* config/alpha/x-vms (version): Change "." to "_".
[gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
25
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
31
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
54
55 - reg_live_length is not updated
56 - reg_n_refs is not adjusted in the rare case when a register is
57 no longer required in a computation
58 - there are extremely rare cases (see distribute_regnotes) when a
59 REG_DEAD note is lost
60 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
61 removed because there is no way to know which register it was
62 linking
63
64 To simplify substitution, we combine only when the earlier insn(s)
65 consist of only a single assignment. To simplify updating afterward,
66 we never combine when a subroutine call appears in the middle.
67
68 Since we do not represent assignments to CC0 explicitly except when that
69 is all an insn does, there is no LOG_LINKS entry in an insn that uses
70 the condition code for the insn that set the condition code.
71 Fortunately, these two insns must be consecutive.
72 Therefore, every JUMP_INSN is taken to have an implicit logical link
73 to the preceding insn. This is not quite right, since non-jumps can
74 also use the condition code; but in practice such insns would not
75 combine anyway. */
76
77 #include "config.h"
78 #include "system.h"
79 #include "rtl.h"
80 #include "tm_p.h"
81 #include "flags.h"
82 #include "regs.h"
83 #include "hard-reg-set.h"
84 #include "basic-block.h"
85 #include "insn-config.h"
86 #include "function.h"
87 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
88 #include "expr.h"
89 #include "insn-attr.h"
90 #include "recog.h"
91 #include "real.h"
92 #include "toplev.h"
93
94 /* It is not safe to use ordinary gen_lowpart in combine.
95 Use gen_lowpart_for_combine instead. See comments there. */
96 #define gen_lowpart dont_use_gen_lowpart_you_dummy
97
98 /* Number of attempts to combine instructions in this function. */
99
100 static int combine_attempts;
101
102 /* Number of attempts that got as far as substitution in this function. */
103
104 static int combine_merges;
105
106 /* Number of instructions combined with added SETs in this function. */
107
108 static int combine_extras;
109
110 /* Number of instructions combined in this function. */
111
112 static int combine_successes;
113
114 /* Totals over entire compilation. */
115
116 static int total_attempts, total_merges, total_extras, total_successes;
117
118 \f
119 /* Vector mapping INSN_UIDs to cuids.
120 The cuids are like uids but increase monotonically always.
121 Combine always uses cuids so that it can compare them.
122 But actually renumbering the uids, which we used to do,
123 proves to be a bad idea because it makes it hard to compare
124 the dumps produced by earlier passes with those from later passes. */
125
126 static int *uid_cuid;
127 static int max_uid_cuid;
128
129 /* Get the cuid of an insn. */
130
131 #define INSN_CUID(INSN) \
132 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
133
134 /* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
135 BITS_PER_WORD would invoke undefined behavior. Work around it. */
136
137 #define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
138 (((unsigned HOST_WIDE_INT)(val) << (BITS_PER_WORD - 1)) << 1)
139
140 /* Maximum register number, which is the size of the tables below. */
141
142 static unsigned int combine_max_regno;
143
144 /* Record last point of death of (hard or pseudo) register n. */
145
146 static rtx *reg_last_death;
147
148 /* Record last point of modification of (hard or pseudo) register n. */
149
150 static rtx *reg_last_set;
151
152 /* Record the cuid of the last insn that invalidated memory
153 (anything that writes memory, and subroutine calls, but not pushes). */
154
155 static int mem_last_set;
156
157 /* Record the cuid of the last CALL_INSN
158 so we can tell whether a potential combination crosses any calls. */
159
160 static int last_call_cuid;
161
162 /* When `subst' is called, this is the insn that is being modified
163 (by combining in a previous insn). The PATTERN of this insn
164 is still the old pattern partially modified and it should not be
165 looked at, but this may be used to examine the successors of the insn
166 to judge whether a simplification is valid. */
167
168 static rtx subst_insn;
169
170 /* This is an insn that belongs before subst_insn, but is not currently
171 on the insn chain. */
172
173 static rtx subst_prev_insn;
174
175 /* This is the lowest CUID that `subst' is currently dealing with.
176 get_last_value will not return a value if the register was set at or
177 after this CUID. If not for this mechanism, we could get confused if
178 I2 or I1 in try_combine were an insn that used the old value of a register
179 to obtain a new value. In that case, we might erroneously get the
180 new value of the register when we wanted the old one. */
181
182 static int subst_low_cuid;
183
184 /* This contains any hard registers that are used in newpat; reg_dead_at_p
185 must consider all these registers to be always live. */
186
187 static HARD_REG_SET newpat_used_regs;
188
189 /* This is an insn to which a LOG_LINKS entry has been added. If this
190 insn is the earlier than I2 or I3, combine should rescan starting at
191 that location. */
192
193 static rtx added_links_insn;
194
195 /* Basic block number of the block in which we are performing combines. */
196 static int this_basic_block;
197
198 /* A bitmap indicating which blocks had registers go dead at entry.
199 After combine, we'll need to re-do global life analysis with
200 those blocks as starting points. */
201 static sbitmap refresh_blocks;
202 static int need_refresh;
203 \f
204 /* The next group of arrays allows the recording of the last value assigned
205 to (hard or pseudo) register n. We use this information to see if a
206 operation being processed is redundant given a prior operation performed
207 on the register. For example, an `and' with a constant is redundant if
208 all the zero bits are already known to be turned off.
209
210 We use an approach similar to that used by cse, but change it in the
211 following ways:
212
213 (1) We do not want to reinitialize at each label.
214 (2) It is useful, but not critical, to know the actual value assigned
215 to a register. Often just its form is helpful.
216
217 Therefore, we maintain the following arrays:
218
219 reg_last_set_value the last value assigned
220 reg_last_set_label records the value of label_tick when the
221 register was assigned
222 reg_last_set_table_tick records the value of label_tick when a
223 value using the register is assigned
224 reg_last_set_invalid set to non-zero when it is not valid
225 to use the value of this register in some
226 register's value
227
228 To understand the usage of these tables, it is important to understand
229 the distinction between the value in reg_last_set_value being valid
230 and the register being validly contained in some other expression in the
231 table.
232
233 Entry I in reg_last_set_value is valid if it is non-zero, and either
234 reg_n_sets[i] is 1 or reg_last_set_label[i] == label_tick.
235
236 Register I may validly appear in any expression returned for the value
237 of another register if reg_n_sets[i] is 1. It may also appear in the
238 value for register J if reg_last_set_label[i] < reg_last_set_label[j] or
239 reg_last_set_invalid[j] is zero.
240
241 If an expression is found in the table containing a register which may
242 not validly appear in an expression, the register is replaced by
243 something that won't match, (clobber (const_int 0)).
244
245 reg_last_set_invalid[i] is set non-zero when register I is being assigned
246 to and reg_last_set_table_tick[i] == label_tick. */
247
248 /* Record last value assigned to (hard or pseudo) register n. */
249
250 static rtx *reg_last_set_value;
251
252 /* Record the value of label_tick when the value for register n is placed in
253 reg_last_set_value[n]. */
254
255 static int *reg_last_set_label;
256
257 /* Record the value of label_tick when an expression involving register n
258 is placed in reg_last_set_value. */
259
260 static int *reg_last_set_table_tick;
261
262 /* Set non-zero if references to register n in expressions should not be
263 used. */
264
265 static char *reg_last_set_invalid;
266
267 /* Incremented for each label. */
268
269 static int label_tick;
270
271 /* Some registers that are set more than once and used in more than one
272 basic block are nevertheless always set in similar ways. For example,
273 a QImode register may be loaded from memory in two places on a machine
274 where byte loads zero extend.
275
276 We record in the following array what we know about the nonzero
277 bits of a register, specifically which bits are known to be zero.
278
279 If an entry is zero, it means that we don't know anything special. */
280
281 static unsigned HOST_WIDE_INT *reg_nonzero_bits;
282
283 /* Mode used to compute significance in reg_nonzero_bits. It is the largest
284 integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
285
286 static enum machine_mode nonzero_bits_mode;
287
288 /* Nonzero if we know that a register has some leading bits that are always
289 equal to the sign bit. */
290
291 static unsigned char *reg_sign_bit_copies;
292
293 /* Nonzero when reg_nonzero_bits and reg_sign_bit_copies can be safely used.
294 It is zero while computing them and after combine has completed. This
295 former test prevents propagating values based on previously set values,
296 which can be incorrect if a variable is modified in a loop. */
297
298 static int nonzero_sign_valid;
299
300 /* These arrays are maintained in parallel with reg_last_set_value
301 and are used to store the mode in which the register was last set,
302 the bits that were known to be zero when it was last set, and the
303 number of sign bits copies it was known to have when it was last set. */
304
305 static enum machine_mode *reg_last_set_mode;
306 static unsigned HOST_WIDE_INT *reg_last_set_nonzero_bits;
307 static char *reg_last_set_sign_bit_copies;
308 \f
309 /* Record one modification to rtl structure
310 to be undone by storing old_contents into *where.
311 is_int is 1 if the contents are an int. */
312
313 struct undo
314 {
315 struct undo *next;
316 int is_int;
317 union {rtx r; unsigned int i;} old_contents;
318 union {rtx *r; unsigned int *i;} where;
319 };
320
321 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
322 num_undo says how many are currently recorded.
323
324 other_insn is nonzero if we have modified some other insn in the process
325 of working on subst_insn. It must be verified too. */
326
327 struct undobuf
328 {
329 struct undo *undos;
330 struct undo *frees;
331 rtx other_insn;
332 };
333
334 static struct undobuf undobuf;
335
336 /* Number of times the pseudo being substituted for
337 was found and replaced. */
338
339 static int n_occurrences;
340
341 static void do_SUBST PARAMS ((rtx *, rtx));
342 static void do_SUBST_INT PARAMS ((unsigned int *,
343 unsigned int));
344 static void init_reg_last_arrays PARAMS ((void));
345 static void setup_incoming_promotions PARAMS ((void));
346 static void set_nonzero_bits_and_sign_copies PARAMS ((rtx, rtx, void *));
347 static int cant_combine_insn_p PARAMS ((rtx));
348 static int can_combine_p PARAMS ((rtx, rtx, rtx, rtx, rtx *, rtx *));
349 static int sets_function_arg_p PARAMS ((rtx));
350 static int combinable_i3pat PARAMS ((rtx, rtx *, rtx, rtx, int, rtx *));
351 static int contains_muldiv PARAMS ((rtx));
352 static rtx try_combine PARAMS ((rtx, rtx, rtx, int *));
353 static void undo_all PARAMS ((void));
354 static void undo_commit PARAMS ((void));
355 static rtx *find_split_point PARAMS ((rtx *, rtx));
356 static rtx subst PARAMS ((rtx, rtx, rtx, int, int));
357 static rtx combine_simplify_rtx PARAMS ((rtx, enum machine_mode, int, int));
358 static rtx simplify_if_then_else PARAMS ((rtx));
359 static rtx simplify_set PARAMS ((rtx));
360 static rtx simplify_logical PARAMS ((rtx, int));
361 static rtx expand_compound_operation PARAMS ((rtx));
362 static rtx expand_field_assignment PARAMS ((rtx));
363 static rtx make_extraction PARAMS ((enum machine_mode, rtx, HOST_WIDE_INT,
364 rtx, unsigned HOST_WIDE_INT, int,
365 int, int));
366 static rtx extract_left_shift PARAMS ((rtx, int));
367 static rtx make_compound_operation PARAMS ((rtx, enum rtx_code));
368 static int get_pos_from_mask PARAMS ((unsigned HOST_WIDE_INT,
369 unsigned HOST_WIDE_INT *));
370 static rtx force_to_mode PARAMS ((rtx, enum machine_mode,
371 unsigned HOST_WIDE_INT, rtx, int));
372 static rtx if_then_else_cond PARAMS ((rtx, rtx *, rtx *));
373 static rtx known_cond PARAMS ((rtx, enum rtx_code, rtx, rtx));
374 static int rtx_equal_for_field_assignment_p PARAMS ((rtx, rtx));
375 static rtx make_field_assignment PARAMS ((rtx));
376 static rtx apply_distributive_law PARAMS ((rtx));
377 static rtx simplify_and_const_int PARAMS ((rtx, enum machine_mode, rtx,
378 unsigned HOST_WIDE_INT));
379 static unsigned HOST_WIDE_INT nonzero_bits PARAMS ((rtx, enum machine_mode));
380 static unsigned int num_sign_bit_copies PARAMS ((rtx, enum machine_mode));
381 static int merge_outer_ops PARAMS ((enum rtx_code *, HOST_WIDE_INT *,
382 enum rtx_code, HOST_WIDE_INT,
383 enum machine_mode, int *));
384 static rtx simplify_shift_const PARAMS ((rtx, enum rtx_code, enum machine_mode,
385 rtx, int));
386 static int recog_for_combine PARAMS ((rtx *, rtx, rtx *));
387 static rtx gen_lowpart_for_combine PARAMS ((enum machine_mode, rtx));
388 static rtx gen_binary PARAMS ((enum rtx_code, enum machine_mode,
389 rtx, rtx));
390 static enum rtx_code simplify_comparison PARAMS ((enum rtx_code, rtx *, rtx *));
391 static void update_table_tick PARAMS ((rtx));
392 static void record_value_for_reg PARAMS ((rtx, rtx, rtx));
393 static void check_promoted_subreg PARAMS ((rtx, rtx));
394 static void record_dead_and_set_regs_1 PARAMS ((rtx, rtx, void *));
395 static void record_dead_and_set_regs PARAMS ((rtx));
396 static int get_last_value_validate PARAMS ((rtx *, rtx, int, int));
397 static rtx get_last_value PARAMS ((rtx));
398 static int use_crosses_set_p PARAMS ((rtx, int));
399 static void reg_dead_at_p_1 PARAMS ((rtx, rtx, void *));
400 static int reg_dead_at_p PARAMS ((rtx, rtx));
401 static void move_deaths PARAMS ((rtx, rtx, int, rtx, rtx *));
402 static int reg_bitfield_target_p PARAMS ((rtx, rtx));
403 static void distribute_notes PARAMS ((rtx, rtx, rtx, rtx, rtx, rtx));
404 static void distribute_links PARAMS ((rtx));
405 static void mark_used_regs_combine PARAMS ((rtx));
406 static int insn_cuid PARAMS ((rtx));
407 static void record_promoted_value PARAMS ((rtx, rtx));
408 static rtx reversed_comparison PARAMS ((rtx, enum machine_mode, rtx, rtx));
409 static enum rtx_code combine_reversed_comparison_code PARAMS ((rtx));
410 \f
411 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
412 insn. The substitution can be undone by undo_all. If INTO is already
413 set to NEWVAL, do not record this change. Because computing NEWVAL might
414 also call SUBST, we have to compute it before we put anything into
415 the undo table. */
416
417 static void
418 do_SUBST (into, newval)
419 rtx *into, newval;
420 {
421 struct undo *buf;
422 rtx oldval = *into;
423
424 if (oldval == newval)
425 return;
426
427 if (undobuf.frees)
428 buf = undobuf.frees, undobuf.frees = buf->next;
429 else
430 buf = (struct undo *) xmalloc (sizeof (struct undo));
431
432 buf->is_int = 0;
433 buf->where.r = into;
434 buf->old_contents.r = oldval;
435 *into = newval;
436
437 buf->next = undobuf.undos, undobuf.undos = buf;
438 }
439
440 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
441
442 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
443 for the value of a HOST_WIDE_INT value (including CONST_INT) is
444 not safe. */
445
446 static void
447 do_SUBST_INT (into, newval)
448 unsigned int *into, newval;
449 {
450 struct undo *buf;
451 unsigned int oldval = *into;
452
453 if (oldval == newval)
454 return;
455
456 if (undobuf.frees)
457 buf = undobuf.frees, undobuf.frees = buf->next;
458 else
459 buf = (struct undo *) xmalloc (sizeof (struct undo));
460
461 buf->is_int = 1;
462 buf->where.i = into;
463 buf->old_contents.i = oldval;
464 *into = newval;
465
466 buf->next = undobuf.undos, undobuf.undos = buf;
467 }
468
469 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
470 \f
471 /* Main entry point for combiner. F is the first insn of the function.
472 NREGS is the first unused pseudo-reg number.
473
474 Return non-zero if the combiner has turned an indirect jump
475 instruction into a direct jump. */
476 int
477 combine_instructions (f, nregs)
478 rtx f;
479 unsigned int nregs;
480 {
481 rtx insn, next;
482 #ifdef HAVE_cc0
483 rtx prev;
484 #endif
485 int i;
486 rtx links, nextlinks;
487
488 int new_direct_jump_p = 0;
489
490 combine_attempts = 0;
491 combine_merges = 0;
492 combine_extras = 0;
493 combine_successes = 0;
494
495 combine_max_regno = nregs;
496
497 reg_nonzero_bits = ((unsigned HOST_WIDE_INT *)
498 xcalloc (nregs, sizeof (unsigned HOST_WIDE_INT)));
499 reg_sign_bit_copies
500 = (unsigned char *) xcalloc (nregs, sizeof (unsigned char));
501
502 reg_last_death = (rtx *) xmalloc (nregs * sizeof (rtx));
503 reg_last_set = (rtx *) xmalloc (nregs * sizeof (rtx));
504 reg_last_set_value = (rtx *) xmalloc (nregs * sizeof (rtx));
505 reg_last_set_table_tick = (int *) xmalloc (nregs * sizeof (int));
506 reg_last_set_label = (int *) xmalloc (nregs * sizeof (int));
507 reg_last_set_invalid = (char *) xmalloc (nregs * sizeof (char));
508 reg_last_set_mode
509 = (enum machine_mode *) xmalloc (nregs * sizeof (enum machine_mode));
510 reg_last_set_nonzero_bits
511 = (unsigned HOST_WIDE_INT *) xmalloc (nregs * sizeof (HOST_WIDE_INT));
512 reg_last_set_sign_bit_copies
513 = (char *) xmalloc (nregs * sizeof (char));
514
515 init_reg_last_arrays ();
516
517 init_recog_no_volatile ();
518
519 /* Compute maximum uid value so uid_cuid can be allocated. */
520
521 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
522 if (INSN_UID (insn) > i)
523 i = INSN_UID (insn);
524
525 uid_cuid = (int *) xmalloc ((i + 1) * sizeof (int));
526 max_uid_cuid = i;
527
528 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
529
530 /* Don't use reg_nonzero_bits when computing it. This can cause problems
531 when, for example, we have j <<= 1 in a loop. */
532
533 nonzero_sign_valid = 0;
534
535 /* Compute the mapping from uids to cuids.
536 Cuids are numbers assigned to insns, like uids,
537 except that cuids increase monotonically through the code.
538
539 Scan all SETs and see if we can deduce anything about what
540 bits are known to be zero for some registers and how many copies
541 of the sign bit are known to exist for those registers.
542
543 Also set any known values so that we can use it while searching
544 for what bits are known to be set. */
545
546 label_tick = 1;
547
548 /* We need to initialize it here, because record_dead_and_set_regs may call
549 get_last_value. */
550 subst_prev_insn = NULL_RTX;
551
552 setup_incoming_promotions ();
553
554 refresh_blocks = sbitmap_alloc (n_basic_blocks);
555 sbitmap_zero (refresh_blocks);
556 need_refresh = 0;
557
558 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
559 {
560 uid_cuid[INSN_UID (insn)] = ++i;
561 subst_low_cuid = i;
562 subst_insn = insn;
563
564 if (INSN_P (insn))
565 {
566 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
567 NULL);
568 record_dead_and_set_regs (insn);
569
570 #ifdef AUTO_INC_DEC
571 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
572 if (REG_NOTE_KIND (links) == REG_INC)
573 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
574 NULL);
575 #endif
576 }
577
578 if (GET_CODE (insn) == CODE_LABEL)
579 label_tick++;
580 }
581
582 nonzero_sign_valid = 1;
583
584 /* Now scan all the insns in forward order. */
585
586 this_basic_block = -1;
587 label_tick = 1;
588 last_call_cuid = 0;
589 mem_last_set = 0;
590 init_reg_last_arrays ();
591 setup_incoming_promotions ();
592
593 for (insn = f; insn; insn = next ? next : NEXT_INSN (insn))
594 {
595 next = 0;
596
597 /* If INSN starts a new basic block, update our basic block number. */
598 if (this_basic_block + 1 < n_basic_blocks
599 && BLOCK_HEAD (this_basic_block + 1) == insn)
600 this_basic_block++;
601
602 if (GET_CODE (insn) == CODE_LABEL)
603 label_tick++;
604
605 else if (INSN_P (insn))
606 {
607 /* See if we know about function return values before this
608 insn based upon SUBREG flags. */
609 check_promoted_subreg (insn, PATTERN (insn));
610
611 /* Try this insn with each insn it links back to. */
612
613 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
614 if ((next = try_combine (insn, XEXP (links, 0),
615 NULL_RTX, &new_direct_jump_p)) != 0)
616 goto retry;
617
618 /* Try each sequence of three linked insns ending with this one. */
619
620 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
621 {
622 rtx link = XEXP (links, 0);
623
624 /* If the linked insn has been replaced by a note, then there
625 is no point in pursuing this chain any further. */
626 if (GET_CODE (link) == NOTE)
627 break;
628
629 for (nextlinks = LOG_LINKS (link);
630 nextlinks;
631 nextlinks = XEXP (nextlinks, 1))
632 if ((next = try_combine (insn, XEXP (links, 0),
633 XEXP (nextlinks, 0),
634 &new_direct_jump_p)) != 0)
635 goto retry;
636 }
637
638 #ifdef HAVE_cc0
639 /* Try to combine a jump insn that uses CC0
640 with a preceding insn that sets CC0, and maybe with its
641 logical predecessor as well.
642 This is how we make decrement-and-branch insns.
643 We need this special code because data flow connections
644 via CC0 do not get entered in LOG_LINKS. */
645
646 if (GET_CODE (insn) == JUMP_INSN
647 && (prev = prev_nonnote_insn (insn)) != 0
648 && GET_CODE (prev) == INSN
649 && sets_cc0_p (PATTERN (prev)))
650 {
651 if ((next = try_combine (insn, prev,
652 NULL_RTX, &new_direct_jump_p)) != 0)
653 goto retry;
654
655 for (nextlinks = LOG_LINKS (prev); nextlinks;
656 nextlinks = XEXP (nextlinks, 1))
657 if ((next = try_combine (insn, prev,
658 XEXP (nextlinks, 0),
659 &new_direct_jump_p)) != 0)
660 goto retry;
661 }
662
663 /* Do the same for an insn that explicitly references CC0. */
664 if (GET_CODE (insn) == INSN
665 && (prev = prev_nonnote_insn (insn)) != 0
666 && GET_CODE (prev) == INSN
667 && sets_cc0_p (PATTERN (prev))
668 && GET_CODE (PATTERN (insn)) == SET
669 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
670 {
671 if ((next = try_combine (insn, prev,
672 NULL_RTX, &new_direct_jump_p)) != 0)
673 goto retry;
674
675 for (nextlinks = LOG_LINKS (prev); nextlinks;
676 nextlinks = XEXP (nextlinks, 1))
677 if ((next = try_combine (insn, prev,
678 XEXP (nextlinks, 0),
679 &new_direct_jump_p)) != 0)
680 goto retry;
681 }
682
683 /* Finally, see if any of the insns that this insn links to
684 explicitly references CC0. If so, try this insn, that insn,
685 and its predecessor if it sets CC0. */
686 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
687 if (GET_CODE (XEXP (links, 0)) == INSN
688 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
689 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
690 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
691 && GET_CODE (prev) == INSN
692 && sets_cc0_p (PATTERN (prev))
693 && (next = try_combine (insn, XEXP (links, 0),
694 prev, &new_direct_jump_p)) != 0)
695 goto retry;
696 #endif
697
698 /* Try combining an insn with two different insns whose results it
699 uses. */
700 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
701 for (nextlinks = XEXP (links, 1); nextlinks;
702 nextlinks = XEXP (nextlinks, 1))
703 if ((next = try_combine (insn, XEXP (links, 0),
704 XEXP (nextlinks, 0),
705 &new_direct_jump_p)) != 0)
706 goto retry;
707
708 if (GET_CODE (insn) != NOTE)
709 record_dead_and_set_regs (insn);
710
711 retry:
712 ;
713 }
714 }
715
716 delete_noop_moves (f);
717
718 if (need_refresh)
719 {
720 update_life_info (refresh_blocks, UPDATE_LIFE_GLOBAL_RM_NOTES,
721 PROP_DEATH_NOTES);
722 }
723
724 /* Clean up. */
725 sbitmap_free (refresh_blocks);
726 free (reg_nonzero_bits);
727 free (reg_sign_bit_copies);
728 free (reg_last_death);
729 free (reg_last_set);
730 free (reg_last_set_value);
731 free (reg_last_set_table_tick);
732 free (reg_last_set_label);
733 free (reg_last_set_invalid);
734 free (reg_last_set_mode);
735 free (reg_last_set_nonzero_bits);
736 free (reg_last_set_sign_bit_copies);
737 free (uid_cuid);
738
739 {
740 struct undo *undo, *next;
741 for (undo = undobuf.frees; undo; undo = next)
742 {
743 next = undo->next;
744 free (undo);
745 }
746 undobuf.frees = 0;
747 }
748
749 total_attempts += combine_attempts;
750 total_merges += combine_merges;
751 total_extras += combine_extras;
752 total_successes += combine_successes;
753
754 nonzero_sign_valid = 0;
755
756 /* Make recognizer allow volatile MEMs again. */
757 init_recog ();
758
759 return new_direct_jump_p;
760 }
761
762 /* Wipe the reg_last_xxx arrays in preparation for another pass. */
763
764 static void
765 init_reg_last_arrays ()
766 {
767 unsigned int nregs = combine_max_regno;
768
769 memset ((char *) reg_last_death, 0, nregs * sizeof (rtx));
770 memset ((char *) reg_last_set, 0, nregs * sizeof (rtx));
771 memset ((char *) reg_last_set_value, 0, nregs * sizeof (rtx));
772 memset ((char *) reg_last_set_table_tick, 0, nregs * sizeof (int));
773 memset ((char *) reg_last_set_label, 0, nregs * sizeof (int));
774 memset (reg_last_set_invalid, 0, nregs * sizeof (char));
775 memset ((char *) reg_last_set_mode, 0, nregs * sizeof (enum machine_mode));
776 memset ((char *) reg_last_set_nonzero_bits, 0, nregs * sizeof (HOST_WIDE_INT));
777 memset (reg_last_set_sign_bit_copies, 0, nregs * sizeof (char));
778 }
779 \f
780 /* Set up any promoted values for incoming argument registers. */
781
782 static void
783 setup_incoming_promotions ()
784 {
785 #ifdef PROMOTE_FUNCTION_ARGS
786 unsigned int regno;
787 rtx reg;
788 enum machine_mode mode;
789 int unsignedp;
790 rtx first = get_insns ();
791
792 #ifndef OUTGOING_REGNO
793 #define OUTGOING_REGNO(N) N
794 #endif
795 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
796 /* Check whether this register can hold an incoming pointer
797 argument. FUNCTION_ARG_REGNO_P tests outgoing register
798 numbers, so translate if necessary due to register windows. */
799 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
800 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
801 {
802 record_value_for_reg
803 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
804 : SIGN_EXTEND),
805 GET_MODE (reg),
806 gen_rtx_CLOBBER (mode, const0_rtx)));
807 }
808 #endif
809 }
810 \f
811 /* Called via note_stores. If X is a pseudo that is narrower than
812 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
813
814 If we are setting only a portion of X and we can't figure out what
815 portion, assume all bits will be used since we don't know what will
816 be happening.
817
818 Similarly, set how many bits of X are known to be copies of the sign bit
819 at all locations in the function. This is the smallest number implied
820 by any set of X. */
821
822 static void
823 set_nonzero_bits_and_sign_copies (x, set, data)
824 rtx x;
825 rtx set;
826 void *data ATTRIBUTE_UNUSED;
827 {
828 unsigned int num;
829
830 if (GET_CODE (x) == REG
831 && REGNO (x) >= FIRST_PSEUDO_REGISTER
832 /* If this register is undefined at the start of the file, we can't
833 say what its contents were. */
834 && ! REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start, REGNO (x))
835 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
836 {
837 if (set == 0 || GET_CODE (set) == CLOBBER)
838 {
839 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
840 reg_sign_bit_copies[REGNO (x)] = 1;
841 return;
842 }
843
844 /* If this is a complex assignment, see if we can convert it into a
845 simple assignment. */
846 set = expand_field_assignment (set);
847
848 /* If this is a simple assignment, or we have a paradoxical SUBREG,
849 set what we know about X. */
850
851 if (SET_DEST (set) == x
852 || (GET_CODE (SET_DEST (set)) == SUBREG
853 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
854 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
855 && SUBREG_REG (SET_DEST (set)) == x))
856 {
857 rtx src = SET_SRC (set);
858
859 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
860 /* If X is narrower than a word and SRC is a non-negative
861 constant that would appear negative in the mode of X,
862 sign-extend it for use in reg_nonzero_bits because some
863 machines (maybe most) will actually do the sign-extension
864 and this is the conservative approach.
865
866 ??? For 2.5, try to tighten up the MD files in this regard
867 instead of this kludge. */
868
869 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
870 && GET_CODE (src) == CONST_INT
871 && INTVAL (src) > 0
872 && 0 != (INTVAL (src)
873 & ((HOST_WIDE_INT) 1
874 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
875 src = GEN_INT (INTVAL (src)
876 | ((HOST_WIDE_INT) (-1)
877 << GET_MODE_BITSIZE (GET_MODE (x))));
878 #endif
879
880 reg_nonzero_bits[REGNO (x)]
881 |= nonzero_bits (src, nonzero_bits_mode);
882 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
883 if (reg_sign_bit_copies[REGNO (x)] == 0
884 || reg_sign_bit_copies[REGNO (x)] > num)
885 reg_sign_bit_copies[REGNO (x)] = num;
886 }
887 else
888 {
889 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
890 reg_sign_bit_copies[REGNO (x)] = 1;
891 }
892 }
893 }
894 \f
895 /* See if INSN can be combined into I3. PRED and SUCC are optionally
896 insns that were previously combined into I3 or that will be combined
897 into the merger of INSN and I3.
898
899 Return 0 if the combination is not allowed for any reason.
900
901 If the combination is allowed, *PDEST will be set to the single
902 destination of INSN and *PSRC to the single source, and this function
903 will return 1. */
904
905 static int
906 can_combine_p (insn, i3, pred, succ, pdest, psrc)
907 rtx insn;
908 rtx i3;
909 rtx pred ATTRIBUTE_UNUSED;
910 rtx succ;
911 rtx *pdest, *psrc;
912 {
913 int i;
914 rtx set = 0, src, dest;
915 rtx p;
916 #ifdef AUTO_INC_DEC
917 rtx link;
918 #endif
919 int all_adjacent = (succ ? (next_active_insn (insn) == succ
920 && next_active_insn (succ) == i3)
921 : next_active_insn (insn) == i3);
922
923 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
924 or a PARALLEL consisting of such a SET and CLOBBERs.
925
926 If INSN has CLOBBER parallel parts, ignore them for our processing.
927 By definition, these happen during the execution of the insn. When it
928 is merged with another insn, all bets are off. If they are, in fact,
929 needed and aren't also supplied in I3, they may be added by
930 recog_for_combine. Otherwise, it won't match.
931
932 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
933 note.
934
935 Get the source and destination of INSN. If more than one, can't
936 combine. */
937
938 if (GET_CODE (PATTERN (insn)) == SET)
939 set = PATTERN (insn);
940 else if (GET_CODE (PATTERN (insn)) == PARALLEL
941 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
942 {
943 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
944 {
945 rtx elt = XVECEXP (PATTERN (insn), 0, i);
946
947 switch (GET_CODE (elt))
948 {
949 /* This is important to combine floating point insns
950 for the SH4 port. */
951 case USE:
952 /* Combining an isolated USE doesn't make sense.
953 We depend here on combinable_i3_pat to reject them. */
954 /* The code below this loop only verifies that the inputs of
955 the SET in INSN do not change. We call reg_set_between_p
956 to verify that the REG in the USE does not change between
957 I3 and INSN.
958 If the USE in INSN was for a pseudo register, the matching
959 insn pattern will likely match any register; combining this
960 with any other USE would only be safe if we knew that the
961 used registers have identical values, or if there was
962 something to tell them apart, e.g. different modes. For
963 now, we forgo such complicated tests and simply disallow
964 combining of USES of pseudo registers with any other USE. */
965 if (GET_CODE (XEXP (elt, 0)) == REG
966 && GET_CODE (PATTERN (i3)) == PARALLEL)
967 {
968 rtx i3pat = PATTERN (i3);
969 int i = XVECLEN (i3pat, 0) - 1;
970 unsigned int regno = REGNO (XEXP (elt, 0));
971
972 do
973 {
974 rtx i3elt = XVECEXP (i3pat, 0, i);
975
976 if (GET_CODE (i3elt) == USE
977 && GET_CODE (XEXP (i3elt, 0)) == REG
978 && (REGNO (XEXP (i3elt, 0)) == regno
979 ? reg_set_between_p (XEXP (elt, 0),
980 PREV_INSN (insn), i3)
981 : regno >= FIRST_PSEUDO_REGISTER))
982 return 0;
983 }
984 while (--i >= 0);
985 }
986 break;
987
988 /* We can ignore CLOBBERs. */
989 case CLOBBER:
990 break;
991
992 case SET:
993 /* Ignore SETs whose result isn't used but not those that
994 have side-effects. */
995 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
996 && ! side_effects_p (elt))
997 break;
998
999 /* If we have already found a SET, this is a second one and
1000 so we cannot combine with this insn. */
1001 if (set)
1002 return 0;
1003
1004 set = elt;
1005 break;
1006
1007 default:
1008 /* Anything else means we can't combine. */
1009 return 0;
1010 }
1011 }
1012
1013 if (set == 0
1014 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1015 so don't do anything with it. */
1016 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1017 return 0;
1018 }
1019 else
1020 return 0;
1021
1022 if (set == 0)
1023 return 0;
1024
1025 set = expand_field_assignment (set);
1026 src = SET_SRC (set), dest = SET_DEST (set);
1027
1028 /* Don't eliminate a store in the stack pointer. */
1029 if (dest == stack_pointer_rtx
1030 /* If we couldn't eliminate a field assignment, we can't combine. */
1031 || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == STRICT_LOW_PART
1032 /* Don't combine with an insn that sets a register to itself if it has
1033 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1034 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1035 /* Can't merge an ASM_OPERANDS. */
1036 || GET_CODE (src) == ASM_OPERANDS
1037 /* Can't merge a function call. */
1038 || GET_CODE (src) == CALL
1039 /* Don't eliminate a function call argument. */
1040 || (GET_CODE (i3) == CALL_INSN
1041 && (find_reg_fusage (i3, USE, dest)
1042 || (GET_CODE (dest) == REG
1043 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1044 && global_regs[REGNO (dest)])))
1045 /* Don't substitute into an incremented register. */
1046 || FIND_REG_INC_NOTE (i3, dest)
1047 || (succ && FIND_REG_INC_NOTE (succ, dest))
1048 #if 0
1049 /* Don't combine the end of a libcall into anything. */
1050 /* ??? This gives worse code, and appears to be unnecessary, since no
1051 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1052 use REG_RETVAL notes for noconflict blocks, but other code here
1053 makes sure that those insns don't disappear. */
1054 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1055 #endif
1056 /* Make sure that DEST is not used after SUCC but before I3. */
1057 || (succ && ! all_adjacent
1058 && reg_used_between_p (dest, succ, i3))
1059 /* Make sure that the value that is to be substituted for the register
1060 does not use any registers whose values alter in between. However,
1061 If the insns are adjacent, a use can't cross a set even though we
1062 think it might (this can happen for a sequence of insns each setting
1063 the same destination; reg_last_set of that register might point to
1064 a NOTE). If INSN has a REG_EQUIV note, the register is always
1065 equivalent to the memory so the substitution is valid even if there
1066 are intervening stores. Also, don't move a volatile asm or
1067 UNSPEC_VOLATILE across any other insns. */
1068 || (! all_adjacent
1069 && (((GET_CODE (src) != MEM
1070 || ! find_reg_note (insn, REG_EQUIV, src))
1071 && use_crosses_set_p (src, INSN_CUID (insn)))
1072 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1073 || GET_CODE (src) == UNSPEC_VOLATILE))
1074 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1075 better register allocation by not doing the combine. */
1076 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1077 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1078 /* Don't combine across a CALL_INSN, because that would possibly
1079 change whether the life span of some REGs crosses calls or not,
1080 and it is a pain to update that information.
1081 Exception: if source is a constant, moving it later can't hurt.
1082 Accept that special case, because it helps -fforce-addr a lot. */
1083 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1084 return 0;
1085
1086 /* DEST must either be a REG or CC0. */
1087 if (GET_CODE (dest) == REG)
1088 {
1089 /* If register alignment is being enforced for multi-word items in all
1090 cases except for parameters, it is possible to have a register copy
1091 insn referencing a hard register that is not allowed to contain the
1092 mode being copied and which would not be valid as an operand of most
1093 insns. Eliminate this problem by not combining with such an insn.
1094
1095 Also, on some machines we don't want to extend the life of a hard
1096 register. */
1097
1098 if (GET_CODE (src) == REG
1099 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1100 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1101 /* Don't extend the life of a hard register unless it is
1102 user variable (if we have few registers) or it can't
1103 fit into the desired register (meaning something special
1104 is going on).
1105 Also avoid substituting a return register into I3, because
1106 reload can't handle a conflict with constraints of other
1107 inputs. */
1108 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1109 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1110 return 0;
1111 }
1112 else if (GET_CODE (dest) != CC0)
1113 return 0;
1114
1115 /* Don't substitute for a register intended as a clobberable operand.
1116 Similarly, don't substitute an expression containing a register that
1117 will be clobbered in I3. */
1118 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1119 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1120 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER
1121 && (reg_overlap_mentioned_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0),
1122 src)
1123 || rtx_equal_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0), dest)))
1124 return 0;
1125
1126 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1127 or not), reject, unless nothing volatile comes between it and I3 */
1128
1129 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1130 {
1131 /* Make sure succ doesn't contain a volatile reference. */
1132 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1133 return 0;
1134
1135 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1136 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1137 return 0;
1138 }
1139
1140 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1141 to be an explicit register variable, and was chosen for a reason. */
1142
1143 if (GET_CODE (src) == ASM_OPERANDS
1144 && GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1145 return 0;
1146
1147 /* If there are any volatile insns between INSN and I3, reject, because
1148 they might affect machine state. */
1149
1150 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1151 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1152 return 0;
1153
1154 /* If INSN or I2 contains an autoincrement or autodecrement,
1155 make sure that register is not used between there and I3,
1156 and not already used in I3 either.
1157 Also insist that I3 not be a jump; if it were one
1158 and the incremented register were spilled, we would lose. */
1159
1160 #ifdef AUTO_INC_DEC
1161 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1162 if (REG_NOTE_KIND (link) == REG_INC
1163 && (GET_CODE (i3) == JUMP_INSN
1164 || reg_used_between_p (XEXP (link, 0), insn, i3)
1165 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1166 return 0;
1167 #endif
1168
1169 #ifdef HAVE_cc0
1170 /* Don't combine an insn that follows a CC0-setting insn.
1171 An insn that uses CC0 must not be separated from the one that sets it.
1172 We do, however, allow I2 to follow a CC0-setting insn if that insn
1173 is passed as I1; in that case it will be deleted also.
1174 We also allow combining in this case if all the insns are adjacent
1175 because that would leave the two CC0 insns adjacent as well.
1176 It would be more logical to test whether CC0 occurs inside I1 or I2,
1177 but that would be much slower, and this ought to be equivalent. */
1178
1179 p = prev_nonnote_insn (insn);
1180 if (p && p != pred && GET_CODE (p) == INSN && sets_cc0_p (PATTERN (p))
1181 && ! all_adjacent)
1182 return 0;
1183 #endif
1184
1185 /* If we get here, we have passed all the tests and the combination is
1186 to be allowed. */
1187
1188 *pdest = dest;
1189 *psrc = src;
1190
1191 return 1;
1192 }
1193 \f
1194 /* Check if PAT is an insn - or a part of it - used to set up an
1195 argument for a function in a hard register. */
1196
1197 static int
1198 sets_function_arg_p (pat)
1199 rtx pat;
1200 {
1201 int i;
1202 rtx inner_dest;
1203
1204 switch (GET_CODE (pat))
1205 {
1206 case INSN:
1207 return sets_function_arg_p (PATTERN (pat));
1208
1209 case PARALLEL:
1210 for (i = XVECLEN (pat, 0); --i >= 0;)
1211 if (sets_function_arg_p (XVECEXP (pat, 0, i)))
1212 return 1;
1213
1214 break;
1215
1216 case SET:
1217 inner_dest = SET_DEST (pat);
1218 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1219 || GET_CODE (inner_dest) == SUBREG
1220 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1221 inner_dest = XEXP (inner_dest, 0);
1222
1223 return (GET_CODE (inner_dest) == REG
1224 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1225 && FUNCTION_ARG_REGNO_P (REGNO (inner_dest)));
1226
1227 default:
1228 break;
1229 }
1230
1231 return 0;
1232 }
1233
1234 /* LOC is the location within I3 that contains its pattern or the component
1235 of a PARALLEL of the pattern. We validate that it is valid for combining.
1236
1237 One problem is if I3 modifies its output, as opposed to replacing it
1238 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1239 so would produce an insn that is not equivalent to the original insns.
1240
1241 Consider:
1242
1243 (set (reg:DI 101) (reg:DI 100))
1244 (set (subreg:SI (reg:DI 101) 0) <foo>)
1245
1246 This is NOT equivalent to:
1247
1248 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1249 (set (reg:DI 101) (reg:DI 100))])
1250
1251 Not only does this modify 100 (in which case it might still be valid
1252 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1253
1254 We can also run into a problem if I2 sets a register that I1
1255 uses and I1 gets directly substituted into I3 (not via I2). In that
1256 case, we would be getting the wrong value of I2DEST into I3, so we
1257 must reject the combination. This case occurs when I2 and I1 both
1258 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1259 If I1_NOT_IN_SRC is non-zero, it means that finding I1 in the source
1260 of a SET must prevent combination from occurring.
1261
1262 Before doing the above check, we first try to expand a field assignment
1263 into a set of logical operations.
1264
1265 If PI3_DEST_KILLED is non-zero, it is a pointer to a location in which
1266 we place a register that is both set and used within I3. If more than one
1267 such register is detected, we fail.
1268
1269 Return 1 if the combination is valid, zero otherwise. */
1270
1271 static int
1272 combinable_i3pat (i3, loc, i2dest, i1dest, i1_not_in_src, pi3dest_killed)
1273 rtx i3;
1274 rtx *loc;
1275 rtx i2dest;
1276 rtx i1dest;
1277 int i1_not_in_src;
1278 rtx *pi3dest_killed;
1279 {
1280 rtx x = *loc;
1281
1282 if (GET_CODE (x) == SET)
1283 {
1284 rtx set = expand_field_assignment (x);
1285 rtx dest = SET_DEST (set);
1286 rtx src = SET_SRC (set);
1287 rtx inner_dest = dest;
1288
1289 #if 0
1290 rtx inner_src = src;
1291 #endif
1292
1293 SUBST (*loc, set);
1294
1295 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1296 || GET_CODE (inner_dest) == SUBREG
1297 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1298 inner_dest = XEXP (inner_dest, 0);
1299
1300 /* We probably don't need this any more now that LIMIT_RELOAD_CLASS
1301 was added. */
1302 #if 0
1303 while (GET_CODE (inner_src) == STRICT_LOW_PART
1304 || GET_CODE (inner_src) == SUBREG
1305 || GET_CODE (inner_src) == ZERO_EXTRACT)
1306 inner_src = XEXP (inner_src, 0);
1307
1308 /* If it is better that two different modes keep two different pseudos,
1309 avoid combining them. This avoids producing the following pattern
1310 on a 386:
1311 (set (subreg:SI (reg/v:QI 21) 0)
1312 (lshiftrt:SI (reg/v:SI 20)
1313 (const_int 24)))
1314 If that were made, reload could not handle the pair of
1315 reg 20/21, since it would try to get any GENERAL_REGS
1316 but some of them don't handle QImode. */
1317
1318 if (rtx_equal_p (inner_src, i2dest)
1319 && GET_CODE (inner_dest) == REG
1320 && ! MODES_TIEABLE_P (GET_MODE (i2dest), GET_MODE (inner_dest)))
1321 return 0;
1322 #endif
1323
1324 /* Check for the case where I3 modifies its output, as
1325 discussed above. */
1326 if ((inner_dest != dest
1327 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1328 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1329
1330 /* This is the same test done in can_combine_p except we can't test
1331 all_adjacent; we don't have to, since this instruction will stay
1332 in place, thus we are not considering increasing the lifetime of
1333 INNER_DEST.
1334
1335 Also, if this insn sets a function argument, combining it with
1336 something that might need a spill could clobber a previous
1337 function argument; the all_adjacent test in can_combine_p also
1338 checks this; here, we do a more specific test for this case. */
1339
1340 || (GET_CODE (inner_dest) == REG
1341 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1342 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1343 GET_MODE (inner_dest))))
1344 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1345 return 0;
1346
1347 /* If DEST is used in I3, it is being killed in this insn,
1348 so record that for later.
1349 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1350 STACK_POINTER_REGNUM, since these are always considered to be
1351 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1352 if (pi3dest_killed && GET_CODE (dest) == REG
1353 && reg_referenced_p (dest, PATTERN (i3))
1354 && REGNO (dest) != FRAME_POINTER_REGNUM
1355 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1356 && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
1357 #endif
1358 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1359 && (REGNO (dest) != ARG_POINTER_REGNUM
1360 || ! fixed_regs [REGNO (dest)])
1361 #endif
1362 && REGNO (dest) != STACK_POINTER_REGNUM)
1363 {
1364 if (*pi3dest_killed)
1365 return 0;
1366
1367 *pi3dest_killed = dest;
1368 }
1369 }
1370
1371 else if (GET_CODE (x) == PARALLEL)
1372 {
1373 int i;
1374
1375 for (i = 0; i < XVECLEN (x, 0); i++)
1376 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1377 i1_not_in_src, pi3dest_killed))
1378 return 0;
1379 }
1380
1381 return 1;
1382 }
1383 \f
1384 /* Return 1 if X is an arithmetic expression that contains a multiplication
1385 and division. We don't count multiplications by powers of two here. */
1386
1387 static int
1388 contains_muldiv (x)
1389 rtx x;
1390 {
1391 switch (GET_CODE (x))
1392 {
1393 case MOD: case DIV: case UMOD: case UDIV:
1394 return 1;
1395
1396 case MULT:
1397 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1398 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1399 default:
1400 switch (GET_RTX_CLASS (GET_CODE (x)))
1401 {
1402 case 'c': case '<': case '2':
1403 return contains_muldiv (XEXP (x, 0))
1404 || contains_muldiv (XEXP (x, 1));
1405
1406 case '1':
1407 return contains_muldiv (XEXP (x, 0));
1408
1409 default:
1410 return 0;
1411 }
1412 }
1413 }
1414 \f
1415 /* Determine whether INSN can be used in a combination. Return nonzero if
1416 not. This is used in try_combine to detect early some cases where we
1417 can't perform combinations. */
1418
1419 static int
1420 cant_combine_insn_p (insn)
1421 rtx insn;
1422 {
1423 rtx set;
1424 rtx src, dest;
1425
1426 /* If this isn't really an insn, we can't do anything.
1427 This can occur when flow deletes an insn that it has merged into an
1428 auto-increment address. */
1429 if (! INSN_P (insn))
1430 return 1;
1431
1432 /* Never combine loads and stores involving hard regs. The register
1433 allocator can usually handle such reg-reg moves by tying. If we allow
1434 the combiner to make substitutions of hard regs, we risk aborting in
1435 reload on machines that have SMALL_REGISTER_CLASSES.
1436 As an exception, we allow combinations involving fixed regs; these are
1437 not available to the register allocator so there's no risk involved. */
1438
1439 set = single_set (insn);
1440 if (! set)
1441 return 0;
1442 src = SET_SRC (set);
1443 dest = SET_DEST (set);
1444 if (GET_CODE (src) == SUBREG)
1445 src = SUBREG_REG (src);
1446 if (GET_CODE (dest) == SUBREG)
1447 dest = SUBREG_REG (dest);
1448 if (REG_P (src) && REG_P (dest)
1449 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1450 && ! fixed_regs[REGNO (src)])
1451 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1452 && ! fixed_regs[REGNO (dest)])))
1453 return 1;
1454
1455 return 0;
1456 }
1457
1458 /* Try to combine the insns I1 and I2 into I3.
1459 Here I1 and I2 appear earlier than I3.
1460 I1 can be zero; then we combine just I2 into I3.
1461
1462 If we are combining three insns and the resulting insn is not recognized,
1463 try splitting it into two insns. If that happens, I2 and I3 are retained
1464 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1465 are pseudo-deleted.
1466
1467 Return 0 if the combination does not work. Then nothing is changed.
1468 If we did the combination, return the insn at which combine should
1469 resume scanning.
1470
1471 Set NEW_DIRECT_JUMP_P to a non-zero value if try_combine creates a
1472 new direct jump instruction. */
1473
1474 static rtx
1475 try_combine (i3, i2, i1, new_direct_jump_p)
1476 rtx i3, i2, i1;
1477 int *new_direct_jump_p;
1478 {
1479 /* New patterns for I3 and I2, respectively. */
1480 rtx newpat, newi2pat = 0;
1481 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1482 int added_sets_1, added_sets_2;
1483 /* Total number of SETs to put into I3. */
1484 int total_sets;
1485 /* Nonzero is I2's body now appears in I3. */
1486 int i2_is_used;
1487 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1488 int insn_code_number, i2_code_number = 0, other_code_number = 0;
1489 /* Contains I3 if the destination of I3 is used in its source, which means
1490 that the old life of I3 is being killed. If that usage is placed into
1491 I2 and not in I3, a REG_DEAD note must be made. */
1492 rtx i3dest_killed = 0;
1493 /* SET_DEST and SET_SRC of I2 and I1. */
1494 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1495 /* PATTERN (I2), or a copy of it in certain cases. */
1496 rtx i2pat;
1497 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1498 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1499 int i1_feeds_i3 = 0;
1500 /* Notes that must be added to REG_NOTES in I3 and I2. */
1501 rtx new_i3_notes, new_i2_notes;
1502 /* Notes that we substituted I3 into I2 instead of the normal case. */
1503 int i3_subst_into_i2 = 0;
1504 /* Notes that I1, I2 or I3 is a MULT operation. */
1505 int have_mult = 0;
1506
1507 int maxreg;
1508 rtx temp;
1509 rtx link;
1510 int i;
1511
1512 /* Exit early if one of the insns involved can't be used for
1513 combinations. */
1514 if (cant_combine_insn_p (i3)
1515 || cant_combine_insn_p (i2)
1516 || (i1 && cant_combine_insn_p (i1))
1517 /* We also can't do anything if I3 has a
1518 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1519 libcall. */
1520 #if 0
1521 /* ??? This gives worse code, and appears to be unnecessary, since no
1522 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1523 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1524 #endif
1525 )
1526 return 0;
1527
1528 combine_attempts++;
1529 undobuf.other_insn = 0;
1530
1531 /* Reset the hard register usage information. */
1532 CLEAR_HARD_REG_SET (newpat_used_regs);
1533
1534 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1535 code below, set I1 to be the earlier of the two insns. */
1536 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1537 temp = i1, i1 = i2, i2 = temp;
1538
1539 added_links_insn = 0;
1540
1541 /* First check for one important special-case that the code below will
1542 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1543 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1544 we may be able to replace that destination with the destination of I3.
