirect the entry block. Create an empty block
1521 at the start of the function which we use to add the new
1522 jump. */
1523 edge tmp;
1524 edge_iterator ei;
1525 bool found = false;
1526
1527 basic_block bb = create_basic_block (BB_HEAD (e->dest), NULL,
1528 ENTRY_BLOCK_PTR_FOR_FN (cfun));
1529
1530 /* Change the existing edge's source to be the new block, and add
1531 a new edge from the entry block to the new block. */
1532 e->src = bb;
1533 for (ei = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
1534 (tmp = ei_safe_edge (ei)); )
1535 {
1536 if (tmp == e)
1537 {
1538 ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs->unordered_remove (ei.index);
1539 found = true;
1540 break;
1541 }
1542 else
1543 ei_next (&ei);
1544 }
1545
1546 gcc_assert (found);
1547
1548 vec_safe_push (bb->succs, e);
1549 make_single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), bb,
1550 EDGE_FALLTHRU);
1551 }
1552 }
1553
1554 /* If e->src ends with asm goto, see if any of the ASM_OPERANDS_LABELs
1555 don't point to the target or fallthru label. */
1556 if (JUMP_P (BB_END (e->src))
1557 && target != EXIT_BLOCK_PTR_FOR_FN (cfun)
1558 && (e->flags & EDGE_FALLTHRU)
1559 && (note = extract_asm_operands (PATTERN (BB_END (e->src)))))
1560 {
1561 int i, n = ASM_OPERANDS_LABEL_LENGTH (note);
1562 bool adjust_jump_target = false;
1563
1564 for (i = 0; i < n; ++i)
1565 {
1566 if (XEXP (ASM_OPERANDS_LABEL (note, i), 0) == BB_HEAD (e->dest))
1567 {
1568 LABEL_NUSES (XEXP (ASM_OPERANDS_LABEL (note, i), 0))--;
1569 XEXP (ASM_OPERANDS_LABEL (note, i), 0) = block_label (target);
1570 LABEL_NUSES (XEXP (ASM_OPERANDS_LABEL (note, i), 0))++;
1571 adjust_jump_target = true;
1572 }
1573 if (XEXP (ASM_OPERANDS_LABEL (note, i), 0) == BB_HEAD (target))
1574 asm_goto_edge = true;
1575 }
1576 if (adjust_jump_target)
1577 {
1578 rtx insn = BB_END (e->src), note;
1579 rtx old_label = BB_HEAD (e->dest);
1580 rtx new_label = BB_HEAD (target);
1581
1582 if (JUMP_LABEL (insn) == old_label)
1583 {
1584 JUMP_LABEL (insn) = new_label;
1585 note = find_reg_note (insn, REG_LABEL_TARGET, new_label);
1586 if (note)
1587 remove_note (insn, note);
1588 }
1589 else
1590 {
1591 note = find_reg_note (insn, REG_LABEL_TARGET, old_label);
1592 if (note)
1593 remove_note (insn, note);
1594 if (JUMP_LABEL (insn) != new_label
1595 && !find_reg_note (insn, REG_LABEL_TARGET, new_label))
1596 add_reg_note (insn, REG_LABEL_TARGET, new_label);
1597 }
1598 while ((note = find_reg_note (insn, REG_LABEL_OPERAND, old_label))
1599 != NULL_RTX)
1600 XEXP (note, 0) = new_label;
1601 }
1602 }
1603
1604 if (EDGE_COUNT (e->src->succs) >= 2 || abnormal_edge_flags || asm_goto_edge)
1605 {
1606 gcov_type count = e->count;
1607 int probability = e->probability;
1608 /* Create the new structures. */
1609
1610 /* If the old block ended with a tablejump, skip its table
1611 by searching forward from there. Otherwise start searching
1612 forward from the last instruction of the old block. */
1613 rtx_jump_table_data *table;
1614 if (tablejump_p (BB_END (e->src), NULL, &table))
1615 note = table;
1616 else
1617 note = BB_END (e->src);
1618 note = NEXT_INSN (note);
1619
1620 jump_block = create_basic_block (note, NULL, e->src);
1621 jump_block->count = count;
1622 jump_block->frequency = EDGE_FREQUENCY (e);
1623
1624 /* Make sure new block ends up in correct hot/cold section. */
1625
1626 BB_COPY_PARTITION (jump_block, e->src);
1627
1628 /* Wire edge in. */
1629 new_edge = make_edge (e->src, jump_block, EDGE_FALLTHRU);
1630 new_edge->probability = probability;
1631 new_edge->count = count;
1632
1633 /* Redirect old edge. */
1634 redirect_edge_pred (e, jump_block);
1635 e->probability = REG_BR_PROB_BASE;
1636
1637 /* If e->src was previously region crossing, it no longer is
1638 and the reg crossing note should be removed. */
1639 fixup_partition_crossing (new_edge);
1640
1641 /* If asm goto has any label refs to target's label,
1642 add also edge from asm goto bb to target. */
1643 if (asm_goto_edge)
1644 {
1645 new_edge->probability /= 2;
1646 new_edge->count /= 2;
1647 jump_block->count /= 2;
1648 jump_block->frequency /= 2;
1649 new_edge = make_edge (new_edge->src, target,
1650 e->flags & ~EDGE_FALLTHRU);
1651 new_edge->probability = probability - probability / 2;
1652 new_edge->count = count - count / 2;
1653 }
1654
1655 new_bb = jump_block;
1656 }
1657 else
1658 jump_block = e->src;
1659
1660 loc = e->goto_locus;
1661 e->flags &= ~EDGE_FALLTHRU;
1662 if (target == EXIT_BLOCK_PTR_FOR_FN (cfun))
1663 {
1664 if (jump_label == ret_rtx)
1665 {
1666 #ifdef HAVE_return
1667 emit_jump_insn_after_setloc (gen_return (), BB_END (jump_block), loc);
1668 #else
1669 gcc_unreachable ();
1670 #endif
1671 }
1672 else
1673 {
1674 gcc_assert (jump_label == simple_return_rtx);
1675 #ifdef HAVE_simple_return
1676 emit_jump_insn_after_setloc (gen_simple_return (),
1677 BB_END (jump_block), loc);
1678 #else
1679 gcc_unreachable ();
1680 #endif
1681 }
1682 set_return_jump_label (BB_END (jump_block));
1683 }
1684 else
1685 {
1686 rtx label = block_label (target);
1687 emit_jump_insn_after_setloc (gen_jump (label), BB_END (jump_block), loc);
1688 JUMP_LABEL (BB_END (jump_block)) = label;
1689 LABEL_NUSES (label)++;
1690 }
1691
1692 /* We might be in cfg layout mode, and if so, the following routine will
1693 insert the barrier correctly. */
1694 emit_barrier_after_bb (jump_block);
1695 redirect_edge_succ_nodup (e, target);
1696
1697 if (abnormal_edge_flags)
1698 make_edge (src, target, abnormal_edge_flags);
1699
1700 df_mark_solutions_dirty ();
1701 fixup_partition_crossing (e);
1702 return new_bb;
1703 }
1704
1705 /* Edge E is assumed to be fallthru edge. Emit needed jump instruction
1706 (and possibly create new basic block) to make edge non-fallthru.
1707 Return newly created BB or NULL if none. */
1708
1709 static basic_block
1710 rtl_force_nonfallthru (edge e)
1711 {
1712 return force_nonfallthru_and_redirect (e, e->dest, NULL_RTX);
1713 }
1714
1715 /* Redirect edge even at the expense of creating new jump insn or
1716 basic block. Return new basic block if created, NULL otherwise.
1717 Conversion must be possible. */
1718
1719 static basic_block
1720 rtl_redirect_edge_and_branch_force (edge e, basic_block target)
1721 {
1722 if (redirect_edge_and_branch (e, target)
1723 || e->dest == target)
1724 return NULL;
1725
1726 /* In case the edge redirection failed, try to force it to be non-fallthru
1727 and redirect newly created simplejump. */
1728 df_set_bb_dirty (e->src);
1729 return force_nonfallthru_and_redirect (e, target, NULL_RTX);
1730 }
1731
1732 /* The given edge should potentially be a fallthru edge. If that is in
1733 fact true, delete the jump and barriers that are in the way. */
1734
1735 static void
1736 rtl_tidy_fallthru_edge (edge e)
1737 {
1738 rtx q;
1739 basic_block b = e->src, c = b->next_bb;
1740
1741 /* ??? In a late-running flow pass, other folks may have deleted basic
1742 blocks by nopping out blocks, leaving multiple BARRIERs between here
1743 and the target label. They ought to be chastised and fixed.
1744
1745 We can also wind up with a sequence of undeletable labels between
1746 one block and the next.
1747
1748 So search through a sequence of barriers, labels, and notes for
1749 the head of block C and assert that we really do fall through. */
1750
1751 for (q = NEXT_INSN (BB_END (b)); q != BB_HEAD (c); q = NEXT_INSN (q))
1752 if (INSN_P (q))
1753 return;
1754
1755 /* Remove what will soon cease being the jump insn from the source block.
1756 If block B consisted only of this single jump, turn it into a deleted
1757 note. */
1758 q = BB_END (b);
1759 if (JUMP_P (q)
1760 && onlyjump_p (q)
1761 && (any_uncondjump_p (q)
1762 || single_succ_p (b)))
1763 {
1764 #ifdef HAVE_cc0
1765 /* If this was a conditional jump, we need to also delete
1766 the insn that set cc0. */
1767 if (any_condjump_p (q) && only_sets_cc0_p (PREV_INSN (q)))
1768 q = PREV_INSN (q);
1769 #endif
1770
1771 q = PREV_INSN (q);
1772 }
1773
1774 /* Selectively unlink the sequence. */
1775 if (q != PREV_INSN (BB_HEAD (c)))
1776 delete_insn_chain (NEXT_INSN (q), PREV_INSN (BB_HEAD (c)), false);
1777
1778 e->flags |= EDGE_FALLTHRU;
1779 }
1780 \f
1781 /* Should move basic block BB after basic block AFTER. NIY. */
1782
1783 static bool
1784 rtl_move_block_after (basic_block bb ATTRIBUTE_UNUSED,
1785 basic_block after ATTRIBUTE_UNUSED)
1786 {
1787 return false;
1788 }
1789
1790 /* Locate the last bb in the same partition as START_BB. */
1791
1792 static basic_block
1793 last_bb_in_partition (basic_block start_bb)
1794 {
1795 basic_block bb;
1796 FOR_BB_BETWEEN (bb, start_bb, EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
1797 {
1798 if (BB_PARTITION (start_bb) != BB_PARTITION (bb->next_bb))
1799 return bb;
1800 }
1801 /* Return bb before the exit block. */
1802 return bb->prev_bb;
1803 }
1804
1805 /* Split a (typically critical) edge. Return the new block.
1806 The edge must not be abnormal.
1807
1808 ??? The code generally expects to be called on critical edges.
1809 The case of a block ending in an unconditional jump to a
1810 block with multiple predecessors is not handled optimally. */
1811
1812 static basic_block
1813 rtl_split_edge (edge edge_in)
1814 {
1815 basic_block bb, new_bb;
1816 rtx before;
1817
1818 /* Abnormal edges cannot be split. */
1819 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
1820
1821 /* We are going to place the new block in front of edge destination.
1822 Avoid existence of fallthru predecessors. */
1823 if ((edge_in->flags & EDGE_FALLTHRU) == 0)
1824 {
1825 edge e = find_fallthru_edge (edge_in->dest->preds);
1826
1827 if (e)
1828 force_nonfallthru (e);
1829 }
1830
1831 /* Create the basic block note. */
1832 if (edge_in->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1833 before = BB_HEAD (edge_in->dest);
1834 else
1835 before = NULL_RTX;
1836
1837 /* If this is a fall through edge to the exit block, the blocks might be
1838 not adjacent, and the right place is after the source. */
1839 if ((edge_in->flags & EDGE_FALLTHRU)
1840 && edge_in->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1841 {
1842 before = NEXT_INSN (BB_END (edge_in->src));
1843 bb = create_basic_block (before, NULL, edge_in->src);
1844 BB_COPY_PARTITION (bb, edge_in->src);
1845 }
1846 else
1847 {
1848 if (edge_in->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1849 {
1850 bb = create_basic_block (before, NULL, edge_in->dest->prev_bb);
1851 BB_COPY_PARTITION (bb, edge_in->dest);
1852 }
1853 else
1854 {
1855 basic_block after = edge_in->dest->prev_bb;
1856 /* If this is post-bb reordering, and the edge crosses a partition
1857 boundary, the new block needs to be inserted in the bb chain
1858 at the end of the src partition (since we put the new bb into
1859 that partition, see below). Otherwise we may end up creating
1860 an extra partition crossing in the chain, which is illegal.
1861 It can't go after the src, because src may have a fall-through
1862 to a different block. */
1863 if (crtl->bb_reorder_complete
1864 && (edge_in->flags & EDGE_CROSSING))
1865 {
1866 after = last_bb_in_partition (edge_in->src);
1867 before = NEXT_INSN (BB_END (after));
1868 /* The instruction following the last bb in partition should
1869 be a barrier, since it cannot end in a fall-through. */
1870 gcc_checking_assert (BARRIER_P (before));
1871 before = NEXT_INSN (before);
1872 }
1873 bb = create_basic_block (before, NULL, after);
1874 /* Put the split bb into the src partition, to avoid creating
1875 a situation where a cold bb dominates a hot bb, in the case
1876 where src is cold and dest is hot. The src will dominate
1877 the new bb (whereas it might not have dominated dest). */
1878 BB_COPY_PARTITION (bb, edge_in->src);
1879 }
1880 }
1881
1882 make_single_succ_edge (bb, edge_in->dest, EDGE_FALLTHRU);
1883
1884 /* Can't allow a region crossing edge to be fallthrough. */
1885 if (BB_PARTITION (bb) != BB_PARTITION (edge_in->dest)
1886 && edge_in->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1887 {
1888 new_bb = force_nonfallthru (single_succ_edge (bb));
1889 gcc_assert (!new_bb);
1890 }
1891
1892 /* For non-fallthru edges, we must adjust the predecessor's
1893 jump instruction to target our new block. */
1894 if ((edge_in->flags & EDGE_FALLTHRU) == 0)
1895 {
1896 edge redirected = redirect_edge_and_branch (edge_in, bb);
1897 gcc_assert (redirected);
1898 }
1899 else
1900 {
1901 if (edge_in->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
1902 {
1903 /* For asm goto even splitting of fallthru edge might
1904 need insn patching, as other labels might point to the
1905 old label. */
1906 rtx last = BB_END (edge_in->src);
1907 if (last
1908 && JUMP_P (last)
1909 && edge_in->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
1910 && extract_asm_operands (PATTERN (last)) != NULL_RTX
1911 && patch_jump_insn (last, before, bb))
1912 df_set_bb_dirty (edge_in->src);
1913 }
1914 redirect_edge_succ (edge_in, bb);
1915 }
1916
1917 return bb;
1918 }
1919
1920 /* Queue instructions for insertion on an edge between two basic blocks.
1921 The new instructions and basic blocks (if any) will not appear in the
1922 CFG until commit_edge_insertions is called. */
1923
1924 void
1925 insert_insn_on_edge (rtx pattern, edge e)
1926 {
1927 /* We cannot insert instructions on an abnormal critical edge.
1928 It will be easier to find the culprit if we die now. */
1929 gcc_assert (!((e->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (e)));
1930
1931 if (e->insns.r == NULL_RTX)
1932 start_sequence ();
1933 else
1934 push_to_sequence (e->insns.r);
1935
1936 emit_insn (pattern);
1937
1938 e->insns.r = get_insns ();
1939 end_sequence ();
1940 }
1941
1942 /* Update the CFG for the instructions queued on edge E. */
1943
1944 void
1945 commit_one_edge_insertion (edge e)
1946 {
1947 rtx before = NULL_RTX, after = NULL_RTX, insns, tmp, last;
1948 basic_block bb;
1949
1950 /* Pull the insns off the edge now since the edge might go away. */
1951 insns = e->insns.r;
1952 e->insns.r = NULL_RTX;
1953
1954 /* Figure out where to put these insns. If the destination has
1955 one predecessor, insert there. Except for the exit block. */
1956 if (single_pred_p (e->dest) && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1957 {
1958 bb = e->dest;
1959
1960 /* Get the location correct wrt a code label, and "nice" wrt
1961 a basic block note, and before everything else. */
1962 tmp = BB_HEAD (bb);
1963 if (LABEL_P (tmp))
1964 tmp = NEXT_INSN (tmp);
1965 if (NOTE_INSN_BASIC_BLOCK_P (tmp))
1966 tmp = NEXT_INSN (tmp);
1967 if (tmp == BB_HEAD (bb))
1968 before = tmp;
1969 else if (tmp)
1970 after = PREV_INSN (tmp);
1971 else
1972 after = get_last_insn ();
1973 }
1974
1975 /* If the source has one successor and the edge is not abnormal,
1976 insert there. Except for the entry block.
