re PR ipa/58492 (ICE: verify_flow_info failed)
[gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
23
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
29
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of of success.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
55
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
64
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
68
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
77
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "tm.h"
82 #include "rtl.h"
83 #include "tree.h"
84 #include "tm_p.h"
85 #include "flags.h"
86 #include "regs.h"
87 #include "hard-reg-set.h"
88 #include "basic-block.h"
89 #include "insn-config.h"
90 #include "function.h"
91 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
92 #include "expr.h"
93 #include "insn-attr.h"
94 #include "recog.h"
95 #include "diagnostic-core.h"
96 #include "target.h"
97 #include "optabs.h"
98 #include "insn-codes.h"
99 #include "rtlhooks-def.h"
100 #include "params.h"
101 #include "tree-pass.h"
102 #include "df.h"
103 #include "valtrack.h"
104 #include "cgraph.h"
105 #include "obstack.h"
106
107 /* Number of attempts to combine instructions in this function. */
108
109 static int combine_attempts;
110
111 /* Number of attempts that got as far as substitution in this function. */
112
113 static int combine_merges;
114
115 /* Number of instructions combined with added SETs in this function. */
116
117 static int combine_extras;
118
119 /* Number of instructions combined in this function. */
120
121 static int combine_successes;
122
123 /* Totals over entire compilation. */
124
125 static int total_attempts, total_merges, total_extras, total_successes;
126
127 /* combine_instructions may try to replace the right hand side of the
128 second instruction with the value of an associated REG_EQUAL note
129 before throwing it at try_combine. That is problematic when there
130 is a REG_DEAD note for a register used in the old right hand side
131 and can cause distribute_notes to do wrong things. This is the
132 second instruction if it has been so modified, null otherwise. */
133
134 static rtx i2mod;
135
136 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
137
138 static rtx i2mod_old_rhs;
139
140 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
141
142 static rtx i2mod_new_rhs;
143 \f
144 typedef struct reg_stat_struct {
145 /* Record last point of death of (hard or pseudo) register n. */
146 rtx last_death;
147
148 /* Record last point of modification of (hard or pseudo) register n. */
149 rtx last_set;
150
151 /* The next group of fields allows the recording of the last value assigned
152 to (hard or pseudo) register n. We use this information to see if an
153 operation being processed is redundant given a prior operation performed
154 on the register. For example, an `and' with a constant is redundant if
155 all the zero bits are already known to be turned off.
156
157 We use an approach similar to that used by cse, but change it in the
158 following ways:
159
160 (1) We do not want to reinitialize at each label.
161 (2) It is useful, but not critical, to know the actual value assigned
162 to a register. Often just its form is helpful.
163
164 Therefore, we maintain the following fields:
165
166 last_set_value the last value assigned
167 last_set_label records the value of label_tick when the
168 register was assigned
169 last_set_table_tick records the value of label_tick when a
170 value using the register is assigned
171 last_set_invalid set to nonzero when it is not valid
172 to use the value of this register in some
173 register's value
174
175 To understand the usage of these tables, it is important to understand
176 the distinction between the value in last_set_value being valid and
177 the register being validly contained in some other expression in the
178 table.
179
180 (The next two parameters are out of date).
181
182 reg_stat[i].last_set_value is valid if it is nonzero, and either
183 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
184
185 Register I may validly appear in any expression returned for the value
186 of another register if reg_n_sets[i] is 1. It may also appear in the
187 value for register J if reg_stat[j].last_set_invalid is zero, or
188 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
189
190 If an expression is found in the table containing a register which may
191 not validly appear in an expression, the register is replaced by
192 something that won't match, (clobber (const_int 0)). */
193
194 /* Record last value assigned to (hard or pseudo) register n. */
195
196 rtx last_set_value;
197
198 /* Record the value of label_tick when an expression involving register n
199 is placed in last_set_value. */
200
201 int last_set_table_tick;
202
203 /* Record the value of label_tick when the value for register n is placed in
204 last_set_value. */
205
206 int last_set_label;
207
208 /* These fields are maintained in parallel with last_set_value and are
209 used to store the mode in which the register was last set, the bits
210 that were known to be zero when it was last set, and the number of
211 sign bits copies it was known to have when it was last set. */
212
213 unsigned HOST_WIDE_INT last_set_nonzero_bits;
214 char last_set_sign_bit_copies;
215 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
216
217 /* Set nonzero if references to register n in expressions should not be
218 used. last_set_invalid is set nonzero when this register is being
219 assigned to and last_set_table_tick == label_tick. */
220
221 char last_set_invalid;
222
223 /* Some registers that are set more than once and used in more than one
224 basic block are nevertheless always set in similar ways. For example,
225 a QImode register may be loaded from memory in two places on a machine
226 where byte loads zero extend.
227
228 We record in the following fields if a register has some leading bits
229 that are always equal to the sign bit, and what we know about the
230 nonzero bits of a register, specifically which bits are known to be
231 zero.
232
233 If an entry is zero, it means that we don't know anything special. */
234
235 unsigned char sign_bit_copies;
236
237 unsigned HOST_WIDE_INT nonzero_bits;
238
239 /* Record the value of the label_tick when the last truncation
240 happened. The field truncated_to_mode is only valid if
241 truncation_label == label_tick. */
242
243 int truncation_label;
244
245 /* Record the last truncation seen for this register. If truncation
246 is not a nop to this mode we might be able to save an explicit
247 truncation if we know that value already contains a truncated
248 value. */
249
250 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
251 } reg_stat_type;
252
253
254 static vec<reg_stat_type> reg_stat;
255
256 /* Record the luid of the last insn that invalidated memory
257 (anything that writes memory, and subroutine calls, but not pushes). */
258
259 static int mem_last_set;
260
261 /* Record the luid of the last CALL_INSN
262 so we can tell whether a potential combination crosses any calls. */
263
264 static int last_call_luid;
265
266 /* When `subst' is called, this is the insn that is being modified
267 (by combining in a previous insn). The PATTERN of this insn
268 is still the old pattern partially modified and it should not be
269 looked at, but this may be used to examine the successors of the insn
270 to judge whether a simplification is valid. */
271
272 static rtx subst_insn;
273
274 /* This is the lowest LUID that `subst' is currently dealing with.
275 get_last_value will not return a value if the register was set at or
276 after this LUID. If not for this mechanism, we could get confused if
277 I2 or I1 in try_combine were an insn that used the old value of a register
278 to obtain a new value. In that case, we might erroneously get the
279 new value of the register when we wanted the old one. */
280
281 static int subst_low_luid;
282
283 /* This contains any hard registers that are used in newpat; reg_dead_at_p
284 must consider all these registers to be always live. */
285
286 static HARD_REG_SET newpat_used_regs;
287
288 /* This is an insn to which a LOG_LINKS entry has been added. If this
289 insn is the earlier than I2 or I3, combine should rescan starting at
290 that location. */
291
292 static rtx added_links_insn;
293
294 /* Basic block in which we are performing combines. */
295 static basic_block this_basic_block;
296 static bool optimize_this_for_speed_p;
297
298 \f
299 /* Length of the currently allocated uid_insn_cost array. */
300
301 static int max_uid_known;
302
303 /* The following array records the insn_rtx_cost for every insn
304 in the instruction stream. */
305
306 static int *uid_insn_cost;
307
308 /* The following array records the LOG_LINKS for every insn in the
309 instruction stream as struct insn_link pointers. */
310
311 struct insn_link {
312 rtx insn;
313 struct insn_link *next;
314 };
315
316 static struct insn_link **uid_log_links;
317
318 #define INSN_COST(INSN) (uid_insn_cost[INSN_UID (INSN)])
319 #define LOG_LINKS(INSN) (uid_log_links[INSN_UID (INSN)])
320
321 #define FOR_EACH_LOG_LINK(L, INSN) \
322 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
323
324 /* Links for LOG_LINKS are allocated from this obstack. */
325
326 static struct obstack insn_link_obstack;
327
328 /* Allocate a link. */
329
330 static inline struct insn_link *
331 alloc_insn_link (rtx insn, struct insn_link *next)
332 {
333 struct insn_link *l
334 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
335 sizeof (struct insn_link));
336 l->insn = insn;
337 l->next = next;
338 return l;
339 }
340
341 /* Incremented for each basic block. */
342
343 static int label_tick;
344
345 /* Reset to label_tick for each extended basic block in scanning order. */
346
347 static int label_tick_ebb_start;
348
349 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
350 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
351
352 static enum machine_mode nonzero_bits_mode;
353
354 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
355 be safely used. It is zero while computing them and after combine has
356 completed. This former test prevents propagating values based on
357 previously set values, which can be incorrect if a variable is modified
358 in a loop. */
359
360 static int nonzero_sign_valid;
361
362 \f
363 /* Record one modification to rtl structure
364 to be undone by storing old_contents into *where. */
365
366 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
367
368 struct undo
369 {
370 struct undo *next;
371 enum undo_kind kind;
372 union { rtx r; int i; enum machine_mode m; struct insn_link *l; } old_contents;
373 union { rtx *r; int *i; struct insn_link **l; } where;
374 };
375
376 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
377 num_undo says how many are currently recorded.
378
379 other_insn is nonzero if we have modified some other insn in the process
380 of working on subst_insn. It must be verified too. */
381
382 struct undobuf
383 {
384 struct undo *undos;
385 struct undo *frees;
386 rtx other_insn;
387 };
388
389 static struct undobuf undobuf;
390
391 /* Number of times the pseudo being substituted for
392 was found and replaced. */
393
394 static int n_occurrences;
395
396 static rtx reg_nonzero_bits_for_combine (const_rtx, enum machine_mode, const_rtx,
397 enum machine_mode,
398 unsigned HOST_WIDE_INT,
399 unsigned HOST_WIDE_INT *);
400 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, enum machine_mode, const_rtx,
401 enum machine_mode,
402 unsigned int, unsigned int *);
403 static void do_SUBST (rtx *, rtx);
404 static void do_SUBST_INT (int *, int);
405 static void init_reg_last (void);
406 static void setup_incoming_promotions (rtx);
407 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
408 static int cant_combine_insn_p (rtx);
409 static int can_combine_p (rtx, rtx, rtx, rtx, rtx, rtx, rtx *, rtx *);
410 static int combinable_i3pat (rtx, rtx *, rtx, rtx, rtx, int, int, rtx *);
411 static int contains_muldiv (rtx);
412 static rtx try_combine (rtx, rtx, rtx, rtx, int *, rtx);
413 static void undo_all (void);
414 static void undo_commit (void);
415 static rtx *find_split_point (rtx *, rtx, bool);
416 static rtx subst (rtx, rtx, rtx, int, int, int);
417 static rtx combine_simplify_rtx (rtx, enum machine_mode, int, int);
418 static rtx simplify_if_then_else (rtx);
419 static rtx simplify_set (rtx);
420 static rtx simplify_logical (rtx);
421 static rtx expand_compound_operation (rtx);
422 static const_rtx expand_field_assignment (const_rtx);
423 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
424 rtx, unsigned HOST_WIDE_INT, int, int, int);
425 static rtx extract_left_shift (rtx, int);
426 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
427 unsigned HOST_WIDE_INT *);
428 static rtx canon_reg_for_combine (rtx, rtx);
429 static rtx force_to_mode (rtx, enum machine_mode,
430 unsigned HOST_WIDE_INT, int);
431 static rtx if_then_else_cond (rtx, rtx *, rtx *);
432 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
433 static int rtx_equal_for_field_assignment_p (rtx, rtx);
434 static rtx make_field_assignment (rtx);
435 static rtx apply_distributive_law (rtx);
436 static rtx distribute_and_simplify_rtx (rtx, int);
437 static rtx simplify_and_const_int_1 (enum machine_mode, rtx,
438 unsigned HOST_WIDE_INT);
439 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
440 unsigned HOST_WIDE_INT);
441 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
442 HOST_WIDE_INT, enum machine_mode, int *);
443 static rtx simplify_shift_const_1 (enum rtx_code, enum machine_mode, rtx, int);
444 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
445 int);
446 static int recog_for_combine (rtx *, rtx, rtx *);
447 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
448 static enum rtx_code simplify_compare_const (enum rtx_code, rtx, rtx *);
449 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
450 static void update_table_tick (rtx);
451 static void record_value_for_reg (rtx, rtx, rtx);
452 static void check_promoted_subreg (rtx, rtx);
453 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
454 static void record_dead_and_set_regs (rtx);
455 static int get_last_value_validate (rtx *, rtx, int, int);
456 static rtx get_last_value (const_rtx);
457 static int use_crosses_set_p (const_rtx, int);
458 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
459 static int reg_dead_at_p (rtx, rtx);
460 static void move_deaths (rtx, rtx, int, rtx, rtx *);
461 static int reg_bitfield_target_p (rtx, rtx);
462 static void distribute_notes (rtx, rtx, rtx, rtx, rtx, rtx, rtx);
463 static void distribute_links (struct insn_link *);
464 static void mark_used_regs_combine (rtx);
465 static void record_promoted_value (rtx, rtx);
466 static int unmentioned_reg_p_1 (rtx *, void *);
467 static bool unmentioned_reg_p (rtx, rtx);
468 static int record_truncated_value (rtx *, void *);
469 static void record_truncated_values (rtx *, void *);
470 static bool reg_truncated_to_mode (enum machine_mode, const_rtx);
471 static rtx gen_lowpart_or_truncate (enum machine_mode, rtx);
472 \f
473
474 /* It is not safe to use ordinary gen_lowpart in combine.
475 See comments in gen_lowpart_for_combine. */
476 #undef RTL_HOOKS_GEN_LOWPART
477 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
478
479 /* Our implementation of gen_lowpart never emits a new pseudo. */
480 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
481 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
482
483 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
484 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
485
486 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
487 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
488
489 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
490 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
491
492 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
493
494 \f
495 /* Convenience wrapper for the canonicalize_comparison target hook.
496 Target hooks cannot use enum rtx_code. */
497 static inline void
498 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
499 bool op0_preserve_value)
500 {
501 int code_int = (int)*code;
502 targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
503 *code = (enum rtx_code)code_int;
504 }
505
506 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
507 PATTERN can not be split. Otherwise, it returns an insn sequence.
508 This is a wrapper around split_insns which ensures that the
509 reg_stat vector is made larger if the splitter creates a new
510 register. */
511
512 static rtx
513 combine_split_insns (rtx pattern, rtx insn)
514 {
515 rtx ret;
516 unsigned int nregs;
517
518 ret = split_insns (pattern, insn);
519 nregs = max_reg_num ();
520 if (nregs > reg_stat.length ())
521 reg_stat.safe_grow_cleared (nregs);
522 return ret;
523 }
524
525 /* This is used by find_single_use to locate an rtx in LOC that
526 contains exactly one use of DEST, which is typically either a REG
527 or CC0. It returns a pointer to the innermost rtx expression
528 containing DEST. Appearances of DEST that are being used to
529 totally replace it are not counted. */
530
531 static rtx *
532 find_single_use_1 (rtx dest, rtx *loc)
533 {
534 rtx x = *loc;
535 enum rtx_code code = GET_CODE (x);
536 rtx *result = NULL;
537 rtx *this_result;
538 int i;
539 const char *fmt;
540
541 switch (code)
542 {
543 case CONST:
544 case LABEL_REF:
545 case SYMBOL_REF:
546 CASE_CONST_ANY:
547 case CLOBBER:
548 return 0;
549
550 case SET:
551 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
552 of a REG that occupies all of the REG, the insn uses DEST if
553 it is mentioned in the destination or the source. Otherwise, we
554 need just check the source. */
555 if (GET_CODE (SET_DEST (x)) != CC0
556 && GET_CODE (SET_DEST (x)) != PC
557 && !REG_P (SET_DEST (x))
558 && ! (GET_CODE (SET_DEST (x)) == SUBREG
559 && REG_P (SUBREG_REG (SET_DEST (x)))
560 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
561 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
562 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
563 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
564 break;
565
566 return find_single_use_1 (dest, &SET_SRC (x));
567
568 case MEM:
569 case SUBREG:
570 return find_single_use_1 (dest, &XEXP (x, 0));
571
572 default:
573 break;
574 }
575
576 /* If it wasn't one of the common cases above, check each expression and
577 vector of this code. Look for a unique usage of DEST. */
578
579 fmt = GET_RTX_FORMAT (code);
580 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
581 {
582 if (fmt[i] == 'e')
583 {
584 if (dest == XEXP (x, i)
585 || (REG_P (dest) && REG_P (XEXP (x, i))
586 && REGNO (dest) == REGNO (XEXP (x, i))))
587 this_result = loc;
588 else
589 this_result = find_single_use_1 (dest, &XEXP (x, i));
590
591 if (result == NULL)
592 result = this_result;
593 else if (this_result)
594 /* Duplicate usage. */
595 return NULL;
596 }
597 else if (fmt[i] == 'E')
598 {
599 int j;
600
601 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
602 {
603 if (XVECEXP (x, i, j) == dest
604 || (REG_P (dest)
605 && REG_P (XVECEXP (x, i, j))
606 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
607 this_result = loc;
608 else
609 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
610
611 if (result == NULL)
612 result = this_result;
613 else if (this_result)
614 return NULL;
615 }
616 }
617 }
618
619 return result;
620 }
621
622
623 /* See if DEST, produced in INSN, is used only a single time in the
624 sequel. If so, return a pointer to the innermost rtx expression in which
625 it is used.
626
627 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
628
629 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
630 care about REG_DEAD notes or LOG_LINKS.
631
632 Otherwise, we find the single use by finding an insn that has a
633 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
634 only referenced once in that insn, we know that it must be the first
635 and last insn referencing DEST. */
636
637 static rtx *
638 find_single_use (rtx dest, rtx insn, rtx *ploc)
639 {
640 basic_block bb;
641 rtx next;
642 rtx *result;
643 struct insn_link *link;
644
645 #ifdef HAVE_cc0
646 if (dest == cc0_rtx)
647 {
648 next = NEXT_INSN (insn);
649 if (next == 0
650 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
651 return 0;
652
653 result = find_single_use_1 (dest, &PATTERN (next));
654 if (result && ploc)
655 *ploc = next;
656 return result;
657 }
658 #endif
659
660 if (!REG_P (dest))
661 return 0;
662
663 bb = BLOCK_FOR_INSN (insn);
664 for (next = NEXT_INSN (insn);
665 next && BLOCK_FOR_INSN (next) == bb;
666 next = NEXT_INSN (next))
667 if (INSN_P (next) && dead_or_set_p (next, dest))
668 {
669 FOR_EACH_LOG_LINK (link, next)
670 if (link->insn == insn)
671 break;
672
673 if (link)
674 {
675 result = find_single_use_1 (dest, &PATTERN (next));
676 if (ploc)
677 *ploc = next;
678 return result;
679 }
680 }
681
682 return 0;
683 }
684 \f
685 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
686 insn. The substitution can be undone by undo_all. If INTO is already
687 set to NEWVAL, do not record this change. Because computing NEWVAL might
688 also call SUBST, we have to compute it before we put anything into
689 the undo table. */
690
691 static void
692 do_SUBST (rtx *into, rtx newval)
693 {
694 struct undo *buf;
695 rtx oldval = *into;
696
697 if (oldval == newval)
698 return;
699
700 /* We'd like to catch as many invalid transformations here as
701 possible. Unfortunately, there are way too many mode changes
702 that are perfectly valid, so we'd waste too much effort for
703 little gain doing the checks here. Focus on catching invalid
704 transformations involving integer constants. */
705 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
706 && CONST_INT_P (newval))
707 {
708 /* Sanity check that we're replacing oldval with a CONST_INT
709 that is a valid sign-extension for the original mode. */
710 gcc_assert (INTVAL (newval)
711 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
712
713 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
714 CONST_INT is not valid, because after the replacement, the
715 original mode would be gone. Unfortunately, we can't tell
716 when do_SUBST is called to replace the operand thereof, so we
717 perform this test on oldval instead, checking whether an
718 invalid replacement took place before we got here. */
719 gcc_assert (!(GET_CODE (oldval) == SUBREG
720 && CONST_INT_P (SUBREG_REG (oldval))));
721 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
722 && CONST_INT_P (XEXP (oldval, 0))));
723 }
724
725 if (undobuf.frees)
726 buf = undobuf.frees, undobuf.frees = buf->next;
727 else
728 buf = XNEW (struct undo);
729
730 buf->kind = UNDO_RTX;
731 buf->where.r = into;
732 buf->old_contents.r = oldval;
733 *into = newval;
734
735 buf->next = undobuf.undos, undobuf.undos = buf;
736 }
737
738 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
739
740 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
741 for the value of a HOST_WIDE_INT value (including CONST_INT) is
742 not safe. */
743
744 static void
745 do_SUBST_INT (int *into, int newval)
746 {
747 struct undo *buf;
748 int oldval = *into;
749
750 if (oldval == newval)
751 return;
752
753 if (undobuf.frees)
754 buf = undobuf.frees, undobuf.frees = buf->next;
755 else
756 buf = XNEW (struct undo);
757
758 buf->kind = UNDO_INT;
759 buf->where.i = into;
760 buf->old_contents.i = oldval;
761 *into = newval;
762
763 buf->next = undobuf.undos, undobuf.undos = buf;
764 }
765
766 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
767
768 /* Similar to SUBST, but just substitute the mode. This is used when
769 changing the mode of a pseudo-register, so that any other
770 references to the entry in the regno_reg_rtx array will change as
771 well. */
772
773 static void
774 do_SUBST_MODE (rtx *into, enum machine_mode newval)
775 {
776 struct undo *buf;
777 enum machine_mode oldval = GET_MODE (*into);
778
779 if (oldval == newval)
780 return;
781
782 if (undobuf.frees)
783 buf = undobuf.frees, undobuf.frees = buf->next;
784 else
785 buf = XNEW (struct undo);
786
787 buf->kind = UNDO_MODE;
788 buf->where.r = into;
789 buf->old_contents.m = oldval;
790 adjust_reg_mode (*into, newval);
791
792 buf->next = undobuf.undos, undobuf.undos = buf;
793 }
794
795 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE (&(INTO), (NEWVAL))
796
797 #ifndef HAVE_cc0
798 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
799
800 static void
801 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
802 {
803 struct undo *buf;
804 struct insn_link * oldval = *into;
805
806 if (oldval == newval)
807 return;
808
809 if (undobuf.frees)
810 buf = undobuf.frees, undobuf.frees = buf->next;
811 else
812 buf = XNEW (struct undo);
813
814 buf->kind = UNDO_LINKS;
815 buf->where.l = into;
816 buf->old_contents.l = oldval;
817 *into = newval;
818
819 buf->next = undobuf.undos, undobuf.undos = buf;
820 }
821
822 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
823 #endif
824 \f
825 /* Subroutine of try_combine. Determine whether the replacement patterns
826 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_rtx_cost
827 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
828 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
829 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
830 of all the instructions can be estimated and the replacements are more
831 expensive than the original sequence. */
832
833 static bool
834 combine_validate_cost (rtx i0, rtx i1, rtx i2, rtx i3, rtx newpat,
835 rtx newi2pat, rtx newotherpat)
836 {
837 int i0_cost, i1_cost, i2_cost, i3_cost;
838 int new_i2_cost, new_i3_cost;
839 int old_cost, new_cost;
840
841 /* Lookup the original insn_rtx_costs. */
842 i2_cost = INSN_COST (i2);
843 i3_cost = INSN_COST (i3);
844
845 if (i1)
846 {
847 i1_cost = INSN_COST (i1);
848 if (i0)
849 {
850 i0_cost = INSN_COST (i0);
851 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
852 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
853 }
854 else
855 {
856 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
857 ? i1_cost + i2_cost + i3_cost : 0);
858 i0_cost = 0;
859 }
860 }
861 else
862 {
863 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
864 i1_cost = i0_cost = 0;
865 }
866
867 /* Calculate the replacement insn_rtx_costs. */
868 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
869 if (newi2pat)
870 {
871 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
872 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
873 ? new_i2_cost + new_i3_cost : 0;
874 }
875 else
876 {
877 new_cost = new_i3_cost;
878 new_i2_cost = 0;
879 }
880
881 if (undobuf.other_insn)
882 {
883 int old_other_cost, new_other_cost;
884
885 old_other_cost = INSN_COST (undobuf.other_insn);
886 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
887 if (old_other_cost > 0 && new_other_cost > 0)
888 {
889 old_cost += old_other_cost;
890 new_cost += new_other_cost;
891 }
892 else
893 old_cost = 0;
894 }
895
896 /* Disallow this combination if both new_cost and old_cost are greater than
897 zero, and new_cost is greater than old cost. */
898 if (old_cost > 0 && new_cost > old_cost)
899 {
900 if (dump_file)
901 {
902 if (i0)
903 {
904 fprintf (dump_file,
905 "rejecting combination of insns %d, %d, %d and %d\n",
906 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2),
907 INSN_UID (i3));
908 fprintf (dump_file, "original costs %d + %d + %d + %d = %d\n",
909 i0_cost, i1_cost, i2_cost, i3_cost, old_cost);
910 }
911 else if (i1)
912 {
913 fprintf (dump_file,
914 "rejecting combination of insns %d, %d and %d\n",
915 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
916 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
917 i1_cost, i2_cost, i3_cost, old_cost);
918 }
919 else
920 {
921 fprintf (dump_file,
922 "rejecting combination of insns %d and %d\n",
923 INSN_UID (i2), INSN_UID (i3));
924 fprintf (dump_file, "original costs %d + %d = %d\n",
925 i2_cost, i3_cost, old_cost);
926 }
927
928 if (newi2pat)
929 {
930 fprintf (dump_file, "replacement costs %d + %d = %d\n",
931 new_i2_cost, new_i3_cost, new_cost);
932 }
933 else
934 fprintf (dump_file, "replacement cost %d\n", new_cost);
935 }
936
937 return false;
938 }
939
940 /* Update the uid_insn_cost array with the replacement costs. */
941 INSN_COST (i2) = new_i2_cost;
942 INSN_COST (i3) = new_i3_cost;
943 if (i1)
944 {
945 INSN_COST (i1) = 0;
946 if (i0)
947 INSN_COST (i0) = 0;
948 }
949
950 return true;
951 }
952
953
954 /* Delete any insns that copy a register to itself. */
955
956 static void
957 delete_noop_moves (void)
958 {
959 rtx insn, next;
960 basic_block bb;
961
962 FOR_EACH_BB (bb)
963 {
964 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
965 {
966 next = NEXT_INSN (insn);
967 if (INSN_P (insn) && noop_move_p (insn))
968 {
969 if (dump_file)
970 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
971
972 delete_insn_and_edges (insn);
973 }
974 }
975 }
976 }
977
978 \f
979 /* Fill in log links field for all insns. */
980
981 static void
982 create_log_links (void)
983 {
984 basic_block bb;
985 rtx *next_use, insn;
986 df_ref *def_vec, *use_vec;
987
988 next_use = XCNEWVEC (rtx, max_reg_num ());
989
990 /* Pass through each block from the end, recording the uses of each
991 register and establishing log links when def is encountered.
992 Note that we do not clear next_use array in order to save time,
993 so we have to test whether the use is in the same basic block as def.
994
995 There are a few cases below when we do not consider the definition or
996 usage -- these are taken from original flow.c did. Don't ask me why it is
997 done this way; I don't know and if it works, I don't want to know. */
998
999 FOR_EACH_BB (bb)
1000 {
1001 FOR_BB_INSNS_REVERSE (bb, insn)
1002 {
1003 if (!NONDEBUG_INSN_P (insn))
1004 continue;
1005
1006 /* Log links are created only once. */
1007 gcc_assert (!LOG_LINKS (insn));
1008
1009 for (def_vec = DF_INSN_DEFS (insn); *def_vec; def_vec++)
1010 {
1011 df_ref def = *def_vec;
1012 int regno = DF_REF_REGNO (def);
1013 rtx use_insn;
1014
1015 if (!next_use[regno])
1016 continue;
1017
1018 /* Do not consider if it is pre/post modification in MEM. */
1019 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
1020 continue;
1021
1022 /* Do not make the log link for frame pointer. */
1023 if ((regno == FRAME_POINTER_REGNUM
1024 && (! reload_completed || frame_pointer_needed))
1025 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1026 || (regno == HARD_FRAME_POINTER_REGNUM
1027 && (! reload_completed || frame_pointer_needed))
1028 #endif
1029 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1030 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
1031 #endif
1032 )
1033 continue;
1034
1035 use_insn = next_use[regno];
1036 if (BLOCK_FOR_INSN (use_insn) == bb)
1037 {
1038 /* flow.c claimed:
1039
1040 We don't build a LOG_LINK for hard registers contained
1041 in ASM_OPERANDs. If these registers get replaced,
1042 we might wind up changing the semantics of the insn,
1043 even if reload can make what appear to be valid
1044 assignments later. */
1045 if (regno >= FIRST_PSEUDO_REGISTER
1046 || asm_noperands (PATTERN (use_insn)) < 0)
1047 {
1048 /* Don't add duplicate links between instructions. */
1049 struct insn_link *links;
1050 FOR_EACH_LOG_LINK (links, use_insn)
1051 if (insn == links->insn)
1052 break;
1053
1054 if (!links)
1055 LOG_LINKS (use_insn)
1056 = alloc_insn_link (insn, LOG_LINKS (use_insn));
1057 }
1058 }
1059 next_use[regno] = NULL_RTX;
1060 }
1061
1062 for (use_vec = DF_INSN_USES (insn); *use_vec; use_vec++)
1063 {
1064 df_ref use = *use_vec;
1065 int regno = DF_REF_REGNO (use);
1066
1067 /* Do not consider the usage of the stack pointer
1068 by function call. */
1069 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1070 continue;
1071
1072 next_use[regno] = insn;
1073 }
1074 }
1075 }
1076
1077 free (next_use);
1078 }
1079
1080 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1081 true if we found a LOG_LINK that proves that A feeds B. This only works
1082 if there are no instructions between A and B which could have a link
1083 depending on A, since in that case we would not record a link for B.