1545 This occurs in the common code where we compute both a quotient and
1546 remainder into a structure, in which case we want to do the computation
1547 directly into the structure to avoid register-register copies.
1548
1549 Note that this case handles both multiple sets in I2 and also
1550 cases where I2 has a number of CLOBBER or PARALLELs.
1551
1552 We make very conservative checks below and only try to handle the
1553 most common cases of this. For example, we only handle the case
1554 where I2 and I3 are adjacent to avoid making difficult register
1555 usage tests. */
1556
1557 if (i1 == 0 && GET_CODE (i3) == INSN && GET_CODE (PATTERN (i3)) == SET
1558 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1559 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1560 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1561 && GET_CODE (PATTERN (i2)) == PARALLEL
1562 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1563 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1564 below would need to check what is inside (and reg_overlap_mentioned_p
1565 doesn't support those codes anyway). Don't allow those destinations;
1566 the resulting insn isn't likely to be recognized anyway. */
1567 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1568 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1569 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1570 SET_DEST (PATTERN (i3)))
1571 && next_real_insn (i2) == i3)
1572 {
1573 rtx p2 = PATTERN (i2);
1574
1575 /* Make sure that the destination of I3,
1576 which we are going to substitute into one output of I2,
1577 is not used within another output of I2. We must avoid making this:
1578 (parallel [(set (mem (reg 69)) ...)
1579 (set (reg 69) ...)])
1580 which is not well-defined as to order of actions.
1581 (Besides, reload can't handle output reloads for this.)
1582
1583 The problem can also happen if the dest of I3 is a memory ref,
1584 if another dest in I2 is an indirect memory ref. */
1585 for (i = 0; i < XVECLEN (p2, 0); i++)
1586 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1587 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1588 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1589 SET_DEST (XVECEXP (p2, 0, i))))
1590 break;
1591
1592 if (i == XVECLEN (p2, 0))
1593 for (i = 0; i < XVECLEN (p2, 0); i++)
1594 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1595 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1596 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1597 {
1598 combine_merges++;
1599
1600 subst_insn = i3;
1601 subst_low_cuid = INSN_CUID (i2);
1602
1603 added_sets_2 = added_sets_1 = 0;
1604 i2dest = SET_SRC (PATTERN (i3));
1605
1606 /* Replace the dest in I2 with our dest and make the resulting
1607 insn the new pattern for I3. Then skip to where we
1608 validate the pattern. Everything was set up above. */
1609 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1610 SET_DEST (PATTERN (i3)));
1611
1612 newpat = p2;
1613 i3_subst_into_i2 = 1;
1614 goto validate_replacement;
1615 }
1616 }
1617
1618 /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1619 one of those words to another constant, merge them by making a new
1620 constant. */
1621 if (i1 == 0
1622 && (temp = single_set (i2)) != 0
1623 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1624 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1625 && GET_CODE (SET_DEST (temp)) == REG
1626 && GET_MODE_CLASS (GET_MODE (SET_DEST (temp))) == MODE_INT
1627 && GET_MODE_SIZE (GET_MODE (SET_DEST (temp))) == 2 * UNITS_PER_WORD
1628 && GET_CODE (PATTERN (i3)) == SET
1629 && GET_CODE (SET_DEST (PATTERN (i3))) == SUBREG
1630 && SUBREG_REG (SET_DEST (PATTERN (i3))) == SET_DEST (temp)
1631 && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3)))) == MODE_INT
1632 && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3)))) == UNITS_PER_WORD
1633 && GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT)
1634 {
1635 HOST_WIDE_INT lo, hi;
1636
1637 if (GET_CODE (SET_SRC (temp)) == CONST_INT)
1638 lo = INTVAL (SET_SRC (temp)), hi = lo < 0 ? -1 : 0;
1639 else
1640 {
1641 lo = CONST_DOUBLE_LOW (SET_SRC (temp));
1642 hi = CONST_DOUBLE_HIGH (SET_SRC (temp));
1643 }
1644
1645 if (subreg_lowpart_p (SET_DEST (PATTERN (i3))))
1646 {
1647 /* We don't handle the case of the target word being wider
1648 than a host wide int. */
1649 if (HOST_BITS_PER_WIDE_INT < BITS_PER_WORD)
1650 abort ();
1651
1652 lo &= ~(UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1);
1653 lo |= INTVAL (SET_SRC (PATTERN (i3)));
1654 }
1655 else if (HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1656 hi = INTVAL (SET_SRC (PATTERN (i3)));
1657 else if (HOST_BITS_PER_WIDE_INT >= 2 * BITS_PER_WORD)
1658 {
1659 int sign = -(int) ((unsigned HOST_WIDE_INT) lo
1660 >> (HOST_BITS_PER_WIDE_INT - 1));
1661
1662 lo &= ~ (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1663 (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1664 lo |= (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1665 (INTVAL (SET_SRC (PATTERN (i3)))));
1666 if (hi == sign)
1667 hi = lo < 0 ? -1 : 0;
1668 }
1669 else
1670 /* We don't handle the case of the higher word not fitting
1671 entirely in either hi or lo. */
1672 abort ();
1673
1674 combine_merges++;
1675 subst_insn = i3;
1676 subst_low_cuid = INSN_CUID (i2);
1677 added_sets_2 = added_sets_1 = 0;
1678 i2dest = SET_DEST (temp);
1679
1680 SUBST (SET_SRC (temp),
1681 immed_double_const (lo, hi, GET_MODE (SET_DEST (temp))));
1682
1683 newpat = PATTERN (i2);
1684 goto validate_replacement;
1685 }
1686
1687 #ifndef HAVE_cc0
1688 /* If we have no I1 and I2 looks like:
1689 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1690 (set Y OP)])
1691 make up a dummy I1 that is
1692 (set Y OP)
1693 and change I2 to be
1694 (set (reg:CC X) (compare:CC Y (const_int 0)))
1695
1696 (We can ignore any trailing CLOBBERs.)
1697
1698 This undoes a previous combination and allows us to match a branch-and-
1699 decrement insn. */
1700
1701 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1702 && XVECLEN (PATTERN (i2), 0) >= 2
1703 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1704 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1705 == MODE_CC)
1706 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1707 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1708 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1709 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 1))) == REG
1710 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1711 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1712 {
1713 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1714 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1715 break;
1716
1717 if (i == 1)
1718 {
1719 /* We make I1 with the same INSN_UID as I2. This gives it
1720 the same INSN_CUID for value tracking. Our fake I1 will
1721 never appear in the insn stream so giving it the same INSN_UID
1722 as I2 will not cause a problem. */
1723
1724 subst_prev_insn = i1
1725 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
1726 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
1727 NULL_RTX);
1728
1729 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1730 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1731 SET_DEST (PATTERN (i1)));
1732 }
1733 }
1734 #endif
1735
1736 /* Verify that I2 and I1 are valid for combining. */
1737 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1738 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1739 {
1740 undo_all ();
1741 return 0;
1742 }
1743
1744 /* Record whether I2DEST is used in I2SRC and similarly for the other
1745 cases. Knowing this will help in register status updating below. */
1746 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1747 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1748 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1749
1750 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1751 in I2SRC. */
1752 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1753
1754 /* Ensure that I3's pattern can be the destination of combines. */
1755 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
1756 i1 && i2dest_in_i1src && i1_feeds_i3,
1757 &i3dest_killed))
1758 {
1759 undo_all ();
1760 return 0;
1761 }
1762
1763 /* See if any of the insns is a MULT operation. Unless one is, we will
1764 reject a combination that is, since it must be slower. Be conservative
1765 here. */
1766 if (GET_CODE (i2src) == MULT
1767 || (i1 != 0 && GET_CODE (i1src) == MULT)
1768 || (GET_CODE (PATTERN (i3)) == SET
1769 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
1770 have_mult = 1;
1771
1772 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1773 We used to do this EXCEPT in one case: I3 has a post-inc in an
1774 output operand. However, that exception can give rise to insns like
1775 mov r3,(r3)+
1776 which is a famous insn on the PDP-11 where the value of r3 used as the
1777 source was model-dependent. Avoid this sort of thing. */
1778
1779 #if 0
1780 if (!(GET_CODE (PATTERN (i3)) == SET
1781 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1782 && GET_CODE (SET_DEST (PATTERN (i3))) == MEM
1783 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
1784 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
1785 /* It's not the exception. */
1786 #endif
1787 #ifdef AUTO_INC_DEC
1788 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
1789 if (REG_NOTE_KIND (link) == REG_INC
1790 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
1791 || (i1 != 0
1792 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
1793 {
1794 undo_all ();
1795 return 0;
1796 }
1797 #endif
1798
1799 /* See if the SETs in I1 or I2 need to be kept around in the merged
1800 instruction: whenever the value set there is still needed past I3.
1801 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1802
1803 For the SET in I1, we have two cases: If I1 and I2 independently
1804 feed into I3, the set in I1 needs to be kept around if I1DEST dies
1805 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
1806 in I1 needs to be kept around unless I1DEST dies or is set in either
1807 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
1808 I1DEST. If so, we know I1 feeds into I2. */
1809
1810 added_sets_2 = ! dead_or_set_p (i3, i2dest);
1811
1812 added_sets_1
1813 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
1814 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
1815
1816 /* If the set in I2 needs to be kept around, we must make a copy of
1817 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
1818 PATTERN (I2), we are only substituting for the original I1DEST, not into
1819 an already-substituted copy. This also prevents making self-referential
1820 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1821 I2DEST. */
1822
1823 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
1824 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
1825 : PATTERN (i2));
1826
1827 if (added_sets_2)
1828 i2pat = copy_rtx (i2pat);
1829
1830 combine_merges++;
1831
1832 /* Substitute in the latest insn for the regs set by the earlier ones. */
1833
1834 maxreg = max_reg_num ();
1835
1836 subst_insn = i3;
1837
1838 /* It is possible that the source of I2 or I1 may be performing an
1839 unneeded operation, such as a ZERO_EXTEND of something that is known
1840 to have the high part zero. Handle that case by letting subst look at
1841 the innermost one of them.
1842
1843 Another way to do this would be to have a function that tries to
1844 simplify a single insn instead of merging two or more insns. We don't
1845 do this because of the potential of infinite loops and because
1846 of the potential extra memory required. However, doing it the way
1847 we are is a bit of a kludge and doesn't catch all cases.
1848
1849 But only do this if -fexpensive-optimizations since it slows things down
1850 and doesn't usually win. */
1851
1852 if (flag_expensive_optimizations)
1853 {
1854 /* Pass pc_rtx so no substitutions are done, just simplifications.
1855 The cases that we are interested in here do not involve the few
1856 cases were is_replaced is checked. */
1857 if (i1)
1858 {
1859 subst_low_cuid = INSN_CUID (i1);
1860 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
1861 }
1862 else
1863 {
1864 subst_low_cuid = INSN_CUID (i2);
1865 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
1866 }
1867 }
1868
1869 #ifndef HAVE_cc0
1870 /* Many machines that don't use CC0 have insns that can both perform an
1871 arithmetic operation and set the condition code. These operations will
1872 be represented as a PARALLEL with the first element of the vector
1873 being a COMPARE of an arithmetic operation with the constant zero.
1874 The second element of the vector will set some pseudo to the result
1875 of the same arithmetic operation. If we simplify the COMPARE, we won't
1876 match such a pattern and so will generate an extra insn. Here we test
1877 for this case, where both the comparison and the operation result are
1878 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
1879 I2SRC. Later we will make the PARALLEL that contains I2. */
1880
1881 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
1882 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
1883 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
1884 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
1885 {
1886 #ifdef EXTRA_CC_MODES
1887 rtx *cc_use;
1888 enum machine_mode compare_mode;
1889 #endif
1890
1891 newpat = PATTERN (i3);
1892 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
1893
1894 i2_is_used = 1;
1895
1896 #ifdef EXTRA_CC_MODES
1897 /* See if a COMPARE with the operand we substituted in should be done
1898 with the mode that is currently being used. If not, do the same
1899 processing we do in `subst' for a SET; namely, if the destination
1900 is used only once, try to replace it with a register of the proper
1901 mode and also replace the COMPARE. */
1902 if (undobuf.other_insn == 0
1903 && (cc_use = find_single_use (SET_DEST (newpat), i3,
1904 &undobuf.other_insn))
1905 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
1906 i2src, const0_rtx))
1907 != GET_MODE (SET_DEST (newpat))))
1908 {
1909 unsigned int regno = REGNO (SET_DEST (newpat));
1910 rtx new_dest = gen_rtx_REG (compare_mode, regno);
1911
1912 if (regno < FIRST_PSEUDO_REGISTER
1913 || (REG_N_SETS (regno) == 1 && ! added_sets_2
1914 && ! REG_USERVAR_P (SET_DEST (newpat))))
1915 {
1916 if (regno >= FIRST_PSEUDO_REGISTER)
1917 SUBST (regno_reg_rtx[regno], new_dest);
1918
1919 SUBST (SET_DEST (newpat), new_dest);
1920 SUBST (XEXP (*cc_use, 0), new_dest);
1921 SUBST (SET_SRC (newpat),
1922 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
1923 }
1924 else
1925 undobuf.other_insn = 0;
1926 }
1927 #endif
1928 }
1929 else
1930 #endif
1931 {
1932 n_occurrences = 0; /* `subst' counts here */
1933
1934 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
1935 need to make a unique copy of I2SRC each time we substitute it
1936 to avoid self-referential rtl. */
1937
1938 subst_low_cuid = INSN_CUID (i2);
1939 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
1940 ! i1_feeds_i3 && i1dest_in_i1src);
1941
1942 /* Record whether i2's body now appears within i3's body. */
1943 i2_is_used = n_occurrences;
1944 }
1945
1946 /* If we already got a failure, don't try to do more. Otherwise,
1947 try to substitute in I1 if we have it. */
1948
1949 if (i1 && GET_CODE (newpat) != CLOBBER)
1950 {
1951 /* Before we can do this substitution, we must redo the test done
1952 above (see detailed comments there) that ensures that I1DEST
1953 isn't mentioned in any SETs in NEWPAT that are field assignments. */
1954
1955 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
1956 0, (rtx*)0))
1957 {
1958 undo_all ();
1959 return 0;
1960 }
1961
1962 n_occurrences = 0;
1963 subst_low_cuid = INSN_CUID (i1);
1964 newpat = subst (newpat, i1dest, i1src, 0, 0);
1965 }
1966
1967 /* Fail if an autoincrement side-effect has been duplicated. Be careful
1968 to count all the ways that I2SRC and I1SRC can be used. */
1969 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
1970 && i2_is_used + added_sets_2 > 1)
1971 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
1972 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
1973 > 1))
1974 /* Fail if we tried to make a new register (we used to abort, but there's
1975 really no reason to). */
1976 || max_reg_num () != maxreg
1977 /* Fail if we couldn't do something and have a CLOBBER. */
1978 || GET_CODE (newpat) == CLOBBER
1979 /* Fail if this new pattern is a MULT and we didn't have one before
1980 at the outer level. */
1981 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
1982 && ! have_mult))
1983 {
1984 undo_all ();
1985 return 0;
1986 }
1987
1988 /* If the actions of the earlier insns must be kept
1989 in addition to substituting them into the latest one,
1990 we must make a new PARALLEL for the latest insn
1991 to hold additional the SETs. */
1992
1993 if (added_sets_1 || added_sets_2)
1994 {
1995 combine_extras++;
1996
1997 if (GET_CODE (newpat) == PARALLEL)
1998 {
1999 rtvec old = XVEC (newpat, 0);
2000 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2001 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2002 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2003 sizeof (old->elem[0]) * old->num_elem);
2004 }
2005 else
2006 {
2007 rtx old = newpat;
2008 total_sets = 1 + added_sets_1 + added_sets_2;
2009 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2010 XVECEXP (newpat, 0, 0) = old;
2011 }
2012
2013 if (added_sets_1)
2014 XVECEXP (newpat, 0, --total_sets)
2015 = (GET_CODE (PATTERN (i1)) == PARALLEL
2016 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
2017
2018 if (added_sets_2)
2019 {
2020 /* If there is no I1, use I2's body as is. We used to also not do
2021 the subst call below if I2 was substituted into I3,
2022 but that could lose a simplification. */
2023 if (i1 == 0)
2024 XVECEXP (newpat, 0, --total_sets) = i2pat;
2025 else
2026 /* See comment where i2pat is assigned. */
2027 XVECEXP (newpat, 0, --total_sets)
2028 = subst (i2pat, i1dest, i1src, 0, 0);
2029 }
2030 }
2031
2032 /* We come here when we are replacing a destination in I2 with the
2033 destination of I3. */
2034 validate_replacement:
2035
2036 /* Note which hard regs this insn has as inputs. */
2037 mark_used_regs_combine (newpat);
2038
2039 /* Is the result of combination a valid instruction? */
2040 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2041
2042 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2043 the second SET's destination is a register that is unused. In that case,
2044 we just need the first SET. This can occur when simplifying a divmod
2045 insn. We *must* test for this case here because the code below that
2046 splits two independent SETs doesn't handle this case correctly when it
2047 updates the register status. Also check the case where the first
2048 SET's destination is unused. That would not cause incorrect code, but
2049 does cause an unneeded insn to remain. */
2050
2051 if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
2052 && XVECLEN (newpat, 0) == 2
2053 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2054 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2055 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == REG
2056 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 1)))
2057 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 1)))
2058 && asm_noperands (newpat) < 0)
2059 {
2060 newpat = XVECEXP (newpat, 0, 0);
2061 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2062 }
2063
2064 else if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
2065 && XVECLEN (newpat, 0) == 2
2066 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2067 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2068 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) == REG
2069 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 0)))
2070 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 0)))
2071 && asm_noperands (newpat) < 0)
2072 {
2073 newpat = XVECEXP (newpat, 0, 1);
2074 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2075 }
2076
2077 /* If we were combining three insns and the result is a simple SET
2078 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2079 insns. There are two ways to do this. It can be split using a
2080 machine-specific method (like when you have an addition of a large
2081 constant) or by combine in the function find_split_point. */
2082
2083 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2084 && asm_noperands (newpat) < 0)
2085 {
2086 rtx m_split, *split;
2087 rtx ni2dest = i2dest;
2088
2089 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2090 use I2DEST as a scratch register will help. In the latter case,
2091 convert I2DEST to the mode of the source of NEWPAT if we can. */
2092
2093 m_split = split_insns (newpat, i3);
2094
2095 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2096 inputs of NEWPAT. */
2097
2098 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2099 possible to try that as a scratch reg. This would require adding
2100 more code to make it work though. */
2101
2102 if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
2103 {
2104 /* If I2DEST is a hard register or the only use of a pseudo,
2105 we can change its mode. */
2106 if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
2107 && GET_MODE (SET_DEST (newpat)) != VOIDmode
2108 && GET_CODE (i2dest) == REG
2109 && (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2110 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2111 && ! REG_USERVAR_P (i2dest))))
2112 ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
2113 REGNO (i2dest));
2114
2115 m_split = split_insns (gen_rtx_PARALLEL
2116 (VOIDmode,
2117 gen_rtvec (2, newpat,
2118 gen_rtx_CLOBBER (VOIDmode,
2119 ni2dest))),
2120 i3);
2121 /* If the split with the mode-changed register didn't work, try
2122 the original register. */
2123 if (! m_split && ni2dest != i2dest)
2124 {
2125 ni2dest = i2dest;
2126 m_split = split_insns (gen_rtx_PARALLEL
2127 (VOIDmode,
2128 gen_rtvec (2, newpat,
2129 gen_rtx_CLOBBER (VOIDmode,
2130 i2dest))),
2131 i3);
2132 }
2133 }
2134
2135 /* If we've split a jump pattern, we'll wind up with a sequence even
2136 with one instruction. We can handle that below, so extract it. */
2137 if (m_split && GET_CODE (m_split) == SEQUENCE
2138 && XVECLEN (m_split, 0) == 1)
2139 m_split = PATTERN (XVECEXP (m_split, 0, 0));
2140
2141 if (m_split && GET_CODE (m_split) != SEQUENCE)
2142 {
2143 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2144 if (insn_code_number >= 0)
2145 newpat = m_split;
2146 }
2147 else if (m_split && GET_CODE (m_split) == SEQUENCE
2148 && XVECLEN (m_split, 0) == 2
2149 && (next_real_insn (i2) == i3
2150 || ! use_crosses_set_p (PATTERN (XVECEXP (m_split, 0, 0)),
2151 INSN_CUID (i2))))
2152 {
2153 rtx i2set, i3set;
2154 rtx newi3pat = PATTERN (XVECEXP (m_split, 0, 1));
2155 newi2pat = PATTERN (XVECEXP (m_split, 0, 0));
2156
2157 i3set = single_set (XVECEXP (m_split, 0, 1));
2158 i2set = single_set (XVECEXP (m_split, 0, 0));
2159
2160 /* In case we changed the mode of I2DEST, replace it in the
2161 pseudo-register table here. We can't do it above in case this
2162 code doesn't get executed and we do a split the other way. */
2163
2164 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2165 SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
2166
2167 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2168
2169 /* If I2 or I3 has multiple SETs, we won't know how to track
2170 register status, so don't use these insns. If I2's destination
2171 is used between I2 and I3, we also can't use these insns. */
2172
2173 if (i2_code_number >= 0 && i2set && i3set
2174 && (next_real_insn (i2) == i3
2175 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2176 insn_code_number = recog_for_combine (&newi3pat, i3,
2177 &new_i3_notes);
2178 if (insn_code_number >= 0)
2179 newpat = newi3pat;
2180
2181 /* It is possible that both insns now set the destination of I3.
2182 If so, we must show an extra use of it. */
2183
2184 if (insn_code_number >= 0)
2185 {
2186 rtx new_i3_dest = SET_DEST (i3set);
2187 rtx new_i2_dest = SET_DEST (i2set);
2188
2189 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2190 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2191 || GET_CODE (new_i3_dest) == SUBREG)
2192 new_i3_dest = XEXP (new_i3_dest, 0);
2193
2194 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2195 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2196 || GET_CODE (new_i2_dest) == SUBREG)
2197 new_i2_dest = XEXP (new_i2_dest, 0);
2198
2199 if (GET_CODE (new_i3_dest) == REG
2200 && GET_CODE (new_i2_dest) == REG
2201 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2202 REG_N_SETS (REGNO (new_i2_dest))++;
2203 }
2204 }
2205
2206 /* If we can split it and use I2DEST, go ahead and see if that
2207 helps things be recognized. Verify that none of the registers
2208 are set between I2 and I3. */
2209 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2210 #ifdef HAVE_cc0
2211 && GET_CODE (i2dest) == REG
2212 #endif
2213 /* We need I2DEST in the proper mode. If it is a hard register
2214 or the only use of a pseudo, we can change its mode. */
2215 && (GET_MODE (*split) == GET_MODE (i2dest)
2216 || GET_MODE (*split) == VOIDmode
2217 || REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2218 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2219 && ! REG_USERVAR_P (i2dest)))
2220 && (next_real_insn (i2) == i3
2221 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2222 /* We can't overwrite I2DEST if its value is still used by
2223 NEWPAT. */
2224 && ! reg_referenced_p (i2dest, newpat))
2225 {
2226 rtx newdest = i2dest;
2227 enum rtx_code split_code = GET_CODE (*split);
2228 enum machine_mode split_mode = GET_MODE (*split);
2229
2230 /* Get NEWDEST as a register in the proper mode. We have already
2231 validated that we can do this. */
2232 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2233 {
2234 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2235
2236 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2237 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
2238 }
2239
2240 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2241 an ASHIFT. This can occur if it was inside a PLUS and hence
2242 appeared to be a memory address. This is a kludge. */
2243 if (split_code == MULT
2244 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2245 && INTVAL (XEXP (*split, 1)) > 0
2246 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2247 {
2248 SUBST (*split, gen_rtx_ASHIFT (split_mode,
2249 XEXP (*split, 0), GEN_INT (i)));
2250 /* Update split_code because we may not have a multiply
2251 anymore. */
2252 split_code = GET_CODE (*split);
2253 }
2254
2255 #ifdef INSN_SCHEDULING
2256 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2257 be written as a ZERO_EXTEND. */
2258 if (split_code == SUBREG && GET_CODE (SUBREG_REG (*split)) == MEM)
2259 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
2260 SUBREG_REG (*split)));
2261 #endif
2262
2263 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
2264 SUBST (*split, newdest);
2265 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2266
2267 /* If the split point was a MULT and we didn't have one before,
2268 don't use one now. */
2269 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2270 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2271 }
2272 }
2273
2274 /* Check for a case where we loaded from memory in a narrow mode and
2275 then sign extended it, but we need both registers. In that case,
2276 we have a PARALLEL with both loads from the same memory location.
2277 We can split this into a load from memory followed by a register-register
2278 copy. This saves at least one insn, more if register allocation can
2279 eliminate the copy.
2280
2281 We cannot do this if the destination of the second assignment is
2282 a register that we have already assumed is zero-extended. Similarly
2283 for a SUBREG of such a register. */
2284
2285 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2286 && GET_CODE (newpat) == PARALLEL
2287 && XVECLEN (newpat, 0) == 2
2288 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2289 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2290 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2291 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2292 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2293 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2294 INSN_CUID (i2))
2295 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2296 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2297 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2298 (GET_CODE (temp) == REG
2299 && reg_nonzero_bits[REGNO (temp)] != 0
2300 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2301 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2302 && (reg_nonzero_bits[REGNO (temp)]
2303 != GET_MODE_MASK (word_mode))))
2304 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2305 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2306 (GET_CODE (temp) == REG
2307 && reg_nonzero_bits[REGNO (temp)] != 0
2308 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2309 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2310 && (reg_nonzero_bits[REGNO (temp)]
2311 != GET_MODE_MASK (word_mode)))))
2312 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2313 SET_SRC (XVECEXP (newpat, 0, 1)))
2314 && ! find_reg_note (i3, REG_UNUSED,
2315 SET_DEST (XVECEXP (newpat, 0, 0))))
2316 {
2317 rtx ni2dest;
2318
2319 newi2pat = XVECEXP (newpat, 0, 0);
2320 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2321 newpat = XVECEXP (newpat, 0, 1);
2322 SUBST (SET_SRC (newpat),
2323 gen_lowpart_for_combine (GET_MODE (SET_SRC (newpat)), ni2dest));
2324 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2325
2326 if (i2_code_number >= 0)
2327 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2328
2329 if (insn_code_number >= 0)
2330 {
2331 rtx insn;
2332 rtx link;
2333
2334 /* If we will be able to accept this, we have made a change to the
2335 destination of I3. This can invalidate a LOG_LINKS pointing
2336 to I3. No other part of combine.c makes such a transformation.
2337
2338 The new I3 will have a destination that was previously the
2339 destination of I1 or I2 and which was used in i2 or I3. Call
2340 distribute_links to make a LOG_LINK from the next use of
2341 that destination. */
2342
2343 PATTERN (i3) = newpat;
2344 distribute_links (gen_rtx_INSN_LIST (VOIDmode, i3, NULL_RTX));
2345
2346 /* I3 now uses what used to be its destination and which is
2347 now I2's destination. That means we need a LOG_LINK from
2348 I3 to I2. But we used to have one, so we still will.
2349
2350 However, some later insn might be using I2's dest and have
2351 a LOG_LINK pointing at I3. We must remove this link.
2352 The simplest way to remove the link is to point it at I1,
2353 which we know will be a NOTE. */
2354
2355 for (insn = NEXT_INSN (i3);
2356 insn && (this_basic_block == n_basic_blocks - 1
2357 || insn != BLOCK_HEAD (this_basic_block + 1));
2358 insn = NEXT_INSN (insn))
2359 {
2360 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
2361 {
2362 for (link = LOG_LINKS (insn); link;
2363 link = XEXP (link, 1))
2364 if (XEXP (link, 0) == i3)
2365 XEXP (link, 0) = i1;
2366
2367 break;
2368 }
2369 }
2370 }
2371 }
2372
2373 /* Similarly, check for a case where we have a PARALLEL of two independent
2374 SETs but we started with three insns. In this case, we can do the sets
2375 as two separate insns. This case occurs when some SET allows two
2376 other insns to combine, but the destination of that SET is still live. */
2377
2378 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2379 && GET_CODE (newpat) == PARALLEL
2380 && XVECLEN (newpat, 0) == 2
2381 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2382 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2383 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2384 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2385 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2386 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2387 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2388 INSN_CUID (i2))
2389 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2390 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2391 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2392 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2393 XVECEXP (newpat, 0, 0))
2394 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2395 XVECEXP (newpat, 0, 1))
2396 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2397 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
2398 {
2399 /* Normally, it doesn't matter which of the two is done first,
2400 but it does if one references cc0. In that case, it has to
2401 be first. */
2402 #ifdef HAVE_cc0
2403 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2404 {
2405 newi2pat = XVECEXP (newpat, 0, 0);
2406 newpat = XVECEXP (newpat, 0, 1);
2407 }
2408 else
2409 #endif
2410 {
2411 newi2pat = XVECEXP (newpat, 0, 1);
2412 newpat = XVECEXP (newpat, 0, 0);
2413 }
2414
2415 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2416
2417 if (i2_code_number >= 0)
2418 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2419 }
2420
2421 /* If it still isn't recognized, fail and change things back the way they
2422 were. */
2423 if ((insn_code_number < 0
2424 /* Is the result a reasonable ASM_OPERANDS? */
2425 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2426 {
2427 undo_all ();
2428 return 0;
2429 }
2430
2431 /* If we had to change another insn, make sure it is valid also. */
2432 if (undobuf.other_insn)
2433 {
2434 rtx other_pat = PATTERN (undobuf.other_insn);
2435 rtx new_other_notes;
2436 rtx note, next;
2437
2438 CLEAR_HARD_REG_SET (newpat_used_regs);
2439
2440 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2441 &new_other_notes);
2442
2443 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2444 {
2445 undo_all ();
2446 return 0;
2447 }
2448
2449 PATTERN (undobuf.other_insn) = other_pat;
2450
2451 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2452 are still valid. Then add any non-duplicate notes added by
2453 recog_for_combine. */
2454 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2455 {
2456 next = XEXP (note, 1);
2457
2458 if (REG_NOTE_KIND (note) == REG_UNUSED
2459 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2460 {
2461 if (GET_CODE (XEXP (note, 0)) == REG)
2462 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2463
2464 remove_note (undobuf.other_insn, note);
2465 }
2466 }
2467
2468 for (note = new_other_notes; note; note = XEXP (note, 1))
2469 if (GET_CODE (XEXP (note, 0)) == REG)
2470 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2471
2472 distribute_notes (new_other_notes, undobuf.other_insn,
2473 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
2474 }
2475 #ifdef HAVE_cc0
2476 /* If I2 is the setter CC0 and I3 is the user CC0 then check whether
2477 they are adjacent to each other or not. */
2478 {
2479 rtx p = prev_nonnote_insn (i3);
2480 if (p && p != i2 && GET_CODE (p) == INSN && newi2pat
2481 && sets_cc0_p (newi2pat))
2482 {
2483 undo_all ();
2484 return 0;
2485 }
2486 }
2487 #endif
2488
2489 /* We now know that we can do this combination. Merge the insns and
2490 update the status of registers and LOG_LINKS. */
2491
2492 {
2493 rtx i3notes, i2notes, i1notes = 0;
2494 rtx i3links, i2links, i1links = 0;
2495 rtx midnotes = 0;
2496 unsigned int regno;
2497 /* Compute which registers we expect to eliminate. newi2pat may be setting
2498 either i3dest or i2dest, so we must check it. Also, i1dest may be the
2499 same as i3dest, in which case newi2pat may be setting i1dest. */
2500 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
2501 || i2dest_in_i2src || i2dest_in_i1src
2502 ? 0 : i2dest);
2503 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src
2504 || (newi2pat && reg_set_p (i1dest, newi2pat))
2505 ? 0 : i1dest);
2506
2507 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2508 clear them. */
2509 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2510 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2511 if (i1)
2512 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2513
2514 /* Ensure that we do not have something that should not be shared but
2515 occurs multiple times in the new insns. Check this by first
2516 resetting all the `used' flags and then copying anything is shared. */
2517
2518 reset_used_flags (i3notes);
2519 reset_used_flags (i2notes);
2520 reset_used_flags (i1notes);
2521 reset_used_flags (newpat);
2522 reset_used_flags (newi2pat);
2523 if (undobuf.other_insn)
2524 reset_used_flags (PATTERN (undobuf.other_insn));
2525
2526 i3notes = copy_rtx_if_shared (i3notes);
2527 i2notes = copy_rtx_if_shared (i2notes);
2528 i1notes = copy_rtx_if_shared (i1notes);
2529 newpat = copy_rtx_if_shared (newpat);
2530 newi2pat = copy_rtx_if_shared (newi2pat);
2531 if (undobuf.other_insn)
2532 reset_used_flags (PATTERN (undobuf.other_insn));
2533
2534 INSN_CODE (i3) = insn_code_number;
2535 PATTERN (i3) = newpat;
2536 if (undobuf.other_insn)
2537 INSN_CODE (undobuf.other_insn) = other_code_number;
2538
2539 /* We had one special case above where I2 had more than one set and
2540 we replaced a destination of one of those sets with the destination
2541 of I3. In that case, we have to update LOG_LINKS of insns later
2542 in this basic block. Note that this (expensive) case is rare.
2543
2544 Also, in this case, we must pretend that all REG_NOTEs for I2
2545 actually came from I3, so that REG_UNUSED notes from I2 will be
2546 properly handled. */
2547
2548 if (i3_subst_into_i2)
2549 {
2550 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2551 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != USE
2552 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, i))) == REG
2553 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2554 && ! find_reg_note (i2, REG_UNUSED,
2555 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2556 for (temp = NEXT_INSN (i2);
2557 temp && (this_basic_block == n_basic_blocks - 1
2558 || BLOCK_HEAD (this_basic_block) != temp);
2559 temp = NEXT_INSN (temp))
2560 if (temp != i3 && INSN_P (temp))
2561 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2562 if (XEXP (link, 0) == i2)
2563 XEXP (link, 0) = i3;
2564
2565 if (i3notes)
2566 {
2567 rtx link = i3notes;
2568 while (XEXP (link, 1))
2569 link = XEXP (link, 1);
2570 XEXP (link, 1) = i2notes;
2571 }
2572 else
2573 i3notes = i2notes;
2574 i2notes = 0;
2575 }
2576
2577 LOG_LINKS (i3) = 0;
2578 REG_NOTES (i3) = 0;
2579 LOG_LINKS (i2) = 0;
2580 REG_NOTES (i2) = 0;
2581
2582 if (newi2pat)
2583 {
2584 INSN_CODE (i2) = i2_code_number;
2585 PATTERN (i2) = newi2pat;
2586 }
2587 else
2588 {
2589 PUT_CODE (i2, NOTE);
2590 NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED;
2591 NOTE_SOURCE_FILE (i2) = 0;
2592 }
2593
2594 if (i1)
2595 {
2596 LOG_LINKS (i1) = 0;
2597 REG_NOTES (i1) = 0;
2598 PUT_CODE (i1, NOTE);
2599 NOTE_LINE_NUMBER (i1) = NOTE_INSN_DELETED;
2600 NOTE_SOURCE_FILE (i1) = 0;
2601 }
2602
2603 /* Get death notes for everything that is now used in either I3 or
2604 I2 and used to die in a previous insn. If we built two new
2605 patterns, move from I1 to I2 then I2 to I3 so that we get the
2606 proper movement on registers that I2 modifies. */
2607
2608 if (newi2pat)
2609 {
2610 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2611 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2612 }
2613 else
2614 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2615 i3, &midnotes);
2616
2617 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2618 if (i3notes)
2619 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
2620 elim_i2, elim_i1);
2621 if (i2notes)
2622 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
2623 elim_i2, elim_i1);
2624 if (i1notes)
2625 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
2626 elim_i2, elim_i1);
2627 if (midnotes)
2628 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2629 elim_i2, elim_i1);
2630
2631 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2632 know these are REG_UNUSED and want them to go to the desired insn,
2633 so we always pass it as i3. We have not counted the notes in
2634 reg_n_deaths yet, so we need to do so now. */
2635
2636 if (newi2pat && new_i2_notes)
2637 {
2638 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
2639 if (GET_CODE (XEXP (temp, 0)) == REG)
2640 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2641
2642 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2643 }
2644
2645 if (new_i3_notes)
2646 {
2647 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
2648 if (GET_CODE (XEXP (temp, 0)) == REG)
2649 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2650
2651 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
2652 }
2653
2654 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
2655 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
2656 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
2657 in that case, it might delete I2. Similarly for I2 and I1.
2658 Show an additional death due to the REG_DEAD note we make here. If
2659 we discard it in distribute_notes, we will decrement it again. */
2660
2661 if (i3dest_killed)
2662 {
2663 if (GET_CODE (i3dest_killed) == REG)
2664 REG_N_DEATHS (REGNO (i3dest_killed))++;
2665
2666 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
2667 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2668 NULL_RTX),
2669 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1);
2670 else
2671 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2672 NULL_RTX),
2673 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2674 elim_i2, elim_i1);
2675 }
2676
2677 if (i2dest_in_i2src)
2678 {
2679 if (GET_CODE (i2dest) == REG)
2680 REG_N_DEATHS (REGNO (i2dest))++;
2681
2682 if (newi2pat && reg_set_p (i2dest, newi2pat))
2683 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2684 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2685 else
2686 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2687 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2688 NULL_RTX, NULL_RTX);
2689 }
2690
2691 if (i1dest_in_i1src)
2692 {
2693 if (GET_CODE (i1dest) == REG)
2694 REG_N_DEATHS (REGNO (i1dest))++;
2695
2696 if (newi2pat && reg_set_p (i1dest, newi2pat))
2697 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2698 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2699 else
2700 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2701 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2702 NULL_RTX, NULL_RTX);
2703 }
2704
2705 distribute_links (i3links);
2706 distribute_links (i2links);
2707 distribute_links (i1links);
2708
2709 if (GET_CODE (i2dest) == REG)
2710 {
2711 rtx link;
2712 rtx i2_insn = 0, i2_val = 0, set;
2713
2714 /* The insn that used to set this register doesn't exist, and
2715 this life of the register may not exist either. See if one of
2716 I3's links points to an insn that sets I2DEST. If it does,
2717 that is now the last known value for I2DEST. If we don't update
2718 this and I2 set the register to a value that depended on its old
2719 contents, we will get confused. If this insn is used, thing
2720 will be set correctly in combine_instructions. */
2721
2722 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2723 if ((set = single_set (XEXP (link, 0))) != 0
2724 && rtx_equal_p (i2dest, SET_DEST (set)))
2725 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
2726
2727 record_value_for_reg (i2dest, i2_insn, i2_val);
2728
2729 /* If the reg formerly set in I2 died only once and that was in I3,
2730 zero its use count so it won't make `reload' do any work. */
2731 if (! added_sets_2
2732 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
2733 && ! i2dest_in_i2src)
2734 {
2735 regno = REGNO (i2dest);
2736 REG_N_SETS (regno)--;
2737 }
2738 }
2739
2740 if (i1 && GET_CODE (i1dest) == REG)
2741 {
2742 rtx link;
2743 rtx i1_insn = 0, i1_val = 0, set;
2744
2745 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2746 if ((set = single_set (XEXP (link, 0))) != 0
2747 && rtx_equal_p (i1dest, SET_DEST (set)))
2748 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
2749
2750 record_value_for_reg (i1dest, i1_insn, i1_val);
2751
2752 regno = REGNO (i1dest);
2753 if (! added_sets_1 && ! i1dest_in_i1src)
2754 REG_N_SETS (regno)--;
2755 }
2756
2757 /* Update reg_nonzero_bits et al for any changes that may have been made
2758 to this insn. The order of set_nonzero_bits_and_sign_copies() is
2759 important. Because newi2pat can affect nonzero_bits of newpat */
2760 if (newi2pat)
2761 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
2762 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
2763
2764 /* Set new_direct_jump_p if a new return or simple jump instruction
2765 has been created.
2766
2767 If I3 is now an unconditional jump, ensure that it has a
2768 BARRIER following it since it may have initially been a
2769 conditional jump. It may also be the last nonnote insn. */
2770
2771 if (GET_CODE (newpat) == RETURN || any_uncondjump_p (i3))
2772 {
2773 *new_direct_jump_p = 1;
2774
2775 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
2776 || GET_CODE (temp) != BARRIER)
2777 emit_barrier_after (i3);
2778 }
2779 /* An NOOP jump does not need barrier, but it does need cleaning up
2780 of CFG. */
2781 if (GET_CODE (newpat) == SET
2782 && SET_SRC (newpat) == pc_rtx
2783 && SET_DEST (newpat) == pc_rtx)
2784 *new_direct_jump_p = 1;
2785 }
2786
2787 combine_successes++;
2788 undo_commit ();
2789
2790 /* Clear this here, so that subsequent get_last_value calls are not
2791 affected. */
2792 subst_prev_insn = NULL_RTX;
2793
2794 if (added_links_insn
2795 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
2796 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
2797 return added_links_insn;
2798 else
2799 return newi2pat ? i2 : i3;
2800 }
2801 \f
2802 /* Undo all the modifications recorded in undobuf. */
2803
2804 static void
2805 undo_all ()
2806 {
2807 struct undo *undo, *next;
2808
2809 for (undo = undobuf.undos; undo; undo = next)
2810 {
2811 next = undo->next;
2812 if (undo->is_int)
2813 *undo->where.i = undo->old_contents.i;
2814 else
2815 *undo->where.r = undo->old_contents.r;
2816
2817 undo->next = undobuf.frees;
2818 undobuf.frees = undo;
2819 }
2820
2821 undobuf.undos = 0;
2822
2823 /* Clear this here, so that subsequent get_last_value calls are not
2824 affected. */
2825 subst_prev_insn = NULL_RTX;
2826 }
2827
2828 /* We've committed to accepting the changes we made. Move all
2829 of the undos to the free list. */
2830
2831 static void
2832 undo_commit ()
2833 {
2834 struct undo *undo, *next;
2835
2836 for (undo = undobuf.undos; undo; undo = next)
2837 {
2838 next = undo->next;
2839 undo->next = undobuf.frees;
2840 undobuf.frees = undo;
2841 }
2842 undobuf.undos = 0;
2843 }
2844
2845 \f
2846 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
2847 where we have an arithmetic expression and return that point. LOC will
2848 be inside INSN.
2849
2850 try_combine will call this function to see if an insn can be split into
2851 two insns. */
2852
2853 static rtx *
2854 find_split_point (loc, insn)
2855 rtx *loc;
2856 rtx insn;
2857 {
2858 rtx x = *loc;
2859 enum rtx_code code = GET_CODE (x);
2860 rtx *split;
2861 unsigned HOST_WIDE_INT len = 0;
2862 HOST_WIDE_INT pos = 0;
2863 int unsignedp = 0;
2864 rtx inner = NULL_RTX;
2865
2866 /* First special-case some codes. */
2867 switch (code)
2868 {
2869 case SUBREG:
2870 #ifdef INSN_SCHEDULING
2871 /* If we are making a paradoxical SUBREG invalid, it becomes a split
2872 point. */
2873 if (GET_CODE (SUBREG_REG (x)) == MEM)
2874 return loc;
2875 #endif
2876 return find_split_point (&SUBREG_REG (x), insn);
2877
2878 case MEM:
2879 #ifdef HAVE_lo_sum
2880 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
2881 using LO_SUM and HIGH. */
2882 if (GET_CODE (XEXP (x, 0)) == CONST
2883 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
2884 {
2885 SUBST (XEXP (x, 0),
2886 gen_rtx_LO_SUM (Pmode,
2887 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
2888 XEXP (x, 0)));
2889 return &XEXP (XEXP (x, 0), 0);
2890 }
2891 #endif
2892
2893 /* If we have a PLUS whose second operand is a constant and the
2894 address is not valid, perhaps will can split it up using
2895 the machine-specific way to split large constants. We use
2896 the first pseudo-reg (one of the virtual regs) as a placeholder;
2897 it will not remain in the result. */
2898 if (GET_CODE (XEXP (x, 0)) == PLUS
2899 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2900 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
2901 {
2902 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
2903 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
2904 subst_insn);
2905
2906 /* This should have produced two insns, each of which sets our
2907 placeholder. If the source of the second is a valid address,
2908 we can make put both sources together and make a split point
2909 in the middle. */
2910
2911 if (seq && XVECLEN (seq, 0) == 2
2912 && GET_CODE (XVECEXP (seq, 0, 0)) == INSN
2913 && GET_CODE (PATTERN (XVECEXP (seq, 0, 0))) == SET
2914 && SET_DEST (PATTERN (XVECEXP (seq, 0, 0))) == reg
2915 && ! reg_mentioned_p (reg,
2916 SET_SRC (PATTERN (XVECEXP (seq, 0, 0))))
2917 && GET_CODE (XVECEXP (seq, 0, 1)) == INSN
2918 && GET_CODE (PATTERN (XVECEXP (seq, 0, 1))) == SET
2919 && SET_DEST (PATTERN (XVECEXP (seq, 0, 1))) == reg
2920 && memory_address_p (GET_MODE (x),
2921 SET_SRC (PATTERN (XVECEXP (seq, 0, 1)))))
2922 {
2923 rtx src1 = SET_SRC (PATTERN (XVECEXP (seq, 0, 0)));
2924 rtx src2 = SET_SRC (PATTERN (XVECEXP (seq, 0, 1)));
2925
2926 /* Replace the placeholder in SRC2 with SRC1. If we can
2927 find where in SRC2 it was placed, that can become our
2928 split point and we can replace this address with SRC2.
2929 Just try two obvious places. */
2930
2931 src2 = replace_rtx (src2, reg, src1);
2932 split = 0;
2933 if (XEXP (src2, 0) == src1)
2934 split = &XEXP (src2, 0);
2935 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
2936 && XEXP (XEXP (src2, 0), 0) == src1)
2937 split = &XEXP (XEXP (src2, 0), 0);
2938
2939 if (split)
2940 {
2941 SUBST (XEXP (x, 0), src2);
2942 return split;
2943 }
2944 }
2945
2946 /* If that didn't work, perhaps the first operand is complex and
2947 needs to be computed separately, so make a split point there.
2948 This will occur on machines that just support REG + CONST
2949 and have a constant moved through some previous computation. */
2950
2951 else if (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) != 'o'
2952 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
2953 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (XEXP (x, 0), 0))))
2954 == 'o')))
2955 return &XEXP (XEXP (x, 0), 0);
2956 }
2957 break;
2958
2959 case SET:
2960 #ifdef HAVE_cc0
2961 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
2962 ZERO_EXTRACT, the most likely reason why this doesn't match is that
2963 we need to put the operand into a register. So split at that
2964 point. */
2965
2966 if (SET_DEST (x) == cc0_rtx
2967 && GET_CODE (SET_SRC (x)) != COMPARE
2968 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
2969 && GET_RTX_CLASS (GET_CODE (SET_SRC (x))) != 'o'
2970 && ! (GET_CODE (SET_SRC (x)) == SUBREG
2971 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (SET_SRC (x)))) == 'o'))
2972 return &SET_SRC (x);
2973 #endif
2974
2975 /* See if we can split SET_SRC as it stands. */
2976 split = find_split_point (&SET_SRC (x), insn);
2977 if (split && split != &SET_SRC (x))
2978 return split;
2979
2980 /* See if we can split SET_DEST as it stands. */
2981 split = find_split_point (&SET_DEST (x), insn);
2982 if (split && split != &SET_DEST (x))
2983 return split;
2984
2985 /* See if this is a bitfield assignment with everything constant. If
2986 so, this is an IOR of an AND, so split it into that. */
2987 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
2988 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
2989 <= HOST_BITS_PER_WIDE_INT)
2990 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
2991 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
2992 && GET_CODE (SET_SRC (x)) == CONST_INT
2993 && ((INTVAL (XEXP (SET_DEST (x), 1))
2994 + INTVAL (XEXP (SET_DEST (x), 2)))
2995 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
2996 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
2997 {
2998 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
2999 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
3000 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
3001 rtx dest = XEXP (SET_DEST (x), 0);
3002 enum machine_mode mode = GET_MODE (dest);
3003 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
3004
3005 if (BITS_BIG_ENDIAN)
3006 pos = GET_MODE_BITSIZE (mode) - len - pos;
3007
3008 if (src == mask)
3009 SUBST (SET_SRC (x),
3010 gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
3011 else
3012 SUBST (SET_SRC (x),
3013 gen_binary (IOR, mode,
3014 gen_binary (AND, mode, dest,
3015 GEN_INT (~(mask << pos)
3016 & GET_MODE_MASK (mode))),
3017 GEN_INT (src << pos)));
3018
3019 SUBST (SET_DEST (x), dest);
3020
3021 split = find_split_point (&SET_SRC (x), insn);
3022 if (split && split != &SET_SRC (x))
3023 return split;
3024 }
3025
3026 /* Otherwise, see if this is an operation that we can split into two.
3027 If so, try to split that. */
3028 code = GET_CODE (SET_SRC (x));
3029
3030 switch (code)
3031 {
3032 case AND:
3033 /* If we are AND'ing with a large constant that is only a single
3034 bit and the result is only being used in a context where we
3035 need to know if it is zero or non-zero, replace it with a bit
3036 extraction. This will avoid the large constant, which might
3037 have taken more than one insn to make. If the constant were
3038 not a valid argument to the AND but took only one insn to make,
3039 this is no worse, but if it took more than one insn, it will
3040 be better. */
3041
3042 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3043 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
3044 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3045 && GET_CODE (SET_DEST (x)) == REG
3046 && (split = find_single_use (SET_DEST (x), insn, (rtx*)0)) != 0
3047 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3048 && XEXP (*split, 0) == SET_DEST (x)
3049 && XEXP (*split, 1) == const0_rtx)
3050 {
3051 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3052 XEXP (SET_SRC (x), 0),
3053 pos, NULL_RTX, 1, 1, 0, 0);
3054 if (extraction != 0)
3055 {
3056 SUBST (SET_SRC (x), extraction);
3057 return find_split_point (loc, insn);
3058 }
3059 }
3060 break;
3061
3062 case NE:
3063 /* if STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3064 is known to be on, this can be converted into a NEG of a shift. */
3065 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3066 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3067 && 1 <= (pos = exact_log2
3068 (nonzero_bits (XEXP (SET_SRC (x), 0),
3069 GET_MODE (XEXP (SET_SRC (x), 0))))))
3070 {
3071 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3072
3073 SUBST (SET_SRC (x),
3074 gen_rtx_NEG (mode,
3075 gen_rtx_LSHIFTRT (mode,
3076 XEXP (SET_SRC (x), 0),
3077 GEN_INT (pos))));
3078
3079 split = find_split_point (&SET_SRC (x), insn);
3080 if (split && split != &SET_SRC (x))
3081 return split;
3082 }
3083 break;
3084
3085 case SIGN_EXTEND:
3086 inner = XEXP (SET_SRC (x), 0);
3087
3088 /* We can't optimize if either mode is a partial integer
3089 mode as we don't know how many bits are significant
3090 in those modes. */
3091 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3092 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3093 break;
3094
3095 pos = 0;
3096 len = GET_MODE_BITSIZE (GET_MODE (inner));
3097 unsignedp = 0;
3098 break;
3099
3100 case SIGN_EXTRACT:
3101 case ZERO_EXTRACT:
3102 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3103 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3104 {
3105 inner = XEXP (SET_SRC (x), 0);
3106 len = INTVAL (XEXP (SET_SRC (x), 1));
3107 pos = INTVAL (XEXP (SET_SRC (x), 2));
3108
3109 if (BITS_BIG_ENDIAN)
3110 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3111 unsignedp = (code == ZERO_EXTRACT);
3112 }
3113 break;
3114
3115 default:
3116 break;
3117 }
3118
3119 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3120 {
3121 enum machine_mode mode = GET_MODE (SET_SRC (x));
3122
3123 /* For unsigned, we have a choice of a shift followed by an
3124 AND or two shifts. Use two shifts for field sizes where the
3125 constant might be too large. We assume here that we can
3126 always at least get 8-bit constants in an AND insn, which is
3127 true for every current RISC. */
3128
3129 if (unsignedp && len <= 8)
3130 {
3131 SUBST (SET_SRC (x),
3132 gen_rtx_AND (mode,
3133 gen_rtx_LSHIFTRT
3134 (mode, gen_lowpart_for_combine (mode, inner),
3135 GEN_INT (pos)),
3136 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3137
3138 split = find_split_point (&SET_SRC (x), insn);
3139 if (split && split != &SET_SRC (x))
3140 return split;
3141 }
3142 else
3143 {
3144 SUBST (SET_SRC (x),
3145 gen_rtx_fmt_ee
3146 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3147 gen_rtx_ASHIFT (mode,
3148 gen_lowpart_for_combine (mode, inner),
3149 GEN_INT (GET_MODE_BITSIZE (mode)
3150 - len - pos)),
3151 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3152
3153 split = find_split_point (&SET_SRC (x), insn);
3154 if (split && split != &SET_SRC (x))
3155 return split;
3156 }
3157 }
3158
3159 /* See if this is a simple operation with a constant as the second
3160 operand. It might be that this constant is out of range and hence
3161 could be used as a split point. */
3162 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
3163 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
3164 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<')
3165 && CONSTANT_P (XEXP (SET_SRC (x), 1))
3166 && (GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (x), 0))) == 'o'
3167 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3168 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (SET_SRC (x), 0))))
3169 == 'o'))))
3170 return &XEXP (SET_SRC (x), 1);
3171
3172 /* Finally, see if this is a simple operation with its first operand
3173 not in a register. The operation might require this operand in a
3174 register, so return it as a split point. We can always do this
3175 because if the first operand were another operation, we would have
3176 already found it as a split point. */
3177 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
3178 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
3179 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<'
3180 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '1')
3181 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3182 return &XEXP (SET_SRC (x), 0);
3183
3184 return 0;
3185
3186 case AND:
3187 case IOR:
3188 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3189 it is better to write this as (not (ior A B)) so we can split it.