1977 Don't do this if the predecessor ends in a jump other than
1978 unconditional simple jump. E.g. for asm goto that points all
1979 its labels at the fallthru basic block, we can't insert instructions
1980 before the asm goto, as the asm goto can have various of side effects,
1981 and can't emit instructions after the asm goto, as it must end
1982 the basic block. */
1983 else if ((e->flags & EDGE_ABNORMAL) == 0
1984 && single_succ_p (e->src)
1985 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
1986 && (!JUMP_P (BB_END (e->src))
1987 || simplejump_p (BB_END (e->src))))
1988 {
1989 bb = e->src;
1990
1991 /* It is possible to have a non-simple jump here. Consider a target
1992 where some forms of unconditional jumps clobber a register. This
1993 happens on the fr30 for example.
1994
1995 We know this block has a single successor, so we can just emit
1996 the queued insns before the jump. */
1997 if (JUMP_P (BB_END (bb)))
1998 before = BB_END (bb);
1999 else
2000 {
2001 /* We'd better be fallthru, or we've lost track of what's what. */
2002 gcc_assert (e->flags & EDGE_FALLTHRU);
2003
2004 after = BB_END (bb);
2005 }
2006 }
2007
2008 /* Otherwise we must split the edge. */
2009 else
2010 {
2011 bb = split_edge (e);
2012
2013 /* If E crossed a partition boundary, we needed to make bb end in
2014 a region-crossing jump, even though it was originally fallthru. */
2015 if (JUMP_P (BB_END (bb)))
2016 before = BB_END (bb);
2017 else
2018 after = BB_END (bb);
2019 }
2020
2021 /* Now that we've found the spot, do the insertion. */
2022 if (before)
2023 {
2024 emit_insn_before_noloc (insns, before, bb);
2025 last = prev_nonnote_insn (before);
2026 }
2027 else
2028 last = emit_insn_after_noloc (insns, after, bb);
2029
2030 if (returnjump_p (last))
2031 {
2032 /* ??? Remove all outgoing edges from BB and add one for EXIT.
2033 This is not currently a problem because this only happens
2034 for the (single) epilogue, which already has a fallthru edge
2035 to EXIT. */
2036
2037 e = single_succ_edge (bb);
2038 gcc_assert (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
2039 && single_succ_p (bb) && (e->flags & EDGE_FALLTHRU));
2040
2041 e->flags &= ~EDGE_FALLTHRU;
2042 emit_barrier_after (last);
2043
2044 if (before)
2045 delete_insn (before);
2046 }
2047 else
2048 gcc_assert (!JUMP_P (last));
2049 }
2050
2051 /* Update the CFG for all queued instructions. */
2052
2053 void
2054 commit_edge_insertions (void)
2055 {
2056 basic_block bb;
2057
2058 /* Optimization passes that invoke this routine can cause hot blocks
2059 previously reached by both hot and cold blocks to become dominated only
2060 by cold blocks. This will cause the verification below to fail,
2061 and lead to now cold code in the hot section. In some cases this
2062 may only be visible after newly unreachable blocks are deleted,
2063 which will be done by fixup_partitions. */
2064 fixup_partitions ();
2065
2066 #ifdef ENABLE_CHECKING
2067 verify_flow_info ();
2068 #endif
2069
2070 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
2071 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
2072 {
2073 edge e;
2074 edge_iterator ei;
2075
2076 FOR_EACH_EDGE (e, ei, bb->succs)
2077 if (e->insns.r)
2078 commit_one_edge_insertion (e);
2079 }
2080 }
2081 \f
2082
2083 /* Print out RTL-specific basic block information (live information
2084 at start and end with TDF_DETAILS). FLAGS are the TDF_* masks
2085 documented in dumpfile.h. */
2086
2087 static void
2088 rtl_dump_bb (FILE *outf, basic_block bb, int indent, int flags)
2089 {
2090 rtx insn;
2091 rtx last;
2092 char *s_indent;
2093
2094 s_indent = (char *) alloca ((size_t) indent + 1);
2095 memset (s_indent, ' ', (size_t) indent);
2096 s_indent[indent] = '\0';
2097
2098 if (df && (flags & TDF_DETAILS))
2099 {
2100 df_dump_top (bb, outf);
2101 putc ('\n', outf);
2102 }
2103
2104 if (bb->index != ENTRY_BLOCK && bb->index != EXIT_BLOCK)
2105 for (insn = BB_HEAD (bb), last = NEXT_INSN (BB_END (bb)); insn != last;
2106 insn = NEXT_INSN (insn))
2107 {
2108 if (flags & TDF_DETAILS)
2109 df_dump_insn_top (insn, outf);
2110 if (! (flags & TDF_SLIM))
2111 print_rtl_single (outf, insn);
2112 else
2113 dump_insn_slim (outf, insn);
2114 if (flags & TDF_DETAILS)
2115 df_dump_insn_bottom (insn, outf);
2116 }
2117
2118 if (df && (flags & TDF_DETAILS))
2119 {
2120 df_dump_bottom (bb, outf);
2121 putc ('\n', outf);
2122 }
2123
2124 }
2125 \f
2126 /* Like dump_function_to_file, but for RTL. Print out dataflow information
2127 for the start of each basic block. FLAGS are the TDF_* masks documented
2128 in dumpfile.h. */
2129
2130 void
2131 print_rtl_with_bb (FILE *outf, const_rtx rtx_first, int flags)
2132 {
2133 const_rtx tmp_rtx;
2134 if (rtx_first == 0)
2135 fprintf (outf, "(nil)\n");
2136 else
2137 {
2138 enum bb_state { NOT_IN_BB, IN_ONE_BB, IN_MULTIPLE_BB };
2139 int max_uid = get_max_uid ();
2140 basic_block *start = XCNEWVEC (basic_block, max_uid);
2141 basic_block *end = XCNEWVEC (basic_block, max_uid);
2142 enum bb_state *in_bb_p = XCNEWVEC (enum bb_state, max_uid);
2143 basic_block bb;
2144
2145 /* After freeing the CFG, we still have BLOCK_FOR_INSN set on most
2146 insns, but the CFG is not maintained so the basic block info
2147 is not reliable. Therefore it's omitted from the dumps. */
2148 if (! (cfun->curr_properties & PROP_cfg))
2149 flags &= ~TDF_BLOCKS;
2150
2151 if (df)
2152 df_dump_start (outf);
2153
2154 if (flags & TDF_BLOCKS)
2155 {
2156 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2157 {
2158 rtx x;
2159
2160 start[INSN_UID (BB_HEAD (bb))] = bb;
2161 end[INSN_UID (BB_END (bb))] = bb;
2162 for (x = BB_HEAD (bb); x != NULL_RTX; x = NEXT_INSN (x))
2163 {
2164 enum bb_state state = IN_MULTIPLE_BB;
2165
2166 if (in_bb_p[INSN_UID (x)] == NOT_IN_BB)
2167 state = IN_ONE_BB;
2168 in_bb_p[INSN_UID (x)] = state;
2169
2170 if (x == BB_END (bb))
2171 break;
2172 }
2173 }
2174 }
2175
2176 for (tmp_rtx = rtx_first; NULL != tmp_rtx; tmp_rtx = NEXT_INSN (tmp_rtx))
2177 {
2178 if (flags & TDF_BLOCKS)
2179 {
2180 bb = start[INSN_UID (tmp_rtx)];
2181 if (bb != NULL)
2182 {
2183 dump_bb_info (outf, bb, 0, dump_flags | TDF_COMMENT, true, false);
2184 if (df && (flags & TDF_DETAILS))
2185 df_dump_top (bb, outf);
2186 }
2187
2188 if (in_bb_p[INSN_UID (tmp_rtx)] == NOT_IN_BB
2189 && !NOTE_P (tmp_rtx)
2190 && !BARRIER_P (tmp_rtx))
2191 fprintf (outf, ";; Insn is not within a basic block\n");
2192 else if (in_bb_p[INSN_UID (tmp_rtx)] == IN_MULTIPLE_BB)
2193 fprintf (outf, ";; Insn is in multiple basic blocks\n");
2194 }
2195
2196 if (flags & TDF_DETAILS)
2197 df_dump_insn_top (tmp_rtx, outf);
2198 if (! (flags & TDF_SLIM))
2199 print_rtl_single (outf, tmp_rtx);
2200 else
2201 dump_insn_slim (outf, tmp_rtx);
2202 if (flags & TDF_DETAILS)
2203 df_dump_insn_bottom (tmp_rtx, outf);
2204
2205 if (flags & TDF_BLOCKS)
2206 {
2207 bb = end[INSN_UID (tmp_rtx)];
2208 if (bb != NULL)
2209 {
2210 dump_bb_info (outf, bb, 0, dump_flags | TDF_COMMENT, false, true);
2211 if (df && (flags & TDF_DETAILS))
2212 df_dump_bottom (bb, outf);
2213 putc ('\n', outf);
2214 }
2215 }
2216 }
2217
2218 free (start);
2219 free (end);
2220 free (in_bb_p);
2221 }
2222 }
2223 \f
2224 /* Update the branch probability of BB if a REG_BR_PROB is present. */
2225
2226 void
2227 update_br_prob_note (basic_block bb)
2228 {
2229 rtx note;
2230 if (!JUMP_P (BB_END (bb)))
2231 return;
2232 note = find_reg_note (BB_END (bb), REG_BR_PROB, NULL_RTX);
2233 if (!note || XINT (note, 0) == BRANCH_EDGE (bb)->probability)
2234 return;
2235 XINT (note, 0) = BRANCH_EDGE (bb)->probability;
2236 }
2237
2238 /* Get the last insn associated with block BB (that includes barriers and
2239 tablejumps after BB). */
2240 rtx
2241 get_last_bb_insn (basic_block bb)
2242 {
2243 rtx_jump_table_data *table;
2244 rtx tmp;
2245 rtx end = BB_END (bb);
2246
2247 /* Include any jump table following the basic block. */
2248 if (tablejump_p (end, NULL, &table))
2249 end = table;
2250
2251 /* Include any barriers that may follow the basic block. */
2252 tmp = next_nonnote_insn_bb (end);
2253 while (tmp && BARRIER_P (tmp))
2254 {
2255 end = tmp;
2256 tmp = next_nonnote_insn_bb (end);
2257 }
2258
2259 return end;
2260 }
2261
2262 /* Sanity check partition hotness to ensure that basic blocks in
2263   the cold partition don't dominate basic blocks in the hot partition.
2264 If FLAG_ONLY is true, report violations as errors. Otherwise
2265 re-mark the dominated blocks as cold, since this is run after
2266 cfg optimizations that may make hot blocks previously reached
2267 by both hot and cold blocks now only reachable along cold paths. */
2268
2269 static vec<basic_block>
2270 find_partition_fixes (bool flag_only)
2271 {
2272 basic_block bb;
2273 vec<basic_block> bbs_in_cold_partition = vNULL;
2274 vec<basic_block> bbs_to_fix = vNULL;
2275
2276 /* Callers check this. */
2277 gcc_checking_assert (crtl->has_bb_partition);
2278
2279 FOR_EACH_BB_FN (bb, cfun)
2280 if ((BB_PARTITION (bb) == BB_COLD_PARTITION))
2281 bbs_in_cold_partition.safe_push (bb);
2282
2283 if (bbs_in_cold_partition.is_empty ())
2284 return vNULL;
2285
2286 bool dom_calculated_here = !dom_info_available_p (CDI_DOMINATORS);
2287
2288 if (dom_calculated_here)
2289 calculate_dominance_info (CDI_DOMINATORS);
2290
2291 while (! bbs_in_cold_partition.is_empty ())
2292 {
2293 bb = bbs_in_cold_partition.pop ();
2294 /* Any blocks dominated by a block in the cold section
2295 must also be cold. */
2296 basic_block son;
2297 for (son = first_dom_son (CDI_DOMINATORS, bb);
2298 son;
2299 son = next_dom_son (CDI_DOMINATORS, son))
2300 {
2301 /* If son is not yet cold, then mark it cold here and
2302 enqueue it for further processing. */
2303 if ((BB_PARTITION (son) != BB_COLD_PARTITION))
2304 {
2305 if (flag_only)
2306 error ("non-cold basic block %d dominated "
2307 "by a block in the cold partition (%d)", son->index, bb->index);
2308 else
2309 BB_SET_PARTITION (son, BB_COLD_PARTITION);
2310 bbs_to_fix.safe_push (son);
2311 bbs_in_cold_partition.safe_push (son);
2312 }
2313 }
2314 }
2315
2316 if (dom_calculated_here)
2317 free_dominance_info (CDI_DOMINATORS);
2318
2319 return bbs_to_fix;
2320 }
2321
2322 /* Perform cleanup on the hot/cold bb partitioning after optimization
2323 passes that modify the cfg. */
2324
2325 void
2326 fixup_partitions (void)
2327 {
2328 basic_block bb;
2329
2330 if (!crtl->has_bb_partition)
2331 return;
2332
2333 /* Delete any blocks that became unreachable and weren't
2334 already cleaned up, for example during edge forwarding
2335 and convert_jumps_to_returns. This will expose more
2336 opportunities for fixing the partition boundaries here.
2337 Also, the calculation of the dominance graph during verification
2338 will assert if there are unreachable nodes. */
2339 delete_unreachable_blocks ();
2340
2341 /* If there are partitions, do a sanity check on them: A basic block in
2342   a cold partition cannot dominate a basic block in a hot partition.