1084 We also check the implicit dependency created by a cc0 setter/user
1085 pair. */
1086
1087 static bool
1088 insn_a_feeds_b (rtx a, rtx b)
1089 {
1090 struct insn_link *links;
1091 FOR_EACH_LOG_LINK (links, b)
1092 if (links->insn == a)
1093 return true;
1094 #ifdef HAVE_cc0
1095 if (sets_cc0_p (a))
1096 return true;
1097 #endif
1098 return false;
1099 }
1100 \f
1101 /* Main entry point for combiner. F is the first insn of the function.
1102 NREGS is the first unused pseudo-reg number.
1103
1104 Return nonzero if the combiner has turned an indirect jump
1105 instruction into a direct jump. */
1106 static int
1107 combine_instructions (rtx f, unsigned int nregs)
1108 {
1109 rtx insn, next;
1110 #ifdef HAVE_cc0
1111 rtx prev;
1112 #endif
1113 struct insn_link *links, *nextlinks;
1114 rtx first;
1115 basic_block last_bb;
1116
1117 int new_direct_jump_p = 0;
1118
1119 for (first = f; first && !INSN_P (first); )
1120 first = NEXT_INSN (first);
1121 if (!first)
1122 return 0;
1123
1124 combine_attempts = 0;
1125 combine_merges = 0;
1126 combine_extras = 0;
1127 combine_successes = 0;
1128
1129 rtl_hooks = combine_rtl_hooks;
1130
1131 reg_stat.safe_grow_cleared (nregs);
1132
1133 init_recog_no_volatile ();
1134
1135 /* Allocate array for insn info. */
1136 max_uid_known = get_max_uid ();
1137 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1138 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1139 gcc_obstack_init (&insn_link_obstack);
1140
1141 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1142
1143 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1144 problems when, for example, we have j <<= 1 in a loop. */
1145
1146 nonzero_sign_valid = 0;
1147 label_tick = label_tick_ebb_start = 1;
1148
1149 /* Scan all SETs and see if we can deduce anything about what
1150 bits are known to be zero for some registers and how many copies
1151 of the sign bit are known to exist for those registers.
1152
1153 Also set any known values so that we can use it while searching
1154 for what bits are known to be set. */
1155
1156 setup_incoming_promotions (first);
1157 /* Allow the entry block and the first block to fall into the same EBB.
1158 Conceptually the incoming promotions are assigned to the entry block. */
1159 last_bb = ENTRY_BLOCK_PTR;
1160
1161 create_log_links ();
1162 FOR_EACH_BB (this_basic_block)
1163 {
1164 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1165 last_call_luid = 0;
1166 mem_last_set = -1;
1167
1168 label_tick++;
1169 if (!single_pred_p (this_basic_block)
1170 || single_pred (this_basic_block) != last_bb)
1171 label_tick_ebb_start = label_tick;
1172 last_bb = this_basic_block;
1173
1174 FOR_BB_INSNS (this_basic_block, insn)
1175 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1176 {
1177 #ifdef AUTO_INC_DEC
1178 rtx links;
1179 #endif
1180
1181 subst_low_luid = DF_INSN_LUID (insn);
1182 subst_insn = insn;
1183
1184 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1185 insn);
1186 record_dead_and_set_regs (insn);
1187
1188 #ifdef AUTO_INC_DEC
1189 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1190 if (REG_NOTE_KIND (links) == REG_INC)
1191 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1192 insn);
1193 #endif
1194
1195 /* Record the current insn_rtx_cost of this instruction. */
1196 if (NONJUMP_INSN_P (insn))
1197 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1198 optimize_this_for_speed_p);
1199 if (dump_file)
1200 fprintf (dump_file, "insn_cost %d: %d\n",
1201 INSN_UID (insn), INSN_COST (insn));
1202 }
1203 }
1204
1205 nonzero_sign_valid = 1;
1206
1207 /* Now scan all the insns in forward order. */
1208 label_tick = label_tick_ebb_start = 1;
1209 init_reg_last ();
1210 setup_incoming_promotions (first);
1211 last_bb = ENTRY_BLOCK_PTR;
1212
1213 FOR_EACH_BB (this_basic_block)
1214 {
1215 rtx last_combined_insn = NULL_RTX;
1216 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1217 last_call_luid = 0;
1218 mem_last_set = -1;
1219
1220 label_tick++;
1221 if (!single_pred_p (this_basic_block)
1222 || single_pred (this_basic_block) != last_bb)
1223 label_tick_ebb_start = label_tick;
1224 last_bb = this_basic_block;
1225
1226 rtl_profile_for_bb (this_basic_block);
1227 for (insn = BB_HEAD (this_basic_block);
1228 insn != NEXT_INSN (BB_END (this_basic_block));
1229 insn = next ? next : NEXT_INSN (insn))
1230 {
1231 next = 0;
1232 if (NONDEBUG_INSN_P (insn))
1233 {
1234 while (last_combined_insn
1235 && INSN_DELETED_P (last_combined_insn))
1236 last_combined_insn = PREV_INSN (last_combined_insn);
1237 if (last_combined_insn == NULL_RTX
1238 || BARRIER_P (last_combined_insn)
1239 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1240 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1241 last_combined_insn = insn;
1242
1243 /* See if we know about function return values before this
1244 insn based upon SUBREG flags. */
1245 check_promoted_subreg (insn, PATTERN (insn));
1246
1247 /* See if we can find hardregs and subreg of pseudos in
1248 narrower modes. This could help turning TRUNCATEs
1249 into SUBREGs. */
1250 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1251
1252 /* Try this insn with each insn it links back to. */
1253
1254 FOR_EACH_LOG_LINK (links, insn)
1255 if ((next = try_combine (insn, links->insn, NULL_RTX,
1256 NULL_RTX, &new_direct_jump_p,
1257 last_combined_insn)) != 0)
1258 goto retry;
1259
1260 /* Try each sequence of three linked insns ending with this one. */
1261
1262 FOR_EACH_LOG_LINK (links, insn)
1263 {
1264 rtx link = links->insn;
1265
1266 /* If the linked insn has been replaced by a note, then there
1267 is no point in pursuing this chain any further. */
1268 if (NOTE_P (link))
1269 continue;
1270
1271 FOR_EACH_LOG_LINK (nextlinks, link)
1272 if ((next = try_combine (insn, link, nextlinks->insn,
1273 NULL_RTX, &new_direct_jump_p,
1274 last_combined_insn)) != 0)
1275 goto retry;
1276 }
1277
1278 #ifdef HAVE_cc0
1279 /* Try to combine a jump insn that uses CC0
1280 with a preceding insn that sets CC0, and maybe with its
1281 logical predecessor as well.
1282 This is how we make decrement-and-branch insns.
1283 We need this special code because data flow connections
1284 via CC0 do not get entered in LOG_LINKS. */
1285
1286 if (JUMP_P (insn)
1287 && (prev = prev_nonnote_insn (insn)) != 0
1288 && NONJUMP_INSN_P (prev)
1289 && sets_cc0_p (PATTERN (prev)))
1290 {
1291 if ((next = try_combine (insn, prev, NULL_RTX, NULL_RTX,
1292 &new_direct_jump_p,
1293 last_combined_insn)) != 0)
1294 goto retry;
1295
1296 FOR_EACH_LOG_LINK (nextlinks, prev)
1297 if ((next = try_combine (insn, prev, nextlinks->insn,
1298 NULL_RTX, &new_direct_jump_p,
1299 last_combined_insn)) != 0)
1300 goto retry;
1301 }
1302
1303 /* Do the same for an insn that explicitly references CC0. */
1304 if (NONJUMP_INSN_P (insn)
1305 && (prev = prev_nonnote_insn (insn)) != 0
1306 && NONJUMP_INSN_P (prev)
1307 && sets_cc0_p (PATTERN (prev))
1308 && GET_CODE (PATTERN (insn)) == SET
1309 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1310 {
1311 if ((next = try_combine (insn, prev, NULL_RTX, NULL_RTX,
1312 &new_direct_jump_p,
1313 last_combined_insn)) != 0)
1314 goto retry;
1315
1316 FOR_EACH_LOG_LINK (nextlinks, prev)
1317 if ((next = try_combine (insn, prev, nextlinks->insn,
1318 NULL_RTX, &new_direct_jump_p,
1319 last_combined_insn)) != 0)
1320 goto retry;
1321 }
1322
1323 /* Finally, see if any of the insns that this insn links to
1324 explicitly references CC0. If so, try this insn, that insn,
1325 and its predecessor if it sets CC0. */
1326 FOR_EACH_LOG_LINK (links, insn)
1327 if (NONJUMP_INSN_P (links->insn)
1328 && GET_CODE (PATTERN (links->insn)) == SET
1329 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1330 && (prev = prev_nonnote_insn (links->insn)) != 0
1331 && NONJUMP_INSN_P (prev)
1332 && sets_cc0_p (PATTERN (prev))
1333 && (next = try_combine (insn, links->insn,
1334 prev, NULL_RTX, &new_direct_jump_p,
1335 last_combined_insn)) != 0)
1336 goto retry;
1337 #endif
1338
1339 /* Try combining an insn with two different insns whose results it
1340 uses. */
1341 FOR_EACH_LOG_LINK (links, insn)
1342 for (nextlinks = links->next; nextlinks;
1343 nextlinks = nextlinks->next)
1344 if ((next = try_combine (insn, links->insn,
1345 nextlinks->insn, NULL_RTX,
1346 &new_direct_jump_p,
1347 last_combined_insn)) != 0)
1348 goto retry;
1349
1350 /* Try four-instruction combinations. */
1351 FOR_EACH_LOG_LINK (links, insn)
1352 {
1353 struct insn_link *next1;
1354 rtx link = links->insn;
1355
1356 /* If the linked insn has been replaced by a note, then there
1357 is no point in pursuing this chain any further. */
1358 if (NOTE_P (link))
1359 continue;
1360
1361 FOR_EACH_LOG_LINK (next1, link)
1362 {
1363 rtx link1 = next1->insn;
1364 if (NOTE_P (link1))
1365 continue;
1366 /* I0 -> I1 -> I2 -> I3. */
1367 FOR_EACH_LOG_LINK (nextlinks, link1)
1368 if ((next = try_combine (insn, link, link1,
1369 nextlinks->insn,
1370 &new_direct_jump_p,
1371 last_combined_insn)) != 0)
1372 goto retry;
1373 /* I0, I1 -> I2, I2 -> I3. */
1374 for (nextlinks = next1->next; nextlinks;
1375 nextlinks = nextlinks->next)
1376 if ((next = try_combine (insn, link, link1,
1377 nextlinks->insn,
1378 &new_direct_jump_p,
1379 last_combined_insn)) != 0)
1380 goto retry;
1381 }
1382
1383 for (next1 = links->next; next1; next1 = next1->next)
1384 {
1385 rtx link1 = next1->insn;
1386 if (NOTE_P (link1))
1387 continue;
1388 /* I0 -> I2; I1, I2 -> I3. */
1389 FOR_EACH_LOG_LINK (nextlinks, link)
1390 if ((next = try_combine (insn, link, link1,
1391 nextlinks->insn,
1392 &new_direct_jump_p,
1393 last_combined_insn)) != 0)
1394 goto retry;
1395 /* I0 -> I1; I1, I2 -> I3. */
1396 FOR_EACH_LOG_LINK (nextlinks, link1)
1397 if ((next = try_combine (insn, link, link1,
1398 nextlinks->insn,
1399 &new_direct_jump_p,
1400 last_combined_insn)) != 0)
1401 goto retry;
1402 }
1403 }
1404
1405 /* Try this insn with each REG_EQUAL note it links back to. */
1406 FOR_EACH_LOG_LINK (links, insn)
1407 {
1408 rtx set, note;
1409 rtx temp = links->insn;
1410 if ((set = single_set (temp)) != 0
1411 && (note = find_reg_equal_equiv_note (temp)) != 0
1412 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1413 /* Avoid using a register that may already been marked
1414 dead by an earlier instruction. */
1415 && ! unmentioned_reg_p (note, SET_SRC (set))
1416 && (GET_MODE (note) == VOIDmode
1417 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1418 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
1419 {
1420 /* Temporarily replace the set's source with the
1421 contents of the REG_EQUAL note. The insn will
1422 be deleted or recognized by try_combine. */
1423 rtx orig = SET_SRC (set);
1424 SET_SRC (set) = note;
1425 i2mod = temp;
1426 i2mod_old_rhs = copy_rtx (orig);
1427 i2mod_new_rhs = copy_rtx (note);
1428 next = try_combine (insn, i2mod, NULL_RTX, NULL_RTX,
1429 &new_direct_jump_p,
1430 last_combined_insn);
1431 i2mod = NULL_RTX;
1432 if (next)
1433 goto retry;
1434 SET_SRC (set) = orig;
1435 }
1436 }
1437
1438 if (!NOTE_P (insn))
1439 record_dead_and_set_regs (insn);
1440
1441 retry:
1442 ;
1443 }
1444 }
1445 }
1446
1447 default_rtl_profile ();
1448 clear_bb_flags ();
1449 new_direct_jump_p |= purge_all_dead_edges ();
1450 delete_noop_moves ();
1451
1452 /* Clean up. */
1453 obstack_free (&insn_link_obstack, NULL);
1454 free (uid_log_links);
1455 free (uid_insn_cost);
1456 reg_stat.release ();
1457
1458 {
1459 struct undo *undo, *next;
1460 for (undo = undobuf.frees; undo; undo = next)
1461 {
1462 next = undo->next;
1463 free (undo);
1464 }
1465 undobuf.frees = 0;
1466 }
1467
1468 total_attempts += combine_attempts;
1469 total_merges += combine_merges;
1470 total_extras += combine_extras;
1471 total_successes += combine_successes;
1472
1473 nonzero_sign_valid = 0;
1474 rtl_hooks = general_rtl_hooks;
1475
1476 /* Make recognizer allow volatile MEMs again. */
1477 init_recog ();
1478
1479 return new_direct_jump_p;
1480 }
1481
1482 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1483
1484 static void
1485 init_reg_last (void)
1486 {
1487 unsigned int i;
1488 reg_stat_type *p;
1489
1490 FOR_EACH_VEC_ELT (reg_stat, i, p)
1491 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1492 }
1493 \f
1494 /* Set up any promoted values for incoming argument registers. */
1495
1496 static void
1497 setup_incoming_promotions (rtx first)
1498 {
1499 tree arg;
1500 bool strictly_local = false;
1501
1502 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1503 arg = DECL_CHAIN (arg))
1504 {
1505 rtx x, reg = DECL_INCOMING_RTL (arg);
1506 int uns1, uns3;
1507 enum machine_mode mode1, mode2, mode3, mode4;
1508
1509 /* Only continue if the incoming argument is in a register. */
1510 if (!REG_P (reg))
1511 continue;
1512
1513 /* Determine, if possible, whether all call sites of the current
1514 function lie within the current compilation unit. (This does
1515 take into account the exporting of a function via taking its
1516 address, and so forth.) */
1517 strictly_local = cgraph_local_info (current_function_decl)->local;
1518
1519 /* The mode and signedness of the argument before any promotions happen
1520 (equal to the mode of the pseudo holding it at that stage). */
1521 mode1 = TYPE_MODE (TREE_TYPE (arg));
1522 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1523
1524 /* The mode and signedness of the argument after any source language and
1525 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1526 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1527 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1528
1529 /* The mode and signedness of the argument as it is actually passed,
1530 after any TARGET_PROMOTE_FUNCTION_ARGS-driven ABI promotions. */
1531 mode3 = promote_function_mode (DECL_ARG_TYPE (arg), mode2, &uns3,
1532 TREE_TYPE (cfun->decl), 0);
1533
1534 /* The mode of the register in which the argument is being passed. */
1535 mode4 = GET_MODE (reg);
1536
1537 /* Eliminate sign extensions in the callee when:
1538 (a) A mode promotion has occurred; */
1539 if (mode1 == mode3)
1540 continue;
1541 /* (b) The mode of the register is the same as the mode of
1542 the argument as it is passed; */
1543 if (mode3 != mode4)
1544 continue;
1545 /* (c) There's no language level extension; */
1546 if (mode1 == mode2)
1547 ;
1548 /* (c.1) All callers are from the current compilation unit. If that's
1549 the case we don't have to rely on an ABI, we only have to know
1550 what we're generating right now, and we know that we will do the
1551 mode1 to mode2 promotion with the given sign. */
1552 else if (!strictly_local)
1553 continue;
1554 /* (c.2) The combination of the two promotions is useful. This is
1555 true when the signs match, or if the first promotion is unsigned.
1556 In the later case, (sign_extend (zero_extend x)) is the same as
1557 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1558 else if (uns1)
1559 uns3 = true;
1560 else if (uns3)
1561 continue;
1562
1563 /* Record that the value was promoted from mode1 to mode3,
1564 so that any sign extension at the head of the current
1565 function may be eliminated. */
1566 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1567 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1568 record_value_for_reg (reg, first, x);
1569 }
1570 }
1571
1572 /* Called via note_stores. If X is a pseudo that is narrower than
1573 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1574
1575 If we are setting only a portion of X and we can't figure out what
1576 portion, assume all bits will be used since we don't know what will
1577 be happening.
1578
1579 Similarly, set how many bits of X are known to be copies of the sign bit
1580 at all locations in the function. This is the smallest number implied
1581 by any set of X. */
1582
1583 static void
1584 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1585 {
1586 rtx insn = (rtx) data;
1587 unsigned int num;
1588
1589 if (REG_P (x)
1590 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1591 /* If this register is undefined at the start of the file, we can't
1592 say what its contents were. */
1593 && ! REGNO_REG_SET_P
1594 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x))
1595 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
1596 {
1597 reg_stat_type *rsp = &reg_stat[REGNO (x)];
1598
1599 if (set == 0 || GET_CODE (set) == CLOBBER)
1600 {
1601 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1602 rsp->sign_bit_copies = 1;
1603 return;
1604 }
1605
1606 /* If this register is being initialized using itself, and the
1607 register is uninitialized in this basic block, and there are
1608 no LOG_LINKS which set the register, then part of the
1609 register is uninitialized. In that case we can't assume
1610 anything about the number of nonzero bits.
1611
1612 ??? We could do better if we checked this in
1613 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1614 could avoid making assumptions about the insn which initially
1615 sets the register, while still using the information in other
1616 insns. We would have to be careful to check every insn
1617 involved in the combination. */
1618
1619 if (insn
1620 && reg_referenced_p (x, PATTERN (insn))
1621 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1622 REGNO (x)))
1623 {
1624 struct insn_link *link;
1625
1626 FOR_EACH_LOG_LINK (link, insn)
1627 if (dead_or_set_p (link->insn, x))
1628 break;
1629 if (!link)
1630 {
1631 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1632 rsp->sign_bit_copies = 1;
1633 return;
1634 }
1635 }
1636
1637 /* If this is a complex assignment, see if we can convert it into a
1638 simple assignment. */
1639 set = expand_field_assignment (set);
1640
1641 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1642 set what we know about X. */
1643
1644 if (SET_DEST (set) == x
1645 || (paradoxical_subreg_p (SET_DEST (set))
1646 && SUBREG_REG (SET_DEST (set)) == x))
1647 {
1648 rtx src = SET_SRC (set);
1649
1650 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1651 /* If X is narrower than a word and SRC is a non-negative
1652 constant that would appear negative in the mode of X,
1653 sign-extend it for use in reg_stat[].nonzero_bits because some
1654 machines (maybe most) will actually do the sign-extension
1655 and this is the conservative approach.
1656
1657 ??? For 2.5, try to tighten up the MD files in this regard
1658 instead of this kludge. */
1659
1660 if (GET_MODE_PRECISION (GET_MODE (x)) < BITS_PER_WORD
1661 && CONST_INT_P (src)
1662 && INTVAL (src) > 0
1663 && val_signbit_known_set_p (GET_MODE (x), INTVAL (src)))
1664 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (GET_MODE (x)));
1665 #endif
1666
1667 /* Don't call nonzero_bits if it cannot change anything. */
1668 if (rsp->nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1669 rsp->nonzero_bits |= nonzero_bits (src, nonzero_bits_mode);
1670 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1671 if (rsp->sign_bit_copies == 0
1672 || rsp->sign_bit_copies > num)
1673 rsp->sign_bit_copies = num;
1674 }
1675 else
1676 {
1677 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1678 rsp->sign_bit_copies = 1;
1679 }
1680 }
1681 }
1682 \f
1683 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1684 optionally insns that were previously combined into I3 or that will be
1685 combined into the merger of INSN and I3. The order is PRED, PRED2,
1686 INSN, SUCC, SUCC2, I3.
1687
1688 Return 0 if the combination is not allowed for any reason.
1689
1690 If the combination is allowed, *PDEST will be set to the single
1691 destination of INSN and *PSRC to the single source, and this function
1692 will return 1. */
1693
1694 static int
1695 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED,
1696 rtx pred2 ATTRIBUTE_UNUSED, rtx succ, rtx succ2,
1697 rtx *pdest, rtx *psrc)
1698 {
1699 int i;
1700 const_rtx set = 0;
1701 rtx src, dest;
1702 rtx p;
1703 #ifdef AUTO_INC_DEC
1704 rtx link;
1705 #endif
1706 bool all_adjacent = true;
1707 int (*is_volatile_p) (const_rtx);
1708
1709 if (succ)
1710 {
1711 if (succ2)
1712 {
1713 if (next_active_insn (succ2) != i3)
1714 all_adjacent = false;
1715 if (next_active_insn (succ) != succ2)
1716 all_adjacent = false;
1717 }
1718 else if (next_active_insn (succ) != i3)
1719 all_adjacent = false;
1720 if (next_active_insn (insn) != succ)
1721 all_adjacent = false;
1722 }
1723 else if (next_active_insn (insn) != i3)
1724 all_adjacent = false;
1725
1726 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1727 or a PARALLEL consisting of such a SET and CLOBBERs.
1728
1729 If INSN has CLOBBER parallel parts, ignore them for our processing.
1730 By definition, these happen during the execution of the insn. When it
1731 is merged with another insn, all bets are off. If they are, in fact,
1732 needed and aren't also supplied in I3, they may be added by
1733 recog_for_combine. Otherwise, it won't match.
1734
1735 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1736 note.
1737
1738 Get the source and destination of INSN. If more than one, can't
1739 combine. */
1740
1741 if (GET_CODE (PATTERN (insn)) == SET)
1742 set = PATTERN (insn);
1743 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1744 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1745 {
1746 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1747 {
1748 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1749
1750 switch (GET_CODE (elt))
1751 {
1752 /* This is important to combine floating point insns
1753 for the SH4 port. */
1754 case USE:
1755 /* Combining an isolated USE doesn't make sense.
1756 We depend here on combinable_i3pat to reject them. */
1757 /* The code below this loop only verifies that the inputs of
1758 the SET in INSN do not change. We call reg_set_between_p
1759 to verify that the REG in the USE does not change between
1760 I3 and INSN.
1761 If the USE in INSN was for a pseudo register, the matching
1762 insn pattern will likely match any register; combining this
1763 with any other USE would only be safe if we knew that the
1764 used registers have identical values, or if there was
1765 something to tell them apart, e.g. different modes. For
1766 now, we forgo such complicated tests and simply disallow
1767 combining of USES of pseudo registers with any other USE. */
1768 if (REG_P (XEXP (elt, 0))
1769 && GET_CODE (PATTERN (i3)) == PARALLEL)
1770 {
1771 rtx i3pat = PATTERN (i3);
1772 int i = XVECLEN (i3pat, 0) - 1;
1773 unsigned int regno = REGNO (XEXP (elt, 0));
1774
1775 do
1776 {
1777 rtx i3elt = XVECEXP (i3pat, 0, i);
1778
1779 if (GET_CODE (i3elt) == USE
1780 && REG_P (XEXP (i3elt, 0))
1781 && (REGNO (XEXP (i3elt, 0)) == regno
1782 ? reg_set_between_p (XEXP (elt, 0),
1783 PREV_INSN (insn), i3)
1784 : regno >= FIRST_PSEUDO_REGISTER))
1785 return 0;
1786 }
1787 while (--i >= 0);
1788 }
1789 break;
1790
1791 /* We can ignore CLOBBERs. */
1792 case CLOBBER:
1793 break;
1794
1795 case SET:
1796 /* Ignore SETs whose result isn't used but not those that
1797 have side-effects. */
1798 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1799 && insn_nothrow_p (insn)
1800 && !side_effects_p (elt))
1801 break;
1802
1803 /* If we have already found a SET, this is a second one and
1804 so we cannot combine with this insn. */
1805 if (set)
1806 return 0;
1807
1808 set = elt;
1809 break;
1810
1811 default:
1812 /* Anything else means we can't combine. */
1813 return 0;
1814 }
1815 }
1816
1817 if (set == 0
1818 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1819 so don't do anything with it. */
1820 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1821 return 0;
1822 }
1823 else
1824 return 0;
1825
1826 if (set == 0)
1827 return 0;
1828
1829 /* The simplification in expand_field_assignment may call back to
1830 get_last_value, so set safe guard here. */
1831 subst_low_luid = DF_INSN_LUID (insn);
1832
1833 set = expand_field_assignment (set);
1834 src = SET_SRC (set), dest = SET_DEST (set);
1835
1836 /* Don't eliminate a store in the stack pointer. */
1837 if (dest == stack_pointer_rtx
1838 /* Don't combine with an insn that sets a register to itself if it has
1839 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1840 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1841 /* Can't merge an ASM_OPERANDS. */
1842 || GET_CODE (src) == ASM_OPERANDS
1843 /* Can't merge a function call. */
1844 || GET_CODE (src) == CALL
1845 /* Don't eliminate a function call argument. */
1846 || (CALL_P (i3)
1847 && (find_reg_fusage (i3, USE, dest)
1848 || (REG_P (dest)
1849 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1850 && global_regs[REGNO (dest)])))
1851 /* Don't substitute into an incremented register. */
1852 || FIND_REG_INC_NOTE (i3, dest)
1853 || (succ && FIND_REG_INC_NOTE (succ, dest))
1854 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1855 /* Don't substitute into a non-local goto, this confuses CFG. */
1856 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1857 /* Make sure that DEST is not used after SUCC but before I3. */
1858 || (!all_adjacent
1859 && ((succ2
1860 && (reg_used_between_p (dest, succ2, i3)
1861 || reg_used_between_p (dest, succ, succ2)))
1862 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))))
1863 /* Make sure that the value that is to be substituted for the register
1864 does not use any registers whose values alter in between. However,
1865 If the insns are adjacent, a use can't cross a set even though we
1866 think it might (this can happen for a sequence of insns each setting
1867 the same destination; last_set of that register might point to
1868 a NOTE). If INSN has a REG_EQUIV note, the register is always
1869 equivalent to the memory so the substitution is valid even if there
1870 are intervening stores. Also, don't move a volatile asm or
1871 UNSPEC_VOLATILE across any other insns. */
1872 || (! all_adjacent
1873 && (((!MEM_P (src)
1874 || ! find_reg_note (insn, REG_EQUIV, src))
1875 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1876 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1877 || GET_CODE (src) == UNSPEC_VOLATILE))
1878 /* Don't combine across a CALL_INSN, because that would possibly
1879 change whether the life span of some REGs crosses calls or not,
1880 and it is a pain to update that information.
1881 Exception: if source is a constant, moving it later can't hurt.
1882 Accept that as a special case. */
1883 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1884 return 0;
1885
1886 /* DEST must either be a REG or CC0. */
1887 if (REG_P (dest))
1888 {
1889 /* If register alignment is being enforced for multi-word items in all
1890 cases except for parameters, it is possible to have a register copy
1891 insn referencing a hard register that is not allowed to contain the
1892 mode being copied and which would not be valid as an operand of most
1893 insns. Eliminate this problem by not combining with such an insn.
1894
1895 Also, on some machines we don't want to extend the life of a hard
1896 register. */
1897
1898 if (REG_P (src)
1899 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1900 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1901 /* Don't extend the life of a hard register unless it is
1902 user variable (if we have few registers) or it can't
1903 fit into the desired register (meaning something special
1904 is going on).
1905 Also avoid substituting a return register into I3, because
1906 reload can't handle a conflict with constraints of other
1907 inputs. */
1908 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1909 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1910 return 0;
1911 }
1912 else if (GET_CODE (dest) != CC0)
1913 return 0;
1914
1915
1916 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1917 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1918 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1919 {
1920 /* Don't substitute for a register intended as a clobberable
1921 operand. */
1922 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1923 if (rtx_equal_p (reg, dest))
1924 return 0;
1925
1926 /* If the clobber represents an earlyclobber operand, we must not
1927 substitute an expression containing the clobbered register.
1928 As we do not analyze the constraint strings here, we have to
1929 make the conservative assumption. However, if the register is
1930 a fixed hard reg, the clobber cannot represent any operand;
1931 we leave it up to the machine description to either accept or
1932 reject use-and-clobber patterns. */
1933 if (!REG_P (reg)
1934 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1935 || !fixed_regs[REGNO (reg)])
1936 if (reg_overlap_mentioned_p (reg, src))
1937 return 0;
1938 }
1939
1940 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1941 or not), reject, unless nothing volatile comes between it and I3 */
1942
1943 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1944 {
1945 /* Make sure neither succ nor succ2 contains a volatile reference. */
1946 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
1947 return 0;
1948 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1949 return 0;
1950 /* We'll check insns between INSN and I3 below. */
1951 }
1952
1953 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1954 to be an explicit register variable, and was chosen for a reason. */
1955
1956 if (GET_CODE (src) == ASM_OPERANDS
1957 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1958 return 0;
1959
1960 /* If INSN contains volatile references (specifically volatile MEMs),
1961 we cannot combine across any other volatile references.