3190 Similarly for IOR. */
3191 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3192 {
3193 SUBST (*loc,
3194 gen_rtx_NOT (GET_MODE (x),
3195 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3196 GET_MODE (x),
3197 XEXP (XEXP (x, 0), 0),
3198 XEXP (XEXP (x, 1), 0))));
3199 return find_split_point (loc, insn);
3200 }
3201
3202 /* Many RISC machines have a large set of logical insns. If the
3203 second operand is a NOT, put it first so we will try to split the
3204 other operand first. */
3205 if (GET_CODE (XEXP (x, 1)) == NOT)
3206 {
3207 rtx tem = XEXP (x, 0);
3208 SUBST (XEXP (x, 0), XEXP (x, 1));
3209 SUBST (XEXP (x, 1), tem);
3210 }
3211 break;
3212
3213 default:
3214 break;
3215 }
3216
3217 /* Otherwise, select our actions depending on our rtx class. */
3218 switch (GET_RTX_CLASS (code))
3219 {
3220 case 'b': /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3221 case '3':
3222 split = find_split_point (&XEXP (x, 2), insn);
3223 if (split)
3224 return split;
3225 /* ... fall through ... */
3226 case '2':
3227 case 'c':
3228 case '<':
3229 split = find_split_point (&XEXP (x, 1), insn);
3230 if (split)
3231 return split;
3232 /* ... fall through ... */
3233 case '1':
3234 /* Some machines have (and (shift ...) ...) insns. If X is not
3235 an AND, but XEXP (X, 0) is, use it as our split point. */
3236 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3237 return &XEXP (x, 0);
3238
3239 split = find_split_point (&XEXP (x, 0), insn);
3240 if (split)
3241 return split;
3242 return loc;
3243 }
3244
3245 /* Otherwise, we don't have a split point. */
3246 return 0;
3247 }
3248 \f
3249 /* Throughout X, replace FROM with TO, and return the result.
3250 The result is TO if X is FROM;
3251 otherwise the result is X, but its contents may have been modified.
3252 If they were modified, a record was made in undobuf so that
3253 undo_all will (among other things) return X to its original state.
3254
3255 If the number of changes necessary is too much to record to undo,
3256 the excess changes are not made, so the result is invalid.
3257 The changes already made can still be undone.
3258 undobuf.num_undo is incremented for such changes, so by testing that
3259 the caller can tell whether the result is valid.
3260
3261 `n_occurrences' is incremented each time FROM is replaced.
3262
3263 IN_DEST is non-zero if we are processing the SET_DEST of a SET.
3264
3265 UNIQUE_COPY is non-zero if each substitution must be unique. We do this
3266 by copying if `n_occurrences' is non-zero. */
3267
3268 static rtx
3269 subst (x, from, to, in_dest, unique_copy)
3270 rtx x, from, to;
3271 int in_dest;
3272 int unique_copy;
3273 {
3274 enum rtx_code code = GET_CODE (x);
3275 enum machine_mode op0_mode = VOIDmode;
3276 const char *fmt;
3277 int len, i;
3278 rtx new;
3279
3280 /* Two expressions are equal if they are identical copies of a shared
3281 RTX or if they are both registers with the same register number
3282 and mode. */
3283
3284 #define COMBINE_RTX_EQUAL_P(X,Y) \
3285 ((X) == (Y) \
3286 || (GET_CODE (X) == REG && GET_CODE (Y) == REG \
3287 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3288
3289 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3290 {
3291 n_occurrences++;
3292 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3293 }
3294
3295 /* If X and FROM are the same register but different modes, they will
3296 not have been seen as equal above. However, flow.c will make a
3297 LOG_LINKS entry for that case. If we do nothing, we will try to
3298 rerecognize our original insn and, when it succeeds, we will
3299 delete the feeding insn, which is incorrect.
3300
3301 So force this insn not to match in this (rare) case. */
3302 if (! in_dest && code == REG && GET_CODE (from) == REG
3303 && REGNO (x) == REGNO (from))
3304 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3305
3306 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3307 of which may contain things that can be combined. */
3308 if (code != MEM && code != LO_SUM && GET_RTX_CLASS (code) == 'o')
3309 return x;
3310
3311 /* It is possible to have a subexpression appear twice in the insn.
3312 Suppose that FROM is a register that appears within TO.
3313 Then, after that subexpression has been scanned once by `subst',
3314 the second time it is scanned, TO may be found. If we were
3315 to scan TO here, we would find FROM within it and create a
3316 self-referent rtl structure which is completely wrong. */
3317 if (COMBINE_RTX_EQUAL_P (x, to))
3318 return to;
3319
3320 /* Parallel asm_operands need special attention because all of the
3321 inputs are shared across the arms. Furthermore, unsharing the
3322 rtl results in recognition failures. Failure to handle this case
3323 specially can result in circular rtl.
3324
3325 Solve this by doing a normal pass across the first entry of the
3326 parallel, and only processing the SET_DESTs of the subsequent
3327 entries. Ug. */
3328
3329 if (code == PARALLEL
3330 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3331 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3332 {
3333 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3334
3335 /* If this substitution failed, this whole thing fails. */
3336 if (GET_CODE (new) == CLOBBER
3337 && XEXP (new, 0) == const0_rtx)
3338 return new;
3339
3340 SUBST (XVECEXP (x, 0, 0), new);
3341
3342 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3343 {
3344 rtx dest = SET_DEST (XVECEXP (x, 0, i));
3345
3346 if (GET_CODE (dest) != REG
3347 && GET_CODE (dest) != CC0
3348 && GET_CODE (dest) != PC)
3349 {
3350 new = subst (dest, from, to, 0, unique_copy);
3351
3352 /* If this substitution failed, this whole thing fails. */
3353 if (GET_CODE (new) == CLOBBER
3354 && XEXP (new, 0) == const0_rtx)
3355 return new;
3356
3357 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3358 }
3359 }
3360 }
3361 else
3362 {
3363 len = GET_RTX_LENGTH (code);
3364 fmt = GET_RTX_FORMAT (code);
3365
3366 /* We don't need to process a SET_DEST that is a register, CC0,
3367 or PC, so set up to skip this common case. All other cases
3368 where we want to suppress replacing something inside a
3369 SET_SRC are handled via the IN_DEST operand. */
3370 if (code == SET
3371 && (GET_CODE (SET_DEST (x)) == REG
3372 || GET_CODE (SET_DEST (x)) == CC0
3373 || GET_CODE (SET_DEST (x)) == PC))
3374 fmt = "ie";
3375
3376 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3377 constant. */
3378 if (fmt[0] == 'e')
3379 op0_mode = GET_MODE (XEXP (x, 0));
3380
3381 for (i = 0; i < len; i++)
3382 {
3383 if (fmt[i] == 'E')
3384 {
3385 int j;
3386 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3387 {
3388 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3389 {
3390 new = (unique_copy && n_occurrences
3391 ? copy_rtx (to) : to);
3392 n_occurrences++;
3393 }
3394 else
3395 {
3396 new = subst (XVECEXP (x, i, j), from, to, 0,
3397 unique_copy);
3398
3399 /* If this substitution failed, this whole thing
3400 fails. */
3401 if (GET_CODE (new) == CLOBBER
3402 && XEXP (new, 0) == const0_rtx)
3403 return new;
3404 }
3405
3406 SUBST (XVECEXP (x, i, j), new);
3407 }
3408 }
3409 else if (fmt[i] == 'e')
3410 {
3411 /* If this is a register being set, ignore it. */
3412 new = XEXP (x, i);
3413 if (in_dest
3414 && (code == SUBREG || code == STRICT_LOW_PART
3415 || code == ZERO_EXTRACT)
3416 && i == 0
3417 && GET_CODE (new) == REG)
3418 ;
3419
3420 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
3421 {
3422 /* In general, don't install a subreg involving two
3423 modes not tieable. It can worsen register
3424 allocation, and can even make invalid reload
3425 insns, since the reg inside may need to be copied
3426 from in the outside mode, and that may be invalid
3427 if it is an fp reg copied in integer mode.
3428
3429 We allow two exceptions to this: It is valid if
3430 it is inside another SUBREG and the mode of that
3431 SUBREG and the mode of the inside of TO is
3432 tieable and it is valid if X is a SET that copies
3433 FROM to CC0. */
3434
3435 if (GET_CODE (to) == SUBREG
3436 && ! MODES_TIEABLE_P (GET_MODE (to),
3437 GET_MODE (SUBREG_REG (to)))
3438 && ! (code == SUBREG
3439 && MODES_TIEABLE_P (GET_MODE (x),
3440 GET_MODE (SUBREG_REG (to))))
3441 #ifdef HAVE_cc0
3442 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
3443 #endif
3444 )
3445 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3446
3447 #ifdef CLASS_CANNOT_CHANGE_MODE
3448 if (code == SUBREG
3449 && GET_CODE (to) == REG
3450 && REGNO (to) < FIRST_PSEUDO_REGISTER
3451 && (TEST_HARD_REG_BIT
3452 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
3453 REGNO (to)))
3454 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (to),
3455 GET_MODE (x)))
3456 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3457 #endif
3458
3459 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3460 n_occurrences++;
3461 }
3462 else
3463 /* If we are in a SET_DEST, suppress most cases unless we
3464 have gone inside a MEM, in which case we want to
3465 simplify the address. We assume here that things that
3466 are actually part of the destination have their inner
3467 parts in the first expression. This is true for SUBREG,
3468 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3469 things aside from REG and MEM that should appear in a
3470 SET_DEST. */
3471 new = subst (XEXP (x, i), from, to,
3472 (((in_dest
3473 && (code == SUBREG || code == STRICT_LOW_PART
3474 || code == ZERO_EXTRACT))
3475 || code == SET)
3476 && i == 0), unique_copy);
3477
3478 /* If we found that we will have to reject this combination,
3479 indicate that by returning the CLOBBER ourselves, rather than
3480 an expression containing it. This will speed things up as
3481 well as prevent accidents where two CLOBBERs are considered
3482 to be equal, thus producing an incorrect simplification. */
3483
3484 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3485 return new;
3486
3487 SUBST (XEXP (x, i), new);
3488 }
3489 }
3490 }
3491
3492 /* Try to simplify X. If the simplification changed the code, it is likely
3493 that further simplification will help, so loop, but limit the number
3494 of repetitions that will be performed. */
3495
3496 for (i = 0; i < 4; i++)
3497 {
3498 /* If X is sufficiently simple, don't bother trying to do anything
3499 with it. */
3500 if (code != CONST_INT && code != REG && code != CLOBBER)
3501 x = combine_simplify_rtx (x, op0_mode, i == 3, in_dest);
3502
3503 if (GET_CODE (x) == code)
3504 break;
3505
3506 code = GET_CODE (x);
3507
3508 /* We no longer know the original mode of operand 0 since we
3509 have changed the form of X) */
3510 op0_mode = VOIDmode;
3511 }
3512
3513 return x;
3514 }
3515 \f
3516 /* Simplify X, a piece of RTL. We just operate on the expression at the
3517 outer level; call `subst' to simplify recursively. Return the new
3518 expression.
3519
3520 OP0_MODE is the original mode of XEXP (x, 0); LAST is nonzero if this
3521 will be the iteration even if an expression with a code different from
3522 X is returned; IN_DEST is nonzero if we are inside a SET_DEST. */
3523
3524 static rtx
3525 combine_simplify_rtx (x, op0_mode, last, in_dest)
3526 rtx x;
3527 enum machine_mode op0_mode;
3528 int last;
3529 int in_dest;
3530 {
3531 enum rtx_code code = GET_CODE (x);
3532 enum machine_mode mode = GET_MODE (x);
3533 rtx temp;
3534 rtx reversed;
3535 int i;
3536
3537 /* If this is a commutative operation, put a constant last and a complex
3538 expression first. We don't need to do this for comparisons here. */
3539 if (GET_RTX_CLASS (code) == 'c'
3540 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
3541 {
3542 temp = XEXP (x, 0);
3543 SUBST (XEXP (x, 0), XEXP (x, 1));
3544 SUBST (XEXP (x, 1), temp);
3545 }
3546
3547 /* If this is a PLUS, MINUS, or MULT, and the first operand is the
3548 sign extension of a PLUS with a constant, reverse the order of the sign
3549 extension and the addition. Note that this not the same as the original
3550 code, but overflow is undefined for signed values. Also note that the
3551 PLUS will have been partially moved "inside" the sign-extension, so that
3552 the first operand of X will really look like:
3553 (ashiftrt (plus (ashift A C4) C5) C4).
3554 We convert this to
3555 (plus (ashiftrt (ashift A C4) C2) C4)
3556 and replace the first operand of X with that expression. Later parts
3557 of this function may simplify the expression further.
3558
3559 For example, if we start with (mult (sign_extend (plus A C1)) C2),
3560 we swap the SIGN_EXTEND and PLUS. Later code will apply the
3561 distributive law to produce (plus (mult (sign_extend X) C1) C3).
3562
3563 We do this to simplify address expressions. */
3564
3565 if ((code == PLUS || code == MINUS || code == MULT)
3566 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3567 && GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
3568 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ASHIFT
3569 && GET_CODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1)) == CONST_INT
3570 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3571 && XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1) == XEXP (XEXP (x, 0), 1)
3572 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
3573 && (temp = simplify_binary_operation (ASHIFTRT, mode,
3574 XEXP (XEXP (XEXP (x, 0), 0), 1),
3575 XEXP (XEXP (x, 0), 1))) != 0)
3576 {
3577 rtx new
3578 = simplify_shift_const (NULL_RTX, ASHIFT, mode,
3579 XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0),
3580 INTVAL (XEXP (XEXP (x, 0), 1)));
3581
3582 new = simplify_shift_const (NULL_RTX, ASHIFTRT, mode, new,
3583 INTVAL (XEXP (XEXP (x, 0), 1)));
3584
3585 SUBST (XEXP (x, 0), gen_binary (PLUS, mode, new, temp));
3586 }
3587
3588 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3589 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3590 things. Check for cases where both arms are testing the same
3591 condition.
3592
3593 Don't do anything if all operands are very simple. */
3594
3595 if (((GET_RTX_CLASS (code) == '2' || GET_RTX_CLASS (code) == 'c'
3596 || GET_RTX_CLASS (code) == '<')
3597 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3598 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3599 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3600 == 'o')))
3601 || (GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o'
3602 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3603 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 1))))
3604 == 'o')))))
3605 || (GET_RTX_CLASS (code) == '1'
3606 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3607 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3608 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3609 == 'o'))))))
3610 {
3611 rtx cond, true_rtx, false_rtx;
3612
3613 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
3614 if (cond != 0
3615 /* If everything is a comparison, what we have is highly unlikely
3616 to be simpler, so don't use it. */
3617 && ! (GET_RTX_CLASS (code) == '<'
3618 && (GET_RTX_CLASS (GET_CODE (true_rtx)) == '<'
3619 || GET_RTX_CLASS (GET_CODE (false_rtx)) == '<')))
3620 {
3621 rtx cop1 = const0_rtx;
3622 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3623
3624 if (cond_code == NE && GET_RTX_CLASS (GET_CODE (cond)) == '<')
3625 return x;
3626
3627 /* Simplify the alternative arms; this may collapse the true and
3628 false arms to store-flag values. */
3629 true_rtx = subst (true_rtx, pc_rtx, pc_rtx, 0, 0);
3630 false_rtx = subst (false_rtx, pc_rtx, pc_rtx, 0, 0);
3631
3632 /* If true_rtx and false_rtx are not general_operands, an if_then_else
3633 is unlikely to be simpler. */
3634 if (general_operand (true_rtx, VOIDmode)
3635 && general_operand (false_rtx, VOIDmode))
3636 {
3637 /* Restarting if we generate a store-flag expression will cause
3638 us to loop. Just drop through in this case. */
3639
3640 /* If the result values are STORE_FLAG_VALUE and zero, we can
3641 just make the comparison operation. */
3642 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
3643 x = gen_binary (cond_code, mode, cond, cop1);
3644 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
3645 && reverse_condition (cond_code) != UNKNOWN)
3646 x = gen_binary (reverse_condition (cond_code),
3647 mode, cond, cop1);
3648
3649 /* Likewise, we can make the negate of a comparison operation
3650 if the result values are - STORE_FLAG_VALUE and zero. */
3651 else if (GET_CODE (true_rtx) == CONST_INT
3652 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
3653 && false_rtx == const0_rtx)
3654 x = simplify_gen_unary (NEG, mode,
3655 gen_binary (cond_code, mode, cond,
3656 cop1),
3657 mode);
3658 else if (GET_CODE (false_rtx) == CONST_INT
3659 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
3660 && true_rtx == const0_rtx)
3661 x = simplify_gen_unary (NEG, mode,
3662 gen_binary (reverse_condition
3663 (cond_code),
3664 mode, cond, cop1),
3665 mode);
3666 else
3667 return gen_rtx_IF_THEN_ELSE (mode,
3668 gen_binary (cond_code, VOIDmode,
3669 cond, cop1),
3670 true_rtx, false_rtx);
3671
3672 code = GET_CODE (x);
3673 op0_mode = VOIDmode;
3674 }
3675 }
3676 }
3677
3678 /* Try to fold this expression in case we have constants that weren't
3679 present before. */
3680 temp = 0;
3681 switch (GET_RTX_CLASS (code))
3682 {
3683 case '1':
3684 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
3685 break;
3686 case '<':
3687 {
3688 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
3689 if (cmp_mode == VOIDmode)
3690 {
3691 cmp_mode = GET_MODE (XEXP (x, 1));
3692 if (cmp_mode == VOIDmode)
3693 cmp_mode = op0_mode;
3694 }
3695 temp = simplify_relational_operation (code, cmp_mode,
3696 XEXP (x, 0), XEXP (x, 1));
3697 }
3698 #ifdef FLOAT_STORE_FLAG_VALUE
3699 if (temp != 0 && GET_MODE_CLASS (mode) == MODE_FLOAT)
3700 {
3701 if (temp == const0_rtx)
3702 temp = CONST0_RTX (mode);
3703 else
3704 temp = immed_real_const_1 (FLOAT_STORE_FLAG_VALUE (mode), mode);
3705 }
3706 #endif
3707 break;
3708 case 'c':
3709 case '2':
3710 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
3711 break;
3712 case 'b':
3713 case '3':
3714 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
3715 XEXP (x, 1), XEXP (x, 2));
3716 break;
3717 }
3718
3719 if (temp)
3720 {
3721 x = temp;
3722 code = GET_CODE (temp);
3723 op0_mode = VOIDmode;
3724 mode = GET_MODE (temp);
3725 }
3726
3727 /* First see if we can apply the inverse distributive law. */
3728 if (code == PLUS || code == MINUS
3729 || code == AND || code == IOR || code == XOR)
3730 {
3731 x = apply_distributive_law (x);
3732 code = GET_CODE (x);
3733 op0_mode = VOIDmode;
3734 }
3735
3736 /* If CODE is an associative operation not otherwise handled, see if we
3737 can associate some operands. This can win if they are constants or
3738 if they are logically related (i.e. (a & b) & a). */
3739 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
3740 || code == AND || code == IOR || code == XOR
3741 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
3742 && ((INTEGRAL_MODE_P (mode) && code != DIV)
3743 || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
3744 {
3745 if (GET_CODE (XEXP (x, 0)) == code)
3746 {
3747 rtx other = XEXP (XEXP (x, 0), 0);
3748 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
3749 rtx inner_op1 = XEXP (x, 1);
3750 rtx inner;
3751
3752 /* Make sure we pass the constant operand if any as the second
3753 one if this is a commutative operation. */
3754 if (CONSTANT_P (inner_op0) && GET_RTX_CLASS (code) == 'c')
3755 {
3756 rtx tem = inner_op0;
3757 inner_op0 = inner_op1;
3758 inner_op1 = tem;
3759 }
3760 inner = simplify_binary_operation (code == MINUS ? PLUS
3761 : code == DIV ? MULT
3762 : code,
3763 mode, inner_op0, inner_op1);
3764
3765 /* For commutative operations, try the other pair if that one
3766 didn't simplify. */
3767 if (inner == 0 && GET_RTX_CLASS (code) == 'c')
3768 {
3769 other = XEXP (XEXP (x, 0), 1);
3770 inner = simplify_binary_operation (code, mode,
3771 XEXP (XEXP (x, 0), 0),
3772 XEXP (x, 1));
3773 }
3774
3775 if (inner)
3776 return gen_binary (code, mode, other, inner);
3777 }
3778 }
3779
3780 /* A little bit of algebraic simplification here. */
3781 switch (code)
3782 {
3783 case MEM:
3784 /* Ensure that our address has any ASHIFTs converted to MULT in case
3785 address-recognizing predicates are called later. */
3786 temp = make_compound_operation (XEXP (x, 0), MEM);
3787 SUBST (XEXP (x, 0), temp);
3788 break;
3789
3790 case SUBREG:
3791 if (op0_mode == VOIDmode)
3792 op0_mode = GET_MODE (SUBREG_REG (x));
3793
3794 /* simplify_subreg can't use gen_lowpart_for_combine. */
3795 if (CONSTANT_P (SUBREG_REG (x))
3796 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x))
3797 return gen_lowpart_for_combine (mode, SUBREG_REG (x));
3798
3799 {
3800 rtx temp;
3801 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
3802 SUBREG_BYTE (x));
3803 if (temp)
3804 return temp;
3805 }
3806
3807 /* Note that we cannot do any narrowing for non-constants since
3808 we might have been counting on using the fact that some bits were
3809 zero. We now do this in the SET. */
3810
3811 break;
3812
3813 case NOT:
3814 /* (not (plus X -1)) can become (neg X). */
3815 if (GET_CODE (XEXP (x, 0)) == PLUS
3816 && XEXP (XEXP (x, 0), 1) == constm1_rtx)
3817 return gen_rtx_NEG (mode, XEXP (XEXP (x, 0), 0));
3818
3819 /* Similarly, (not (neg X)) is (plus X -1). */
3820 if (GET_CODE (XEXP (x, 0)) == NEG)
3821 return gen_rtx_PLUS (mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
3822
3823 /* (not (xor X C)) for C constant is (xor X D) with D = ~C. */
3824 if (GET_CODE (XEXP (x, 0)) == XOR
3825 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3826 && (temp = simplify_unary_operation (NOT, mode,
3827 XEXP (XEXP (x, 0), 1),
3828 mode)) != 0)
3829 return gen_binary (XOR, mode, XEXP (XEXP (x, 0), 0), temp);
3830
3831 /* (not (ashift 1 X)) is (rotate ~1 X). We used to do this for operands
3832 other than 1, but that is not valid. We could do a similar
3833 simplification for (not (lshiftrt C X)) where C is just the sign bit,
3834 but this doesn't seem common enough to bother with. */
3835 if (GET_CODE (XEXP (x, 0)) == ASHIFT
3836 && XEXP (XEXP (x, 0), 0) == const1_rtx)
3837 return gen_rtx_ROTATE (mode, simplify_gen_unary (NOT, mode,
3838 const1_rtx, mode),
3839 XEXP (XEXP (x, 0), 1));
3840
3841 if (GET_CODE (XEXP (x, 0)) == SUBREG
3842 && subreg_lowpart_p (XEXP (x, 0))
3843 && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
3844 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
3845 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
3846 && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
3847 {
3848 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
3849
3850 x = gen_rtx_ROTATE (inner_mode,
3851 simplify_gen_unary (NOT, inner_mode, const1_rtx,
3852 inner_mode),
3853 XEXP (SUBREG_REG (XEXP (x, 0)), 1));
3854 return gen_lowpart_for_combine (mode, x);
3855 }
3856
3857 /* If STORE_FLAG_VALUE is -1, (not (comparison foo bar)) can be done by
3858 reversing the comparison code if valid. */
3859 if (STORE_FLAG_VALUE == -1
3860 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
3861 && (reversed = reversed_comparison (x, mode, XEXP (XEXP (x, 0), 0),
3862 XEXP (XEXP (x, 0), 1))))
3863 return reversed;
3864
3865 /* (not (ashiftrt foo C)) where C is the number of bits in FOO minus 1
3866 is (ge foo (const_int 0)) if STORE_FLAG_VALUE is -1, so we can
3867 perform the above simplification. */
3868
3869 if (STORE_FLAG_VALUE == -1
3870 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3871 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3872 && INTVAL (XEXP (XEXP (x, 0), 1)) == GET_MODE_BITSIZE (mode) - 1)
3873 return gen_rtx_GE (mode, XEXP (XEXP (x, 0), 0), const0_rtx);
3874
3875 /* Apply De Morgan's laws to reduce number of patterns for machines
3876 with negating logical insns (and-not, nand, etc.). If result has
3877 only one NOT, put it first, since that is how the patterns are
3878 coded. */
3879
3880 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
3881 {
3882 rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
3883 enum machine_mode op_mode;
3884
3885 op_mode = GET_MODE (in1);
3886 in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
3887
3888 op_mode = GET_MODE (in2);
3889 if (op_mode == VOIDmode)
3890 op_mode = mode;
3891 in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
3892
3893 if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
3894 {
3895 rtx tem = in2;
3896 in2 = in1; in1 = tem;
3897 }
3898
3899 return gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
3900 mode, in1, in2);
3901 }
3902 break;
3903
3904 case NEG:
3905 /* (neg (plus X 1)) can become (not X). */
3906 if (GET_CODE (XEXP (x, 0)) == PLUS
3907 && XEXP (XEXP (x, 0), 1) == const1_rtx)
3908 return gen_rtx_NOT (mode, XEXP (XEXP (x, 0), 0));
3909
3910 /* Similarly, (neg (not X)) is (plus X 1). */
3911 if (GET_CODE (XEXP (x, 0)) == NOT)
3912 return plus_constant (XEXP (XEXP (x, 0), 0), 1);
3913
3914 /* (neg (minus X Y)) can become (minus Y X). */
3915 if (GET_CODE (XEXP (x, 0)) == MINUS
3916 && (! FLOAT_MODE_P (mode)
3917 /* x-y != -(y-x) with IEEE floating point. */
3918 || TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
3919 || flag_unsafe_math_optimizations))
3920 return gen_binary (MINUS, mode, XEXP (XEXP (x, 0), 1),
3921 XEXP (XEXP (x, 0), 0));
3922
3923 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
3924 if (GET_CODE (XEXP (x, 0)) == XOR && XEXP (XEXP (x, 0), 1) == const1_rtx
3925 && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
3926 return gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
3927
3928 /* NEG commutes with ASHIFT since it is multiplication. Only do this
3929 if we can then eliminate the NEG (e.g.,
3930 if the operand is a constant). */
3931
3932 if (GET_CODE (XEXP (x, 0)) == ASHIFT)
3933 {
3934 temp = simplify_unary_operation (NEG, mode,
3935 XEXP (XEXP (x, 0), 0), mode);
3936 if (temp)
3937 return gen_binary (ASHIFT, mode, temp, XEXP (XEXP (x, 0), 1));
3938 }
3939
3940 temp = expand_compound_operation (XEXP (x, 0));
3941
3942 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
3943 replaced by (lshiftrt X C). This will convert
3944 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
3945
3946 if (GET_CODE (temp) == ASHIFTRT
3947 && GET_CODE (XEXP (temp, 1)) == CONST_INT
3948 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
3949 return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
3950 INTVAL (XEXP (temp, 1)));
3951
3952 /* If X has only a single bit that might be nonzero, say, bit I, convert
3953 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
3954 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
3955 (sign_extract X 1 Y). But only do this if TEMP isn't a register
3956 or a SUBREG of one since we'd be making the expression more
3957 complex if it was just a register. */
3958
3959 if (GET_CODE (temp) != REG
3960 && ! (GET_CODE (temp) == SUBREG
3961 && GET_CODE (SUBREG_REG (temp)) == REG)
3962 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
3963 {
3964 rtx temp1 = simplify_shift_const
3965 (NULL_RTX, ASHIFTRT, mode,
3966 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
3967 GET_MODE_BITSIZE (mode) - 1 - i),
3968 GET_MODE_BITSIZE (mode) - 1 - i);
3969
3970 /* If all we did was surround TEMP with the two shifts, we
3971 haven't improved anything, so don't use it. Otherwise,
3972 we are better off with TEMP1. */
3973 if (GET_CODE (temp1) != ASHIFTRT
3974 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
3975 || XEXP (XEXP (temp1, 0), 0) != temp)
3976 return temp1;
3977 }
3978 break;
3979
3980 case TRUNCATE:
3981 /* We can't handle truncation to a partial integer mode here
3982 because we don't know the real bitsize of the partial
3983 integer mode. */
3984 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
3985 break;
3986
3987 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
3988 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
3989 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
3990 SUBST (XEXP (x, 0),
3991 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
3992 GET_MODE_MASK (mode), NULL_RTX, 0));
3993
3994 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
3995 if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
3996 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
3997 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
3998 return XEXP (XEXP (x, 0), 0);
3999
4000 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
4001 (OP:SI foo:SI) if OP is NEG or ABS. */
4002 if ((GET_CODE (XEXP (x, 0)) == ABS
4003 || GET_CODE (XEXP (x, 0)) == NEG)
4004 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
4005 || GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND)
4006 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4007 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4008 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4009
4010 /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
4011 (truncate:SI x). */
4012 if (GET_CODE (XEXP (x, 0)) == SUBREG
4013 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == TRUNCATE
4014 && subreg_lowpart_p (XEXP (x, 0)))
4015 return SUBREG_REG (XEXP (x, 0));
4016
4017 /* If we know that the value is already truncated, we can
4018 replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
4019 is nonzero for the corresponding modes. But don't do this
4020 for an (LSHIFTRT (MULT ...)) since this will cause problems
4021 with the umulXi3_highpart patterns. */
4022 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4023 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
4024 && num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4025 >= GET_MODE_BITSIZE (mode) + 1
4026 && ! (GET_CODE (XEXP (x, 0)) == LSHIFTRT
4027 && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT))
4028 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4029
4030 /* A truncate of a comparison can be replaced with a subreg if
4031 STORE_FLAG_VALUE permits. This is like the previous test,
4032 but it works even if the comparison is done in a mode larger
4033 than HOST_BITS_PER_WIDE_INT. */
4034 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4035 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
4036 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
4037 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4038
4039 /* Similarly, a truncate of a register whose value is a
4040 comparison can be replaced with a subreg if STORE_FLAG_VALUE
4041 permits. */
4042 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4043 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4044 && (temp = get_last_value (XEXP (x, 0)))
4045 && GET_RTX_CLASS (GET_CODE (temp)) == '<')
4046 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4047
4048 break;
4049
4050 case FLOAT_TRUNCATE:
4051 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
4052 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4053 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4054 return XEXP (XEXP (x, 0), 0);
4055
4056 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
4057 (OP:SF foo:SF) if OP is NEG or ABS. */
4058 if ((GET_CODE (XEXP (x, 0)) == ABS
4059 || GET_CODE (XEXP (x, 0)) == NEG)
4060 && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
4061 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4062 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4063 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4064
4065 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
4066 is (float_truncate:SF x). */
4067 if (GET_CODE (XEXP (x, 0)) == SUBREG
4068 && subreg_lowpart_p (XEXP (x, 0))
4069 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
4070 return SUBREG_REG (XEXP (x, 0));
4071 break;
4072
4073 #ifdef HAVE_cc0
4074 case COMPARE:
4075 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4076 using cc0, in which case we want to leave it as a COMPARE
4077 so we can distinguish it from a register-register-copy. */
4078 if (XEXP (x, 1) == const0_rtx)
4079 return XEXP (x, 0);
4080
4081 /* In IEEE floating point, x-0 is not the same as x. */
4082 if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
4083 || ! FLOAT_MODE_P (GET_MODE (XEXP (x, 0)))
4084 || flag_unsafe_math_optimizations)
4085 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4086 return XEXP (x, 0);
4087 break;
4088 #endif
4089
4090 case CONST:
4091 /* (const (const X)) can become (const X). Do it this way rather than
4092 returning the inner CONST since CONST can be shared with a
4093 REG_EQUAL note. */
4094 if (GET_CODE (XEXP (x, 0)) == CONST)
4095 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4096 break;
4097
4098 #ifdef HAVE_lo_sum
4099 case LO_SUM:
4100 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4101 can add in an offset. find_split_point will split this address up
4102 again if it doesn't match. */
4103 if (GET_CODE (XEXP (x, 0)) == HIGH
4104 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4105 return XEXP (x, 1);
4106 break;
4107 #endif
4108
4109 case PLUS:
4110 /* If we have (plus (plus (A const) B)), associate it so that CONST is
4111 outermost. That's because that's the way indexed addresses are
4112 supposed to appear. This code used to check many more cases, but
4113 they are now checked elsewhere. */
4114 if (GET_CODE (XEXP (x, 0)) == PLUS
4115 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
4116 return gen_binary (PLUS, mode,
4117 gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
4118 XEXP (x, 1)),
4119 XEXP (XEXP (x, 0), 1));
4120
4121 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4122 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4123 bit-field and can be replaced by either a sign_extend or a
4124 sign_extract. The `and' may be a zero_extend and the two
4125 <c>, -<c> constants may be reversed. */
4126 if (GET_CODE (XEXP (x, 0)) == XOR
4127 && GET_CODE (XEXP (x, 1)) == CONST_INT
4128 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4129 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4130 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4131 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4132 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4133 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4134 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4135 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4136 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4137 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4138 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4139 == (unsigned int) i + 1))))
4140 return simplify_shift_const
4141 (NULL_RTX, ASHIFTRT, mode,
4142 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4143 XEXP (XEXP (XEXP (x, 0), 0), 0),
4144 GET_MODE_BITSIZE (mode) - (i + 1)),
4145 GET_MODE_BITSIZE (mode) - (i + 1));
4146
4147 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
4148 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
4149 is 1. This produces better code than the alternative immediately
4150 below. */
4151 if (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
4152 && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
4153 || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx))
4154 && (reversed = reversed_comparison (XEXP (x, 0), mode,
4155 XEXP (XEXP (x, 0), 0),
4156 XEXP (XEXP (x, 0), 1))))
4157 return
4158 simplify_gen_unary (NEG, mode, reversed, mode);
4159
4160 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4161 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4162 the bitsize of the mode - 1. This allows simplification of
4163 "a = (b & 8) == 0;" */
4164 if (XEXP (x, 1) == constm1_rtx
4165 && GET_CODE (XEXP (x, 0)) != REG
4166 && ! (GET_CODE (XEXP (x,0)) == SUBREG
4167 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == REG)
4168 && nonzero_bits (XEXP (x, 0), mode) == 1)
4169 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4170 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4171 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4172 GET_MODE_BITSIZE (mode) - 1),
4173 GET_MODE_BITSIZE (mode) - 1);
4174
4175 /* If we are adding two things that have no bits in common, convert
4176 the addition into an IOR. This will often be further simplified,
4177 for example in cases like ((a & 1) + (a & 2)), which can
4178 become a & 3. */
4179
4180 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4181 && (nonzero_bits (XEXP (x, 0), mode)
4182 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4183 {
4184 /* Try to simplify the expression further. */
4185 rtx tor = gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4186 temp = combine_simplify_rtx (tor, mode, last, in_dest);
4187
4188 /* If we could, great. If not, do not go ahead with the IOR
4189 replacement, since PLUS appears in many special purpose
4190 address arithmetic instructions. */
4191 if (GET_CODE (temp) != CLOBBER && temp != tor)
4192 return temp;
4193 }
4194 break;
4195
4196 case MINUS:
4197 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
4198 by reversing the comparison code if valid. */
4199 if (STORE_FLAG_VALUE == 1
4200 && XEXP (x, 0) == const1_rtx
4201 && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) == '<'
4202 && (reversed = reversed_comparison (XEXP (x, 1), mode,
4203 XEXP (XEXP (x, 1), 0),
4204 XEXP (XEXP (x, 1), 1))))
4205 return reversed;
4206
4207 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4208 (and <foo> (const_int pow2-1)) */
4209 if (GET_CODE (XEXP (x, 1)) == AND
4210 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4211 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4212 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4213 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4214 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4215
4216 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
4217 integers. */
4218 if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
4219 return gen_binary (MINUS, mode,
4220 gen_binary (MINUS, mode, XEXP (x, 0),
4221 XEXP (XEXP (x, 1), 0)),
4222 XEXP (XEXP (x, 1), 1));
4223 break;
4224
4225 case MULT:
4226 /* If we have (mult (plus A B) C), apply the distributive law and then
4227 the inverse distributive law to see if things simplify. This
4228 occurs mostly in addresses, often when unrolling loops. */
4229
4230 if (GET_CODE (XEXP (x, 0)) == PLUS)
4231 {
4232 x = apply_distributive_law
4233 (gen_binary (PLUS, mode,
4234 gen_binary (MULT, mode,
4235 XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
4236 gen_binary (MULT, mode,
4237 XEXP (XEXP (x, 0), 1),
4238 copy_rtx (XEXP (x, 1)))));
4239
4240 if (GET_CODE (x) != MULT)
4241 return x;
4242 }
4243 /* Try simplify a*(b/c) as (a*b)/c. */
4244 if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4245 && GET_CODE (XEXP (x, 0)) == DIV)
4246 {
4247 rtx tem = simplify_binary_operation (MULT, mode,
4248 XEXP (XEXP (x, 0), 0),
4249 XEXP (x, 1));
4250 if (tem)
4251 return gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4252 }
4253 break;
4254
4255 case UDIV:
4256 /* If this is a divide by a power of two, treat it as a shift if
4257 its first operand is a shift. */
4258 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4259 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4260 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4261 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4262 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4263 || GET_CODE (XEXP (x, 0)) == ROTATE
4264 || GET_CODE (XEXP (x, 0)) == ROTATERT))
4265 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4266 break;
4267
4268 case EQ: case NE:
4269 case GT: case GTU: case GE: case GEU:
4270 case LT: case LTU: case LE: case LEU:
4271 case UNEQ: case LTGT:
4272 case UNGT: case UNGE:
4273 case UNLT: case UNLE:
4274 case UNORDERED: case ORDERED:
4275 /* If the first operand is a condition code, we can't do anything
4276 with it. */
4277 if (GET_CODE (XEXP (x, 0)) == COMPARE
4278 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4279 #ifdef HAVE_cc0
4280 && XEXP (x, 0) != cc0_rtx
4281 #endif
4282 ))
4283 {
4284 rtx op0 = XEXP (x, 0);
4285 rtx op1 = XEXP (x, 1);
4286 enum rtx_code new_code;
4287
4288 if (GET_CODE (op0) == COMPARE)
4289 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4290
4291 /* Simplify our comparison, if possible. */
4292 new_code = simplify_comparison (code, &op0, &op1);
4293
4294 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4295 if only the low-order bit is possibly nonzero in X (such as when
4296 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4297 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4298 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4299 (plus X 1).
4300
4301 Remove any ZERO_EXTRACT we made when thinking this was a
4302 comparison. It may now be simpler to use, e.g., an AND. If a
4303 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4304 the call to make_compound_operation in the SET case. */
4305
4306 if (STORE_FLAG_VALUE == 1
4307 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4308 && op1 == const0_rtx
4309 && mode == GET_MODE (op0)
4310 && nonzero_bits (op0, mode) == 1)
4311 return gen_lowpart_for_combine (mode,
4312 expand_compound_operation (op0));
4313
4314 else if (STORE_FLAG_VALUE == 1
4315 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4316 && op1 == const0_rtx
4317 && mode == GET_MODE (op0)
4318 && (num_sign_bit_copies (op0, mode)
4319 == GET_MODE_BITSIZE (mode)))
4320 {
4321 op0 = expand_compound_operation (op0);
4322 return simplify_gen_unary (NEG, mode,
4323 gen_lowpart_for_combine (mode, op0),
4324 mode);
4325 }
4326
4327 else if (STORE_FLAG_VALUE == 1
4328 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4329 && op1 == const0_rtx
4330 && mode == GET_MODE (op0)
4331 && nonzero_bits (op0, mode) == 1)
4332 {
4333 op0 = expand_compound_operation (op0);
4334 return gen_binary (XOR, mode,
4335 gen_lowpart_for_combine (mode, op0),
4336 const1_rtx);
4337 }
4338
4339 else if (STORE_FLAG_VALUE == 1
4340 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4341 && op1 == const0_rtx
4342 && mode == GET_MODE (op0)
4343 && (num_sign_bit_copies (op0, mode)
4344 == GET_MODE_BITSIZE (mode)))
4345 {
4346 op0 = expand_compound_operation (op0);
4347 return plus_constant (gen_lowpart_for_combine (mode, op0), 1);
4348 }
4349
4350 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4351 those above. */
4352 if (STORE_FLAG_VALUE == -1
4353 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4354 && op1 == const0_rtx
4355 && (num_sign_bit_copies (op0, mode)
4356 == GET_MODE_BITSIZE (mode)))
4357 return gen_lowpart_for_combine (mode,
4358 expand_compound_operation (op0));
4359
4360 else if (STORE_FLAG_VALUE == -1
4361 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4362 && op1 == const0_rtx
4363 && mode == GET_MODE (op0)
4364 && nonzero_bits (op0, mode) == 1)
4365 {
4366 op0 = expand_compound_operation (op0);
4367 return simplify_gen_unary (NEG, mode,
4368 gen_lowpart_for_combine (mode, op0),
4369 mode);
4370 }
4371
4372 else if (STORE_FLAG_VALUE == -1
4373 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4374 && op1 == const0_rtx
4375 && mode == GET_MODE (op0)
4376 && (num_sign_bit_copies (op0, mode)
4377 == GET_MODE_BITSIZE (mode)))
4378 {
4379 op0 = expand_compound_operation (op0);
4380 return simplify_gen_unary (NOT, mode,
4381 gen_lowpart_for_combine (mode, op0),
4382 mode);
4383 }
4384
4385 /* If X is 0/1, (eq X 0) is X-1. */
4386 else if (STORE_FLAG_VALUE == -1
4387 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4388 && op1 == const0_rtx
4389 && mode == GET_MODE (op0)
4390 && nonzero_bits (op0, mode) == 1)
4391 {
4392 op0 = expand_compound_operation (op0);
4393 return plus_constant (gen_lowpart_for_combine (mode, op0), -1);
4394 }
4395
4396 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4397 one bit that might be nonzero, we can convert (ne x 0) to
4398 (ashift x c) where C puts the bit in the sign bit. Remove any
4399 AND with STORE_FLAG_VALUE when we are done, since we are only
4400 going to test the sign bit. */
4401 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4402 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4403 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4404 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE(mode)-1))
4405 && op1 == const0_rtx
4406 && mode == GET_MODE (op0)
4407 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4408 {
4409 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4410 expand_compound_operation (op0),
4411 GET_MODE_BITSIZE (mode) - 1 - i);
4412 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4413 return XEXP (x, 0);
4414 else
4415 return x;
4416 }
4417
4418 /* If the code changed, return a whole new comparison. */
4419 if (new_code != code)
4420 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
4421
4422 /* Otherwise, keep this operation, but maybe change its operands.