2343 Fixup any that now violate this requirement, as a result of edge
2344 forwarding and unreachable block deletion.  */
2345 vec<basic_block> bbs_to_fix = find_partition_fixes (false);
2346
2347 /* Do the partition fixup after all necessary blocks have been converted to
2348 cold, so that we only update the region crossings the minimum number of
2349 places, which can require forcing edges to be non fallthru. */
2350 while (! bbs_to_fix.is_empty ())
2351 {
2352 bb = bbs_to_fix.pop ();
2353 fixup_new_cold_bb (bb);
2354 }
2355 }
2356
2357 /* Verify, in the basic block chain, that there is at most one switch
2358 between hot/cold partitions. This condition will not be true until
2359 after reorder_basic_blocks is called. */
2360
2361 static int
2362 verify_hot_cold_block_grouping (void)
2363 {
2364 basic_block bb;
2365 int err = 0;
2366 bool switched_sections = false;
2367 int current_partition = BB_UNPARTITIONED;
2368
2369 /* Even after bb reordering is complete, we go into cfglayout mode
2370 again (in compgoto). Ensure we don't call this before going back
2371 into linearized RTL when any layout fixes would have been committed. */
2372 if (!crtl->bb_reorder_complete
2373 || current_ir_type () != IR_RTL_CFGRTL)
2374 return err;
2375
2376 FOR_EACH_BB_FN (bb, cfun)
2377 {
2378 if (current_partition != BB_UNPARTITIONED
2379 && BB_PARTITION (bb) != current_partition)
2380 {
2381 if (switched_sections)
2382 {
2383 error ("multiple hot/cold transitions found (bb %i)",
2384 bb->index);
2385 err = 1;
2386 }
2387 else
2388 switched_sections = true;
2389
2390 if (!crtl->has_bb_partition)
2391 error ("partition found but function partition flag not set");
2392 }
2393 current_partition = BB_PARTITION (bb);
2394 }
2395
2396 return err;
2397 }
2398 \f
2399
2400 /* Perform several checks on the edges out of each block, such as
2401 the consistency of the branch probabilities, the correctness
2402 of hot/cold partition crossing edges, and the number of expected
2403 successor edges. Also verify that the dominance relationship
2404 between hot/cold blocks is sane. */
2405
2406 static int
2407 rtl_verify_edges (void)
2408 {
2409 int err = 0;
2410 basic_block bb;
2411
2412 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2413 {
2414 int n_fallthru = 0, n_branch = 0, n_abnormal_call = 0, n_sibcall = 0;
2415 int n_eh = 0, n_abnormal = 0;
2416 edge e, fallthru = NULL;
2417 edge_iterator ei;
2418 rtx note;
2419 bool has_crossing_edge = false;
2420
2421 if (JUMP_P (BB_END (bb))
2422 && (note = find_reg_note (BB_END (bb), REG_BR_PROB, NULL_RTX))
2423 && EDGE_COUNT (bb->succs) >= 2
2424 && any_condjump_p (BB_END (bb)))
2425 {
2426 if (XINT (note, 0) != BRANCH_EDGE (bb)->probability
2427 && profile_status_for_fn (cfun) != PROFILE_ABSENT)
2428 {
2429 error ("verify_flow_info: REG_BR_PROB does not match cfg %i %i",
2430 XINT (note, 0), BRANCH_EDGE (bb)->probability);
2431 err = 1;
2432 }
2433 }
2434
2435 FOR_EACH_EDGE (e, ei, bb->succs)
2436 {
2437 bool is_crossing;
2438
2439 if (e->flags & EDGE_FALLTHRU)
2440 n_fallthru++, fallthru = e;
2441
2442 is_crossing = (BB_PARTITION (e->src) != BB_PARTITION (e->dest)
2443 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
2444 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun));
2445 has_crossing_edge |= is_crossing;
2446 if (e->flags & EDGE_CROSSING)
2447 {
2448 if (!is_crossing)
2449 {
2450 error ("EDGE_CROSSING incorrectly set across same section");
2451 err = 1;
2452 }
2453 if (e->flags & EDGE_FALLTHRU)
2454 {
2455 error ("fallthru edge crosses section boundary in bb %i",
2456 e->src->index);
2457 err = 1;
2458 }
2459 if (e->flags & EDGE_EH)
2460 {
2461 error ("EH edge crosses section boundary in bb %i",
2462 e->src->index);
2463 err = 1;
2464 }
2465 if (JUMP_P (BB_END (bb)) && !CROSSING_JUMP_P (BB_END (bb)))
2466 {
2467 error ("No region crossing jump at section boundary in bb %i",
2468 bb->index);
2469 err = 1;
2470 }
2471 }
2472 else if (is_crossing)
2473 {
2474 error ("EDGE_CROSSING missing across section boundary");
2475 err = 1;
2476 }
2477
2478 if ((e->flags & ~(EDGE_DFS_BACK
2479 | EDGE_CAN_FALLTHRU
2480 | EDGE_IRREDUCIBLE_LOOP
2481 | EDGE_LOOP_EXIT
2482 | EDGE_CROSSING
2483 | EDGE_PRESERVE)) == 0)
2484 n_branch++;
2485
2486 if (e->flags & EDGE_ABNORMAL_CALL)
2487 n_abnormal_call++;
2488
2489 if (e->flags & EDGE_SIBCALL)
2490 n_sibcall++;
2491
2492 if (e->flags & EDGE_EH)
2493 n_eh++;
2494
2495 if (e->flags & EDGE_ABNORMAL)
2496 n_abnormal++;
2497 }
2498
2499 if (!has_crossing_edge
2500 && JUMP_P (BB_END (bb))
2501 && CROSSING_JUMP_P (BB_END (bb)))
2502 {
2503 print_rtl_with_bb (stderr, get_insns (), TDF_RTL | TDF_BLOCKS | TDF_DETAILS);
2504 error ("Region crossing jump across same section in bb %i",
2505 bb->index);
2506 err = 1;
2507 }
2508
2509 if (n_eh && !find_reg_note (BB_END (bb), REG_EH_REGION, NULL_RTX))
2510 {
2511 error ("missing REG_EH_REGION note at the end of bb %i", bb->index);
2512 err = 1;
2513 }
2514 if (n_eh > 1)
2515 {
2516 error ("too many exception handling edges in bb %i", bb->index);
2517 err = 1;
2518 }
2519 if (n_branch
2520 && (!JUMP_P (BB_END (bb))
2521 || (n_branch > 1 && (any_uncondjump_p (BB_END (bb))
2522 || any_condjump_p (BB_END (bb))))))
2523 {
2524 error ("too many outgoing branch edges from bb %i", bb->index);
2525 err = 1;
2526 }
2527 if (n_fallthru && any_uncondjump_p (BB_END (bb)))
2528 {
2529 error ("fallthru edge after unconditional jump in bb %i", bb->index);
2530 err = 1;
2531 }
2532 if (n_branch != 1 && any_uncondjump_p (BB_END (bb)))
2533 {
2534 error ("wrong number of branch edges after unconditional jump"
2535 " in bb %i", bb->index);
2536 err = 1;
2537 }
2538 if (n_branch != 1 && any_condjump_p (BB_END (bb))
2539 && JUMP_LABEL (BB_END (bb)) != BB_HEAD (fallthru->dest))
2540 {
2541 error ("wrong amount of branch edges after conditional jump"
2542 " in bb %i", bb->index);
2543 err = 1;
2544 }
2545 if (n_abnormal_call && !CALL_P (BB_END (bb)))
2546 {
2547 error ("abnormal call edges for non-call insn in bb %i", bb->index);
2548 err = 1;
2549 }
2550 if (n_sibcall && !CALL_P (BB_END (bb)))
2551 {
2552 error ("sibcall edges for non-call insn in bb %i", bb->index);
2553 err = 1;
2554 }
2555 if (n_abnormal > n_eh
2556 && !(CALL_P (BB_END (bb))
2557 && n_abnormal == n_abnormal_call + n_sibcall)
2558 && (!JUMP_P (BB_END (bb))
2559 || any_condjump_p (BB_END (bb))
2560 || any_uncondjump_p (BB_END (bb))))
2561 {
2562 error ("abnormal edges for no purpose in bb %i", bb->index);
2563 err = 1;
2564 }
2565 }
2566
2567 /* If there are partitions, do a sanity check on them: A basic block in
2568   a cold partition cannot dominate a basic block in a hot partition.  */
2569 if (crtl->has_bb_partition && !err)
2570 {
2571 vec<basic_block> bbs_to_fix = find_partition_fixes (true);
2572 err = !bbs_to_fix.is_empty ();
2573 }
2574
2575 /* Clean up. */
2576 return err;
2577 }
2578
2579 /* Checks on the instructions within blocks. Currently checks that each
2580 block starts with a basic block note, and that basic block notes and
2581 control flow jumps are not found in the middle of the block. */
2582
2583 static int
2584 rtl_verify_bb_insns (void)
2585 {
2586 rtx x;
2587 int err = 0;
2588 basic_block bb;
2589
2590 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2591 {
2592 /* Now check the header of basic
2593 block. It ought to contain optional CODE_LABEL followed
2594 by NOTE_BASIC_BLOCK. */
2595 x = BB_HEAD (bb);
2596 if (LABEL_P (x))
2597 {
2598 if (BB_END (bb) == x)
2599 {
2600 error ("NOTE_INSN_BASIC_BLOCK is missing for block %d",
2601 bb->index);
2602 err = 1;
2603 }
2604
2605 x = NEXT_INSN (x);
2606 }
2607
2608 if (!NOTE_INSN_BASIC_BLOCK_P (x) || NOTE_BASIC_BLOCK (x) != bb)
2609 {
2610 error ("NOTE_INSN_BASIC_BLOCK is missing for block %d",
2611 bb->index);
2612 err = 1;
2613 }
2614
2615 if (BB_END (bb) == x)
2616 /* Do checks for empty blocks here. */
2617 ;
2618 else
2619 for (x = NEXT_INSN (x); x; x = NEXT_INSN (x))
2620 {
2621 if (NOTE_INSN_BASIC_BLOCK_P (x))
2622 {
2623 error ("NOTE_INSN_BASIC_BLOCK %d in middle of basic block %d",
2624 INSN_UID (x), bb->index);
2625 err = 1;
2626 }
2627
2628 if (x == BB_END (bb))
2629 break;
2630
2631 if (control_flow_insn_p (x))
2632 {
2633 error ("in basic block %d:", bb->index);
2634 fatal_insn ("flow control insn inside a basic block", x);
2635 }
2636 }
2637 }
2638
2639 /* Clean up. */
2640 return err;
2641 }
2642
2643 /* Verify that block pointers for instructions in basic blocks, headers and
2644 footers are set appropriately. */
2645
2646 static int
2647 rtl_verify_bb_pointers (void)
2648 {
2649 int err = 0;
2650 basic_block bb;
2651
2652 /* Check the general integrity of the basic blocks. */
2653 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2654 {
2655 rtx insn;
2656
2657 if (!(bb->flags & BB_RTL))
2658 {
2659 error ("BB_RTL flag not set for block %d", bb->index);
2660 err = 1;
2661 }
2662
2663 FOR_BB_INSNS (bb, insn)
2664 if (BLOCK_FOR_INSN (insn) != bb)
2665 {
2666 error ("insn %d basic block pointer is %d, should be %d",
2667 INSN_UID (insn),
2668 BLOCK_FOR_INSN (insn) ? BLOCK_FOR_INSN (insn)->index : 0,
2669 bb->index);
2670 err = 1;
2671 }
2672
2673 for (insn = BB_HEADER (bb); insn; insn = NEXT_INSN (insn))
2674 if (!BARRIER_P (insn)
2675 && BLOCK_FOR_INSN (insn) != NULL)
2676 {
2677 error ("insn %d in header of bb %d has non-NULL basic block",
2678 INSN_UID (insn), bb->index);
2679 err = 1;
2680 }
2681 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2682 if (!BARRIER_P (insn)
2683 && BLOCK_FOR_INSN (insn) != NULL)
2684 {
2685 error ("insn %d in footer of bb %d has non-NULL basic block",
2686 INSN_UID (insn), bb->index);
2687 err = 1;
2688 }
2689 }
2690
2691 /* Clean up. */
2692 return err;
2693 }
2694
2695 /* Verify the CFG and RTL consistency common for both underlying RTL and
2696 cfglayout RTL.
2697
2698 Currently it does following checks:
2699
2700 - overlapping of basic blocks
2701 - insns with wrong BLOCK_FOR_INSN pointers
2702 - headers of basic blocks (the NOTE_INSN_BASIC_BLOCK note)
2703 - tails of basic blocks (ensure that boundary is necessary)
2704 - scans body of the basic block for JUMP_INSN, CODE_LABEL
2705 and NOTE_INSN_BASIC_BLOCK
2706 - verify that no fall_thru edge crosses hot/cold partition boundaries
2707 - verify that there are no pending RTL branch predictions
2708 - verify that hot blocks are not dominated by cold blocks
2709
2710 In future it can be extended check a lot of other stuff as well
2711 (reachability of basic blocks, life information, etc. etc.). */
2712
2713 static int
2714 rtl_verify_flow_info_1 (void)
2715 {
2716 int err = 0;
2717
2718 err |= rtl_verify_bb_pointers ();
2719
2720 err |= rtl_verify_bb_insns ();
2721
2722 err |= rtl_verify_edges ();
2723
2724 return err;
2725 }
2726
2727 /* Walk the instruction chain and verify that bb head/end pointers
2728 are correct, and that instructions are in exactly one bb and have
2729 correct block pointers. */
2730
2731 static int
2732 rtl_verify_bb_insn_chain (void)
2733 {
2734 basic_block bb;
2735 int err = 0;
2736 rtx x;
2737 rtx last_head = get_last_insn ();
2738 basic_block *bb_info;
2739 const int max_uid = get_max_uid ();
2740
2741 bb_info = XCNEWVEC (basic_block, max_uid);
2742
2743 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2744 {
2745 rtx head = BB_HEAD (bb);
2746 rtx end = BB_END (bb);
2747
2748 for (x = last_head; x != NULL_RTX; x = PREV_INSN (x))
2749 {
2750 /* Verify the end of the basic block is in the INSN chain. */
2751 if (x == end)
2752 break;
2753
2754 /* And that the code outside of basic blocks has NULL bb field. */
2755 if (!BARRIER_P (x)
2756 && BLOCK_FOR_INSN (x) != NULL)
2757 {
2758 error ("insn %d outside of basic blocks has non-NULL bb field",
2759 INSN_UID (x));
2760 err = 1;
2761 }
2762 }
2763
2764 if (!x)
2765 {
2766 error ("end insn %d for block %d not found in the insn stream",
2767 INSN_UID (end), bb->index);
2768 err = 1;
2769 }
2770
2771 /* Work backwards from the end to the head of the basic block
2772 to verify the head is in the RTL chain. */
2773 for (; x != NULL_RTX; x = PREV_INSN (x))
2774 {
2775 /* While walking over the insn chain, verify insns appear
2776 in only one basic block. */
2777 if (bb_info[INSN_UID (x)] != NULL)
2778 {
2779 error ("insn %d is in multiple basic blocks (%d and %d)",
2780 INSN_UID (x), bb->index, bb_info[INSN_UID (x)]->index);
2781 err = 1;
2782 }
2783
2784 bb_info[INSN_UID (x)] = bb;
2785
2786 if (x == head)
2787 break;
2788 }
2789 if (!x)
2790 {
2791 error ("head insn %d for block %d not found in the insn stream",
2792 INSN_UID (head), bb->index);
2793 err = 1;
2794 }
2795
2796 last_head = PREV_INSN (x);
2797 }
2798
2799 for (x = last_head; x != NULL_RTX; x = PREV_INSN (x))
2800 {
2801 /* Check that the code before the first basic block has NULL
2802 bb field. */
2803 if (!BARRIER_P (x)
2804 && BLOCK_FOR_INSN (x) != NULL)
2805 {
2806 error ("insn %d outside of basic blocks has non-NULL bb field",
2807 INSN_UID (x));
2808 err = 1;
2809 }
2810 }
2811 free (bb_info);
2812
2813 return err;
2814 }
2815
2816 /* Verify that fallthru edges point to adjacent blocks in layout order and
2817 that barriers exist after non-fallthru blocks. */
2818
2819 static int
2820 rtl_verify_fallthru (void)
2821 {
2822 basic_block bb;
2823 int err = 0;
2824
2825 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2826 {
2827 edge e;
2828
2829 e = find_fallthru_edge (bb->succs);
2830 if (!e)
2831 {
2832 rtx insn;
2833
2834 /* Ensure existence of barrier in BB with no fallthru edges. */
2835 for (insn = NEXT_INSN (BB_END (bb)); ; insn = NEXT_INSN (insn))
2836 {
2837 if (!insn || NOTE_INSN_BASIC_BLOCK_P (insn))
2838 {
2839 error ("missing barrier after block %i", bb->index);
2840 err = 1;
2841 break;
2842 }
2843 if (BARRIER_P (insn))
2844 break;
2845 }
2846 }
2847 else if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
2848 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
2849 {
2850 rtx insn;
2851
2852 if (e->src->next_bb != e->dest)
2853 {
2854 error
2855 ("verify_flow_info: Incorrect blocks for fallthru %i->%i",
2856 e->src->index, e->dest->index);
2857 err = 1;
2858 }
2859 else
2860 for (insn = NEXT_INSN (BB_END (e->src)); insn != BB_HEAD (e->dest);
2861 insn = NEXT_INSN (insn))
2862 if (BARRIER_P (insn) || INSN_P (insn))
2863 {
2864 error ("verify_flow_info: Incorrect fallthru %i->%i",
2865 e->src->index, e->dest->index);
2866 fatal_insn ("wrong insn in the fallthru edge", insn);
2867 err = 1;
2868 }
2869 }
2870 }
2871
2872 return err;
2873 }
2874
2875 /* Verify that blocks are laid out in consecutive order. While walking the
2876 instructions, verify that all expected instructions are inside the basic
2877 blocks, and that all returns are followed by barriers. */
2878
2879 static int
2880 rtl_verify_bb_layout (void)
2881 {
2882 basic_block bb;
2883 int err = 0;
2884 rtx x;
2885 int num_bb_notes;
2886 const rtx rtx_first = get_insns ();
2887 basic_block last_bb_seen = ENTRY_BLOCK_PTR_FOR_FN (cfun), curr_bb = NULL;
2888
2889 num_bb_notes = 0;
2890 last_bb_seen = ENTRY_BLOCK_PTR_FOR_FN (cfun);
2891
2892 for (x = rtx_first; x; x = NEXT_INSN (x))
2893 {
2894 if (NOTE_INSN_BASIC_BLOCK_P (x))
2895 {
2896 bb = NOTE_BASIC_BLOCK (x);
2897
2898 num_bb_notes++;
2899 if (bb != last_bb_seen->next_bb)
2900 internal_error ("basic blocks not laid down consecutively");
2901
2902 curr_bb = last_bb_seen = bb;
2903 }
2904
2905 if (!curr_bb)
2906 {
2907 switch (GET_CODE (x))
2908 {
2909 case BARRIER:
2910 case NOTE:
2911 break;
2912
2913 case CODE_LABEL:
2914 /* An ADDR_VEC is placed outside any basic block. */
2915 if (NEXT_INSN (x)
2916 && JUMP_TABLE_DATA_P (NEXT_INSN (x)))
2917 x = NEXT_INSN (x);
2918
2919 /* But in any case, non-deletable labels can appear anywhere. */
2920 break;
2921
2922 default:
2923 fatal_insn ("insn outside basic block", x);
2924 }
2925 }
2926
2927 if (JUMP_P (x)
2928 && returnjump_p (x) && ! condjump_p (x)
2929 && ! (next_nonnote_insn (x) && BARRIER_P (next_nonnote_insn (x))))
2930 fatal_insn ("return not followed by barrier", x);
2931
2932 if (curr_bb && x == BB_END (curr_bb))
2933 curr_bb = NULL;
2934 }
2935
2936 if (num_bb_notes != n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS)
2937 internal_error
2938 ("number of bb notes in insn chain (%d) != n_basic_blocks (%d)",
2939 num_bb_notes, n_basic_blocks_for_fn (cfun));
2940
2941 return err;
2942 }
2943
2944 /* Verify the CFG and RTL consistency common for both underlying RTL and
2945 cfglayout RTL, plus consistency checks specific to linearized RTL mode.