1962 Even if INSN doesn't contain volatile references, any intervening
1963 volatile insn might affect machine state. */
1964
1965 is_volatile_p = volatile_refs_p (PATTERN (insn))
1966 ? volatile_refs_p
1967 : volatile_insn_p;
1968
1969 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1970 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
1971 return 0;
1972
1973 /* If INSN contains an autoincrement or autodecrement, make sure that
1974 register is not used between there and I3, and not already used in
1975 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1976 Also insist that I3 not be a jump; if it were one
1977 and the incremented register were spilled, we would lose. */
1978
1979 #ifdef AUTO_INC_DEC
1980 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1981 if (REG_NOTE_KIND (link) == REG_INC
1982 && (JUMP_P (i3)
1983 || reg_used_between_p (XEXP (link, 0), insn, i3)
1984 || (pred != NULL_RTX
1985 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1986 || (pred2 != NULL_RTX
1987 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
1988 || (succ != NULL_RTX
1989 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1990 || (succ2 != NULL_RTX
1991 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
1992 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1993 return 0;
1994 #endif
1995
1996 #ifdef HAVE_cc0
1997 /* Don't combine an insn that follows a CC0-setting insn.
1998 An insn that uses CC0 must not be separated from the one that sets it.
1999 We do, however, allow I2 to follow a CC0-setting insn if that insn
2000 is passed as I1; in that case it will be deleted also.
2001 We also allow combining in this case if all the insns are adjacent
2002 because that would leave the two CC0 insns adjacent as well.
2003 It would be more logical to test whether CC0 occurs inside I1 or I2,
2004 but that would be much slower, and this ought to be equivalent. */
2005
2006 p = prev_nonnote_insn (insn);
2007 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2008 && ! all_adjacent)
2009 return 0;
2010 #endif
2011
2012 /* If we get here, we have passed all the tests and the combination is
2013 to be allowed. */
2014
2015 *pdest = dest;
2016 *psrc = src;
2017
2018 return 1;
2019 }
2020 \f
2021 /* LOC is the location within I3 that contains its pattern or the component
2022 of a PARALLEL of the pattern. We validate that it is valid for combining.
2023
2024 One problem is if I3 modifies its output, as opposed to replacing it
2025 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2026 doing so would produce an insn that is not equivalent to the original insns.
2027
2028 Consider:
2029
2030 (set (reg:DI 101) (reg:DI 100))
2031 (set (subreg:SI (reg:DI 101) 0) <foo>)
2032
2033 This is NOT equivalent to:
2034
2035 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2036 (set (reg:DI 101) (reg:DI 100))])
2037
2038 Not only does this modify 100 (in which case it might still be valid
2039 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2040
2041 We can also run into a problem if I2 sets a register that I1
2042 uses and I1 gets directly substituted into I3 (not via I2). In that
2043 case, we would be getting the wrong value of I2DEST into I3, so we
2044 must reject the combination. This case occurs when I2 and I1 both
2045 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2046 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2047 of a SET must prevent combination from occurring. The same situation
2048 can occur for I0, in which case I0_NOT_IN_SRC is set.
2049
2050 Before doing the above check, we first try to expand a field assignment
2051 into a set of logical operations.
2052
2053 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2054 we place a register that is both set and used within I3. If more than one
2055 such register is detected, we fail.
2056
2057 Return 1 if the combination is valid, zero otherwise. */
2058
2059 static int
2060 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2061 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2062 {
2063 rtx x = *loc;
2064
2065 if (GET_CODE (x) == SET)
2066 {
2067 rtx set = x ;
2068 rtx dest = SET_DEST (set);
2069 rtx src = SET_SRC (set);
2070 rtx inner_dest = dest;
2071 rtx subdest;
2072
2073 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2074 || GET_CODE (inner_dest) == SUBREG
2075 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2076 inner_dest = XEXP (inner_dest, 0);
2077
2078 /* Check for the case where I3 modifies its output, as discussed
2079 above. We don't want to prevent pseudos from being combined
2080 into the address of a MEM, so only prevent the combination if
2081 i1 or i2 set the same MEM. */
2082 if ((inner_dest != dest &&
2083 (!MEM_P (inner_dest)
2084 || rtx_equal_p (i2dest, inner_dest)
2085 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2086 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2087 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2088 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2089 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2090
2091 /* This is the same test done in can_combine_p except we can't test
2092 all_adjacent; we don't have to, since this instruction will stay
2093 in place, thus we are not considering increasing the lifetime of
2094 INNER_DEST.
2095
2096 Also, if this insn sets a function argument, combining it with
2097 something that might need a spill could clobber a previous
2098 function argument; the all_adjacent test in can_combine_p also
2099 checks this; here, we do a more specific test for this case. */
2100
2101 || (REG_P (inner_dest)
2102 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2103 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
2104 GET_MODE (inner_dest))))
2105 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2106 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2107 return 0;
2108
2109 /* If DEST is used in I3, it is being killed in this insn, so
2110 record that for later. We have to consider paradoxical
2111 subregs here, since they kill the whole register, but we
2112 ignore partial subregs, STRICT_LOW_PART, etc.
2113 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2114 STACK_POINTER_REGNUM, since these are always considered to be
2115 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2116 subdest = dest;
2117 if (GET_CODE (subdest) == SUBREG
2118 && (GET_MODE_SIZE (GET_MODE (subdest))
2119 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
2120 subdest = SUBREG_REG (subdest);
2121 if (pi3dest_killed
2122 && REG_P (subdest)
2123 && reg_referenced_p (subdest, PATTERN (i3))
2124 && REGNO (subdest) != FRAME_POINTER_REGNUM
2125 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
2126 && REGNO (subdest) != HARD_FRAME_POINTER_REGNUM
2127 #endif
2128 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
2129 && (REGNO (subdest) != ARG_POINTER_REGNUM
2130 || ! fixed_regs [REGNO (subdest)])
2131 #endif
2132 && REGNO (subdest) != STACK_POINTER_REGNUM)
2133 {
2134 if (*pi3dest_killed)
2135 return 0;
2136
2137 *pi3dest_killed = subdest;
2138 }
2139 }
2140
2141 else if (GET_CODE (x) == PARALLEL)
2142 {
2143 int i;
2144
2145 for (i = 0; i < XVECLEN (x, 0); i++)
2146 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2147 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2148 return 0;
2149 }
2150
2151 return 1;
2152 }
2153 \f
2154 /* Return 1 if X is an arithmetic expression that contains a multiplication
2155 and division. We don't count multiplications by powers of two here. */
2156
2157 static int
2158 contains_muldiv (rtx x)
2159 {
2160 switch (GET_CODE (x))
2161 {
2162 case MOD: case DIV: case UMOD: case UDIV:
2163 return 1;
2164
2165 case MULT:
2166 return ! (CONST_INT_P (XEXP (x, 1))
2167 && exact_log2 (UINTVAL (XEXP (x, 1))) >= 0);
2168 default:
2169 if (BINARY_P (x))
2170 return contains_muldiv (XEXP (x, 0))
2171 || contains_muldiv (XEXP (x, 1));
2172
2173 if (UNARY_P (x))
2174 return contains_muldiv (XEXP (x, 0));
2175
2176 return 0;
2177 }
2178 }
2179 \f
2180 /* Determine whether INSN can be used in a combination. Return nonzero if
2181 not. This is used in try_combine to detect early some cases where we
2182 can't perform combinations. */
2183
2184 static int
2185 cant_combine_insn_p (rtx insn)
2186 {
2187 rtx set;
2188 rtx src, dest;
2189
2190 /* If this isn't really an insn, we can't do anything.
2191 This can occur when flow deletes an insn that it has merged into an
2192 auto-increment address. */
2193 if (! INSN_P (insn))
2194 return 1;
2195
2196 /* Never combine loads and stores involving hard regs that are likely
2197 to be spilled. The register allocator can usually handle such
2198 reg-reg moves by tying. If we allow the combiner to make
2199 substitutions of likely-spilled regs, reload might die.
2200 As an exception, we allow combinations involving fixed regs; these are
2201 not available to the register allocator so there's no risk involved. */
2202
2203 set = single_set (insn);
2204 if (! set)
2205 return 0;
2206 src = SET_SRC (set);
2207 dest = SET_DEST (set);
2208 if (GET_CODE (src) == SUBREG)
2209 src = SUBREG_REG (src);
2210 if (GET_CODE (dest) == SUBREG)
2211 dest = SUBREG_REG (dest);
2212 if (REG_P (src) && REG_P (dest)
2213 && ((HARD_REGISTER_P (src)
2214 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2215 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src))))
2216 || (HARD_REGISTER_P (dest)
2217 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2218 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2219 return 1;
2220
2221 return 0;
2222 }
2223
2224 struct likely_spilled_retval_info
2225 {
2226 unsigned regno, nregs;
2227 unsigned mask;
2228 };
2229
2230 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2231 hard registers that are known to be written to / clobbered in full. */
2232 static void
2233 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2234 {
2235 struct likely_spilled_retval_info *const info =
2236 (struct likely_spilled_retval_info *) data;
2237 unsigned regno, nregs;
2238 unsigned new_mask;
2239
2240 if (!REG_P (XEXP (set, 0)))
2241 return;
2242 regno = REGNO (x);
2243 if (regno >= info->regno + info->nregs)
2244 return;
2245 nregs = hard_regno_nregs[regno][GET_MODE (x)];
2246 if (regno + nregs <= info->regno)
2247 return;
2248 new_mask = (2U << (nregs - 1)) - 1;
2249 if (regno < info->regno)
2250 new_mask >>= info->regno - regno;
2251 else
2252 new_mask <<= regno - info->regno;
2253 info->mask &= ~new_mask;
2254 }
2255
2256 /* Return nonzero iff part of the return value is live during INSN, and
2257 it is likely spilled. This can happen when more than one insn is needed
2258 to copy the return value, e.g. when we consider to combine into the
2259 second copy insn for a complex value. */
2260
2261 static int
2262 likely_spilled_retval_p (rtx insn)
2263 {
2264 rtx use = BB_END (this_basic_block);
2265 rtx reg, p;
2266 unsigned regno, nregs;
2267 /* We assume here that no machine mode needs more than
2268 32 hard registers when the value overlaps with a register
2269 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2270 unsigned mask;
2271 struct likely_spilled_retval_info info;
2272
2273 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2274 return 0;
2275 reg = XEXP (PATTERN (use), 0);
2276 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2277 return 0;
2278 regno = REGNO (reg);
2279 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
2280 if (nregs == 1)
2281 return 0;
2282 mask = (2U << (nregs - 1)) - 1;
2283
2284 /* Disregard parts of the return value that are set later. */
2285 info.regno = regno;
2286 info.nregs = nregs;
2287 info.mask = mask;
2288 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2289 if (INSN_P (p))
2290 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2291 mask = info.mask;
2292
2293 /* Check if any of the (probably) live return value registers is
2294 likely spilled. */
2295 nregs --;
2296 do
2297 {
2298 if ((mask & 1 << nregs)
2299 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2300 return 1;
2301 } while (nregs--);
2302 return 0;
2303 }
2304
2305 /* Adjust INSN after we made a change to its destination.
2306
2307 Changing the destination can invalidate notes that say something about
2308 the results of the insn and a LOG_LINK pointing to the insn. */
2309
2310 static void
2311 adjust_for_new_dest (rtx insn)
2312 {
2313 /* For notes, be conservative and simply remove them. */
2314 remove_reg_equal_equiv_notes (insn);
2315
2316 /* The new insn will have a destination that was previously the destination
2317 of an insn just above it. Call distribute_links to make a LOG_LINK from
2318 the next use of that destination. */
2319 distribute_links (alloc_insn_link (insn, NULL));
2320
2321 df_insn_rescan (insn);
2322 }
2323
2324 /* Return TRUE if combine can reuse reg X in mode MODE.
2325 ADDED_SETS is nonzero if the original set is still required. */
2326 static bool
2327 can_change_dest_mode (rtx x, int added_sets, enum machine_mode mode)
2328 {
2329 unsigned int regno;
2330
2331 if (!REG_P (x))
2332 return false;
2333
2334 regno = REGNO (x);
2335 /* Allow hard registers if the new mode is legal, and occupies no more
2336 registers than the old mode. */
2337 if (regno < FIRST_PSEUDO_REGISTER)
2338 return (HARD_REGNO_MODE_OK (regno, mode)
2339 && (hard_regno_nregs[regno][GET_MODE (x)]
2340 >= hard_regno_nregs[regno][mode]));
2341
2342 /* Or a pseudo that is only used once. */
2343 return (REG_N_SETS (regno) == 1 && !added_sets
2344 && !REG_USERVAR_P (x));
2345 }
2346
2347
2348 /* Check whether X, the destination of a set, refers to part of
2349 the register specified by REG. */
2350
2351 static bool
2352 reg_subword_p (rtx x, rtx reg)
2353 {
2354 /* Check that reg is an integer mode register. */
2355 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2356 return false;
2357
2358 if (GET_CODE (x) == STRICT_LOW_PART
2359 || GET_CODE (x) == ZERO_EXTRACT)
2360 x = XEXP (x, 0);
2361
2362 return GET_CODE (x) == SUBREG
2363 && SUBREG_REG (x) == reg
2364 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2365 }
2366
2367 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2368 Note that the INSN should be deleted *after* removing dead edges, so
2369 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2370 but not for a (set (pc) (label_ref FOO)). */
2371
2372 static void
2373 update_cfg_for_uncondjump (rtx insn)
2374 {
2375 basic_block bb = BLOCK_FOR_INSN (insn);
2376 gcc_assert (BB_END (bb) == insn);
2377
2378 purge_dead_edges (bb);
2379
2380 delete_insn (insn);
2381 if (EDGE_COUNT (bb->succs) == 1)
2382 {
2383 rtx insn;
2384
2385 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2386
2387 /* Remove barriers from the footer if there are any. */
2388 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2389 if (BARRIER_P (insn))
2390 {
2391 if (PREV_INSN (insn))
2392 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2393 else
2394 BB_FOOTER (bb) = NEXT_INSN (insn);
2395 if (NEXT_INSN (insn))
2396 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2397 }
2398 else if (LABEL_P (insn))
2399 break;
2400 }
2401 }
2402
2403 /* Try to combine the insns I0, I1 and I2 into I3.
2404 Here I0, I1 and I2 appear earlier than I3.
2405 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2406 I3.
2407
2408 If we are combining more than two insns and the resulting insn is not
2409 recognized, try splitting it into two insns. If that happens, I2 and I3
2410 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2411 Otherwise, I0, I1 and I2 are pseudo-deleted.
2412
2413 Return 0 if the combination does not work. Then nothing is changed.
2414 If we did the combination, return the insn at which combine should
2415 resume scanning.
2416
2417 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2418 new direct jump instruction.
2419
2420 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2421 been I3 passed to an earlier try_combine within the same basic
2422 block. */
2423
2424 static rtx
2425 try_combine (rtx i3, rtx i2, rtx i1, rtx i0, int *new_direct_jump_p,
2426 rtx last_combined_insn)
2427 {
2428 /* New patterns for I3 and I2, respectively. */
2429 rtx newpat, newi2pat = 0;
2430 rtvec newpat_vec_with_clobbers = 0;
2431 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2432 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2433 dead. */
2434 int added_sets_0, added_sets_1, added_sets_2;
2435 /* Total number of SETs to put into I3. */
2436 int total_sets;
2437 /* Nonzero if I2's or I1's body now appears in I3. */
2438 int i2_is_used = 0, i1_is_used = 0;
2439 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2440 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2441 /* Contains I3 if the destination of I3 is used in its source, which means
2442 that the old life of I3 is being killed. If that usage is placed into
2443 I2 and not in I3, a REG_DEAD note must be made. */
2444 rtx i3dest_killed = 0;
2445 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2446 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2447 /* Copy of SET_SRC of I1 and I0, if needed. */
2448 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2449 /* Set if I2DEST was reused as a scratch register. */
2450 bool i2scratch = false;
2451 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2452 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2453 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2454 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2455 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2456 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2457 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2458 /* Notes that must be added to REG_NOTES in I3 and I2. */
2459 rtx new_i3_notes, new_i2_notes;
2460 /* Notes that we substituted I3 into I2 instead of the normal case. */
2461 int i3_subst_into_i2 = 0;
2462 /* Notes that I1, I2 or I3 is a MULT operation. */
2463 int have_mult = 0;
2464 int swap_i2i3 = 0;
2465 int changed_i3_dest = 0;
2466
2467 int maxreg;
2468 rtx temp;
2469 struct insn_link *link;
2470 rtx other_pat = 0;
2471 rtx new_other_notes;
2472 int i;
2473
2474 /* Only try four-insn combinations when there's high likelihood of
2475 success. Look for simple insns, such as loads of constants or
2476 binary operations involving a constant. */
2477 if (i0)
2478 {
2479 int i;
2480 int ngood = 0;
2481 int nshift = 0;
2482
2483 if (!flag_expensive_optimizations)
2484 return 0;
2485
2486 for (i = 0; i < 4; i++)
2487 {
2488 rtx insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2489 rtx set = single_set (insn);
2490 rtx src;
2491 if (!set)
2492 continue;
2493 src = SET_SRC (set);
2494 if (CONSTANT_P (src))
2495 {
2496 ngood += 2;
2497 break;
2498 }
2499 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2500 ngood++;
2501 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2502 || GET_CODE (src) == LSHIFTRT)
2503 nshift++;
2504 }
2505 if (ngood < 2 && nshift < 2)
2506 return 0;
2507 }
2508
2509 /* Exit early if one of the insns involved can't be used for
2510 combinations. */
2511 if (cant_combine_insn_p (i3)
2512 || cant_combine_insn_p (i2)
2513 || (i1 && cant_combine_insn_p (i1))
2514 || (i0 && cant_combine_insn_p (i0))
2515 || likely_spilled_retval_p (i3))
2516 return 0;
2517
2518 combine_attempts++;
2519 undobuf.other_insn = 0;
2520
2521 /* Reset the hard register usage information. */
2522 CLEAR_HARD_REG_SET (newpat_used_regs);
2523
2524 if (dump_file && (dump_flags & TDF_DETAILS))
2525 {
2526 if (i0)
2527 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2528 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2529 else if (i1)
2530 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2531 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2532 else
2533 fprintf (dump_file, "\nTrying %d -> %d:\n",
2534 INSN_UID (i2), INSN_UID (i3));
2535 }
2536
2537 /* If multiple insns feed into one of I2 or I3, they can be in any
2538 order. To simplify the code below, reorder them in sequence. */
2539 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2540 temp = i2, i2 = i0, i0 = temp;
2541 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2542 temp = i1, i1 = i0, i0 = temp;
2543 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2544 temp = i1, i1 = i2, i2 = temp;
2545
2546 added_links_insn = 0;
2547
2548 /* First check for one important special case that the code below will
2549 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2550 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2551 we may be able to replace that destination with the destination of I3.
2552 This occurs in the common code where we compute both a quotient and
2553 remainder into a structure, in which case we want to do the computation
2554 directly into the structure to avoid register-register copies.
2555
2556 Note that this case handles both multiple sets in I2 and also cases
2557 where I2 has a number of CLOBBERs inside the PARALLEL.
2558
2559 We make very conservative checks below and only try to handle the
2560 most common cases of this. For example, we only handle the case
2561 where I2 and I3 are adjacent to avoid making difficult register
2562 usage tests. */
2563
2564 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2565 && REG_P (SET_SRC (PATTERN (i3)))
2566 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2567 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2568 && GET_CODE (PATTERN (i2)) == PARALLEL
2569 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2570 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2571 below would need to check what is inside (and reg_overlap_mentioned_p
2572 doesn't support those codes anyway). Don't allow those destinations;
2573 the resulting insn isn't likely to be recognized anyway. */
2574 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2575 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2576 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2577 SET_DEST (PATTERN (i3)))
2578 && next_active_insn (i2) == i3)
2579 {
2580 rtx p2 = PATTERN (i2);
2581
2582 /* Make sure that the destination of I3,
2583 which we are going to substitute into one output of I2,
2584 is not used within another output of I2. We must avoid making this:
2585 (parallel [(set (mem (reg 69)) ...)
2586 (set (reg 69) ...)])
2587 which is not well-defined as to order of actions.
2588 (Besides, reload can't handle output reloads for this.)
2589
2590 The problem can also happen if the dest of I3 is a memory ref,
2591 if another dest in I2 is an indirect memory ref. */
2592 for (i = 0; i < XVECLEN (p2, 0); i++)
2593 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2594 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2595 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2596 SET_DEST (XVECEXP (p2, 0, i))))
2597 break;
2598
2599 if (i == XVECLEN (p2, 0))
2600 for (i = 0; i < XVECLEN (p2, 0); i++)
2601 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2602 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2603 {
2604 combine_merges++;
2605
2606 subst_insn = i3;
2607 subst_low_luid = DF_INSN_LUID (i2);
2608
2609 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2610 i2src = SET_SRC (XVECEXP (p2, 0, i));
2611 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2612 i2dest_killed = dead_or_set_p (i2, i2dest);
2613
2614 /* Replace the dest in I2 with our dest and make the resulting
2615 insn the new pattern for I3. Then skip to where we validate
2616 the pattern. Everything was set up above. */
2617 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2618 newpat = p2;
2619 i3_subst_into_i2 = 1;
2620 goto validate_replacement;
2621 }
2622 }
2623
2624 /* If I2 is setting a pseudo to a constant and I3 is setting some
2625 sub-part of it to another constant, merge them by making a new
2626 constant. */
2627 if (i1 == 0
2628 && (temp = single_set (i2)) != 0
2629 && CONST_SCALAR_INT_P (SET_SRC (temp))
2630 && GET_CODE (PATTERN (i3)) == SET
2631 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2632 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp)))
2633 {
2634 rtx dest = SET_DEST (PATTERN (i3));
2635 int offset = -1;
2636 int width = 0;
2637
2638 if (GET_CODE (dest) == ZERO_EXTRACT)
2639 {
2640 if (CONST_INT_P (XEXP (dest, 1))
2641 && CONST_INT_P (XEXP (dest, 2)))
2642 {
2643 width = INTVAL (XEXP (dest, 1));
2644 offset = INTVAL (XEXP (dest, 2));
2645 dest = XEXP (dest, 0);
2646 if (BITS_BIG_ENDIAN)
2647 offset = GET_MODE_PRECISION (GET_MODE (dest)) - width - offset;
2648 }
2649 }
2650 else
2651 {
2652 if (GET_CODE (dest) == STRICT_LOW_PART)
2653 dest = XEXP (dest, 0);
2654 width = GET_MODE_PRECISION (GET_MODE (dest));
2655 offset = 0;
2656 }
2657
2658 if (offset >= 0)
2659 {
2660 /* If this is the low part, we're done. */
2661 if (subreg_lowpart_p (dest))
2662 ;
2663 /* Handle the case where inner is twice the size of outer. */
2664 else if (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp)))
2665 == 2 * GET_MODE_PRECISION (GET_MODE (dest)))
2666 offset += GET_MODE_PRECISION (GET_MODE (dest));
2667 /* Otherwise give up for now. */
2668 else
2669 offset = -1;
2670 }
2671
2672 if (offset >= 0
2673 && (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp)))
2674 <= HOST_BITS_PER_DOUBLE_INT))
2675 {
2676 double_int m, o, i;
2677 rtx inner = SET_SRC (PATTERN (i3));
2678 rtx outer = SET_SRC (temp);
2679
2680 o = rtx_to_double_int (outer);
2681 i = rtx_to_double_int (inner);
2682
2683 m = double_int::mask (width);
2684 i &= m;
2685 m = m.llshift (offset, HOST_BITS_PER_DOUBLE_INT);
2686 i = i.llshift (offset, HOST_BITS_PER_DOUBLE_INT);
2687 o = o.and_not (m) | i;
2688
2689 combine_merges++;
2690 subst_insn = i3;
2691 subst_low_luid = DF_INSN_LUID (i2);
2692 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2693 i2dest = SET_DEST (temp);
2694 i2dest_killed = dead_or_set_p (i2, i2dest);
2695
2696 /* Replace the source in I2 with the new constant and make the
2697 resulting insn the new pattern for I3. Then skip to where we
2698 validate the pattern. Everything was set up above. */
2699 SUBST (SET_SRC (temp),
2700 immed_double_int_const (o, GET_MODE (SET_DEST (temp))));
2701
2702 newpat = PATTERN (i2);
2703
2704 /* The dest of I3 has been replaced with the dest of I2. */
2705 changed_i3_dest = 1;
2706 goto validate_replacement;
2707 }
2708 }
2709
2710 #ifndef HAVE_cc0
2711 /* If we have no I1 and I2 looks like:
2712 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2713 (set Y OP)])
2714 make up a dummy I1 that is
2715 (set Y OP)
2716 and change I2 to be
2717 (set (reg:CC X) (compare:CC Y (const_int 0)))
2718
2719 (We can ignore any trailing CLOBBERs.)
2720
2721 This undoes a previous combination and allows us to match a branch-and-
2722 decrement insn. */
2723
2724 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
2725 && XVECLEN (PATTERN (i2), 0) >= 2
2726 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
2727 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2728 == MODE_CC)
2729 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2730 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2731 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
2732 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
2733 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2734 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
2735 {
2736 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
2737 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
2738 break;
2739
2740 if (i == 1)
2741 {
2742 /* We make I1 with the same INSN_UID as I2. This gives it
2743 the same DF_INSN_LUID for value tracking. Our fake I1 will
2744 never appear in the insn stream so giving it the same INSN_UID
2745 as I2 will not cause a problem. */
2746
2747 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
2748 BLOCK_FOR_INSN (i2), XVECEXP (PATTERN (i2), 0, 1),
2749 INSN_LOCATION (i2), -1, NULL_RTX);
2750
2751 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2752 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2753 SET_DEST (PATTERN (i1)));
2754 SUBST_LINK (LOG_LINKS (i2), alloc_insn_link (i1, LOG_LINKS (i2)));
2755 }
2756 }
2757 #endif
2758
2759 /* Verify that I2 and I1 are valid for combining. */
2760 if (! can_combine_p (i2, i3, i0, i1, NULL_RTX, NULL_RTX, &i2dest, &i2src)
2761 || (i1 && ! can_combine_p (i1, i3, i0, NULL_RTX, i2, NULL_RTX,
2762 &i1dest, &i1src))
2763 || (i0 && ! can_combine_p (i0, i3, NULL_RTX, NULL_RTX, i1, i2,
2764 &i0dest, &i0src)))
2765 {
2766 undo_all ();
2767 return 0;
2768 }
2769
2770 /* Record whether I2DEST is used in I2SRC and similarly for the other
2771 cases. Knowing this will help in register status updating below. */
2772 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2773 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2774 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2775 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
2776 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
2777 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
2778 i2dest_killed = dead_or_set_p (i2, i2dest);
2779 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2780 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
2781
2782 /* For the earlier insns, determine which of the subsequent ones they
2783 feed. */
2784 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
2785 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
2786 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
2787 : (!reg_overlap_mentioned_p (i1dest, i0dest)
2788 && reg_overlap_mentioned_p (i0dest, i2src))));
2789
2790 /* Ensure that I3's pattern can be the destination of combines. */
2791 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
2792 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
2793 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
2794 || (i1dest_in_i0src && !i0_feeds_i1_n)),
2795 &i3dest_killed))
2796 {
2797 undo_all ();
2798 return 0;
2799 }
2800
2801 /* See if any of the insns is a MULT operation. Unless one is, we will
2802 reject a combination that is, since it must be slower. Be conservative
2803 here. */
2804 if (GET_CODE (i2src) == MULT
2805 || (i1 != 0 && GET_CODE (i1src) == MULT)
2806 || (i0 != 0 && GET_CODE (i0src) == MULT)
2807 || (GET_CODE (PATTERN (i3)) == SET
2808 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
2809 have_mult = 1;
2810
2811 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
2812 We used to do this EXCEPT in one case: I3 has a post-inc in an
2813 output operand. However, that exception can give rise to insns like
2814 mov r3,(r3)+
2815 which is a famous insn on the PDP-11 where the value of r3 used as the
2816 source was model-dependent. Avoid this sort of thing. */
2817
2818 #if 0
2819 if (!(GET_CODE (PATTERN (i3)) == SET
2820 && REG_P (SET_SRC (PATTERN (i3)))
2821 && MEM_P (SET_DEST (PATTERN (i3)))
2822 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
2823 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
2824 /* It's not the exception. */
2825 #endif
2826 #ifdef AUTO_INC_DEC
2827 {
2828 rtx link;
2829 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
2830 if (REG_NOTE_KIND (link) == REG_INC
2831 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
2832 || (i1 != 0
2833 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
2834 {
2835 undo_all ();
2836 return 0;
2837 }
2838 }
2839 #endif
2840
2841 /* See if the SETs in I1 or I2 need to be kept around in the merged
2842 instruction: whenever the value set there is still needed past I3.