4423 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4424 SUBST (XEXP (x, 0), op0);
4425 SUBST (XEXP (x, 1), op1);
4426 }
4427 break;
4428
4429 case IF_THEN_ELSE:
4430 return simplify_if_then_else (x);
4431
4432 case ZERO_EXTRACT:
4433 case SIGN_EXTRACT:
4434 case ZERO_EXTEND:
4435 case SIGN_EXTEND:
4436 /* If we are processing SET_DEST, we are done. */
4437 if (in_dest)
4438 return x;
4439
4440 return expand_compound_operation (x);
4441
4442 case SET:
4443 return simplify_set (x);
4444
4445 case AND:
4446 case IOR:
4447 case XOR:
4448 return simplify_logical (x, last);
4449
4450 case ABS:
4451 /* (abs (neg <foo>)) -> (abs <foo>) */
4452 if (GET_CODE (XEXP (x, 0)) == NEG)
4453 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4454
4455 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4456 do nothing. */
4457 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
4458 break;
4459
4460 /* If operand is something known to be positive, ignore the ABS. */
4461 if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
4462 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4463 <= HOST_BITS_PER_WIDE_INT)
4464 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4465 & ((HOST_WIDE_INT) 1
4466 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
4467 == 0)))
4468 return XEXP (x, 0);
4469
4470 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4471 if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
4472 return gen_rtx_NEG (mode, XEXP (x, 0));
4473
4474 break;
4475
4476 case FFS:
4477 /* (ffs (*_extend <X>)) = (ffs <X>) */
4478 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4479 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4480 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4481 break;
4482
4483 case FLOAT:
4484 /* (float (sign_extend <X>)) = (float <X>). */
4485 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
4486 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4487 break;
4488
4489 case ASHIFT:
4490 case LSHIFTRT:
4491 case ASHIFTRT:
4492 case ROTATE:
4493 case ROTATERT:
4494 /* If this is a shift by a constant amount, simplify it. */
4495 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4496 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4497 INTVAL (XEXP (x, 1)));
4498
4499 #ifdef SHIFT_COUNT_TRUNCATED
4500 else if (SHIFT_COUNT_TRUNCATED && GET_CODE (XEXP (x, 1)) != REG)
4501 SUBST (XEXP (x, 1),
4502 force_to_mode (XEXP (x, 1), GET_MODE (x),
4503 ((HOST_WIDE_INT) 1
4504 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4505 - 1,
4506 NULL_RTX, 0));
4507 #endif
4508
4509 break;
4510
4511 case VEC_SELECT:
4512 {
4513 rtx op0 = XEXP (x, 0);
4514 rtx op1 = XEXP (x, 1);
4515 int len;
4516
4517 if (GET_CODE (op1) != PARALLEL)
4518 abort ();
4519 len = XVECLEN (op1, 0);
4520 if (len == 1
4521 && GET_CODE (XVECEXP (op1, 0, 0)) == CONST_INT
4522 && GET_CODE (op0) == VEC_CONCAT)
4523 {
4524 int offset = INTVAL (XVECEXP (op1, 0, 0)) * GET_MODE_SIZE (GET_MODE (x));
4525
4526 /* Try to find the element in the VEC_CONCAT. */
4527 for (;;)
4528 {
4529 if (GET_MODE (op0) == GET_MODE (x))
4530 return op0;
4531 if (GET_CODE (op0) == VEC_CONCAT)
4532 {
4533 HOST_WIDE_INT op0_size = GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)));
4534 if (op0_size < offset)
4535 op0 = XEXP (op0, 0);
4536 else
4537 {
4538 offset -= op0_size;
4539 op0 = XEXP (op0, 1);
4540 }
4541 }
4542 else
4543 break;
4544 }
4545 }
4546 }
4547
4548 break;
4549
4550 default:
4551 break;
4552 }
4553
4554 return x;
4555 }
4556 \f
4557 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4558
4559 static rtx
4560 simplify_if_then_else (x)
4561 rtx x;
4562 {
4563 enum machine_mode mode = GET_MODE (x);
4564 rtx cond = XEXP (x, 0);
4565 rtx true_rtx = XEXP (x, 1);
4566 rtx false_rtx = XEXP (x, 2);
4567 enum rtx_code true_code = GET_CODE (cond);
4568 int comparison_p = GET_RTX_CLASS (true_code) == '<';
4569 rtx temp;
4570 int i;
4571 enum rtx_code false_code;
4572 rtx reversed;
4573
4574 /* Simplify storing of the truth value. */
4575 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
4576 return gen_binary (true_code, mode, XEXP (cond, 0), XEXP (cond, 1));
4577
4578 /* Also when the truth value has to be reversed. */
4579 if (comparison_p
4580 && true_rtx == const0_rtx && false_rtx == const_true_rtx
4581 && (reversed = reversed_comparison (cond, mode, XEXP (cond, 0),
4582 XEXP (cond, 1))))
4583 return reversed;
4584
4585 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4586 in it is being compared against certain values. Get the true and false
4587 comparisons and see if that says anything about the value of each arm. */
4588
4589 if (comparison_p
4590 && ((false_code = combine_reversed_comparison_code (cond))
4591 != UNKNOWN)
4592 && GET_CODE (XEXP (cond, 0)) == REG)
4593 {
4594 HOST_WIDE_INT nzb;
4595 rtx from = XEXP (cond, 0);
4596 rtx true_val = XEXP (cond, 1);
4597 rtx false_val = true_val;
4598 int swapped = 0;
4599
4600 /* If FALSE_CODE is EQ, swap the codes and arms. */
4601
4602 if (false_code == EQ)
4603 {
4604 swapped = 1, true_code = EQ, false_code = NE;
4605 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4606 }
4607
4608 /* If we are comparing against zero and the expression being tested has
4609 only a single bit that might be nonzero, that is its value when it is
4610 not equal to zero. Similarly if it is known to be -1 or 0. */
4611
4612 if (true_code == EQ && true_val == const0_rtx
4613 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4614 false_code = EQ, false_val = GEN_INT (nzb);
4615 else if (true_code == EQ && true_val == const0_rtx
4616 && (num_sign_bit_copies (from, GET_MODE (from))
4617 == GET_MODE_BITSIZE (GET_MODE (from))))
4618 false_code = EQ, false_val = constm1_rtx;
4619
4620 /* Now simplify an arm if we know the value of the register in the
4621 branch and it is used in the arm. Be careful due to the potential
4622 of locally-shared RTL. */
4623
4624 if (reg_mentioned_p (from, true_rtx))
4625 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
4626 from, true_val),
4627 pc_rtx, pc_rtx, 0, 0);
4628 if (reg_mentioned_p (from, false_rtx))
4629 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
4630 from, false_val),
4631 pc_rtx, pc_rtx, 0, 0);
4632
4633 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
4634 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
4635
4636 true_rtx = XEXP (x, 1);
4637 false_rtx = XEXP (x, 2);
4638 true_code = GET_CODE (cond);
4639 }
4640
4641 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4642 reversed, do so to avoid needing two sets of patterns for
4643 subtract-and-branch insns. Similarly if we have a constant in the true
4644 arm, the false arm is the same as the first operand of the comparison, or
4645 the false arm is more complicated than the true arm. */
4646
4647 if (comparison_p
4648 && combine_reversed_comparison_code (cond) != UNKNOWN
4649 && (true_rtx == pc_rtx
4650 || (CONSTANT_P (true_rtx)
4651 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
4652 || true_rtx == const0_rtx
4653 || (GET_RTX_CLASS (GET_CODE (true_rtx)) == 'o'
4654 && GET_RTX_CLASS (GET_CODE (false_rtx)) != 'o')
4655 || (GET_CODE (true_rtx) == SUBREG
4656 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (true_rtx))) == 'o'
4657 && GET_RTX_CLASS (GET_CODE (false_rtx)) != 'o')
4658 || reg_mentioned_p (true_rtx, false_rtx)
4659 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
4660 {
4661 true_code = reversed_comparison_code (cond, NULL);
4662 SUBST (XEXP (x, 0),
4663 reversed_comparison (cond, GET_MODE (cond), XEXP (cond, 0),
4664 XEXP (cond, 1)));
4665
4666 SUBST (XEXP (x, 1), false_rtx);
4667 SUBST (XEXP (x, 2), true_rtx);
4668
4669 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4670 cond = XEXP (x, 0);
4671
4672 /* It is possible that the conditional has been simplified out. */
4673 true_code = GET_CODE (cond);
4674 comparison_p = GET_RTX_CLASS (true_code) == '<';
4675 }
4676
4677 /* If the two arms are identical, we don't need the comparison. */
4678
4679 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
4680 return true_rtx;
4681
4682 /* Convert a == b ? b : a to "a". */
4683 if (true_code == EQ && ! side_effects_p (cond)
4684 && (! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4685 && rtx_equal_p (XEXP (cond, 0), false_rtx)
4686 && rtx_equal_p (XEXP (cond, 1), true_rtx))
4687 return false_rtx;
4688 else if (true_code == NE && ! side_effects_p (cond)
4689 && (! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4690 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4691 && rtx_equal_p (XEXP (cond, 1), false_rtx))
4692 return true_rtx;
4693
4694 /* Look for cases where we have (abs x) or (neg (abs X)). */
4695
4696 if (GET_MODE_CLASS (mode) == MODE_INT
4697 && GET_CODE (false_rtx) == NEG
4698 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
4699 && comparison_p
4700 && rtx_equal_p (true_rtx, XEXP (cond, 0))
4701 && ! side_effects_p (true_rtx))
4702 switch (true_code)
4703 {
4704 case GT:
4705 case GE:
4706 return simplify_gen_unary (ABS, mode, true_rtx, mode);
4707 case LT:
4708 case LE:
4709 return
4710 simplify_gen_unary (NEG, mode,
4711 simplify_gen_unary (ABS, mode, true_rtx, mode),
4712 mode);
4713 default:
4714 break;
4715 }
4716
4717 /* Look for MIN or MAX. */
4718
4719 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4720 && comparison_p
4721 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4722 && rtx_equal_p (XEXP (cond, 1), false_rtx)
4723 && ! side_effects_p (cond))
4724 switch (true_code)
4725 {
4726 case GE:
4727 case GT:
4728 return gen_binary (SMAX, mode, true_rtx, false_rtx);
4729 case LE:
4730 case LT:
4731 return gen_binary (SMIN, mode, true_rtx, false_rtx);
4732 case GEU:
4733 case GTU:
4734 return gen_binary (UMAX, mode, true_rtx, false_rtx);
4735 case LEU:
4736 case LTU:
4737 return gen_binary (UMIN, mode, true_rtx, false_rtx);
4738 default:
4739 break;
4740 }
4741
4742 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4743 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4744 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4745 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4746 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4747 neither 1 or -1, but it isn't worth checking for. */
4748
4749 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
4750 && comparison_p && mode != VOIDmode && ! side_effects_p (x))
4751 {
4752 rtx t = make_compound_operation (true_rtx, SET);
4753 rtx f = make_compound_operation (false_rtx, SET);
4754 rtx cond_op0 = XEXP (cond, 0);
4755 rtx cond_op1 = XEXP (cond, 1);
4756 enum rtx_code op = NIL, extend_op = NIL;
4757 enum machine_mode m = mode;
4758 rtx z = 0, c1 = NULL_RTX;
4759
4760 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
4761 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
4762 || GET_CODE (t) == ASHIFT
4763 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
4764 && rtx_equal_p (XEXP (t, 0), f))
4765 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
4766
4767 /* If an identity-zero op is commutative, check whether there
4768 would be a match if we swapped the operands. */
4769 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
4770 || GET_CODE (t) == XOR)
4771 && rtx_equal_p (XEXP (t, 1), f))
4772 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
4773 else if (GET_CODE (t) == SIGN_EXTEND
4774 && (GET_CODE (XEXP (t, 0)) == PLUS
4775 || GET_CODE (XEXP (t, 0)) == MINUS
4776 || GET_CODE (XEXP (t, 0)) == IOR
4777 || GET_CODE (XEXP (t, 0)) == XOR
4778 || GET_CODE (XEXP (t, 0)) == ASHIFT
4779 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4780 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4781 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4782 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4783 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4784 && (num_sign_bit_copies (f, GET_MODE (f))
4785 > (GET_MODE_BITSIZE (mode)
4786 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
4787 {
4788 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4789 extend_op = SIGN_EXTEND;
4790 m = GET_MODE (XEXP (t, 0));
4791 }
4792 else if (GET_CODE (t) == SIGN_EXTEND
4793 && (GET_CODE (XEXP (t, 0)) == PLUS
4794 || GET_CODE (XEXP (t, 0)) == IOR
4795 || GET_CODE (XEXP (t, 0)) == XOR)
4796 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4797 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4798 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4799 && (num_sign_bit_copies (f, GET_MODE (f))
4800 > (GET_MODE_BITSIZE (mode)
4801 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
4802 {
4803 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4804 extend_op = SIGN_EXTEND;
4805 m = GET_MODE (XEXP (t, 0));
4806 }
4807 else if (GET_CODE (t) == ZERO_EXTEND
4808 && (GET_CODE (XEXP (t, 0)) == PLUS
4809 || GET_CODE (XEXP (t, 0)) == MINUS
4810 || GET_CODE (XEXP (t, 0)) == IOR
4811 || GET_CODE (XEXP (t, 0)) == XOR
4812 || GET_CODE (XEXP (t, 0)) == ASHIFT
4813 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4814 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4815 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4816 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4817 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4818 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4819 && ((nonzero_bits (f, GET_MODE (f))
4820 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
4821 == 0))
4822 {
4823 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4824 extend_op = ZERO_EXTEND;
4825 m = GET_MODE (XEXP (t, 0));
4826 }
4827 else if (GET_CODE (t) == ZERO_EXTEND
4828 && (GET_CODE (XEXP (t, 0)) == PLUS
4829 || GET_CODE (XEXP (t, 0)) == IOR
4830 || GET_CODE (XEXP (t, 0)) == XOR)
4831 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4832 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4833 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4834 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4835 && ((nonzero_bits (f, GET_MODE (f))
4836 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
4837 == 0))
4838 {
4839 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4840 extend_op = ZERO_EXTEND;
4841 m = GET_MODE (XEXP (t, 0));
4842 }
4843
4844 if (z)
4845 {
4846 temp = subst (gen_binary (true_code, m, cond_op0, cond_op1),
4847 pc_rtx, pc_rtx, 0, 0);
4848 temp = gen_binary (MULT, m, temp,
4849 gen_binary (MULT, m, c1, const_true_rtx));
4850 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
4851 temp = gen_binary (op, m, gen_lowpart_for_combine (m, z), temp);
4852
4853 if (extend_op != NIL)
4854 temp = simplify_gen_unary (extend_op, mode, temp, m);
4855
4856 return temp;
4857 }
4858 }
4859
4860 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
4861 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
4862 negation of a single bit, we can convert this operation to a shift. We
4863 can actually do this more generally, but it doesn't seem worth it. */
4864
4865 if (true_code == NE && XEXP (cond, 1) == const0_rtx
4866 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
4867 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
4868 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
4869 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
4870 == GET_MODE_BITSIZE (mode))
4871 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
4872 return
4873 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4874 gen_lowpart_for_combine (mode, XEXP (cond, 0)), i);
4875
4876 return x;
4877 }
4878 \f
4879 /* Simplify X, a SET expression. Return the new expression. */
4880
4881 static rtx
4882 simplify_set (x)
4883 rtx x;
4884 {
4885 rtx src = SET_SRC (x);
4886 rtx dest = SET_DEST (x);
4887 enum machine_mode mode
4888 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
4889 rtx other_insn;
4890 rtx *cc_use;
4891
4892 /* (set (pc) (return)) gets written as (return). */
4893 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
4894 return src;
4895
4896 /* Now that we know for sure which bits of SRC we are using, see if we can
4897 simplify the expression for the object knowing that we only need the
4898 low-order bits. */
4899
4900 if (GET_MODE_CLASS (mode) == MODE_INT)
4901 {
4902 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, NULL_RTX, 0);
4903 SUBST (SET_SRC (x), src);
4904 }
4905
4906 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
4907 the comparison result and try to simplify it unless we already have used
4908 undobuf.other_insn. */
4909 if ((GET_CODE (src) == COMPARE
4910 #ifdef HAVE_cc0
4911 || dest == cc0_rtx
4912 #endif
4913 )
4914 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
4915 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
4916 && GET_RTX_CLASS (GET_CODE (*cc_use)) == '<'
4917 && rtx_equal_p (XEXP (*cc_use, 0), dest))
4918 {
4919 enum rtx_code old_code = GET_CODE (*cc_use);
4920 enum rtx_code new_code;
4921 rtx op0, op1;
4922 int other_changed = 0;
4923 enum machine_mode compare_mode = GET_MODE (dest);
4924
4925 if (GET_CODE (src) == COMPARE)
4926 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
4927 else
4928 op0 = src, op1 = const0_rtx;
4929
4930 /* Simplify our comparison, if possible. */
4931 new_code = simplify_comparison (old_code, &op0, &op1);
4932
4933 #ifdef EXTRA_CC_MODES
4934 /* If this machine has CC modes other than CCmode, check to see if we
4935 need to use a different CC mode here. */
4936 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
4937 #endif /* EXTRA_CC_MODES */
4938
4939 #if !defined (HAVE_cc0) && defined (EXTRA_CC_MODES)
4940 /* If the mode changed, we have to change SET_DEST, the mode in the
4941 compare, and the mode in the place SET_DEST is used. If SET_DEST is
4942 a hard register, just build new versions with the proper mode. If it
4943 is a pseudo, we lose unless it is only time we set the pseudo, in
4944 which case we can safely change its mode. */
4945 if (compare_mode != GET_MODE (dest))
4946 {
4947 unsigned int regno = REGNO (dest);
4948 rtx new_dest = gen_rtx_REG (compare_mode, regno);
4949
4950 if (regno < FIRST_PSEUDO_REGISTER
4951 || (REG_N_SETS (regno) == 1 && ! REG_USERVAR_P (dest)))
4952 {
4953 if (regno >= FIRST_PSEUDO_REGISTER)
4954 SUBST (regno_reg_rtx[regno], new_dest);
4955
4956 SUBST (SET_DEST (x), new_dest);
4957 SUBST (XEXP (*cc_use, 0), new_dest);
4958 other_changed = 1;
4959
4960 dest = new_dest;
4961 }
4962 }
4963 #endif
4964
4965 /* If the code changed, we have to build a new comparison in
4966 undobuf.other_insn. */
4967 if (new_code != old_code)
4968 {
4969 unsigned HOST_WIDE_INT mask;
4970
4971 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
4972 dest, const0_rtx));
4973
4974 /* If the only change we made was to change an EQ into an NE or
4975 vice versa, OP0 has only one bit that might be nonzero, and OP1
4976 is zero, check if changing the user of the condition code will
4977 produce a valid insn. If it won't, we can keep the original code
4978 in that insn by surrounding our operation with an XOR. */
4979
4980 if (((old_code == NE && new_code == EQ)
4981 || (old_code == EQ && new_code == NE))
4982 && ! other_changed && op1 == const0_rtx
4983 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
4984 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
4985 {
4986 rtx pat = PATTERN (other_insn), note = 0;
4987
4988 if ((recog_for_combine (&pat, other_insn, &note) < 0
4989 && ! check_asm_operands (pat)))
4990 {
4991 PUT_CODE (*cc_use, old_code);
4992 other_insn = 0;
4993
4994 op0 = gen_binary (XOR, GET_MODE (op0), op0, GEN_INT (mask));
4995 }
4996 }
4997
4998 other_changed = 1;
4999 }
5000
5001 if (other_changed)
5002 undobuf.other_insn = other_insn;
5003
5004 #ifdef HAVE_cc0
5005 /* If we are now comparing against zero, change our source if
5006 needed. If we do not use cc0, we always have a COMPARE. */
5007 if (op1 == const0_rtx && dest == cc0_rtx)
5008 {
5009 SUBST (SET_SRC (x), op0);
5010 src = op0;
5011 }
5012 else
5013 #endif
5014
5015 /* Otherwise, if we didn't previously have a COMPARE in the
5016 correct mode, we need one. */
5017 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5018 {
5019 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5020 src = SET_SRC (x);
5021 }
5022 else
5023 {
5024 /* Otherwise, update the COMPARE if needed. */
5025 SUBST (XEXP (src, 0), op0);
5026 SUBST (XEXP (src, 1), op1);
5027 }
5028 }
5029 else
5030 {
5031 /* Get SET_SRC in a form where we have placed back any
5032 compound expressions. Then do the checks below. */
5033 src = make_compound_operation (src, SET);
5034 SUBST (SET_SRC (x), src);
5035 }
5036
5037 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5038 and X being a REG or (subreg (reg)), we may be able to convert this to
5039 (set (subreg:m2 x) (op)).
5040
5041 We can always do this if M1 is narrower than M2 because that means that
5042 we only care about the low bits of the result.
5043
5044 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5045 perform a narrower operation than requested since the high-order bits will
5046 be undefined. On machine where it is defined, this transformation is safe
5047 as long as M1 and M2 have the same number of words. */
5048
5049 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5050 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (src))) != 'o'
5051 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5052 / UNITS_PER_WORD)
5053 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5054 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5055 #ifndef WORD_REGISTER_OPERATIONS
5056 && (GET_MODE_SIZE (GET_MODE (src))
5057 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5058 #endif
5059 #ifdef CLASS_CANNOT_CHANGE_MODE
5060 && ! (GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER
5061 && (TEST_HARD_REG_BIT
5062 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
5063 REGNO (dest)))
5064 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (src),
5065 GET_MODE (SUBREG_REG (src))))
5066 #endif
5067 && (GET_CODE (dest) == REG
5068 || (GET_CODE (dest) == SUBREG
5069 && GET_CODE (SUBREG_REG (dest)) == REG)))
5070 {
5071 SUBST (SET_DEST (x),
5072 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (src)),
5073 dest));
5074 SUBST (SET_SRC (x), SUBREG_REG (src));
5075
5076 src = SET_SRC (x), dest = SET_DEST (x);
5077 }
5078
5079 #ifdef LOAD_EXTEND_OP
5080 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5081 would require a paradoxical subreg. Replace the subreg with a
5082 zero_extend to avoid the reload that would otherwise be required. */
5083
5084 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5085 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != NIL
5086 && SUBREG_BYTE (src) == 0
5087 && (GET_MODE_SIZE (GET_MODE (src))
5088 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5089 && GET_CODE (SUBREG_REG (src)) == MEM)
5090 {
5091 SUBST (SET_SRC (x),
5092 gen_rtx (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5093 GET_MODE (src), SUBREG_REG (src)));
5094
5095 src = SET_SRC (x);
5096 }
5097 #endif
5098
5099 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5100 are comparing an item known to be 0 or -1 against 0, use a logical
5101 operation instead. Check for one of the arms being an IOR of the other
5102 arm with some value. We compute three terms to be IOR'ed together. In
5103 practice, at most two will be nonzero. Then we do the IOR's. */
5104
5105 if (GET_CODE (dest) != PC
5106 && GET_CODE (src) == IF_THEN_ELSE
5107 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5108 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5109 && XEXP (XEXP (src, 0), 1) == const0_rtx
5110 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5111 #ifdef HAVE_conditional_move
5112 && ! can_conditionally_move_p (GET_MODE (src))
5113 #endif
5114 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5115 GET_MODE (XEXP (XEXP (src, 0), 0)))
5116 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5117 && ! side_effects_p (src))
5118 {
5119 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5120 ? XEXP (src, 1) : XEXP (src, 2));
5121 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5122 ? XEXP (src, 2) : XEXP (src, 1));
5123 rtx term1 = const0_rtx, term2, term3;
5124
5125 if (GET_CODE (true_rtx) == IOR
5126 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5127 term1 = false_rtx, true_rtx = XEXP(true_rtx, 1), false_rtx = const0_rtx;
5128 else if (GET_CODE (true_rtx) == IOR
5129 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5130 term1 = false_rtx, true_rtx = XEXP(true_rtx, 0), false_rtx = const0_rtx;
5131 else if (GET_CODE (false_rtx) == IOR
5132 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5133 term1 = true_rtx, false_rtx = XEXP(false_rtx, 1), true_rtx = const0_rtx;
5134 else if (GET_CODE (false_rtx) == IOR
5135 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5136 term1 = true_rtx, false_rtx = XEXP(false_rtx, 0), true_rtx = const0_rtx;
5137
5138 term2 = gen_binary (AND, GET_MODE (src),
5139 XEXP (XEXP (src, 0), 0), true_rtx);
5140 term3 = gen_binary (AND, GET_MODE (src),
5141 simplify_gen_unary (NOT, GET_MODE (src),
5142 XEXP (XEXP (src, 0), 0),
5143 GET_MODE (src)),
5144 false_rtx);
5145
5146 SUBST (SET_SRC (x),
5147 gen_binary (IOR, GET_MODE (src),
5148 gen_binary (IOR, GET_MODE (src), term1, term2),
5149 term3));
5150
5151 src = SET_SRC (x);
5152 }
5153
5154 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5155 whole thing fail. */
5156 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5157 return src;
5158 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5159 return dest;
5160 else
5161 /* Convert this into a field assignment operation, if possible. */
5162 return make_field_assignment (x);
5163 }
5164 \f
5165 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5166 result. LAST is nonzero if this is the last retry. */
5167
5168 static rtx
5169 simplify_logical (x, last)
5170 rtx x;
5171 int last;
5172 {
5173 enum machine_mode mode = GET_MODE (x);
5174 rtx op0 = XEXP (x, 0);
5175 rtx op1 = XEXP (x, 1);
5176 rtx reversed;
5177
5178 switch (GET_CODE (x))
5179 {
5180 case AND:
5181 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
5182 insn (and may simplify more). */
5183 if (GET_CODE (op0) == XOR
5184 && rtx_equal_p (XEXP (op0, 0), op1)
5185 && ! side_effects_p (op1))
5186 x = gen_binary (AND, mode,
5187 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5188 op1);
5189
5190 if (GET_CODE (op0) == XOR
5191 && rtx_equal_p (XEXP (op0, 1), op1)
5192 && ! side_effects_p (op1))
5193 x = gen_binary (AND, mode,
5194 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5195 op1);
5196
5197 /* Similarly for (~(A ^ B)) & A. */
5198 if (GET_CODE (op0) == NOT
5199 && GET_CODE (XEXP (op0, 0)) == XOR
5200 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
5201 && ! side_effects_p (op1))
5202 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
5203
5204 if (GET_CODE (op0) == NOT
5205 && GET_CODE (XEXP (op0, 0)) == XOR
5206 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
5207 && ! side_effects_p (op1))
5208 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
5209
5210 /* We can call simplify_and_const_int only if we don't lose
5211 any (sign) bits when converting INTVAL (op1) to
5212 "unsigned HOST_WIDE_INT". */
5213 if (GET_CODE (op1) == CONST_INT
5214 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5215 || INTVAL (op1) > 0))
5216 {
5217 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5218
5219 /* If we have (ior (and (X C1) C2)) and the next restart would be
5220 the last, simplify this by making C1 as small as possible
5221 and then exit. */
5222 if (last
5223 && GET_CODE (x) == IOR && GET_CODE (op0) == AND
5224 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5225 && GET_CODE (op1) == CONST_INT)
5226 return gen_binary (IOR, mode,
5227 gen_binary (AND, mode, XEXP (op0, 0),
5228 GEN_INT (INTVAL (XEXP (op0, 1))
5229 & ~INTVAL (op1))), op1);
5230
5231 if (GET_CODE (x) != AND)
5232 return x;
5233
5234 if (GET_RTX_CLASS (GET_CODE (x)) == 'c'
5235 || GET_RTX_CLASS (GET_CODE (x)) == '2')
5236 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5237 }
5238
5239 /* Convert (A | B) & A to A. */
5240 if (GET_CODE (op0) == IOR
5241 && (rtx_equal_p (XEXP (op0, 0), op1)
5242 || rtx_equal_p (XEXP (op0, 1), op1))
5243 && ! side_effects_p (XEXP (op0, 0))
5244 && ! side_effects_p (XEXP (op0, 1)))
5245 return op1;
5246
5247 /* In the following group of tests (and those in case IOR below),
5248 we start with some combination of logical operations and apply
5249 the distributive law followed by the inverse distributive law.
5250 Most of the time, this results in no change. However, if some of
5251 the operands are the same or inverses of each other, simplifications
5252 will result.
5253
5254 For example, (and (ior A B) (not B)) can occur as the result of
5255 expanding a bit field assignment. When we apply the distributive
5256 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
5257 which then simplifies to (and (A (not B))).
5258
5259 If we have (and (ior A B) C), apply the distributive law and then
5260 the inverse distributive law to see if things simplify. */
5261
5262 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5263 {
5264 x = apply_distributive_law
5265 (gen_binary (GET_CODE (op0), mode,
5266 gen_binary (AND, mode, XEXP (op0, 0), op1),
5267 gen_binary (AND, mode, XEXP (op0, 1),
5268 copy_rtx (op1))));
5269 if (GET_CODE (x) != AND)
5270 return x;
5271 }
5272
5273 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5274 return apply_distributive_law
5275 (gen_binary (GET_CODE (op1), mode,
5276 gen_binary (AND, mode, XEXP (op1, 0), op0),
5277 gen_binary (AND, mode, XEXP (op1, 1),
5278 copy_rtx (op0))));
5279
5280 /* Similarly, taking advantage of the fact that
5281 (and (not A) (xor B C)) == (xor (ior A B) (ior A C)) */
5282
5283 if (GET_CODE (op0) == NOT && GET_CODE (op1) == XOR)
5284 return apply_distributive_law
5285 (gen_binary (XOR, mode,
5286 gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 0)),
5287 gen_binary (IOR, mode, copy_rtx (XEXP (op0, 0)),
5288 XEXP (op1, 1))));
5289
5290 else if (GET_CODE (op1) == NOT && GET_CODE (op0) == XOR)
5291 return apply_distributive_law
5292 (gen_binary (XOR, mode,
5293 gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 0)),
5294 gen_binary (IOR, mode, copy_rtx (XEXP (op1, 0)), XEXP (op0, 1))));
5295 break;
5296
5297 case IOR:
5298 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
5299 if (GET_CODE (op1) == CONST_INT
5300 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5301 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
5302 return op1;
5303
5304 /* Convert (A & B) | A to A. */
5305 if (GET_CODE (op0) == AND
5306 && (rtx_equal_p (XEXP (op0, 0), op1)
5307 || rtx_equal_p (XEXP (op0, 1), op1))
5308 && ! side_effects_p (XEXP (op0, 0))
5309 && ! side_effects_p (XEXP (op0, 1)))
5310 return op1;
5311
5312 /* If we have (ior (and A B) C), apply the distributive law and then
5313 the inverse distributive law to see if things simplify. */
5314
5315 if (GET_CODE (op0) == AND)
5316 {
5317 x = apply_distributive_law
5318 (gen_binary (AND, mode,
5319 gen_binary (IOR, mode, XEXP (op0, 0), op1),
5320 gen_binary (IOR, mode, XEXP (op0, 1),
5321 copy_rtx (op1))));
5322
5323 if (GET_CODE (x) != IOR)
5324 return x;
5325 }
5326
5327 if (GET_CODE (op1) == AND)
5328 {
5329 x = apply_distributive_law
5330 (gen_binary (AND, mode,
5331 gen_binary (IOR, mode, XEXP (op1, 0), op0),
5332 gen_binary (IOR, mode, XEXP (op1, 1),
5333 copy_rtx (op0))));
5334
5335 if (GET_CODE (x) != IOR)
5336 return x;
5337 }
5338
5339 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5340 mode size to (rotate A CX). */
5341
5342 if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
5343 || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
5344 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
5345 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5346 && GET_CODE (XEXP (op1, 1)) == CONST_INT
5347 && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
5348 == GET_MODE_BITSIZE (mode)))
5349 return gen_rtx_ROTATE (mode, XEXP (op0, 0),
5350 (GET_CODE (op0) == ASHIFT
5351 ? XEXP (op0, 1) : XEXP (op1, 1)));
5352
5353 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5354 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
5355 does not affect any of the bits in OP1, it can really be done
5356 as a PLUS and we can associate. We do this by seeing if OP1
5357 can be safely shifted left C bits. */
5358 if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
5359 && GET_CODE (XEXP (op0, 0)) == PLUS
5360 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
5361 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5362 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
5363 {
5364 int count = INTVAL (XEXP (op0, 1));
5365 HOST_WIDE_INT mask = INTVAL (op1) << count;
5366
5367 if (mask >> count == INTVAL (op1)
5368 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
5369 {
5370 SUBST (XEXP (XEXP (op0, 0), 1),
5371 GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
5372 return op0;
5373 }
5374 }
5375 break;
5376
5377 case XOR:
5378 /* If we are XORing two things that have no bits in common,
5379 convert them into an IOR. This helps to detect rotation encoded
5380 using those methods and possibly other simplifications. */
5381
5382 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5383 && (nonzero_bits (op0, mode)
5384 & nonzero_bits (op1, mode)) == 0)
5385 return (gen_binary (IOR, mode, op0, op1));
5386
5387 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5388 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5389 (NOT y). */
5390 {
5391 int num_negated = 0;
5392
5393 if (GET_CODE (op0) == NOT)
5394 num_negated++, op0 = XEXP (op0, 0);
5395 if (GET_CODE (op1) == NOT)
5396 num_negated++, op1 = XEXP (op1, 0);
5397
5398 if (num_negated == 2)
5399 {
5400 SUBST (XEXP (x, 0), op0);
5401 SUBST (XEXP (x, 1), op1);
5402 }
5403 else if (num_negated == 1)
5404 return
5405 simplify_gen_unary (NOT, mode, gen_binary (XOR, mode, op0, op1),
5406 mode);
5407 }
5408
5409 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
5410 correspond to a machine insn or result in further simplifications
5411 if B is a constant. */
5412
5413 if (GET_CODE (op0) == AND
5414 && rtx_equal_p (XEXP (op0, 1), op1)
5415 && ! side_effects_p (op1))
5416 return gen_binary (AND, mode,
5417 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5418 op1);
5419
5420 else if (GET_CODE (op0) == AND
5421 && rtx_equal_p (XEXP (op0, 0), op1)
5422 && ! side_effects_p (op1))
5423 return gen_binary (AND, mode,
5424 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5425 op1);
5426
5427 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5428 comparison if STORE_FLAG_VALUE is 1. */
5429 if (STORE_FLAG_VALUE == 1
5430 && op1 == const1_rtx
5431 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5432 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5433 XEXP (op0, 1))))
5434 return reversed;
5435
5436 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5437 is (lt foo (const_int 0)), so we can perform the above
5438 simplification if STORE_FLAG_VALUE is 1. */
5439
5440 if (STORE_FLAG_VALUE == 1
5441 && op1 == const1_rtx
5442 && GET_CODE (op0) == LSHIFTRT
5443 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5444 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
5445 return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
5446
5447 /* (xor (comparison foo bar) (const_int sign-bit))
5448 when STORE_FLAG_VALUE is the sign bit. */
5449 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5450 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5451 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5452 && op1 == const_true_rtx
5453 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5454 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5455 XEXP (op0, 1))))
5456 return reversed;
5457
5458 break;
5459
5460 default:
5461 abort ();
5462 }
5463
5464 return x;
5465 }
5466 \f
5467 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5468 operations" because they can be replaced with two more basic operations.
5469 ZERO_EXTEND is also considered "compound" because it can be replaced with
5470 an AND operation, which is simpler, though only one operation.
5471
5472 The function expand_compound_operation is called with an rtx expression
5473 and will convert it to the appropriate shifts and AND operations,
5474 simplifying at each stage.
5475
5476 The function make_compound_operation is called to convert an expression
5477 consisting of shifts and ANDs into the equivalent compound expression.
5478 It is the inverse of this function, loosely speaking. */
5479
5480 static rtx
5481 expand_compound_operation (x)
5482 rtx x;
5483 {
5484 unsigned HOST_WIDE_INT pos = 0, len;
5485 int unsignedp = 0;
5486 unsigned int modewidth;
5487 rtx tem;
5488
5489 switch (GET_CODE (x))
5490 {
5491 case ZERO_EXTEND:
5492 unsignedp = 1;
5493 case SIGN_EXTEND:
5494 /* We can't necessarily use a const_int for a multiword mode;
5495 it depends on implicitly extending the value.
5496 Since we don't know the right way to extend it,
5497 we can't tell whether the implicit way is right.
5498
5499 Even for a mode that is no wider than a const_int,
5500 we can't win, because we need to sign extend one of its bits through
5501 the rest of it, and we don't know which bit. */
5502 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5503 return x;
5504
5505 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5506 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5507 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5508 reloaded. If not for that, MEM's would very rarely be safe.
5509
5510 Reject MODEs bigger than a word, because we might not be able
5511 to reference a two-register group starting with an arbitrary register
5512 (and currently gen_lowpart might crash for a SUBREG). */
5513
5514 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5515 return x;
5516
5517 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5518 /* If the inner object has VOIDmode (the only way this can happen
5519 is if it is a ASM_OPERANDS), we can't do anything since we don't
5520 know how much masking to do. */
5521 if (len == 0)
5522 return x;
5523
5524 break;
5525
5526 case ZERO_EXTRACT:
5527 unsignedp = 1;
5528 case SIGN_EXTRACT:
5529 /* If the operand is a CLOBBER, just return it. */
5530 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5531 return XEXP (x, 0);
5532
5533 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5534 || GET_CODE (XEXP (x, 2)) != CONST_INT
5535 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5536 return x;
5537
5538 len = INTVAL (XEXP (x, 1));
5539 pos = INTVAL (XEXP (x, 2));
5540
5541 /* If this goes outside the object being extracted, replace the object
5542 with a (use (mem ...)) construct that only combine understands
5543 and is used only for this purpose. */
5544 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5545 SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
5546
5547 if (BITS_BIG_ENDIAN)
5548 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5549
5550 break;
5551
5552 default:
5553 return x;
5554 }
5555 /* Convert sign extension to zero extension, if we know that the high
5556 bit is not set, as this is easier to optimize. It will be converted
5557 back to cheaper alternative in make_extraction. */
5558 if (GET_CODE (x) == SIGN_EXTEND
5559 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5560 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5561 & ~(((unsigned HOST_WIDE_INT)
5562 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5563 >> 1))
5564 == 0)))
5565 {
5566 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5567 return expand_compound_operation (temp);
5568 }
5569
5570 /* We can optimize some special cases of ZERO_EXTEND. */
5571 if (GET_CODE (x) == ZERO_EXTEND)
5572 {
5573 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5574 know that the last value didn't have any inappropriate bits
5575 set. */
5576 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5577 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5578 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5579 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5580 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5581 return XEXP (XEXP (x, 0), 0);
5582
5583 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5584 if (GET_CODE (XEXP (x, 0)) == SUBREG
5585 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5586 && subreg_lowpart_p (XEXP (x, 0))
5587 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5588 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5589 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5590 return SUBREG_REG (XEXP (x, 0));
5591
5592 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5593 is a comparison and STORE_FLAG_VALUE permits. This is like
5594 the first case, but it works even when GET_MODE (x) is larger
5595 than HOST_WIDE_INT. */
5596 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5597 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5598 && GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) == '<'
5599 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5600 <= HOST_BITS_PER_WIDE_INT)
5601 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5602 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5603 return XEXP (XEXP (x, 0), 0);
5604
5605 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5606 if (GET_CODE (XEXP (x, 0)) == SUBREG
5607 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5608 && subreg_lowpart_p (XEXP (x, 0))
5609 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0)))) == '<'
5610 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5611 <= HOST_BITS_PER_WIDE_INT)
5612 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5613 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5614 return SUBREG_REG (XEXP (x, 0));
5615
5616 }
5617
5618 /* If we reach here, we want to return a pair of shifts. The inner
5619 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5620 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5621 logical depending on the value of UNSIGNEDP.
5622
5623 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5624 converted into an AND of a shift.
5625
5626 We must check for the case where the left shift would have a negative
5627 count. This can happen in a case like (x >> 31) & 255 on machines
5628 that can't shift by a constant. On those machines, we would first
5629 combine the shift with the AND to produce a variable-position
5630 extraction. Then the constant of 31 would be substituted in to produce
5631 a such a position. */
5632
5633 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5634 if (modewidth + len >= pos)
5635 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
5636 GET_MODE (x),
5637 simplify_shift_const (NULL_RTX, ASHIFT,
5638 GET_MODE (x),
5639 XEXP (x, 0),
5640 modewidth - pos - len),
5641 modewidth - len);
5642
5643 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5644 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5645 simplify_shift_const (NULL_RTX, LSHIFTRT,
5646 GET_MODE (x),
5647 XEXP (x, 0), pos),
5648 ((HOST_WIDE_INT) 1 << len) - 1);
5649 else
5650 /* Any other cases we can't handle. */
5651 return x;
5652
5653 /* If we couldn't do this for some reason, return the original
5654 expression. */
5655 if (GET_CODE (tem) == CLOBBER)
5656 return x;
5657
5658 return tem;
5659 }
5660 \f
5661 /* X is a SET which contains an assignment of one object into
5662 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5663 or certain SUBREGS). If possible, convert it into a series of
5664 logical operations.
5665
5666 We half-heartedly support variable positions, but do not at all
5667 support variable lengths. */
5668
5669 static rtx
5670 expand_field_assignment (x)
5671 rtx x;
5672 {
5673 rtx inner;
5674 rtx pos; /* Always counts from low bit. */
5675 int len;
5676 rtx mask;
5677 enum machine_mode compute_mode;
5678
5679 /* Loop until we find something we can't simplify. */
5680 while (1)
5681 {
5682 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
5683 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
5684 {
5685 int byte_offset = SUBREG_BYTE (XEXP (SET_DEST (x), 0));
5686
5687 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
5688 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
5689 pos = GEN_INT (BITS_PER_WORD * (byte_offset / UNITS_PER_WORD));
5690 }
5691 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5692 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
5693 {
5694 inner = XEXP (SET_DEST (x), 0);
5695 len = INTVAL (XEXP (SET_DEST (x), 1));
5696 pos = XEXP (SET_DEST (x), 2);
5697
5698 /* If the position is constant and spans the width of INNER,
5699 surround INNER with a USE to indicate this. */
5700 if (GET_CODE (pos) == CONST_INT
5701 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
5702 inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
5703
5704 if (BITS_BIG_ENDIAN)
5705 {
5706 if (GET_CODE (pos) == CONST_INT)
5707 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
5708 - INTVAL (pos));
5709 else if (GET_CODE (pos) == MINUS
5710 && GET_CODE (XEXP (pos, 1)) == CONST_INT
5711 && (INTVAL (XEXP (pos, 1))
5712 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
5713 /* If position is ADJUST - X, new position is X. */
5714 pos = XEXP (pos, 0);
5715 else
5716 pos = gen_binary (MINUS, GET_MODE (pos),
5717 GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner))
5718 - len),
5719 pos);
5720 }
5721 }
5722
5723 /* A SUBREG between two modes that occupy the same numbers of words
5724 can be done by moving the SUBREG to the source. */
5725 else if (GET_CODE (SET_DEST (x)) == SUBREG
5726 /* We need SUBREGs to compute nonzero_bits properly. */
5727 && nonzero_sign_valid
5728 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
5729 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
5730 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
5731 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
5732 {
5733 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
5734 gen_lowpart_for_combine
5735 (GET_MODE (SUBREG_REG (SET_DEST (x))),
5736 SET_SRC (x)));
5737 continue;
5738 }
5739 else
5740 break;
5741
5742 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5743 inner = SUBREG_REG (inner);
5744
5745 compute_mode = GET_MODE (inner);
5746
5747 /* Don't attempt bitwise arithmetic on non-integral modes. */
5748 if (! INTEGRAL_MODE_P (compute_mode))
5749 {
5750 enum machine_mode imode;
5751
5752 /* Something is probably seriously wrong if this matches. */
5753 if (! FLOAT_MODE_P (compute_mode))
5754 break;
5755
5756 /* Try to find an integral mode to pun with. */
5757 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
5758 if (imode == BLKmode)
5759 break;
5760
5761 compute_mode = imode;
5762 inner = gen_lowpart_for_combine (imode, inner);
5763 }
5764
5765 /* Compute a mask of LEN bits, if we can do this on the host machine. */
5766 if (len < HOST_BITS_PER_WIDE_INT)
5767 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
5768 else
5769 break;
5770
5771 /* Now compute the equivalent expression. Make a copy of INNER
5772 for the SET_DEST in case it is a MEM into which we will substitute;
5773 we don't want shared RTL in that case. */
5774 x = gen_rtx_SET
5775 (VOIDmode, copy_rtx (inner),
5776 gen_binary (IOR, compute_mode,
5777 gen_binary (AND, compute_mode,
5778 simplify_gen_unary (NOT, compute_mode,
5779 gen_binary (ASHIFT,
5780 compute_mode,
5781 mask, pos),
5782 compute_mode),
5783 inner),
5784 gen_binary (ASHIFT, compute_mode,
5785 gen_binary (AND, compute_mode,
5786 gen_lowpart_for_combine
5787 (compute_mode, SET_SRC (x)),
5788 mask),
5789 pos)));
5790 }
5791
5792 return x;
5793 }
5794 \f
5795 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
5796 it is an RTX that represents a variable starting position; otherwise,
5797 POS is the (constant) starting bit position (counted from the LSB).
5798
5799 INNER may be a USE. This will occur when we started with a bitfield
5800 that went outside the boundary of the object in memory, which is
5801 allowed on most machines. To isolate this case, we produce a USE
5802 whose mode is wide enough and surround the MEM with it. The only
5803 code that understands the USE is this routine. If it is not removed,
5804 it will cause the resulting insn not to match.
5805
5806 UNSIGNEDP is non-zero for an unsigned reference and zero for a
5807 signed reference.
5808
5809 IN_DEST is non-zero if this is a reference in the destination of a
5810 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If non-zero,
5811 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
5812 be used.
5813
5814 IN_COMPARE is non-zero if we are in a COMPARE. This means that a
5815 ZERO_EXTRACT should be built even for bits starting at bit 0.
5816
5817 MODE is the desired mode of the result (if IN_DEST == 0).
5818
5819 The result is an RTX for the extraction or NULL_RTX if the target
5820 can't handle it. */
5821
5822 static rtx
5823 make_extraction (mode, inner, pos, pos_rtx, len,
5824 unsignedp, in_dest, in_compare)
5825 enum machine_mode mode;
5826 rtx inner;
5827 HOST_WIDE_INT pos;
5828 rtx pos_rtx;
5829 unsigned HOST_WIDE_INT len;
5830 int unsignedp;
5831 int in_dest, in_compare;
5832 {
5833 /* This mode describes the size of the storage area
5834 to fetch the overall value from. Within that, we
5835 ignore the POS lowest bits, etc. */
5836 enum machine_mode is_mode = GET_MODE (inner);
5837 enum machine_mode inner_mode;
5838 enum machine_mode wanted_inner_mode = byte_mode;
5839 enum machine_mode wanted_inner_reg_mode = word_mode;
5840 enum machine_mode pos_mode = word_mode;
5841 enum machine_mode extraction_mode = word_mode;
5842 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
5843 int spans_byte = 0;
5844 rtx new = 0;
5845 rtx orig_pos_rtx = pos_rtx;
5846 HOST_WIDE_INT orig_pos;
5847
5848 /* Get some information about INNER and get the innermost object. */
5849 if (GET_CODE (inner) == USE)
5850 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
5851 /* We don't need to adjust the position because we set up the USE
5852 to pretend that it was a full-word object. */
5853 spans_byte = 1, inner = XEXP (inner, 0);
5854 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5855 {
5856 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
5857 consider just the QI as the memory to extract from.
5858 The subreg adds or removes high bits; its mode is
5859 irrelevant to the meaning of this extraction,
5860 since POS and LEN count from the lsb. */
5861 if (GET_CODE (SUBREG_REG (inner)) == MEM)
5862 is_mode = GET_MODE (SUBREG_REG (inner));
5863 inner = SUBREG_REG (inner);
5864 }
5865
5866 inner_mode = GET_MODE (inner);
5867
5868 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
5869 pos = INTVAL (pos_rtx), pos_rtx = 0;
5870
5871 /* See if this can be done without an extraction. We never can if the
5872 width of the field is not the same as that of some integer mode. For
5873 registers, we can only avoid the extraction if the position is at the
5874 low-order bit and this is either not in the destination or we have the
5875 appropriate STRICT_LOW_PART operation available.
5876
5877 For MEM, we can avoid an extract if the field starts on an appropriate
5878 boundary and we can change the mode of the memory reference. However,
5879 we cannot directly access the MEM if we have a USE and the underlying
5880 MEM is not TMODE. This combination means that MEM was being used in a
5881 context where bits outside its mode were being referenced; that is only
5882 valid in bit-field insns. */
5883
5884 if (tmode != BLKmode
5885 && ! (spans_byte && inner_mode != tmode)
5886 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
5887 && GET_CODE (inner) != MEM
5888 && (! in_dest
5889 || (GET_CODE (inner) == REG
5890 && have_insn_for (STRICT_LOW_PART, tmode))))
5891 || (GET_CODE (inner) == MEM && pos_rtx == 0
5892 && (pos
5893 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
5894 : BITS_PER_UNIT)) == 0
5895 /* We can't do this if we are widening INNER_MODE (it
5896 may not be aligned, for one thing). */
5897 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
5898 && (inner_mode == tmode
5899 || (! mode_dependent_address_p (XEXP (inner, 0))
5900 && ! MEM_VOLATILE_P (inner))))))
5901 {
5902 /* If INNER is a MEM, make a new MEM that encompasses just the desired
5903 field. If the original and current mode are the same, we need not
5904 adjust the offset. Otherwise, we do if bytes big endian.
5905
5906 If INNER is not a MEM, get a piece consisting of just the field
5907 of interest (in this case POS % BITS_PER_WORD must be 0). */
5908
5909 if (GET_CODE (inner) == MEM)
5910 {
5911 HOST_WIDE_INT offset;
5912
5913 /* POS counts from lsb, but make OFFSET count in memory order. */
5914 if (BYTES_BIG_ENDIAN)
5915 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
5916 else
5917 offset = pos / BITS_PER_UNIT;
5918
5919 new = adjust_address_nv (inner, tmode, offset);
5920 }
5921 else if (GET_CODE (inner) == REG)
5922 {
5923 /* We can't call gen_lowpart_for_combine here since we always want
5924 a SUBREG and it would sometimes return a new hard register. */
5925 if (tmode != inner_mode)
5926 {
5927 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
5928
5929 if (WORDS_BIG_ENDIAN
5930 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
5931 final_word = ((GET_MODE_SIZE (inner_mode)
5932 - GET_MODE_SIZE (tmode))
5933 / UNITS_PER_WORD) - final_word;
5934
5935 final_word *= UNITS_PER_WORD;
5936 if (BYTES_BIG_ENDIAN &&
5937 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
5938 final_word += (GET_MODE_SIZE (inner_mode)
5939 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
5940
5941 new = gen_rtx_SUBREG (tmode, inner, final_word);
5942 }
5943 else
5944 new = inner;
5945 }
5946 else
5947 new = force_to_mode (inner, tmode,
5948 len >= HOST_BITS_PER_WIDE_INT
5949 ? ~(unsigned HOST_WIDE_INT) 0
5950 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
5951 NULL_RTX, 0);
5952
5953 /* If this extraction is going into the destination of a SET,
5954 make a STRICT_LOW_PART unless we made a MEM. */
5955
5956 if (in_dest)
5957 return (GET_CODE (new) == MEM ? new
5958 : (GET_CODE (new) != SUBREG
5959 ? gen_rtx_CLOBBER (tmode, const0_rtx)
5960 : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
5961
5962 if (mode == tmode)
5963 return new;
5964
5965 /* If we know that no extraneous bits are set, and that the high
5966 bit is not set, convert the extraction to the cheaper of
5967 sign and zero extension, that are equivalent in these cases. */
5968 if (flag_expensive_optimizations
5969 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
5970 && ((nonzero_bits (new, tmode)
5971 & ~(((unsigned HOST_WIDE_INT)
5972 GET_MODE_MASK (tmode))
5973 >> 1))
5974 == 0)))
5975 {
5976 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
5977 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
5978
5979 /* Prefer ZERO_EXTENSION, since it gives more information to
5980 backends. */
5981 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
5982 return temp;
5983 return temp1;
5984 }
5985
5986 /* Otherwise, sign- or zero-extend unless we already are in the
5987 proper mode. */
5988
5989 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
5990 mode, new));
5991 }
5992
5993 /* Unless this is a COMPARE or we have a funny memory reference,
5994 don't do anything with zero-extending field extracts starting at
5995 the low-order bit since they are simple AND operations. */
5996 if (pos_rtx == 0 && pos == 0 && ! in_dest
5997 && ! in_compare && ! spans_byte && unsignedp)
5998 return 0;
5999
6000 /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
6001 we would be spanning bytes or if the position is not a constant and the
6002 length is not 1. In all other cases, we would only be going outside
6003 our object in cases when an original shift would have been
6004 undefined. */
6005 if (! spans_byte && GET_CODE (inner) == MEM
6006 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6007 || (pos_rtx != 0 && len != 1)))
6008 return 0;
6009
6010 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6011 and the mode for the result. */
6012 if (in_dest && mode_for_extraction(EP_insv, -1) != MAX_MACHINE_MODE)
6013 {
6014 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6015 pos_mode = mode_for_extraction (EP_insv, 2);
6016 extraction_mode = mode_for_extraction (EP_insv, 3);
6017 }
6018
6019 if (! in_dest && unsignedp
6020 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6021 {
6022 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6023 pos_mode = mode_for_extraction (EP_extzv, 3);
6024 extraction_mode = mode_for_extraction (EP_extzv, 0);
6025 }
6026
6027 if (! in_dest && ! unsignedp
6028 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6029 {
6030 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6031 pos_mode = mode_for_extraction (EP_extv, 3);
6032 extraction_mode = mode_for_extraction (EP_extv, 0);
6033 }
6034
6035 /* Never narrow an object, since that might not be safe. */
6036
6037 if (mode != VOIDmode
6038 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6039 extraction_mode = mode;
6040
6041 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6042 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6043 pos_mode = GET_MODE (pos_rtx);
6044
6045 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6046 if we have to change the mode of memory and cannot, the desired mode is
6047 EXTRACTION_MODE. */
6048 if (GET_CODE (inner) != MEM)
6049 wanted_inner_mode = wanted_inner_reg_mode;
6050 else if (inner_mode != wanted_inner_mode
6051 && (mode_dependent_address_p (XEXP (inner, 0))
6052 || MEM_VOLATILE_P (inner)))
6053 wanted_inner_mode = extraction_mode;
6054
6055 orig_pos = pos;
6056
6057 if (BITS_BIG_ENDIAN)
6058 {
6059 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6060 BITS_BIG_ENDIAN style. If position is constant, compute new
6061 position. Otherwise, build subtraction.
6062 Note that POS is relative to the mode of the original argument.
6063 If it's a MEM we need to recompute POS relative to that.
6064 However, if we're extracting from (or inserting into) a register,
6065 we want to recompute POS relative to wanted_inner_mode. */
6066 int width = (GET_CODE (inner) == MEM
6067 ? GET_MODE_BITSIZE (is_mode)
6068 : GET_MODE_BITSIZE (wanted_inner_mode));
6069
6070 if (pos_rtx == 0)
6071 pos = width - len - pos;
6072 else
6073 pos_rtx
6074 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6075 /* POS may be less than 0 now, but we check for that below.
6076 Note that it can only be less than 0 if GET_CODE (inner) != MEM. */
6077 }
6078
6079 /* If INNER has a wider mode, make it smaller. If this is a constant
6080 extract, try to adjust the byte to point to the byte containing
6081 the value. */
6082 if (wanted_inner_mode != VOIDmode
6083 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6084 && ((GET_CODE (inner) == MEM
6085 && (inner_mode == wanted_inner_mode
6086 || (! mode_dependent_address_p (XEXP (inner, 0))
6087 && ! MEM_VOLATILE_P (inner))))))
6088 {
6089 int offset = 0;
6090
6091 /* The computations below will be correct if the machine is big
6092 endian in both bits and bytes or little endian in bits and bytes.
6093 If it is mixed, we must adjust. */
6094
6095 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6096 adjust OFFSET to compensate. */
6097 if (BYTES_BIG_ENDIAN
6098 && ! spans_byte
6099 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6100 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6101
6102 /* If this is a constant position, we can move to the desired byte. */
6103 if (pos_rtx == 0)
6104 {
6105 offset += pos / BITS_PER_UNIT;
6106 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6107 }
6108
6109 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6110 && ! spans_byte
6111 && is_mode != wanted_inner_mode)
6112 offset = (GET_MODE_SIZE (is_mode)
6113 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6114
6115 if (offset != 0 || inner_mode != wanted_inner_mode)
6116 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6117 }
6118
6119 /* If INNER is not memory, we can always get it into the proper mode. If we
6120 are changing its mode, POS must be a constant and smaller than the size
6121 of the new mode. */
6122 else if (GET_CODE (inner) != MEM)
6123 {
6124 if (GET_MODE (inner) != wanted_inner_mode
6125 && (pos_rtx != 0
6126 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6127 return 0;
6128
6129 inner = force_to_mode (inner, wanted_inner_mode,
6130 pos_rtx
6131 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6132 ? ~(unsigned HOST_WIDE_INT) 0
6133 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6134 << orig_pos),
6135 NULL_RTX, 0);
6136 }
6137
6138 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6139 have to zero extend. Otherwise, we can just use a SUBREG. */
6140 if (pos_rtx != 0
6141 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6142 {
6143 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6144
6145 /* If we know that no extraneous bits are set, and that the high
6146 bit is not set, convert extraction to cheaper one - either
6147 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6148 cases. */
6149 if (flag_expensive_optimizations
6150 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6151 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6152 & ~(((unsigned HOST_WIDE_INT)
6153 GET_MODE_MASK (GET_MODE (pos_rtx)))
6154 >> 1))
6155 == 0)))
6156 {
6157 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6158
6159 /* Prefer ZERO_EXTENSION, since it gives more information to
6160 backends. */
6161 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6162 temp = temp1;
6163 }
6164 pos_rtx = temp;
6165 }
6166 else if (pos_rtx != 0
6167 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6168 pos_rtx = gen_lowpart_for_combine (pos_mode, pos_rtx);
6169
6170 /* Make POS_RTX unless we already have it and it is correct. If we don't
6171 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6172 be a CONST_INT. */
6173 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6174 pos_rtx = orig_pos_rtx;
6175
6176 else if (pos_rtx == 0)
6177 pos_rtx = GEN_INT (pos);
6178
6179 /* Make the required operation. See if we can use existing rtx. */
6180 new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6181 extraction_mode, inner, GEN_INT (len), pos_rtx);
6182 if (! in_dest)
6183 new = gen_lowpart_for_combine (mode, new);
6184
6185 return new;
6186 }
6187 \f
6188 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6189 with any other operations in X. Return X without that shift if so. */
6190
6191 static rtx
6192 extract_left_shift (x, count)
6193 rtx x;
6194 int count;
6195 {
6196 enum rtx_code code = GET_CODE (x);
6197 enum machine_mode mode = GET_MODE (x);
6198 rtx tem;
6199
6200 switch (code)
6201 {
6202 case ASHIFT:
6203 /* This is the shift itself. If it is wide enough, we will return
6204 either the value being shifted if the shift count is equal to
6205 COUNT or a shift for the difference. */
6206 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6207 && INTVAL (XEXP (x, 1)) >= count)
6208 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6209 INTVAL (XEXP (x, 1)) - count);
6210 break;
6211
6212 case NEG: case NOT:
6213 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6214 return simplify_gen_unary (code, mode, tem, mode);
6215
6216 break;
6217
6218 case PLUS: case IOR: case XOR: case AND:
6219 /* If we can safely shift this constant and we find the inner shift,
6220 make a new operation. */
6221 if (GET_CODE (XEXP (x,1)) == CONST_INT
6222 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6223 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6224 return gen_binary (code, mode, tem,
6225 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6226
6227 break;
6228
6229 default:
6230 break;
6231 }
6232
6233 return 0;
6234 }
6235 \f
6236 /* Look at the expression rooted at X. Look for expressions
6237 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6238 Form these expressions.