2946
2947 Currently it does following checks:
2948 - all checks of rtl_verify_flow_info_1
2949 - test head/end pointers
2950 - check that blocks are laid out in consecutive order
2951 - check that all insns are in the basic blocks
2952 (except the switch handling code, barriers and notes)
2953 - check that all returns are followed by barriers
2954 - check that all fallthru edge points to the adjacent blocks
2955 - verify that there is a single hot/cold partition boundary after bbro */
2956
2957 static int
2958 rtl_verify_flow_info (void)
2959 {
2960 int err = 0;
2961
2962 err |= rtl_verify_flow_info_1 ();
2963
2964 err |= rtl_verify_bb_insn_chain ();
2965
2966 err |= rtl_verify_fallthru ();
2967
2968 err |= rtl_verify_bb_layout ();
2969
2970 err |= verify_hot_cold_block_grouping ();
2971
2972 return err;
2973 }
2974 \f
2975 /* Assume that the preceding pass has possibly eliminated jump instructions
2976 or converted the unconditional jumps. Eliminate the edges from CFG.
2977 Return true if any edges are eliminated. */
2978
2979 bool
2980 purge_dead_edges (basic_block bb)
2981 {
2982 edge e;
2983 rtx insn = BB_END (bb), note;
2984 bool purged = false;
2985 bool found;
2986 edge_iterator ei;
2987
2988 if (DEBUG_INSN_P (insn) && insn != BB_HEAD (bb))
2989 do
2990 insn = PREV_INSN (insn);
2991 while ((DEBUG_INSN_P (insn) || NOTE_P (insn)) && insn != BB_HEAD (bb));
2992
2993 /* If this instruction cannot trap, remove REG_EH_REGION notes. */
2994 if (NONJUMP_INSN_P (insn)
2995 && (note = find_reg_note (insn, REG_EH_REGION, NULL)))
2996 {
2997 rtx eqnote;
2998
2999 if (! may_trap_p (PATTERN (insn))
3000 || ((eqnote = find_reg_equal_equiv_note (insn))
3001 && ! may_trap_p (XEXP (eqnote, 0))))
3002 remove_note (insn, note);
3003 }
3004
3005 /* Cleanup abnormal edges caused by exceptions or non-local gotos. */
3006 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
3007 {
3008 bool remove = false;
3009
3010 /* There are three types of edges we need to handle correctly here: EH
3011 edges, abnormal call EH edges, and abnormal call non-EH edges. The
3012 latter can appear when nonlocal gotos are used. */
3013 if (e->flags & EDGE_ABNORMAL_CALL)
3014 {
3015 if (!CALL_P (insn))
3016 remove = true;
3017 else if (can_nonlocal_goto (insn))
3018 ;
3019 else if ((e->flags & EDGE_EH) && can_throw_internal (insn))
3020 ;
3021 else if (flag_tm && find_reg_note (insn, REG_TM, NULL))
3022 ;
3023 else
3024 remove = true;
3025 }
3026 else if (e->flags & EDGE_EH)
3027 remove = !can_throw_internal (insn);
3028
3029 if (remove)
3030 {
3031 remove_edge (e);
3032 df_set_bb_dirty (bb);
3033 purged = true;
3034 }
3035 else
3036 ei_next (&ei);
3037 }
3038
3039 if (JUMP_P (insn))
3040 {
3041 rtx note;
3042 edge b,f;
3043 edge_iterator ei;
3044
3045 /* We do care only about conditional jumps and simplejumps. */
3046 if (!any_condjump_p (insn)
3047 && !returnjump_p (insn)
3048 && !simplejump_p (insn))
3049 return purged;
3050
3051 /* Branch probability/prediction notes are defined only for
3052 condjumps. We've possibly turned condjump into simplejump. */
3053 if (simplejump_p (insn))
3054 {
3055 note = find_reg_note (insn, REG_BR_PROB, NULL);
3056 if (note)
3057 remove_note (insn, note);
3058 while ((note = find_reg_note (insn, REG_BR_PRED, NULL)))
3059 remove_note (insn, note);
3060 }
3061
3062 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
3063 {
3064 /* Avoid abnormal flags to leak from computed jumps turned
3065 into simplejumps. */
3066
3067 e->flags &= ~EDGE_ABNORMAL;
3068
3069 /* See if this edge is one we should keep. */
3070 if ((e->flags & EDGE_FALLTHRU) && any_condjump_p (insn))
3071 /* A conditional jump can fall through into the next
3072 block, so we should keep the edge. */
3073 {
3074 ei_next (&ei);
3075 continue;
3076 }
3077 else if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
3078 && BB_HEAD (e->dest) == JUMP_LABEL (insn))
3079 /* If the destination block is the target of the jump,
3080 keep the edge. */
3081 {
3082 ei_next (&ei);
3083 continue;
3084 }
3085 else if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
3086 && returnjump_p (insn))
3087 /* If the destination block is the exit block, and this
3088 instruction is a return, then keep the edge. */
3089 {
3090 ei_next (&ei);
3091 continue;
3092 }
3093 else if ((e->flags & EDGE_EH) && can_throw_internal (insn))
3094 /* Keep the edges that correspond to exceptions thrown by
3095 this instruction and rematerialize the EDGE_ABNORMAL
3096 flag we just cleared above. */
3097 {
3098 e->flags |= EDGE_ABNORMAL;
3099 ei_next (&ei);
3100 continue;
3101 }
3102
3103 /* We do not need this edge. */
3104 df_set_bb_dirty (bb);
3105 purged = true;
3106 remove_edge (e);
3107 }
3108
3109 if (EDGE_COUNT (bb->succs) == 0 || !purged)
3110 return purged;
3111
3112 if (dump_file)
3113 fprintf (dump_file, "Purged edges from bb %i\n", bb->index);
3114
3115 if (!optimize)
3116 return purged;
3117
3118 /* Redistribute probabilities. */
3119 if (single_succ_p (bb))
3120 {
3121 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
3122 single_succ_edge (bb)->count = bb->count;
3123 }
3124 else
3125 {
3126 note = find_reg_note (insn, REG_BR_PROB, NULL);
3127 if (!note)
3128 return purged;
3129
3130 b = BRANCH_EDGE (bb);
3131 f = FALLTHRU_EDGE (bb);
3132 b->probability = XINT (note, 0);
3133 f->probability = REG_BR_PROB_BASE - b->probability;
3134 /* Update these to use GCOV_COMPUTE_SCALE. */
3135 b->count = bb->count * b->probability / REG_BR_PROB_BASE;
3136 f->count = bb->count * f->probability / REG_BR_PROB_BASE;
3137 }
3138
3139 return purged;
3140 }
3141 else if (CALL_P (insn) && SIBLING_CALL_P (insn))
3142 {
3143 /* First, there should not be any EH or ABCALL edges resulting
3144 from non-local gotos and the like. If there were, we shouldn't
3145 have created the sibcall in the first place. Second, there
3146 should of course never have been a fallthru edge. */
3147 gcc_assert (single_succ_p (bb));
3148 gcc_assert (single_succ_edge (bb)->flags
3149 == (EDGE_SIBCALL | EDGE_ABNORMAL));
3150
3151 return 0;
3152 }
3153
3154 /* If we don't see a jump insn, we don't know exactly why the block would
3155 have been broken at this point. Look for a simple, non-fallthru edge,
3156 as these are only created by conditional branches. If we find such an
3157 edge we know that there used to be a jump here and can then safely
3158 remove all non-fallthru edges. */
3159 found = false;
3160 FOR_EACH_EDGE (e, ei, bb->succs)
3161 if (! (e->flags & (EDGE_COMPLEX | EDGE_FALLTHRU)))
3162 {
3163 found = true;
3164 break;
3165 }
3166
3167 if (!found)
3168 return purged;
3169
3170 /* Remove all but the fake and fallthru edges. The fake edge may be
3171 the only successor for this block in the case of noreturn
3172 calls. */
3173 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
3174 {
3175 if (!(e->flags & (EDGE_FALLTHRU | EDGE_FAKE)))
3176 {
3177 df_set_bb_dirty (bb);
3178 remove_edge (e);
3179 purged = true;
3180 }
3181 else
3182 ei_next (&ei);
3183 }
3184
3185 gcc_assert (single_succ_p (bb));
3186
3187 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
3188 single_succ_edge (bb)->count = bb->count;
3189
3190 if (dump_file)
3191 fprintf (dump_file, "Purged non-fallthru edges from bb %i\n",
3192 bb->index);
3193 return purged;
3194 }
3195
3196 /* Search all basic blocks for potentially dead edges and purge them. Return
3197 true if some edge has been eliminated. */
3198
3199 bool
3200 purge_all_dead_edges (void)
3201 {
3202 int purged = false;
3203 basic_block bb;
3204
3205 FOR_EACH_BB_FN (bb, cfun)
3206 {
3207 bool purged_here = purge_dead_edges (bb);
3208
3209 purged |= purged_here;
3210 }
3211
3212 return purged;
3213 }
3214
3215 /* This is used by a few passes that emit some instructions after abnormal
3216 calls, moving the basic block's end, while they in fact do want to emit
3217 them on the fallthru edge. Look for abnormal call edges, find backward
3218 the call in the block and insert the instructions on the edge instead.
3219
3220 Similarly, handle instructions throwing exceptions internally.
3221
3222 Return true when instructions have been found and inserted on edges. */
3223
3224 bool
3225 fixup_abnormal_edges (void)
3226 {
3227 bool inserted = false;
3228 basic_block bb;
3229
3230 FOR_EACH_BB_FN (bb, cfun)
3231 {
3232 edge e;
3233 edge_iterator ei;
3234
3235 /* Look for cases we are interested in - calls or instructions causing
3236 exceptions. */
3237 FOR_EACH_EDGE (e, ei, bb->succs)
3238 if ((e->flags & EDGE_ABNORMAL_CALL)
3239 || ((e->flags & (EDGE_ABNORMAL | EDGE_EH))
3240 == (EDGE_ABNORMAL | EDGE_EH)))
3241 break;
3242
3243 if (e && !CALL_P (BB_END (bb)) && !can_throw_internal (BB_END (bb)))
3244 {
3245 rtx insn;
3246
3247 /* Get past the new insns generated. Allow notes, as the insns
3248 may be already deleted. */
3249 insn = BB_END (bb);
3250 while ((NONJUMP_INSN_P (insn) || NOTE_P (insn))
3251 && !can_throw_internal (insn)
3252 && insn != BB_HEAD (bb))
3253 insn = PREV_INSN (insn);
3254
3255 if (CALL_P (insn) || can_throw_internal (insn))
3256 {
3257 rtx stop, next;
3258
3259 e = find_fallthru_edge (bb->succs);
3260
3261 stop = NEXT_INSN (BB_END (bb));
3262 SET_BB_END (bb) = insn;
3263
3264 for (insn = NEXT_INSN (insn); insn != stop; insn = next)
3265 {
3266 next = NEXT_INSN (insn);
3267 if (INSN_P (insn))
3268 {
3269 delete_insn (insn);
3270
3271 /* Sometimes there's still the return value USE.
3272 If it's placed after a trapping call (i.e. that
3273 call is the last insn anyway), we have no fallthru
3274 edge. Simply delete this use and don't try to insert
3275 on the non-existent edge. */
3276 if (GET_CODE (PATTERN (insn)) != USE)
3277 {
3278 /* We're not deleting it, we're moving it. */
3279 INSN_DELETED_P (insn) = 0;
3280 SET_PREV_INSN (insn) = NULL_RTX;
3281 SET_NEXT_INSN (insn) = NULL_RTX;
3282
3283 insert_insn_on_edge (insn, e);
3284 inserted = true;
3285 }
3286 }
3287 else if (!BARRIER_P (insn))
3288 set_block_for_insn (insn, NULL);
3289 }
3290 }
3291
3292 /* It may be that we don't find any trapping insn. In this
3293 case we discovered quite late that the insn that had been
3294 marked as can_throw_internal in fact couldn't trap at all.