2843 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
2844
2845 For the SET in I1, we have two cases: if I1 and I2 independently feed
2846 into I3, the set in I1 needs to be kept around unless I1DEST dies
2847 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
2848 in I1 needs to be kept around unless I1DEST dies or is set in either
2849 I2 or I3. The same considerations apply to I0. */
2850
2851 added_sets_2 = !dead_or_set_p (i3, i2dest);
2852
2853 if (i1)
2854 added_sets_1 = !(dead_or_set_p (i3, i1dest)
2855 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
2856 else
2857 added_sets_1 = 0;
2858
2859 if (i0)
2860 added_sets_0 = !(dead_or_set_p (i3, i0dest)
2861 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
2862 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
2863 && dead_or_set_p (i2, i0dest)));
2864 else
2865 added_sets_0 = 0;
2866
2867 /* We are about to copy insns for the case where they need to be kept
2868 around. Check that they can be copied in the merged instruction. */
2869
2870 if (targetm.cannot_copy_insn_p
2871 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
2872 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
2873 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
2874 {
2875 undo_all ();
2876 return 0;
2877 }
2878
2879 /* If the set in I2 needs to be kept around, we must make a copy of
2880 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
2881 PATTERN (I2), we are only substituting for the original I1DEST, not into
2882 an already-substituted copy. This also prevents making self-referential
2883 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
2884 I2DEST. */
2885
2886 if (added_sets_2)
2887 {
2888 if (GET_CODE (PATTERN (i2)) == PARALLEL)
2889 i2pat = gen_rtx_SET (VOIDmode, i2dest, copy_rtx (i2src));
2890 else
2891 i2pat = copy_rtx (PATTERN (i2));
2892 }
2893
2894 if (added_sets_1)
2895 {
2896 if (GET_CODE (PATTERN (i1)) == PARALLEL)
2897 i1pat = gen_rtx_SET (VOIDmode, i1dest, copy_rtx (i1src));
2898 else
2899 i1pat = copy_rtx (PATTERN (i1));
2900 }
2901
2902 if (added_sets_0)
2903 {
2904 if (GET_CODE (PATTERN (i0)) == PARALLEL)
2905 i0pat = gen_rtx_SET (VOIDmode, i0dest, copy_rtx (i0src));
2906 else
2907 i0pat = copy_rtx (PATTERN (i0));
2908 }
2909
2910 combine_merges++;
2911
2912 /* Substitute in the latest insn for the regs set by the earlier ones. */
2913
2914 maxreg = max_reg_num ();
2915
2916 subst_insn = i3;
2917
2918 #ifndef HAVE_cc0
2919 /* Many machines that don't use CC0 have insns that can both perform an
2920 arithmetic operation and set the condition code. These operations will
2921 be represented as a PARALLEL with the first element of the vector
2922 being a COMPARE of an arithmetic operation with the constant zero.
2923 The second element of the vector will set some pseudo to the result
2924 of the same arithmetic operation. If we simplify the COMPARE, we won't
2925 match such a pattern and so will generate an extra insn. Here we test
2926 for this case, where both the comparison and the operation result are
2927 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
2928 I2SRC. Later we will make the PARALLEL that contains I2. */
2929
2930 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
2931 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
2932 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
2933 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
2934 {
2935 rtx newpat_dest;
2936 rtx *cc_use_loc = NULL, cc_use_insn = NULL_RTX;
2937 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
2938 enum machine_mode compare_mode, orig_compare_mode;
2939 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
2940
2941 newpat = PATTERN (i3);
2942 newpat_dest = SET_DEST (newpat);
2943 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
2944
2945 if (undobuf.other_insn == 0
2946 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
2947 &cc_use_insn)))
2948 {
2949 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
2950 compare_code = simplify_compare_const (compare_code,
2951 op0, &op1);
2952 target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
2953 }
2954
2955 /* Do the rest only if op1 is const0_rtx, which may be the
2956 result of simplification. */
2957 if (op1 == const0_rtx)
2958 {
2959 /* If a single use of the CC is found, prepare to modify it
2960 when SELECT_CC_MODE returns a new CC-class mode, or when
2961 the above simplify_compare_const() returned a new comparison
2962 operator. undobuf.other_insn is assigned the CC use insn
2963 when modifying it. */
2964 if (cc_use_loc)
2965 {
2966 #ifdef SELECT_CC_MODE
2967 enum machine_mode new_mode
2968 = SELECT_CC_MODE (compare_code, op0, op1);
2969 if (new_mode != orig_compare_mode
2970 && can_change_dest_mode (SET_DEST (newpat),
2971 added_sets_2, new_mode))
2972 {
2973 unsigned int regno = REGNO (newpat_dest);
2974 compare_mode = new_mode;
2975 if (regno < FIRST_PSEUDO_REGISTER)
2976 newpat_dest = gen_rtx_REG (compare_mode, regno);
2977 else
2978 {
2979 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
2980 newpat_dest = regno_reg_rtx[regno];
2981 }
2982 }
2983 #endif
2984 /* Cases for modifying the CC-using comparison. */
2985 if (compare_code != orig_compare_code
2986 /* ??? Do we need to verify the zero rtx? */
2987 && XEXP (*cc_use_loc, 1) == const0_rtx)
2988 {
2989 /* Replace cc_use_loc with entire new RTX. */
2990 SUBST (*cc_use_loc,
2991 gen_rtx_fmt_ee (compare_code, compare_mode,
2992 newpat_dest, const0_rtx));
2993 undobuf.other_insn = cc_use_insn;
2994 }
2995 else if (compare_mode != orig_compare_mode)
2996 {
2997 /* Just replace the CC reg with a new mode. */
2998 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
2999 undobuf.other_insn = cc_use_insn;
3000 }
3001 }
3002
3003 /* Now we modify the current newpat:
3004 First, SET_DEST(newpat) is updated if the CC mode has been
3005 altered. For targets without SELECT_CC_MODE, this should be
3006 optimized away. */
3007 if (compare_mode != orig_compare_mode)
3008 SUBST (SET_DEST (newpat), newpat_dest);
3009 /* This is always done to propagate i2src into newpat. */
3010 SUBST (SET_SRC (newpat),
3011 gen_rtx_COMPARE (compare_mode, op0, op1));
3012 /* Create new version of i2pat if needed; the below PARALLEL
3013 creation needs this to work correctly. */
3014 if (! rtx_equal_p (i2src, op0))
3015 i2pat = gen_rtx_SET (VOIDmode, i2dest, op0);
3016 i2_is_used = 1;
3017 }
3018 }
3019 #endif
3020
3021 if (i2_is_used == 0)
3022 {
3023 /* It is possible that the source of I2 or I1 may be performing
3024 an unneeded operation, such as a ZERO_EXTEND of something
3025 that is known to have the high part zero. Handle that case
3026 by letting subst look at the inner insns.
3027
3028 Another way to do this would be to have a function that tries
3029 to simplify a single insn instead of merging two or more
3030 insns. We don't do this because of the potential of infinite
3031 loops and because of the potential extra memory required.
3032 However, doing it the way we are is a bit of a kludge and
3033 doesn't catch all cases.
3034
3035 But only do this if -fexpensive-optimizations since it slows
3036 things down and doesn't usually win.
3037
3038 This is not done in the COMPARE case above because the
3039 unmodified I2PAT is used in the PARALLEL and so a pattern
3040 with a modified I2SRC would not match. */
3041
3042 if (flag_expensive_optimizations)
3043 {
3044 /* Pass pc_rtx so no substitutions are done, just
3045 simplifications. */
3046 if (i1)
3047 {
3048 subst_low_luid = DF_INSN_LUID (i1);
3049 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3050 }
3051
3052 subst_low_luid = DF_INSN_LUID (i2);
3053 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3054 }
3055
3056 n_occurrences = 0; /* `subst' counts here */
3057 subst_low_luid = DF_INSN_LUID (i2);
3058
3059 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3060 copy of I2SRC each time we substitute it, in order to avoid creating
3061 self-referential RTL when we will be substituting I1SRC for I1DEST
3062 later. Likewise if I0 feeds into I2, either directly or indirectly
3063 through I1, and I0DEST is in I0SRC. */
3064 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3065 (i1_feeds_i2_n && i1dest_in_i1src)
3066 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3067 && i0dest_in_i0src));
3068 substed_i2 = 1;
3069
3070 /* Record whether I2's body now appears within I3's body. */
3071 i2_is_used = n_occurrences;
3072 }
3073
3074 /* If we already got a failure, don't try to do more. Otherwise, try to
3075 substitute I1 if we have it. */
3076
3077 if (i1 && GET_CODE (newpat) != CLOBBER)
3078 {
3079 /* Check that an autoincrement side-effect on I1 has not been lost.
3080 This happens if I1DEST is mentioned in I2 and dies there, and
3081 has disappeared from the new pattern. */
3082 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3083 && i1_feeds_i2_n
3084 && dead_or_set_p (i2, i1dest)
3085 && !reg_overlap_mentioned_p (i1dest, newpat))
3086 /* Before we can do this substitution, we must redo the test done
3087 above (see detailed comments there) that ensures I1DEST isn't
3088 mentioned in any SETs in NEWPAT that are field assignments. */
3089 || !combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX, NULL_RTX,
3090 0, 0, 0))
3091 {
3092 undo_all ();
3093 return 0;
3094 }
3095
3096 n_occurrences = 0;
3097 subst_low_luid = DF_INSN_LUID (i1);
3098
3099 /* If the following substitution will modify I1SRC, make a copy of it
3100 for the case where it is substituted for I1DEST in I2PAT later. */
3101 if (added_sets_2 && i1_feeds_i2_n)
3102 i1src_copy = copy_rtx (i1src);
3103
3104 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3105 copy of I1SRC each time we substitute it, in order to avoid creating
3106 self-referential RTL when we will be substituting I0SRC for I0DEST
3107 later. */
3108 newpat = subst (newpat, i1dest, i1src, 0, 0,
3109 i0_feeds_i1_n && i0dest_in_i0src);
3110 substed_i1 = 1;
3111
3112 /* Record whether I1's body now appears within I3's body. */
3113 i1_is_used = n_occurrences;
3114 }
3115
3116 /* Likewise for I0 if we have it. */
3117
3118 if (i0 && GET_CODE (newpat) != CLOBBER)
3119 {
3120 if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3121 && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3122 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3123 && !reg_overlap_mentioned_p (i0dest, newpat))
3124 || !combinable_i3pat (NULL_RTX, &newpat, i0dest, NULL_RTX, NULL_RTX,
3125 0, 0, 0))
3126 {
3127 undo_all ();
3128 return 0;
3129 }
3130
3131 /* If the following substitution will modify I0SRC, make a copy of it
3132 for the case where it is substituted for I0DEST in I1PAT later. */
3133 if (added_sets_1 && i0_feeds_i1_n)
3134 i0src_copy = copy_rtx (i0src);
3135 /* And a copy for I0DEST in I2PAT substitution. */
3136 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3137 || (i0_feeds_i2_n)))
3138 i0src_copy2 = copy_rtx (i0src);
3139
3140 n_occurrences = 0;
3141 subst_low_luid = DF_INSN_LUID (i0);
3142 newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3143 substed_i0 = 1;
3144 }
3145
3146 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3147 to count all the ways that I2SRC and I1SRC can be used. */
3148 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3149 && i2_is_used + added_sets_2 > 1)
3150 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3151 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3152 > 1))
3153 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3154 && (n_occurrences + added_sets_0
3155 + (added_sets_1 && i0_feeds_i1_n)
3156 + (added_sets_2 && i0_feeds_i2_n)
3157 > 1))
3158 /* Fail if we tried to make a new register. */
3159 || max_reg_num () != maxreg
3160 /* Fail if we couldn't do something and have a CLOBBER. */
3161 || GET_CODE (newpat) == CLOBBER
3162 /* Fail if this new pattern is a MULT and we didn't have one before
3163 at the outer level. */
3164 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3165 && ! have_mult))
3166 {
3167 undo_all ();
3168 return 0;
3169 }
3170
3171 /* If the actions of the earlier insns must be kept
3172 in addition to substituting them into the latest one,
3173 we must make a new PARALLEL for the latest insn
3174 to hold additional the SETs. */
3175
3176 if (added_sets_0 || added_sets_1 || added_sets_2)
3177 {
3178 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3179 combine_extras++;
3180
3181 if (GET_CODE (newpat) == PARALLEL)
3182 {
3183 rtvec old = XVEC (newpat, 0);
3184 total_sets = XVECLEN (newpat, 0) + extra_sets;
3185 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3186 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3187 sizeof (old->elem[0]) * old->num_elem);
3188 }
3189 else
3190 {
3191 rtx old = newpat;
3192 total_sets = 1 + extra_sets;
3193 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3194 XVECEXP (newpat, 0, 0) = old;
3195 }
3196
3197 if (added_sets_0)
3198 XVECEXP (newpat, 0, --total_sets) = i0pat;
3199
3200 if (added_sets_1)
3201 {
3202 rtx t = i1pat;
3203 if (i0_feeds_i1_n)
3204 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3205
3206 XVECEXP (newpat, 0, --total_sets) = t;
3207 }
3208 if (added_sets_2)
3209 {
3210 rtx t = i2pat;
3211 if (i1_feeds_i2_n)
3212 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3213 i0_feeds_i1_n && i0dest_in_i0src);
3214 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3215 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3216
3217 XVECEXP (newpat, 0, --total_sets) = t;
3218 }
3219 }
3220
3221 validate_replacement:
3222
3223 /* Note which hard regs this insn has as inputs. */
3224 mark_used_regs_combine (newpat);
3225
3226 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3227 consider splitting this pattern, we might need these clobbers. */
3228 if (i1 && GET_CODE (newpat) == PARALLEL
3229 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3230 {
3231 int len = XVECLEN (newpat, 0);
3232
3233 newpat_vec_with_clobbers = rtvec_alloc (len);
3234 for (i = 0; i < len; i++)
3235 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3236 }
3237
3238 /* Is the result of combination a valid instruction? */
3239 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3240
3241 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
3242 the second SET's destination is a register that is unused and isn't
3243 marked as an instruction that might trap in an EH region. In that case,
3244 we just need the first SET. This can occur when simplifying a divmod
3245 insn. We *must* test for this case here because the code below that
3246 splits two independent SETs doesn't handle this case correctly when it
3247 updates the register status.
3248
3249 It's pointless doing this if we originally had two sets, one from
3250 i3, and one from i2. Combining then splitting the parallel results
3251 in the original i2 again plus an invalid insn (which we delete).
3252 The net effect is only to move instructions around, which makes
3253 debug info less accurate.
3254
3255 Also check the case where the first SET's destination is unused.
3256 That would not cause incorrect code, but does cause an unneeded
3257 insn to remain. */
3258
3259 if (insn_code_number < 0
3260 && !(added_sets_2 && i1 == 0)
3261 && GET_CODE (newpat) == PARALLEL
3262 && XVECLEN (newpat, 0) == 2
3263 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3264 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3265 && asm_noperands (newpat) < 0)
3266 {
3267 rtx set0 = XVECEXP (newpat, 0, 0);
3268 rtx set1 = XVECEXP (newpat, 0, 1);
3269
3270 if (((REG_P (SET_DEST (set1))
3271 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3272 || (GET_CODE (SET_DEST (set1)) == SUBREG
3273 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3274 && insn_nothrow_p (i3)
3275 && !side_effects_p (SET_SRC (set1)))
3276 {
3277 newpat = set0;
3278 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3279 }
3280
3281 else if (((REG_P (SET_DEST (set0))
3282 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3283 || (GET_CODE (SET_DEST (set0)) == SUBREG
3284 && find_reg_note (i3, REG_UNUSED,
3285 SUBREG_REG (SET_DEST (set0)))))
3286 && insn_nothrow_p (i3)
3287 && !side_effects_p (SET_SRC (set0)))
3288 {
3289 newpat = set1;
3290 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3291
3292 if (insn_code_number >= 0)
3293 changed_i3_dest = 1;
3294 }
3295 }
3296
3297 /* If we were combining three insns and the result is a simple SET
3298 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3299 insns. There are two ways to do this. It can be split using a
3300 machine-specific method (like when you have an addition of a large
3301 constant) or by combine in the function find_split_point. */
3302
3303 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3304 && asm_noperands (newpat) < 0)
3305 {
3306 rtx parallel, m_split, *split;
3307
3308 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3309 use I2DEST as a scratch register will help. In the latter case,
3310 convert I2DEST to the mode of the source of NEWPAT if we can. */
3311
3312 m_split = combine_split_insns (newpat, i3);
3313
3314 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3315 inputs of NEWPAT. */
3316
3317 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3318 possible to try that as a scratch reg. This would require adding
3319 more code to make it work though. */
3320
3321 if (m_split == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3322 {
3323 enum machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3324
3325 /* First try to split using the original register as a
3326 scratch register. */
3327 parallel = gen_rtx_PARALLEL (VOIDmode,
3328 gen_rtvec (2, newpat,
3329 gen_rtx_CLOBBER (VOIDmode,
3330 i2dest)));
3331 m_split = combine_split_insns (parallel, i3);
3332
3333 /* If that didn't work, try changing the mode of I2DEST if
3334 we can. */
3335 if (m_split == 0
3336 && new_mode != GET_MODE (i2dest)
3337 && new_mode != VOIDmode
3338 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3339 {
3340 enum machine_mode old_mode = GET_MODE (i2dest);
3341 rtx ni2dest;
3342
3343 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3344 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3345 else
3346 {
3347 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3348 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3349 }
3350
3351 parallel = (gen_rtx_PARALLEL
3352 (VOIDmode,
3353 gen_rtvec (2, newpat,
3354 gen_rtx_CLOBBER (VOIDmode,
3355 ni2dest))));
3356 m_split = combine_split_insns (parallel, i3);
3357
3358 if (m_split == 0
3359 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3360 {
3361 struct undo *buf;
3362
3363 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3364 buf = undobuf.undos;
3365 undobuf.undos = buf->next;
3366 buf->next = undobuf.frees;
3367 undobuf.frees = buf;
3368 }
3369 }
3370
3371 i2scratch = m_split != 0;
3372 }
3373
3374 /* If recog_for_combine has discarded clobbers, try to use them
3375 again for the split. */
3376 if (m_split == 0 && newpat_vec_with_clobbers)
3377 {
3378 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3379 m_split = combine_split_insns (parallel, i3);
3380 }
3381
3382 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
3383 {
3384 m_split = PATTERN (m_split);
3385 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
3386 if (insn_code_number >= 0)
3387 newpat = m_split;
3388 }
3389 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
3390 && (next_nonnote_nondebug_insn (i2) == i3
3391 || ! use_crosses_set_p (PATTERN (m_split), DF_INSN_LUID (i2))))
3392 {
3393 rtx i2set, i3set;
3394 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
3395 newi2pat = PATTERN (m_split);
3396
3397 i3set = single_set (NEXT_INSN (m_split));
3398 i2set = single_set (m_split);
3399
3400 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3401
3402 /* If I2 or I3 has multiple SETs, we won't know how to track
3403 register status, so don't use these insns. If I2's destination
3404 is used between I2 and I3, we also can't use these insns. */
3405
3406 if (i2_code_number >= 0 && i2set && i3set
3407 && (next_nonnote_nondebug_insn (i2) == i3
3408 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3409 insn_code_number = recog_for_combine (&newi3pat, i3,
3410 &new_i3_notes);
3411 if (insn_code_number >= 0)
3412 newpat = newi3pat;
3413
3414 /* It is possible that both insns now set the destination of I3.
3415 If so, we must show an extra use of it. */
3416
3417 if (insn_code_number >= 0)
3418 {
3419 rtx new_i3_dest = SET_DEST (i3set);
3420 rtx new_i2_dest = SET_DEST (i2set);
3421
3422 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3423 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3424 || GET_CODE (new_i3_dest) == SUBREG)
3425 new_i3_dest = XEXP (new_i3_dest, 0);
3426
3427 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3428 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3429 || GET_CODE (new_i2_dest) == SUBREG)
3430 new_i2_dest = XEXP (new_i2_dest, 0);
3431
3432 if (REG_P (new_i3_dest)
3433 && REG_P (new_i2_dest)
3434 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
3435 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3436 }
3437 }
3438
3439 /* If we can split it and use I2DEST, go ahead and see if that
3440 helps things be recognized. Verify that none of the registers
3441 are set between I2 and I3. */
3442 if (insn_code_number < 0
3443 && (split = find_split_point (&newpat, i3, false)) != 0
3444 #ifdef HAVE_cc0
3445 && REG_P (i2dest)
3446 #endif
3447 /* We need I2DEST in the proper mode. If it is a hard register
3448 or the only use of a pseudo, we can change its mode.
3449 Make sure we don't change a hard register to have a mode that
3450 isn't valid for it, or change the number of registers. */
3451 && (GET_MODE (*split) == GET_MODE (i2dest)
3452 || GET_MODE (*split) == VOIDmode
3453 || can_change_dest_mode (i2dest, added_sets_2,
3454 GET_MODE (*split)))
3455 && (next_nonnote_nondebug_insn (i2) == i3
3456 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3457 /* We can't overwrite I2DEST if its value is still used by
3458 NEWPAT. */
3459 && ! reg_referenced_p (i2dest, newpat))
3460 {
3461 rtx newdest = i2dest;
3462 enum rtx_code split_code = GET_CODE (*split);
3463 enum machine_mode split_mode = GET_MODE (*split);
3464 bool subst_done = false;
3465 newi2pat = NULL_RTX;
3466
3467 i2scratch = true;
3468
3469 /* *SPLIT may be part of I2SRC, so make sure we have the
3470 original expression around for later debug processing.
3471 We should not need I2SRC any more in other cases. */
3472 if (MAY_HAVE_DEBUG_INSNS)
3473 i2src = copy_rtx (i2src);
3474 else
3475 i2src = NULL;
3476
3477 /* Get NEWDEST as a register in the proper mode. We have already
3478 validated that we can do this. */
3479 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3480 {
3481 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3482 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3483 else
3484 {
3485 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3486 newdest = regno_reg_rtx[REGNO (i2dest)];
3487 }
3488 }
3489
3490 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3491 an ASHIFT. This can occur if it was inside a PLUS and hence
3492 appeared to be a memory address. This is a kludge. */
3493 if (split_code == MULT
3494 && CONST_INT_P (XEXP (*split, 1))
3495 && INTVAL (XEXP (*split, 1)) > 0
3496 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3497 {
3498 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3499 XEXP (*split, 0), GEN_INT (i)));
3500 /* Update split_code because we may not have a multiply
3501 anymore. */
3502 split_code = GET_CODE (*split);
3503 }
3504
3505 #ifdef INSN_SCHEDULING
3506 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3507 be written as a ZERO_EXTEND. */
3508 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3509 {
3510 #ifdef LOAD_EXTEND_OP
3511 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3512 what it really is. */
3513 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
3514 == SIGN_EXTEND)
3515 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3516 SUBREG_REG (*split)));
3517 else
3518 #endif
3519 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3520 SUBREG_REG (*split)));
3521 }
3522 #endif
3523
3524 /* Attempt to split binary operators using arithmetic identities. */
3525 if (BINARY_P (SET_SRC (newpat))
3526 && split_mode == GET_MODE (SET_SRC (newpat))
3527 && ! side_effects_p (SET_SRC (newpat)))
3528 {
3529 rtx setsrc = SET_SRC (newpat);
3530 enum machine_mode mode = GET_MODE (setsrc);
3531 enum rtx_code code = GET_CODE (setsrc);
3532 rtx src_op0 = XEXP (setsrc, 0);
3533 rtx src_op1 = XEXP (setsrc, 1);
3534
3535 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3536 if (rtx_equal_p (src_op0, src_op1))
3537 {
3538 newi2pat = gen_rtx_SET (VOIDmode, newdest, src_op0);
3539 SUBST (XEXP (setsrc, 0), newdest);
3540 SUBST (XEXP (setsrc, 1), newdest);
3541 subst_done = true;
3542 }
3543 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3544 else if ((code == PLUS || code == MULT)
3545 && GET_CODE (src_op0) == code
3546 && GET_CODE (XEXP (src_op0, 0)) == code
3547 && (INTEGRAL_MODE_P (mode)
3548 || (FLOAT_MODE_P (mode)
3549 && flag_unsafe_math_optimizations)))
3550 {
3551 rtx p = XEXP (XEXP (src_op0, 0), 0);
3552 rtx q = XEXP (XEXP (src_op0, 0), 1);
3553 rtx r = XEXP (src_op0, 1);
3554 rtx s = src_op1;
3555
3556 /* Split both "((X op Y) op X) op Y" and
3557 "((X op Y) op Y) op X" as "T op T" where T is
3558 "X op Y". */
3559 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3560 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3561 {
3562 newi2pat = gen_rtx_SET (VOIDmode, newdest,
3563 XEXP (src_op0, 0));
3564 SUBST (XEXP (setsrc, 0), newdest);
3565 SUBST (XEXP (setsrc, 1), newdest);
3566 subst_done = true;
3567 }
3568 /* Split "((X op X) op Y) op Y)" as "T op T" where
3569 T is "X op Y". */
3570 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3571 {
3572 rtx tmp = simplify_gen_binary (code, mode, p, r);
3573 newi2pat = gen_rtx_SET (VOIDmode, newdest, tmp);
3574 SUBST (XEXP (setsrc, 0), newdest);
3575 SUBST (XEXP (setsrc, 1), newdest);
3576 subst_done = true;
3577 }
3578 }
3579 }
3580
3581 if (!subst_done)
3582 {
3583 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
3584 SUBST (*split, newdest);
3585 }
3586
3587 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3588
3589 /* recog_for_combine might have added CLOBBERs to newi2pat.
3590 Make sure NEWPAT does not depend on the clobbered regs. */
3591 if (GET_CODE (newi2pat) == PARALLEL)
3592 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3593 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3594 {
3595 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3596 if (reg_overlap_mentioned_p (reg, newpat))
3597 {
3598 undo_all ();
3599 return 0;
3600 }
3601 }
3602
3603 /* If the split point was a MULT and we didn't have one before,
3604 don't use one now. */
3605 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3606 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3607 }
3608 }
3609
3610 /* Check for a case where we loaded from memory in a narrow mode and
3611 then sign extended it, but we need both registers. In that case,
3612 we have a PARALLEL with both loads from the same memory location.
3613 We can split this into a load from memory followed by a register-register
3614 copy. This saves at least one insn, more if register allocation can
3615 eliminate the copy.
3616
3617 We cannot do this if the destination of the first assignment is a
3618 condition code register or cc0. We eliminate this case by making sure
3619 the SET_DEST and SET_SRC have the same mode.
3620
3621 We cannot do this if the destination of the second assignment is
3622 a register that we have already assumed is zero-extended. Similarly
3623 for a SUBREG of such a register. */
3624
3625 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3626 && GET_CODE (newpat) == PARALLEL
3627 && XVECLEN (newpat, 0) == 2
3628 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3629 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3630 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3631 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3632 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3633 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3634 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3635 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3636 DF_INSN_LUID (i2))
3637 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3638 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3639 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
3640 (REG_P (temp)
3641 && reg_stat[REGNO (temp)].nonzero_bits != 0
3642 && GET_MODE_PRECISION (GET_MODE (temp)) < BITS_PER_WORD
3643 && GET_MODE_PRECISION (GET_MODE (temp)) < HOST_BITS_PER_INT
3644 && (reg_stat[REGNO (temp)].nonzero_bits
3645 != GET_MODE_MASK (word_mode))))
3646 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3647 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3648 (REG_P (temp)
3649 && reg_stat[REGNO (temp)].nonzero_bits != 0
3650 && GET_MODE_PRECISION (GET_MODE (temp)) < BITS_PER_WORD
3651 && GET_MODE_PRECISION (GET_MODE (temp)) < HOST_BITS_PER_INT
3652 && (reg_stat[REGNO (temp)].nonzero_bits
3653 != GET_MODE_MASK (word_mode)))))
3654 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3655 SET_SRC (XVECEXP (newpat, 0, 1)))
3656 && ! find_reg_note (i3, REG_UNUSED,
3657 SET_DEST (XVECEXP (newpat, 0, 0))))
3658 {
3659 rtx ni2dest;
3660
3661 newi2pat = XVECEXP (newpat, 0, 0);
3662 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3663 newpat = XVECEXP (newpat, 0, 1);
3664 SUBST (SET_SRC (newpat),
3665 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3666 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3667
3668 if (i2_code_number >= 0)
3669 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3670
3671 if (insn_code_number >= 0)
3672 swap_i2i3 = 1;
3673 }
3674
3675 /* Similarly, check for a case where we have a PARALLEL of two independent
3676 SETs but we started with three insns. In this case, we can do the sets
3677 as two separate insns. This case occurs when some SET allows two
3678 other insns to combine, but the destination of that SET is still live. */
3679
3680 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3681 && GET_CODE (newpat) == PARALLEL
3682 && XVECLEN (newpat, 0) == 2
3683 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3684 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3685 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3686 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3687 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3688 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3689 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3690 XVECEXP (newpat, 0, 0))
3691 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3692 XVECEXP (newpat, 0, 1))
3693 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3694 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
3695 {
3696 rtx set0 = XVECEXP (newpat, 0, 0);
3697 rtx set1 = XVECEXP (newpat, 0, 1);
3698
3699 /* Normally, it doesn't matter which of the two is done first,
3700 but the one that references cc0 can't be the second, and
3701 one which uses any regs/memory set in between i2 and i3 can't
3702 be first. The PARALLEL might also have been pre-existing in i3,
3703 so we need to make sure that we won't wrongly hoist a SET to i2
3704 that would conflict with a death note present in there. */
3705 if (!use_crosses_set_p (SET_SRC (set1), DF_INSN_LUID (i2))
3706 && !(REG_P (SET_DEST (set1))
3707 && find_reg_note (i2, REG_DEAD, SET_DEST (set1)))
3708 && !(GET_CODE (SET_DEST (set1)) == SUBREG
3709 && find_reg_note (i2, REG_DEAD,
3710 SUBREG_REG (SET_DEST (set1))))
3711 #ifdef HAVE_cc0
3712 && !reg_referenced_p (cc0_rtx, set0)
3713 #endif
3714 )
3715 {
3716 newi2pat = set1;
3717 newpat = set0;
3718 }
3719 else if (!use_crosses_set_p (SET_SRC (set0), DF_INSN_LUID (i2))
3720 && !(REG_P (SET_DEST (set0))
3721 && find_reg_note (i2, REG_DEAD, SET_DEST (set0)))
3722 && !(GET_CODE (SET_DEST (set0)) == SUBREG
3723 && find_reg_note (i2, REG_DEAD,
3724 SUBREG_REG (SET_DEST (set0))))
3725 #ifdef HAVE_cc0
3726 && !reg_referenced_p (cc0_rtx, set1)
3727 #endif
3728 )
3729 {
3730 newi2pat = set0;
3731 newpat = set1;
3732 }
3733 else
3734 {
3735 undo_all ();
3736 return 0;
3737 }
3738
3739 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3740
3741 if (i2_code_number >= 0)
3742 {
3743 /* recog_for_combine might have added CLOBBERs to newi2pat.