6239
6240 Return the new rtx, usually just X.
6241
6242 Also, for machines like the VAX that don't have logical shift insns,
6243 try to convert logical to arithmetic shift operations in cases where
6244 they are equivalent. This undoes the canonicalizations to logical
6245 shifts done elsewhere.
6246
6247 We try, as much as possible, to re-use rtl expressions to save memory.
6248
6249 IN_CODE says what kind of expression we are processing. Normally, it is
6250 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6251 being kludges), it is MEM. When processing the arguments of a comparison
6252 or a COMPARE against zero, it is COMPARE. */
6253
6254 static rtx
6255 make_compound_operation (x, in_code)
6256 rtx x;
6257 enum rtx_code in_code;
6258 {
6259 enum rtx_code code = GET_CODE (x);
6260 enum machine_mode mode = GET_MODE (x);
6261 int mode_width = GET_MODE_BITSIZE (mode);
6262 rtx rhs, lhs;
6263 enum rtx_code next_code;
6264 int i;
6265 rtx new = 0;
6266 rtx tem;
6267 const char *fmt;
6268
6269 /* Select the code to be used in recursive calls. Once we are inside an
6270 address, we stay there. If we have a comparison, set to COMPARE,
6271 but once inside, go back to our default of SET. */
6272
6273 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6274 : ((code == COMPARE || GET_RTX_CLASS (code) == '<')
6275 && XEXP (x, 1) == const0_rtx) ? COMPARE
6276 : in_code == COMPARE ? SET : in_code);
6277
6278 /* Process depending on the code of this operation. If NEW is set
6279 non-zero, it will be returned. */
6280
6281 switch (code)
6282 {
6283 case ASHIFT:
6284 /* Convert shifts by constants into multiplications if inside
6285 an address. */
6286 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6287 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6288 && INTVAL (XEXP (x, 1)) >= 0)
6289 {
6290 new = make_compound_operation (XEXP (x, 0), next_code);
6291 new = gen_rtx_MULT (mode, new,
6292 GEN_INT ((HOST_WIDE_INT) 1
6293 << INTVAL (XEXP (x, 1))));
6294 }
6295 break;
6296
6297 case AND:
6298 /* If the second operand is not a constant, we can't do anything
6299 with it. */
6300 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6301 break;
6302
6303 /* If the constant is a power of two minus one and the first operand
6304 is a logical right shift, make an extraction. */
6305 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6306 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6307 {
6308 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6309 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6310 0, in_code == COMPARE);
6311 }
6312
6313 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6314 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6315 && subreg_lowpart_p (XEXP (x, 0))
6316 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6317 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6318 {
6319 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6320 next_code);
6321 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6322 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6323 0, in_code == COMPARE);
6324 }
6325 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6326 else if ((GET_CODE (XEXP (x, 0)) == XOR
6327 || GET_CODE (XEXP (x, 0)) == IOR)
6328 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6329 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6330 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6331 {
6332 /* Apply the distributive law, and then try to make extractions. */
6333 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6334 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6335 XEXP (x, 1)),
6336 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6337 XEXP (x, 1)));
6338 new = make_compound_operation (new, in_code);
6339 }
6340
6341 /* If we are have (and (rotate X C) M) and C is larger than the number
6342 of bits in M, this is an extraction. */
6343
6344 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6345 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6346 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6347 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6348 {
6349 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6350 new = make_extraction (mode, new,
6351 (GET_MODE_BITSIZE (mode)
6352 - INTVAL (XEXP (XEXP (x, 0), 1))),
6353 NULL_RTX, i, 1, 0, in_code == COMPARE);
6354 }
6355
6356 /* On machines without logical shifts, if the operand of the AND is
6357 a logical shift and our mask turns off all the propagated sign
6358 bits, we can replace the logical shift with an arithmetic shift. */
6359 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6360 && !have_insn_for (LSHIFTRT, mode)
6361 && have_insn_for (ASHIFTRT, mode)
6362 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6363 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6364 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6365 && mode_width <= HOST_BITS_PER_WIDE_INT)
6366 {
6367 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6368
6369 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6370 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6371 SUBST (XEXP (x, 0),
6372 gen_rtx_ASHIFTRT (mode,
6373 make_compound_operation
6374 (XEXP (XEXP (x, 0), 0), next_code),
6375 XEXP (XEXP (x, 0), 1)));
6376 }
6377
6378 /* If the constant is one less than a power of two, this might be
6379 representable by an extraction even if no shift is present.
6380 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6381 we are in a COMPARE. */
6382 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6383 new = make_extraction (mode,
6384 make_compound_operation (XEXP (x, 0),
6385 next_code),
6386 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6387
6388 /* If we are in a comparison and this is an AND with a power of two,
6389 convert this into the appropriate bit extract. */
6390 else if (in_code == COMPARE
6391 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6392 new = make_extraction (mode,
6393 make_compound_operation (XEXP (x, 0),
6394 next_code),
6395 i, NULL_RTX, 1, 1, 0, 1);
6396
6397 break;
6398
6399 case LSHIFTRT:
6400 /* If the sign bit is known to be zero, replace this with an
6401 arithmetic shift. */
6402 if (have_insn_for (ASHIFTRT, mode)
6403 && ! have_insn_for (LSHIFTRT, mode)
6404 && mode_width <= HOST_BITS_PER_WIDE_INT
6405 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6406 {
6407 new = gen_rtx_ASHIFTRT (mode,
6408 make_compound_operation (XEXP (x, 0),
6409 next_code),
6410 XEXP (x, 1));
6411 break;
6412 }
6413
6414 /* ... fall through ... */
6415
6416 case ASHIFTRT:
6417 lhs = XEXP (x, 0);
6418 rhs = XEXP (x, 1);
6419
6420 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6421 this is a SIGN_EXTRACT. */
6422 if (GET_CODE (rhs) == CONST_INT
6423 && GET_CODE (lhs) == ASHIFT
6424 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6425 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6426 {
6427 new = make_compound_operation (XEXP (lhs, 0), next_code);
6428 new = make_extraction (mode, new,
6429 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6430 NULL_RTX, mode_width - INTVAL (rhs),
6431 code == LSHIFTRT, 0, in_code == COMPARE);
6432 break;
6433 }
6434
6435 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6436 If so, try to merge the shifts into a SIGN_EXTEND. We could
6437 also do this for some cases of SIGN_EXTRACT, but it doesn't
6438 seem worth the effort; the case checked for occurs on Alpha. */
6439
6440 if (GET_RTX_CLASS (GET_CODE (lhs)) != 'o'
6441 && ! (GET_CODE (lhs) == SUBREG
6442 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (lhs))) == 'o'))
6443 && GET_CODE (rhs) == CONST_INT
6444 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6445 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6446 new = make_extraction (mode, make_compound_operation (new, next_code),
6447 0, NULL_RTX, mode_width - INTVAL (rhs),
6448 code == LSHIFTRT, 0, in_code == COMPARE);
6449
6450 break;
6451
6452 case SUBREG:
6453 /* Call ourselves recursively on the inner expression. If we are
6454 narrowing the object and it has a different RTL code from
6455 what it originally did, do this SUBREG as a force_to_mode. */
6456
6457 tem = make_compound_operation (SUBREG_REG (x), in_code);
6458 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6459 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6460 && subreg_lowpart_p (x))
6461 {
6462 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6463 NULL_RTX, 0);
6464
6465 /* If we have something other than a SUBREG, we might have
6466 done an expansion, so rerun ourselves. */
6467 if (GET_CODE (newer) != SUBREG)
6468 newer = make_compound_operation (newer, in_code);
6469
6470 return newer;
6471 }
6472
6473 /* If this is a paradoxical subreg, and the new code is a sign or
6474 zero extension, omit the subreg and widen the extension. If it
6475 is a regular subreg, we can still get rid of the subreg by not
6476 widening so much, or in fact removing the extension entirely. */
6477 if ((GET_CODE (tem) == SIGN_EXTEND
6478 || GET_CODE (tem) == ZERO_EXTEND)
6479 && subreg_lowpart_p (x))
6480 {
6481 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (tem))
6482 || (GET_MODE_SIZE (mode) >
6483 GET_MODE_SIZE (GET_MODE (XEXP (tem, 0)))))
6484 tem = gen_rtx_fmt_e (GET_CODE (tem), mode, XEXP (tem, 0));
6485 else
6486 tem = gen_lowpart_for_combine (mode, XEXP (tem, 0));
6487 return tem;
6488 }
6489 break;
6490
6491 default:
6492 break;
6493 }
6494
6495 if (new)
6496 {
6497 x = gen_lowpart_for_combine (mode, new);
6498 code = GET_CODE (x);
6499 }
6500
6501 /* Now recursively process each operand of this operation. */
6502 fmt = GET_RTX_FORMAT (code);
6503 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6504 if (fmt[i] == 'e')
6505 {
6506 new = make_compound_operation (XEXP (x, i), next_code);
6507 SUBST (XEXP (x, i), new);
6508 }
6509
6510 return x;
6511 }
6512 \f
6513 /* Given M see if it is a value that would select a field of bits
6514 within an item, but not the entire word. Return -1 if not.
6515 Otherwise, return the starting position of the field, where 0 is the
6516 low-order bit.
6517
6518 *PLEN is set to the length of the field. */
6519
6520 static int
6521 get_pos_from_mask (m, plen)
6522 unsigned HOST_WIDE_INT m;
6523 unsigned HOST_WIDE_INT *plen;
6524 {
6525 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6526 int pos = exact_log2 (m & -m);
6527 int len;
6528
6529 if (pos < 0)
6530 return -1;
6531
6532 /* Now shift off the low-order zero bits and see if we have a power of
6533 two minus 1. */
6534 len = exact_log2 ((m >> pos) + 1);
6535
6536 if (len <= 0)
6537 return -1;
6538
6539 *plen = len;
6540 return pos;
6541 }
6542 \f
6543 /* See if X can be simplified knowing that we will only refer to it in
6544 MODE and will only refer to those bits that are nonzero in MASK.
6545 If other bits are being computed or if masking operations are done
6546 that select a superset of the bits in MASK, they can sometimes be
6547 ignored.
6548
6549 Return a possibly simplified expression, but always convert X to
6550 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6551
6552 Also, if REG is non-zero and X is a register equal in value to REG,
6553 replace X with REG.
6554
6555 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6556 are all off in X. This is used when X will be complemented, by either
6557 NOT, NEG, or XOR. */
6558
6559 static rtx
6560 force_to_mode (x, mode, mask, reg, just_select)
6561 rtx x;
6562 enum machine_mode mode;
6563 unsigned HOST_WIDE_INT mask;
6564 rtx reg;
6565 int just_select;
6566 {
6567 enum rtx_code code = GET_CODE (x);
6568 int next_select = just_select || code == XOR || code == NOT || code == NEG;
6569 enum machine_mode op_mode;
6570 unsigned HOST_WIDE_INT fuller_mask, nonzero;
6571 rtx op0, op1, temp;
6572
6573 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6574 code below will do the wrong thing since the mode of such an
6575 expression is VOIDmode.
6576
6577 Also do nothing if X is a CLOBBER; this can happen if X was
6578 the return value from a call to gen_lowpart_for_combine. */
6579 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6580 return x;
6581
6582 /* We want to perform the operation is its present mode unless we know
6583 that the operation is valid in MODE, in which case we do the operation
6584 in MODE. */
6585 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6586 && have_insn_for (code, mode))
6587 ? mode : GET_MODE (x));
6588
6589 /* It is not valid to do a right-shift in a narrower mode
6590 than the one it came in with. */
6591 if ((code == LSHIFTRT || code == ASHIFTRT)
6592 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6593 op_mode = GET_MODE (x);
6594
6595 /* Truncate MASK to fit OP_MODE. */
6596 if (op_mode)
6597 mask &= GET_MODE_MASK (op_mode);
6598
6599 /* When we have an arithmetic operation, or a shift whose count we
6600 do not know, we need to assume that all bit the up to the highest-order
6601 bit in MASK will be needed. This is how we form such a mask. */
6602 if (op_mode)
6603 fuller_mask = (GET_MODE_BITSIZE (op_mode) >= HOST_BITS_PER_WIDE_INT
6604 ? GET_MODE_MASK (op_mode)
6605 : (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
6606 - 1));
6607 else
6608 fuller_mask = ~(HOST_WIDE_INT) 0;
6609
6610 /* Determine what bits of X are guaranteed to be (non)zero. */
6611 nonzero = nonzero_bits (x, mode);
6612
6613 /* If none of the bits in X are needed, return a zero. */
6614 if (! just_select && (nonzero & mask) == 0)
6615 return const0_rtx;
6616
6617 /* If X is a CONST_INT, return a new one. Do this here since the
6618 test below will fail. */
6619 if (GET_CODE (x) == CONST_INT)
6620 {
6621 HOST_WIDE_INT cval = INTVAL (x) & mask;
6622 int width = GET_MODE_BITSIZE (mode);
6623
6624 /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
6625 number, sign extend it. */
6626 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6627 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6628 cval |= (HOST_WIDE_INT) -1 << width;
6629
6630 return GEN_INT (cval);
6631 }
6632
6633 /* If X is narrower than MODE and we want all the bits in X's mode, just
6634 get X in the proper mode. */
6635 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
6636 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
6637 return gen_lowpart_for_combine (mode, x);
6638
6639 /* If we aren't changing the mode, X is not a SUBREG, and all zero bits in
6640 MASK are already known to be zero in X, we need not do anything. */
6641 if (GET_MODE (x) == mode && code != SUBREG && (~mask & nonzero) == 0)
6642 return x;
6643
6644 switch (code)
6645 {
6646 case CLOBBER:
6647 /* If X is a (clobber (const_int)), return it since we know we are
6648 generating something that won't match. */
6649 return x;
6650
6651 case USE:
6652 /* X is a (use (mem ..)) that was made from a bit-field extraction that
6653 spanned the boundary of the MEM. If we are now masking so it is
6654 within that boundary, we don't need the USE any more. */
6655 if (! BITS_BIG_ENDIAN
6656 && (mask & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6657 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6658 break;
6659
6660 case SIGN_EXTEND:
6661 case ZERO_EXTEND:
6662 case ZERO_EXTRACT:
6663 case SIGN_EXTRACT:
6664 x = expand_compound_operation (x);
6665 if (GET_CODE (x) != code)
6666 return force_to_mode (x, mode, mask, reg, next_select);
6667 break;
6668
6669 case REG:
6670 if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
6671 || rtx_equal_p (reg, get_last_value (x))))
6672 x = reg;
6673 break;
6674
6675 case SUBREG:
6676 if (subreg_lowpart_p (x)
6677 /* We can ignore the effect of this SUBREG if it narrows the mode or
6678 if the constant masks to zero all the bits the mode doesn't
6679 have. */
6680 && ((GET_MODE_SIZE (GET_MODE (x))
6681 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6682 || (0 == (mask
6683 & GET_MODE_MASK (GET_MODE (x))
6684 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
6685 return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
6686 break;
6687
6688 case AND:
6689 /* If this is an AND with a constant, convert it into an AND
6690 whose constant is the AND of that constant with MASK. If it
6691 remains an AND of MASK, delete it since it is redundant. */
6692
6693 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6694 {
6695 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
6696 mask & INTVAL (XEXP (x, 1)));
6697
6698 /* If X is still an AND, see if it is an AND with a mask that
6699 is just some low-order bits. If so, and it is MASK, we don't
6700 need it. */
6701
6702 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6703 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) == mask)
6704 x = XEXP (x, 0);
6705
6706 /* If it remains an AND, try making another AND with the bits
6707 in the mode mask that aren't in MASK turned on. If the
6708 constant in the AND is wide enough, this might make a
6709 cheaper constant. */
6710
6711 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6712 && GET_MODE_MASK (GET_MODE (x)) != mask
6713 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
6714 {
6715 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
6716 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
6717 int width = GET_MODE_BITSIZE (GET_MODE (x));
6718 rtx y;
6719
6720 /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
6721 number, sign extend it. */
6722 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6723 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6724 cval |= (HOST_WIDE_INT) -1 << width;
6725
6726 y = gen_binary (AND, GET_MODE (x), XEXP (x, 0), GEN_INT (cval));
6727 if (rtx_cost (y, SET) < rtx_cost (x, SET))
6728 x = y;
6729 }
6730
6731 break;
6732 }
6733
6734 goto binop;
6735
6736 case PLUS:
6737 /* In (and (plus FOO C1) M), if M is a mask that just turns off
6738 low-order bits (as in an alignment operation) and FOO is already
6739 aligned to that boundary, mask C1 to that boundary as well.
6740 This may eliminate that PLUS and, later, the AND. */
6741
6742 {
6743 unsigned int width = GET_MODE_BITSIZE (mode);
6744 unsigned HOST_WIDE_INT smask = mask;
6745
6746 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
6747 number, sign extend it. */
6748
6749 if (width < HOST_BITS_PER_WIDE_INT
6750 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6751 smask |= (HOST_WIDE_INT) -1 << width;
6752
6753 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6754 && exact_log2 (- smask) >= 0)
6755 {
6756 #ifdef STACK_BIAS
6757 if (STACK_BIAS
6758 && (XEXP (x, 0) == stack_pointer_rtx
6759 || XEXP (x, 0) == frame_pointer_rtx))
6760 {
6761 int sp_alignment = STACK_BOUNDARY / BITS_PER_UNIT;
6762 unsigned HOST_WIDE_INT sp_mask = GET_MODE_MASK (mode);
6763
6764 sp_mask &= ~(sp_alignment - 1);
6765 if ((sp_mask & ~smask) == 0
6766 && ((INTVAL (XEXP (x, 1)) - STACK_BIAS) & ~smask) != 0)
6767 return force_to_mode (plus_constant (XEXP (x, 0),
6768 ((INTVAL (XEXP (x, 1)) -
6769 STACK_BIAS) & smask)
6770 + STACK_BIAS),
6771 mode, smask, reg, next_select);
6772 }
6773 #endif
6774 if ((nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
6775 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
6776 return force_to_mode (plus_constant (XEXP (x, 0),
6777 (INTVAL (XEXP (x, 1))
6778 & smask)),
6779 mode, smask, reg, next_select);
6780 }
6781 }
6782
6783 /* ... fall through ... */
6784
6785 case MULT:
6786 /* For PLUS, MINUS and MULT, we need any bits less significant than the
6787 most significant bit in MASK since carries from those bits will
6788 affect the bits we are interested in. */
6789 mask = fuller_mask;
6790 goto binop;
6791
6792 case MINUS:
6793 /* If X is (minus C Y) where C's least set bit is larger than any bit
6794 in the mask, then we may replace with (neg Y). */
6795 if (GET_CODE (XEXP (x, 0)) == CONST_INT
6796 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
6797 & -INTVAL (XEXP (x, 0))))
6798 > mask))
6799 {
6800 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
6801 GET_MODE (x));
6802 return force_to_mode (x, mode, mask, reg, next_select);
6803 }
6804
6805 /* Similarly, if C contains every bit in the mask, then we may
6806 replace with (not Y). */
6807 if (GET_CODE (XEXP (x, 0)) == CONST_INT
6808 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) mask)
6809 == INTVAL (XEXP (x, 0))))
6810 {
6811 x = simplify_gen_unary (NOT, GET_MODE (x),
6812 XEXP (x, 1), GET_MODE (x));
6813 return force_to_mode (x, mode, mask, reg, next_select);
6814 }
6815
6816 mask = fuller_mask;
6817 goto binop;
6818
6819 case IOR:
6820 case XOR:
6821 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
6822 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
6823 operation which may be a bitfield extraction. Ensure that the
6824 constant we form is not wider than the mode of X. */
6825
6826 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6827 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6828 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6829 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6830 && GET_CODE (XEXP (x, 1)) == CONST_INT
6831 && ((INTVAL (XEXP (XEXP (x, 0), 1))
6832 + floor_log2 (INTVAL (XEXP (x, 1))))
6833 < GET_MODE_BITSIZE (GET_MODE (x)))
6834 && (INTVAL (XEXP (x, 1))
6835 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
6836 {
6837 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
6838 << INTVAL (XEXP (XEXP (x, 0), 1)));
6839 temp = gen_binary (GET_CODE (x), GET_MODE (x),
6840 XEXP (XEXP (x, 0), 0), temp);
6841 x = gen_binary (LSHIFTRT, GET_MODE (x), temp,
6842 XEXP (XEXP (x, 0), 1));
6843 return force_to_mode (x, mode, mask, reg, next_select);
6844 }
6845
6846 binop:
6847 /* For most binary operations, just propagate into the operation and
6848 change the mode if we have an operation of that mode. */
6849
6850 op0 = gen_lowpart_for_combine (op_mode,
6851 force_to_mode (XEXP (x, 0), mode, mask,
6852 reg, next_select));
6853 op1 = gen_lowpart_for_combine (op_mode,
6854 force_to_mode (XEXP (x, 1), mode, mask,
6855 reg, next_select));
6856
6857 /* If OP1 is a CONST_INT and X is an IOR or XOR, clear bits outside
6858 MASK since OP1 might have been sign-extended but we never want
6859 to turn on extra bits, since combine might have previously relied
6860 on them being off. */
6861 if (GET_CODE (op1) == CONST_INT && (code == IOR || code == XOR)
6862 && (INTVAL (op1) & mask) != 0)
6863 op1 = GEN_INT (INTVAL (op1) & mask);
6864
6865 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
6866 x = gen_binary (code, op_mode, op0, op1);
6867 break;
6868
6869 case ASHIFT:
6870 /* For left shifts, do the same, but just for the first operand.
6871 However, we cannot do anything with shifts where we cannot
6872 guarantee that the counts are smaller than the size of the mode
6873 because such a count will have a different meaning in a
6874 wider mode. */
6875
6876 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
6877 && INTVAL (XEXP (x, 1)) >= 0
6878 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
6879 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
6880 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
6881 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
6882 break;
6883
6884 /* If the shift count is a constant and we can do arithmetic in
6885 the mode of the shift, refine which bits we need. Otherwise, use the
6886 conservative form of the mask. */
6887 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6888 && INTVAL (XEXP (x, 1)) >= 0
6889 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
6890 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
6891 mask >>= INTVAL (XEXP (x, 1));
6892 else
6893 mask = fuller_mask;
6894
6895 op0 = gen_lowpart_for_combine (op_mode,
6896 force_to_mode (XEXP (x, 0), op_mode,
6897 mask, reg, next_select));
6898
6899 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
6900 x = gen_binary (code, op_mode, op0, XEXP (x, 1));
6901 break;
6902
6903 case LSHIFTRT:
6904 /* Here we can only do something if the shift count is a constant,
6905 this shift constant is valid for the host, and we can do arithmetic
6906 in OP_MODE. */
6907
6908 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6909 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6910 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
6911 {
6912 rtx inner = XEXP (x, 0);
6913 unsigned HOST_WIDE_INT inner_mask;
6914
6915 /* Select the mask of the bits we need for the shift operand. */
6916 inner_mask = mask << INTVAL (XEXP (x, 1));
6917
6918 /* We can only change the mode of the shift if we can do arithmetic
6919 in the mode of the shift and INNER_MASK is no wider than the
6920 width of OP_MODE. */
6921 if (GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT
6922 || (inner_mask & ~GET_MODE_MASK (op_mode)) != 0)
6923 op_mode = GET_MODE (x);
6924
6925 inner = force_to_mode (inner, op_mode, inner_mask, reg, next_select);
6926
6927 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
6928 x = gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
6929 }
6930
6931 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
6932 shift and AND produces only copies of the sign bit (C2 is one less
6933 than a power of two), we can do this with just a shift. */
6934
6935 if (GET_CODE (x) == LSHIFTRT
6936 && GET_CODE (XEXP (x, 1)) == CONST_INT
6937 /* The shift puts one of the sign bit copies in the least significant
6938 bit. */
6939 && ((INTVAL (XEXP (x, 1))
6940 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
6941 >= GET_MODE_BITSIZE (GET_MODE (x)))
6942 && exact_log2 (mask + 1) >= 0
6943 /* Number of bits left after the shift must be more than the mask
6944 needs. */
6945 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
6946 <= GET_MODE_BITSIZE (GET_MODE (x)))
6947 /* Must be more sign bit copies than the mask needs. */
6948 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
6949 >= exact_log2 (mask + 1)))
6950 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
6951 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
6952 - exact_log2 (mask + 1)));
6953
6954 goto shiftrt;
6955
6956 case ASHIFTRT:
6957 /* If we are just looking for the sign bit, we don't need this shift at
6958 all, even if it has a variable count. */
6959 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6960 && (mask == ((unsigned HOST_WIDE_INT) 1
6961 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
6962 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6963
6964 /* If this is a shift by a constant, get a mask that contains those bits
6965 that are not copies of the sign bit. We then have two cases: If
6966 MASK only includes those bits, this can be a logical shift, which may
6967 allow simplifications. If MASK is a single-bit field not within
6968 those bits, we are requesting a copy of the sign bit and hence can
6969 shift the sign bit to the appropriate location. */
6970
6971 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
6972 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
6973 {
6974 int i = -1;
6975
6976 /* If the considered data is wider then HOST_WIDE_INT, we can't
6977 represent a mask for all its bits in a single scalar.
6978 But we only care about the lower bits, so calculate these. */
6979
6980 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
6981 {
6982 nonzero = ~(HOST_WIDE_INT) 0;
6983
6984 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
6985 is the number of bits a full-width mask would have set.
6986 We need only shift if these are fewer than nonzero can
6987 hold. If not, we must keep all bits set in nonzero. */
6988
6989 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
6990 < HOST_BITS_PER_WIDE_INT)
6991 nonzero >>= INTVAL (XEXP (x, 1))
6992 + HOST_BITS_PER_WIDE_INT
6993 - GET_MODE_BITSIZE (GET_MODE (x)) ;
6994 }
6995 else
6996 {
6997 nonzero = GET_MODE_MASK (GET_MODE (x));
6998 nonzero >>= INTVAL (XEXP (x, 1));
6999 }
7000
7001 if ((mask & ~nonzero) == 0
7002 || (i = exact_log2 (mask)) >= 0)
7003 {
7004 x = simplify_shift_const
7005 (x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7006 i < 0 ? INTVAL (XEXP (x, 1))
7007 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7008
7009 if (GET_CODE (x) != ASHIFTRT)
7010 return force_to_mode (x, mode, mask, reg, next_select);
7011 }
7012 }
7013
7014 /* If MASK is 1, convert this to a LSHIFTRT. This can be done
7015 even if the shift count isn't a constant. */
7016 if (mask == 1)
7017 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0), XEXP (x, 1));
7018
7019 shiftrt:
7020
7021 /* If this is a zero- or sign-extension operation that just affects bits
7022 we don't care about, remove it. Be sure the call above returned
7023 something that is still a shift. */
7024
7025 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7026 && GET_CODE (XEXP (x, 1)) == CONST_INT
7027 && INTVAL (XEXP (x, 1)) >= 0
7028 && (INTVAL (XEXP (x, 1))
7029 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7030 && GET_CODE (XEXP (x, 0)) == ASHIFT
7031 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7032 && INTVAL (XEXP (XEXP (x, 0), 1)) == INTVAL (XEXP (x, 1)))
7033 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7034 reg, next_select);
7035
7036 break;
7037
7038 case ROTATE:
7039 case ROTATERT:
7040 /* If the shift count is constant and we can do computations
7041 in the mode of X, compute where the bits we care about are.
7042 Otherwise, we can't do anything. Don't change the mode of
7043 the shift or propagate MODE into the shift, though. */
7044 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7045 && INTVAL (XEXP (x, 1)) >= 0)
7046 {
7047 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7048 GET_MODE (x), GEN_INT (mask),
7049 XEXP (x, 1));
7050 if (temp && GET_CODE(temp) == CONST_INT)
7051 SUBST (XEXP (x, 0),
7052 force_to_mode (XEXP (x, 0), GET_MODE (x),
7053 INTVAL (temp), reg, next_select));
7054 }
7055 break;
7056
7057 case NEG:
7058 /* If we just want the low-order bit, the NEG isn't needed since it
7059 won't change the low-order bit. */
7060 if (mask == 1)
7061 return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
7062
7063 /* We need any bits less significant than the most significant bit in
7064 MASK since carries from those bits will affect the bits we are
7065 interested in. */
7066 mask = fuller_mask;
7067 goto unop;
7068
7069 case NOT:
7070 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7071 same as the XOR case above. Ensure that the constant we form is not
7072 wider than the mode of X. */
7073
7074 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7075 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7076 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7077 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7078 < GET_MODE_BITSIZE (GET_MODE (x)))
7079 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7080 {
7081 temp = GEN_INT (mask << INTVAL (XEXP (XEXP (x, 0), 1)));
7082 temp = gen_binary (XOR, GET_MODE (x), XEXP (XEXP (x, 0), 0), temp);
7083 x = gen_binary (LSHIFTRT, GET_MODE (x), temp, XEXP (XEXP (x, 0), 1));
7084
7085 return force_to_mode (x, mode, mask, reg, next_select);
7086 }
7087
7088 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7089 use the full mask inside the NOT. */
7090 mask = fuller_mask;
7091
7092 unop:
7093 op0 = gen_lowpart_for_combine (op_mode,
7094 force_to_mode (XEXP (x, 0), mode, mask,
7095 reg, next_select));
7096 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7097 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7098 break;
7099
7100 case NE:
7101 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7102 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7103 which is equal to STORE_FLAG_VALUE. */
7104 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7105 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7106 && nonzero_bits (XEXP (x, 0), mode) == STORE_FLAG_VALUE)
7107 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7108
7109 break;
7110
7111 case IF_THEN_ELSE:
7112 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7113 written in a narrower mode. We play it safe and do not do so. */
7114
7115 SUBST (XEXP (x, 1),
7116 gen_lowpart_for_combine (GET_MODE (x),
7117 force_to_mode (XEXP (x, 1), mode,
7118 mask, reg, next_select)));
7119 SUBST (XEXP (x, 2),
7120 gen_lowpart_for_combine (GET_MODE (x),
7121 force_to_mode (XEXP (x, 2), mode,
7122 mask, reg,next_select)));
7123 break;
7124
7125 default:
7126 break;
7127 }
7128
7129 /* Ensure we return a value of the proper mode. */
7130 return gen_lowpart_for_combine (mode, x);
7131 }
7132 \f
7133 /* Return nonzero if X is an expression that has one of two values depending on
7134 whether some other value is zero or nonzero. In that case, we return the
7135 value that is being tested, *PTRUE is set to the value if the rtx being
7136 returned has a nonzero value, and *PFALSE is set to the other alternative.
7137
7138 If we return zero, we set *PTRUE and *PFALSE to X. */
7139
7140 static rtx
7141 if_then_else_cond (x, ptrue, pfalse)
7142 rtx x;
7143 rtx *ptrue, *pfalse;
7144 {
7145 enum machine_mode mode = GET_MODE (x);
7146 enum rtx_code code = GET_CODE (x);
7147 rtx cond0, cond1, true0, true1, false0, false1;
7148 unsigned HOST_WIDE_INT nz;
7149
7150 /* If we are comparing a value against zero, we are done. */
7151 if ((code == NE || code == EQ)
7152 && GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) == 0)
7153 {
7154 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7155 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7156 return XEXP (x, 0);
7157 }
7158
7159 /* If this is a unary operation whose operand has one of two values, apply
7160 our opcode to compute those values. */
7161 else if (GET_RTX_CLASS (code) == '1'
7162 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7163 {
7164 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7165 *pfalse = simplify_gen_unary (code, mode, false0,
7166 GET_MODE (XEXP (x, 0)));
7167 return cond0;
7168 }
7169
7170 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7171 make can't possibly match and would suppress other optimizations. */
7172 else if (code == COMPARE)
7173 ;
7174
7175 /* If this is a binary operation, see if either side has only one of two
7176 values. If either one does or if both do and they are conditional on
7177 the same value, compute the new true and false values. */
7178 else if (GET_RTX_CLASS (code) == 'c' || GET_RTX_CLASS (code) == '2'
7179 || GET_RTX_CLASS (code) == '<')
7180 {
7181 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7182 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7183
7184 if ((cond0 != 0 || cond1 != 0)
7185 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7186 {
7187 /* If if_then_else_cond returned zero, then true/false are the
7188 same rtl. We must copy one of them to prevent invalid rtl
7189 sharing. */
7190 if (cond0 == 0)
7191 true0 = copy_rtx (true0);
7192 else if (cond1 == 0)
7193 true1 = copy_rtx (true1);
7194
7195 *ptrue = gen_binary (code, mode, true0, true1);
7196 *pfalse = gen_binary (code, mode, false0, false1);
7197 return cond0 ? cond0 : cond1;
7198 }
7199
7200 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7201 operands is zero when the other is non-zero, and vice-versa,
7202 and STORE_FLAG_VALUE is 1 or -1. */
7203
7204 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7205 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7206 || code == UMAX)
7207 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7208 {
7209 rtx op0 = XEXP (XEXP (x, 0), 1);
7210 rtx op1 = XEXP (XEXP (x, 1), 1);
7211
7212 cond0 = XEXP (XEXP (x, 0), 0);
7213 cond1 = XEXP (XEXP (x, 1), 0);
7214
7215 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
7216 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
7217 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7218 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7219 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7220 || ((swap_condition (GET_CODE (cond0))
7221 == combine_reversed_comparison_code (cond1))
7222 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7223 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7224 && ! side_effects_p (x))
7225 {
7226 *ptrue = gen_binary (MULT, mode, op0, const_true_rtx);
7227 *pfalse = gen_binary (MULT, mode,
7228 (code == MINUS
7229 ? simplify_gen_unary (NEG, mode, op1,
7230 mode)
7231 : op1),
7232 const_true_rtx);
7233 return cond0;
7234 }
7235 }
7236
7237 /* Similarly for MULT, AND and UMIN, except that for these the result
7238 is always zero. */
7239 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7240 && (code == MULT || code == AND || code == UMIN)
7241 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7242 {
7243 cond0 = XEXP (XEXP (x, 0), 0);
7244 cond1 = XEXP (XEXP (x, 1), 0);
7245
7246 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
7247 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
7248 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7249 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7250 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7251 || ((swap_condition (GET_CODE (cond0))
7252 == combine_reversed_comparison_code (cond1))
7253 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7254 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7255 && ! side_effects_p (x))
7256 {
7257 *ptrue = *pfalse = const0_rtx;
7258 return cond0;
7259 }
7260 }
7261 }
7262
7263 else if (code == IF_THEN_ELSE)
7264 {
7265 /* If we have IF_THEN_ELSE already, extract the condition and
7266 canonicalize it if it is NE or EQ. */
7267 cond0 = XEXP (x, 0);
7268 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7269 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7270 return XEXP (cond0, 0);
7271 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7272 {
7273 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7274 return XEXP (cond0, 0);
7275 }
7276 else
7277 return cond0;
7278 }
7279
7280 /* If X is a SUBREG, we can narrow both the true and false values
7281 if the inner expression, if there is a condition. */
7282 else if (code == SUBREG
7283 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7284 &true0, &false0)))
7285 {
7286 *ptrue = simplify_gen_subreg (mode, true0,
7287 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7288 *pfalse = simplify_gen_subreg (mode, false0,
7289 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7290
7291 return cond0;
7292 }
7293
7294 /* If X is a constant, this isn't special and will cause confusions
7295 if we treat it as such. Likewise if it is equivalent to a constant. */
7296 else if (CONSTANT_P (x)
7297 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7298 ;
7299
7300 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7301 will be least confusing to the rest of the compiler. */
7302 else if (mode == BImode)
7303 {
7304 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7305 return x;
7306 }
7307
7308 /* If X is known to be either 0 or -1, those are the true and
7309 false values when testing X. */
7310 else if (x == constm1_rtx || x == const0_rtx
7311 || (mode != VOIDmode
7312 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7313 {
7314 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7315 return x;
7316 }
7317
7318 /* Likewise for 0 or a single bit. */
7319 else if (mode != VOIDmode
7320 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7321 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7322 {
7323 *ptrue = GEN_INT (nz), *pfalse = const0_rtx;
7324 return x;
7325 }
7326
7327 /* Otherwise fail; show no condition with true and false values the same. */
7328 *ptrue = *pfalse = x;
7329 return 0;
7330 }
7331 \f
7332 /* Return the value of expression X given the fact that condition COND
7333 is known to be true when applied to REG as its first operand and VAL
7334 as its second. X is known to not be shared and so can be modified in
7335 place.
7336
7337 We only handle the simplest cases, and specifically those cases that
7338 arise with IF_THEN_ELSE expressions. */
7339
7340 static rtx
7341 known_cond (x, cond, reg, val)
7342 rtx x;
7343 enum rtx_code cond;
7344 rtx reg, val;
7345 {
7346 enum rtx_code code = GET_CODE (x);
7347 rtx temp;
7348 const char *fmt;
7349 int i, j;
7350
7351 if (side_effects_p (x))
7352 return x;
7353
7354 /* If either operand of the condition is a floating point value,
7355 then we have to avoid collapsing an EQ comparison. */
7356 if (cond == EQ
7357 && rtx_equal_p (x, reg)
7358 && ! FLOAT_MODE_P (GET_MODE (x))
7359 && ! FLOAT_MODE_P (GET_MODE (val)))
7360 return val;
7361
7362 if (cond == UNEQ && rtx_equal_p (x, reg))
7363 return val;
7364
7365 /* If X is (abs REG) and we know something about REG's relationship
7366 with zero, we may be able to simplify this. */
7367
7368 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7369 switch (cond)
7370 {
7371 case GE: case GT: case EQ:
7372 return XEXP (x, 0);
7373 case LT: case LE:
7374 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7375 XEXP (x, 0),
7376 GET_MODE (XEXP (x, 0)));
7377 default:
7378 break;
7379 }
7380
7381 /* The only other cases we handle are MIN, MAX, and comparisons if the
7382 operands are the same as REG and VAL. */
7383
7384 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == 'c')
7385 {
7386 if (rtx_equal_p (XEXP (x, 0), val))
7387 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7388
7389 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7390 {
7391 if (GET_RTX_CLASS (code) == '<')
7392 {
7393 if (comparison_dominates_p (cond, code))
7394 return const_true_rtx;
7395
7396 code = combine_reversed_comparison_code (x);
7397 if (code != UNKNOWN
7398 && comparison_dominates_p (cond, code))
7399 return const0_rtx;
7400 else
7401 return x;
7402 }
7403 else if (code == SMAX || code == SMIN
7404 || code == UMIN || code == UMAX)
7405 {
7406 int unsignedp = (code == UMIN || code == UMAX);
7407
7408 /* Do not reverse the condition when it is NE or EQ.
7409 This is because we cannot conclude anything about
7410 the value of 'SMAX (x, y)' when x is not equal to y,
7411 but we can when x equals y. */
7412 if ((code == SMAX || code == UMAX)
7413 && ! (cond == EQ || cond == NE))
7414 cond = reverse_condition (cond);
7415
7416 switch (cond)
7417 {
7418 case GE: case GT:
7419 return unsignedp ? x : XEXP (x, 1);
7420 case LE: case LT:
7421 return unsignedp ? x : XEXP (x, 0);
7422 case GEU: case GTU:
7423 return unsignedp ? XEXP (x, 1) : x;
7424 case LEU: case LTU:
7425 return unsignedp ? XEXP (x, 0) : x;
7426 default:
7427 break;
7428 }
7429 }
7430 }
7431 }
7432
7433 fmt = GET_RTX_FORMAT (code);
7434 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7435 {
7436 if (fmt[i] == 'e')
7437 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7438 else if (fmt[i] == 'E')
7439 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7440 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7441 cond, reg, val));
7442 }
7443
7444 return x;
7445 }
7446 \f
7447 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7448 assignment as a field assignment. */
7449
7450 static int
7451 rtx_equal_for_field_assignment_p (x, y)
7452 rtx x;
7453 rtx y;
7454 {
7455 if (x == y || rtx_equal_p (x, y))
7456 return 1;
7457
7458 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7459 return 0;
7460
7461 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7462 Note that all SUBREGs of MEM are paradoxical; otherwise they
7463 would have been rewritten. */
7464 if (GET_CODE (x) == MEM && GET_CODE (y) == SUBREG
7465 && GET_CODE (SUBREG_REG (y)) == MEM
7466 && rtx_equal_p (SUBREG_REG (y),
7467 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (y)), x)))
7468 return 1;
7469
7470 if (GET_CODE (y) == MEM && GET_CODE (x) == SUBREG
7471 && GET_CODE (SUBREG_REG (x)) == MEM
7472 && rtx_equal_p (SUBREG_REG (x),
7473 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (x)), y)))
7474 return 1;
7475
7476 /* We used to see if get_last_value of X and Y were the same but that's
7477 not correct. In one direction, we'll cause the assignment to have
7478 the wrong destination and in the case, we'll import a register into this
7479 insn that might have already have been dead. So fail if none of the
7480 above cases are true. */
7481 return 0;
7482 }
7483 \f
7484 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7485 Return that assignment if so.
7486
7487 We only handle the most common cases. */
7488
7489 static rtx
7490 make_field_assignment (x)
7491 rtx x;
7492 {
7493 rtx dest = SET_DEST (x);
7494 rtx src = SET_SRC (x);
7495 rtx assign;
7496 rtx rhs, lhs;
7497 HOST_WIDE_INT c1;
7498 HOST_WIDE_INT pos;
7499 unsigned HOST_WIDE_INT len;
7500 rtx other;
7501 enum machine_mode mode;
7502
7503 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7504 a clear of a one-bit field. We will have changed it to
7505 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7506 for a SUBREG. */
7507
7508 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7509 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7510 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7511 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7512 {
7513 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7514 1, 1, 1, 0);
7515 if (assign != 0)
7516 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7517 return x;
7518 }
7519
7520 else if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7521 && subreg_lowpart_p (XEXP (src, 0))
7522 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7523 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7524 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7525 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7526 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7527 {
7528 assign = make_extraction (VOIDmode, dest, 0,
7529 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7530 1, 1, 1, 0);
7531 if (assign != 0)
7532 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7533 return x;
7534 }
7535
7536 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7537 one-bit field. */
7538 else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7539 && XEXP (XEXP (src, 0), 0) == const1_rtx
7540 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7541 {
7542 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7543 1, 1, 1, 0);
7544 if (assign != 0)
7545 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7546 return x;
7547 }
7548
7549 /* The other case we handle is assignments into a constant-position
7550 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7551 a mask that has all one bits except for a group of zero bits and
7552 OTHER is known to have zeros where C1 has ones, this is such an
7553 assignment. Compute the position and length from C1. Shift OTHER
7554 to the appropriate position, force it to the required mode, and
7555 make the extraction. Check for the AND in both operands. */
7556
7557 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
7558 return x;
7559
7560 rhs = expand_compound_operation (XEXP (src, 0));
7561 lhs = expand_compound_operation (XEXP (src, 1));
7562
7563 if (GET_CODE (rhs) == AND
7564 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7565 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7566 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7567 else if (GET_CODE (lhs) == AND
7568 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7569 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7570 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
7571 else
7572 return x;
7573
7574 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
7575 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
7576 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7577 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
7578 return x;
7579
7580 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
7581 if (assign == 0)
7582 return x;
7583
7584 /* The mode to use for the source is the mode of the assignment, or of
7585 what is inside a possible STRICT_LOW_PART. */
7586 mode = (GET_CODE (assign) == STRICT_LOW_PART
7587 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
7588
7589 /* Shift OTHER right POS places and make it the source, restricting it
7590 to the proper length and mode. */
7591
7592 src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
7593 GET_MODE (src), other, pos),
7594 mode,
7595 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
7596 ? ~(unsigned HOST_WIDE_INT) 0
7597 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7598 dest, 0);
7599
7600 return gen_rtx_SET (VOIDmode, assign, src);
7601 }
7602 \f
7603 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7604 if so. */
7605
7606 static rtx
7607 apply_distributive_law (x)
7608 rtx x;
7609 {
7610 enum rtx_code code = GET_CODE (x);
7611 rtx lhs, rhs, other;
7612 rtx tem;
7613 enum rtx_code inner_code;
7614
7615 /* Distributivity is not true for floating point.
7616 It can change the value. So don't do it.
7617 -- rms and moshier@world.std.com. */
7618 if (FLOAT_MODE_P (GET_MODE (x)))
7619 return x;
7620
7621 /* The outer operation can only be one of the following: */
7622 if (code != IOR && code != AND && code != XOR
7623 && code != PLUS && code != MINUS)
7624 return x;
7625
7626 lhs = XEXP (x, 0), rhs = XEXP (x, 1);
7627
7628 /* If either operand is a primitive we can't do anything, so get out
7629 fast. */
7630 if (GET_RTX_CLASS (GET_CODE (lhs)) == 'o'
7631 || GET_RTX_CLASS (GET_CODE (rhs)) == 'o')
7632 return x;
7633
7634 lhs = expand_compound_operation (lhs);
7635 rhs = expand_compound_operation (rhs);
7636 inner_code = GET_CODE (lhs);
7637 if (inner_code != GET_CODE (rhs))
7638 return x;
7639
7640 /* See if the inner and outer operations distribute. */
7641 switch (inner_code)
7642 {
7643 case LSHIFTRT:
7644 case ASHIFTRT:
7645 case AND:
7646 case IOR:
7647 /* These all distribute except over PLUS. */
7648 if (code == PLUS || code == MINUS)
7649 return x;
7650 break;
7651
7652 case MULT:
7653 if (code != PLUS && code != MINUS)
7654 return x;
7655 break;
7656
7657 case ASHIFT:
7658 /* This is also a multiply, so it distributes over everything. */
7659 break;
7660
7661 case SUBREG:
7662 /* Non-paradoxical SUBREGs distributes over all operations, provided
7663 the inner modes and byte offsets are the same, this is an extraction
7664 of a low-order part, we don't convert an fp operation to int or
7665 vice versa, and we would not be converting a single-word
7666 operation into a multi-word operation. The latter test is not
7667 required, but it prevents generating unneeded multi-word operations.
7668 Some of the previous tests are redundant given the latter test, but
7669 are retained because they are required for correctness.
7670
7671 We produce the result slightly differently in this case. */
7672
7673 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
7674 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
7675 || ! subreg_lowpart_p (lhs)
7676 || (GET_MODE_CLASS (GET_MODE (lhs))
7677 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
7678 || (GET_MODE_SIZE (GET_MODE (lhs))
7679 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
7680 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
7681 return x;
7682
7683 tem = gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
7684 SUBREG_REG (lhs), SUBREG_REG (rhs));
7685 return gen_lowpart_for_combine (GET_MODE (x), tem);
7686
7687 default:
7688 return x;
7689 }
7690
7691 /* Set LHS and RHS to the inner operands (A and B in the example
7692 above) and set OTHER to the common operand (C in the example).
7693 These is only one way to do this unless the inner operation is
7694 commutative. */
7695 if (GET_RTX_CLASS (inner_code) == 'c'
7696 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
7697 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
7698 else if (GET_RTX_CLASS (inner_code) == 'c'
7699 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
7700 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
7701 else if (GET_RTX_CLASS (inner_code) == 'c'
7702 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
7703 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
7704 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
7705 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
7706 else
7707 return x;
7708
7709 /* Form the new inner operation, seeing if it simplifies first. */
7710 tem = gen_binary (code, GET_MODE (x), lhs, rhs);
7711
7712 /* There is one exception to the general way of distributing:
7713 (a ^ b) | (a ^ c) -> (~a) & (b ^ c) */
7714 if (code == XOR && inner_code == IOR)
7715 {
7716 inner_code = AND;
7717 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
7718 }
7719
7720 /* We may be able to continuing distributing the result, so call
7721 ourselves recursively on the inner operation before forming the
7722 outer operation, which we return. */
7723 return gen_binary (inner_code, GET_MODE (x),
7724 apply_distributive_law (tem), other);
7725 }
7726 \f
7727 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
7728 in MODE.
7729
7730 Return an equivalent form, if different from X. Otherwise, return X. If
7731 X is zero, we are to always construct the equivalent form. */
7732
7733 static rtx
7734 simplify_and_const_int (x, mode, varop, constop)
7735 rtx x;
7736 enum machine_mode mode;
7737 rtx varop;
7738 unsigned HOST_WIDE_INT constop;
7739 {
7740 unsigned HOST_WIDE_INT nonzero;
7741 int i;
7742
7743 /* Simplify VAROP knowing that we will be only looking at some of the
7744 bits in it. */
7745 varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
7746
7747 /* If VAROP is a CLOBBER, we will fail so return it; if it is a
7748 CONST_INT, we are done. */
7749 if (GET_CODE (varop) == CLOBBER || GET_CODE (varop) == CONST_INT)
7750 return varop;
7751
7752 /* See what bits may be nonzero in VAROP. Unlike the general case of
7753 a call to nonzero_bits, here we don't care about bits outside
7754 MODE. */
7755
7756 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
7757 nonzero = trunc_int_for_mode (nonzero, mode);
7758
7759 /* Turn off all bits in the constant that are known to already be zero.
7760 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
7761 which is tested below. */
7762
7763 constop &= nonzero;
7764
7765 /* If we don't have any bits left, return zero. */
7766 if (constop == 0)
7767 return const0_rtx;
7768
7769 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
7770 a power of two, we can replace this with a ASHIFT. */
7771 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
7772 && (i = exact_log2 (constop)) >= 0)
7773 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
7774
7775 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
7776 or XOR, then try to apply the distributive law. This may eliminate
7777 operations if either branch can be simplified because of the AND.
7778 It may also make some cases more complex, but those cases probably
7779 won't match a pattern either with or without this. */
7780
7781 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
7782 return
7783 gen_lowpart_for_combine
7784 (mode,
7785 apply_distributive_law
7786 (gen_binary (GET_CODE (varop), GET_MODE (varop),
7787 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
7788 XEXP (varop, 0), constop),
7789 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
7790 XEXP (varop, 1), constop))));
7791
7792 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
7793 if we already had one (just check for the simplest cases). */
7794 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
7795 && GET_MODE (XEXP (x, 0)) == mode
7796 && SUBREG_REG (XEXP (x, 0)) == varop)
7797 varop = XEXP (x, 0);
7798 else
7799 varop = gen_lowpart_for_combine (mode, varop);
7800
7801 /* If we can't make the SUBREG, try to return what we were given. */
7802 if (GET_CODE (varop) == CLOBBER)
7803 return x ? x : varop;
7804
7805 /* If we are only masking insignificant bits, return VAROP. */
7806 if (constop == nonzero)
7807 x = varop;
7808
7809 /* Otherwise, return an AND. See how much, if any, of X we can use. */
7810 else if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
7811 x = gen_binary (AND, mode, varop, GEN_INT (constop));
7812
7813 else
7814 {
7815 if (GET_CODE (XEXP (x, 1)) != CONST_INT
7816 || (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) != constop)
7817 SUBST (XEXP (x, 1), GEN_INT (constop));
7818
7819 SUBST (XEXP (x, 0), varop);
7820 }
7821
7822 return x;
7823 }
7824 \f
7825 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
7826 We don't let nonzero_bits recur into num_sign_bit_copies, because that
7827 is less useful. We can't allow both, because that results in exponential
7828 run time recursion. There is a nullstone testcase that triggered
7829 this. This macro avoids accidental uses of num_sign_bit_copies. */
7830 #define num_sign_bit_copies()
7831
7832 /* Given an expression, X, compute which bits in X can be non-zero.