3295 So we should in fact delete the EH edges out of the block. */
3296 else
3297 purge_dead_edges (bb);
3298 }
3299 }
3300
3301 return inserted;
3302 }
3303 \f
3304 /* Cut the insns from FIRST to LAST out of the insns stream. */
3305
3306 rtx_insn *
3307 unlink_insn_chain (rtx first, rtx last)
3308 {
3309 rtx_insn *prevfirst = PREV_INSN (first);
3310 rtx_insn *nextlast = NEXT_INSN (last);
3311
3312 SET_PREV_INSN (first) = NULL;
3313 SET_NEXT_INSN (last) = NULL;
3314 if (prevfirst)
3315 SET_NEXT_INSN (prevfirst) = nextlast;
3316 if (nextlast)
3317 SET_PREV_INSN (nextlast) = prevfirst;
3318 else
3319 set_last_insn (prevfirst);
3320 if (!prevfirst)
3321 set_first_insn (nextlast);
3322 return as_a <rtx_insn *> (first);
3323 }
3324 \f
3325 /* Skip over inter-block insns occurring after BB which are typically
3326 associated with BB (e.g., barriers). If there are any such insns,
3327 we return the last one. Otherwise, we return the end of BB. */
3328
3329 static rtx
3330 skip_insns_after_block (basic_block bb)
3331 {
3332 rtx insn, last_insn, next_head, prev;
3333
3334 next_head = NULL_RTX;
3335 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3336 next_head = BB_HEAD (bb->next_bb);
3337
3338 for (last_insn = insn = BB_END (bb); (insn = NEXT_INSN (insn)) != 0; )
3339 {
3340 if (insn == next_head)
3341 break;
3342
3343 switch (GET_CODE (insn))
3344 {
3345 case BARRIER:
3346 last_insn = insn;
3347 continue;
3348
3349 case NOTE:
3350 switch (NOTE_KIND (insn))
3351 {
3352 case NOTE_INSN_BLOCK_END:
3353 gcc_unreachable ();
3354 continue;
3355 default:
3356 continue;
3357 break;
3358 }
3359 break;
3360
3361 case CODE_LABEL:
3362 if (NEXT_INSN (insn)
3363 && JUMP_TABLE_DATA_P (NEXT_INSN (insn)))
3364 {
3365 insn = NEXT_INSN (insn);
3366 last_insn = insn;
3367 continue;
3368 }
3369 break;
3370
3371 default:
3372 break;
3373 }
3374
3375 break;
3376 }
3377
3378 /* It is possible to hit contradictory sequence. For instance:
3379
3380 jump_insn
3381 NOTE_INSN_BLOCK_BEG
3382 barrier
3383
3384 Where barrier belongs to jump_insn, but the note does not. This can be
3385 created by removing the basic block originally following
3386 NOTE_INSN_BLOCK_BEG. In such case reorder the notes. */
3387
3388 for (insn = last_insn; insn != BB_END (bb); insn = prev)
3389 {
3390 prev = PREV_INSN (insn);
3391 if (NOTE_P (insn))
3392 switch (NOTE_KIND (insn))
3393 {
3394 case NOTE_INSN_BLOCK_END:
3395 gcc_unreachable ();
3396 break;
3397 case NOTE_INSN_DELETED:
3398 case NOTE_INSN_DELETED_LABEL:
3399 case NOTE_INSN_DELETED_DEBUG_LABEL:
3400 continue;
3401 default:
3402 reorder_insns (insn, insn, last_insn);
3403 }
3404 }
3405
3406 return last_insn;
3407 }
3408
3409 /* Locate or create a label for a given basic block. */
3410
3411 static rtx
3412 label_for_bb (basic_block bb)
3413 {
3414 rtx label = BB_HEAD (bb);
3415
3416 if (!LABEL_P (label))
3417 {
3418 if (dump_file)
3419 fprintf (dump_file, "Emitting label for block %d\n", bb->index);
3420
3421 label = block_label (bb);
3422 }
3423
3424 return label;
3425 }
3426
3427 /* Locate the effective beginning and end of the insn chain for each
3428 block, as defined by skip_insns_after_block above. */
3429
3430 static void
3431 record_effective_endpoints (void)
3432 {
3433 rtx next_insn;
3434 basic_block bb;
3435 rtx insn;
3436
3437 for (insn = get_insns ();
3438 insn
3439 && NOTE_P (insn)
3440 && NOTE_KIND (insn) != NOTE_INSN_BASIC_BLOCK;
3441 insn = NEXT_INSN (insn))
3442 continue;
3443 /* No basic blocks at all? */
3444 gcc_assert (insn);
3445
3446 if (PREV_INSN (insn))
3447 cfg_layout_function_header =
3448 unlink_insn_chain (get_insns (), PREV_INSN (insn));
3449 else
3450 cfg_layout_function_header = NULL_RTX;
3451
3452 next_insn = get_insns ();
3453 FOR_EACH_BB_FN (bb, cfun)
3454 {
3455 rtx end;
3456
3457 if (PREV_INSN (BB_HEAD (bb)) && next_insn != BB_HEAD (bb))
3458 SET_BB_HEADER (bb) = unlink_insn_chain (next_insn,
3459 PREV_INSN (BB_HEAD (bb)));
3460 end = skip_insns_after_block (bb);
3461 if (NEXT_INSN (BB_END (bb)) && BB_END (bb) != end)
3462 SET_BB_FOOTER (bb) = unlink_insn_chain (NEXT_INSN (BB_END (bb)), end);
3463 next_insn = NEXT_INSN (BB_END (bb));
3464 }
3465
3466 cfg_layout_function_footer = next_insn;
3467 if (cfg_layout_function_footer)
3468 cfg_layout_function_footer = unlink_insn_chain (cfg_layout_function_footer, get_last_insn ());
3469 }
3470 \f
3471 namespace {
3472
3473 const pass_data pass_data_into_cfg_layout_mode =
3474 {
3475 RTL_PASS, /* type */
3476 "into_cfglayout", /* name */
3477 OPTGROUP_NONE, /* optinfo_flags */
3478 TV_CFG, /* tv_id */
3479 0, /* properties_required */
3480 PROP_cfglayout, /* properties_provided */
3481 0, /* properties_destroyed */
3482 0, /* todo_flags_start */
3483 0, /* todo_flags_finish */
3484 };
3485
3486 class pass_into_cfg_layout_mode : public rtl_opt_pass
3487 {
3488 public:
3489 pass_into_cfg_layout_mode (gcc::context *ctxt)
3490 : rtl_opt_pass (pass_data_into_cfg_layout_mode, ctxt)
3491 {}
3492
3493 /* opt_pass methods: */
3494 virtual unsigned int execute (function *)
3495 {
3496 cfg_layout_initialize (0);
3497 return 0;
3498 }
3499
3500 }; // class pass_into_cfg_layout_mode
3501
3502 } // anon namespace
3503
3504 rtl_opt_pass *
3505 make_pass_into_cfg_layout_mode (gcc::context *ctxt)
3506 {
3507 return new pass_into_cfg_layout_mode (ctxt);
3508 }
3509
3510 namespace {
3511
3512 const pass_data pass_data_outof_cfg_layout_mode =
3513 {
3514 RTL_PASS, /* type */
3515 "outof_cfglayout", /* name */
3516 OPTGROUP_NONE, /* optinfo_flags */
3517 TV_CFG, /* tv_id */
3518 0, /* properties_required */
3519 0, /* properties_provided */
3520 PROP_cfglayout, /* properties_destroyed */
3521 0, /* todo_flags_start */
3522 0, /* todo_flags_finish */
3523 };
3524
3525 class pass_outof_cfg_layout_mode : public rtl_opt_pass
3526 {
3527 public:
3528 pass_outof_cfg_layout_mode (gcc::context *ctxt)
3529 : rtl_opt_pass (pass_data_outof_cfg_layout_mode, ctxt)
3530 {}
3531
3532 /* opt_pass methods: */
3533 virtual unsigned int execute (function *);
3534
3535 }; // class pass_outof_cfg_layout_mode
3536
3537 unsigned int
3538 pass_outof_cfg_layout_mode::execute (function *fun)
3539 {
3540 basic_block bb;
3541
3542 FOR_EACH_BB_FN (bb, fun)
3543 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (fun))
3544 bb->aux = bb->next_bb;
3545
3546 cfg_layout_finalize ();
3547
3548 return 0;
3549 }
3550
3551 } // anon namespace
3552
3553 rtl_opt_pass *
3554 make_pass_outof_cfg_layout_mode (gcc::context *ctxt)
3555 {
3556 return new pass_outof_cfg_layout_mode (ctxt);
3557 }
3558 \f
3559
3560 /* Link the basic blocks in the correct order, compacting the basic
3561 block queue while at it. If STAY_IN_CFGLAYOUT_MODE is false, this
3562 function also clears the basic block header and footer fields.
3563
3564 This function is usually called after a pass (e.g. tracer) finishes
3565 some transformations while in cfglayout mode. The required sequence
3566 of the basic blocks is in a linked list along the bb->aux field.
3567 This functions re-links the basic block prev_bb and next_bb pointers
3568 accordingly, and it compacts and renumbers the blocks.
3569
3570 FIXME: This currently works only for RTL, but the only RTL-specific
3571 bits are the STAY_IN_CFGLAYOUT_MODE bits. The tracer pass was moved
3572 to GIMPLE a long time ago, but it doesn't relink the basic block
3573 chain. It could do that (to give better initial RTL) if this function
3574 is made IR-agnostic (and moved to cfganal.c or cfg.c while at it). */
3575
3576 void
3577 relink_block_chain (bool stay_in_cfglayout_mode)
3578 {
3579 basic_block bb, prev_bb;
3580 int index;
3581
3582 /* Maybe dump the re-ordered sequence. */
3583 if (dump_file)
3584 {
3585 fprintf (dump_file, "Reordered sequence:\n");
3586 for (bb = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb, index =
3587 NUM_FIXED_BLOCKS;
3588 bb;
3589 bb = (basic_block) bb->aux, index++)
3590 {
3591 fprintf (dump_file, " %i ", index);
3592 if (get_bb_original (bb))
3593 fprintf (dump_file, "duplicate of %i ",
3594 get_bb_original (bb)->index);
3595 else if (forwarder_block_p (bb)
3596 && !LABEL_P (BB_HEAD (bb)))
3597 fprintf (dump_file, "compensation ");
3598 else
3599 fprintf (dump_file, "bb %i ", bb->index);
3600 fprintf (dump_file, " [%i]\n", bb->frequency);
3601 }
3602 }
3603
3604 /* Now reorder the blocks. */
3605 prev_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
3606 bb = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb;
3607 for (; bb; prev_bb = bb, bb = (basic_block) bb->aux)
3608 {
3609 bb->prev_bb = prev_bb;
3610 prev_bb->next_bb = bb;
3611 }
3612 prev_bb->next_bb = EXIT_BLOCK_PTR_FOR_FN (cfun);
3613 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb = prev_bb;
3614
3615 /* Then, clean up the aux fields. */
3616 FOR_ALL_BB_FN (bb, cfun)
3617 {
3618 bb->aux = NULL;
3619 if (!stay_in_cfglayout_mode)
3620 SET_BB_HEADER (bb) = SET_BB_FOOTER (bb) = NULL;
3621 }
3622
3623 /* Maybe reset the original copy tables, they are not valid anymore
3624 when we renumber the basic blocks in compact_blocks. If we are
3625 are going out of cfglayout mode, don't re-allocate the tables. */
3626 free_original_copy_tables ();
3627 if (stay_in_cfglayout_mode)
3628 initialize_original_copy_tables ();
3629
3630 /* Finally, put basic_block_info in the new order. */
3631 compact_blocks ();
3632 }
3633 \f
3634
3635 /* Given a reorder chain, rearrange the code to match. */
3636
3637 static void
3638 fixup_reorder_chain (void)
3639 {
3640 basic_block bb;
3641 rtx insn = NULL;
3642
3643 if (cfg_layout_function_header)
3644 {
3645 set_first_insn (cfg_layout_function_header);
3646 insn = cfg_layout_function_header;
3647 while (NEXT_INSN (insn))
3648 insn = NEXT_INSN (insn);
3649 }
3650
3651 /* First do the bulk reordering -- rechain the blocks without regard to
3652 the needed changes to jumps and labels. */
3653
3654 for (bb = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb; bb; bb = (basic_block)
3655 bb->aux)
3656 {
3657 if (BB_HEADER (bb))
3658 {
3659 if (insn)
3660 SET_NEXT_INSN (insn) = BB_HEADER (bb);
3661 else
3662 set_first_insn (BB_HEADER (bb));
3663 SET_PREV_INSN (BB_HEADER (bb)) = insn;
3664 insn = BB_HEADER (bb);
3665 while (NEXT_INSN (insn))
3666 insn = NEXT_INSN (insn);
3667 }
3668 if (insn)
3669 SET_NEXT_INSN (insn) = BB_HEAD (bb);
3670 else
3671 set_first_insn (BB_HEAD (bb));
3672 SET_PREV_INSN (BB_HEAD (bb)) = insn;
3673 insn = BB_END (bb);
3674 if (BB_FOOTER (bb))
3675 {
3676 SET_NEXT_INSN (insn) = BB_FOOTER (bb);
3677 SET_PREV_INSN (BB_FOOTER (bb)) = insn;
3678 while (NEXT_INSN (insn))
3679 insn = NEXT_INSN (insn);
3680 }
3681 }
3682
3683 SET_NEXT_INSN (insn) = cfg_layout_function_footer;
3684 if (cfg_layout_function_footer)
3685 SET_PREV_INSN (cfg_layout_function_footer) = insn;
3686
3687 while (NEXT_INSN (insn))
3688 insn = NEXT_INSN (insn);
3689
3690 set_last_insn (insn);
3691 #ifdef ENABLE_CHECKING
3692 verify_insn_chain ();
3693 #endif
3694
3695 /* Now add jumps and labels as needed to match the blocks new
3696 outgoing edges. */
3697
3698 for (bb = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb; bb ; bb = (basic_block)
3699 bb->aux)
3700 {
3701 edge e_fall, e_taken, e;
3702 rtx bb_end_insn;
3703 rtx ret_label = NULL_RTX;
3704 basic_block nb;
3705 edge_iterator ei;
3706
3707 if (EDGE_COUNT (bb->succs) == 0)
3708 continue;
3709
3710 /* Find the old fallthru edge, and another non-EH edge for
3711 a taken jump. */
3712 e_taken = e_fall = NULL;
3713
3714 FOR_EACH_EDGE (e, ei, bb->succs)
3715 if (e->flags & EDGE_FALLTHRU)
3716 e_fall = e;
3717 else if (! (e->flags & EDGE_EH))
3718 e_taken = e;
3719
3720 bb_end_insn = BB_END (bb);
3721 if (JUMP_P (bb_end_insn))
3722 {
3723 ret_label = JUMP_LABEL (bb_end_insn);
3724 if (any_condjump_p (bb_end_insn))
3725 {
3726 /* This might happen if the conditional jump has side
3727 effects and could therefore not be optimized away.
3728 Make the basic block to end with a barrier in order
3729 to prevent rtl_verify_flow_info from complaining. */
3730 if (!e_fall)
3731 {
3732 gcc_assert (!onlyjump_p (bb_end_insn)
3733 || returnjump_p (bb_end_insn)
3734 || (e_taken->flags & EDGE_CROSSING));
3735 emit_barrier_after (bb_end_insn);
3736 continue;
3737 }
3738
3739 /* If the old fallthru is still next, nothing to do. */
3740 if (bb->aux == e_fall->dest
3741 || e_fall->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
3742 continue;
3743
3744 /* The degenerated case of conditional jump jumping to the next
3745 instruction can happen for jumps with side effects. We need
3746 to construct a forwarder block and this will be done just
3747 fine by force_nonfallthru below. */
3748 if (!e_taken)
3749 ;
3750
3751 /* There is another special case: if *neither* block is next,
3752 such as happens at the very end of a function, then we'll
3753 need to add a new unconditional jump. Choose the taken
3754 edge based on known or assumed probability. */
3755 else if (bb->aux != e_taken->dest)
3756 {
3757 rtx note = find_reg_note (bb_end_insn, REG_BR_PROB, 0);
3758
3759 if (note
3760 && XINT (note, 0) < REG_BR_PROB_BASE / 2
3761 && invert_jump (bb_end_insn,
3762 (e_fall->dest
3763 == EXIT_BLOCK_PTR_FOR_FN (cfun)
3764 ? NULL_RTX
3765 : label_for_bb (e_fall->dest)), 0))
3766 {
3767 e_fall->flags &= ~EDGE_FALLTHRU;
3768 gcc_checking_assert (could_fall_through
3769 (e_taken->src, e_taken->dest));
3770 e_taken->flags |= EDGE_FALLTHRU;
3771 update_br_prob_note (bb);
3772 e = e_fall, e_fall = e_taken, e_taken = e;
3773 }
3774 }
3775
3776 /* If the "jumping" edge is a crossing edge, and the fall
3777 through edge is non-crossing, leave things as they are. */
3778 else if ((e_taken->flags & EDGE_CROSSING)
3779 && !(e_fall->flags & EDGE_CROSSING))
3780 continue;
3781
3782 /* Otherwise we can try to invert the jump. This will
3783 basically never fail, however, keep up the pretense. */
3784 else if (invert_jump (bb_end_insn,
3785 (e_fall->dest
3786 == EXIT_BLOCK_PTR_FOR_FN (cfun)
3787 ? NULL_RTX
3788 : label_for_bb (e_fall->dest)), 0))
3789 {
3790 e_fall->flags &= ~EDGE_FALLTHRU;
3791 gcc_checking_assert (could_fall_through
3792 (e_taken->src, e_taken->dest));
3793 e_taken->flags |= EDGE_FALLTHRU;
3794 update_br_prob_note (bb);
3795 if (LABEL_NUSES (ret_label) == 0
3796 && single_pred_p (e_taken->dest))
3797 delete_insn (ret_label);
3798 continue;
3799 }
3800 }
3801 else if (extract_asm_operands (PATTERN (bb_end_insn)) != NULL)
3802 {
3803 /* If the old fallthru is still next or if
3804 asm goto doesn't have a fallthru (e.g. when followed by
3805 __builtin_unreachable ()), nothing to do. */
3806 if (! e_fall
3807 || bb->aux == e_fall->dest
3808 || e_fall->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
3809 continue;
3810
3811 /* Otherwise we'll have to use the fallthru fixup below. */
3812 }
3813 else
3814 {
3815 /* Otherwise we have some return, switch or computed
3816 jump. In the 99% case, there should not have been a
3817 fallthru edge. */
3818 gcc_assert (returnjump_p (bb_end_insn) || !e_fall);
3819 continue;
3820 }
3821 }
3822 else
3823 {
3824 /* No fallthru implies a noreturn function with EH edges, or
3825 something similarly bizarre. In any case, we don't need to
3826 do anything. */
3827 if (! e_fall)
3828 continue;
3829
3830 /* If the fallthru block is still next, nothing to do. */
3831 if (bb->aux == e_fall->dest)
3832 continue;
3833
3834 /* A fallthru to exit block. */
3835 if (e_fall->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
3836 continue;
3837 }
3838
3839 /* We got here if we need to add a new jump insn.