3744 Make sure NEWPAT does not depend on the clobbered regs. */
3745 if (GET_CODE (newi2pat) == PARALLEL)
3746 {
3747 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3748 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3749 {
3750 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3751 if (reg_overlap_mentioned_p (reg, newpat))
3752 {
3753 undo_all ();
3754 return 0;
3755 }
3756 }
3757 }
3758
3759 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3760 }
3761 }
3762
3763 /* If it still isn't recognized, fail and change things back the way they
3764 were. */
3765 if ((insn_code_number < 0
3766 /* Is the result a reasonable ASM_OPERANDS? */
3767 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
3768 {
3769 undo_all ();
3770 return 0;
3771 }
3772
3773 /* If we had to change another insn, make sure it is valid also. */
3774 if (undobuf.other_insn)
3775 {
3776 CLEAR_HARD_REG_SET (newpat_used_regs);
3777
3778 other_pat = PATTERN (undobuf.other_insn);
3779 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
3780 &new_other_notes);
3781
3782 if (other_code_number < 0 && ! check_asm_operands (other_pat))
3783 {
3784 undo_all ();
3785 return 0;
3786 }
3787 }
3788
3789 #ifdef HAVE_cc0
3790 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
3791 they are adjacent to each other or not. */
3792 {
3793 rtx p = prev_nonnote_insn (i3);
3794 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
3795 && sets_cc0_p (newi2pat))
3796 {
3797 undo_all ();
3798 return 0;
3799 }
3800 }
3801 #endif
3802
3803 /* Only allow this combination if insn_rtx_costs reports that the
3804 replacement instructions are cheaper than the originals. */
3805 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
3806 {
3807 undo_all ();
3808 return 0;
3809 }
3810
3811 if (MAY_HAVE_DEBUG_INSNS)
3812 {
3813 struct undo *undo;
3814
3815 for (undo = undobuf.undos; undo; undo = undo->next)
3816 if (undo->kind == UNDO_MODE)
3817 {
3818 rtx reg = *undo->where.r;
3819 enum machine_mode new_mode = GET_MODE (reg);
3820 enum machine_mode old_mode = undo->old_contents.m;
3821
3822 /* Temporarily revert mode back. */
3823 adjust_reg_mode (reg, old_mode);
3824
3825 if (reg == i2dest && i2scratch)
3826 {
3827 /* If we used i2dest as a scratch register with a
3828 different mode, substitute it for the original
3829 i2src while its original mode is temporarily
3830 restored, and then clear i2scratch so that we don't
3831 do it again later. */
3832 propagate_for_debug (i2, last_combined_insn, reg, i2src,
3833 this_basic_block);
3834 i2scratch = false;
3835 /* Put back the new mode. */
3836 adjust_reg_mode (reg, new_mode);
3837 }
3838 else
3839 {
3840 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
3841 rtx first, last;
3842
3843 if (reg == i2dest)
3844 {
3845 first = i2;
3846 last = last_combined_insn;
3847 }
3848 else
3849 {
3850 first = i3;
3851 last = undobuf.other_insn;
3852 gcc_assert (last);
3853 if (DF_INSN_LUID (last)
3854 < DF_INSN_LUID (last_combined_insn))
3855 last = last_combined_insn;
3856 }
3857
3858 /* We're dealing with a reg that changed mode but not
3859 meaning, so we want to turn it into a subreg for
3860 the new mode. However, because of REG sharing and
3861 because its mode had already changed, we have to do
3862 it in two steps. First, replace any debug uses of
3863 reg, with its original mode temporarily restored,
3864 with this copy we have created; then, replace the
3865 copy with the SUBREG of the original shared reg,
3866 once again changed to the new mode. */
3867 propagate_for_debug (first, last, reg, tempreg,
3868 this_basic_block);
3869 adjust_reg_mode (reg, new_mode);
3870 propagate_for_debug (first, last, tempreg,
3871 lowpart_subreg (old_mode, reg, new_mode),
3872 this_basic_block);
3873 }
3874 }
3875 }
3876
3877 /* If we will be able to accept this, we have made a
3878 change to the destination of I3. This requires us to
3879 do a few adjustments. */
3880
3881 if (changed_i3_dest)
3882 {
3883 PATTERN (i3) = newpat;
3884 adjust_for_new_dest (i3);
3885 }
3886
3887 /* We now know that we can do this combination. Merge the insns and
3888 update the status of registers and LOG_LINKS. */
3889
3890 if (undobuf.other_insn)
3891 {
3892 rtx note, next;
3893
3894 PATTERN (undobuf.other_insn) = other_pat;
3895
3896 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
3897 are still valid. Then add any non-duplicate notes added by
3898 recog_for_combine. */
3899 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
3900 {
3901 next = XEXP (note, 1);
3902
3903 if (REG_NOTE_KIND (note) == REG_UNUSED
3904 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
3905 remove_note (undobuf.other_insn, note);
3906 }
3907
3908 distribute_notes (new_other_notes, undobuf.other_insn,
3909 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX,
3910 NULL_RTX);
3911 }
3912
3913 if (swap_i2i3)
3914 {
3915 rtx insn;
3916 struct insn_link *link;
3917 rtx ni2dest;
3918
3919 /* I3 now uses what used to be its destination and which is now
3920 I2's destination. This requires us to do a few adjustments. */
3921 PATTERN (i3) = newpat;
3922 adjust_for_new_dest (i3);
3923
3924 /* We need a LOG_LINK from I3 to I2. But we used to have one,
3925 so we still will.
3926
3927 However, some later insn might be using I2's dest and have
3928 a LOG_LINK pointing at I3. We must remove this link.
3929 The simplest way to remove the link is to point it at I1,
3930 which we know will be a NOTE. */
3931
3932 /* newi2pat is usually a SET here; however, recog_for_combine might
3933 have added some clobbers. */
3934 if (GET_CODE (newi2pat) == PARALLEL)
3935 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
3936 else
3937 ni2dest = SET_DEST (newi2pat);
3938
3939 for (insn = NEXT_INSN (i3);
3940 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3941 || insn != BB_HEAD (this_basic_block->next_bb));
3942 insn = NEXT_INSN (insn))
3943 {
3944 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
3945 {
3946 FOR_EACH_LOG_LINK (link, insn)
3947 if (link->insn == i3)
3948 link->insn = i1;
3949
3950 break;
3951 }
3952 }
3953 }
3954
3955 {
3956 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
3957 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
3958 rtx midnotes = 0;
3959 int from_luid;
3960 /* Compute which registers we expect to eliminate. newi2pat may be setting
3961 either i3dest or i2dest, so we must check it. Also, i1dest may be the
3962 same as i3dest, in which case newi2pat may be setting i1dest. */
3963 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
3964 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
3965 || !i2dest_killed
3966 ? 0 : i2dest);
3967 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
3968 || (newi2pat && reg_set_p (i1dest, newi2pat))
3969 || !i1dest_killed
3970 ? 0 : i1dest);
3971 rtx elim_i0 = (i0 == 0 || i0dest_in_i0src
3972 || (newi2pat && reg_set_p (i0dest, newi2pat))
3973 || !i0dest_killed
3974 ? 0 : i0dest);
3975
3976 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
3977 clear them. */
3978 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
3979 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
3980 if (i1)
3981 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
3982 if (i0)
3983 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
3984
3985 /* Ensure that we do not have something that should not be shared but
3986 occurs multiple times in the new insns. Check this by first
3987 resetting all the `used' flags and then copying anything is shared. */
3988
3989 reset_used_flags (i3notes);
3990 reset_used_flags (i2notes);
3991 reset_used_flags (i1notes);
3992 reset_used_flags (i0notes);
3993 reset_used_flags (newpat);
3994 reset_used_flags (newi2pat);
3995 if (undobuf.other_insn)
3996 reset_used_flags (PATTERN (undobuf.other_insn));
3997
3998 i3notes = copy_rtx_if_shared (i3notes);
3999 i2notes = copy_rtx_if_shared (i2notes);
4000 i1notes = copy_rtx_if_shared (i1notes);
4001 i0notes = copy_rtx_if_shared (i0notes);
4002 newpat = copy_rtx_if_shared (newpat);
4003 newi2pat = copy_rtx_if_shared (newi2pat);
4004 if (undobuf.other_insn)
4005 reset_used_flags (PATTERN (undobuf.other_insn));
4006
4007 INSN_CODE (i3) = insn_code_number;
4008 PATTERN (i3) = newpat;
4009
4010 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4011 {
4012 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
4013
4014 reset_used_flags (call_usage);
4015 call_usage = copy_rtx (call_usage);
4016
4017 if (substed_i2)
4018 {
4019 /* I2SRC must still be meaningful at this point. Some splitting
4020 operations can invalidate I2SRC, but those operations do not
4021 apply to calls. */
4022 gcc_assert (i2src);
4023 replace_rtx (call_usage, i2dest, i2src);
4024 }
4025
4026 if (substed_i1)
4027 replace_rtx (call_usage, i1dest, i1src);
4028 if (substed_i0)
4029 replace_rtx (call_usage, i0dest, i0src);
4030
4031 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
4032 }
4033
4034 if (undobuf.other_insn)
4035 INSN_CODE (undobuf.other_insn) = other_code_number;
4036
4037 /* We had one special case above where I2 had more than one set and
4038 we replaced a destination of one of those sets with the destination
4039 of I3. In that case, we have to update LOG_LINKS of insns later
4040 in this basic block. Note that this (expensive) case is rare.
4041
4042 Also, in this case, we must pretend that all REG_NOTEs for I2
4043 actually came from I3, so that REG_UNUSED notes from I2 will be
4044 properly handled. */
4045
4046 if (i3_subst_into_i2)
4047 {
4048 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4049 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4050 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4051 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4052 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4053 && ! find_reg_note (i2, REG_UNUSED,
4054 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4055 for (temp = NEXT_INSN (i2);
4056 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
4057 || BB_HEAD (this_basic_block) != temp);
4058 temp = NEXT_INSN (temp))
4059 if (temp != i3 && INSN_P (temp))
4060 FOR_EACH_LOG_LINK (link, temp)
4061 if (link->insn == i2)
4062 link->insn = i3;
4063
4064 if (i3notes)
4065 {
4066 rtx link = i3notes;
4067 while (XEXP (link, 1))
4068 link = XEXP (link, 1);
4069 XEXP (link, 1) = i2notes;
4070 }
4071 else
4072 i3notes = i2notes;
4073 i2notes = 0;
4074 }
4075
4076 LOG_LINKS (i3) = NULL;
4077 REG_NOTES (i3) = 0;
4078 LOG_LINKS (i2) = NULL;
4079 REG_NOTES (i2) = 0;
4080
4081 if (newi2pat)
4082 {
4083 if (MAY_HAVE_DEBUG_INSNS && i2scratch)
4084 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4085 this_basic_block);
4086 INSN_CODE (i2) = i2_code_number;
4087 PATTERN (i2) = newi2pat;
4088 }
4089 else
4090 {
4091 if (MAY_HAVE_DEBUG_INSNS && i2src)
4092 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4093 this_basic_block);
4094 SET_INSN_DELETED (i2);
4095 }
4096
4097 if (i1)
4098 {
4099 LOG_LINKS (i1) = NULL;
4100 REG_NOTES (i1) = 0;
4101 if (MAY_HAVE_DEBUG_INSNS)
4102 propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4103 this_basic_block);
4104 SET_INSN_DELETED (i1);
4105 }
4106
4107 if (i0)
4108 {
4109 LOG_LINKS (i0) = NULL;
4110 REG_NOTES (i0) = 0;
4111 if (MAY_HAVE_DEBUG_INSNS)
4112 propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4113 this_basic_block);
4114 SET_INSN_DELETED (i0);
4115 }
4116
4117 /* Get death notes for everything that is now used in either I3 or
4118 I2 and used to die in a previous insn. If we built two new
4119 patterns, move from I1 to I2 then I2 to I3 so that we get the
4120 proper movement on registers that I2 modifies. */
4121
4122 if (i0)
4123 from_luid = DF_INSN_LUID (i0);
4124 else if (i1)
4125 from_luid = DF_INSN_LUID (i1);
4126 else
4127 from_luid = DF_INSN_LUID (i2);
4128 if (newi2pat)
4129 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4130 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4131
4132 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4133 if (i3notes)
4134 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
4135 elim_i2, elim_i1, elim_i0);
4136 if (i2notes)
4137 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
4138 elim_i2, elim_i1, elim_i0);
4139 if (i1notes)
4140 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
4141 elim_i2, elim_i1, elim_i0);
4142 if (i0notes)
4143 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL_RTX,
4144 elim_i2, elim_i1, elim_i0);
4145 if (midnotes)
4146 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4147 elim_i2, elim_i1, elim_i0);
4148
4149 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4150 know these are REG_UNUSED and want them to go to the desired insn,
4151 so we always pass it as i3. */
4152
4153 if (newi2pat && new_i2_notes)
4154 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX,
4155 NULL_RTX);
4156
4157 if (new_i3_notes)
4158 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX,
4159 NULL_RTX);
4160
4161 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4162 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4163 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4164 in that case, it might delete I2. Similarly for I2 and I1.
4165 Show an additional death due to the REG_DEAD note we make here. If
4166 we discard it in distribute_notes, we will decrement it again. */
4167
4168 if (i3dest_killed)
4169 {
4170 rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
4171 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4172 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, elim_i2,
4173 elim_i1, elim_i0);
4174 else
4175 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4176 elim_i2, elim_i1, elim_i0);
4177 }
4178
4179 if (i2dest_in_i2src)
4180 {
4181 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4182 if (newi2pat && reg_set_p (i2dest, newi2pat))
4183 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4184 NULL_RTX, NULL_RTX);
4185 else
4186 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4187 NULL_RTX, NULL_RTX, NULL_RTX);
4188 }
4189
4190 if (i1dest_in_i1src)
4191 {
4192 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4193 if (newi2pat && reg_set_p (i1dest, newi2pat))
4194 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4195 NULL_RTX, NULL_RTX);
4196 else
4197 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4198 NULL_RTX, NULL_RTX, NULL_RTX);
4199 }
4200
4201 if (i0dest_in_i0src)
4202 {
4203 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4204 if (newi2pat && reg_set_p (i0dest, newi2pat))
4205 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4206 NULL_RTX, NULL_RTX);
4207 else
4208 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4209 NULL_RTX, NULL_RTX, NULL_RTX);
4210 }
4211
4212 distribute_links (i3links);
4213 distribute_links (i2links);
4214 distribute_links (i1links);
4215 distribute_links (i0links);
4216
4217 if (REG_P (i2dest))
4218 {
4219 struct insn_link *link;
4220 rtx i2_insn = 0, i2_val = 0, set;
4221
4222 /* The insn that used to set this register doesn't exist, and
4223 this life of the register may not exist either. See if one of
4224 I3's links points to an insn that sets I2DEST. If it does,
4225 that is now the last known value for I2DEST. If we don't update
4226 this and I2 set the register to a value that depended on its old
4227 contents, we will get confused. If this insn is used, thing
4228 will be set correctly in combine_instructions. */
4229 FOR_EACH_LOG_LINK (link, i3)
4230 if ((set = single_set (link->insn)) != 0
4231 && rtx_equal_p (i2dest, SET_DEST (set)))
4232 i2_insn = link->insn, i2_val = SET_SRC (set);
4233
4234 record_value_for_reg (i2dest, i2_insn, i2_val);
4235
4236 /* If the reg formerly set in I2 died only once and that was in I3,
4237 zero its use count so it won't make `reload' do any work. */
4238 if (! added_sets_2
4239 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4240 && ! i2dest_in_i2src)
4241 INC_REG_N_SETS (REGNO (i2dest), -1);
4242 }
4243
4244 if (i1 && REG_P (i1dest))
4245 {
4246 struct insn_link *link;
4247 rtx i1_insn = 0, i1_val = 0, set;
4248
4249 FOR_EACH_LOG_LINK (link, i3)
4250 if ((set = single_set (link->insn)) != 0
4251 && rtx_equal_p (i1dest, SET_DEST (set)))
4252 i1_insn = link->insn, i1_val = SET_SRC (set);
4253
4254 record_value_for_reg (i1dest, i1_insn, i1_val);
4255
4256 if (! added_sets_1 && ! i1dest_in_i1src)
4257 INC_REG_N_SETS (REGNO (i1dest), -1);
4258 }
4259
4260 if (i0 && REG_P (i0dest))
4261 {
4262 struct insn_link *link;
4263 rtx i0_insn = 0, i0_val = 0, set;
4264
4265 FOR_EACH_LOG_LINK (link, i3)
4266 if ((set = single_set (link->insn)) != 0
4267 && rtx_equal_p (i0dest, SET_DEST (set)))
4268 i0_insn = link->insn, i0_val = SET_SRC (set);
4269
4270 record_value_for_reg (i0dest, i0_insn, i0_val);
4271
4272 if (! added_sets_0 && ! i0dest_in_i0src)
4273 INC_REG_N_SETS (REGNO (i0dest), -1);
4274 }
4275
4276 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4277 been made to this insn. The order is important, because newi2pat
4278 can affect nonzero_bits of newpat. */
4279 if (newi2pat)
4280 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4281 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4282 }
4283
4284 if (undobuf.other_insn != NULL_RTX)
4285 {
4286 if (dump_file)
4287 {
4288 fprintf (dump_file, "modifying other_insn ");
4289 dump_insn_slim (dump_file, undobuf.other_insn);
4290 }
4291 df_insn_rescan (undobuf.other_insn);
4292 }
4293
4294 if (i0 && !(NOTE_P (i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4295 {
4296 if (dump_file)
4297 {
4298 fprintf (dump_file, "modifying insn i0 ");
4299 dump_insn_slim (dump_file, i0);
4300 }
4301 df_insn_rescan (i0);
4302 }
4303
4304 if (i1 && !(NOTE_P (i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4305 {
4306 if (dump_file)
4307 {
4308 fprintf (dump_file, "modifying insn i1 ");
4309 dump_insn_slim (dump_file, i1);
4310 }
4311 df_insn_rescan (i1);
4312 }
4313
4314 if (i2 && !(NOTE_P (i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4315 {
4316 if (dump_file)
4317 {
4318 fprintf (dump_file, "modifying insn i2 ");
4319 dump_insn_slim (dump_file, i2);
4320 }
4321 df_insn_rescan (i2);
4322 }
4323
4324 if (i3 && !(NOTE_P (i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4325 {
4326 if (dump_file)
4327 {
4328 fprintf (dump_file, "modifying insn i3 ");
4329 dump_insn_slim (dump_file, i3);
4330 }
4331 df_insn_rescan (i3);
4332 }
4333
4334 /* Set new_direct_jump_p if a new return or simple jump instruction
4335 has been created. Adjust the CFG accordingly. */
4336 if (returnjump_p (i3) || any_uncondjump_p (i3))
4337 {
4338 *new_direct_jump_p = 1;
4339 mark_jump_label (PATTERN (i3), i3, 0);
4340 update_cfg_for_uncondjump (i3);
4341 }
4342
4343 if (undobuf.other_insn != NULL_RTX
4344 && (returnjump_p (undobuf.other_insn)
4345 || any_uncondjump_p (undobuf.other_insn)))
4346 {
4347 *new_direct_jump_p = 1;
4348 update_cfg_for_uncondjump (undobuf.other_insn);
4349 }
4350
4351 /* A noop might also need cleaning up of CFG, if it comes from the
4352 simplification of a jump. */
4353 if (JUMP_P (i3)
4354 && GET_CODE (newpat) == SET
4355 && SET_SRC (newpat) == pc_rtx
4356 && SET_DEST (newpat) == pc_rtx)
4357 {
4358 *new_direct_jump_p = 1;
4359 update_cfg_for_uncondjump (i3);
4360 }
4361
4362 if (undobuf.other_insn != NULL_RTX
4363 && JUMP_P (undobuf.other_insn)
4364 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4365 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4366 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4367 {
4368 *new_direct_jump_p = 1;
4369 update_cfg_for_uncondjump (undobuf.other_insn);
4370 }
4371
4372 combine_successes++;
4373 undo_commit ();
4374
4375 if (added_links_insn
4376 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
4377 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
4378 return added_links_insn;
4379 else
4380 return newi2pat ? i2 : i3;
4381 }
4382 \f
4383 /* Undo all the modifications recorded in undobuf. */
4384
4385 static void
4386 undo_all (void)
4387 {
4388 struct undo *undo, *next;
4389
4390 for (undo = undobuf.undos; undo; undo = next)
4391 {
4392 next = undo->next;
4393 switch (undo->kind)
4394 {
4395 case UNDO_RTX:
4396 *undo->where.r = undo->old_contents.r;
4397 break;
4398 case UNDO_INT:
4399 *undo->where.i = undo->old_contents.i;
4400 break;
4401 case UNDO_MODE:
4402 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4403 break;
4404 case UNDO_LINKS:
4405 *undo->where.l = undo->old_contents.l;
4406 break;
4407 default:
4408 gcc_unreachable ();
4409 }
4410
4411 undo->next = undobuf.frees;
4412 undobuf.frees = undo;
4413 }
4414
4415 undobuf.undos = 0;
4416 }
4417
4418 /* We've committed to accepting the changes we made. Move all
4419 of the undos to the free list. */
4420
4421 static void
4422 undo_commit (void)
4423 {
4424 struct undo *undo, *next;
4425
4426 for (undo = undobuf.undos; undo; undo = next)
4427 {
4428 next = undo->next;
4429 undo->next = undobuf.frees;
4430 undobuf.frees = undo;
4431 }
4432 undobuf.undos = 0;
4433 }
4434 \f
4435 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4436 where we have an arithmetic expression and return that point. LOC will
4437 be inside INSN.
4438
4439 try_combine will call this function to see if an insn can be split into
4440 two insns. */
4441
4442 static rtx *
4443 find_split_point (rtx *loc, rtx insn, bool set_src)
4444 {
4445 rtx x = *loc;
4446 enum rtx_code code = GET_CODE (x);
4447 rtx *split;
4448 unsigned HOST_WIDE_INT len = 0;
4449 HOST_WIDE_INT pos = 0;
4450 int unsignedp = 0;
4451 rtx inner = NULL_RTX;
4452
4453 /* First special-case some codes. */
4454 switch (code)
4455 {
4456 case SUBREG:
4457 #ifdef INSN_SCHEDULING
4458 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4459 point. */
4460 if (MEM_P (SUBREG_REG (x)))
4461 return loc;
4462 #endif
4463 return find_split_point (&SUBREG_REG (x), insn, false);
4464
4465 case MEM:
4466 #ifdef HAVE_lo_sum
4467 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4468 using LO_SUM and HIGH. */
4469 if (GET_CODE (XEXP (x, 0)) == CONST
4470 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
4471 {
4472 enum machine_mode address_mode = get_address_mode (x);
4473
4474 SUBST (XEXP (x, 0),
4475 gen_rtx_LO_SUM (address_mode,
4476 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4477 XEXP (x, 0)));
4478 return &XEXP (XEXP (x, 0), 0);
4479 }
4480 #endif
4481
4482 /* If we have a PLUS whose second operand is a constant and the
4483 address is not valid, perhaps will can split it up using
4484 the machine-specific way to split large constants. We use
4485 the first pseudo-reg (one of the virtual regs) as a placeholder;
4486 it will not remain in the result. */
4487 if (GET_CODE (XEXP (x, 0)) == PLUS
4488 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4489 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4490 MEM_ADDR_SPACE (x)))
4491 {
4492 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4493 rtx seq = combine_split_insns (gen_rtx_SET (VOIDmode, reg,
4494 XEXP (x, 0)),
4495 subst_insn);
4496
4497 /* This should have produced two insns, each of which sets our
4498 placeholder. If the source of the second is a valid address,
4499 we can make put both sources together and make a split point
4500 in the middle. */
4501
4502 if (seq
4503 && NEXT_INSN (seq) != NULL_RTX
4504 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4505 && NONJUMP_INSN_P (seq)
4506 && GET_CODE (PATTERN (seq)) == SET
4507 && SET_DEST (PATTERN (seq)) == reg
4508 && ! reg_mentioned_p (reg,
4509 SET_SRC (PATTERN (seq)))
4510 && NONJUMP_INSN_P (NEXT_INSN (seq))
4511 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4512 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4513 && memory_address_addr_space_p
4514 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4515 MEM_ADDR_SPACE (x)))
4516 {
4517 rtx src1 = SET_SRC (PATTERN (seq));
4518 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4519
4520 /* Replace the placeholder in SRC2 with SRC1. If we can
4521 find where in SRC2 it was placed, that can become our
4522 split point and we can replace this address with SRC2.
4523 Just try two obvious places. */
4524
4525 src2 = replace_rtx (src2, reg, src1);
4526 split = 0;
4527 if (XEXP (src2, 0) == src1)
4528 split = &XEXP (src2, 0);
4529 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4530 && XEXP (XEXP (src2, 0), 0) == src1)
4531 split = &XEXP (XEXP (src2, 0), 0);
4532
4533 if (split)
4534 {
4535 SUBST (XEXP (x, 0), src2);
4536 return split;
4537 }
4538 }
4539
4540 /* If that didn't work, perhaps the first operand is complex and
4541 needs to be computed separately, so make a split point there.
4542 This will occur on machines that just support REG + CONST
4543 and have a constant moved through some previous computation. */
4544
4545 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4546 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4547 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4548 return &XEXP (XEXP (x, 0), 0);
4549 }
4550
4551 /* If we have a PLUS whose first operand is complex, try computing it
4552 separately by making a split there. */
4553 if (GET_CODE (XEXP (x, 0)) == PLUS
4554 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4555 MEM_ADDR_SPACE (x))
4556 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4557 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4558 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4559 return &XEXP (XEXP (x, 0), 0);
4560 break;
4561
4562 case SET:
4563 #ifdef HAVE_cc0
4564 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4565 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4566 we need to put the operand into a register. So split at that
4567 point. */
4568
4569 if (SET_DEST (x) == cc0_rtx
4570 && GET_CODE (SET_SRC (x)) != COMPARE
4571 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4572 && !OBJECT_P (SET_SRC (x))
4573 && ! (GET_CODE (SET_SRC (x)) == SUBREG
4574 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4575 return &SET_SRC (x);
4576 #endif
4577
4578 /* See if we can split SET_SRC as it stands. */
4579 split = find_split_point (&SET_SRC (x), insn, true);
4580 if (split && split != &SET_SRC (x))
4581 return split;
4582
4583 /* See if we can split SET_DEST as it stands. */
4584 split = find_split_point (&SET_DEST (x), insn, false);
4585 if (split && split != &SET_DEST (x))
4586 return split;
4587
4588 /* See if this is a bitfield assignment with everything constant. If
4589 so, this is an IOR of an AND, so split it into that. */
4590 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4591 && HWI_COMPUTABLE_MODE_P (GET_MODE (XEXP (SET_DEST (x), 0)))
4592 && CONST_INT_P (XEXP (SET_DEST (x), 1))
4593 && CONST_INT_P (XEXP (SET_DEST (x), 2))
4594 && CONST_INT_P (SET_SRC (x))
4595 && ((INTVAL (XEXP (SET_DEST (x), 1))
4596 + INTVAL (XEXP (SET_DEST (x), 2)))
4597 <= GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0))))
4598 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4599 {
4600 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4601 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4602 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4603 rtx dest = XEXP (SET_DEST (x), 0);
4604 enum machine_mode mode = GET_MODE (dest);
4605 unsigned HOST_WIDE_INT mask
4606 = ((unsigned HOST_WIDE_INT) 1 << len) - 1;
4607 rtx or_mask;
4608
4609 if (BITS_BIG_ENDIAN)
4610 pos = GET_MODE_PRECISION (mode) - len - pos;
4611
4612 or_mask = gen_int_mode (src << pos, mode);
4613 if (src == mask)
4614 SUBST (SET_SRC (x),
4615 simplify_gen_binary (IOR, mode, dest, or_mask));
4616 else
4617 {
4618 rtx negmask = gen_int_mode (~(mask << pos), mode);
4619 SUBST (SET_SRC (x),
4620 simplify_gen_binary (IOR, mode,
4621 simplify_gen_binary (AND, mode,
4622 dest, negmask),
4623 or_mask));
4624 }
4625
4626 SUBST (SET_DEST (x), dest);
4627
4628 split = find_split_point (&SET_SRC (x), insn, true);
4629 if (split && split != &SET_SRC (x))
4630 return split;
4631 }
4632
4633 /* Otherwise, see if this is an operation that we can split into two.