7833 We don't care about bits outside of those defined in MODE.
7834
7835 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
7836 a shift, AND, or zero_extract, we can do better. */
7837
7838 static unsigned HOST_WIDE_INT
7839 nonzero_bits (x, mode)
7840 rtx x;
7841 enum machine_mode mode;
7842 {
7843 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
7844 unsigned HOST_WIDE_INT inner_nz;
7845 enum rtx_code code;
7846 unsigned int mode_width = GET_MODE_BITSIZE (mode);
7847 rtx tem;
7848
7849 /* For floating-point values, assume all bits are needed. */
7850 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
7851 return nonzero;
7852
7853 /* If X is wider than MODE, use its mode instead. */
7854 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
7855 {
7856 mode = GET_MODE (x);
7857 nonzero = GET_MODE_MASK (mode);
7858 mode_width = GET_MODE_BITSIZE (mode);
7859 }
7860
7861 if (mode_width > HOST_BITS_PER_WIDE_INT)
7862 /* Our only callers in this case look for single bit values. So
7863 just return the mode mask. Those tests will then be false. */
7864 return nonzero;
7865
7866 #ifndef WORD_REGISTER_OPERATIONS
7867 /* If MODE is wider than X, but both are a single word for both the host
7868 and target machines, we can compute this from which bits of the
7869 object might be nonzero in its own mode, taking into account the fact
7870 that on many CISC machines, accessing an object in a wider mode
7871 causes the high-order bits to become undefined. So they are
7872 not known to be zero. */
7873
7874 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
7875 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
7876 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7877 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
7878 {
7879 nonzero &= nonzero_bits (x, GET_MODE (x));
7880 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
7881 return nonzero;
7882 }
7883 #endif
7884
7885 code = GET_CODE (x);
7886 switch (code)
7887 {
7888 case REG:
7889 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
7890 /* If pointers extend unsigned and this is a pointer in Pmode, say that
7891 all the bits above ptr_mode are known to be zero. */
7892 if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
7893 && REG_POINTER (x))
7894 nonzero &= GET_MODE_MASK (ptr_mode);
7895 #endif
7896
7897 #ifdef STACK_BOUNDARY
7898 /* If this is the stack pointer, we may know something about its
7899 alignment. If PUSH_ROUNDING is defined, it is possible for the
7900 stack to be momentarily aligned only to that amount, so we pick
7901 the least alignment. */
7902
7903 /* We can't check for arg_pointer_rtx here, because it is not
7904 guaranteed to have as much alignment as the stack pointer.
7905 In particular, in the Irix6 n64 ABI, the stack has 128 bit
7906 alignment but the argument pointer has only 64 bit alignment. */
7907
7908 if ((x == frame_pointer_rtx
7909 || x == stack_pointer_rtx
7910 || x == hard_frame_pointer_rtx
7911 || (REGNO (x) >= FIRST_VIRTUAL_REGISTER
7912 && REGNO (x) <= LAST_VIRTUAL_REGISTER))
7913 #ifdef STACK_BIAS
7914 && !STACK_BIAS
7915 #endif
7916 )
7917 {
7918 int sp_alignment = STACK_BOUNDARY / BITS_PER_UNIT;
7919
7920 #ifdef PUSH_ROUNDING
7921 if (REGNO (x) == STACK_POINTER_REGNUM && PUSH_ARGS)
7922 sp_alignment = MIN (PUSH_ROUNDING (1), sp_alignment);
7923 #endif
7924
7925 /* We must return here, otherwise we may get a worse result from
7926 one of the choices below. There is nothing useful below as
7927 far as the stack pointer is concerned. */
7928 return nonzero &= ~(sp_alignment - 1);
7929 }
7930 #endif
7931
7932 /* If X is a register whose nonzero bits value is current, use it.
7933 Otherwise, if X is a register whose value we can find, use that
7934 value. Otherwise, use the previously-computed global nonzero bits
7935 for this register. */
7936
7937 if (reg_last_set_value[REGNO (x)] != 0
7938 && reg_last_set_mode[REGNO (x)] == mode
7939 && (reg_last_set_label[REGNO (x)] == label_tick
7940 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
7941 && REG_N_SETS (REGNO (x)) == 1
7942 && ! REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start,
7943 REGNO (x))))
7944 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
7945 return reg_last_set_nonzero_bits[REGNO (x)];
7946
7947 tem = get_last_value (x);
7948
7949 if (tem)
7950 {
7951 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
7952 /* If X is narrower than MODE and TEM is a non-negative
7953 constant that would appear negative in the mode of X,
7954 sign-extend it for use in reg_nonzero_bits because some
7955 machines (maybe most) will actually do the sign-extension
7956 and this is the conservative approach.
7957
7958 ??? For 2.5, try to tighten up the MD files in this regard
7959 instead of this kludge. */
7960
7961 if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width
7962 && GET_CODE (tem) == CONST_INT
7963 && INTVAL (tem) > 0
7964 && 0 != (INTVAL (tem)
7965 & ((HOST_WIDE_INT) 1
7966 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7967 tem = GEN_INT (INTVAL (tem)
7968 | ((HOST_WIDE_INT) (-1)
7969 << GET_MODE_BITSIZE (GET_MODE (x))));
7970 #endif
7971 return nonzero_bits (tem, mode);
7972 }
7973 else if (nonzero_sign_valid && reg_nonzero_bits[REGNO (x)])
7974 return reg_nonzero_bits[REGNO (x)] & nonzero;
7975 else
7976 return nonzero;
7977
7978 case CONST_INT:
7979 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
7980 /* If X is negative in MODE, sign-extend the value. */
7981 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
7982 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
7983 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
7984 #endif
7985
7986 return INTVAL (x);
7987
7988 case MEM:
7989 #ifdef LOAD_EXTEND_OP
7990 /* In many, if not most, RISC machines, reading a byte from memory
7991 zeros the rest of the register. Noticing that fact saves a lot
7992 of extra zero-extends. */
7993 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
7994 nonzero &= GET_MODE_MASK (GET_MODE (x));
7995 #endif
7996 break;
7997
7998 case EQ: case NE:
7999 case UNEQ: case LTGT:
8000 case GT: case GTU: case UNGT:
8001 case LT: case LTU: case UNLT:
8002 case GE: case GEU: case UNGE:
8003 case LE: case LEU: case UNLE:
8004 case UNORDERED: case ORDERED:
8005
8006 /* If this produces an integer result, we know which bits are set.
8007 Code here used to clear bits outside the mode of X, but that is
8008 now done above. */
8009
8010 if (GET_MODE_CLASS (mode) == MODE_INT
8011 && mode_width <= HOST_BITS_PER_WIDE_INT)
8012 nonzero = STORE_FLAG_VALUE;
8013 break;
8014
8015 case NEG:
8016 #if 0
8017 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8018 and num_sign_bit_copies. */
8019 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8020 == GET_MODE_BITSIZE (GET_MODE (x)))
8021 nonzero = 1;
8022 #endif
8023
8024 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
8025 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
8026 break;
8027
8028 case ABS:
8029 #if 0
8030 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8031 and num_sign_bit_copies. */
8032 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8033 == GET_MODE_BITSIZE (GET_MODE (x)))
8034 nonzero = 1;
8035 #endif
8036 break;
8037
8038 case TRUNCATE:
8039 nonzero &= (nonzero_bits (XEXP (x, 0), mode) & GET_MODE_MASK (mode));
8040 break;
8041
8042 case ZERO_EXTEND:
8043 nonzero &= nonzero_bits (XEXP (x, 0), mode);
8044 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8045 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8046 break;
8047
8048 case SIGN_EXTEND:
8049 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
8050 Otherwise, show all the bits in the outer mode but not the inner
8051 may be non-zero. */
8052 inner_nz = nonzero_bits (XEXP (x, 0), mode);
8053 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8054 {
8055 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8056 if (inner_nz
8057 & (((HOST_WIDE_INT) 1
8058 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
8059 inner_nz |= (GET_MODE_MASK (mode)
8060 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
8061 }
8062
8063 nonzero &= inner_nz;
8064 break;
8065
8066 case AND:
8067 nonzero &= (nonzero_bits (XEXP (x, 0), mode)
8068 & nonzero_bits (XEXP (x, 1), mode));
8069 break;
8070
8071 case XOR: case IOR:
8072 case UMIN: case UMAX: case SMIN: case SMAX:
8073 nonzero &= (nonzero_bits (XEXP (x, 0), mode)
8074 | nonzero_bits (XEXP (x, 1), mode));
8075 break;
8076
8077 case PLUS: case MINUS:
8078 case MULT:
8079 case DIV: case UDIV:
8080 case MOD: case UMOD:
8081 /* We can apply the rules of arithmetic to compute the number of
8082 high- and low-order zero bits of these operations. We start by
8083 computing the width (position of the highest-order non-zero bit)
8084 and the number of low-order zero bits for each value. */
8085 {
8086 unsigned HOST_WIDE_INT nz0 = nonzero_bits (XEXP (x, 0), mode);
8087 unsigned HOST_WIDE_INT nz1 = nonzero_bits (XEXP (x, 1), mode);
8088 int width0 = floor_log2 (nz0) + 1;
8089 int width1 = floor_log2 (nz1) + 1;
8090 int low0 = floor_log2 (nz0 & -nz0);
8091 int low1 = floor_log2 (nz1 & -nz1);
8092 HOST_WIDE_INT op0_maybe_minusp
8093 = (nz0 & ((HOST_WIDE_INT) 1 << (mode_width - 1)));
8094 HOST_WIDE_INT op1_maybe_minusp
8095 = (nz1 & ((HOST_WIDE_INT) 1 << (mode_width - 1)));
8096 unsigned int result_width = mode_width;
8097 int result_low = 0;
8098
8099 switch (code)
8100 {
8101 case PLUS:
8102 #ifdef STACK_BIAS
8103 if (STACK_BIAS
8104 && (XEXP (x, 0) == stack_pointer_rtx
8105 || XEXP (x, 0) == frame_pointer_rtx)
8106 && GET_CODE (XEXP (x, 1)) == CONST_INT)
8107 {
8108 int sp_alignment = STACK_BOUNDARY / BITS_PER_UNIT;
8109
8110 nz0 = (GET_MODE_MASK (mode) & ~(sp_alignment - 1));
8111 nz1 = INTVAL (XEXP (x, 1)) - STACK_BIAS;
8112 width0 = floor_log2 (nz0) + 1;
8113 width1 = floor_log2 (nz1) + 1;
8114 low0 = floor_log2 (nz0 & -nz0);
8115 low1 = floor_log2 (nz1 & -nz1);
8116 }
8117 #endif
8118 result_width = MAX (width0, width1) + 1;
8119 result_low = MIN (low0, low1);
8120 break;
8121 case MINUS:
8122 result_low = MIN (low0, low1);
8123 break;
8124 case MULT:
8125 result_width = width0 + width1;
8126 result_low = low0 + low1;
8127 break;
8128 case DIV:
8129 if (width1 == 0)
8130 break;
8131 if (! op0_maybe_minusp && ! op1_maybe_minusp)
8132 result_width = width0;
8133 break;
8134 case UDIV:
8135 if (width1 == 0)
8136 break;
8137 result_width = width0;
8138 break;
8139 case MOD:
8140 if (width1 == 0)
8141 break;
8142 if (! op0_maybe_minusp && ! op1_maybe_minusp)
8143 result_width = MIN (width0, width1);
8144 result_low = MIN (low0, low1);
8145 break;
8146 case UMOD:
8147 if (width1 == 0)
8148 break;
8149 result_width = MIN (width0, width1);
8150 result_low = MIN (low0, low1);
8151 break;
8152 default:
8153 abort ();
8154 }
8155
8156 if (result_width < mode_width)
8157 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
8158
8159 if (result_low > 0)
8160 nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
8161
8162 #ifdef POINTERS_EXTEND_UNSIGNED
8163 /* If pointers extend unsigned and this is an addition or subtraction
8164 to a pointer in Pmode, all the bits above ptr_mode are known to be
8165 zero. */
8166 if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
8167 && (code == PLUS || code == MINUS)
8168 && GET_CODE (XEXP (x, 0)) == REG && REG_POINTER (XEXP (x, 0)))
8169 nonzero &= GET_MODE_MASK (ptr_mode);
8170 #endif
8171 }
8172 break;
8173
8174 case ZERO_EXTRACT:
8175 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8176 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8177 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
8178 break;
8179
8180 case SUBREG:
8181 /* If this is a SUBREG formed for a promoted variable that has
8182 been zero-extended, we know that at least the high-order bits
8183 are zero, though others might be too. */
8184
8185 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x))
8186 nonzero = (GET_MODE_MASK (GET_MODE (x))
8187 & nonzero_bits (SUBREG_REG (x), GET_MODE (x)));
8188
8189 /* If the inner mode is a single word for both the host and target
8190 machines, we can compute this from which bits of the inner
8191 object might be nonzero. */
8192 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
8193 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8194 <= HOST_BITS_PER_WIDE_INT))
8195 {
8196 nonzero &= nonzero_bits (SUBREG_REG (x), mode);
8197
8198 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
8199 /* If this is a typical RISC machine, we only have to worry
8200 about the way loads are extended. */
8201 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
8202 ? (((nonzero
8203 & (((unsigned HOST_WIDE_INT) 1
8204 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
8205 != 0))
8206 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
8207 #endif
8208 {
8209 /* On many CISC machines, accessing an object in a wider mode
8210 causes the high-order bits to become undefined. So they are
8211 not known to be zero. */
8212 if (GET_MODE_SIZE (GET_MODE (x))
8213 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8214 nonzero |= (GET_MODE_MASK (GET_MODE (x))
8215 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
8216 }
8217 }
8218 break;
8219
8220 case ASHIFTRT:
8221 case LSHIFTRT:
8222 case ASHIFT:
8223 case ROTATE:
8224 /* The nonzero bits are in two classes: any bits within MODE
8225 that aren't in GET_MODE (x) are always significant. The rest of the
8226 nonzero bits are those that are significant in the operand of
8227 the shift when shifted the appropriate number of bits. This
8228 shows that high-order bits are cleared by the right shift and
8229 low-order bits by left shifts. */
8230 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8231 && INTVAL (XEXP (x, 1)) >= 0
8232 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8233 {
8234 enum machine_mode inner_mode = GET_MODE (x);
8235 unsigned int width = GET_MODE_BITSIZE (inner_mode);
8236 int count = INTVAL (XEXP (x, 1));
8237 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
8238 unsigned HOST_WIDE_INT op_nonzero = nonzero_bits (XEXP (x, 0), mode);
8239 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
8240 unsigned HOST_WIDE_INT outer = 0;
8241
8242 if (mode_width > width)
8243 outer = (op_nonzero & nonzero & ~mode_mask);
8244
8245 if (code == LSHIFTRT)
8246 inner >>= count;
8247 else if (code == ASHIFTRT)
8248 {
8249 inner >>= count;
8250
8251 /* If the sign bit may have been nonzero before the shift, we
8252 need to mark all the places it could have been copied to
8253 by the shift as possibly nonzero. */
8254 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
8255 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
8256 }
8257 else if (code == ASHIFT)
8258 inner <<= count;
8259 else
8260 inner = ((inner << (count % width)
8261 | (inner >> (width - (count % width)))) & mode_mask);
8262
8263 nonzero &= (outer | inner);
8264 }
8265 break;
8266
8267 case FFS:
8268 /* This is at most the number of bits in the mode. */
8269 nonzero = ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width) + 1)) - 1;
8270 break;
8271
8272 case IF_THEN_ELSE:
8273 nonzero &= (nonzero_bits (XEXP (x, 1), mode)
8274 | nonzero_bits (XEXP (x, 2), mode));
8275 break;
8276
8277 default:
8278 break;
8279 }
8280
8281 return nonzero;
8282 }
8283
8284 /* See the macro definition above. */
8285 #undef num_sign_bit_copies
8286 \f
8287 /* Return the number of bits at the high-order end of X that are known to
8288 be equal to the sign bit. X will be used in mode MODE; if MODE is
8289 VOIDmode, X will be used in its own mode. The returned value will always
8290 be between 1 and the number of bits in MODE. */
8291
8292 static unsigned int
8293 num_sign_bit_copies (x, mode)
8294 rtx x;
8295 enum machine_mode mode;
8296 {
8297 enum rtx_code code = GET_CODE (x);
8298 unsigned int bitwidth;
8299 int num0, num1, result;
8300 unsigned HOST_WIDE_INT nonzero;
8301 rtx tem;
8302
8303 /* If we weren't given a mode, use the mode of X. If the mode is still
8304 VOIDmode, we don't know anything. Likewise if one of the modes is
8305 floating-point. */
8306
8307 if (mode == VOIDmode)
8308 mode = GET_MODE (x);
8309
8310 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
8311 return 1;
8312
8313 bitwidth = GET_MODE_BITSIZE (mode);
8314
8315 /* For a smaller object, just ignore the high bits. */
8316 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
8317 {
8318 num0 = num_sign_bit_copies (x, GET_MODE (x));
8319 return MAX (1,
8320 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
8321 }
8322
8323 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
8324 {
8325 #ifndef WORD_REGISTER_OPERATIONS
8326 /* If this machine does not do all register operations on the entire
8327 register and MODE is wider than the mode of X, we can say nothing
8328 at all about the high-order bits. */
8329 return 1;
8330 #else
8331 /* Likewise on machines that do, if the mode of the object is smaller
8332 than a word and loads of that size don't sign extend, we can say
8333 nothing about the high order bits. */
8334 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
8335 #ifdef LOAD_EXTEND_OP
8336 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
8337 #endif
8338 )
8339 return 1;
8340 #endif
8341 }
8342
8343 switch (code)
8344 {
8345 case REG:
8346
8347 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
8348 /* If pointers extend signed and this is a pointer in Pmode, say that
8349 all the bits above ptr_mode are known to be sign bit copies. */
8350 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
8351 && REG_POINTER (x))
8352 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
8353 #endif
8354
8355 if (reg_last_set_value[REGNO (x)] != 0
8356 && reg_last_set_mode[REGNO (x)] == mode
8357 && (reg_last_set_label[REGNO (x)] == label_tick
8358 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8359 && REG_N_SETS (REGNO (x)) == 1
8360 && ! REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start,
8361 REGNO (x))))
8362 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
8363 return reg_last_set_sign_bit_copies[REGNO (x)];
8364
8365 tem = get_last_value (x);
8366 if (tem != 0)
8367 return num_sign_bit_copies (tem, mode);
8368
8369 if (nonzero_sign_valid && reg_sign_bit_copies[REGNO (x)] != 0)
8370 return reg_sign_bit_copies[REGNO (x)];
8371 break;
8372
8373 case MEM:
8374 #ifdef LOAD_EXTEND_OP
8375 /* Some RISC machines sign-extend all loads of smaller than a word. */
8376 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
8377 return MAX (1, ((int) bitwidth
8378 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
8379 #endif
8380 break;
8381
8382 case CONST_INT:
8383 /* If the constant is negative, take its 1's complement and remask.
8384 Then see how many zero bits we have. */
8385 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
8386 if (bitwidth <= HOST_BITS_PER_WIDE_INT
8387 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8388 nonzero = (~nonzero) & GET_MODE_MASK (mode);
8389
8390 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
8391
8392 case SUBREG:
8393 /* If this is a SUBREG for a promoted object that is sign-extended
8394 and we are looking at it in a wider mode, we know that at least the
8395 high-order bits are known to be sign bit copies. */
8396
8397 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
8398 {
8399 num0 = num_sign_bit_copies (SUBREG_REG (x), mode);
8400 return MAX ((int) bitwidth
8401 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
8402 num0);
8403 }
8404
8405 /* For a smaller object, just ignore the high bits. */
8406 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
8407 {
8408 num0 = num_sign_bit_copies (SUBREG_REG (x), VOIDmode);
8409 return MAX (1, (num0
8410 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8411 - bitwidth)));
8412 }
8413
8414 #ifdef WORD_REGISTER_OPERATIONS
8415 #ifdef LOAD_EXTEND_OP
8416 /* For paradoxical SUBREGs on machines where all register operations
8417 affect the entire register, just look inside. Note that we are
8418 passing MODE to the recursive call, so the number of sign bit copies
8419 will remain relative to that mode, not the inner mode. */
8420
8421 /* This works only if loads sign extend. Otherwise, if we get a
8422 reload for the inner part, it may be loaded from the stack, and
8423 then we lose all sign bit copies that existed before the store
8424 to the stack. */
8425
8426 if ((GET_MODE_SIZE (GET_MODE (x))
8427 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8428 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND)
8429 return num_sign_bit_copies (SUBREG_REG (x), mode);
8430 #endif
8431 #endif
8432 break;
8433
8434 case SIGN_EXTRACT:
8435 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
8436 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
8437 break;
8438
8439 case SIGN_EXTEND:
8440 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8441 + num_sign_bit_copies (XEXP (x, 0), VOIDmode));
8442
8443 case TRUNCATE:
8444 /* For a smaller object, just ignore the high bits. */
8445 num0 = num_sign_bit_copies (XEXP (x, 0), VOIDmode);
8446 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8447 - bitwidth)));
8448
8449 case NOT:
8450 return num_sign_bit_copies (XEXP (x, 0), mode);
8451
8452 case ROTATE: case ROTATERT:
8453 /* If we are rotating left by a number of bits less than the number
8454 of sign bit copies, we can just subtract that amount from the
8455 number. */
8456 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8457 && INTVAL (XEXP (x, 1)) >= 0
8458 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
8459 {
8460 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8461 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
8462 : (int) bitwidth - INTVAL (XEXP (x, 1))));
8463 }
8464 break;
8465
8466 case NEG:
8467 /* In general, this subtracts one sign bit copy. But if the value
8468 is known to be positive, the number of sign bit copies is the
8469 same as that of the input. Finally, if the input has just one bit
8470 that might be nonzero, all the bits are copies of the sign bit. */
8471 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8472 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8473 return num0 > 1 ? num0 - 1 : 1;
8474
8475 nonzero = nonzero_bits (XEXP (x, 0), mode);
8476 if (nonzero == 1)
8477 return bitwidth;
8478
8479 if (num0 > 1
8480 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
8481 num0--;
8482
8483 return num0;
8484
8485 case IOR: case AND: case XOR:
8486 case SMIN: case SMAX: case UMIN: case UMAX:
8487 /* Logical operations will preserve the number of sign-bit copies.
8488 MIN and MAX operations always return one of the operands. */
8489 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8490 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8491 return MIN (num0, num1);
8492
8493 case PLUS: case MINUS:
8494 /* For addition and subtraction, we can have a 1-bit carry. However,
8495 if we are subtracting 1 from a positive number, there will not
8496 be such a carry. Furthermore, if the positive number is known to
8497 be 0 or 1, we know the result is either -1 or 0. */
8498
8499 if (code == PLUS && XEXP (x, 1) == constm1_rtx
8500 && bitwidth <= HOST_BITS_PER_WIDE_INT)
8501 {
8502 nonzero = nonzero_bits (XEXP (x, 0), mode);
8503 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
8504 return (nonzero == 1 || nonzero == 0 ? bitwidth
8505 : bitwidth - floor_log2 (nonzero) - 1);
8506 }
8507
8508 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8509 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8510 result = MAX (1, MIN (num0, num1) - 1);
8511
8512 #ifdef POINTERS_EXTEND_UNSIGNED
8513 /* If pointers extend signed and this is an addition or subtraction
8514 to a pointer in Pmode, all the bits above ptr_mode are known to be
8515 sign bit copies. */
8516 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
8517 && (code == PLUS || code == MINUS)
8518 && GET_CODE (XEXP (x, 0)) == REG && REG_POINTER (XEXP (x, 0)))
8519 result = MAX ((int)(GET_MODE_BITSIZE (Pmode)
8520 - GET_MODE_BITSIZE (ptr_mode) + 1),
8521 result);
8522 #endif
8523 return result;
8524
8525 case MULT:
8526 /* The number of bits of the product is the sum of the number of
8527 bits of both terms. However, unless one of the terms if known
8528 to be positive, we must allow for an additional bit since negating
8529 a negative number can remove one sign bit copy. */
8530
8531 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8532 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8533
8534 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
8535 if (result > 0
8536 && (bitwidth > HOST_BITS_PER_WIDE_INT
8537 || (((nonzero_bits (XEXP (x, 0), mode)
8538 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8539 && ((nonzero_bits (XEXP (x, 1), mode)
8540 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
8541 result--;
8542
8543 return MAX (1, result);
8544
8545 case UDIV:
8546 /* The result must be <= the first operand. If the first operand
8547 has the high bit set, we know nothing about the number of sign
8548 bit copies. */
8549 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8550 return 1;
8551 else if ((nonzero_bits (XEXP (x, 0), mode)
8552 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8553 return 1;
8554 else
8555 return num_sign_bit_copies (XEXP (x, 0), mode);
8556
8557 case UMOD:
8558 /* The result must be <= the second operand. */
8559 return num_sign_bit_copies (XEXP (x, 1), mode);
8560
8561 case DIV:
8562 /* Similar to unsigned division, except that we have to worry about
8563 the case where the divisor is negative, in which case we have
8564 to add 1. */
8565 result = num_sign_bit_copies (XEXP (x, 0), mode);
8566 if (result > 1
8567 && (bitwidth > HOST_BITS_PER_WIDE_INT
8568 || (nonzero_bits (XEXP (x, 1), mode)
8569 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8570 result--;
8571
8572 return result;
8573
8574 case MOD:
8575 result = num_sign_bit_copies (XEXP (x, 1), mode);
8576 if (result > 1
8577 && (bitwidth > HOST_BITS_PER_WIDE_INT
8578 || (nonzero_bits (XEXP (x, 1), mode)
8579 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8580 result--;
8581
8582 return result;
8583
8584 case ASHIFTRT:
8585 /* Shifts by a constant add to the number of bits equal to the
8586 sign bit. */
8587 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8588 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8589 && INTVAL (XEXP (x, 1)) > 0)
8590 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
8591
8592 return num0;
8593
8594 case ASHIFT:
8595 /* Left shifts destroy copies. */
8596 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8597 || INTVAL (XEXP (x, 1)) < 0
8598 || INTVAL (XEXP (x, 1)) >= (int) bitwidth)
8599 return 1;
8600
8601 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8602 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
8603
8604 case IF_THEN_ELSE:
8605 num0 = num_sign_bit_copies (XEXP (x, 1), mode);
8606 num1 = num_sign_bit_copies (XEXP (x, 2), mode);
8607 return MIN (num0, num1);
8608
8609 case EQ: case NE: case GE: case GT: case LE: case LT:
8610 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
8611 case GEU: case GTU: case LEU: case LTU:
8612 case UNORDERED: case ORDERED:
8613 /* If the constant is negative, take its 1's complement and remask.
8614 Then see how many zero bits we have. */
8615 nonzero = STORE_FLAG_VALUE;
8616 if (bitwidth <= HOST_BITS_PER_WIDE_INT
8617 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8618 nonzero = (~nonzero) & GET_MODE_MASK (mode);
8619
8620 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
8621 break;
8622
8623 default:
8624 break;
8625 }
8626
8627 /* If we haven't been able to figure it out by one of the above rules,
8628 see if some of the high-order bits are known to be zero. If so,
8629 count those bits and return one less than that amount. If we can't
8630 safely compute the mask for this mode, always return BITWIDTH. */
8631
8632 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8633 return 1;
8634
8635 nonzero = nonzero_bits (x, mode);
8636 return (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
8637 ? 1 : bitwidth - floor_log2 (nonzero) - 1);
8638 }
8639 \f
8640 /* Return the number of "extended" bits there are in X, when interpreted
8641 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8642 unsigned quantities, this is the number of high-order zero bits.
8643 For signed quantities, this is the number of copies of the sign bit
8644 minus 1. In both case, this function returns the number of "spare"
8645 bits. For example, if two quantities for which this function returns
8646 at least 1 are added, the addition is known not to overflow.
8647
8648 This function will always return 0 unless called during combine, which
8649 implies that it must be called from a define_split. */
8650
8651 unsigned int
8652 extended_count (x, mode, unsignedp)
8653 rtx x;
8654 enum machine_mode mode;
8655 int unsignedp;
8656 {
8657 if (nonzero_sign_valid == 0)
8658 return 0;
8659
8660 return (unsignedp
8661 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8662 ? (GET_MODE_BITSIZE (mode) - 1
8663 - floor_log2 (nonzero_bits (x, mode)))
8664 : 0)
8665 : num_sign_bit_copies (x, mode) - 1);
8666 }
8667 \f
8668 /* This function is called from `simplify_shift_const' to merge two
8669 outer operations. Specifically, we have already found that we need
8670 to perform operation *POP0 with constant *PCONST0 at the outermost
8671 position. We would now like to also perform OP1 with constant CONST1
8672 (with *POP0 being done last).
8673
8674 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8675 the resulting operation. *PCOMP_P is set to 1 if we would need to
8676 complement the innermost operand, otherwise it is unchanged.
8677
8678 MODE is the mode in which the operation will be done. No bits outside
8679 the width of this mode matter. It is assumed that the width of this mode
8680 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8681
8682 If *POP0 or OP1 are NIL, it means no operation is required. Only NEG, PLUS,
8683 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8684 result is simply *PCONST0.
8685
8686 If the resulting operation cannot be expressed as one operation, we
8687 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8688
8689 static int
8690 merge_outer_ops (pop0, pconst0, op1, const1, mode, pcomp_p)
8691 enum rtx_code *pop0;
8692 HOST_WIDE_INT *pconst0;
8693 enum rtx_code op1;
8694 HOST_WIDE_INT const1;
8695 enum machine_mode mode;
8696 int *pcomp_p;
8697 {
8698 enum rtx_code op0 = *pop0;
8699 HOST_WIDE_INT const0 = *pconst0;
8700
8701 const0 &= GET_MODE_MASK (mode);
8702 const1 &= GET_MODE_MASK (mode);
8703
8704 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8705 if (op0 == AND)
8706 const1 &= const0;
8707
8708 /* If OP0 or OP1 is NIL, this is easy. Similarly if they are the same or
8709 if OP0 is SET. */
8710
8711 if (op1 == NIL || op0 == SET)
8712 return 1;
8713
8714 else if (op0 == NIL)
8715 op0 = op1, const0 = const1;
8716
8717 else if (op0 == op1)
8718 {
8719 switch (op0)
8720 {
8721 case AND:
8722 const0 &= const1;
8723 break;
8724 case IOR:
8725 const0 |= const1;
8726 break;
8727 case XOR:
8728 const0 ^= const1;
8729 break;
8730 case PLUS:
8731 const0 += const1;
8732 break;
8733 case NEG:
8734 op0 = NIL;
8735 break;
8736 default:
8737 break;
8738 }
8739 }
8740
8741 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8742 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8743 return 0;
8744
8745 /* If the two constants aren't the same, we can't do anything. The
8746 remaining six cases can all be done. */
8747 else if (const0 != const1)
8748 return 0;
8749
8750 else
8751 switch (op0)
8752 {
8753 case IOR:
8754 if (op1 == AND)
8755 /* (a & b) | b == b */
8756 op0 = SET;
8757 else /* op1 == XOR */
8758 /* (a ^ b) | b == a | b */
8759 {;}
8760 break;
8761
8762 case XOR:
8763 if (op1 == AND)
8764 /* (a & b) ^ b == (~a) & b */
8765 op0 = AND, *pcomp_p = 1;
8766 else /* op1 == IOR */
8767 /* (a | b) ^ b == a & ~b */
8768 op0 = AND, *pconst0 = ~const0;
8769 break;
8770
8771 case AND:
8772 if (op1 == IOR)
8773 /* (a | b) & b == b */
8774 op0 = SET;
8775 else /* op1 == XOR */
8776 /* (a ^ b) & b) == (~a) & b */
8777 *pcomp_p = 1;
8778 break;
8779 default:
8780 break;
8781 }
8782
8783 /* Check for NO-OP cases. */
8784 const0 &= GET_MODE_MASK (mode);
8785 if (const0 == 0
8786 && (op0 == IOR || op0 == XOR || op0 == PLUS))
8787 op0 = NIL;
8788 else if (const0 == 0 && op0 == AND)
8789 op0 = SET;
8790 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8791 && op0 == AND)
8792 op0 = NIL;
8793
8794 /* ??? Slightly redundant with the above mask, but not entirely.
8795 Moving this above means we'd have to sign-extend the mode mask
8796 for the final test. */
8797 const0 = trunc_int_for_mode (const0, mode);
8798
8799 *pop0 = op0;
8800 *pconst0 = const0;
8801
8802 return 1;
8803 }
8804 \f
8805 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8806 The result of the shift is RESULT_MODE. X, if non-zero, is an expression
8807 that we started with.
8808
8809 The shift is normally computed in the widest mode we find in VAROP, as
8810 long as it isn't a different number of words than RESULT_MODE. Exceptions
8811 are ASHIFTRT and ROTATE, which are always done in their original mode, */
8812
8813 static rtx
8814 simplify_shift_const (x, code, result_mode, varop, input_count)
8815 rtx x;
8816 enum rtx_code code;
8817 enum machine_mode result_mode;
8818 rtx varop;
8819 int input_count;
8820 {
8821 enum rtx_code orig_code = code;
8822 int orig_count = input_count;
8823 unsigned int count;
8824 int signed_count;
8825 enum machine_mode mode = result_mode;
8826 enum machine_mode shift_mode, tmode;
8827 unsigned int mode_words
8828 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
8829 /* We form (outer_op (code varop count) (outer_const)). */
8830 enum rtx_code outer_op = NIL;
8831 HOST_WIDE_INT outer_const = 0;
8832 rtx const_rtx;
8833 int complement_p = 0;
8834 rtx new;
8835
8836 /* If we were given an invalid count, don't do anything except exactly
8837 what was requested. */
8838
8839 if (input_count < 0 || input_count >= (int) GET_MODE_BITSIZE (mode))
8840 {
8841 if (x)
8842 return x;
8843
8844 return gen_rtx_fmt_ee (code, mode, varop, GEN_INT (input_count));
8845 }
8846
8847 count = input_count;
8848
8849 /* Make sure and truncate the "natural" shift on the way in. We don't
8850 want to do this inside the loop as it makes it more difficult to
8851 combine shifts. */
8852 #ifdef SHIFT_COUNT_TRUNCATED
8853 if (SHIFT_COUNT_TRUNCATED)
8854 count %= GET_MODE_BITSIZE (mode);
8855 #endif
8856
8857 /* Unless one of the branches of the `if' in this loop does a `continue',
8858 we will `break' the loop after the `if'. */
8859
8860 while (count != 0)
8861 {
8862 /* If we have an operand of (clobber (const_int 0)), just return that
8863 value. */
8864 if (GET_CODE (varop) == CLOBBER)
8865 return varop;
8866
8867 /* If we discovered we had to complement VAROP, leave. Making a NOT
8868 here would cause an infinite loop. */
8869 if (complement_p)
8870 break;
8871
8872 /* Convert ROTATERT to ROTATE. */
8873 if (code == ROTATERT)
8874 code = ROTATE, count = GET_MODE_BITSIZE (result_mode) - count;
8875
8876 /* We need to determine what mode we will do the shift in. If the
8877 shift is a right shift or a ROTATE, we must always do it in the mode
8878 it was originally done in. Otherwise, we can do it in MODE, the
8879 widest mode encountered. */
8880 shift_mode
8881 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
8882 ? result_mode : mode);
8883
8884 /* Handle cases where the count is greater than the size of the mode
8885 minus 1. For ASHIFT, use the size minus one as the count (this can
8886 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
8887 take the count modulo the size. For other shifts, the result is
8888 zero.
8889
8890 Since these shifts are being produced by the compiler by combining
8891 multiple operations, each of which are defined, we know what the
8892 result is supposed to be. */
8893
8894 if (count > GET_MODE_BITSIZE (shift_mode) - 1)
8895 {
8896 if (code == ASHIFTRT)
8897 count = GET_MODE_BITSIZE (shift_mode) - 1;
8898 else if (code == ROTATE || code == ROTATERT)
8899 count %= GET_MODE_BITSIZE (shift_mode);
8900 else
8901 {
8902 /* We can't simply return zero because there may be an
8903 outer op. */
8904 varop = const0_rtx;
8905 count = 0;
8906 break;
8907 }
8908 }
8909
8910 /* An arithmetic right shift of a quantity known to be -1 or 0
8911 is a no-op. */
8912 if (code == ASHIFTRT
8913 && (num_sign_bit_copies (varop, shift_mode)
8914 == GET_MODE_BITSIZE (shift_mode)))
8915 {
8916 count = 0;
8917 break;
8918 }
8919
8920 /* If we are doing an arithmetic right shift and discarding all but
8921 the sign bit copies, this is equivalent to doing a shift by the
8922 bitsize minus one. Convert it into that shift because it will often
8923 allow other simplifications. */
8924
8925 if (code == ASHIFTRT
8926 && (count + num_sign_bit_copies (varop, shift_mode)
8927 >= GET_MODE_BITSIZE (shift_mode)))
8928 count = GET_MODE_BITSIZE (shift_mode) - 1;
8929
8930 /* We simplify the tests below and elsewhere by converting
8931 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
8932 `make_compound_operation' will convert it to a ASHIFTRT for
8933 those machines (such as VAX) that don't have a LSHIFTRT. */
8934 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8935 && code == ASHIFTRT
8936 && ((nonzero_bits (varop, shift_mode)
8937 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
8938 == 0))
8939 code = LSHIFTRT;
8940
8941 switch (GET_CODE (varop))
8942 {
8943 case SIGN_EXTEND:
8944 case ZERO_EXTEND:
8945 case SIGN_EXTRACT:
8946 case ZERO_EXTRACT:
8947 new = expand_compound_operation (varop);
8948 if (new != varop)
8949 {
8950 varop = new;
8951 continue;
8952 }
8953 break;
8954
8955 case MEM:
8956 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
8957 minus the width of a smaller mode, we can do this with a
8958 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
8959 if ((code == ASHIFTRT || code == LSHIFTRT)
8960 && ! mode_dependent_address_p (XEXP (varop, 0))
8961 && ! MEM_VOLATILE_P (varop)
8962 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8963 MODE_INT, 1)) != BLKmode)
8964 {
8965 new = adjust_address_nv (varop, tmode,
8966 BYTES_BIG_ENDIAN ? 0
8967 : count / BITS_PER_UNIT);
8968
8969 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8970 : ZERO_EXTEND, mode, new);
8971 count = 0;
8972 continue;
8973 }
8974 break;
8975
8976 case USE:
8977 /* Similar to the case above, except that we can only do this if
8978 the resulting mode is the same as that of the underlying
8979 MEM and adjust the address depending on the *bits* endianness
8980 because of the way that bit-field extract insns are defined. */
8981 if ((code == ASHIFTRT || code == LSHIFTRT)
8982 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8983 MODE_INT, 1)) != BLKmode
8984 && tmode == GET_MODE (XEXP (varop, 0)))
8985 {
8986 if (BITS_BIG_ENDIAN)
8987 new = XEXP (varop, 0);
8988 else
8989 {
8990 new = copy_rtx (XEXP (varop, 0));
8991 SUBST (XEXP (new, 0),
8992 plus_constant (XEXP (new, 0),
8993 count / BITS_PER_UNIT));
8994 }
8995
8996 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8997 : ZERO_EXTEND, mode, new);
8998 count = 0;
8999 continue;
9000 }
9001 break;
9002
9003 case SUBREG:
9004 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9005 the same number of words as what we've seen so far. Then store
9006 the widest mode in MODE. */
9007 if (subreg_lowpart_p (varop)
9008 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9009 > GET_MODE_SIZE (GET_MODE (varop)))
9010 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9011 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9012 == mode_words))
9013 {
9014 varop = SUBREG_REG (varop);
9015 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9016 mode = GET_MODE (varop);
9017 continue;
9018 }
9019 break;
9020
9021 case MULT:
9022 /* Some machines use MULT instead of ASHIFT because MULT
9023 is cheaper. But it is still better on those machines to
9024 merge two shifts into one. */
9025 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9026 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9027 {
9028 varop
9029 = gen_binary (ASHIFT, GET_MODE (varop), XEXP (varop, 0),
9030 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9031 continue;
9032 }
9033 break;
9034
9035 case UDIV:
9036 /* Similar, for when divides are cheaper. */
9037 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9038 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9039 {
9040 varop
9041 = gen_binary (LSHIFTRT, GET_MODE (varop), XEXP (varop, 0),
9042 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9043 continue;
9044 }
9045 break;
9046
9047 case ASHIFTRT:
9048 /* If we are extracting just the sign bit of an arithmetic
9049 right shift, that shift is not needed. However, the sign
9050 bit of a wider mode may be different from what would be
9051 interpreted as the sign bit in a narrower mode, so, if
9052 the result is narrower, don't discard the shift. */
9053 if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
9054 && (GET_MODE_BITSIZE (result_mode)
9055 >= GET_MODE_BITSIZE (GET_MODE (varop))))
9056 {
9057 varop = XEXP (varop, 0);
9058 continue;
9059 }
9060
9061 /* ... fall through ... */
9062
9063 case LSHIFTRT:
9064 case ASHIFT:
9065 case ROTATE:
9066 /* Here we have two nested shifts. The result is usually the
9067 AND of a new shift with a mask. We compute the result below. */
9068 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9069 && INTVAL (XEXP (varop, 1)) >= 0
9070 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
9071 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9072 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9073 {
9074 enum rtx_code first_code = GET_CODE (varop);
9075 unsigned int first_count = INTVAL (XEXP (varop, 1));
9076 unsigned HOST_WIDE_INT mask;
9077 rtx mask_rtx;
9078
9079 /* We have one common special case. We can't do any merging if
9080 the inner code is an ASHIFTRT of a smaller mode. However, if
9081 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
9082 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
9083 we can convert it to
9084 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
9085 This simplifies certain SIGN_EXTEND operations. */
9086 if (code == ASHIFT && first_code == ASHIFTRT
9087 && (GET_MODE_BITSIZE (result_mode)
9088 - GET_MODE_BITSIZE (GET_MODE (varop))) == count)
9089 {
9090 /* C3 has the low-order C1 bits zero. */
9091
9092 mask = (GET_MODE_MASK (mode)
9093 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
9094
9095 varop = simplify_and_const_int (NULL_RTX, result_mode,
9096 XEXP (varop, 0), mask);
9097 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
9098 varop, count);
9099 count = first_count;
9100 code = ASHIFTRT;
9101 continue;
9102 }
9103
9104 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
9105 than C1 high-order bits equal to the sign bit, we can convert
9106 this to either an ASHIFT or a ASHIFTRT depending on the
9107 two counts.
9108
9109 We cannot do this if VAROP's mode is not SHIFT_MODE. */
9110
9111 if (code == ASHIFTRT && first_code == ASHIFT
9112 && GET_MODE (varop) == shift_mode
9113 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
9114 > first_count))
9115 {
9116 varop = XEXP (varop, 0);
9117
9118 signed_count = count - first_count;
9119 if (signed_count < 0)
9120 count = -signed_count, code = ASHIFT;
9121 else
9122 count = signed_count;
9123
9124 continue;
9125 }
9126
9127 /* There are some cases we can't do. If CODE is ASHIFTRT,
9128 we can only do this if FIRST_CODE is also ASHIFTRT.
9129
9130 We can't do the case when CODE is ROTATE and FIRST_CODE is
9131 ASHIFTRT.
9132
9133 If the mode of this shift is not the mode of the outer shift,
9134 we can't do this if either shift is a right shift or ROTATE.
9135
9136 Finally, we can't do any of these if the mode is too wide
9137 unless the codes are the same.
9138
9139 Handle the case where the shift codes are the same
9140 first. */
9141
9142 if (code == first_code)
9143 {
9144 if (GET_MODE (varop) != result_mode
9145 && (code == ASHIFTRT || code == LSHIFTRT
9146 || code == ROTATE))
9147 break;
9148
9149 count += first_count;
9150 varop = XEXP (varop, 0);
9151 continue;
9152 }
9153
9154 if (code == ASHIFTRT
9155 || (code == ROTATE && first_code == ASHIFTRT)
9156 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
9157 || (GET_MODE (varop) != result_mode
9158 && (first_code == ASHIFTRT || first_code == LSHIFTRT
9159 || first_code == ROTATE
9160 || code == ROTATE)))
9161 break;
9162
9163 /* To compute the mask to apply after the shift, shift the
9164 nonzero bits of the inner shift the same way the
9165 outer shift will. */
9166
9167 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
9168
9169 mask_rtx
9170 = simplify_binary_operation (code, result_mode, mask_rtx,
9171 GEN_INT (count));
9172
9173 /* Give up if we can't compute an outer operation to use. */
9174 if (mask_rtx == 0
9175 || GET_CODE (mask_rtx) != CONST_INT
9176 || ! merge_outer_ops (&outer_op, &outer_const, AND,
9177 INTVAL (mask_rtx),
9178 result_mode, &complement_p))
9179 break;
9180
9181 /* If the shifts are in the same direction, we add the
9182 counts. Otherwise, we subtract them. */
9183 signed_count = count;
9184 if ((code == ASHIFTRT || code == LSHIFTRT)
9185 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
9186 signed_count += first_count;
9187 else
9188 signed_count -= first_count;
9189
9190 /* If COUNT is positive, the new shift is usually CODE,
9191 except for the two exceptions below, in which case it is
9192 FIRST_CODE. If the count is negative, FIRST_CODE should
9193 always be used */
9194 if (signed_count > 0
9195 && ((first_code == ROTATE && code == ASHIFT)
9196 || (first_code == ASHIFTRT && code == LSHIFTRT)))
9197 code = first_code, count = signed_count;
9198 else if (signed_count < 0)
9199 code = first_code, count = -signed_count;
9200 else
9201 count = signed_count;
9202
9203 varop = XEXP (varop, 0);
9204 continue;
9205 }
9206
9207 /* If we have (A << B << C) for any shift, we can convert this to
9208 (A << C << B). This wins if A is a constant. Only try this if
9209 B is not a constant. */
9210
9211 else if (GET_CODE (varop) == code
9212 && GET_CODE (XEXP (varop, 1)) != CONST_INT
9213 && 0 != (new
9214 = simplify_binary_operation (code, mode,
9215 XEXP (varop, 0),
9216 GEN_INT (count))))
9217 {
9218 varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
9219 count = 0;
9220 continue;
9221 }
9222 break;
9223
9224 case NOT:
9225 /* Make this fit the case below. */
9226 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
9227 GEN_INT (GET_MODE_MASK (mode)));
9228 continue;
9229
9230 case IOR:
9231 case AND:
9232 case XOR:
9233 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
9234 with C the size of VAROP - 1 and the shift is logical if
9235 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9236 we have an (le X 0) operation. If we have an arithmetic shift
9237 and STORE_FLAG_VALUE is 1 or we have a logical shift with
9238 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
9239
9240 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
9241 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
9242 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9243 && (code == LSHIFTRT || code == ASHIFTRT)
9244 && count == GET_MODE_BITSIZE (GET_MODE (varop)) - 1
9245 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9246 {
9247 count = 0;
9248 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
9249 const0_rtx);
9250
9251 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9252 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9253
9254 continue;
9255 }
9256
9257 /* If we have (shift (logical)), move the logical to the outside
9258 to allow it to possibly combine with another logical and the
9259 shift to combine with another shift. This also canonicalizes to
9260 what a ZERO_EXTRACT looks like. Also, some machines have
9261 (and (shift)) insns. */
9262
9263 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9264 && (new = simplify_binary_operation (code, result_mode,
9265 XEXP (varop, 1),
9266 GEN_INT (count))) != 0
9267 && GET_CODE (new) == CONST_INT
9268 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9269 INTVAL (new), result_mode, &complement_p))
9270 {
9271 varop = XEXP (varop, 0);
9272 continue;
9273 }
9274
9275 /* If we can't do that, try to simplify the shift in each arm of the
9276 logical expression, make a new logical expression, and apply
9277 the inverse distributive law. */
9278 {
9279 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9280 XEXP (varop, 0), count);
9281 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9282 XEXP (varop, 1), count);
9283
9284 varop = gen_binary (GET_CODE (varop), shift_mode, lhs, rhs);
9285 varop = apply_distributive_law (varop);
9286
9287 count = 0;
9288 }
9289 break;
9290
9291 case EQ:
9292 /* convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9293 says that the sign bit can be tested, FOO has mode MODE, C is
9294 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9295 that may be nonzero. */
9296 if (code == LSHIFTRT
9297 && XEXP (varop, 1) == const0_rtx
9298 && GET_MODE (XEXP (varop, 0)) == result_mode
9299 && count == GET_MODE_BITSIZE (result_mode) - 1
9300 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9301 && ((STORE_FLAG_VALUE
9302 & ((HOST_WIDE_INT) 1
9303 < (GET_MODE_BITSIZE (result_mode) - 1))))
9304 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9305 && merge_outer_ops (&outer_op, &outer_const, XOR,
9306 (HOST_WIDE_INT) 1, result_mode,
9307 &complement_p))
9308 {
9309 varop = XEXP (varop, 0);
9310 count = 0;
9311 continue;
9312 }
9313 break;
9314
9315 case NEG:
9316 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9317 than the number of bits in the mode is equivalent to A. */
9318 if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
9319 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9320 {
9321 varop = XEXP (varop, 0);
9322 count = 0;
9323 continue;
9324 }
9325
9326 /* NEG commutes with ASHIFT since it is multiplication. Move the
9327 NEG outside to allow shifts to combine. */
9328 if (code == ASHIFT
9329 && merge_outer_ops (&outer_op, &outer_const, NEG,
9330 (HOST_WIDE_INT) 0, result_mode,
9331 &complement_p))
9332 {
9333 varop = XEXP (varop, 0);
9334 continue;
9335 }
9336 break;
9337
9338 case PLUS:
9339 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9340 is one less than the number of bits in the mode is
9341 equivalent to (xor A 1). */
9342 if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
9343 && XEXP (varop, 1) == constm1_rtx
9344 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9345 && merge_outer_ops (&outer_op, &outer_const, XOR,
9346 (HOST_WIDE_INT) 1, result_mode,
9347 &complement_p))
9348 {
9349 count = 0;
9350 varop = XEXP (varop, 0);
9351 continue;
9352 }
9353
9354 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9355 that might be nonzero in BAR are those being shifted out and those
9356 bits are known zero in FOO, we can replace the PLUS with FOO.