3840 Note force_nonfallthru can delete E_FALL and thus we have to
3841 save E_FALL->src prior to the call to force_nonfallthru. */
3842 nb = force_nonfallthru_and_redirect (e_fall, e_fall->dest, ret_label);
3843 if (nb)
3844 {
3845 nb->aux = bb->aux;
3846 bb->aux = nb;
3847 /* Don't process this new block. */
3848 bb = nb;
3849 }
3850 }
3851
3852 relink_block_chain (/*stay_in_cfglayout_mode=*/false);
3853
3854 /* Annoying special case - jump around dead jumptables left in the code. */
3855 FOR_EACH_BB_FN (bb, cfun)
3856 {
3857 edge e = find_fallthru_edge (bb->succs);
3858
3859 if (e && !can_fallthru (e->src, e->dest))
3860 force_nonfallthru (e);
3861 }
3862
3863 /* Ensure goto_locus from edges has some instructions with that locus
3864 in RTL. */
3865 if (!optimize)
3866 FOR_EACH_BB_FN (bb, cfun)
3867 {
3868 edge e;
3869 edge_iterator ei;
3870
3871 FOR_EACH_EDGE (e, ei, bb->succs)
3872 if (LOCATION_LOCUS (e->goto_locus) != UNKNOWN_LOCATION
3873 && !(e->flags & EDGE_ABNORMAL))
3874 {
3875 edge e2;
3876 edge_iterator ei2;
3877 basic_block dest, nb;
3878 rtx end;
3879
3880 insn = BB_END (e->src);
3881 end = PREV_INSN (BB_HEAD (e->src));
3882 while (insn != end
3883 && (!NONDEBUG_INSN_P (insn) || !INSN_HAS_LOCATION (insn)))
3884 insn = PREV_INSN (insn);
3885 if (insn != end
3886 && INSN_LOCATION (insn) == e->goto_locus)
3887 continue;
3888 if (simplejump_p (BB_END (e->src))
3889 && !INSN_HAS_LOCATION (BB_END (e->src)))
3890 {
3891 INSN_LOCATION (BB_END (e->src)) = e->goto_locus;
3892 continue;
3893 }
3894 dest = e->dest;
3895 if (dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
3896 {
3897 /* Non-fallthru edges to the exit block cannot be split. */
3898 if (!(e->flags & EDGE_FALLTHRU))
3899 continue;
3900 }
3901 else
3902 {
3903 insn = BB_HEAD (dest);
3904 end = NEXT_INSN (BB_END (dest));
3905 while (insn != end && !NONDEBUG_INSN_P (insn))
3906 insn = NEXT_INSN (insn);
3907 if (insn != end && INSN_HAS_LOCATION (insn)
3908 && INSN_LOCATION (insn) == e->goto_locus)
3909 continue;
3910 }
3911 nb = split_edge (e);
3912 if (!INSN_P (BB_END (nb)))
3913 SET_BB_END (nb) = emit_insn_after_noloc (gen_nop (), BB_END (nb),
3914 nb);
3915 INSN_LOCATION (BB_END (nb)) = e->goto_locus;
3916
3917 /* If there are other incoming edges to the destination block
3918 with the same goto locus, redirect them to the new block as
3919 well, this can prevent other such blocks from being created
3920 in subsequent iterations of the loop. */
3921 for (ei2 = ei_start (dest->preds); (e2 = ei_safe_edge (ei2)); )
3922 if (LOCATION_LOCUS (e2->goto_locus) != UNKNOWN_LOCATION
3923 && !(e2->flags & (EDGE_ABNORMAL | EDGE_FALLTHRU))
3924 && e->goto_locus == e2->goto_locus)
3925 redirect_edge_and_branch (e2, nb);
3926 else
3927 ei_next (&ei2);
3928 }
3929 }
3930 }
3931 \f
3932 /* Perform sanity checks on the insn chain.
3933 1. Check that next/prev pointers are consistent in both the forward and
3934 reverse direction.
3935 2. Count insns in chain, going both directions, and check if equal.
3936 3. Check that get_last_insn () returns the actual end of chain. */
3937
3938 DEBUG_FUNCTION void
3939 verify_insn_chain (void)
3940 {
3941 rtx x, prevx, nextx;
3942 int insn_cnt1, insn_cnt2;
3943
3944 for (prevx = NULL, insn_cnt1 = 1, x = get_insns ();
3945 x != 0;
3946 prevx = x, insn_cnt1++, x = NEXT_INSN (x))
3947 gcc_assert (PREV_INSN (x) == prevx);
3948
3949 gcc_assert (prevx == get_last_insn ());
3950
3951 for (nextx = NULL, insn_cnt2 = 1, x = get_last_insn ();
3952 x != 0;
3953 nextx = x, insn_cnt2++, x = PREV_INSN (x))
3954 gcc_assert (NEXT_INSN (x) == nextx);
3955
3956 gcc_assert (insn_cnt1 == insn_cnt2);
3957 }
3958 \f
3959 /* If we have assembler epilogues, the block falling through to exit must
3960 be the last one in the reordered chain when we reach final. Ensure
3961 that this condition is met. */
3962 static void
3963 fixup_fallthru_exit_predecessor (void)
3964 {
3965 edge e;
3966 basic_block bb = NULL;
3967
3968 /* This transformation is not valid before reload, because we might
3969 separate a call from the instruction that copies the return
3970 value. */
3971 gcc_assert (reload_completed);
3972
3973 e = find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
3974 if (e)
3975 bb = e->src;
3976
3977 if (bb && bb->aux)
3978 {
3979 basic_block c = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb;
3980
3981 /* If the very first block is the one with the fall-through exit
3982 edge, we have to split that block. */
3983 if (c == bb)
3984 {
3985 bb = split_block (bb, NULL)->dest;
3986 bb->aux = c->aux;
3987 c->aux = bb;
3988 SET_BB_FOOTER (bb) = BB_FOOTER (c);
3989 SET_BB_FOOTER (c) = NULL;
3990 }
3991
3992 while (c->aux != bb)
3993 c = (basic_block) c->aux;
3994
3995 c->aux = bb->aux;
3996 while (c->aux)
3997 c = (basic_block) c->aux;
3998
3999 c->aux = bb;
4000 bb->aux = NULL;
4001 }
4002 }
4003
4004 /* In case there are more than one fallthru predecessors of exit, force that
4005 there is only one. */
4006
4007 static void
4008 force_one_exit_fallthru (void)
4009 {
4010 edge e, predecessor = NULL;
4011 bool more = false;
4012 edge_iterator ei;
4013 basic_block forwarder, bb;
4014
4015 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
4016 if (e->flags & EDGE_FALLTHRU)
4017 {
4018 if (predecessor == NULL)
4019 predecessor = e;
4020 else
4021 {
4022 more = true;
4023 break;
4024 }
4025 }
4026
4027 if (!more)
4028 return;
4029
4030 /* Exit has several fallthru predecessors. Create a forwarder block for
4031 them. */
4032 forwarder = split_edge (predecessor);
4033 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
4034 (e = ei_safe_edge (ei)); )
4035 {
4036 if (e->src == forwarder
4037 || !(e->flags & EDGE_FALLTHRU))
4038 ei_next (&ei);
4039 else
4040 redirect_edge_and_branch_force (e, forwarder);
4041 }
4042
4043 /* Fix up the chain of blocks -- make FORWARDER immediately precede the
4044 exit block. */
4045 FOR_EACH_BB_FN (bb, cfun)
4046 {
4047 if (bb->aux == NULL && bb != forwarder)
4048 {
4049 bb->aux = forwarder;
4050 break;
4051 }
4052 }
4053 }
4054 \f
4055 /* Return true in case it is possible to duplicate the basic block BB. */
4056
4057 static bool
4058 cfg_layout_can_duplicate_bb_p (const_basic_block bb)
4059 {
4060 /* Do not attempt to duplicate tablejumps, as we need to unshare
4061 the dispatch table. This is difficult to do, as the instructions
4062 computing jump destination may be hoisted outside the basic block. */
4063 if (tablejump_p (BB_END (bb), NULL, NULL))
4064 return false;
4065
4066 /* Do not duplicate blocks containing insns that can't be copied. */
4067 if (targetm.cannot_copy_insn_p)
4068 {
4069 rtx insn = BB_HEAD (bb);
4070 while (1)
4071 {
4072 if (INSN_P (insn) && targetm.cannot_copy_insn_p (insn))
4073 return false;
4074 if (insn == BB_END (bb))
4075 break;
4076 insn = NEXT_INSN (insn);
4077 }
4078 }
4079
4080 return true;
4081 }
4082
4083 rtx_insn *
4084 duplicate_insn_chain (rtx from, rtx to)
4085 {
4086 rtx insn, next, copy;
4087 rtx_note *last;
4088
4089 /* Avoid updating of boundaries of previous basic block. The
4090 note will get removed from insn stream in fixup. */
4091 last = emit_note (NOTE_INSN_DELETED);
4092
4093 /* Create copy at the end of INSN chain. The chain will
4094 be reordered later. */
4095 for (insn = from; insn != NEXT_INSN (to); insn = NEXT_INSN (insn))
4096 {
4097 switch (GET_CODE (insn))
4098 {
4099 case DEBUG_INSN:
4100 /* Don't duplicate label debug insns. */
4101 if (TREE_CODE (INSN_VAR_LOCATION_DECL (insn)) == LABEL_DECL)
4102 break;
4103 /* FALLTHRU */
4104 case INSN:
4105 case CALL_INSN:
4106 case JUMP_INSN:
4107 copy = emit_copy_of_insn_after (insn, get_last_insn ());
4108 if (JUMP_P (insn) && JUMP_LABEL (insn) != NULL_RTX
4109 && ANY_RETURN_P (JUMP_LABEL (insn)))
4110 JUMP_LABEL (copy) = JUMP_LABEL (insn);
4111 maybe_copy_prologue_epilogue_insn (insn, copy);
4112 break;
4113
4114 case JUMP_TABLE_DATA:
4115 /* Avoid copying of dispatch tables. We never duplicate
4116 tablejumps, so this can hit only in case the table got
4117 moved far from original jump.
4118 Avoid copying following barrier as well if any
4119 (and debug insns in between). */
4120 for (next = NEXT_INSN (insn);
4121 next != NEXT_INSN (to);
4122 next = NEXT_INSN (next))
4123 if (!DEBUG_INSN_P (next))
4124 break;
4125 if (next != NEXT_INSN (to) && BARRIER_P (next))
4126 insn = next;
4127 break;
4128
4129 case CODE_LABEL:
4130 break;
4131
4132 case BARRIER:
4133 emit_barrier ();
4134 break;
4135
4136 case NOTE:
4137 switch (NOTE_KIND (insn))
4138 {
4139 /* In case prologue is empty and function contain label
4140 in first BB, we may want to copy the block. */
4141 case NOTE_INSN_PROLOGUE_END:
4142
4143 case NOTE_INSN_DELETED:
4144 case NOTE_INSN_DELETED_LABEL:
4145 case NOTE_INSN_DELETED_DEBUG_LABEL:
4146 /* No problem to strip these. */
4147 case NOTE_INSN_FUNCTION_BEG:
4148 /* There is always just single entry to function. */
4149 case NOTE_INSN_BASIC_BLOCK:
4150 /* We should only switch text sections once. */
4151 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
4152 break;
4153
4154 case NOTE_INSN_EPILOGUE_BEG:
4155 emit_note_copy (as_a <rtx_note *> (insn));
4156 break;
4157
4158 default:
4159 /* All other notes should have already been eliminated. */
4160 gcc_unreachable ();
4161 }
4162 break;
4163 default:
4164 gcc_unreachable ();
4165 }
4166 }
4167 insn = NEXT_INSN (last);
4168 delete_insn (last);
4169 return safe_as_a <rtx_insn *> (insn);
4170 }
4171
4172 /* Create a duplicate of the basic block BB. */
4173
4174 static basic_block
4175 cfg_layout_duplicate_bb (basic_block bb)
4176 {
4177 rtx insn;
4178 basic_block new_bb;
4179
4180 insn = duplicate_insn_chain (BB_HEAD (bb), BB_END (bb));
4181 new_bb = create_basic_block (insn,
4182 insn ? get_last_insn () : NULL,
4183 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
4184
4185 BB_COPY_PARTITION (new_bb, bb);
4186 if (BB_HEADER (bb))
4187 {
4188 insn = BB_HEADER (bb);
4189 while (NEXT_INSN (insn))
4190 insn = NEXT_INSN (insn);
4191 insn = duplicate_insn_chain (BB_HEADER (bb), insn);
4192 if (insn)
4193 SET_BB_HEADER (new_bb) = unlink_insn_chain (insn, get_last_insn ());
4194 }
4195
4196 if (BB_FOOTER (bb))
4197 {
4198 insn = BB_FOOTER (bb);
4199 while (NEXT_INSN (insn))
4200 insn = NEXT_INSN (insn);
4201 insn = duplicate_insn_chain (BB_FOOTER (bb), insn);
4202 if (insn)
4203 SET_BB_FOOTER (new_bb) = unlink_insn_chain (insn, get_last_insn ());
4204 }
4205
4206 return new_bb;