4634 If so, try to split that. */
4635 code = GET_CODE (SET_SRC (x));
4636
4637 switch (code)
4638 {
4639 case AND:
4640 /* If we are AND'ing with a large constant that is only a single
4641 bit and the result is only being used in a context where we
4642 need to know if it is zero or nonzero, replace it with a bit
4643 extraction. This will avoid the large constant, which might
4644 have taken more than one insn to make. If the constant were
4645 not a valid argument to the AND but took only one insn to make,
4646 this is no worse, but if it took more than one insn, it will
4647 be better. */
4648
4649 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4650 && REG_P (XEXP (SET_SRC (x), 0))
4651 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4652 && REG_P (SET_DEST (x))
4653 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
4654 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4655 && XEXP (*split, 0) == SET_DEST (x)
4656 && XEXP (*split, 1) == const0_rtx)
4657 {
4658 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4659 XEXP (SET_SRC (x), 0),
4660 pos, NULL_RTX, 1, 1, 0, 0);
4661 if (extraction != 0)
4662 {
4663 SUBST (SET_SRC (x), extraction);
4664 return find_split_point (loc, insn, false);
4665 }
4666 }
4667 break;
4668
4669 case NE:
4670 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4671 is known to be on, this can be converted into a NEG of a shift. */
4672 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
4673 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
4674 && 1 <= (pos = exact_log2
4675 (nonzero_bits (XEXP (SET_SRC (x), 0),
4676 GET_MODE (XEXP (SET_SRC (x), 0))))))
4677 {
4678 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
4679
4680 SUBST (SET_SRC (x),
4681 gen_rtx_NEG (mode,
4682 gen_rtx_LSHIFTRT (mode,
4683 XEXP (SET_SRC (x), 0),
4684 GEN_INT (pos))));
4685
4686 split = find_split_point (&SET_SRC (x), insn, true);
4687 if (split && split != &SET_SRC (x))
4688 return split;
4689 }
4690 break;
4691
4692 case SIGN_EXTEND:
4693 inner = XEXP (SET_SRC (x), 0);
4694
4695 /* We can't optimize if either mode is a partial integer
4696 mode as we don't know how many bits are significant
4697 in those modes. */
4698 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
4699 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
4700 break;
4701
4702 pos = 0;
4703 len = GET_MODE_PRECISION (GET_MODE (inner));
4704 unsignedp = 0;
4705 break;
4706
4707 case SIGN_EXTRACT:
4708 case ZERO_EXTRACT:
4709 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4710 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
4711 {
4712 inner = XEXP (SET_SRC (x), 0);
4713 len = INTVAL (XEXP (SET_SRC (x), 1));
4714 pos = INTVAL (XEXP (SET_SRC (x), 2));
4715
4716 if (BITS_BIG_ENDIAN)
4717 pos = GET_MODE_PRECISION (GET_MODE (inner)) - len - pos;
4718 unsignedp = (code == ZERO_EXTRACT);
4719 }
4720 break;
4721
4722 default:
4723 break;
4724 }
4725
4726 if (len && pos >= 0
4727 && pos + len <= GET_MODE_PRECISION (GET_MODE (inner)))
4728 {
4729 enum machine_mode mode = GET_MODE (SET_SRC (x));
4730
4731 /* For unsigned, we have a choice of a shift followed by an
4732 AND or two shifts. Use two shifts for field sizes where the
4733 constant might be too large. We assume here that we can
4734 always at least get 8-bit constants in an AND insn, which is
4735 true for every current RISC. */
4736
4737 if (unsignedp && len <= 8)
4738 {
4739 unsigned HOST_WIDE_INT mask
4740 = ((unsigned HOST_WIDE_INT) 1 << len) - 1;
4741 SUBST (SET_SRC (x),
4742 gen_rtx_AND (mode,
4743 gen_rtx_LSHIFTRT
4744 (mode, gen_lowpart (mode, inner),
4745 GEN_INT (pos)),
4746 gen_int_mode (mask, mode)));
4747
4748 split = find_split_point (&SET_SRC (x), insn, true);
4749 if (split && split != &SET_SRC (x))
4750 return split;
4751 }
4752 else
4753 {
4754 SUBST (SET_SRC (x),
4755 gen_rtx_fmt_ee
4756 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
4757 gen_rtx_ASHIFT (mode,
4758 gen_lowpart (mode, inner),
4759 GEN_INT (GET_MODE_PRECISION (mode)
4760 - len - pos)),
4761 GEN_INT (GET_MODE_PRECISION (mode) - len)));
4762
4763 split = find_split_point (&SET_SRC (x), insn, true);
4764 if (split && split != &SET_SRC (x))
4765 return split;
4766 }
4767 }
4768
4769 /* See if this is a simple operation with a constant as the second
4770 operand. It might be that this constant is out of range and hence
4771 could be used as a split point. */
4772 if (BINARY_P (SET_SRC (x))
4773 && CONSTANT_P (XEXP (SET_SRC (x), 1))
4774 && (OBJECT_P (XEXP (SET_SRC (x), 0))
4775 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
4776 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
4777 return &XEXP (SET_SRC (x), 1);
4778
4779 /* Finally, see if this is a simple operation with its first operand
4780 not in a register. The operation might require this operand in a
4781 register, so return it as a split point. We can always do this
4782 because if the first operand were another operation, we would have
4783 already found it as a split point. */
4784 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
4785 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
4786 return &XEXP (SET_SRC (x), 0);
4787
4788 return 0;
4789
4790 case AND:
4791 case IOR:
4792 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
4793 it is better to write this as (not (ior A B)) so we can split it.
4794 Similarly for IOR. */
4795 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
4796 {
4797 SUBST (*loc,
4798 gen_rtx_NOT (GET_MODE (x),
4799 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
4800 GET_MODE (x),
4801 XEXP (XEXP (x, 0), 0),
4802 XEXP (XEXP (x, 1), 0))));
4803 return find_split_point (loc, insn, set_src);
4804 }
4805
4806 /* Many RISC machines have a large set of logical insns. If the
4807 second operand is a NOT, put it first so we will try to split the
4808 other operand first. */
4809 if (GET_CODE (XEXP (x, 1)) == NOT)
4810 {
4811 rtx tem = XEXP (x, 0);
4812 SUBST (XEXP (x, 0), XEXP (x, 1));
4813 SUBST (XEXP (x, 1), tem);
4814 }
4815 break;
4816
4817 case PLUS:
4818 case MINUS:
4819 /* Canonicalization can produce (minus A (mult B C)), where C is a
4820 constant. It may be better to try splitting (plus (mult B -C) A)
4821 instead if this isn't a multiply by a power of two. */
4822 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
4823 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4824 && exact_log2 (INTVAL (XEXP (XEXP (x, 1), 1))) < 0)
4825 {
4826 enum machine_mode mode = GET_MODE (x);
4827 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
4828 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
4829 SUBST (*loc, gen_rtx_PLUS (mode,
4830 gen_rtx_MULT (mode,
4831 XEXP (XEXP (x, 1), 0),
4832 gen_int_mode (other_int,
4833 mode)),
4834 XEXP (x, 0)));
4835 return find_split_point (loc, insn, set_src);
4836 }
4837
4838 /* Split at a multiply-accumulate instruction. However if this is
4839 the SET_SRC, we likely do not have such an instruction and it's
4840 worthless to try this split. */
4841 if (!set_src && GET_CODE (XEXP (x, 0)) == MULT)
4842 return loc;
4843
4844 default:
4845 break;
4846 }
4847
4848 /* Otherwise, select our actions depending on our rtx class. */
4849 switch (GET_RTX_CLASS (code))
4850 {
4851 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
4852 case RTX_TERNARY:
4853 split = find_split_point (&XEXP (x, 2), insn, false);
4854 if (split)
4855 return split;
4856 /* ... fall through ... */
4857 case RTX_BIN_ARITH:
4858 case RTX_COMM_ARITH:
4859 case RTX_COMPARE:
4860 case RTX_COMM_COMPARE:
4861 split = find_split_point (&XEXP (x, 1), insn, false);
4862 if (split)
4863 return split;
4864 /* ... fall through ... */
4865 case RTX_UNARY:
4866 /* Some machines have (and (shift ...) ...) insns. If X is not
4867 an AND, but XEXP (X, 0) is, use it as our split point. */
4868 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
4869 return &XEXP (x, 0);
4870
4871 split = find_split_point (&XEXP (x, 0), insn, false);
4872 if (split)
4873 return split;
4874 return loc;
4875
4876 default:
4877 /* Otherwise, we don't have a split point. */
4878 return 0;
4879 }
4880 }
4881 \f
4882 /* Throughout X, replace FROM with TO, and return the result.
4883 The result is TO if X is FROM;
4884 otherwise the result is X, but its contents may have been modified.
4885 If they were modified, a record was made in undobuf so that
4886 undo_all will (among other things) return X to its original state.
4887
4888 If the number of changes necessary is too much to record to undo,
4889 the excess changes are not made, so the result is invalid.
4890 The changes already made can still be undone.
4891 undobuf.num_undo is incremented for such changes, so by testing that
4892 the caller can tell whether the result is valid.
4893
4894 `n_occurrences' is incremented each time FROM is replaced.
4895
4896 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
4897
4898 IN_COND is nonzero if we are at the top level of a condition.
4899
4900 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
4901 by copying if `n_occurrences' is nonzero. */
4902
4903 static rtx
4904 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
4905 {
4906 enum rtx_code code = GET_CODE (x);
4907 enum machine_mode op0_mode = VOIDmode;
4908 const char *fmt;
4909 int len, i;
4910 rtx new_rtx;
4911
4912 /* Two expressions are equal if they are identical copies of a shared
4913 RTX or if they are both registers with the same register number
4914 and mode. */
4915
4916 #define COMBINE_RTX_EQUAL_P(X,Y) \
4917 ((X) == (Y) \
4918 || (REG_P (X) && REG_P (Y) \
4919 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
4920
4921 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
4922 {
4923 n_occurrences++;
4924 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
4925 }
4926
4927 /* If X and FROM are the same register but different modes, they
4928 will not have been seen as equal above. However, the log links code
4929 will make a LOG_LINKS entry for that case. If we do nothing, we
4930 will try to rerecognize our original insn and, when it succeeds,
4931 we will delete the feeding insn, which is incorrect.
4932
4933 So force this insn not to match in this (rare) case. */
4934 if (! in_dest && code == REG && REG_P (from)
4935 && reg_overlap_mentioned_p (x, from))
4936 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
4937
4938 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
4939 of which may contain things that can be combined. */
4940 if (code != MEM && code != LO_SUM && OBJECT_P (x))
4941 return x;
4942
4943 /* It is possible to have a subexpression appear twice in the insn.
4944 Suppose that FROM is a register that appears within TO.
4945 Then, after that subexpression has been scanned once by `subst',
4946 the second time it is scanned, TO may be found. If we were
4947 to scan TO here, we would find FROM within it and create a
4948 self-referent rtl structure which is completely wrong. */
4949 if (COMBINE_RTX_EQUAL_P (x, to))
4950 return to;
4951
4952 /* Parallel asm_operands need special attention because all of the
4953 inputs are shared across the arms. Furthermore, unsharing the
4954 rtl results in recognition failures. Failure to handle this case
4955 specially can result in circular rtl.
4956
4957 Solve this by doing a normal pass across the first entry of the
4958 parallel, and only processing the SET_DESTs of the subsequent
4959 entries. Ug. */
4960
4961 if (code == PARALLEL
4962 && GET_CODE (XVECEXP (x, 0, 0)) == SET
4963 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
4964 {
4965 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
4966
4967 /* If this substitution failed, this whole thing fails. */
4968 if (GET_CODE (new_rtx) == CLOBBER
4969 && XEXP (new_rtx, 0) == const0_rtx)
4970 return new_rtx;
4971
4972 SUBST (XVECEXP (x, 0, 0), new_rtx);
4973
4974 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
4975 {
4976 rtx dest = SET_DEST (XVECEXP (x, 0, i));
4977
4978 if (!REG_P (dest)
4979 && GET_CODE (dest) != CC0
4980 && GET_CODE (dest) != PC)
4981 {
4982 new_rtx = subst (dest, from, to, 0, 0, unique_copy);
4983
4984 /* If this substitution failed, this whole thing fails. */
4985 if (GET_CODE (new_rtx) == CLOBBER
4986 && XEXP (new_rtx, 0) == const0_rtx)
4987 return new_rtx;
4988
4989 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
4990 }
4991 }
4992 }
4993 else
4994 {
4995 len = GET_RTX_LENGTH (code);
4996 fmt = GET_RTX_FORMAT (code);
4997
4998 /* We don't need to process a SET_DEST that is a register, CC0,
4999 or PC, so set up to skip this common case. All other cases
5000 where we want to suppress replacing something inside a
5001 SET_SRC are handled via the IN_DEST operand. */
5002 if (code == SET
5003 && (REG_P (SET_DEST (x))
5004 || GET_CODE (SET_DEST (x)) == CC0
5005 || GET_CODE (SET_DEST (x)) == PC))
5006 fmt = "ie";
5007
5008 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5009 constant. */
5010 if (fmt[0] == 'e')
5011 op0_mode = GET_MODE (XEXP (x, 0));
5012
5013 for (i = 0; i < len; i++)
5014 {
5015 if (fmt[i] == 'E')
5016 {
5017 int j;
5018 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5019 {
5020 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5021 {
5022 new_rtx = (unique_copy && n_occurrences
5023 ? copy_rtx (to) : to);
5024 n_occurrences++;
5025 }
5026 else
5027 {
5028 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5029 unique_copy);
5030
5031 /* If this substitution failed, this whole thing
5032 fails. */
5033 if (GET_CODE (new_rtx) == CLOBBER
5034 && XEXP (new_rtx, 0) == const0_rtx)
5035 return new_rtx;
5036 }
5037
5038 SUBST (XVECEXP (x, i, j), new_rtx);
5039 }
5040 }
5041 else if (fmt[i] == 'e')
5042 {
5043 /* If this is a register being set, ignore it. */
5044 new_rtx = XEXP (x, i);
5045 if (in_dest
5046 && i == 0
5047 && (((code == SUBREG || code == ZERO_EXTRACT)
5048 && REG_P (new_rtx))
5049 || code == STRICT_LOW_PART))
5050 ;
5051
5052 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5053 {
5054 /* In general, don't install a subreg involving two
5055 modes not tieable. It can worsen register
5056 allocation, and can even make invalid reload
5057 insns, since the reg inside may need to be copied
5058 from in the outside mode, and that may be invalid
5059 if it is an fp reg copied in integer mode.
5060
5061 We allow two exceptions to this: It is valid if
5062 it is inside another SUBREG and the mode of that
5063 SUBREG and the mode of the inside of TO is
5064 tieable and it is valid if X is a SET that copies
5065 FROM to CC0. */
5066
5067 if (GET_CODE (to) == SUBREG
5068 && ! MODES_TIEABLE_P (GET_MODE (to),
5069 GET_MODE (SUBREG_REG (to)))
5070 && ! (code == SUBREG
5071 && MODES_TIEABLE_P (GET_MODE (x),
5072 GET_MODE (SUBREG_REG (to))))
5073 #ifdef HAVE_cc0
5074 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
5075 #endif
5076 )
5077 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5078
5079 #ifdef CANNOT_CHANGE_MODE_CLASS
5080 if (code == SUBREG
5081 && REG_P (to)
5082 && REGNO (to) < FIRST_PSEUDO_REGISTER
5083 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
5084 GET_MODE (to),
5085 GET_MODE (x)))
5086 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5087 #endif
5088
5089 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5090 n_occurrences++;
5091 }
5092 else
5093 /* If we are in a SET_DEST, suppress most cases unless we
5094 have gone inside a MEM, in which case we want to
5095 simplify the address. We assume here that things that
5096 are actually part of the destination have their inner
5097 parts in the first expression. This is true for SUBREG,
5098 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5099 things aside from REG and MEM that should appear in a
5100 SET_DEST. */
5101 new_rtx = subst (XEXP (x, i), from, to,
5102 (((in_dest
5103 && (code == SUBREG || code == STRICT_LOW_PART
5104 || code == ZERO_EXTRACT))
5105 || code == SET)
5106 && i == 0),
5107 code == IF_THEN_ELSE && i == 0,
5108 unique_copy);
5109
5110 /* If we found that we will have to reject this combination,
5111 indicate that by returning the CLOBBER ourselves, rather than
5112 an expression containing it. This will speed things up as
5113 well as prevent accidents where two CLOBBERs are considered
5114 to be equal, thus producing an incorrect simplification. */
5115
5116 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5117 return new_rtx;
5118
5119 if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5120 {
5121 enum machine_mode mode = GET_MODE (x);
5122
5123 x = simplify_subreg (GET_MODE (x), new_rtx,
5124 GET_MODE (SUBREG_REG (x)),
5125 SUBREG_BYTE (x));
5126 if (! x)
5127 x = gen_rtx_CLOBBER (mode, const0_rtx);
5128 }
5129 else if (CONST_INT_P (new_rtx)
5130 && GET_CODE (x) == ZERO_EXTEND)
5131 {
5132 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
5133 new_rtx, GET_MODE (XEXP (x, 0)));
5134 gcc_assert (x);
5135 }
5136 else
5137 SUBST (XEXP (x, i), new_rtx);
5138 }
5139 }
5140 }
5141
5142 /* Check if we are loading something from the constant pool via float
5143 extension; in this case we would undo compress_float_constant
5144 optimization and degenerate constant load to an immediate value. */
5145 if (GET_CODE (x) == FLOAT_EXTEND
5146 && MEM_P (XEXP (x, 0))
5147 && MEM_READONLY_P (XEXP (x, 0)))
5148 {
5149 rtx tmp = avoid_constant_pool_reference (x);
5150 if (x != tmp)
5151 return x;
5152 }
5153
5154 /* Try to simplify X. If the simplification changed the code, it is likely
5155 that further simplification will help, so loop, but limit the number
5156 of repetitions that will be performed. */
5157
5158 for (i = 0; i < 4; i++)
5159 {
5160 /* If X is sufficiently simple, don't bother trying to do anything
5161 with it. */
5162 if (code != CONST_INT && code != REG && code != CLOBBER)
5163 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5164
5165 if (GET_CODE (x) == code)
5166 break;
5167
5168 code = GET_CODE (x);
5169
5170 /* We no longer know the original mode of operand 0 since we
5171 have changed the form of X) */
5172 op0_mode = VOIDmode;
5173 }
5174
5175 return x;
5176 }
5177 \f
5178 /* Simplify X, a piece of RTL. We just operate on the expression at the
5179 outer level; call `subst' to simplify recursively. Return the new
5180 expression.
5181
5182 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5183 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5184 of a condition. */
5185
5186 static rtx
5187 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest,
5188 int in_cond)
5189 {
5190 enum rtx_code code = GET_CODE (x);
5191 enum machine_mode mode = GET_MODE (x);
5192 rtx temp;
5193 int i;
5194
5195 /* If this is a commutative operation, put a constant last and a complex
5196 expression first. We don't need to do this for comparisons here. */
5197 if (COMMUTATIVE_ARITH_P (x)
5198 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5199 {
5200 temp = XEXP (x, 0);
5201 SUBST (XEXP (x, 0), XEXP (x, 1));
5202 SUBST (XEXP (x, 1), temp);
5203 }
5204
5205 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5206 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5207 things. Check for cases where both arms are testing the same
5208 condition.
5209
5210 Don't do anything if all operands are very simple. */
5211
5212 if ((BINARY_P (x)
5213 && ((!OBJECT_P (XEXP (x, 0))
5214 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5215 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5216 || (!OBJECT_P (XEXP (x, 1))
5217 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5218 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5219 || (UNARY_P (x)
5220 && (!OBJECT_P (XEXP (x, 0))
5221 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5222 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5223 {
5224 rtx cond, true_rtx, false_rtx;
5225
5226 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5227 if (cond != 0
5228 /* If everything is a comparison, what we have is highly unlikely
5229 to be simpler, so don't use it. */
5230 && ! (COMPARISON_P (x)
5231 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
5232 {
5233 rtx cop1 = const0_rtx;
5234 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5235
5236 if (cond_code == NE && COMPARISON_P (cond))
5237 return x;
5238
5239 /* Simplify the alternative arms; this may collapse the true and
5240 false arms to store-flag values. Be careful to use copy_rtx
5241 here since true_rtx or false_rtx might share RTL with x as a
5242 result of the if_then_else_cond call above. */
5243 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5244 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5245
5246 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5247 is unlikely to be simpler. */
5248 if (general_operand (true_rtx, VOIDmode)
5249 && general_operand (false_rtx, VOIDmode))
5250 {
5251 enum rtx_code reversed;
5252
5253 /* Restarting if we generate a store-flag expression will cause
5254 us to loop. Just drop through in this case. */
5255
5256 /* If the result values are STORE_FLAG_VALUE and zero, we can
5257 just make the comparison operation. */
5258 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5259 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5260 cond, cop1);
5261 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5262 && ((reversed = reversed_comparison_code_parts
5263 (cond_code, cond, cop1, NULL))
5264 != UNKNOWN))
5265 x = simplify_gen_relational (reversed, mode, VOIDmode,
5266 cond, cop1);
5267
5268 /* Likewise, we can make the negate of a comparison operation
5269 if the result values are - STORE_FLAG_VALUE and zero. */
5270 else if (CONST_INT_P (true_rtx)
5271 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5272 && false_rtx == const0_rtx)
5273 x = simplify_gen_unary (NEG, mode,
5274 simplify_gen_relational (cond_code,
5275 mode, VOIDmode,
5276 cond, cop1),
5277 mode);
5278 else if (CONST_INT_P (false_rtx)
5279 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5280 && true_rtx == const0_rtx
5281 && ((reversed = reversed_comparison_code_parts
5282 (cond_code, cond, cop1, NULL))
5283 != UNKNOWN))
5284 x = simplify_gen_unary (NEG, mode,
5285 simplify_gen_relational (reversed,
5286 mode, VOIDmode,
5287 cond, cop1),
5288 mode);
5289 else
5290 return gen_rtx_IF_THEN_ELSE (mode,
5291 simplify_gen_relational (cond_code,
5292 mode,
5293 VOIDmode,
5294 cond,
5295 cop1),
5296 true_rtx, false_rtx);
5297
5298 code = GET_CODE (x);
5299 op0_mode = VOIDmode;
5300 }
5301 }
5302 }
5303
5304 /* Try to fold this expression in case we have constants that weren't
5305 present before. */
5306 temp = 0;
5307 switch (GET_RTX_CLASS (code))
5308 {
5309 case RTX_UNARY:
5310 if (op0_mode == VOIDmode)
5311 op0_mode = GET_MODE (XEXP (x, 0));
5312 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5313 break;
5314 case RTX_COMPARE:
5315 case RTX_COMM_COMPARE:
5316 {
5317 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5318 if (cmp_mode == VOIDmode)
5319 {
5320 cmp_mode = GET_MODE (XEXP (x, 1));
5321 if (cmp_mode == VOIDmode)
5322 cmp_mode = op0_mode;
5323 }
5324 temp = simplify_relational_operation (code, mode, cmp_mode,
5325 XEXP (x, 0), XEXP (x, 1));
5326 }
5327 break;
5328 case RTX_COMM_ARITH:
5329 case RTX_BIN_ARITH:
5330 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5331 break;
5332 case RTX_BITFIELD_OPS:
5333 case RTX_TERNARY:
5334 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5335 XEXP (x, 1), XEXP (x, 2));
5336 break;
5337 default:
5338 break;
5339 }
5340
5341 if (temp)
5342 {
5343 x = temp;
5344 code = GET_CODE (temp);
5345 op0_mode = VOIDmode;
5346 mode = GET_MODE (temp);
5347 }
5348
5349 /* First see if we can apply the inverse distributive law. */
5350 if (code == PLUS || code == MINUS
5351 || code == AND || code == IOR || code == XOR)
5352 {
5353 x = apply_distributive_law (x);
5354 code = GET_CODE (x);
5355 op0_mode = VOIDmode;
5356 }
5357
5358 /* If CODE is an associative operation not otherwise handled, see if we
5359 can associate some operands. This can win if they are constants or
5360 if they are logically related (i.e. (a & b) & a). */
5361 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5362 || code == AND || code == IOR || code == XOR
5363 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5364 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5365 || (flag_associative_math && FLOAT_MODE_P (mode))))
5366 {
5367 if (GET_CODE (XEXP (x, 0)) == code)
5368 {
5369 rtx other = XEXP (XEXP (x, 0), 0);
5370 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5371 rtx inner_op1 = XEXP (x, 1);
5372 rtx inner;
5373
5374 /* Make sure we pass the constant operand if any as the second
5375 one if this is a commutative operation. */
5376 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5377 {
5378 rtx tem = inner_op0;
5379 inner_op0 = inner_op1;
5380 inner_op1 = tem;
5381 }
5382 inner = simplify_binary_operation (code == MINUS ? PLUS
5383 : code == DIV ? MULT
5384 : code,
5385 mode, inner_op0, inner_op1);
5386
5387 /* For commutative operations, try the other pair if that one
5388 didn't simplify. */
5389 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5390 {
5391 other = XEXP (XEXP (x, 0), 1);
5392 inner = simplify_binary_operation (code, mode,
5393 XEXP (XEXP (x, 0), 0),
5394 XEXP (x, 1));
5395 }
5396
5397 if (inner)
5398 return simplify_gen_binary (code, mode, other, inner);
5399 }
5400 }
5401
5402 /* A little bit of algebraic simplification here. */
5403 switch (code)
5404 {
5405 case MEM:
5406 /* Ensure that our address has any ASHIFTs converted to MULT in case
5407 address-recognizing predicates are called later. */
5408 temp = make_compound_operation (XEXP (x, 0), MEM);
5409 SUBST (XEXP (x, 0), temp);
5410 break;
5411
5412 case SUBREG:
5413 if (op0_mode == VOIDmode)
5414 op0_mode = GET_MODE (SUBREG_REG (x));
5415
5416 /* See if this can be moved to simplify_subreg. */
5417 if (CONSTANT_P (SUBREG_REG (x))
5418 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5419 /* Don't call gen_lowpart if the inner mode
5420 is VOIDmode and we cannot simplify it, as SUBREG without
5421 inner mode is invalid. */
5422 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5423 || gen_lowpart_common (mode, SUBREG_REG (x))))
5424 return gen_lowpart (mode, SUBREG_REG (x));
5425
5426 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5427 break;
5428 {
5429 rtx temp;
5430 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5431 SUBREG_BYTE (x));
5432 if (temp)
5433 return temp;
5434
5435 /* If op is known to have all lower bits zero, the result is zero. */
5436 if (!in_dest
5437 && SCALAR_INT_MODE_P (mode)
5438 && SCALAR_INT_MODE_P (op0_mode)
5439 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (op0_mode)
5440 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5441 && HWI_COMPUTABLE_MODE_P (op0_mode)
5442 && (nonzero_bits (SUBREG_REG (x), op0_mode)
5443 & GET_MODE_MASK (mode)) == 0)
5444 return CONST0_RTX (mode);
5445 }
5446
5447 /* Don't change the mode of the MEM if that would change the meaning
5448 of the address. */
5449 if (MEM_P (SUBREG_REG (x))
5450 && (MEM_VOLATILE_P (SUBREG_REG (x))
5451 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
5452 MEM_ADDR_SPACE (SUBREG_REG (x)))))
5453 return gen_rtx_CLOBBER (mode, const0_rtx);
5454
5455 /* Note that we cannot do any narrowing for non-constants since
5456 we might have been counting on using the fact that some bits were
5457 zero. We now do this in the SET. */
5458
5459 break;
5460
5461 case NEG:
5462 temp = expand_compound_operation (XEXP (x, 0));
5463
5464 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5465 replaced by (lshiftrt X C). This will convert
5466 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5467
5468 if (GET_CODE (temp) == ASHIFTRT
5469 && CONST_INT_P (XEXP (temp, 1))
5470 && INTVAL (XEXP (temp, 1)) == GET_MODE_PRECISION (mode) - 1)
5471 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5472 INTVAL (XEXP (temp, 1)));
5473
5474 /* If X has only a single bit that might be nonzero, say, bit I, convert
5475 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5476 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5477 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5478 or a SUBREG of one since we'd be making the expression more
5479 complex if it was just a register. */
5480
5481 if (!REG_P (temp)
5482 && ! (GET_CODE (temp) == SUBREG
5483 && REG_P (SUBREG_REG (temp)))
5484 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
5485 {
5486 rtx temp1 = simplify_shift_const
5487 (NULL_RTX, ASHIFTRT, mode,
5488 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
5489 GET_MODE_PRECISION (mode) - 1 - i),
5490 GET_MODE_PRECISION (mode) - 1 - i);
5491
5492 /* If all we did was surround TEMP with the two shifts, we
5493 haven't improved anything, so don't use it. Otherwise,
5494 we are better off with TEMP1. */
5495 if (GET_CODE (temp1) != ASHIFTRT
5496 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5497 || XEXP (XEXP (temp1, 0), 0) != temp)
5498 return temp1;
5499 }
5500 break;
5501
5502 case TRUNCATE:
5503 /* We can't handle truncation to a partial integer mode here
5504 because we don't know the real bitsize of the partial
5505 integer mode. */
5506 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5507 break;
5508
5509 if (HWI_COMPUTABLE_MODE_P (mode))
5510 SUBST (XEXP (x, 0),
5511 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5512 GET_MODE_MASK (mode), 0));
5513
5514 /* We can truncate a constant value and return it. */
5515 if (CONST_INT_P (XEXP (x, 0)))
5516 return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5517
5518 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5519 whose value is a comparison can be replaced with a subreg if
5520 STORE_FLAG_VALUE permits. */
5521 if (HWI_COMPUTABLE_MODE_P (mode)
5522 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5523 && (temp = get_last_value (XEXP (x, 0)))
5524 && COMPARISON_P (temp))
5525 return gen_lowpart (mode, XEXP (x, 0));
5526 break;
5527
5528 case CONST:
5529 /* (const (const X)) can become (const X). Do it this way rather than
5530 returning the inner CONST since CONST can be shared with a
5531 REG_EQUAL note. */
5532 if (GET_CODE (XEXP (x, 0)) == CONST)
5533 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
5534 break;
5535
5536 #ifdef HAVE_lo_sum
5537 case LO_SUM:
5538 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5539 can add in an offset. find_split_point will split this address up
5540 again if it doesn't match. */
5541 if (GET_CODE (XEXP (x, 0)) == HIGH
5542 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5543 return XEXP (x, 1);
5544 break;
5545 #endif
5546
5547 case PLUS:
5548 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5549 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5550 bit-field and can be replaced by either a sign_extend or a
5551 sign_extract. The `and' may be a zero_extend and the two
5552 <c>, -<c> constants may be reversed. */
5553 if (GET_CODE (XEXP (x, 0)) == XOR
5554 && CONST_INT_P (XEXP (x, 1))
5555 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
5556 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
5557 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
5558 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
5559 && HWI_COMPUTABLE_MODE_P (mode)
5560 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
5561 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5562 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
5563 == ((unsigned HOST_WIDE_INT) 1 << (i + 1)) - 1))
5564 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
5565 && (GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
5566 == (unsigned int) i + 1))))
5567 return simplify_shift_const
5568 (NULL_RTX, ASHIFTRT, mode,
5569 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5570 XEXP (XEXP (XEXP (x, 0), 0), 0),
5571 GET_MODE_PRECISION (mode) - (i + 1)),
5572 GET_MODE_PRECISION (mode) - (i + 1));
5573
5574 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5575 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5576 the bitsize of the mode - 1. This allows simplification of
5577 "a = (b & 8) == 0;" */
5578 if (XEXP (x, 1) == constm1_rtx
5579 && !REG_P (XEXP (x, 0))
5580 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5581 && REG_P (SUBREG_REG (XEXP (x, 0))))
5582 && nonzero_bits (XEXP (x, 0), mode) == 1)
5583 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
5584 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5585 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
5586 GET_MODE_PRECISION (mode) - 1),
5587 GET_MODE_PRECISION (mode) - 1);
5588
5589 /* If we are adding two things that have no bits in common, convert
5590 the addition into an IOR. This will often be further simplified,
5591 for example in cases like ((a & 1) + (a & 2)), which can
5592 become a & 3. */
5593
5594 if (HWI_COMPUTABLE_MODE_P (mode)
5595 && (nonzero_bits (XEXP (x, 0), mode)
5596 & nonzero_bits (XEXP (x, 1), mode)) == 0)
5597 {
5598 /* Try to simplify the expression further. */
5599 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
5600 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
5601
5602 /* If we could, great. If not, do not go ahead with the IOR
5603 replacement, since PLUS appears in many special purpose
5604 address arithmetic instructions. */
5605 if (GET_CODE (temp) != CLOBBER
5606 && (GET_CODE (temp) != IOR
5607 || ((XEXP (temp, 0) != XEXP (x, 0)
5608 || XEXP (temp, 1) != XEXP (x, 1))
5609 && (XEXP (temp, 0) != XEXP (x, 1)
5610 || XEXP (temp, 1) != XEXP (x, 0)))))
5611 return temp;
5612 }
5613 break;
5614
5615 case MINUS:
5616 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
5617 (and <foo> (const_int pow2-1)) */
5618 if (GET_CODE (XEXP (x, 1)) == AND
5619 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
5620 && exact_log2 (-UINTVAL (XEXP (XEXP (x, 1), 1))) >= 0
5621 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
5622 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
5623 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
5624 break;
5625
5626 case MULT:
5627 /* If we have (mult (plus A B) C), apply the distributive law and then
5628 the inverse distributive law to see if things simplify. This
5629 occurs mostly in addresses, often when unrolling loops. */
5630
5631 if (GET_CODE (XEXP (x, 0)) == PLUS)
5632 {
5633 rtx result = distribute_and_simplify_rtx (x, 0);
5634 if (result)
5635 return result;
5636 }
5637
5638 /* Try simplify a*(b/c) as (a*b)/c. */
5639 if (FLOAT_MODE_P (mode) && flag_associative_math
5640 && GET_CODE (XEXP (x, 0)) == DIV)
5641 {
5642 rtx tem = simplify_binary_operation (MULT, mode,
5643 XEXP (XEXP (x, 0), 0),
5644 XEXP (x, 1));
5645 if (tem)
5646 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
5647 }
5648 break;
5649
5650 case UDIV:
5651 /* If this is a divide by a power of two, treat it as a shift if
5652 its first operand is a shift. */
5653 if (CONST_INT_P (XEXP (x, 1))
5654 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
5655 && (GET_CODE (XEXP (x, 0)) == ASHIFT
5656 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
5657 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
5658 || GET_CODE (XEXP (x, 0)) == ROTATE
5659 || GET_CODE (XEXP (x, 0)) == ROTATERT))
5660 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
5661 break;
5662
5663 case EQ: case NE:
5664 case GT: case GTU: case GE: case GEU:
5665 case LT: case LTU: case LE: case LEU:
5666 case UNEQ: case LTGT:
5667 case UNGT: case UNGE:
5668 case UNLT: case UNLE:
5669 case UNORDERED: case ORDERED:
5670 /* If the first operand is a condition code, we can't do anything
5671 with it. */
5672 if (GET_CODE (XEXP (x, 0)) == COMPARE
5673 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
5674 && ! CC0_P (XEXP (x, 0))))
5675 {
5676 rtx op0 = XEXP (x, 0);
5677 rtx op1 = XEXP (x, 1);
5678 enum rtx_code new_code;
5679
5680 if (GET_CODE (op0) == COMPARE)
5681 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5682
5683 /* Simplify our comparison, if possible. */
5684 new_code = simplify_comparison (code, &op0, &op1);
5685
5686 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
5687 if only the low-order bit is possibly nonzero in X (such as when
5688 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
5689 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
5690 known to be either 0 or -1, NE becomes a NEG and EQ becomes
5691 (plus X 1).