9357 Similarly in the other operand order. This code occurs when
9358 we are computing the size of a variable-size array. */
9359
9360 if ((code == ASHIFTRT || code == LSHIFTRT)
9361 && count < HOST_BITS_PER_WIDE_INT
9362 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9363 && (nonzero_bits (XEXP (varop, 1), result_mode)
9364 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9365 {
9366 varop = XEXP (varop, 0);
9367 continue;
9368 }
9369 else if ((code == ASHIFTRT || code == LSHIFTRT)
9370 && count < HOST_BITS_PER_WIDE_INT
9371 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9372 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9373 >> count)
9374 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9375 & nonzero_bits (XEXP (varop, 1),
9376 result_mode)))
9377 {
9378 varop = XEXP (varop, 1);
9379 continue;
9380 }
9381
9382 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9383 if (code == ASHIFT
9384 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9385 && (new = simplify_binary_operation (ASHIFT, result_mode,
9386 XEXP (varop, 1),
9387 GEN_INT (count))) != 0
9388 && GET_CODE (new) == CONST_INT
9389 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9390 INTVAL (new), result_mode, &complement_p))
9391 {
9392 varop = XEXP (varop, 0);
9393 continue;
9394 }
9395 break;
9396
9397 case MINUS:
9398 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9399 with C the size of VAROP - 1 and the shift is logical if
9400 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9401 we have a (gt X 0) operation. If the shift is arithmetic with
9402 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9403 we have a (neg (gt X 0)) operation. */
9404
9405 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9406 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9407 && count == GET_MODE_BITSIZE (GET_MODE (varop)) - 1
9408 && (code == LSHIFTRT || code == ASHIFTRT)
9409 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9410 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
9411 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9412 {
9413 count = 0;
9414 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9415 const0_rtx);
9416
9417 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9418 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9419
9420 continue;
9421 }
9422 break;
9423
9424 case TRUNCATE:
9425 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9426 if the truncate does not affect the value. */
9427 if (code == LSHIFTRT
9428 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9429 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9430 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9431 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9432 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9433 {
9434 rtx varop_inner = XEXP (varop, 0);
9435
9436 varop_inner
9437 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9438 XEXP (varop_inner, 0),
9439 GEN_INT
9440 (count + INTVAL (XEXP (varop_inner, 1))));
9441 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9442 count = 0;
9443 continue;
9444 }
9445 break;
9446
9447 default:
9448 break;
9449 }
9450
9451 break;
9452 }
9453
9454 /* We need to determine what mode to do the shift in. If the shift is
9455 a right shift or ROTATE, we must always do it in the mode it was
9456 originally done in. Otherwise, we can do it in MODE, the widest mode
9457 encountered. The code we care about is that of the shift that will
9458 actually be done, not the shift that was originally requested. */
9459 shift_mode
9460 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9461 ? result_mode : mode);
9462
9463 /* We have now finished analyzing the shift. The result should be
9464 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9465 OUTER_OP is non-NIL, it is an operation that needs to be applied
9466 to the result of the shift. OUTER_CONST is the relevant constant,
9467 but we must turn off all bits turned off in the shift.
9468
9469 If we were passed a value for X, see if we can use any pieces of
9470 it. If not, make new rtx. */
9471
9472 if (x && GET_RTX_CLASS (GET_CODE (x)) == '2'
9473 && GET_CODE (XEXP (x, 1)) == CONST_INT
9474 && INTVAL (XEXP (x, 1)) == count)
9475 const_rtx = XEXP (x, 1);
9476 else
9477 const_rtx = GEN_INT (count);
9478
9479 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
9480 && GET_MODE (XEXP (x, 0)) == shift_mode
9481 && SUBREG_REG (XEXP (x, 0)) == varop)
9482 varop = XEXP (x, 0);
9483 else if (GET_MODE (varop) != shift_mode)
9484 varop = gen_lowpart_for_combine (shift_mode, varop);
9485
9486 /* If we can't make the SUBREG, try to return what we were given. */
9487 if (GET_CODE (varop) == CLOBBER)
9488 return x ? x : varop;
9489
9490 new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
9491 if (new != 0)
9492 x = new;
9493 else
9494 {
9495 if (x == 0 || GET_CODE (x) != code || GET_MODE (x) != shift_mode)
9496 x = gen_rtx_fmt_ee (code, shift_mode, varop, const_rtx);
9497
9498 SUBST (XEXP (x, 0), varop);
9499 SUBST (XEXP (x, 1), const_rtx);
9500 }
9501
9502 /* If we have an outer operation and we just made a shift, it is
9503 possible that we could have simplified the shift were it not
9504 for the outer operation. So try to do the simplification
9505 recursively. */
9506
9507 if (outer_op != NIL && GET_CODE (x) == code
9508 && GET_CODE (XEXP (x, 1)) == CONST_INT)
9509 x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
9510 INTVAL (XEXP (x, 1)));
9511
9512 /* If we were doing a LSHIFTRT in a wider mode than it was originally,
9513 turn off all the bits that the shift would have turned off. */
9514 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9515 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9516 GET_MODE_MASK (result_mode) >> orig_count);
9517
9518 /* Do the remainder of the processing in RESULT_MODE. */
9519 x = gen_lowpart_for_combine (result_mode, x);
9520
9521 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9522 operation. */
9523 if (complement_p)
9524 x =simplify_gen_unary (NOT, result_mode, x, result_mode);
9525
9526 if (outer_op != NIL)
9527 {
9528 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9529 outer_const = trunc_int_for_mode (outer_const, result_mode);
9530
9531 if (outer_op == AND)
9532 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9533 else if (outer_op == SET)
9534 /* This means that we have determined that the result is
9535 equivalent to a constant. This should be rare. */
9536 x = GEN_INT (outer_const);
9537 else if (GET_RTX_CLASS (outer_op) == '1')
9538 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9539 else
9540 x = gen_binary (outer_op, result_mode, x, GEN_INT (outer_const));
9541 }
9542
9543 return x;
9544 }
9545 \f
9546 /* Like recog, but we receive the address of a pointer to a new pattern.
9547 We try to match the rtx that the pointer points to.
9548 If that fails, we may try to modify or replace the pattern,
9549 storing the replacement into the same pointer object.
9550
9551 Modifications include deletion or addition of CLOBBERs.
9552
9553 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9554 the CLOBBERs are placed.
9555
9556 The value is the final insn code from the pattern ultimately matched,
9557 or -1. */
9558
9559 static int
9560 recog_for_combine (pnewpat, insn, pnotes)
9561 rtx *pnewpat;
9562 rtx insn;
9563 rtx *pnotes;
9564 {
9565 rtx pat = *pnewpat;
9566 int insn_code_number;
9567 int num_clobbers_to_add = 0;
9568 int i;
9569 rtx notes = 0;
9570 rtx old_notes;
9571
9572 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9573 we use to indicate that something didn't match. If we find such a
9574 thing, force rejection. */
9575 if (GET_CODE (pat) == PARALLEL)
9576 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9577 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9578 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9579 return -1;
9580
9581 /* Remove the old notes prior to trying to recognize the new pattern. */
9582 old_notes = REG_NOTES (insn);
9583 REG_NOTES (insn) = 0;
9584
9585 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9586
9587 /* If it isn't, there is the possibility that we previously had an insn
9588 that clobbered some register as a side effect, but the combined
9589 insn doesn't need to do that. So try once more without the clobbers
9590 unless this represents an ASM insn. */
9591
9592 if (insn_code_number < 0 && ! check_asm_operands (pat)
9593 && GET_CODE (pat) == PARALLEL)
9594 {
9595 int pos;
9596
9597 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9598 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9599 {
9600 if (i != pos)
9601 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9602 pos++;
9603 }
9604
9605 SUBST_INT (XVECLEN (pat, 0), pos);
9606
9607 if (pos == 1)
9608 pat = XVECEXP (pat, 0, 0);
9609
9610 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9611 }
9612
9613 /* Recognize all noop sets, these will be killed by followup pass. */
9614 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9615 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9616
9617 REG_NOTES (insn) = old_notes;
9618
9619 /* If we had any clobbers to add, make a new pattern than contains
9620 them. Then check to make sure that all of them are dead. */
9621 if (num_clobbers_to_add)
9622 {
9623 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9624 rtvec_alloc (GET_CODE (pat) == PARALLEL
9625 ? (XVECLEN (pat, 0)
9626 + num_clobbers_to_add)
9627 : num_clobbers_to_add + 1));
9628
9629 if (GET_CODE (pat) == PARALLEL)
9630 for (i = 0; i < XVECLEN (pat, 0); i++)
9631 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9632 else
9633 XVECEXP (newpat, 0, 0) = pat;
9634
9635 add_clobbers (newpat, insn_code_number);
9636
9637 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9638 i < XVECLEN (newpat, 0); i++)
9639 {
9640 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) == REG
9641 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9642 return -1;
9643 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9644 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9645 }
9646 pat = newpat;
9647 }
9648
9649 *pnewpat = pat;
9650 *pnotes = notes;
9651
9652 return insn_code_number;
9653 }
9654 \f
9655 /* Like gen_lowpart but for use by combine. In combine it is not possible
9656 to create any new pseudoregs. However, it is safe to create
9657 invalid memory addresses, because combine will try to recognize
9658 them and all they will do is make the combine attempt fail.
9659
9660 If for some reason this cannot do its job, an rtx
9661 (clobber (const_int 0)) is returned.
9662 An insn containing that will not be recognized. */
9663
9664 #undef gen_lowpart
9665
9666 static rtx
9667 gen_lowpart_for_combine (mode, x)
9668 enum machine_mode mode;
9669 rtx x;
9670 {
9671 rtx result;
9672
9673 if (GET_MODE (x) == mode)
9674 return x;
9675
9676 /* We can only support MODE being wider than a word if X is a
9677 constant integer or has a mode the same size. */
9678
9679 if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
9680 && ! ((GET_MODE (x) == VOIDmode
9681 && (GET_CODE (x) == CONST_INT
9682 || GET_CODE (x) == CONST_DOUBLE))
9683 || GET_MODE_SIZE (GET_MODE (x)) == GET_MODE_SIZE (mode)))
9684 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9685
9686 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9687 won't know what to do. So we will strip off the SUBREG here and
9688 process normally. */
9689 if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
9690 {
9691 x = SUBREG_REG (x);
9692 if (GET_MODE (x) == mode)
9693 return x;
9694 }
9695
9696 result = gen_lowpart_common (mode, x);
9697 #ifdef CLASS_CANNOT_CHANGE_MODE
9698 if (result != 0
9699 && GET_CODE (result) == SUBREG
9700 && GET_CODE (SUBREG_REG (result)) == REG
9701 && REGNO (SUBREG_REG (result)) >= FIRST_PSEUDO_REGISTER
9702 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (result),
9703 GET_MODE (SUBREG_REG (result))))
9704 REG_CHANGES_MODE (REGNO (SUBREG_REG (result))) = 1;
9705 #endif
9706
9707 if (result)
9708 return result;
9709
9710 if (GET_CODE (x) == MEM)
9711 {
9712 int offset = 0;
9713
9714 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9715 address. */
9716 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9717 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9718
9719 /* If we want to refer to something bigger than the original memref,
9720 generate a perverse subreg instead. That will force a reload
9721 of the original memref X. */
9722 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode))
9723 return gen_rtx_SUBREG (mode, x, 0);
9724
9725 if (WORDS_BIG_ENDIAN)
9726 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
9727 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
9728
9729 if (BYTES_BIG_ENDIAN)
9730 {
9731 /* Adjust the address so that the address-after-the-data is
9732 unchanged. */
9733 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
9734 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
9735 }
9736
9737 return adjust_address_nv (x, mode, offset);
9738 }
9739
9740 /* If X is a comparison operator, rewrite it in a new mode. This
9741 probably won't match, but may allow further simplifications. */
9742 else if (GET_RTX_CLASS (GET_CODE (x)) == '<')
9743 return gen_rtx_fmt_ee (GET_CODE (x), mode, XEXP (x, 0), XEXP (x, 1));
9744
9745 /* If we couldn't simplify X any other way, just enclose it in a
9746 SUBREG. Normally, this SUBREG won't match, but some patterns may
9747 include an explicit SUBREG or we may simplify it further in combine. */
9748 else
9749 {
9750 int offset = 0;
9751 rtx res;
9752
9753 offset = subreg_lowpart_offset (mode, GET_MODE (x));
9754 res = simplify_gen_subreg (mode, x, GET_MODE (x), offset);
9755 if (res)
9756 return res;
9757 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9758 }
9759 }
9760 \f
9761 /* These routines make binary and unary operations by first seeing if they
9762 fold; if not, a new expression is allocated. */
9763
9764 static rtx
9765 gen_binary (code, mode, op0, op1)
9766 enum rtx_code code;
9767 enum machine_mode mode;
9768 rtx op0, op1;
9769 {
9770 rtx result;
9771 rtx tem;
9772
9773 if (GET_RTX_CLASS (code) == 'c'
9774 && swap_commutative_operands_p (op0, op1))
9775 tem = op0, op0 = op1, op1 = tem;
9776
9777 if (GET_RTX_CLASS (code) == '<')
9778 {
9779 enum machine_mode op_mode = GET_MODE (op0);
9780
9781 /* Strip the COMPARE from (REL_OP (compare X Y) 0) to get
9782 just (REL_OP X Y). */
9783 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
9784 {
9785 op1 = XEXP (op0, 1);
9786 op0 = XEXP (op0, 0);
9787 op_mode = GET_MODE (op0);
9788 }
9789
9790 if (op_mode == VOIDmode)
9791 op_mode = GET_MODE (op1);
9792 result = simplify_relational_operation (code, op_mode, op0, op1);
9793 }
9794 else
9795 result = simplify_binary_operation (code, mode, op0, op1);
9796
9797 if (result)
9798 return result;
9799
9800 /* Put complex operands first and constants second. */
9801 if (GET_RTX_CLASS (code) == 'c'
9802 && swap_commutative_operands_p (op0, op1))
9803 return gen_rtx_fmt_ee (code, mode, op1, op0);
9804
9805 /* If we are turning off bits already known off in OP0, we need not do
9806 an AND. */
9807 else if (code == AND && GET_CODE (op1) == CONST_INT
9808 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9809 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
9810 return op0;
9811
9812 return gen_rtx_fmt_ee (code, mode, op0, op1);
9813 }
9814 \f
9815 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
9816 comparison code that will be tested.
9817
9818 The result is a possibly different comparison code to use. *POP0 and
9819 *POP1 may be updated.
9820
9821 It is possible that we might detect that a comparison is either always
9822 true or always false. However, we do not perform general constant
9823 folding in combine, so this knowledge isn't useful. Such tautologies
9824 should have been detected earlier. Hence we ignore all such cases. */
9825
9826 static enum rtx_code
9827 simplify_comparison (code, pop0, pop1)
9828 enum rtx_code code;
9829 rtx *pop0;
9830 rtx *pop1;
9831 {
9832 rtx op0 = *pop0;
9833 rtx op1 = *pop1;
9834 rtx tem, tem1;
9835 int i;
9836 enum machine_mode mode, tmode;
9837
9838 /* Try a few ways of applying the same transformation to both operands. */
9839 while (1)
9840 {
9841 #ifndef WORD_REGISTER_OPERATIONS
9842 /* The test below this one won't handle SIGN_EXTENDs on these machines,
9843 so check specially. */
9844 if (code != GTU && code != GEU && code != LTU && code != LEU
9845 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
9846 && GET_CODE (XEXP (op0, 0)) == ASHIFT
9847 && GET_CODE (XEXP (op1, 0)) == ASHIFT
9848 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
9849 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
9850 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
9851 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
9852 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9853 && GET_CODE (XEXP (op1, 1)) == CONST_INT
9854 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
9855 && GET_CODE (XEXP (XEXP (op1, 0), 1)) == CONST_INT
9856 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (op1, 1))
9857 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op0, 0), 1))
9858 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op1, 0), 1))
9859 && (INTVAL (XEXP (op0, 1))
9860 == (GET_MODE_BITSIZE (GET_MODE (op0))
9861 - (GET_MODE_BITSIZE
9862 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
9863 {
9864 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
9865 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
9866 }
9867 #endif
9868
9869 /* If both operands are the same constant shift, see if we can ignore the
9870 shift. We can if the shift is a rotate or if the bits shifted out of
9871 this shift are known to be zero for both inputs and if the type of
9872 comparison is compatible with the shift. */
9873 if (GET_CODE (op0) == GET_CODE (op1)
9874 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
9875 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
9876 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
9877 && (code != GT && code != LT && code != GE && code != LE))
9878 || (GET_CODE (op0) == ASHIFTRT
9879 && (code != GTU && code != LTU
9880 && code != GEU && code != LEU)))
9881 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9882 && INTVAL (XEXP (op0, 1)) >= 0
9883 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
9884 && XEXP (op0, 1) == XEXP (op1, 1))
9885 {
9886 enum machine_mode mode = GET_MODE (op0);
9887 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9888 int shift_count = INTVAL (XEXP (op0, 1));
9889
9890 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
9891 mask &= (mask >> shift_count) << shift_count;
9892 else if (GET_CODE (op0) == ASHIFT)
9893 mask = (mask & (mask << shift_count)) >> shift_count;
9894
9895 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
9896 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
9897 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
9898 else
9899 break;
9900 }
9901
9902 /* If both operands are AND's of a paradoxical SUBREG by constant, the
9903 SUBREGs are of the same mode, and, in both cases, the AND would
9904 be redundant if the comparison was done in the narrower mode,
9905 do the comparison in the narrower mode (e.g., we are AND'ing with 1
9906 and the operand's possibly nonzero bits are 0xffffff01; in that case
9907 if we only care about QImode, we don't need the AND). This case
9908 occurs if the output mode of an scc insn is not SImode and
9909 STORE_FLAG_VALUE == 1 (e.g., the 386).
9910
9911 Similarly, check for a case where the AND's are ZERO_EXTEND
9912 operations from some narrower mode even though a SUBREG is not
9913 present. */
9914
9915 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
9916 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9917 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
9918 {
9919 rtx inner_op0 = XEXP (op0, 0);
9920 rtx inner_op1 = XEXP (op1, 0);
9921 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
9922 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
9923 int changed = 0;
9924
9925 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
9926 && (GET_MODE_SIZE (GET_MODE (inner_op0))
9927 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
9928 && (GET_MODE (SUBREG_REG (inner_op0))
9929 == GET_MODE (SUBREG_REG (inner_op1)))
9930 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
9931 <= HOST_BITS_PER_WIDE_INT)
9932 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
9933 GET_MODE (SUBREG_REG (inner_op0)))))
9934 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
9935 GET_MODE (SUBREG_REG (inner_op1))))))
9936 {
9937 op0 = SUBREG_REG (inner_op0);
9938 op1 = SUBREG_REG (inner_op1);
9939
9940 /* The resulting comparison is always unsigned since we masked
9941 off the original sign bit. */
9942 code = unsigned_condition (code);
9943
9944 changed = 1;
9945 }
9946
9947 else if (c0 == c1)
9948 for (tmode = GET_CLASS_NARROWEST_MODE
9949 (GET_MODE_CLASS (GET_MODE (op0)));
9950 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
9951 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
9952 {
9953 op0 = gen_lowpart_for_combine (tmode, inner_op0);
9954 op1 = gen_lowpart_for_combine (tmode, inner_op1);
9955 code = unsigned_condition (code);
9956 changed = 1;
9957 break;
9958 }
9959
9960 if (! changed)
9961 break;
9962 }
9963
9964 /* If both operands are NOT, we can strip off the outer operation
9965 and adjust the comparison code for swapped operands; similarly for
9966 NEG, except that this must be an equality comparison. */
9967 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
9968 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
9969 && (code == EQ || code == NE)))
9970 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
9971
9972 else
9973 break;
9974 }
9975
9976 /* If the first operand is a constant, swap the operands and adjust the
9977 comparison code appropriately, but don't do this if the second operand
9978 is already a constant integer. */
9979 if (swap_commutative_operands_p (op0, op1))
9980 {
9981 tem = op0, op0 = op1, op1 = tem;
9982 code = swap_condition (code);
9983 }
9984
9985 /* We now enter a loop during which we will try to simplify the comparison.
9986 For the most part, we only are concerned with comparisons with zero,
9987 but some things may really be comparisons with zero but not start
9988 out looking that way. */
9989
9990 while (GET_CODE (op1) == CONST_INT)
9991 {
9992 enum machine_mode mode = GET_MODE (op0);
9993 unsigned int mode_width = GET_MODE_BITSIZE (mode);
9994 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9995 int equality_comparison_p;
9996 int sign_bit_comparison_p;
9997 int unsigned_comparison_p;
9998 HOST_WIDE_INT const_op;
9999
10000 /* We only want to handle integral modes. This catches VOIDmode,
10001 CCmode, and the floating-point modes. An exception is that we
10002 can handle VOIDmode if OP0 is a COMPARE or a comparison
10003 operation. */
10004
10005 if (GET_MODE_CLASS (mode) != MODE_INT
10006 && ! (mode == VOIDmode
10007 && (GET_CODE (op0) == COMPARE
10008 || GET_RTX_CLASS (GET_CODE (op0)) == '<')))
10009 break;
10010
10011 /* Get the constant we are comparing against and turn off all bits
10012 not on in our mode. */
10013 const_op = trunc_int_for_mode (INTVAL (op1), mode);
10014 op1 = GEN_INT (const_op);
10015
10016 /* If we are comparing against a constant power of two and the value
10017 being compared can only have that single bit nonzero (e.g., it was
10018 `and'ed with that bit), we can replace this with a comparison
10019 with zero. */
10020 if (const_op
10021 && (code == EQ || code == NE || code == GE || code == GEU
10022 || code == LT || code == LTU)
10023 && mode_width <= HOST_BITS_PER_WIDE_INT
10024 && exact_log2 (const_op) >= 0
10025 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10026 {
10027 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10028 op1 = const0_rtx, const_op = 0;
10029 }
10030
10031 /* Similarly, if we are comparing a value known to be either -1 or
10032 0 with -1, change it to the opposite comparison against zero. */
10033
10034 if (const_op == -1
10035 && (code == EQ || code == NE || code == GT || code == LE
10036 || code == GEU || code == LTU)
10037 && num_sign_bit_copies (op0, mode) == mode_width)
10038 {
10039 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10040 op1 = const0_rtx, const_op = 0;
10041 }
10042
10043 /* Do some canonicalizations based on the comparison code. We prefer
10044 comparisons against zero and then prefer equality comparisons.
10045 If we can reduce the size of a constant, we will do that too. */
10046
10047 switch (code)
10048 {
10049 case LT:
10050 /* < C is equivalent to <= (C - 1) */
10051 if (const_op > 0)
10052 {
10053 const_op -= 1;
10054 op1 = GEN_INT (const_op);
10055 code = LE;
10056 /* ... fall through to LE case below. */
10057 }
10058 else
10059 break;
10060
10061 case LE:
10062 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10063 if (const_op < 0)
10064 {
10065 const_op += 1;
10066 op1 = GEN_INT (const_op);
10067 code = LT;
10068 }
10069
10070 /* If we are doing a <= 0 comparison on a value known to have
10071 a zero sign bit, we can replace this with == 0. */
10072 else if (const_op == 0
10073 && mode_width <= HOST_BITS_PER_WIDE_INT
10074 && (nonzero_bits (op0, mode)
10075 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10076 code = EQ;
10077 break;
10078
10079 case GE:
10080 /* >= C is equivalent to > (C - 1). */
10081 if (const_op > 0)
10082 {
10083 const_op -= 1;
10084 op1 = GEN_INT (const_op);
10085 code = GT;
10086 /* ... fall through to GT below. */
10087 }
10088 else
10089 break;
10090
10091 case GT:
10092 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10093 if (const_op < 0)
10094 {
10095 const_op += 1;
10096 op1 = GEN_INT (const_op);
10097 code = GE;
10098 }
10099
10100 /* If we are doing a > 0 comparison on a value known to have
10101 a zero sign bit, we can replace this with != 0. */
10102 else if (const_op == 0
10103 && mode_width <= HOST_BITS_PER_WIDE_INT
10104 && (nonzero_bits (op0, mode)
10105 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10106 code = NE;
10107 break;
10108
10109 case LTU:
10110 /* < C is equivalent to <= (C - 1). */
10111 if (const_op > 0)
10112 {
10113 const_op -= 1;
10114 op1 = GEN_INT (const_op);
10115 code = LEU;
10116 /* ... fall through ... */
10117 }
10118
10119 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10120 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10121 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10122 {
10123 const_op = 0, op1 = const0_rtx;
10124 code = GE;
10125 break;
10126 }
10127 else
10128 break;
10129
10130 case LEU:
10131 /* unsigned <= 0 is equivalent to == 0 */
10132 if (const_op == 0)
10133 code = EQ;
10134
10135 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10136 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10137 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10138 {
10139 const_op = 0, op1 = const0_rtx;
10140 code = GE;
10141 }
10142 break;
10143
10144 case GEU:
10145 /* >= C is equivalent to < (C - 1). */
10146 if (const_op > 1)
10147 {
10148 const_op -= 1;
10149 op1 = GEN_INT (const_op);
10150 code = GTU;
10151 /* ... fall through ... */
10152 }
10153
10154 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10155 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10156 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10157 {
10158 const_op = 0, op1 = const0_rtx;
10159 code = LT;
10160 break;
10161 }
10162 else
10163 break;
10164
10165 case GTU:
10166 /* unsigned > 0 is equivalent to != 0 */
10167 if (const_op == 0)
10168 code = NE;
10169
10170 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10171 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10172 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10173 {
10174 const_op = 0, op1 = const0_rtx;
10175 code = LT;
10176 }
10177 break;
10178
10179 default:
10180 break;
10181 }
10182
10183 /* Compute some predicates to simplify code below. */
10184
10185 equality_comparison_p = (code == EQ || code == NE);
10186 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
10187 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
10188 || code == GEU);
10189
10190 /* If this is a sign bit comparison and we can do arithmetic in
10191 MODE, say that we will only be needing the sign bit of OP0. */
10192 if (sign_bit_comparison_p
10193 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10194 op0 = force_to_mode (op0, mode,
10195 ((HOST_WIDE_INT) 1
10196 << (GET_MODE_BITSIZE (mode) - 1)),
10197 NULL_RTX, 0);
10198
10199 /* Now try cases based on the opcode of OP0. If none of the cases
10200 does a "continue", we exit this loop immediately after the
10201 switch. */
10202
10203 switch (GET_CODE (op0))
10204 {
10205 case ZERO_EXTRACT:
10206 /* If we are extracting a single bit from a variable position in
10207 a constant that has only a single bit set and are comparing it
10208 with zero, we can convert this into an equality comparison
10209 between the position and the location of the single bit. */
10210
10211 if (GET_CODE (XEXP (op0, 0)) == CONST_INT
10212 && XEXP (op0, 1) == const1_rtx
10213 && equality_comparison_p && const_op == 0
10214 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
10215 {
10216 if (BITS_BIG_ENDIAN)
10217 {
10218 enum machine_mode new_mode
10219 = mode_for_extraction (EP_extzv, 1);
10220 if (new_mode == MAX_MACHINE_MODE)
10221 i = BITS_PER_WORD - 1 - i;
10222 else
10223 {
10224 mode = new_mode;
10225 i = (GET_MODE_BITSIZE (mode) - 1 - i);
10226 }
10227 }
10228
10229 op0 = XEXP (op0, 2);
10230 op1 = GEN_INT (i);
10231 const_op = i;
10232
10233 /* Result is nonzero iff shift count is equal to I. */
10234 code = reverse_condition (code);
10235 continue;
10236 }
10237
10238 /* ... fall through ... */
10239
10240 case SIGN_EXTRACT:
10241 tem = expand_compound_operation (op0);
10242 if (tem != op0)
10243 {
10244 op0 = tem;
10245 continue;
10246 }
10247 break;
10248
10249 case NOT:
10250 /* If testing for equality, we can take the NOT of the constant. */
10251 if (equality_comparison_p
10252 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
10253 {
10254 op0 = XEXP (op0, 0);
10255 op1 = tem;
10256 continue;
10257 }
10258
10259 /* If just looking at the sign bit, reverse the sense of the
10260 comparison. */
10261 if (sign_bit_comparison_p)
10262 {
10263 op0 = XEXP (op0, 0);
10264 code = (code == GE ? LT : GE);
10265 continue;
10266 }
10267 break;
10268
10269 case NEG:
10270 /* If testing for equality, we can take the NEG of the constant. */
10271 if (equality_comparison_p
10272 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
10273 {
10274 op0 = XEXP (op0, 0);
10275 op1 = tem;
10276 continue;
10277 }
10278
10279 /* The remaining cases only apply to comparisons with zero. */
10280 if (const_op != 0)
10281 break;
10282
10283 /* When X is ABS or is known positive,
10284 (neg X) is < 0 if and only if X != 0. */
10285
10286 if (sign_bit_comparison_p
10287 && (GET_CODE (XEXP (op0, 0)) == ABS
10288 || (mode_width <= HOST_BITS_PER_WIDE_INT
10289 && (nonzero_bits (XEXP (op0, 0), mode)
10290 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10291 {
10292 op0 = XEXP (op0, 0);
10293 code = (code == LT ? NE : EQ);
10294 continue;
10295 }
10296
10297 /* If we have NEG of something whose two high-order bits are the
10298 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10299 if (num_sign_bit_copies (op0, mode) >= 2)
10300 {
10301 op0 = XEXP (op0, 0);
10302 code = swap_condition (code);
10303 continue;
10304 }
10305 break;
10306
10307 case ROTATE:
10308 /* If we are testing equality and our count is a constant, we
10309 can perform the inverse operation on our RHS. */
10310 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10311 && (tem = simplify_binary_operation (ROTATERT, mode,
10312 op1, XEXP (op0, 1))) != 0)
10313 {
10314 op0 = XEXP (op0, 0);
10315 op1 = tem;
10316 continue;
10317 }
10318
10319 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10320 a particular bit. Convert it to an AND of a constant of that
10321 bit. This will be converted into a ZERO_EXTRACT. */
10322 if (const_op == 0 && sign_bit_comparison_p
10323 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10324 && mode_width <= HOST_BITS_PER_WIDE_INT)
10325 {
10326 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10327 ((HOST_WIDE_INT) 1
10328 << (mode_width - 1
10329 - INTVAL (XEXP (op0, 1)))));
10330 code = (code == LT ? NE : EQ);
10331 continue;
10332 }
10333
10334 /* Fall through. */
10335
10336 case ABS:
10337 /* ABS is ignorable inside an equality comparison with zero. */
10338 if (const_op == 0 && equality_comparison_p)
10339 {
10340 op0 = XEXP (op0, 0);
10341 continue;
10342 }
10343 break;
10344
10345 case SIGN_EXTEND:
10346 /* Can simplify (compare (zero/sign_extend FOO) CONST)
10347 to (compare FOO CONST) if CONST fits in FOO's mode and we
10348 are either testing inequality or have an unsigned comparison
10349 with ZERO_EXTEND or a signed comparison with SIGN_EXTEND. */
10350 if (! unsigned_comparison_p
10351 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10352 <= HOST_BITS_PER_WIDE_INT)
10353 && ((unsigned HOST_WIDE_INT) const_op
10354 < (((unsigned HOST_WIDE_INT) 1
10355 << (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))) - 1)))))
10356 {
10357 op0 = XEXP (op0, 0);
10358 continue;
10359 }
10360 break;
10361
10362 case SUBREG:
10363 /* Check for the case where we are comparing A - C1 with C2,
10364 both constants are smaller than 1/2 the maximum positive
10365 value in MODE, and the comparison is equality or unsigned.
10366 In that case, if A is either zero-extended to MODE or has
10367 sufficient sign bits so that the high-order bit in MODE
10368 is a copy of the sign in the inner mode, we can prove that it is
10369 safe to do the operation in the wider mode. This simplifies
10370 many range checks. */
10371
10372 if (mode_width <= HOST_BITS_PER_WIDE_INT
10373 && subreg_lowpart_p (op0)
10374 && GET_CODE (SUBREG_REG (op0)) == PLUS
10375 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT
10376 && INTVAL (XEXP (SUBREG_REG (op0), 1)) < 0
10377 && (-INTVAL (XEXP (SUBREG_REG (op0), 1))
10378 < (HOST_WIDE_INT) (GET_MODE_MASK (mode) / 2))
10379 && (unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode) / 2
10380 && (0 == (nonzero_bits (XEXP (SUBREG_REG (op0), 0),
10381 GET_MODE (SUBREG_REG (op0)))
10382 & ~GET_MODE_MASK (mode))
10383 || (num_sign_bit_copies (XEXP (SUBREG_REG (op0), 0),
10384 GET_MODE (SUBREG_REG (op0)))
10385 > (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10386 - GET_MODE_BITSIZE (mode)))))
10387 {
10388 op0 = SUBREG_REG (op0);
10389 continue;
10390 }
10391
10392 /* If the inner mode is narrower and we are extracting the low part,
10393 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10394 if (subreg_lowpart_p (op0)
10395 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10396 /* Fall through */ ;
10397 else
10398 break;
10399
10400 /* ... fall through ... */
10401
10402 case ZERO_EXTEND:
10403 if ((unsigned_comparison_p || equality_comparison_p)
10404 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10405 <= HOST_BITS_PER_WIDE_INT)
10406 && ((unsigned HOST_WIDE_INT) const_op
10407 < GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))))
10408 {
10409 op0 = XEXP (op0, 0);
10410 continue;
10411 }
10412 break;
10413
10414 case PLUS:
10415 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10416 this for equality comparisons due to pathological cases involving
10417 overflows. */
10418 if (equality_comparison_p
10419 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10420 op1, XEXP (op0, 1))))
10421 {
10422 op0 = XEXP (op0, 0);
10423 op1 = tem;
10424 continue;
10425 }
10426
10427 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10428 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10429 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10430 {
10431 op0 = XEXP (XEXP (op0, 0), 0);
10432 code = (code == LT ? EQ : NE);
10433 continue;
10434 }
10435 break;
10436
10437 case MINUS:
10438 /* We used to optimize signed comparisons against zero, but that
10439 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10440 arrive here as equality comparisons, or (GEU, LTU) are
10441 optimized away. No need to special-case them. */
10442
10443 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10444 (eq B (minus A C)), whichever simplifies. We can only do
10445 this for equality comparisons due to pathological cases involving
10446 overflows. */
10447 if (equality_comparison_p
10448 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10449 XEXP (op0, 1), op1)))
10450 {
10451 op0 = XEXP (op0, 0);
10452 op1 = tem;
10453 continue;
10454 }
10455
10456 if (equality_comparison_p
10457 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10458 XEXP (op0, 0), op1)))
10459 {
10460 op0 = XEXP (op0, 1);
10461 op1 = tem;
10462 continue;
10463 }
10464
10465 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10466 of bits in X minus 1, is one iff X > 0. */
10467 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10468 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10469 && INTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
10470 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10471 {
10472 op0 = XEXP (op0, 1);
10473 code = (code == GE ? LE : GT);
10474 continue;
10475 }
10476 break;
10477
10478 case XOR:
10479 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10480 if C is zero or B is a constant. */
10481 if (equality_comparison_p
10482 && 0 != (tem = simplify_binary_operation (XOR, mode,
10483 XEXP (op0, 1), op1)))
10484 {
10485 op0 = XEXP (op0, 0);
10486 op1 = tem;
10487 continue;
10488 }
10489 break;
10490
10491 case EQ: case NE:
10492 case UNEQ: case LTGT:
10493 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10494 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10495 case UNORDERED: case ORDERED:
10496 /* We can't do anything if OP0 is a condition code value, rather
10497 than an actual data value. */
10498 if (const_op != 0
10499 #ifdef HAVE_cc0
10500 || XEXP (op0, 0) == cc0_rtx
10501 #endif
10502 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10503 break;
10504
10505 /* Get the two operands being compared. */
10506 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10507 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10508 else
10509 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10510
10511 /* Check for the cases where we simply want the result of the
10512 earlier test or the opposite of that result. */
10513 if (code == NE || code == EQ
10514 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10515 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10516 && (STORE_FLAG_VALUE
10517 & (((HOST_WIDE_INT) 1
10518 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10519 && (code == LT || code == GE)))
10520 {
10521 enum rtx_code new_code;
10522 if (code == LT || code == NE)
10523 new_code = GET_CODE (op0);
10524 else
10525 new_code = combine_reversed_comparison_code (op0);
10526
10527 if (new_code != UNKNOWN)
10528 {
10529 code = new_code;
10530 op0 = tem;
10531 op1 = tem1;
10532 continue;
10533 }
10534 }
10535 break;
10536
10537 case IOR:
10538 /* The sign bit of (ior (plus X (const_int -1)) X) is non-zero
10539 iff X <= 0. */
10540 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10541 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10542 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10543 {
10544 op0 = XEXP (op0, 1);
10545 code = (code == GE ? GT : LE);
10546 continue;
10547 }
10548 break;
10549
10550 case AND:
10551 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10552 will be converted to a ZERO_EXTRACT later. */
10553 if (const_op == 0 && equality_comparison_p
10554 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10555 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10556 {
10557 op0 = simplify_and_const_int
10558 (op0, mode, gen_rtx_LSHIFTRT (mode,
10559 XEXP (op0, 1),
10560 XEXP (XEXP (op0, 0), 1)),
10561 (HOST_WIDE_INT) 1);
10562 continue;
10563 }
10564
10565 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10566 zero and X is a comparison and C1 and C2 describe only bits set
10567 in STORE_FLAG_VALUE, we can compare with X. */
10568 if (const_op == 0 && equality_comparison_p
10569 && mode_width <= HOST_BITS_PER_WIDE_INT
10570 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10571 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10572 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10573 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10574 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10575 {
10576 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10577 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10578 if ((~STORE_FLAG_VALUE & mask) == 0
10579 && (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (op0, 0), 0))) == '<'
10580 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10581 && GET_RTX_CLASS (GET_CODE (tem)) == '<')))
10582 {
10583 op0 = XEXP (XEXP (op0, 0), 0);
10584 continue;
10585 }
10586 }
10587
10588 /* If we are doing an equality comparison of an AND of a bit equal
10589 to the sign bit, replace this with a LT or GE comparison of
10590 the underlying value. */
10591 if (equality_comparison_p
10592 && const_op == 0
10593 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10594 && mode_width <= HOST_BITS_PER_WIDE_INT
10595 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10596 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10597 {
10598 op0 = XEXP (op0, 0);
10599 code = (code == EQ ? GE : LT);
10600 continue;
10601 }
10602
10603 /* If this AND operation is really a ZERO_EXTEND from a narrower
10604 mode, the constant fits within that mode, and this is either an
10605 equality or unsigned comparison, try to do this comparison in
10606 the narrower mode. */
10607 if ((equality_comparison_p || unsigned_comparison_p)
10608 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10609 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10610 & GET_MODE_MASK (mode))
10611 + 1)) >= 0
10612 && const_op >> i == 0
10613 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
10614 {
10615 op0 = gen_lowpart_for_combine (tmode, XEXP (op0, 0));
10616 continue;
10617 }
10618
10619 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1 fits
10620 in both M1 and M2 and the SUBREG is either paradoxical or
10621 represents the low part, permute the SUBREG and the AND and
10622 try again. */
10623 if (GET_CODE (XEXP (op0, 0)) == SUBREG
10624 && (0
10625 #ifdef WORD_REGISTER_OPERATIONS
10626 || ((mode_width
10627 > (GET_MODE_BITSIZE
10628 (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10629 && mode_width <= BITS_PER_WORD)
10630 #endif
10631 || ((mode_width
10632 <= (GET_MODE_BITSIZE
10633 (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10634 && subreg_lowpart_p (XEXP (op0, 0))))
10635 #ifndef WORD_REGISTER_OPERATIONS
10636 /* It is unsafe to commute the AND into the SUBREG if the SUBREG
10637 is paradoxical and WORD_REGISTER_OPERATIONS is not defined.
10638 As originally written the upper bits have a defined value
10639 due to the AND operation. However, if we commute the AND
10640 inside the SUBREG then they no longer have defined values
10641 and the meaning of the code has been changed. */
10642 && (GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)))
10643 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (op0, 0)))))
10644 #endif
10645 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10646 && mode_width <= HOST_BITS_PER_WIDE_INT
10647 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (XEXP (op0, 0))))
10648 <= HOST_BITS_PER_WIDE_INT)
10649 && (INTVAL (XEXP (op0, 1)) & ~mask) == 0
10650 && 0 == (~GET_MODE_MASK (GET_MODE (SUBREG_REG (XEXP (op0, 0))))
10651 & INTVAL (XEXP (op0, 1)))
10652 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1)) != mask
10653 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10654 != GET_MODE_MASK (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10655
10656 {
10657 op0
10658 = gen_lowpart_for_combine
10659 (mode,
10660 gen_binary (AND, GET_MODE (SUBREG_REG (XEXP (op0, 0))),
10661 SUBREG_REG (XEXP (op0, 0)), XEXP (op0, 1)));
10662 continue;
10663 }
10664
10665 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10666 (eq (and (lshiftrt X) 1) 0). */
10667 if (const_op == 0 && equality_comparison_p
10668 && XEXP (op0, 1) == const1_rtx
10669 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10670 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == NOT)
10671 {
10672 op0 = simplify_and_const_int
10673 (op0, mode,
10674 gen_rtx_LSHIFTRT (mode, XEXP (XEXP (XEXP (op0, 0), 0), 0),
10675 XEXP (XEXP (op0, 0), 1)),
10676 (HOST_WIDE_INT) 1);
10677 code = (code == NE ? EQ : NE);
10678 continue;
10679 }
10680 break;
10681
10682 case ASHIFT:
10683 /* If we have (compare (ashift FOO N) (const_int C)) and
10684 the high order N bits of FOO (N+1 if an inequality comparison)
10685 are known to be zero, we can do this by comparing FOO with C
10686 shifted right N bits so long as the low-order N bits of C are
10687 zero. */
10688 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10689 && INTVAL (XEXP (op0, 1)) >= 0
10690 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10691 < HOST_BITS_PER_WIDE_INT)
10692 && ((const_op
10693 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10694 && mode_width <= HOST_BITS_PER_WIDE_INT
10695 && (nonzero_bits (XEXP (op0, 0), mode)
10696 & ~(mask >> (INTVAL (XEXP (op0, 1))
10697 + ! equality_comparison_p))) == 0)
10698 {
10699 /* We must perform a logical shift, not an arithmetic one,
10700 as we want the top N bits of C to be zero. */
10701 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10702
10703 temp >>= INTVAL (XEXP (op0, 1));
10704 op1 = GEN_INT (trunc_int_for_mode (temp, mode));
10705 op0 = XEXP (op0, 0);
10706 continue;
10707 }
10708
10709 /* If we are doing a sign bit comparison, it means we are testing
10710 a particular bit. Convert it to the appropriate AND. */
10711 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10712 && mode_width <= HOST_BITS_PER_WIDE_INT)
10713 {
10714 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10715 ((HOST_WIDE_INT) 1
10716 << (mode_width - 1
10717 - INTVAL (XEXP (op0, 1)))));
10718 code = (code == LT ? NE : EQ);
10719 continue;
10720 }
10721
10722 /* If this an equality comparison with zero and we are shifting
10723 the low bit to the sign bit, we can convert this to an AND of the
10724 low-order bit. */
10725 if (const_op == 0 && equality_comparison_p
10726 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10727 && INTVAL (XEXP (op0, 1)) == mode_width - 1)
10728 {
10729 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10730 (HOST_WIDE_INT) 1);
10731 continue;
10732 }
10733 break;
10734
10735 case ASHIFTRT:
10736 /* If this is an equality comparison with zero, we can do this
10737 as a logical shift, which might be much simpler. */
10738 if (equality_comparison_p && const_op == 0
10739 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10740 {
10741 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10742 XEXP (op0, 0),
10743 INTVAL (XEXP (op0, 1)));
10744 continue;
10745 }
10746
10747 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10748 do the comparison in a narrower mode. */
10749 if (! unsigned_comparison_p
10750 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10751 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10752 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10753 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10754 MODE_INT, 1)) != BLKmode
10755 && ((unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (tmode)
10756 || ((unsigned HOST_WIDE_INT) -const_op
10757 <= GET_MODE_MASK (tmode))))
10758 {
10759 op0 = gen_lowpart_for_combine (tmode, XEXP (XEXP (op0, 0), 0));
10760 continue;
10761 }
10762
10763 /* Likewise if OP0 is a PLUS of a sign extension with a
10764 constant, which is usually represented with the PLUS
10765 between the shifts. */
10766 if (! unsigned_comparison_p
10767 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10768 && GET_CODE (XEXP (op0, 0)) == PLUS
10769 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10770 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
10771 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
10772 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10773 MODE_INT, 1)) != BLKmode
10774 && ((unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (tmode)
10775 || ((unsigned HOST_WIDE_INT) -const_op
10776 <= GET_MODE_MASK (tmode))))
10777 {
10778 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
10779 rtx add_const = XEXP (XEXP (op0, 0), 1);
10780 rtx new_const = gen_binary (ASHIFTRT, GET_MODE (op0), add_const,
10781 XEXP (op0, 1));
10782
10783 op0 = gen_binary (PLUS, tmode,
10784 gen_lowpart_for_combine (tmode, inner),
10785 new_const);
10786 continue;
10787 }
10788
10789 /* ... fall through ... */
10790 case LSHIFTRT:
10791 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
10792 the low order N bits of FOO are known to be zero, we can do this
10793 by comparing FOO with C shifted left N bits so long as no
10794 overflow occurs. */
10795 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10796 && INTVAL (XEXP (op0, 1)) >= 0
10797 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10798 && mode_width <= HOST_BITS_PER_WIDE_INT
10799 && (nonzero_bits (XEXP (op0, 0), mode)
10800 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
10801 && (const_op == 0
10802 || (floor_log2 (const_op) + INTVAL (XEXP (op0, 1))
10803 < mode_width)))
10804 {
10805 const_op <<= INTVAL (XEXP (op0, 1));
10806 op1 = GEN_INT (const_op);
10807 op0 = XEXP (op0, 0);
10808 continue;
10809 }
10810
10811 /* If we are using this shift to extract just the sign bit, we
10812 can replace this with an LT or GE comparison. */
10813 if (const_op == 0
10814 && (equality_comparison_p || sign_bit_comparison_p)
10815 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10816 && INTVAL (XEXP (op0, 1)) == mode_width - 1)
10817 {
10818 op0 = XEXP (op0, 0);
10819 code = (code == NE || code == GT ? LT : GE);
10820 continue;
10821 }
10822 break;
10823
10824 default:
10825 break;
10826 }
10827
10828 break;
10829 }
10830
10831 /* Now make any compound operations involved in this comparison. Then,
10832 check for an outmost SUBREG on OP0 that is not doing anything or is
10833 paradoxical. The latter case can only occur when it is known that the
10834 "extra" bits will be zero. Therefore, it is safe to remove the SUBREG.
10835 We can never remove a SUBREG for a non-equality comparison because the
10836 sign bit is in a different place in the underlying object. */
10837
10838 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
10839 op1 = make_compound_operation (op1, SET);
10840
10841 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
10842 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10843 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
10844 && (code == NE || code == EQ)
10845 && ((GET_MODE_SIZE (GET_MODE (op0))
10846 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))))
10847 {
10848 op0 = SUBREG_REG (op0);
10849 op1 = gen_lowpart_for_combine (GET_MODE (op0), op1);
10850 }
10851
10852 else if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
10853 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10854 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
10855 && (code == NE || code == EQ)
10856 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10857 <= HOST_BITS_PER_WIDE_INT)
10858 && (nonzero_bits (SUBREG_REG (op0), GET_MODE (SUBREG_REG (op0)))
10859 & ~GET_MODE_MASK (GET_MODE (op0))) == 0
10860 && (tem = gen_lowpart_for_combine (GET_MODE (SUBREG_REG (op0)),
10861 op1),
10862 (nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
10863 & ~GET_MODE_MASK (GET_MODE (op0))) == 0))
10864 op0 = SUBREG_REG (op0), op1 = tem;
10865
10866 /* We now do the opposite procedure: Some machines don't have compare
10867 insns in all modes. If OP0's mode is an integer mode smaller than a
10868 word and we can't do a compare in that mode, see if there is a larger
10869 mode for which we can do the compare. There are a number of cases in
10870 which we can use the wider mode. */
10871
10872 mode = GET_MODE (op0);
10873 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10874 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
10875 && ! have_insn_for (COMPARE, mode))
10876 for (tmode = GET_MODE_WIDER_MODE (mode);
10877 (tmode != VOIDmode
10878 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
10879 tmode = GET_MODE_WIDER_MODE (tmode))
10880 if (have_insn_for (COMPARE, tmode))
10881 {
10882 /* If the only nonzero bits in OP0 and OP1 are those in the
10883 narrower mode and this is an equality or unsigned comparison,
10884 we can use the wider mode. Similarly for sign-extended
10885 values, in which case it is true for all comparisons. */
10886 if (((code == EQ || code == NE
10887 || code == GEU || code == GTU || code == LEU || code == LTU)
10888 && (nonzero_bits (op0, tmode) & ~GET_MODE_MASK (mode)) == 0
10889 && (nonzero_bits (op1, tmode) & ~GET_MODE_MASK (mode)) == 0)
10890 || ((num_sign_bit_copies (op0, tmode)
10891 > GET_MODE_BITSIZE (tmode) - GET_MODE_BITSIZE (mode))
10892 && (num_sign_bit_copies (op1, tmode)
10893 > GET_MODE_BITSIZE (tmode) - GET_MODE_BITSIZE (mode))))
10894 {
10895 /* If OP0 is an AND and we don't have an AND in MODE either,
10896 make a new AND in the proper mode. */
10897 if (GET_CODE (op0) == AND
10898 && !have_insn_for (AND, mode))
10899 op0 = gen_binary (AND, tmode,
10900 gen_lowpart_for_combine (tmode,
10901 XEXP (op0, 0)),
10902 gen_lowpart_for_combine (tmode,
10903 XEXP (op0, 1)));
10904
10905 op0 = gen_lowpart_for_combine (tmode, op0);
10906 op1 = gen_lowpart_for_combine (tmode, op1);
10907 break;
10908 }
10909
10910 /* If this is a test for negative, we can make an explicit
10911 test of the sign bit. */
10912
10913 if (op1 == const0_rtx && (code == LT || code == GE)
10914 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10915 {
10916 op0 = gen_binary (AND, tmode,
10917 gen_lowpart_for_combine (tmode, op0),
10918 GEN_INT ((HOST_WIDE_INT) 1
10919 << (GET_MODE_BITSIZE (mode) - 1)));
10920 code = (code == LT) ? NE : EQ;
10921 break;
10922 }
10923 }
10924
10925 #ifdef CANONICALIZE_COMPARISON
10926 /* If this machine only supports a subset of valid comparisons, see if we
10927 can convert an unsupported one into a supported one. */
10928 CANONICALIZE_COMPARISON (code, op0, op1);
10929 #endif
10930
10931 *pop0 = op0;
10932 *pop1 = op1;
10933
10934 return code;
10935 }
10936 \f
10937 /* Like jump.c' reversed_comparison_code, but use combine infrastructure for
10938 searching backward. */
10939 static enum rtx_code
10940 combine_reversed_comparison_code (exp)
10941 rtx exp;
10942 {
10943 enum rtx_code code1 = reversed_comparison_code (exp, NULL);
10944 rtx x;
10945
10946 if (code1 != UNKNOWN
10947 || GET_MODE_CLASS (GET_MODE (XEXP (exp, 0))) != MODE_CC)
10948 return code1;
10949 /* Otherwise try and find where the condition codes were last set and
10950 use that. */
10951 x = get_last_value (XEXP (exp, 0));
10952 if (!x || GET_CODE (x) != COMPARE)
10953 return UNKNOWN;
10954 return reversed_comparison_code_parts (GET_CODE (exp),
10955 XEXP (x, 0), XEXP (x, 1), NULL);
10956 }
10957 /* Return comparison with reversed code of EXP and operands OP0 and OP1.