4207 }
4208
4209 \f
4210 /* Main entry point to this module - initialize the datastructures for
4211 CFG layout changes. It keeps LOOPS up-to-date if not null.
4212
4213 FLAGS is a set of additional flags to pass to cleanup_cfg(). */
4214
4215 void
4216 cfg_layout_initialize (unsigned int flags)
4217 {
4218 rtx x;
4219 basic_block bb;
4220
4221 /* Once bb partitioning is complete, cfg layout mode should not be
4222 re-entered. Entering cfg layout mode may require fixups. As an
4223 example, if edge forwarding performed when optimizing the cfg
4224 layout required moving a block from the hot to the cold
4225 section. This would create an illegal partitioning unless some
4226 manual fixup was performed. */
4227 gcc_assert (!(crtl->bb_reorder_complete
4228 && flag_reorder_blocks_and_partition));
4229
4230 initialize_original_copy_tables ();
4231
4232 cfg_layout_rtl_register_cfg_hooks ();
4233
4234 record_effective_endpoints ();
4235
4236 /* Make sure that the targets of non local gotos are marked. */
4237 for (x = nonlocal_goto_handler_labels; x; x = XEXP (x, 1))
4238 {
4239 bb = BLOCK_FOR_INSN (XEXP (x, 0));
4240 bb->flags |= BB_NON_LOCAL_GOTO_TARGET;
4241 }
4242
4243 cleanup_cfg (CLEANUP_CFGLAYOUT | flags);
4244 }
4245
4246 /* Splits superblocks. */
4247 void
4248 break_superblocks (void)
4249 {
4250 sbitmap superblocks;
4251 bool need = false;
4252 basic_block bb;
4253
4254 superblocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
4255 bitmap_clear (superblocks);
4256
4257 FOR_EACH_BB_FN (bb, cfun)
4258 if (bb->flags & BB_SUPERBLOCK)
4259 {
4260 bb->flags &= ~BB_SUPERBLOCK;
4261 bitmap_set_bit (superblocks, bb->index);
4262 need = true;
4263 }
4264
4265 if (need)
4266 {
4267 rebuild_jump_labels (get_insns ());
4268 find_many_sub_basic_blocks (superblocks);
4269 }
4270
4271 free (superblocks);
4272 }
4273
4274 /* Finalize the changes: reorder insn list according to the sequence specified
4275 by aux pointers, enter compensation code, rebuild scope forest. */
4276
4277 void
4278 cfg_layout_finalize (void)
4279 {
4280 #ifdef ENABLE_CHECKING
4281 verify_flow_info ();
4282 #endif
4283 force_one_exit_fallthru ();
4284 rtl_register_cfg_hooks ();
4285 if (reload_completed
4286 #ifdef HAVE_epilogue
4287 && !HAVE_epilogue
4288 #endif
4289 )
4290 fixup_fallthru_exit_predecessor ();
4291 fixup_reorder_chain ();
4292
4293 rebuild_jump_labels (get_insns ());
4294 delete_dead_jumptables ();
4295
4296 #ifdef ENABLE_CHECKING
4297 verify_insn_chain ();
4298 verify_flow_info ();
4299 #endif
4300 }
4301
4302
4303 /* Same as split_block but update cfg_layout structures. */
4304
4305 static basic_block
4306 cfg_layout_split_block (basic_block bb, void *insnp)
4307 {
4308 rtx insn = (rtx) insnp;
4309 basic_block new_bb = rtl_split_block (bb, insn);
4310
4311 SET_BB_FOOTER (new_bb) = BB_FOOTER (bb);
4312 SET_BB_FOOTER (bb) = NULL;
4313
4314 return new_bb;
4315 }
4316
4317 /* Redirect Edge to DEST. */
4318 static edge
4319 cfg_layout_redirect_edge_and_branch (edge e, basic_block dest)
4320 {
4321 basic_block src = e->src;
4322 edge ret;
4323
4324 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
4325 return NULL;
4326
4327 if (e->dest == dest)
4328 return e;
4329
4330 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
4331 && (ret = try_redirect_by_replacing_jump (e, dest, true)))
4332 {
4333 df_set_bb_dirty (src);
4334 return ret;
4335 }
4336
4337 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
4338 && (e->flags & EDGE_FALLTHRU) && !(e->flags & EDGE_COMPLEX))
4339 {
4340 if (dump_file)
4341 fprintf (dump_file, "Redirecting entry edge from bb %i to %i\n",
4342 e->src->index, dest->index);
4343
4344 df_set_bb_dirty (e->src);
4345 redirect_edge_succ (e, dest);
4346 return e;
4347 }
4348
4349 /* Redirect_edge_and_branch may decide to turn branch into fallthru edge
4350 in the case the basic block appears to be in sequence. Avoid this
4351 transformation. */
4352
4353 if (e->flags & EDGE_FALLTHRU)
4354 {
4355 /* Redirect any branch edges unified with the fallthru one. */
4356 if (JUMP_P (BB_END (src))
4357 && label_is_jump_target_p (BB_HEAD (e->dest),
4358 BB_END (src)))
4359 {
4360 edge redirected;
4361
4362 if (dump_file)
4363 fprintf (dump_file, "Fallthru edge unified with branch "
4364 "%i->%i redirected to %i\n",
4365 e->src->index, e->dest->index, dest->index);
4366 e->flags &= ~EDGE_FALLTHRU;
4367 redirected = redirect_branch_edge (e, dest);
4368 gcc_assert (redirected);
4369 redirected->flags |= EDGE_FALLTHRU;
4370 df_set_bb_dirty (redirected->src);
4371 return redirected;
4372 }
4373 /* In case we are redirecting fallthru edge to the branch edge
4374 of conditional jump, remove it. */
4375 if (EDGE_COUNT (src->succs) == 2)
4376 {
4377 /* Find the edge that is different from E. */
4378 edge s = EDGE_SUCC (src, EDGE_SUCC (src, 0) == e);
4379
4380 if (s->dest == dest
4381 && any_condjump_p (BB_END (src))
4382 && onlyjump_p (BB_END (src)))
4383 delete_insn (BB_END (src));
4384 }
4385 if (dump_file)
4386 fprintf (dump_file, "Redirecting fallthru edge %i->%i to %i\n",
4387 e->src->index, e->dest->index, dest->index);
4388 ret = redirect_edge_succ_nodup (e, dest);
4389 }
4390 else
4391 ret = redirect_branch_edge (e, dest);
4392
4393 /* We don't want simplejumps in the insn stream during cfglayout. */
4394 gcc_assert (!simplejump_p (BB_END (src)));
4395
4396 df_set_bb_dirty (src);
4397 return ret;
4398 }
4399
4400 /* Simple wrapper as we always can redirect fallthru edges. */
4401 static basic_block
4402 cfg_layout_redirect_edge_and_branch_force (edge e, basic_block dest)
4403 {
4404 edge redirected = cfg_layout_redirect_edge_and_branch (e, dest);
4405
4406 gcc_assert (redirected);
4407 return NULL;
4408 }
4409
4410 /* Same as delete_basic_block but update cfg_layout structures. */
4411
4412 static void
4413 cfg_layout_delete_block (basic_block bb)
4414 {
4415 rtx insn, next, prev = PREV_INSN (BB_HEAD (bb)), *to, remaints;
4416
4417 if (BB_HEADER (bb))
4418 {
4419 next = BB_HEAD (bb);
4420 if (prev)
4421 SET_NEXT_INSN (prev) = BB_HEADER (bb);
4422 else
4423 set_first_insn (BB_HEADER (bb));
4424 SET_PREV_INSN (BB_HEADER (bb)) = prev;
4425 insn = BB_HEADER (bb);
4426 while (NEXT_INSN (insn))
4427 insn = NEXT_INSN (insn);
4428 SET_NEXT_INSN (insn) = next;
4429 SET_PREV_INSN (next) = insn;
4430 }
4431 next = NEXT_INSN (BB_END (bb));
4432 if (BB_FOOTER (bb))
4433 {
4434 insn = BB_FOOTER (bb);
4435 while (insn)
4436 {
4437 if (BARRIER_P (insn))
4438 {
4439 if (PREV_INSN (insn))
4440 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
4441 else
4442 SET_BB_FOOTER (bb) = NEXT_INSN (insn);
4443 if (NEXT_INSN (insn))
4444 SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
4445 }
4446 if (LABEL_P (insn))
4447 break;
4448 insn = NEXT_INSN (insn);
4449 }
4450 if (BB_FOOTER (bb))
4451 {
4452 insn = BB_END (bb);
4453 SET_NEXT_INSN (insn) = BB_FOOTER (bb);
4454 SET_PREV_INSN (BB_FOOTER (bb)) = insn;
4455 while (NEXT_INSN (insn))
4456 insn = NEXT_INSN (insn);
4457 SET_NEXT_INSN (insn) = next;
4458 if (next)
4459 SET_PREV_INSN (next) = insn;
4460 else
4461 set_last_insn (insn);
4462 }
4463 }
4464 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
4465 to = &SET_BB_HEADER (bb->next_bb);
4466 else
4467 to = &cfg_layout_function_footer;
4468
4469 rtl_delete_block (bb);
4470
4471 if (prev)
4472 prev = NEXT_INSN (prev);
4473 else
4474 prev = get_insns ();
4475 if (next)
4476 next = PREV_INSN (next);
4477 else
4478 next = get_last_insn ();
4479
4480 if (next && NEXT_INSN (next) != prev)
4481 {
4482 remaints = unlink_insn_chain (prev, next);
4483 insn = remaints;
4484 while (NEXT_INSN (insn))
4485 insn = NEXT_INSN (insn);
4486 SET_NEXT_INSN (insn) = *to;
4487 if (*to)
4488 SET_PREV_INSN (*to) = insn;
4489 *to = remaints;
4490 }
4491 }
4492
4493 /* Return true when blocks A and B can be safely merged. */
4494
4495 static bool
4496 cfg_layout_can_merge_blocks_p (basic_block a, basic_block b)
4497 {
4498 /* If we are partitioning hot/cold basic blocks, we don't want to
4499 mess up unconditional or indirect jumps that cross between hot
4500 and cold sections.
4501
4502 Basic block partitioning may result in some jumps that appear to
4503 be optimizable (or blocks that appear to be mergeable), but which really
4504 must be left untouched (they are required to make it safely across
4505 partition boundaries). See the comments at the top of
4506 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
4507
4508 if (BB_PARTITION (a) != BB_PARTITION (b))
4509 return false;
4510
4511 /* Protect the loop latches. */
4512 if (current_loops && b->loop_father->latch == b)
4513 return false;
4514
4515 /* If we would end up moving B's instructions, make sure it doesn't fall
4516 through into the exit block, since we cannot recover from a fallthrough
4517 edge into the exit block occurring in the middle of a function. */
4518 if (NEXT_INSN (BB_END (a)) != BB_HEAD (b))
4519 {
4520 edge e = find_fallthru_edge (b->succs);
4521 if (e && e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
4522 return false;
4523 }
4524
4525 /* There must be exactly one edge in between the blocks. */
4526 return (single_succ_p (a)
4527 && single_succ (a) == b
4528 && single_pred_p (b) == 1
4529 && a != b
4530 /* Must be simple edge. */
4531 && !(single_succ_edge (a)->flags & EDGE_COMPLEX)
4532 && a != ENTRY_BLOCK_PTR_FOR_FN (cfun)
4533 && b != EXIT_BLOCK_PTR_FOR_FN (cfun)
4534 /* If the jump insn has side effects, we can't kill the edge.
4535 When not optimizing, try_redirect_by_replacing_jump will
4536 not allow us to redirect an edge by replacing a table jump. */
4537 && (!JUMP_P (BB_END (a))
4538 || ((!optimize || reload_completed)
4539 ? simplejump_p (BB_END (a)) : onlyjump_p (BB_END (a)))));
4540 }
4541
4542 /* Merge block A and B. The blocks must be mergeable. */
4543
4544 static void
4545 cfg_layout_merge_blocks (basic_block a, basic_block b)
4546 {
4547 bool forwarder_p = (b->flags & BB_FORWARDER_BLOCK) != 0;
4548 rtx insn;
4549
4550 gcc_checking_assert (cfg_layout_can_merge_blocks_p (a, b));
4551
4552 if (dump_file)
4553 fprintf (dump_file, "Merging block %d into block %d...\n", b->index,
4554 a->index);
4555
4556 /* If there was a CODE_LABEL beginning B, delete it. */
4557 if (LABEL_P (BB_HEAD (b)))
4558 {
4559 delete_insn (BB_HEAD (b));
4560 }
4561
4562 /* We should have fallthru edge in a, or we can do dummy redirection to get
4563 it cleaned up. */
4564 if (JUMP_P (BB_END (a)))
4565 try_redirect_by_replacing_jump (EDGE_SUCC (a, 0), b, true);
4566 gcc_assert (!JUMP_P (BB_END (a)));
4567
4568 /* When not optimizing and the edge is the only place in RTL which holds
4569 some unique locus, emit a nop with that locus in between. */
4570 if (!optimize)
4571 emit_nop_for_unique_locus_between (a, b);
4572
4573 /* Move things from b->footer after a->footer. */
4574 if (BB_FOOTER (b))
4575 {
4576 if (!BB_FOOTER (a))
4577 SET_BB_FOOTER (a) = SET_BB_FOOTER (b);
4578 else
4579 {
4580 rtx last = BB_FOOTER (a);
4581
4582 while (NEXT_INSN (last))
4583 last = NEXT_INSN (last);
4584 SET_NEXT_INSN (last) = BB_FOOTER (b);
4585 SET_PREV_INSN (BB_FOOTER (b)) = last;
4586 }
4587 SET_BB_FOOTER (b) = NULL;
4588 }
4589
4590 /* Move things from b->header before a->footer.
4591 Note that this may include dead tablejump data, but we don't clean
4592 those up until we go out of cfglayout mode. */
4593 if (BB_HEADER (b))
4594 {
4595 if (! BB_FOOTER (a))
4596 SET_BB_FOOTER (a) = BB_HEADER (b);
4597 else
4598 {
4599 rtx last = BB_HEADER (b);
4600
4601 while (NEXT_INSN (last))
4602 last = NEXT_INSN (last);
4603 SET_NEXT_INSN (last) = BB_FOOTER (a);
4604 SET_PREV_INSN (BB_FOOTER (a)) = last;
4605 SET_BB_FOOTER (a) = BB_HEADER (b);
4606 }
4607 SET_BB_HEADER (b) = NULL;
4608 }
4609
4610 /* In the case basic blocks are not adjacent, move them around. */
4611 if (NEXT_INSN (BB_END (a)) != BB_HEAD (b))
4612 {
4613 insn = unlink_insn_chain (BB_HEAD (b), BB_END (b));
4614
4615 emit_insn_after_noloc (insn, BB_END (a), a);
4616 }
4617 /* Otherwise just re-associate the instructions. */
4618 else
4619 {
4620 insn = BB_HEAD (b);
4621 SET_BB_END (a) = BB_END (b);
4622 }
4623
4624 /* emit_insn_after_noloc doesn't call df_insn_change_bb.
4625 We need to explicitly call. */
4626 update_bb_for_insn_chain (insn, BB_END (b), a);
4627
4628 /* Skip possible DELETED_LABEL insn. */
4629 if (!NOTE_INSN_BASIC_BLOCK_P (insn))
4630 insn = NEXT_INSN (insn);
4631 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
4632 SET_BB_HEAD (b) = SET_BB_END (b) = NULL;
4633 delete_insn (insn);
4634
4635 df_bb_delete (b->index);
4636
4637 /* If B was a forwarder block, propagate the locus on the edge. */
4638 if (forwarder_p
4639 && LOCATION_LOCUS (EDGE_SUCC (b, 0)->goto_locus) == UNKNOWN_LOCATION)
4640 EDGE_SUCC (b, 0)->goto_locus = EDGE_SUCC (a, 0)->goto_locus;
4641
4642 if (dump_file)
4643 fprintf (dump_file, "Merged blocks %d and %d.\n", a->index, b->index);
4644 }
4645
4646 /* Split edge E. */
4647
4648 static basic_block
4649 cfg_layout_split_edge (edge e)
4650 {
4651 basic_block new_bb =
4652 create_basic_block (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
4653 ? NEXT_INSN (BB_END (e->src)) : get_insns (),
4654 NULL_RTX, e->src);
4655
4656 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
4657 BB_COPY_PARTITION (new_bb, e->src);
4658 else
4659 BB_COPY_PARTITION (new_bb, e->dest);
4660 make_edge (new_bb, e->dest, EDGE_FALLTHRU);
4661 redirect_edge_and_branch_force (e, new_bb);
4662
4663 return new_bb;
4664 }
4665
4666 /* Do postprocessing after making a forwarder block joined by edge FALLTHRU. */
4667
4668 static void
4669 rtl_make_forwarder_block (edge fallthru ATTRIBUTE_UNUSED)
4670 {
4671 }
4672
4673 /* Return true if BB contains only labels or non-executable
4674 instructions. */
4675
4676 static bool
4677 rtl_block_empty_p (basic_block bb)
4678 {
4679 rtx insn;
4680
4681 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun)
4682 || bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4683 return true;
4684
4685 FOR_BB_INSNS (bb, insn)
4686 if (NONDEBUG_INSN_P (insn) && !any_uncondjump_p (insn))
4687 return false;
4688
4689 return true;
4690 }
4691
4692 /* Split a basic block if it ends with a conditional branch and if
4693 the other part of the block is not empty. */
4694
4695 static basic_block
4696 rtl_split_block_before_cond_jump (basic_block bb)
4697 {
4698 rtx insn;
4699 rtx split_point = NULL;
4700 rtx last = NULL;
4701 bool found_code = false;
4702
4703 FOR_BB_INSNS (bb, insn)
4704 {
4705 if (any_condjump_p (insn))
4706 split_point = last;
4707 else if (NONDEBUG_INSN_P (insn))
4708 found_code = true;
4709 last = insn;
4710 }
4711
4712 /* Did not find everything. */
4713 if (found_code && split_point)
4714 return split_block (bb, split_point)->dest;
4715 else
4716 return NULL;
4717 }
4718
4719 /* Return 1 if BB ends with a call, possibly followed by some
4720 instructions that must stay with the call, 0 otherwise. */
4721
4722 static bool
4723 rtl_block_ends_with_call_p (basic_block bb)
4724 {
4725 rtx insn = BB_END (bb);
4726
4727 while (!CALL_P (insn)
4728 && insn != BB_HEAD (bb)
4729 && (keep_with_call_p (insn)
4730 || NOTE_P (insn)
4731 || DEBUG_INSN_P (insn)))
4732 insn = PREV_INSN (insn);
4733 return (CALL_P (insn));
4734 }
4735
4736 /* Return 1 if BB ends with a conditional branch, 0 otherwise. */
4737
4738 static bool
4739 rtl_block_ends_with_condjump_p (const_basic_block bb)
4740 {
4741 return any_condjump_p (BB_END (bb));
4742 }
4743
4744 /* Return true if we need to add fake edge to exit.