5692
5693 Remove any ZERO_EXTRACT we made when thinking this was a
5694 comparison. It may now be simpler to use, e.g., an AND. If a
5695 ZERO_EXTRACT is indeed appropriate, it will be placed back by
5696 the call to make_compound_operation in the SET case.
5697
5698 Don't apply these optimizations if the caller would
5699 prefer a comparison rather than a value.
5700 E.g., for the condition in an IF_THEN_ELSE most targets need
5701 an explicit comparison. */
5702
5703 if (in_cond)
5704 ;
5705
5706 else if (STORE_FLAG_VALUE == 1
5707 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5708 && op1 == const0_rtx
5709 && mode == GET_MODE (op0)
5710 && nonzero_bits (op0, mode) == 1)
5711 return gen_lowpart (mode,
5712 expand_compound_operation (op0));
5713
5714 else if (STORE_FLAG_VALUE == 1
5715 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5716 && op1 == const0_rtx
5717 && mode == GET_MODE (op0)
5718 && (num_sign_bit_copies (op0, mode)
5719 == GET_MODE_PRECISION (mode)))
5720 {
5721 op0 = expand_compound_operation (op0);
5722 return simplify_gen_unary (NEG, mode,
5723 gen_lowpart (mode, op0),
5724 mode);
5725 }
5726
5727 else if (STORE_FLAG_VALUE == 1
5728 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5729 && op1 == const0_rtx
5730 && mode == GET_MODE (op0)
5731 && nonzero_bits (op0, mode) == 1)
5732 {
5733 op0 = expand_compound_operation (op0);
5734 return simplify_gen_binary (XOR, mode,
5735 gen_lowpart (mode, op0),
5736 const1_rtx);
5737 }
5738
5739 else if (STORE_FLAG_VALUE == 1
5740 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5741 && op1 == const0_rtx
5742 && mode == GET_MODE (op0)
5743 && (num_sign_bit_copies (op0, mode)
5744 == GET_MODE_PRECISION (mode)))
5745 {
5746 op0 = expand_compound_operation (op0);
5747 return plus_constant (mode, gen_lowpart (mode, op0), 1);
5748 }
5749
5750 /* If STORE_FLAG_VALUE is -1, we have cases similar to
5751 those above. */
5752 if (in_cond)
5753 ;
5754
5755 else if (STORE_FLAG_VALUE == -1
5756 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5757 && op1 == const0_rtx
5758 && (num_sign_bit_copies (op0, mode)
5759 == GET_MODE_PRECISION (mode)))
5760 return gen_lowpart (mode,
5761 expand_compound_operation (op0));
5762
5763 else if (STORE_FLAG_VALUE == -1
5764 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5765 && op1 == const0_rtx
5766 && mode == GET_MODE (op0)
5767 && nonzero_bits (op0, mode) == 1)
5768 {
5769 op0 = expand_compound_operation (op0);
5770 return simplify_gen_unary (NEG, mode,
5771 gen_lowpart (mode, op0),
5772 mode);
5773 }
5774
5775 else if (STORE_FLAG_VALUE == -1
5776 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5777 && op1 == const0_rtx
5778 && mode == GET_MODE (op0)
5779 && (num_sign_bit_copies (op0, mode)
5780 == GET_MODE_PRECISION (mode)))
5781 {
5782 op0 = expand_compound_operation (op0);
5783 return simplify_gen_unary (NOT, mode,
5784 gen_lowpart (mode, op0),
5785 mode);
5786 }
5787
5788 /* If X is 0/1, (eq X 0) is X-1. */
5789 else if (STORE_FLAG_VALUE == -1
5790 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5791 && op1 == const0_rtx
5792 && mode == GET_MODE (op0)
5793 && nonzero_bits (op0, mode) == 1)
5794 {
5795 op0 = expand_compound_operation (op0);
5796 return plus_constant (mode, gen_lowpart (mode, op0), -1);
5797 }
5798
5799 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
5800 one bit that might be nonzero, we can convert (ne x 0) to
5801 (ashift x c) where C puts the bit in the sign bit. Remove any
5802 AND with STORE_FLAG_VALUE when we are done, since we are only
5803 going to test the sign bit. */
5804 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5805 && HWI_COMPUTABLE_MODE_P (mode)
5806 && val_signbit_p (mode, STORE_FLAG_VALUE)
5807 && op1 == const0_rtx
5808 && mode == GET_MODE (op0)
5809 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
5810 {
5811 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
5812 expand_compound_operation (op0),
5813 GET_MODE_PRECISION (mode) - 1 - i);
5814 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
5815 return XEXP (x, 0);
5816 else
5817 return x;
5818 }
5819
5820 /* If the code changed, return a whole new comparison.
5821 We also need to avoid using SUBST in cases where
5822 simplify_comparison has widened a comparison with a CONST_INT,
5823 since in that case the wider CONST_INT may fail the sanity
5824 checks in do_SUBST. */
5825 if (new_code != code
5826 || (CONST_INT_P (op1)
5827 && GET_MODE (op0) != GET_MODE (XEXP (x, 0))
5828 && GET_MODE (op0) != GET_MODE (XEXP (x, 1))))
5829 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
5830
5831 /* Otherwise, keep this operation, but maybe change its operands.
5832 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
5833 SUBST (XEXP (x, 0), op0);
5834 SUBST (XEXP (x, 1), op1);
5835 }
5836 break;
5837
5838 case IF_THEN_ELSE:
5839 return simplify_if_then_else (x);
5840
5841 case ZERO_EXTRACT:
5842 case SIGN_EXTRACT:
5843 case ZERO_EXTEND:
5844 case SIGN_EXTEND:
5845 /* If we are processing SET_DEST, we are done. */
5846 if (in_dest)
5847 return x;
5848
5849 return expand_compound_operation (x);
5850
5851 case SET:
5852 return simplify_set (x);
5853
5854 case AND:
5855 case IOR:
5856 return simplify_logical (x);
5857
5858 case ASHIFT:
5859 case LSHIFTRT:
5860 case ASHIFTRT:
5861 case ROTATE:
5862 case ROTATERT:
5863 /* If this is a shift by a constant amount, simplify it. */
5864 if (CONST_INT_P (XEXP (x, 1)))
5865 return simplify_shift_const (x, code, mode, XEXP (x, 0),
5866 INTVAL (XEXP (x, 1)));
5867
5868 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
5869 SUBST (XEXP (x, 1),
5870 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
5871 ((unsigned HOST_WIDE_INT) 1
5872 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
5873 - 1,
5874 0));
5875 break;
5876
5877 default:
5878 break;
5879 }
5880
5881 return x;
5882 }
5883 \f
5884 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
5885
5886 static rtx
5887 simplify_if_then_else (rtx x)
5888 {
5889 enum machine_mode mode = GET_MODE (x);
5890 rtx cond = XEXP (x, 0);
5891 rtx true_rtx = XEXP (x, 1);
5892 rtx false_rtx = XEXP (x, 2);
5893 enum rtx_code true_code = GET_CODE (cond);
5894 int comparison_p = COMPARISON_P (cond);
5895 rtx temp;
5896 int i;
5897 enum rtx_code false_code;
5898 rtx reversed;
5899
5900 /* Simplify storing of the truth value. */
5901 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
5902 return simplify_gen_relational (true_code, mode, VOIDmode,
5903 XEXP (cond, 0), XEXP (cond, 1));
5904
5905 /* Also when the truth value has to be reversed. */
5906 if (comparison_p
5907 && true_rtx == const0_rtx && false_rtx == const_true_rtx
5908 && (reversed = reversed_comparison (cond, mode)))
5909 return reversed;
5910
5911 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
5912 in it is being compared against certain values. Get the true and false
5913 comparisons and see if that says anything about the value of each arm. */
5914
5915 if (comparison_p
5916 && ((false_code = reversed_comparison_code (cond, NULL))
5917 != UNKNOWN)
5918 && REG_P (XEXP (cond, 0)))
5919 {
5920 HOST_WIDE_INT nzb;
5921 rtx from = XEXP (cond, 0);
5922 rtx true_val = XEXP (cond, 1);
5923 rtx false_val = true_val;
5924 int swapped = 0;
5925
5926 /* If FALSE_CODE is EQ, swap the codes and arms. */
5927
5928 if (false_code == EQ)
5929 {
5930 swapped = 1, true_code = EQ, false_code = NE;
5931 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5932 }
5933
5934 /* If we are comparing against zero and the expression being tested has
5935 only a single bit that might be nonzero, that is its value when it is
5936 not equal to zero. Similarly if it is known to be -1 or 0. */
5937
5938 if (true_code == EQ && true_val == const0_rtx
5939 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
5940 {
5941 false_code = EQ;
5942 false_val = gen_int_mode (nzb, GET_MODE (from));
5943 }
5944 else if (true_code == EQ && true_val == const0_rtx
5945 && (num_sign_bit_copies (from, GET_MODE (from))
5946 == GET_MODE_PRECISION (GET_MODE (from))))
5947 {
5948 false_code = EQ;
5949 false_val = constm1_rtx;
5950 }
5951
5952 /* Now simplify an arm if we know the value of the register in the
5953 branch and it is used in the arm. Be careful due to the potential
5954 of locally-shared RTL. */
5955
5956 if (reg_mentioned_p (from, true_rtx))
5957 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
5958 from, true_val),
5959 pc_rtx, pc_rtx, 0, 0, 0);
5960 if (reg_mentioned_p (from, false_rtx))
5961 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
5962 from, false_val),
5963 pc_rtx, pc_rtx, 0, 0, 0);
5964
5965 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
5966 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
5967
5968 true_rtx = XEXP (x, 1);
5969 false_rtx = XEXP (x, 2);
5970 true_code = GET_CODE (cond);
5971 }
5972
5973 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
5974 reversed, do so to avoid needing two sets of patterns for
5975 subtract-and-branch insns. Similarly if we have a constant in the true
5976 arm, the false arm is the same as the first operand of the comparison, or
5977 the false arm is more complicated than the true arm. */
5978
5979 if (comparison_p
5980 && reversed_comparison_code (cond, NULL) != UNKNOWN
5981 && (true_rtx == pc_rtx
5982 || (CONSTANT_P (true_rtx)
5983 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
5984 || true_rtx == const0_rtx
5985 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
5986 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
5987 && !OBJECT_P (false_rtx))
5988 || reg_mentioned_p (true_rtx, false_rtx)
5989 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
5990 {
5991 true_code = reversed_comparison_code (cond, NULL);
5992 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
5993 SUBST (XEXP (x, 1), false_rtx);
5994 SUBST (XEXP (x, 2), true_rtx);
5995
5996 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5997 cond = XEXP (x, 0);
5998
5999 /* It is possible that the conditional has been simplified out. */
6000 true_code = GET_CODE (cond);
6001 comparison_p = COMPARISON_P (cond);
6002 }
6003
6004 /* If the two arms are identical, we don't need the comparison. */
6005
6006 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6007 return true_rtx;
6008
6009 /* Convert a == b ? b : a to "a". */
6010 if (true_code == EQ && ! side_effects_p (cond)
6011 && !HONOR_NANS (mode)
6012 && rtx_equal_p (XEXP (cond, 0), false_rtx)
6013 && rtx_equal_p (XEXP (cond, 1), true_rtx))
6014 return false_rtx;
6015 else if (true_code == NE && ! side_effects_p (cond)
6016 && !HONOR_NANS (mode)
6017 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6018 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6019 return true_rtx;
6020
6021 /* Look for cases where we have (abs x) or (neg (abs X)). */
6022
6023 if (GET_MODE_CLASS (mode) == MODE_INT
6024 && comparison_p
6025 && XEXP (cond, 1) == const0_rtx
6026 && GET_CODE (false_rtx) == NEG
6027 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6028 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6029 && ! side_effects_p (true_rtx))
6030 switch (true_code)
6031 {
6032 case GT:
6033 case GE:
6034 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6035 case LT:
6036 case LE:
6037 return
6038 simplify_gen_unary (NEG, mode,
6039 simplify_gen_unary (ABS, mode, true_rtx, mode),
6040 mode);
6041 default:
6042 break;
6043 }
6044
6045 /* Look for MIN or MAX. */
6046
6047 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6048 && comparison_p
6049 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6050 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6051 && ! side_effects_p (cond))
6052 switch (true_code)
6053 {
6054 case GE:
6055 case GT:
6056 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6057 case LE:
6058 case LT:
6059 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6060 case GEU:
6061 case GTU:
6062 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6063 case LEU:
6064 case LTU:
6065 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6066 default:
6067 break;
6068 }
6069
6070 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6071 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6072 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6073 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6074 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6075 neither 1 or -1, but it isn't worth checking for. */
6076
6077 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6078 && comparison_p
6079 && GET_MODE_CLASS (mode) == MODE_INT
6080 && ! side_effects_p (x))
6081 {
6082 rtx t = make_compound_operation (true_rtx, SET);
6083 rtx f = make_compound_operation (false_rtx, SET);
6084 rtx cond_op0 = XEXP (cond, 0);
6085 rtx cond_op1 = XEXP (cond, 1);
6086 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6087 enum machine_mode m = mode;
6088 rtx z = 0, c1 = NULL_RTX;
6089
6090 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6091 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6092 || GET_CODE (t) == ASHIFT
6093 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6094 && rtx_equal_p (XEXP (t, 0), f))
6095 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6096
6097 /* If an identity-zero op is commutative, check whether there
6098 would be a match if we swapped the operands. */
6099 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6100 || GET_CODE (t) == XOR)
6101 && rtx_equal_p (XEXP (t, 1), f))
6102 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6103 else if (GET_CODE (t) == SIGN_EXTEND
6104 && (GET_CODE (XEXP (t, 0)) == PLUS
6105 || GET_CODE (XEXP (t, 0)) == MINUS
6106 || GET_CODE (XEXP (t, 0)) == IOR
6107 || GET_CODE (XEXP (t, 0)) == XOR
6108 || GET_CODE (XEXP (t, 0)) == ASHIFT
6109 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6110 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6111 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6112 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6113 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6114 && (num_sign_bit_copies (f, GET_MODE (f))
6115 > (unsigned int)
6116 (GET_MODE_PRECISION (mode)
6117 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 0))))))
6118 {
6119 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6120 extend_op = SIGN_EXTEND;
6121 m = GET_MODE (XEXP (t, 0));
6122 }
6123 else if (GET_CODE (t) == SIGN_EXTEND
6124 && (GET_CODE (XEXP (t, 0)) == PLUS
6125 || GET_CODE (XEXP (t, 0)) == IOR
6126 || GET_CODE (XEXP (t, 0)) == XOR)
6127 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6128 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6129 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6130 && (num_sign_bit_copies (f, GET_MODE (f))
6131 > (unsigned int)
6132 (GET_MODE_PRECISION (mode)
6133 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 1))))))
6134 {
6135 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6136 extend_op = SIGN_EXTEND;
6137 m = GET_MODE (XEXP (t, 0));
6138 }
6139 else if (GET_CODE (t) == ZERO_EXTEND
6140 && (GET_CODE (XEXP (t, 0)) == PLUS
6141 || GET_CODE (XEXP (t, 0)) == MINUS
6142 || GET_CODE (XEXP (t, 0)) == IOR
6143 || GET_CODE (XEXP (t, 0)) == XOR
6144 || GET_CODE (XEXP (t, 0)) == ASHIFT
6145 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6146 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6147 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6148 && HWI_COMPUTABLE_MODE_P (mode)
6149 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6150 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6151 && ((nonzero_bits (f, GET_MODE (f))
6152 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
6153 == 0))
6154 {
6155 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6156 extend_op = ZERO_EXTEND;
6157 m = GET_MODE (XEXP (t, 0));
6158 }
6159 else if (GET_CODE (t) == ZERO_EXTEND
6160 && (GET_CODE (XEXP (t, 0)) == PLUS
6161 || GET_CODE (XEXP (t, 0)) == IOR
6162 || GET_CODE (XEXP (t, 0)) == XOR)
6163 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6164 && HWI_COMPUTABLE_MODE_P (mode)
6165 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6166 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6167 && ((nonzero_bits (f, GET_MODE (f))
6168 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
6169 == 0))
6170 {
6171 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6172 extend_op = ZERO_EXTEND;
6173 m = GET_MODE (XEXP (t, 0));
6174 }
6175
6176 if (z)
6177 {
6178 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
6179 cond_op0, cond_op1),
6180 pc_rtx, pc_rtx, 0, 0, 0);
6181 temp = simplify_gen_binary (MULT, m, temp,
6182 simplify_gen_binary (MULT, m, c1,
6183 const_true_rtx));
6184 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6185 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6186
6187 if (extend_op != UNKNOWN)
6188 temp = simplify_gen_unary (extend_op, mode, temp, m);
6189
6190 return temp;
6191 }
6192 }
6193
6194 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6195 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6196 negation of a single bit, we can convert this operation to a shift. We
6197 can actually do this more generally, but it doesn't seem worth it. */
6198
6199 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6200 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6201 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
6202 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6203 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
6204 == GET_MODE_PRECISION (mode))
6205 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6206 return
6207 simplify_shift_const (NULL_RTX, ASHIFT, mode,
6208 gen_lowpart (mode, XEXP (cond, 0)), i);
6209
6210 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
6211 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6212 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6213 && GET_MODE (XEXP (cond, 0)) == mode
6214 && (UINTVAL (true_rtx) & GET_MODE_MASK (mode))
6215 == nonzero_bits (XEXP (cond, 0), mode)
6216 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
6217 return XEXP (cond, 0);
6218
6219 return x;
6220 }
6221 \f
6222 /* Simplify X, a SET expression. Return the new expression. */
6223
6224 static rtx
6225 simplify_set (rtx x)
6226 {
6227 rtx src = SET_SRC (x);
6228 rtx dest = SET_DEST (x);
6229 enum machine_mode mode
6230 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6231 rtx other_insn;
6232 rtx *cc_use;
6233
6234 /* (set (pc) (return)) gets written as (return). */
6235 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6236 return src;
6237
6238 /* Now that we know for sure which bits of SRC we are using, see if we can
6239 simplify the expression for the object knowing that we only need the
6240 low-order bits. */
6241
6242 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6243 {
6244 src = force_to_mode (src, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
6245 SUBST (SET_SRC (x), src);
6246 }
6247
6248 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6249 the comparison result and try to simplify it unless we already have used
6250 undobuf.other_insn. */
6251 if ((GET_MODE_CLASS (mode) == MODE_CC
6252 || GET_CODE (src) == COMPARE
6253 || CC0_P (dest))
6254 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6255 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6256 && COMPARISON_P (*cc_use)
6257 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6258 {
6259 enum rtx_code old_code = GET_CODE (*cc_use);
6260 enum rtx_code new_code;
6261 rtx op0, op1, tmp;
6262 int other_changed = 0;
6263 rtx inner_compare = NULL_RTX;
6264 enum machine_mode compare_mode = GET_MODE (dest);
6265
6266 if (GET_CODE (src) == COMPARE)
6267 {
6268 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6269 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6270 {
6271 inner_compare = op0;
6272 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6273 }
6274 }
6275 else
6276 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6277
6278 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6279 op0, op1);
6280 if (!tmp)
6281 new_code = old_code;
6282 else if (!CONSTANT_P (tmp))
6283 {
6284 new_code = GET_CODE (tmp);
6285 op0 = XEXP (tmp, 0);
6286 op1 = XEXP (tmp, 1);
6287 }
6288 else
6289 {
6290 rtx pat = PATTERN (other_insn);
6291 undobuf.other_insn = other_insn;
6292 SUBST (*cc_use, tmp);
6293
6294 /* Attempt to simplify CC user. */
6295 if (GET_CODE (pat) == SET)
6296 {
6297 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6298 if (new_rtx != NULL_RTX)
6299 SUBST (SET_SRC (pat), new_rtx);
6300 }
6301
6302 /* Convert X into a no-op move. */
6303 SUBST (SET_DEST (x), pc_rtx);
6304 SUBST (SET_SRC (x), pc_rtx);
6305 return x;
6306 }
6307
6308 /* Simplify our comparison, if possible. */
6309 new_code = simplify_comparison (new_code, &op0, &op1);
6310
6311 #ifdef SELECT_CC_MODE
6312 /* If this machine has CC modes other than CCmode, check to see if we
6313 need to use a different CC mode here. */
6314 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6315 compare_mode = GET_MODE (op0);
6316 else if (inner_compare
6317 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6318 && new_code == old_code
6319 && op0 == XEXP (inner_compare, 0)
6320 && op1 == XEXP (inner_compare, 1))
6321 compare_mode = GET_MODE (inner_compare);
6322 else
6323 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6324
6325 #ifndef HAVE_cc0
6326 /* If the mode changed, we have to change SET_DEST, the mode in the
6327 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6328 a hard register, just build new versions with the proper mode. If it
6329 is a pseudo, we lose unless it is only time we set the pseudo, in
6330 which case we can safely change its mode. */
6331 if (compare_mode != GET_MODE (dest))
6332 {
6333 if (can_change_dest_mode (dest, 0, compare_mode))
6334 {
6335 unsigned int regno = REGNO (dest);
6336 rtx new_dest;
6337
6338 if (regno < FIRST_PSEUDO_REGISTER)
6339 new_dest = gen_rtx_REG (compare_mode, regno);
6340 else
6341 {
6342 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6343 new_dest = regno_reg_rtx[regno];
6344 }
6345
6346 SUBST (SET_DEST (x), new_dest);
6347 SUBST (XEXP (*cc_use, 0), new_dest);
6348 other_changed = 1;
6349
6350 dest = new_dest;
6351 }
6352 }
6353 #endif /* cc0 */
6354 #endif /* SELECT_CC_MODE */
6355
6356 /* If the code changed, we have to build a new comparison in
6357 undobuf.other_insn. */
6358 if (new_code != old_code)
6359 {
6360 int other_changed_previously = other_changed;
6361 unsigned HOST_WIDE_INT mask;
6362 rtx old_cc_use = *cc_use;
6363
6364 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6365 dest, const0_rtx));
6366 other_changed = 1;
6367
6368 /* If the only change we made was to change an EQ into an NE or
6369 vice versa, OP0 has only one bit that might be nonzero, and OP1
6370 is zero, check if changing the user of the condition code will
6371 produce a valid insn. If it won't, we can keep the original code
6372 in that insn by surrounding our operation with an XOR. */
6373
6374 if (((old_code == NE && new_code == EQ)
6375 || (old_code == EQ && new_code == NE))
6376 && ! other_changed_previously && op1 == const0_rtx
6377 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6378 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
6379 {
6380 rtx pat = PATTERN (other_insn), note = 0;
6381
6382 if ((recog_for_combine (&pat, other_insn, &note) < 0
6383 && ! check_asm_operands (pat)))
6384 {
6385 *cc_use = old_cc_use;
6386 other_changed = 0;
6387
6388 op0 = simplify_gen_binary (XOR, GET_MODE (op0), op0,
6389 gen_int_mode (mask,
6390 GET_MODE (op0)));
6391 }
6392 }
6393 }
6394
6395 if (other_changed)
6396 undobuf.other_insn = other_insn;
6397
6398 /* Otherwise, if we didn't previously have a COMPARE in the
6399 correct mode, we need one. */
6400 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
6401 {
6402 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6403 src = SET_SRC (x);
6404 }
6405 else if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6406 {
6407 SUBST (SET_SRC (x), op0);
6408 src = SET_SRC (x);
6409 }
6410 /* Otherwise, update the COMPARE if needed. */
6411 else if (XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6412 {
6413 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6414 src = SET_SRC (x);
6415 }
6416 }
6417 else
6418 {
6419 /* Get SET_SRC in a form where we have placed back any
6420 compound expressions. Then do the checks below. */
6421 src = make_compound_operation (src, SET);
6422 SUBST (SET_SRC (x), src);
6423 }
6424
6425 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6426 and X being a REG or (subreg (reg)), we may be able to convert this to
6427 (set (subreg:m2 x) (op)).