10958 Return NULL_RTX in case we fail to do the reversal. */
10959 static rtx
10960 reversed_comparison (exp, mode, op0, op1)
10961 rtx exp, op0, op1;
10962 enum machine_mode mode;
10963 {
10964 enum rtx_code reversed_code = combine_reversed_comparison_code (exp);
10965 if (reversed_code == UNKNOWN)
10966 return NULL_RTX;
10967 else
10968 return gen_binary (reversed_code, mode, op0, op1);
10969 }
10970 \f
10971 /* Utility function for following routine. Called when X is part of a value
10972 being stored into reg_last_set_value. Sets reg_last_set_table_tick
10973 for each register mentioned. Similar to mention_regs in cse.c */
10974
10975 static void
10976 update_table_tick (x)
10977 rtx x;
10978 {
10979 enum rtx_code code = GET_CODE (x);
10980 const char *fmt = GET_RTX_FORMAT (code);
10981 int i;
10982
10983 if (code == REG)
10984 {
10985 unsigned int regno = REGNO (x);
10986 unsigned int endregno
10987 = regno + (regno < FIRST_PSEUDO_REGISTER
10988 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
10989 unsigned int r;
10990
10991 for (r = regno; r < endregno; r++)
10992 reg_last_set_table_tick[r] = label_tick;
10993
10994 return;
10995 }
10996
10997 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10998 /* Note that we can't have an "E" in values stored; see
10999 get_last_value_validate. */
11000 if (fmt[i] == 'e')
11001 update_table_tick (XEXP (x, i));
11002 }
11003
11004 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
11005 are saying that the register is clobbered and we no longer know its
11006 value. If INSN is zero, don't update reg_last_set; this is only permitted
11007 with VALUE also zero and is used to invalidate the register. */
11008
11009 static void
11010 record_value_for_reg (reg, insn, value)
11011 rtx reg;
11012 rtx insn;
11013 rtx value;
11014 {
11015 unsigned int regno = REGNO (reg);
11016 unsigned int endregno
11017 = regno + (regno < FIRST_PSEUDO_REGISTER
11018 ? HARD_REGNO_NREGS (regno, GET_MODE (reg)) : 1);
11019 unsigned int i;
11020
11021 /* If VALUE contains REG and we have a previous value for REG, substitute
11022 the previous value. */
11023 if (value && insn && reg_overlap_mentioned_p (reg, value))
11024 {
11025 rtx tem;
11026
11027 /* Set things up so get_last_value is allowed to see anything set up to
11028 our insn. */
11029 subst_low_cuid = INSN_CUID (insn);
11030 tem = get_last_value (reg);
11031
11032 /* If TEM is simply a binary operation with two CLOBBERs as operands,
11033 it isn't going to be useful and will take a lot of time to process,
11034 so just use the CLOBBER. */
11035
11036 if (tem)
11037 {
11038 if ((GET_RTX_CLASS (GET_CODE (tem)) == '2'
11039 || GET_RTX_CLASS (GET_CODE (tem)) == 'c')
11040 && GET_CODE (XEXP (tem, 0)) == CLOBBER
11041 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
11042 tem = XEXP (tem, 0);
11043
11044 value = replace_rtx (copy_rtx (value), reg, tem);
11045 }
11046 }
11047
11048 /* For each register modified, show we don't know its value, that
11049 we don't know about its bitwise content, that its value has been
11050 updated, and that we don't know the location of the death of the
11051 register. */
11052 for (i = regno; i < endregno; i++)
11053 {
11054 if (insn)
11055 reg_last_set[i] = insn;
11056
11057 reg_last_set_value[i] = 0;
11058 reg_last_set_mode[i] = 0;
11059 reg_last_set_nonzero_bits[i] = 0;
11060 reg_last_set_sign_bit_copies[i] = 0;
11061 reg_last_death[i] = 0;
11062 }
11063
11064 /* Mark registers that are being referenced in this value. */
11065 if (value)
11066 update_table_tick (value);
11067
11068 /* Now update the status of each register being set.
11069 If someone is using this register in this block, set this register
11070 to invalid since we will get confused between the two lives in this
11071 basic block. This makes using this register always invalid. In cse, we
11072 scan the table to invalidate all entries using this register, but this
11073 is too much work for us. */
11074
11075 for (i = regno; i < endregno; i++)
11076 {
11077 reg_last_set_label[i] = label_tick;
11078 if (value && reg_last_set_table_tick[i] == label_tick)
11079 reg_last_set_invalid[i] = 1;
11080 else
11081 reg_last_set_invalid[i] = 0;
11082 }
11083
11084 /* The value being assigned might refer to X (like in "x++;"). In that
11085 case, we must replace it with (clobber (const_int 0)) to prevent
11086 infinite loops. */
11087 if (value && ! get_last_value_validate (&value, insn,
11088 reg_last_set_label[regno], 0))
11089 {
11090 value = copy_rtx (value);
11091 if (! get_last_value_validate (&value, insn,
11092 reg_last_set_label[regno], 1))
11093 value = 0;
11094 }
11095
11096 /* For the main register being modified, update the value, the mode, the
11097 nonzero bits, and the number of sign bit copies. */
11098
11099 reg_last_set_value[regno] = value;
11100
11101 if (value)
11102 {
11103 subst_low_cuid = INSN_CUID (insn);
11104 reg_last_set_mode[regno] = GET_MODE (reg);
11105 reg_last_set_nonzero_bits[regno] = nonzero_bits (value, GET_MODE (reg));
11106 reg_last_set_sign_bit_copies[regno]
11107 = num_sign_bit_copies (value, GET_MODE (reg));
11108 }
11109 }
11110
11111 /* Called via note_stores from record_dead_and_set_regs to handle one
11112 SET or CLOBBER in an insn. DATA is the instruction in which the
11113 set is occurring. */
11114
11115 static void
11116 record_dead_and_set_regs_1 (dest, setter, data)
11117 rtx dest, setter;
11118 void *data;
11119 {
11120 rtx record_dead_insn = (rtx) data;
11121
11122 if (GET_CODE (dest) == SUBREG)
11123 dest = SUBREG_REG (dest);
11124
11125 if (GET_CODE (dest) == REG)
11126 {
11127 /* If we are setting the whole register, we know its value. Otherwise
11128 show that we don't know the value. We can handle SUBREG in
11129 some cases. */
11130 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
11131 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
11132 else if (GET_CODE (setter) == SET
11133 && GET_CODE (SET_DEST (setter)) == SUBREG
11134 && SUBREG_REG (SET_DEST (setter)) == dest
11135 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
11136 && subreg_lowpart_p (SET_DEST (setter)))
11137 record_value_for_reg (dest, record_dead_insn,
11138 gen_lowpart_for_combine (GET_MODE (dest),
11139 SET_SRC (setter)));
11140 else
11141 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11142 }
11143 else if (GET_CODE (dest) == MEM
11144 /* Ignore pushes, they clobber nothing. */
11145 && ! push_operand (dest, GET_MODE (dest)))
11146 mem_last_set = INSN_CUID (record_dead_insn);
11147 }
11148
11149 /* Update the records of when each REG was most recently set or killed
11150 for the things done by INSN. This is the last thing done in processing
11151 INSN in the combiner loop.
11152
11153 We update reg_last_set, reg_last_set_value, reg_last_set_mode,
11154 reg_last_set_nonzero_bits, reg_last_set_sign_bit_copies, reg_last_death,
11155 and also the similar information mem_last_set (which insn most recently
11156 modified memory) and last_call_cuid (which insn was the most recent
11157 subroutine call). */
11158
11159 static void
11160 record_dead_and_set_regs (insn)
11161 rtx insn;
11162 {
11163 rtx link;
11164 unsigned int i;
11165
11166 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11167 {
11168 if (REG_NOTE_KIND (link) == REG_DEAD
11169 && GET_CODE (XEXP (link, 0)) == REG)
11170 {
11171 unsigned int regno = REGNO (XEXP (link, 0));
11172 unsigned int endregno
11173 = regno + (regno < FIRST_PSEUDO_REGISTER
11174 ? HARD_REGNO_NREGS (regno, GET_MODE (XEXP (link, 0)))
11175 : 1);
11176
11177 for (i = regno; i < endregno; i++)
11178 reg_last_death[i] = insn;
11179 }
11180 else if (REG_NOTE_KIND (link) == REG_INC)
11181 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11182 }
11183
11184 if (GET_CODE (insn) == CALL_INSN)
11185 {
11186 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11187 if (call_used_regs[i])
11188 {
11189 reg_last_set_value[i] = 0;
11190 reg_last_set_mode[i] = 0;
11191 reg_last_set_nonzero_bits[i] = 0;
11192 reg_last_set_sign_bit_copies[i] = 0;
11193 reg_last_death[i] = 0;
11194 }
11195
11196 last_call_cuid = mem_last_set = INSN_CUID (insn);
11197 }
11198
11199 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11200 }
11201
11202 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11203 register present in the SUBREG, so for each such SUBREG go back and
11204 adjust nonzero and sign bit information of the registers that are
11205 known to have some zero/sign bits set.
11206
11207 This is needed because when combine blows the SUBREGs away, the
11208 information on zero/sign bits is lost and further combines can be
11209 missed because of that. */
11210
11211 static void
11212 record_promoted_value (insn, subreg)
11213 rtx insn;
11214 rtx subreg;
11215 {
11216 rtx links, set;
11217 unsigned int regno = REGNO (SUBREG_REG (subreg));
11218 enum machine_mode mode = GET_MODE (subreg);
11219
11220 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11221 return;
11222
11223 for (links = LOG_LINKS (insn); links;)
11224 {
11225 insn = XEXP (links, 0);
11226 set = single_set (insn);
11227
11228 if (! set || GET_CODE (SET_DEST (set)) != REG
11229 || REGNO (SET_DEST (set)) != regno
11230 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11231 {
11232 links = XEXP (links, 1);
11233 continue;
11234 }
11235
11236 if (reg_last_set[regno] == insn)
11237 {
11238 if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
11239 reg_last_set_nonzero_bits[regno] &= GET_MODE_MASK (mode);
11240 }
11241
11242 if (GET_CODE (SET_SRC (set)) == REG)
11243 {
11244 regno = REGNO (SET_SRC (set));
11245 links = LOG_LINKS (insn);
11246 }
11247 else
11248 break;
11249 }
11250 }
11251
11252 /* Scan X for promoted SUBREGs. For each one found,
11253 note what it implies to the registers used in it. */
11254
11255 static void
11256 check_promoted_subreg (insn, x)
11257 rtx insn;
11258 rtx x;
11259 {
11260 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
11261 && GET_CODE (SUBREG_REG (x)) == REG)
11262 record_promoted_value (insn, x);
11263 else
11264 {
11265 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11266 int i, j;
11267
11268 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11269 switch (format[i])
11270 {
11271 case 'e':
11272 check_promoted_subreg (insn, XEXP (x, i));
11273 break;
11274 case 'V':
11275 case 'E':
11276 if (XVEC (x, i) != 0)
11277 for (j = 0; j < XVECLEN (x, i); j++)
11278 check_promoted_subreg (insn, XVECEXP (x, i, j));
11279 break;
11280 }
11281 }
11282 }
11283 \f
11284 /* Utility routine for the following function. Verify that all the registers
11285 mentioned in *LOC are valid when *LOC was part of a value set when
11286 label_tick == TICK. Return 0 if some are not.
11287
11288 If REPLACE is non-zero, replace the invalid reference with
11289 (clobber (const_int 0)) and return 1. This replacement is useful because
11290 we often can get useful information about the form of a value (e.g., if
11291 it was produced by a shift that always produces -1 or 0) even though
11292 we don't know exactly what registers it was produced from. */
11293
11294 static int
11295 get_last_value_validate (loc, insn, tick, replace)
11296 rtx *loc;
11297 rtx insn;
11298 int tick;
11299 int replace;
11300 {
11301 rtx x = *loc;
11302 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11303 int len = GET_RTX_LENGTH (GET_CODE (x));
11304 int i;
11305
11306 if (GET_CODE (x) == REG)
11307 {
11308 unsigned int regno = REGNO (x);
11309 unsigned int endregno
11310 = regno + (regno < FIRST_PSEUDO_REGISTER
11311 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11312 unsigned int j;
11313
11314 for (j = regno; j < endregno; j++)
11315 if (reg_last_set_invalid[j]
11316 /* If this is a pseudo-register that was only set once and not
11317 live at the beginning of the function, it is always valid. */
11318 || (! (regno >= FIRST_PSEUDO_REGISTER
11319 && REG_N_SETS (regno) == 1
11320 && (! REGNO_REG_SET_P
11321 (BASIC_BLOCK (0)->global_live_at_start, regno)))
11322 && reg_last_set_label[j] > tick))
11323 {
11324 if (replace)
11325 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11326 return replace;
11327 }
11328
11329 return 1;
11330 }
11331 /* If this is a memory reference, make sure that there were
11332 no stores after it that might have clobbered the value. We don't
11333 have alias info, so we assume any store invalidates it. */
11334 else if (GET_CODE (x) == MEM && ! RTX_UNCHANGING_P (x)
11335 && INSN_CUID (insn) <= mem_last_set)
11336 {
11337 if (replace)
11338 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11339 return replace;
11340 }
11341
11342 for (i = 0; i < len; i++)
11343 if ((fmt[i] == 'e'
11344 && get_last_value_validate (&XEXP (x, i), insn, tick, replace) == 0)
11345 /* Don't bother with these. They shouldn't occur anyway. */
11346 || fmt[i] == 'E')
11347 return 0;
11348
11349 /* If we haven't found a reason for it to be invalid, it is valid. */
11350 return 1;
11351 }
11352
11353 /* Get the last value assigned to X, if known. Some registers
11354 in the value may be replaced with (clobber (const_int 0)) if their value
11355 is known longer known reliably. */
11356
11357 static rtx
11358 get_last_value (x)
11359 rtx x;
11360 {
11361 unsigned int regno;
11362 rtx value;
11363
11364 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11365 then convert it to the desired mode. If this is a paradoxical SUBREG,
11366 we cannot predict what values the "extra" bits might have. */
11367 if (GET_CODE (x) == SUBREG
11368 && subreg_lowpart_p (x)
11369 && (GET_MODE_SIZE (GET_MODE (x))
11370 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11371 && (value = get_last_value (SUBREG_REG (x))) != 0)
11372 return gen_lowpart_for_combine (GET_MODE (x), value);
11373
11374 if (GET_CODE (x) != REG)
11375 return 0;
11376
11377 regno = REGNO (x);
11378 value = reg_last_set_value[regno];
11379
11380 /* If we don't have a value, or if it isn't for this basic block and
11381 it's either a hard register, set more than once, or it's a live
11382 at the beginning of the function, return 0.
11383
11384 Because if it's not live at the beginning of the function then the reg
11385 is always set before being used (is never used without being set).
11386 And, if it's set only once, and it's always set before use, then all
11387 uses must have the same last value, even if it's not from this basic
11388 block. */
11389
11390 if (value == 0
11391 || (reg_last_set_label[regno] != label_tick
11392 && (regno < FIRST_PSEUDO_REGISTER
11393 || REG_N_SETS (regno) != 1
11394 || (REGNO_REG_SET_P
11395 (BASIC_BLOCK (0)->global_live_at_start, regno)))))
11396 return 0;
11397
11398 /* If the value was set in a later insn than the ones we are processing,
11399 we can't use it even if the register was only set once. */
11400 if (INSN_CUID (reg_last_set[regno]) >= subst_low_cuid)
11401 return 0;
11402
11403 /* If the value has all its registers valid, return it. */
11404 if (get_last_value_validate (&value, reg_last_set[regno],
11405 reg_last_set_label[regno], 0))
11406 return value;
11407
11408 /* Otherwise, make a copy and replace any invalid register with
11409 (clobber (const_int 0)). If that fails for some reason, return 0. */
11410
11411 value = copy_rtx (value);
11412 if (get_last_value_validate (&value, reg_last_set[regno],
11413 reg_last_set_label[regno], 1))
11414 return value;
11415
11416 return 0;
11417 }
11418 \f
11419 /* Return nonzero if expression X refers to a REG or to memory
11420 that is set in an instruction more recent than FROM_CUID. */
11421
11422 static int
11423 use_crosses_set_p (x, from_cuid)
11424 rtx x;
11425 int from_cuid;
11426 {
11427 const char *fmt;
11428 int i;
11429 enum rtx_code code = GET_CODE (x);
11430
11431 if (code == REG)
11432 {
11433 unsigned int regno = REGNO (x);
11434 unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
11435 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11436
11437 #ifdef PUSH_ROUNDING
11438 /* Don't allow uses of the stack pointer to be moved,
11439 because we don't know whether the move crosses a push insn. */
11440 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11441 return 1;
11442 #endif
11443 for (; regno < endreg; regno++)
11444 if (reg_last_set[regno]
11445 && INSN_CUID (reg_last_set[regno]) > from_cuid)
11446 return 1;
11447 return 0;
11448 }
11449
11450 if (code == MEM && mem_last_set > from_cuid)
11451 return 1;
11452
11453 fmt = GET_RTX_FORMAT (code);
11454
11455 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11456 {
11457 if (fmt[i] == 'E')
11458 {
11459 int j;
11460 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11461 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11462 return 1;
11463 }
11464 else if (fmt[i] == 'e'
11465 && use_crosses_set_p (XEXP (x, i), from_cuid))
11466 return 1;
11467 }
11468 return 0;
11469 }
11470 \f
11471 /* Define three variables used for communication between the following
11472 routines. */
11473
11474 static unsigned int reg_dead_regno, reg_dead_endregno;
11475 static int reg_dead_flag;
11476
11477 /* Function called via note_stores from reg_dead_at_p.
11478
11479 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11480 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11481
11482 static void
11483 reg_dead_at_p_1 (dest, x, data)
11484 rtx dest;
11485 rtx x;
11486 void *data ATTRIBUTE_UNUSED;
11487 {
11488 unsigned int regno, endregno;
11489
11490 if (GET_CODE (dest) != REG)
11491 return;
11492
11493 regno = REGNO (dest);
11494 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
11495 ? HARD_REGNO_NREGS (regno, GET_MODE (dest)) : 1);
11496
11497 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11498 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11499 }
11500
11501 /* Return non-zero if REG is known to be dead at INSN.
11502
11503 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11504 referencing REG, it is dead. If we hit a SET referencing REG, it is
11505 live. Otherwise, see if it is live or dead at the start of the basic
11506 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11507 must be assumed to be always live. */
11508
11509 static int
11510 reg_dead_at_p (reg, insn)
11511 rtx reg;
11512 rtx insn;
11513 {
11514 int block;
11515 unsigned int i;
11516
11517 /* Set variables for reg_dead_at_p_1. */
11518 reg_dead_regno = REGNO (reg);
11519 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
11520 ? HARD_REGNO_NREGS (reg_dead_regno,
11521 GET_MODE (reg))
11522 : 1);
11523
11524 reg_dead_flag = 0;
11525
11526 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. */
11527 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11528 {
11529 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11530 if (TEST_HARD_REG_BIT (newpat_used_regs, i))
11531 return 0;
11532 }
11533
11534 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11535 beginning of function. */
11536 for (; insn && GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != BARRIER;
11537 insn = prev_nonnote_insn (insn))
11538 {
11539 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11540 if (reg_dead_flag)
11541 return reg_dead_flag == 1 ? 1 : 0;
11542
11543 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11544 return 1;
11545 }
11546
11547 /* Get the basic block number that we were in. */
11548 if (insn == 0)
11549 block = 0;
11550 else
11551 {
11552 for (block = 0; block < n_basic_blocks; block++)
11553 if (insn == BLOCK_HEAD (block))
11554 break;
11555
11556 if (block == n_basic_blocks)
11557 return 0;
11558 }
11559
11560 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11561 if (REGNO_REG_SET_P (BASIC_BLOCK (block)->global_live_at_start, i))
11562 return 0;
11563
11564 return 1;
11565 }
11566 \f
11567 /* Note hard registers in X that are used. This code is similar to
11568 that in flow.c, but much simpler since we don't care about pseudos. */
11569
11570 static void
11571 mark_used_regs_combine (x)
11572 rtx x;
11573 {
11574 RTX_CODE code = GET_CODE (x);
11575 unsigned int regno;
11576 int i;
11577
11578 switch (code)
11579 {
11580 case LABEL_REF:
11581 case SYMBOL_REF:
11582 case CONST_INT:
11583 case CONST:
11584 case CONST_DOUBLE:
11585 case PC:
11586 case ADDR_VEC:
11587 case ADDR_DIFF_VEC:
11588 case ASM_INPUT:
11589 #ifdef HAVE_cc0
11590 /* CC0 must die in the insn after it is set, so we don't need to take
11591 special note of it here. */
11592 case CC0:
11593 #endif
11594 return;
11595
11596 case CLOBBER:
11597 /* If we are clobbering a MEM, mark any hard registers inside the
11598 address as used. */
11599 if (GET_CODE (XEXP (x, 0)) == MEM)
11600 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
11601 return;
11602
11603 case REG:
11604 regno = REGNO (x);
11605 /* A hard reg in a wide mode may really be multiple registers.
11606 If so, mark all of them just like the first. */
11607 if (regno < FIRST_PSEUDO_REGISTER)
11608 {
11609 unsigned int endregno, r;
11610
11611 /* None of this applies to the stack, frame or arg pointers */
11612 if (regno == STACK_POINTER_REGNUM
11613 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11614 || regno == HARD_FRAME_POINTER_REGNUM
11615 #endif
11616 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11617 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
11618 #endif
11619 || regno == FRAME_POINTER_REGNUM)
11620 return;
11621
11622 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11623 for (r = regno; r < endregno; r++)
11624 SET_HARD_REG_BIT (newpat_used_regs, r);
11625 }
11626 return;
11627
11628 case SET:
11629 {
11630 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11631 the address. */
11632 rtx testreg = SET_DEST (x);
11633
11634 while (GET_CODE (testreg) == SUBREG
11635 || GET_CODE (testreg) == ZERO_EXTRACT
11636 || GET_CODE (testreg) == SIGN_EXTRACT
11637 || GET_CODE (testreg) == STRICT_LOW_PART)
11638 testreg = XEXP (testreg, 0);
11639
11640 if (GET_CODE (testreg) == MEM)
11641 mark_used_regs_combine (XEXP (testreg, 0));
11642
11643 mark_used_regs_combine (SET_SRC (x));
11644 }
11645 return;
11646
11647 default:
11648 break;
11649 }
11650
11651 /* Recursively scan the operands of this expression. */
11652
11653 {
11654 const char *fmt = GET_RTX_FORMAT (code);
11655
11656 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11657 {
11658 if (fmt[i] == 'e')
11659 mark_used_regs_combine (XEXP (x, i));
11660 else if (fmt[i] == 'E')
11661 {
11662 int j;
11663
11664 for (j = 0; j < XVECLEN (x, i); j++)
11665 mark_used_regs_combine (XVECEXP (x, i, j));
11666 }
11667 }
11668 }
11669 }
11670 \f
11671 /* Remove register number REGNO from the dead registers list of INSN.
11672
11673 Return the note used to record the death, if there was one. */
11674
11675 rtx
11676 remove_death (regno, insn)
11677 unsigned int regno;
11678 rtx insn;
11679 {
11680 rtx note = find_regno_note (insn, REG_DEAD, regno);
11681
11682 if (note)
11683 {
11684 REG_N_DEATHS (regno)--;
11685 remove_note (insn, note);
11686 }
11687
11688 return note;
11689 }
11690
11691 /* For each register (hardware or pseudo) used within expression X, if its
11692 death is in an instruction with cuid between FROM_CUID (inclusive) and
11693 TO_INSN (exclusive), put a REG_DEAD note for that register in the
11694 list headed by PNOTES.
11695
11696 That said, don't move registers killed by maybe_kill_insn.
11697
11698 This is done when X is being merged by combination into TO_INSN. These
11699 notes will then be distributed as needed. */
11700
11701 static void
11702 move_deaths (x, maybe_kill_insn, from_cuid, to_insn, pnotes)
11703 rtx x;
11704 rtx maybe_kill_insn;
11705 int from_cuid;
11706 rtx to_insn;
11707 rtx *pnotes;
11708 {
11709 const char *fmt;
11710 int len, i;
11711 enum rtx_code code = GET_CODE (x);
11712
11713 if (code == REG)
11714 {
11715 unsigned int regno = REGNO (x);
11716 rtx where_dead = reg_last_death[regno];
11717 rtx before_dead, after_dead;
11718
11719 /* Don't move the register if it gets killed in between from and to */
11720 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
11721 && ! reg_referenced_p (x, maybe_kill_insn))
11722 return;
11723
11724 /* WHERE_DEAD could be a USE insn made by combine, so first we
11725 make sure that we have insns with valid INSN_CUID values. */
11726 before_dead = where_dead;
11727 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
11728 before_dead = PREV_INSN (before_dead);
11729
11730 after_dead = where_dead;
11731 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
11732 after_dead = NEXT_INSN (after_dead);
11733
11734 if (before_dead && after_dead
11735 && INSN_CUID (before_dead) >= from_cuid
11736 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
11737 || (where_dead != after_dead
11738 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
11739 {
11740 rtx note = remove_death (regno, where_dead);
11741
11742 /* It is possible for the call above to return 0. This can occur
11743 when reg_last_death points to I2 or I1 that we combined with.
11744 In that case make a new note.
11745
11746 We must also check for the case where X is a hard register
11747 and NOTE is a death note for a range of hard registers
11748 including X. In that case, we must put REG_DEAD notes for
11749 the remaining registers in place of NOTE. */
11750
11751 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
11752 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11753 > GET_MODE_SIZE (GET_MODE (x))))
11754 {
11755 unsigned int deadregno = REGNO (XEXP (note, 0));
11756 unsigned int deadend
11757 = (deadregno + HARD_REGNO_NREGS (deadregno,
11758 GET_MODE (XEXP (note, 0))));
11759 unsigned int ourend
11760 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11761 unsigned int i;
11762
11763 for (i = deadregno; i < deadend; i++)
11764 if (i < regno || i >= ourend)
11765 REG_NOTES (where_dead)
11766 = gen_rtx_EXPR_LIST (REG_DEAD,
11767 gen_rtx_REG (reg_raw_mode[i], i),
11768 REG_NOTES (where_dead));
11769 }
11770
11771 /* If we didn't find any note, or if we found a REG_DEAD note that
11772 covers only part of the given reg, and we have a multi-reg hard
11773 register, then to be safe we must check for REG_DEAD notes
11774 for each register other than the first. They could have
11775 their own REG_DEAD notes lying around. */
11776 else if ((note == 0
11777 || (note != 0
11778 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11779 < GET_MODE_SIZE (GET_MODE (x)))))
11780 && regno < FIRST_PSEUDO_REGISTER
11781 && HARD_REGNO_NREGS (regno, GET_MODE (x)) > 1)
11782 {
11783 unsigned int ourend
11784 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11785 unsigned int i, offset;
11786 rtx oldnotes = 0;
11787
11788 if (note)
11789 offset = HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0)));
11790 else
11791 offset = 1;
11792
11793 for (i = regno + offset; i < ourend; i++)
11794 move_deaths (gen_rtx_REG (reg_raw_mode[i], i),
11795 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
11796 }
11797
11798 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
11799 {
11800 XEXP (note, 1) = *pnotes;
11801 *pnotes = note;
11802 }
11803 else
11804 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
11805
11806 REG_N_DEATHS (regno)++;
11807 }
11808
11809 return;
11810 }
11811
11812 else if (GET_CODE (x) == SET)
11813 {
11814 rtx dest = SET_DEST (x);
11815
11816 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
11817
11818 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
11819 that accesses one word of a multi-word item, some
11820 piece of everything register in the expression is used by
11821 this insn, so remove any old death. */
11822 /* ??? So why do we test for equality of the sizes? */
11823
11824 if (GET_CODE (dest) == ZERO_EXTRACT
11825 || GET_CODE (dest) == STRICT_LOW_PART
11826 || (GET_CODE (dest) == SUBREG
11827 && (((GET_MODE_SIZE (GET_MODE (dest))
11828 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
11829 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
11830 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
11831 {
11832 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
11833 return;
11834 }
11835
11836 /* If this is some other SUBREG, we know it replaces the entire
11837 value, so use that as the destination. */
11838 if (GET_CODE (dest) == SUBREG)
11839 dest = SUBREG_REG (dest);
11840
11841 /* If this is a MEM, adjust deaths of anything used in the address.
11842 For a REG (the only other possibility), the entire value is
11843 being replaced so the old value is not used in this insn. */
11844
11845 if (GET_CODE (dest) == MEM)
11846 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
11847 to_insn, pnotes);
11848 return;
11849 }
11850
11851 else if (GET_CODE (x) == CLOBBER)
11852 return;
11853
11854 len = GET_RTX_LENGTH (code);
11855 fmt = GET_RTX_FORMAT (code);
11856
11857 for (i = 0; i < len; i++)
11858 {
11859 if (fmt[i] == 'E')
11860 {
11861 int j;
11862 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11863 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
11864 to_insn, pnotes);
11865 }
11866 else if (fmt[i] == 'e')
11867 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
11868 }
11869 }
11870 \f
11871 /* Return 1 if X is the target of a bit-field assignment in BODY, the
11872 pattern of an insn. X must be a REG. */
11873
11874 static int
11875 reg_bitfield_target_p (x, body)
11876 rtx x;
11877 rtx body;
11878 {
11879 int i;
11880
11881 if (GET_CODE (body) == SET)
11882 {
11883 rtx dest = SET_DEST (body);
11884 rtx target;
11885 unsigned int regno, tregno, endregno, endtregno;
11886
11887 if (GET_CODE (dest) == ZERO_EXTRACT)
11888 target = XEXP (dest, 0);
11889 else if (GET_CODE (dest) == STRICT_LOW_PART)
11890 target = SUBREG_REG (XEXP (dest, 0));
11891 else
11892 return 0;
11893
11894 if (GET_CODE (target) == SUBREG)
11895 target = SUBREG_REG (target);
11896
11897 if (GET_CODE (target) != REG)
11898 return 0;
11899
11900 tregno = REGNO (target), regno = REGNO (x);
11901 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
11902 return target == x;
11903
11904 endtregno = tregno + HARD_REGNO_NREGS (tregno, GET_MODE (target));
11905 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11906
11907 return endregno > tregno && regno < endtregno;
11908 }
11909
11910 else if (GET_CODE (body) == PARALLEL)
11911 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
11912 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
11913 return 1;
11914
11915 return 0;
11916 }
11917 \f
11918 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
11919 as appropriate. I3 and I2 are the insns resulting from the combination
11920 insns including FROM (I2 may be zero).
11921
11922 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
11923 not need REG_DEAD notes because they are being substituted for. This
11924 saves searching in the most common cases.
11925
11926 Each note in the list is either ignored or placed on some insns, depending
11927 on the type of note. */
11928
11929 static void
11930 distribute_notes (notes, from_insn, i3, i2, elim_i2, elim_i1)
11931 rtx notes;
11932 rtx from_insn;
11933 rtx i3, i2;
11934 rtx elim_i2, elim_i1;
11935 {
11936 rtx note, next_note;
11937 rtx tem;
11938
11939 for (note = notes; note; note = next_note)
11940 {
11941 rtx place = 0, place2 = 0;
11942
11943 /* If this NOTE references a pseudo register, ensure it references
11944 the latest copy of that register. */
11945 if (XEXP (note, 0) && GET_CODE (XEXP (note, 0)) == REG
11946 && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
11947 XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
11948
11949 next_note = XEXP (note, 1);
11950 switch (REG_NOTE_KIND (note))
11951 {
11952 case REG_BR_PROB:
11953 case REG_BR_PRED:
11954 case REG_EXEC_COUNT:
11955 /* Doesn't matter much where we put this, as long as it's somewhere.
11956 It is preferable to keep these notes on branches, which is most
11957 likely to be i3. */
11958 place = i3;
11959 break;
11960
11961 case REG_VTABLE_REF:
11962 /* ??? Should remain with *a particular* memory load. Given the
11963 nature of vtable data, the last insn seems relatively safe. */
11964 place = i3;
11965 break;
11966
11967 case REG_NON_LOCAL_GOTO:
11968 if (GET_CODE (i3) == JUMP_INSN)
11969 place = i3;
11970 else if (i2 && GET_CODE (i2) == JUMP_INSN)
11971 place = i2;
11972 else
11973 abort();
11974 break;
11975
11976 case REG_EH_REGION:
11977 /* These notes must remain with the call or trapping instruction. */
11978 if (GET_CODE (i3) == CALL_INSN)
11979 place = i3;
11980 else if (i2 && GET_CODE (i2) == CALL_INSN)
11981 place = i2;
11982 else if (flag_non_call_exceptions)
11983 {
11984 if (may_trap_p (i3))
11985 place = i3;
11986 else if (i2 && may_trap_p (i2))
11987 place = i2;
11988 /* ??? Otherwise assume we've combined things such that we
11989 can now prove that the instructions can't trap. Drop the
11990 note in this case. */
11991 }
11992 else
11993 abort ();
11994 break;
11995
11996 case REG_NORETURN:
11997 case REG_SETJMP:
11998 /* These notes must remain with the call. It should not be
11999 possible for both I2 and I3 to be a call. */
12000 if (GET_CODE (i3) == CALL_INSN)
12001 place = i3;
12002 else if (i2 && GET_CODE (i2) == CALL_INSN)
12003 place = i2;
12004 else
12005 abort ();
12006 break;
12007
12008 case REG_UNUSED:
12009 /* Any clobbers for i3 may still exist, and so we must process
12010 REG_UNUSED notes from that insn.
12011
12012 Any clobbers from i2 or i1 can only exist if they were added by
12013 recog_for_combine. In that case, recog_for_combine created the
12014 necessary REG_UNUSED notes. Trying to keep any original
12015 REG_UNUSED notes from these insns can cause incorrect output
12016 if it is for the same register as the original i3 dest.
12017 In that case, we will notice that the register is set in i3,
12018 and then add a REG_UNUSED note for the destination of i3, which
12019 is wrong. However, it is possible to have REG_UNUSED notes from
12020 i2 or i1 for register which were both used and clobbered, so
12021 we keep notes from i2 or i1 if they will turn into REG_DEAD
12022 notes. */
12023
12024 /* If this register is set or clobbered in I3, put the note there
12025 unless there is one already. */
12026 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
12027 {
12028 if (from_insn != i3)
12029 break;
12030
12031 if (! (GET_CODE (XEXP (note, 0)) == REG
12032 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
12033 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
12034 place = i3;
12035 }
12036 /* Otherwise, if this register is used by I3, then this register
12037 now dies here, so we must put a REG_DEAD note here unless there
12038 is one already. */
12039 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
12040 && ! (GET_CODE (XEXP (note, 0)) == REG
12041 ? find_regno_note (i3, REG_DEAD,
12042 REGNO (XEXP (note, 0)))
12043 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
12044 {
12045 PUT_REG_NOTE_KIND (note, REG_DEAD);
12046 place = i3;
12047 }
12048 break;
12049
12050 case REG_EQUAL:
12051 case REG_EQUIV:
12052 case REG_NOALIAS:
12053 /* These notes say something about results of an insn. We can
12054 only support them if they used to be on I3 in which case they
12055 remain on I3. Otherwise they are ignored.
12056
12057 If the note refers to an expression that is not a constant, we
12058 must also ignore the note since we cannot tell whether the
12059 equivalence is still true. It might be possible to do
12060 slightly better than this (we only have a problem if I2DEST
12061 or I1DEST is present in the expression), but it doesn't
12062 seem worth the trouble. */
12063
12064 if (from_insn == i3
12065 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
12066 place = i3;
12067 break;
12068
12069 case REG_INC:
12070 case REG_NO_CONFLICT:
12071 /* These notes say something about how a register is used. They must
12072 be present on any use of the register in I2 or I3. */
12073 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
12074 place = i3;
12075
12076 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
12077 {
12078 if (place)
12079 place2 = i2;
12080 else
12081 place = i2;
12082 }
12083 break;
12084
12085 case REG_LABEL:
12086 /* This can show up in several ways -- either directly in the
12087 pattern, or hidden off in the constant pool with (or without?)
12088 a REG_EQUAL note. */
12089 /* ??? Ignore the without-reg_equal-note problem for now. */
12090 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
12091 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
12092 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12093 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12094 place = i3;
12095
12096 if (i2
12097 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12098 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12099 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12100 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12101 {
12102 if (place)
12103 place2 = i2;
12104 else
12105 place = i2;
12106 }
12107 break;
12108
12109 case REG_NONNEG:
12110 case REG_WAS_0:
12111 /* These notes say something about the value of a register prior
12112 to the execution of an insn. It is too much trouble to see
12113 if the note is still correct in all situations. It is better
12114 to simply delete it. */
12115 break;
12116
12117 case REG_RETVAL:
12118 /* If the insn previously containing this note still exists,
12119 put it back where it was. Otherwise move it to the previous
12120 insn. Adjust the corresponding REG_LIBCALL note. */
12121 if (GET_CODE (from_insn) != NOTE)
12122 place = from_insn;
12123 else
12124 {
12125 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
12126 place = prev_real_insn (from_insn);
12127 if (tem && place)
12128 XEXP (tem, 0) = place;
12129 /* If we're deleting the last remaining instruction of a
12130 libcall sequence, don't add the notes. */
12131 else if (XEXP (note, 0) == from_insn)
12132 tem = place = 0;
12133 }
12134 break;
12135
12136 case REG_LIBCALL:
12137 /* This is handled similarly to REG_RETVAL. */
12138 if (GET_CODE (from_insn) != NOTE)
12139 place = from_insn;
12140 else
12141 {
12142 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
12143 place = next_real_insn (from_insn);
12144 if (tem && place)
12145 XEXP (tem, 0) = place;
12146 /* If we're deleting the last remaining instruction of a
12147 libcall sequence, don't add the notes. */
12148 else if (XEXP (note, 0) == from_insn)
12149 tem = place = 0;
12150 }
12151 break;
12152
12153 case REG_DEAD:
12154 /* If the register is used as an input in I3, it dies there.
12155 Similarly for I2, if it is non-zero and adjacent to I3.
12156
12157 If the register is not used as an input in either I3 or I2
12158 and it is not one of the registers we were supposed to eliminate,
12159 there are two possibilities. We might have a non-adjacent I2
12160 or we might have somehow eliminated an additional register
12161 from a computation. For example, we might have had A & B where
12162 we discover that B will always be zero. In this case we will
12163 eliminate the reference to A.
12164
12165 In both cases, we must search to see if we can find a previous
12166 use of A and put the death note there. */
12167
12168 if (from_insn
12169 && GET_CODE (from_insn) == CALL_INSN
12170 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12171 place = from_insn;
12172 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12173 place = i3;
12174 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12175 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12176 place = i2;
12177
12178 if (rtx_equal_p (XEXP (note, 0), elim_i2)
12179 || rtx_equal_p (XEXP (note, 0), elim_i1))
12180 break;
12181
12182 if (place == 0)
12183 {
12184 basic_block bb = BASIC_BLOCK (this_basic_block);
12185
12186 for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
12187 {
12188 if (! INSN_P (tem))
12189 {
12190 if (tem == bb->head)
12191 break;
12192 continue;
12193 }
12194
12195 /* If the register is being set at TEM, see if that is all
12196 TEM is doing. If so, delete TEM. Otherwise, make this
12197 into a REG_UNUSED note instead. */
12198 if (reg_set_p (XEXP (note, 0), PATTERN (tem)))
12199 {
12200 rtx set = single_set (tem);
12201 rtx inner_dest = 0;
12202 #ifdef HAVE_cc0
12203 rtx cc0_setter = NULL_RTX;
12204 #endif
12205
12206 if (set != 0)
12207 for (inner_dest = SET_DEST (set);
12208 (GET_CODE (inner_dest) == STRICT_LOW_PART
12209 || GET_CODE (inner_dest) == SUBREG
12210 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12211 inner_dest = XEXP (inner_dest, 0))
12212 ;
12213
12214 /* Verify that it was the set, and not a clobber that
12215 modified the register.
12216
12217 CC0 targets must be careful to maintain setter/user
12218 pairs. If we cannot delete the setter due to side
12219 effects, mark the user with an UNUSED note instead
12220 of deleting it. */
12221
12222 if (set != 0 && ! side_effects_p (SET_SRC (set))
12223 && rtx_equal_p (XEXP (note, 0), inner_dest)
12224 #ifdef HAVE_cc0
12225 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12226 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12227 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12228 #endif
12229 )
12230 {
12231 /* Move the notes and links of TEM elsewhere.
12232 This might delete other dead insns recursively.
12233 First set the pattern to something that won't use
12234 any register. */
12235
12236 PATTERN (tem) = pc_rtx;
12237
12238 distribute_notes (REG_NOTES (tem), tem, tem,
12239 NULL_RTX, NULL_RTX, NULL_RTX);
12240 distribute_links (LOG_LINKS (tem));
12241
12242 PUT_CODE (tem, NOTE);
12243 NOTE_LINE_NUMBER (tem) = NOTE_INSN_DELETED;
12244 NOTE_SOURCE_FILE (tem) = 0;
12245
12246 #ifdef HAVE_cc0
12247 /* Delete the setter too. */
12248 if (cc0_setter)
12249 {
12250 PATTERN (cc0_setter) = pc_rtx;
12251
12252 distribute_notes (REG_NOTES (cc0_setter),
12253 cc0_setter, cc0_setter,
12254 NULL_RTX, NULL_RTX, NULL_RTX);
12255 distribute_links (LOG_LINKS (cc0_setter));
12256
12257 PUT_CODE (cc0_setter, NOTE);
12258 NOTE_LINE_NUMBER (cc0_setter)
12259 = NOTE_INSN_DELETED;
12260 NOTE_SOURCE_FILE (cc0_setter) = 0;
12261 }
12262 #endif
12263 }
12264 /* If the register is both set and used here, put the
12265 REG_DEAD note here, but place a REG_UNUSED note
12266 here too unless there already is one. */
12267 else if (reg_referenced_p (XEXP (note, 0),
12268 PATTERN (tem)))
12269 {
12270 place = tem;
12271
12272 if (! find_regno_note (tem, REG_UNUSED,
12273 REGNO (XEXP (note, 0))))
12274 REG_NOTES (tem)
12275 = gen_rtx_EXPR_LIST (REG_UNUSED, XEXP (note, 0),
12276 REG_NOTES (tem));
12277 }
12278 else
12279 {
12280 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12281
12282 /* If there isn't already a REG_UNUSED note, put one
12283 here. */
12284 if (! find_regno_note (tem, REG_UNUSED,
12285 REGNO (XEXP (note, 0))))
12286 place = tem;
12287 break;
12288 }
12289 }
12290 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12291 || (GET_CODE (tem) == CALL_INSN
12292 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12293 {
12294 place = tem;
12295
12296 /* If we are doing a 3->2 combination, and we have a
12297 register which formerly died in i3 and was not used
12298 by i2, which now no longer dies in i3 and is used in
12299 i2 but does not die in i2, and place is between i2
12300 and i3, then we may need to move a link from place to
12301 i2. */
12302 if (i2 && INSN_UID (place) <= max_uid_cuid
12303 && INSN_CUID (place) > INSN_CUID (i2)
12304 && from_insn
12305 && INSN_CUID (from_insn) > INSN_CUID (i2)
12306 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12307 {
12308 rtx links = LOG_LINKS (place);
12309 LOG_LINKS (place) = 0;
12310 distribute_links (links);
12311 }
12312 break;
12313 }
12314
12315 if (tem == bb->head)
12316 break;
12317 }
12318
12319 /* We haven't found an insn for the death note and it
12320 is still a REG_DEAD note, but we have hit the beginning
12321 of the block. If the existing life info says the reg
12322 was dead, there's nothing left to do. Otherwise, we'll
12323 need to do a global life update after combine. */
12324 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12325 && REGNO_REG_SET_P (bb->global_live_at_start,
12326 REGNO (XEXP (note, 0))))
12327 {
12328 SET_BIT (refresh_blocks, this_basic_block);
12329 need_refresh = 1;
12330 }
12331 }
12332
12333 /* If the register is set or already dead at PLACE, we needn't do
12334 anything with this note if it is still a REG_DEAD note.
12335 We can here if it is set at all, not if is it totally replace,
12336 which is what `dead_or_set_p' checks, so also check for it being
12337 set partially. */
12338
12339 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12340 {
12341 unsigned int regno = REGNO (XEXP (note, 0));
12342
12343 /* Similarly, if the instruction on which we want to place
12344 the note is a noop, we'll need do a global live update
12345 after we remove them in delete_noop_moves. */
12346 if (noop_move_p (place))
12347 {
12348 SET_BIT (refresh_blocks, this_basic_block);
12349 need_refresh = 1;
12350 }
12351
12352 if (dead_or_set_p (place, XEXP (note, 0))
12353 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12354 {
12355 /* Unless the register previously died in PLACE, clear
12356 reg_last_death. [I no longer understand why this is
12357 being done.] */
12358 if (reg_last_death[regno] != place)
12359 reg_last_death[regno] = 0;
12360 place = 0;
12361 }
12362 else
12363 reg_last_death[regno] = place;
12364
12365 /* If this is a death note for a hard reg that is occupying
12366 multiple registers, ensure that we are still using all
12367 parts of the object. If we find a piece of the object
12368 that is unused, we must arrange for an appropriate REG_DEAD
12369 note to be added for it. However, we can't just emit a USE
12370 and tag the note to it, since the register might actually
12371 be dead; so we recourse, and the recursive call then finds
12372 the previous insn that used this register. */
12373
12374 if (place && regno < FIRST_PSEUDO_REGISTER
12375 && HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0))) > 1)
12376 {
12377 unsigned int endregno
12378 = regno + HARD_REGNO_NREGS (regno,
12379 GET_MODE (XEXP (note, 0)));
12380 int all_used = 1;
12381 unsigned int i;
12382
12383 for (i = regno; i < endregno; i++)
12384 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12385 && ! find_regno_fusage (place, USE, i))
12386 || dead_or_set_regno_p (place, i))
12387 all_used = 0;
12388
12389 if (! all_used)
12390 {
12391 /* Put only REG_DEAD notes for pieces that are
12392 not already dead or set. */
12393
12394 for (i = regno; i < endregno;
12395 i += HARD_REGNO_NREGS (i, reg_raw_mode[i]))
12396 {
12397 rtx piece = gen_rtx_REG (reg_raw_mode[i], i);
12398 basic_block bb = BASIC_BLOCK (this_basic_block);
12399
12400 if (! dead_or_set_p (place, piece)
12401 && ! reg_bitfield_target_p (piece,
12402 PATTERN (place)))
12403 {
12404 rtx new_note
12405 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12406
12407 distribute_notes (new_note, place, place,
12408 NULL_RTX, NULL_RTX, NULL_RTX);
12409 }
12410 else if (! refers_to_regno_p (i, i + 1,
12411 PATTERN (place), 0)
12412 && ! find_regno_fusage (place, USE, i))
12413 for (tem = PREV_INSN (place); ;
12414 tem = PREV_INSN (tem))
12415 {
12416 if (! INSN_P (tem))
12417 {
12418 if (tem == bb->head)
12419 {
12420 SET_BIT (refresh_blocks,
12421 this_basic_block);
12422 need_refresh = 1;
12423 break;
12424 }
12425 continue;
12426 }
12427 if (dead_or_set_p (tem, piece)
12428 || reg_bitfield_target_p (piece,
12429 PATTERN (tem)))
12430 {
12431 REG_NOTES (tem)
12432 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12433 REG_NOTES (tem));
12434 break;
12435 }
12436 }
12437
12438 }
12439
12440 place = 0;
12441 }
12442 }
12443 }
12444 break;
12445
12446 default:
12447 /* Any other notes should not be present at this point in the
12448 compilation. */
12449 abort ();
12450 }
12451
12452 if (place)
12453 {
12454 XEXP (note, 1) = REG_NOTES (place);
12455 REG_NOTES (place) = note;
12456 }
12457 else if ((REG_NOTE_KIND (note) == REG_DEAD
12458 || REG_NOTE_KIND (note) == REG_UNUSED)
12459 && GET_CODE (XEXP (note, 0)) == REG)
12460 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
12461
12462 if (place2)
12463 {
12464 if ((REG_NOTE_KIND (note) == REG_DEAD
12465 || REG_NOTE_KIND (note) == REG_UNUSED)
12466 && GET_CODE (XEXP (note, 0)) == REG)
12467 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
12468
12469 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12470 REG_NOTE_KIND (note),
12471 XEXP (note, 0),
12472 REG_NOTES (place2));
12473 }
12474 }
12475 }
12476 \f
12477 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12478 I3, I2, and I1 to new locations. This is also called in one case to
12479 add a link pointing at I3 when I3's destination is changed. */
12480
12481 static void
12482 distribute_links (links)
12483 rtx links;
12484 {
12485 rtx link, next_link;
12486
12487 for (link = links; link; link = next_link)
12488 {
12489 rtx place = 0;
12490 rtx insn;
12491 rtx set, reg;
12492
12493 next_link = XEXP (link, 1);
12494
12495 /* If the insn that this link points to is a NOTE or isn't a single
12496 set, ignore it. In the latter case, it isn't clear what we
12497 can do other than ignore the link, since we can't tell which
12498 register it was for. Such links wouldn't be used by combine
12499 anyway.
12500
12501 It is not possible for the destination of the target of the link to
12502 have been changed by combine. The only potential of this is if we
12503 replace I3, I2, and I1 by I3 and I2. But in that case the
12504 destination of I2 also remains unchanged. */
12505
12506 if (GET_CODE (XEXP (link, 0)) == NOTE
12507 || (set = single_set (XEXP (link, 0))) == 0)
12508 continue;
12509
12510 reg = SET_DEST (set);
12511 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12512 || GET_CODE (reg) == SIGN_EXTRACT
12513 || GET_CODE (reg) == STRICT_LOW_PART)
12514 reg = XEXP (reg, 0);
12515
12516 /* A LOG_LINK is defined as being placed on the first insn that uses
12517 a register and points to the insn that sets the register. Start
12518 searching at the next insn after the target of the link and stop
12519 when we reach a set of the register or the end of the basic block.
12520
12521 Note that this correctly handles the link that used to point from
12522 I3 to I2. Also note that not much searching is typically done here
12523 since most links don't point very far away. */
12524
12525 for (insn = NEXT_INSN (XEXP (link, 0));
12526 (insn && (this_basic_block == n_basic_blocks - 1
12527 || BLOCK_HEAD (this_basic_block + 1) != insn));
12528 insn = NEXT_INSN (insn))
12529 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12530 {
12531 if (reg_referenced_p (reg, PATTERN (insn)))
12532 place = insn;
12533 break;
12534 }
12535 else if (GET_CODE (insn) == CALL_INSN
12536 && find_reg_fusage (insn, USE, reg))
12537 {
12538 place = insn;
12539 break;
12540 }
12541
12542 /* If we found a place to put the link, place it there unless there
12543 is already a link to the same insn as LINK at that point. */
12544
12545 if (place)
12546 {
12547 rtx link2;
12548
12549 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12550 if (XEXP (link2, 0) == XEXP (link, 0))
12551 break;
12552
12553 if (link2 == 0)
12554 {
12555 XEXP (link, 1) = LOG_LINKS (place);
12556 LOG_LINKS (place) = link;
12557
12558 /* Set added_links_insn to the earliest insn we added a
12559 link to. */
12560 if (added_links_insn == 0
12561 || INSN_CUID (added_links_insn) > INSN_CUID (place))
12562 added_links_insn = place;
12563 }
12564 }
12565 }
12566 }
12567 \f
12568 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
12569
12570 static int
12571 insn_cuid (insn)
12572 rtx insn;
12573 {
12574 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
12575 && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == USE)
12576 insn = NEXT_INSN (insn);
12577
12578 if (INSN_UID (insn) > max_uid_cuid)
12579 abort ();
12580
12581 return INSN_CUID (insn);
12582 }
12583 \f
12584 void
12585 dump_combine_stats (file)
12586 FILE *file;
12587 {
12588 fnotice
12589 (file,
12590 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12591 combine_attempts, combine_merges, combine_extras, combine_successes);
12592 }
12593
12594 void
12595 dump_combine_total_stats (file)
12596 FILE *file;
12597 {
12598 fnotice
12599 (file,
12600 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12601 total_attempts, total_merges, total_extras, total_successes);
12602 }