4745 Helper function for rtl_flow_call_edges_add. */
4746
4747 static bool
4748 need_fake_edge_p (const_rtx insn)
4749 {
4750 if (!INSN_P (insn))
4751 return false;
4752
4753 if ((CALL_P (insn)
4754 && !SIBLING_CALL_P (insn)
4755 && !find_reg_note (insn, REG_NORETURN, NULL)
4756 && !(RTL_CONST_OR_PURE_CALL_P (insn))))
4757 return true;
4758
4759 return ((GET_CODE (PATTERN (insn)) == ASM_OPERANDS
4760 && MEM_VOLATILE_P (PATTERN (insn)))
4761 || (GET_CODE (PATTERN (insn)) == PARALLEL
4762 && asm_noperands (insn) != -1
4763 && MEM_VOLATILE_P (XVECEXP (PATTERN (insn), 0, 0)))
4764 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
4765 }
4766
4767 /* Add fake edges to the function exit for any non constant and non noreturn
4768 calls, volatile inline assembly in the bitmap of blocks specified by
4769 BLOCKS or to the whole CFG if BLOCKS is zero. Return the number of blocks
4770 that were split.
4771
4772 The goal is to expose cases in which entering a basic block does not imply
4773 that all subsequent instructions must be executed. */
4774
4775 static int
4776 rtl_flow_call_edges_add (sbitmap blocks)
4777 {
4778 int i;
4779 int blocks_split = 0;
4780 int last_bb = last_basic_block_for_fn (cfun);
4781 bool check_last_block = false;
4782
4783 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
4784 return 0;
4785
4786 if (! blocks)
4787 check_last_block = true;
4788 else
4789 check_last_block = bitmap_bit_p (blocks,
4790 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb->index);
4791
4792 /* In the last basic block, before epilogue generation, there will be
4793 a fallthru edge to EXIT. Special care is required if the last insn
4794 of the last basic block is a call because make_edge folds duplicate
4795 edges, which would result in the fallthru edge also being marked
4796 fake, which would result in the fallthru edge being removed by
4797 remove_fake_edges, which would result in an invalid CFG.
4798
4799 Moreover, we can't elide the outgoing fake edge, since the block
4800 profiler needs to take this into account in order to solve the minimal
4801 spanning tree in the case that the call doesn't return.
4802
4803 Handle this by adding a dummy instruction in a new last basic block. */
4804 if (check_last_block)
4805 {
4806 basic_block bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
4807 rtx insn = BB_END (bb);
4808
4809 /* Back up past insns that must be kept in the same block as a call. */
4810 while (insn != BB_HEAD (bb)
4811 && keep_with_call_p (insn))
4812 insn = PREV_INSN (insn);
4813
4814 if (need_fake_edge_p (insn))
4815 {
4816 edge e;
4817
4818 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
4819 if (e)
4820 {
4821 insert_insn_on_edge (gen_use (const0_rtx), e);
4822 commit_edge_insertions ();
4823 }
4824 }
4825 }
4826
4827 /* Now add fake edges to the function exit for any non constant
4828 calls since there is no way that we can determine if they will
4829 return or not... */
4830
4831 for (i = NUM_FIXED_BLOCKS; i < last_bb; i++)
4832 {
4833 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
4834 rtx insn;
4835 rtx prev_insn;
4836
4837 if (!bb)
4838 continue;
4839
4840 if (blocks && !bitmap_bit_p (blocks, i))
4841 continue;
4842
4843 for (insn = BB_END (bb); ; insn = prev_insn)
4844 {
4845 prev_insn = PREV_INSN (insn);
4846 if (need_fake_edge_p (insn))
4847 {
4848 edge e;
4849 rtx split_at_insn = insn;
4850
4851 /* Don't split the block between a call and an insn that should
4852 remain in the same block as the call. */
4853 if (CALL_P (insn))
4854 while (split_at_insn != BB_END (bb)
4855 && keep_with_call_p (NEXT_INSN (split_at_insn)))
4856 split_at_insn = NEXT_INSN (split_at_insn);
4857
4858 /* The handling above of the final block before the epilogue
4859 should be enough to verify that there is no edge to the exit
4860 block in CFG already. Calling make_edge in such case would
4861 cause us to mark that edge as fake and remove it later. */
4862
4863 #ifdef ENABLE_CHECKING
4864 if (split_at_insn == BB_END (bb))
4865 {
4866 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
4867 gcc_assert (e == NULL);
4868 }
4869 #endif
4870
4871 /* Note that the following may create a new basic block
4872 and renumber the existing basic blocks. */
4873 if (split_at_insn != BB_END (bb))
4874 {
4875 e = split_block (bb, split_at_insn);
4876 if (e)
4877 blocks_split++;
4878 }
4879
4880 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
4881 }
4882
4883 if (insn == BB_HEAD (bb))
4884 break;
4885 }
4886 }
4887
4888 if (blocks_split)
4889 verify_flow_info ();
4890
4891 return blocks_split;
4892 }
4893
4894 /* Add COMP_RTX as a condition at end of COND_BB. FIRST_HEAD is
4895 the conditional branch target, SECOND_HEAD should be the fall-thru
4896 there is no need to handle this here the loop versioning code handles
4897 this. the reason for SECON_HEAD is that it is needed for condition
4898 in trees, and this should be of the same type since it is a hook. */
4899 static void
4900 rtl_lv_add_condition_to_bb (basic_block first_head ,
4901 basic_block second_head ATTRIBUTE_UNUSED,
4902 basic_block cond_bb, void *comp_rtx)
4903 {
4904 rtx label, seq, jump;
4905 rtx op0 = XEXP ((rtx)comp_rtx, 0);
4906 rtx op1 = XEXP ((rtx)comp_rtx, 1);
4907 enum rtx_code comp = GET_CODE ((rtx)comp_rtx);
4908 enum machine_mode mode;
4909
4910
4911 label = block_label (first_head);
4912 mode = GET_MODE (op0);
4913 if (mode == VOIDmode)
4914 mode = GET_MODE (op1);
4915
4916 start_sequence ();
4917 op0 = force_operand (op0, NULL_RTX);
4918 op1 = force_operand (op1, NULL_RTX);
4919 do_compare_rtx_and_jump (op0, op1, comp, 0,
4920 mode, NULL_RTX, NULL_RTX, label, -1);
4921 jump = get_last_insn ();
4922 JUMP_LABEL (jump) = label;
4923 LABEL_NUSES (label)++;
4924 seq = get_insns ();
4925 end_sequence ();
4926
4927 /* Add the new cond , in the new head. */
4928 emit_insn_after (seq, BB_END (cond_bb));
4929 }
4930
4931
4932 /* Given a block B with unconditional branch at its end, get the
4933 store the return the branch edge and the fall-thru edge in
4934 BRANCH_EDGE and FALLTHRU_EDGE respectively. */
4935 static void
4936 rtl_extract_cond_bb_edges (basic_block b, edge *branch_edge,
4937 edge *fallthru_edge)
4938 {
4939 edge e = EDGE_SUCC (b, 0);
4940
4941 if (e->flags & EDGE_FALLTHRU)
4942 {
4943 *fallthru_edge = e;
4944 *branch_edge = EDGE_SUCC (b, 1);
4945 }
4946 else
4947 {
4948 *branch_edge = e;
4949 *fallthru_edge = EDGE_SUCC (b, 1);
4950 }
4951 }
4952
4953 void
4954 init_rtl_bb_info (basic_block bb)
4955 {
4956 gcc_assert (!bb->il.x.rtl);
4957 bb->il.x.head_ = NULL;
4958 bb->il.x.rtl = ggc_cleared_alloc<rtl_bb_info> ();
4959 }
4960
4961 /* Returns true if it is possible to remove edge E by redirecting
4962 it to the destination of the other edge from E->src. */
4963
4964 static bool
4965 rtl_can_remove_branch_p (const_edge e)
4966 {
4967 const_basic_block src = e->src;
4968 const_basic_block target = EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest;
4969 const_rtx insn = BB_END (src), set;
4970
4971 /* The conditions are taken from try_redirect_by_replacing_jump. */
4972 if (target == EXIT_BLOCK_PTR_FOR_FN (cfun))
4973 return false;
4974
4975 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
4976 return false;
4977
4978 if (BB_PARTITION (src) != BB_PARTITION (target))
4979 return false;
4980
4981 if (!onlyjump_p (insn)
4982 || tablejump_p (insn, NULL, NULL))
4983 return false;
4984
4985 set = single_set (insn);
4986 if (!set || side_effects_p (set))
4987 return false;
4988
4989 return true;
4990 }
4991
4992 static basic_block
4993 rtl_duplicate_bb (basic_block bb)
4994 {
4995 bb = cfg_layout_duplicate_bb (bb);
4996 bb->aux = NULL;
4997 return bb;
4998 }
4999
5000 /* Do book-keeping of basic block BB for the profile consistency checker.
5001 If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
5002 then do post-pass accounting. Store the counting in RECORD. */
5003 static void
5004 rtl_account_profile_record (basic_block bb, int after_pass,
5005 struct profile_record *record)
5006 {
5007 rtx insn;
5008 FOR_BB_INSNS (bb, insn)
5009 if (INSN_P (insn))
5010 {
5011 record->size[after_pass]
5012 += insn_rtx_cost (PATTERN (insn), false);
5013 if (profile_status_for_fn (cfun) == PROFILE_READ)
5014 record->time[after_pass]
5015 += insn_rtx_cost (PATTERN (insn), true) * bb->count;
5016 else if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
5017 record->time[after_pass]
5018 += insn_rtx_cost (PATTERN (insn), true) * bb->frequency;
5019 }
5020 }
5021
5022 /* Implementation of CFG manipulation for linearized RTL. */
5023 struct cfg_hooks rtl_cfg_hooks = {
5024 "rtl",
5025 rtl_verify_flow_info,
5026 rtl_dump_bb,
5027 rtl_dump_bb_for_graph,
5028 rtl_create_basic_block,
5029 rtl_redirect_edge_and_branch,
5030 rtl_redirect_edge_and_branch_force,
5031 rtl_can_remove_branch_p,
5032 rtl_delete_block,
5033 rtl_split_block,
5034 rtl_move_block_after,
5035 rtl_can_merge_blocks, /* can_merge_blocks_p */
5036 rtl_merge_blocks,
5037 rtl_predict_edge,
5038 rtl_predicted_by_p,
5039 cfg_layout_can_duplicate_bb_p,
5040 rtl_duplicate_bb,
5041 rtl_split_edge,
5042 rtl_make_forwarder_block,
5043 rtl_tidy_fallthru_edge,
5044 rtl_force_nonfallthru,
5045 rtl_block_ends_with_call_p,
5046 rtl_block_ends_with_condjump_p,
5047 rtl_flow_call_edges_add,
5048 NULL, /* execute_on_growing_pred */
5049 NULL, /* execute_on_shrinking_pred */
5050 NULL, /* duplicate loop for trees */
5051 NULL, /* lv_add_condition_to_bb */
5052 NULL, /* lv_adjust_loop_header_phi*/
5053 NULL, /* extract_cond_bb_edges */
5054 NULL, /* flush_pending_stmts */
5055 rtl_block_empty_p, /* block_empty_p */
5056 rtl_split_block_before_cond_jump, /* split_block_before_cond_jump */
5057 rtl_account_profile_record,
5058 };
5059
5060 /* Implementation of CFG manipulation for cfg layout RTL, where
5061 basic block connected via fallthru edges does not have to be adjacent.
5062 This representation will hopefully become the default one in future
5063 version of the compiler. */
5064
5065 struct cfg_hooks cfg_layout_rtl_cfg_hooks = {
5066 "cfglayout mode",
5067 rtl_verify_flow_info_1,
5068 rtl_dump_bb,
5069 rtl_dump_bb_for_graph,
5070 cfg_layout_create_basic_block,
5071 cfg_layout_redirect_edge_and_branch,
5072 cfg_layout_redirect_edge_and_branch_force,
5073 rtl_can_remove_branch_p,
5074 cfg_layout_delete_block,
5075 cfg_layout_split_block,
5076 rtl_move_block_after,
5077 cfg_layout_can_merge_blocks_p,
5078 cfg_layout_merge_blocks,
5079 rtl_predict_edge,
5080 rtl_predicted_by_p,
5081 cfg_layout_can_duplicate_bb_p,
5082 cfg_layout_duplicate_bb,
5083 cfg_layout_split_edge,
5084 rtl_make_forwarder_block,
5085 NULL, /* tidy_fallthru_edge */
5086 rtl_force_nonfallthru,
5087 rtl_block_ends_with_call_p,
5088 rtl_block_ends_with_condjump_p,
5089 rtl_flow_call_edges_add,
5090 NULL, /* execute_on_growing_pred */
5091 NULL, /* execute_on_shrinking_pred */
5092 duplicate_loop_to_header_edge, /* duplicate loop for trees */
5093 rtl_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
5094 NULL, /* lv_adjust_loop_header_phi*/
5095 rtl_extract_cond_bb_edges, /* extract_cond_bb_edges */
5096 NULL, /* flush_pending_stmts */
5097 rtl_block_empty_p, /* block_empty_p */
5098 rtl_split_block_before_cond_jump, /* split_block_before_cond_jump */
5099 rtl_account_profile_record,
5100 };
5101
5102 /* BB_HEAD as an rvalue. */
5103
5104 rtx_insn *BB_HEAD (const_basic_block bb)
5105 {
5106 rtx insn = bb->il.x.head_;
5107 return safe_as_a <rtx_insn *> (insn);
5108 }
5109
5110 /* BB_HEAD for use as an lvalue. */
5111
5112 rtx& SET_BB_HEAD (basic_block bb)
5113 {
5114 return bb->il.x.head_;
5115 }
5116
5117 /* BB_END as an rvalue. */
5118
5119 rtx_insn *BB_END (const_basic_block bb)
5120 {
5121 rtx insn = bb->il.x.rtl->end_;
5122 return safe_as_a <rtx_insn *> (insn);
5123 }
5124
5125 /* BB_END as an lvalue. */
5126
5127 rtx& SET_BB_END (basic_block bb)
5128 {
5129 return bb->il.x.rtl->end_;
5130 }
5131
5132 /* BB_HEADER as an rvalue. */
5133
5134 rtx_insn *BB_HEADER (const_basic_block bb)
5135 {
5136 rtx insn = bb->il.x.rtl->header_;
5137 return safe_as_a <rtx_insn *> (insn);
5138 }
5139
5140 /* BB_HEADER as an lvalue. */
5141
5142 rtx& SET_BB_HEADER (basic_block bb)
5143 {
5144 return bb->il.x.rtl->header_;
5145 }
5146
5147 /* BB_FOOTER as an rvalue. */
5148
5149 rtx_insn *BB_FOOTER (const_basic_block bb)
5150 {
5151 rtx insn = bb->il.x.rtl->footer_;
5152 return safe_as_a <rtx_insn *> (insn);
5153 }
5154
5155 /* BB_FOOTER as an lvalue. */
5156
5157 rtx& SET_BB_FOOTER (basic_block bb)
5158 {
5159 return bb->il.x.rtl->footer_;
5160 }
5161
5162 #include "gt-cfgrtl.h"