6428
6429 We can always do this if M1 is narrower than M2 because that means that
6430 we only care about the low bits of the result.
6431
6432 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6433 perform a narrower operation than requested since the high-order bits will
6434 be undefined. On machine where it is defined, this transformation is safe
6435 as long as M1 and M2 have the same number of words. */
6436
6437 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6438 && !OBJECT_P (SUBREG_REG (src))
6439 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
6440 / UNITS_PER_WORD)
6441 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
6442 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
6443 #ifndef WORD_REGISTER_OPERATIONS
6444 && (GET_MODE_SIZE (GET_MODE (src))
6445 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
6446 #endif
6447 #ifdef CANNOT_CHANGE_MODE_CLASS
6448 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6449 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
6450 GET_MODE (SUBREG_REG (src)),
6451 GET_MODE (src)))
6452 #endif
6453 && (REG_P (dest)
6454 || (GET_CODE (dest) == SUBREG
6455 && REG_P (SUBREG_REG (dest)))))
6456 {
6457 SUBST (SET_DEST (x),
6458 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6459 dest));
6460 SUBST (SET_SRC (x), SUBREG_REG (src));
6461
6462 src = SET_SRC (x), dest = SET_DEST (x);
6463 }
6464
6465 #ifdef HAVE_cc0
6466 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6467 in SRC. */
6468 if (dest == cc0_rtx
6469 && GET_CODE (src) == SUBREG
6470 && subreg_lowpart_p (src)
6471 && (GET_MODE_PRECISION (GET_MODE (src))
6472 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (src)))))
6473 {
6474 rtx inner = SUBREG_REG (src);
6475 enum machine_mode inner_mode = GET_MODE (inner);
6476
6477 /* Here we make sure that we don't have a sign bit on. */
6478 if (val_signbit_known_clear_p (GET_MODE (src),
6479 nonzero_bits (inner, inner_mode)))
6480 {
6481 SUBST (SET_SRC (x), inner);
6482 src = SET_SRC (x);
6483 }
6484 }
6485 #endif
6486
6487 #ifdef LOAD_EXTEND_OP
6488 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6489 would require a paradoxical subreg. Replace the subreg with a
6490 zero_extend to avoid the reload that would otherwise be required. */
6491
6492 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6493 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (src)))
6494 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
6495 && SUBREG_BYTE (src) == 0
6496 && paradoxical_subreg_p (src)
6497 && MEM_P (SUBREG_REG (src)))
6498 {
6499 SUBST (SET_SRC (x),
6500 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
6501 GET_MODE (src), SUBREG_REG (src)));
6502
6503 src = SET_SRC (x);
6504 }
6505 #endif
6506
6507 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6508 are comparing an item known to be 0 or -1 against 0, use a logical
6509 operation instead. Check for one of the arms being an IOR of the other
6510 arm with some value. We compute three terms to be IOR'ed together. In
6511 practice, at most two will be nonzero. Then we do the IOR's. */
6512
6513 if (GET_CODE (dest) != PC
6514 && GET_CODE (src) == IF_THEN_ELSE
6515 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
6516 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
6517 && XEXP (XEXP (src, 0), 1) == const0_rtx
6518 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
6519 #ifdef HAVE_conditional_move
6520 && ! can_conditionally_move_p (GET_MODE (src))
6521 #endif
6522 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
6523 GET_MODE (XEXP (XEXP (src, 0), 0)))
6524 == GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (src, 0), 0))))
6525 && ! side_effects_p (src))
6526 {
6527 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
6528 ? XEXP (src, 1) : XEXP (src, 2));
6529 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
6530 ? XEXP (src, 2) : XEXP (src, 1));
6531 rtx term1 = const0_rtx, term2, term3;
6532
6533 if (GET_CODE (true_rtx) == IOR
6534 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
6535 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
6536 else if (GET_CODE (true_rtx) == IOR
6537 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
6538 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
6539 else if (GET_CODE (false_rtx) == IOR
6540 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
6541 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
6542 else if (GET_CODE (false_rtx) == IOR
6543 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
6544 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
6545
6546 term2 = simplify_gen_binary (AND, GET_MODE (src),
6547 XEXP (XEXP (src, 0), 0), true_rtx);
6548 term3 = simplify_gen_binary (AND, GET_MODE (src),
6549 simplify_gen_unary (NOT, GET_MODE (src),
6550 XEXP (XEXP (src, 0), 0),
6551 GET_MODE (src)),
6552 false_rtx);
6553
6554 SUBST (SET_SRC (x),
6555 simplify_gen_binary (IOR, GET_MODE (src),
6556 simplify_gen_binary (IOR, GET_MODE (src),
6557 term1, term2),
6558 term3));
6559
6560 src = SET_SRC (x);
6561 }
6562
6563 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6564 whole thing fail. */
6565 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
6566 return src;
6567 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
6568 return dest;
6569 else
6570 /* Convert this into a field assignment operation, if possible. */
6571 return make_field_assignment (x);
6572 }
6573 \f
6574 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6575 result. */
6576
6577 static rtx
6578 simplify_logical (rtx x)
6579 {
6580 enum machine_mode mode = GET_MODE (x);
6581 rtx op0 = XEXP (x, 0);
6582 rtx op1 = XEXP (x, 1);
6583
6584 switch (GET_CODE (x))
6585 {
6586 case AND:
6587 /* We can call simplify_and_const_int only if we don't lose
6588 any (sign) bits when converting INTVAL (op1) to
6589 "unsigned HOST_WIDE_INT". */
6590 if (CONST_INT_P (op1)
6591 && (HWI_COMPUTABLE_MODE_P (mode)
6592 || INTVAL (op1) > 0))
6593 {
6594 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
6595 if (GET_CODE (x) != AND)
6596 return x;
6597
6598 op0 = XEXP (x, 0);
6599 op1 = XEXP (x, 1);
6600 }
6601
6602 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
6603 apply the distributive law and then the inverse distributive
6604 law to see if things simplify. */
6605 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
6606 {
6607 rtx result = distribute_and_simplify_rtx (x, 0);
6608 if (result)
6609 return result;
6610 }
6611 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
6612 {
6613 rtx result = distribute_and_simplify_rtx (x, 1);
6614 if (result)
6615 return result;
6616 }
6617 break;
6618
6619 case IOR:
6620 /* If we have (ior (and A B) C), apply the distributive law and then
6621 the inverse distributive law to see if things simplify. */
6622
6623 if (GET_CODE (op0) == AND)
6624 {
6625 rtx result = distribute_and_simplify_rtx (x, 0);
6626 if (result)
6627 return result;
6628 }
6629
6630 if (GET_CODE (op1) == AND)
6631 {
6632 rtx result = distribute_and_simplify_rtx (x, 1);
6633 if (result)
6634 return result;
6635 }
6636 break;
6637
6638 default:
6639 gcc_unreachable ();
6640 }
6641
6642 return x;
6643 }
6644 \f
6645 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6646 operations" because they can be replaced with two more basic operations.
6647 ZERO_EXTEND is also considered "compound" because it can be replaced with
6648 an AND operation, which is simpler, though only one operation.
6649
6650 The function expand_compound_operation is called with an rtx expression
6651 and will convert it to the appropriate shifts and AND operations,
6652 simplifying at each stage.
6653
6654 The function make_compound_operation is called to convert an expression
6655 consisting of shifts and ANDs into the equivalent compound expression.
6656 It is the inverse of this function, loosely speaking. */
6657
6658 static rtx
6659 expand_compound_operation (rtx x)
6660 {
6661 unsigned HOST_WIDE_INT pos = 0, len;
6662 int unsignedp = 0;
6663 unsigned int modewidth;
6664 rtx tem;
6665
6666 switch (GET_CODE (x))
6667 {
6668 case ZERO_EXTEND:
6669 unsignedp = 1;
6670 case SIGN_EXTEND:
6671 /* We can't necessarily use a const_int for a multiword mode;
6672 it depends on implicitly extending the value.
6673 Since we don't know the right way to extend it,
6674 we can't tell whether the implicit way is right.
6675
6676 Even for a mode that is no wider than a const_int,
6677 we can't win, because we need to sign extend one of its bits through
6678 the rest of it, and we don't know which bit. */
6679 if (CONST_INT_P (XEXP (x, 0)))
6680 return x;
6681
6682 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
6683 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
6684 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
6685 reloaded. If not for that, MEM's would very rarely be safe.
6686
6687 Reject MODEs bigger than a word, because we might not be able
6688 to reference a two-register group starting with an arbitrary register
6689 (and currently gen_lowpart might crash for a SUBREG). */
6690
6691 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
6692 return x;
6693
6694 /* Reject MODEs that aren't scalar integers because turning vector
6695 or complex modes into shifts causes problems. */
6696
6697 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6698 return x;
6699
6700 len = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
6701 /* If the inner object has VOIDmode (the only way this can happen
6702 is if it is an ASM_OPERANDS), we can't do anything since we don't
6703 know how much masking to do. */
6704 if (len == 0)
6705 return x;
6706
6707 break;
6708
6709 case ZERO_EXTRACT:
6710 unsignedp = 1;
6711
6712 /* ... fall through ... */
6713
6714 case SIGN_EXTRACT:
6715 /* If the operand is a CLOBBER, just return it. */
6716 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
6717 return XEXP (x, 0);
6718
6719 if (!CONST_INT_P (XEXP (x, 1))
6720 || !CONST_INT_P (XEXP (x, 2))
6721 || GET_MODE (XEXP (x, 0)) == VOIDmode)
6722 return x;
6723
6724 /* Reject MODEs that aren't scalar integers because turning vector
6725 or complex modes into shifts causes problems. */
6726
6727 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6728 return x;
6729
6730 len = INTVAL (XEXP (x, 1));
6731 pos = INTVAL (XEXP (x, 2));
6732
6733 /* This should stay within the object being extracted, fail otherwise. */
6734 if (len + pos > GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))))
6735 return x;
6736
6737 if (BITS_BIG_ENDIAN)
6738 pos = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))) - len - pos;
6739
6740 break;
6741
6742 default:
6743 return x;
6744 }
6745 /* Convert sign extension to zero extension, if we know that the high
6746 bit is not set, as this is easier to optimize. It will be converted
6747 back to cheaper alternative in make_extraction. */
6748 if (GET_CODE (x) == SIGN_EXTEND
6749 && (HWI_COMPUTABLE_MODE_P (GET_MODE (x))
6750 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
6751 & ~(((unsigned HOST_WIDE_INT)
6752 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
6753 >> 1))
6754 == 0)))
6755 {
6756 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
6757 rtx temp2 = expand_compound_operation (temp);
6758
6759 /* Make sure this is a profitable operation. */
6760 if (set_src_cost (x, optimize_this_for_speed_p)
6761 > set_src_cost (temp2, optimize_this_for_speed_p))
6762 return temp2;
6763 else if (set_src_cost (x, optimize_this_for_speed_p)
6764 > set_src_cost (temp, optimize_this_for_speed_p))
6765 return temp;
6766 else
6767 return x;
6768 }
6769
6770 /* We can optimize some special cases of ZERO_EXTEND. */
6771 if (GET_CODE (x) == ZERO_EXTEND)
6772 {
6773 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
6774 know that the last value didn't have any inappropriate bits
6775 set. */
6776 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6777 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6778 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
6779 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
6780 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6781 return XEXP (XEXP (x, 0), 0);
6782
6783 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6784 if (GET_CODE (XEXP (x, 0)) == SUBREG
6785 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6786 && subreg_lowpart_p (XEXP (x, 0))
6787 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
6788 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
6789 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6790 return SUBREG_REG (XEXP (x, 0));
6791
6792 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
6793 is a comparison and STORE_FLAG_VALUE permits. This is like
6794 the first case, but it works even when GET_MODE (x) is larger
6795 than HOST_WIDE_INT. */
6796 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6797 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6798 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
6799 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
6800 <= HOST_BITS_PER_WIDE_INT)
6801 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6802 return XEXP (XEXP (x, 0), 0);
6803
6804 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6805 if (GET_CODE (XEXP (x, 0)) == SUBREG
6806 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6807 && subreg_lowpart_p (XEXP (x, 0))
6808 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
6809 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
6810 <= HOST_BITS_PER_WIDE_INT)
6811 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6812 return SUBREG_REG (XEXP (x, 0));
6813
6814 }
6815
6816 /* If we reach here, we want to return a pair of shifts. The inner
6817 shift is a left shift of BITSIZE - POS - LEN bits. The outer
6818 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
6819 logical depending on the value of UNSIGNEDP.
6820
6821 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
6822 converted into an AND of a shift.
6823
6824 We must check for the case where the left shift would have a negative
6825 count. This can happen in a case like (x >> 31) & 255 on machines
6826 that can't shift by a constant. On those machines, we would first
6827 combine the shift with the AND to produce a variable-position
6828 extraction. Then the constant of 31 would be substituted in
6829 to produce such a position. */
6830
6831 modewidth = GET_MODE_PRECISION (GET_MODE (x));
6832 if (modewidth >= pos + len)
6833 {
6834 enum machine_mode mode = GET_MODE (x);
6835 tem = gen_lowpart (mode, XEXP (x, 0));
6836 if (!tem || GET_CODE (tem) == CLOBBER)
6837 return x;
6838 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6839 tem, modewidth - pos - len);
6840 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
6841 mode, tem, modewidth - len);
6842 }
6843 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
6844 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
6845 simplify_shift_const (NULL_RTX, LSHIFTRT,
6846 GET_MODE (x),
6847 XEXP (x, 0), pos),
6848 ((unsigned HOST_WIDE_INT) 1 << len) - 1);
6849 else
6850 /* Any other cases we can't handle. */
6851 return x;
6852
6853 /* If we couldn't do this for some reason, return the original
6854 expression. */
6855 if (GET_CODE (tem) == CLOBBER)
6856 return x;
6857
6858 return tem;
6859 }
6860 \f
6861 /* X is a SET which contains an assignment of one object into
6862 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
6863 or certain SUBREGS). If possible, convert it into a series of
6864 logical operations.
6865
6866 We half-heartedly support variable positions, but do not at all
6867 support variable lengths. */
6868
6869 static const_rtx
6870 expand_field_assignment (const_rtx x)
6871 {
6872 rtx inner;
6873 rtx pos; /* Always counts from low bit. */
6874 int len;
6875 rtx mask, cleared, masked;
6876 enum machine_mode compute_mode;
6877
6878 /* Loop until we find something we can't simplify. */
6879 while (1)
6880 {
6881 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
6882 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
6883 {
6884 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
6885 len = GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0)));
6886 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
6887 }
6888 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
6889 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
6890 {
6891 inner = XEXP (SET_DEST (x), 0);
6892 len = INTVAL (XEXP (SET_DEST (x), 1));
6893 pos = XEXP (SET_DEST (x), 2);
6894
6895 /* A constant position should stay within the width of INNER. */
6896 if (CONST_INT_P (pos)
6897 && INTVAL (pos) + len > GET_MODE_PRECISION (GET_MODE (inner)))
6898 break;
6899
6900 if (BITS_BIG_ENDIAN)
6901 {
6902 if (CONST_INT_P (pos))
6903 pos = GEN_INT (GET_MODE_PRECISION (GET_MODE (inner)) - len
6904 - INTVAL (pos));
6905 else if (GET_CODE (pos) == MINUS
6906 && CONST_INT_P (XEXP (pos, 1))
6907 && (INTVAL (XEXP (pos, 1))
6908 == GET_MODE_PRECISION (GET_MODE (inner)) - len))
6909 /* If position is ADJUST - X, new position is X. */
6910 pos = XEXP (pos, 0);
6911 else
6912 {
6913 HOST_WIDE_INT prec = GET_MODE_PRECISION (GET_MODE (inner));
6914 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
6915 gen_int_mode (prec - len,
6916 GET_MODE (pos)),
6917 pos);
6918 }
6919 }
6920 }
6921
6922 /* A SUBREG between two modes that occupy the same numbers of words
6923 can be done by moving the SUBREG to the source. */
6924 else if (GET_CODE (SET_DEST (x)) == SUBREG
6925 /* We need SUBREGs to compute nonzero_bits properly. */
6926 && nonzero_sign_valid
6927 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
6928 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
6929 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
6930 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
6931 {
6932 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
6933 gen_lowpart
6934 (GET_MODE (SUBREG_REG (SET_DEST (x))),
6935 SET_SRC (x)));
6936 continue;
6937 }
6938 else
6939 break;
6940
6941 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6942 inner = SUBREG_REG (inner);
6943
6944 compute_mode = GET_MODE (inner);
6945
6946 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6947 if (! SCALAR_INT_MODE_P (compute_mode))
6948 {
6949 enum machine_mode imode;
6950
6951 /* Don't do anything for vector or complex integral types. */
6952 if (! FLOAT_MODE_P (compute_mode))
6953 break;
6954
6955 /* Try to find an integral mode to pun with. */
6956 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
6957 if (imode == BLKmode)
6958 break;
6959
6960 compute_mode = imode;
6961 inner = gen_lowpart (imode, inner);
6962 }
6963
6964 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6965 if (len >= HOST_BITS_PER_WIDE_INT)
6966 break;
6967
6968 /* Now compute the equivalent expression. Make a copy of INNER
6969 for the SET_DEST in case it is a MEM into which we will substitute;
6970 we don't want shared RTL in that case. */
6971 mask = gen_int_mode (((unsigned HOST_WIDE_INT) 1 << len) - 1,
6972 compute_mode);
6973 cleared = simplify_gen_binary (AND, compute_mode,
6974 simplify_gen_unary (NOT, compute_mode,
6975 simplify_gen_binary (ASHIFT,
6976 compute_mode,
6977 mask, pos),
6978 compute_mode),
6979 inner);
6980 masked = simplify_gen_binary (ASHIFT, compute_mode,
6981 simplify_gen_binary (
6982 AND, compute_mode,
6983 gen_lowpart (compute_mode, SET_SRC (x)),
6984 mask),
6985 pos);
6986
6987 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
6988 simplify_gen_binary (IOR, compute_mode,
6989 cleared, masked));
6990 }
6991
6992 return x;
6993 }
6994 \f
6995 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6996 it is an RTX that represents the (variable) starting position; otherwise,
6997 POS is the (constant) starting bit position. Both are counted from the LSB.
6998
6999 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7000
7001 IN_DEST is nonzero if this is a reference in the destination of a SET.
7002 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7003 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7004 be used.
7005
7006 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7007 ZERO_EXTRACT should be built even for bits starting at bit 0.
7008
7009 MODE is the desired mode of the result (if IN_DEST == 0).
7010
7011 The result is an RTX for the extraction or NULL_RTX if the target
7012 can't handle it. */
7013
7014 static rtx
7015 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7016 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7017 int in_dest, int in_compare)
7018 {
7019 /* This mode describes the size of the storage area
7020 to fetch the overall value from. Within that, we
7021 ignore the POS lowest bits, etc. */
7022 enum machine_mode is_mode = GET_MODE (inner);
7023 enum machine_mode inner_mode;
7024 enum machine_mode wanted_inner_mode;
7025 enum machine_mode wanted_inner_reg_mode = word_mode;
7026 enum machine_mode pos_mode = word_mode;
7027 enum machine_mode extraction_mode = word_mode;
7028 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
7029 rtx new_rtx = 0;
7030 rtx orig_pos_rtx = pos_rtx;
7031 HOST_WIDE_INT orig_pos;
7032
7033 if (pos_rtx && CONST_INT_P (pos_rtx))
7034 pos = INTVAL (pos_rtx), pos_rtx = 0;
7035
7036 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7037 {
7038 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7039 consider just the QI as the memory to extract from.
7040 The subreg adds or removes high bits; its mode is
7041 irrelevant to the meaning of this extraction,
7042 since POS and LEN count from the lsb. */
7043 if (MEM_P (SUBREG_REG (inner)))
7044 is_mode = GET_MODE (SUBREG_REG (inner));
7045 inner = SUBREG_REG (inner);
7046 }
7047 else if (GET_CODE (inner) == ASHIFT
7048 && CONST_INT_P (XEXP (inner, 1))
7049 && pos_rtx == 0 && pos == 0
7050 && len > UINTVAL (XEXP (inner, 1)))
7051 {
7052 /* We're extracting the least significant bits of an rtx
7053 (ashift X (const_int C)), where LEN > C. Extract the
7054 least significant (LEN - C) bits of X, giving an rtx
7055 whose mode is MODE, then shift it left C times. */
7056 new_rtx = make_extraction (mode, XEXP (inner, 0),
7057 0, 0, len - INTVAL (XEXP (inner, 1)),
7058 unsignedp, in_dest, in_compare);
7059 if (new_rtx != 0)
7060 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7061 }
7062 else if (GET_CODE (inner) == TRUNCATE)
7063 inner = XEXP (inner, 0);
7064
7065 inner_mode = GET_MODE (inner);
7066
7067 /* See if this can be done without an extraction. We never can if the
7068 width of the field is not the same as that of some integer mode. For
7069 registers, we can only avoid the extraction if the position is at the
7070 low-order bit and this is either not in the destination or we have the
7071 appropriate STRICT_LOW_PART operation available.
7072
7073 For MEM, we can avoid an extract if the field starts on an appropriate
7074 boundary and we can change the mode of the memory reference. */
7075
7076 if (tmode != BLKmode
7077 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7078 && !MEM_P (inner)
7079 && (inner_mode == tmode
7080 || !REG_P (inner)
7081 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7082 || reg_truncated_to_mode (tmode, inner))
7083 && (! in_dest
7084 || (REG_P (inner)
7085 && have_insn_for (STRICT_LOW_PART, tmode))))
7086 || (MEM_P (inner) && pos_rtx == 0
7087 && (pos
7088 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7089 : BITS_PER_UNIT)) == 0
7090 /* We can't do this if we are widening INNER_MODE (it
7091 may not be aligned, for one thing). */
7092 && GET_MODE_PRECISION (inner_mode) >= GET_MODE_PRECISION (tmode)
7093 && (inner_mode == tmode
7094 || (! mode_dependent_address_p (XEXP (inner, 0),
7095 MEM_ADDR_SPACE (inner))
7096 && ! MEM_VOLATILE_P (inner))))))
7097 {
7098 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7099 field. If the original and current mode are the same, we need not
7100 adjust the offset. Otherwise, we do if bytes big endian.
7101
7102 If INNER is not a MEM, get a piece consisting of just the field
7103 of interest (in this case POS % BITS_PER_WORD must be 0). */
7104
7105 if (MEM_P (inner))
7106 {
7107 HOST_WIDE_INT offset;
7108
7109 /* POS counts from lsb, but make OFFSET count in memory order. */
7110 if (BYTES_BIG_ENDIAN)
7111 offset = (GET_MODE_PRECISION (is_mode) - len - pos) / BITS_PER_UNIT;
7112 else
7113 offset = pos / BITS_PER_UNIT;
7114
7115 new_rtx = adjust_address_nv (inner, tmode, offset);
7116 }
7117 else if (REG_P (inner))
7118 {
7119 if (tmode != inner_mode)
7120 {
7121 /* We can't call gen_lowpart in a DEST since we
7122 always want a SUBREG (see below) and it would sometimes
7123 return a new hard register. */
7124 if (pos || in_dest)
7125 {
7126 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
7127
7128 if (WORDS_BIG_ENDIAN
7129 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7130 final_word = ((GET_MODE_SIZE (inner_mode)
7131 - GET_MODE_SIZE (tmode))
7132 / UNITS_PER_WORD) - final_word;
7133
7134 final_word *= UNITS_PER_WORD;
7135 if (BYTES_BIG_ENDIAN &&
7136 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
7137 final_word += (GET_MODE_SIZE (inner_mode)
7138 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
7139
7140 /* Avoid creating invalid subregs, for example when
7141 simplifying (x>>32)&255. */
7142 if (!validate_subreg (tmode, inner_mode, inner, final_word))
7143 return NULL_RTX;
7144
7145 new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
7146 }
7147 else
7148 new_rtx = gen_lowpart (tmode, inner);
7149 }
7150 else
7151 new_rtx = inner;
7152 }
7153 else
7154 new_rtx = force_to_mode (inner, tmode,
7155 len >= HOST_BITS_PER_WIDE_INT
7156 ? ~(unsigned HOST_WIDE_INT) 0
7157 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7158 0);
7159
7160 /* If this extraction is going into the destination of a SET,
7161 make a STRICT_LOW_PART unless we made a MEM. */
7162
7163 if (in_dest)
7164 return (MEM_P (new_rtx) ? new_rtx
7165 : (GET_CODE (new_rtx) != SUBREG
7166 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7167 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7168
7169 if (mode == tmode)
7170 return new_rtx;
7171
7172 if (CONST_SCALAR_INT_P (new_rtx))
7173 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7174 mode, new_rtx, tmode);
7175
7176 /* If we know that no extraneous bits are set, and that the high
7177 bit is not set, convert the extraction to the cheaper of
7178 sign and zero extension, that are equivalent in these cases. */
7179 if (flag_expensive_optimizations
7180 && (HWI_COMPUTABLE_MODE_P (tmode)
7181 && ((nonzero_bits (new_rtx, tmode)
7182 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7183 == 0)))
7184 {
7185 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7186 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7187
7188 /* Prefer ZERO_EXTENSION, since it gives more information to
7189 backends. */
7190 if (set_src_cost (temp, optimize_this_for_speed_p)
7191 <= set_src_cost (temp1, optimize_this_for_speed_p))
7192 return temp;
7193 return temp1;
7194 }
7195
7196 /* Otherwise, sign- or zero-extend unless we already are in the
7197 proper mode. */
7198
7199 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7200 mode, new_rtx));
7201 }
7202
7203 /* Unless this is a COMPARE or we have a funny memory reference,
7204 don't do anything with zero-extending field extracts starting at
7205 the low-order bit since they are simple AND operations. */
7206 if (pos_rtx == 0 && pos == 0 && ! in_dest
7207 && ! in_compare && unsignedp)
7208 return 0;
7209
7210 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7211 if the position is not a constant and the length is not 1. In all
7212 other cases, we would only be going outside our object in cases when
7213 an original shift would have been undefined. */
7214 if (MEM_P (inner)
7215 && ((pos_rtx == 0 && pos + len > GET_MODE_PRECISION (is_mode))
7216 || (pos_rtx != 0 && len != 1)))
7217 return 0;
7218
7219 enum extraction_pattern pattern = (in_dest ? EP_insv
7220 : unsignedp ? EP_extzv : EP_extv);
7221
7222 /* If INNER is not from memory, we want it to have the mode of a register
7223 extraction pattern's structure operand, or word_mode if there is no
7224 such pattern. The same applies to extraction_mode and pos_mode
7225 and their respective operands.
7226
7227 For memory, assume that the desired extraction_mode and pos_mode
7228 are the same as for a register operation, since at present we don't
7229 have named patterns for aligned memory structures. */
7230 struct extraction_insn insn;
7231 if (get_best_reg_extraction_insn (&insn, pattern,
7232 GET_MODE_BITSIZE (inner_mode), mode))
7233 {
7234 wanted_inner_reg_mode = insn.struct_mode;
7235 pos_mode = insn.pos_mode;
7236 extraction_mode = insn.field_mode;
7237 }
7238
7239 /* Never narrow an object, since that might not be safe. */
7240
7241 if (mode != VOIDmode
7242 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
7243 extraction_mode = mode;
7244
7245 if (!MEM_P (inner))
7246 wanted_inner_mode = wanted_inner_reg_mode;
7247 else
7248 {
7249 /* Be careful not to go beyond the extracted object and maintain the
7250 natural alignment of the memory. */
7251 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
7252 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7253 > GET_MODE_BITSIZE (wanted_inner_mode))
7254 {
7255 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
7256 gcc_assert (wanted_inner_mode != VOIDmode);
7257 }
7258 }
7259
7260 orig_pos = pos;
7261
7262 if (BITS_BIG_ENDIAN)
7263 {
7264 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7265 BITS_BIG_ENDIAN style. If position is constant, compute new
7266 position. Otherwise, build subtraction.
7267 Note that POS is relative to the mode of the original argument.
7268 If it's a MEM we need to recompute POS relative to that.
7269 However, if we're extracting from (or inserting into) a register,
7270 we want to recompute POS relative to wanted_inner_mode. */
7271 int width = (MEM_P (inner)
7272 ? GET_MODE_BITSIZE (is_mode)
7273 : GET_MODE_BITSIZE (wanted_inner_mode));
7274
7275 if (pos_rtx == 0)
7276 pos = width - len - pos;
7277 else
7278 pos_rtx
7279 = gen_rtx_MINUS (GET_MODE (pos_rtx),
7280 gen_int_mode (width - len, GET_MODE (pos_rtx)),
7281 pos_rtx);
7282 /* POS may be less than 0 now, but we check for that below.
7283 Note that it can only be less than 0 if !MEM_P (inner). */
7284 }
7285
7286 /* If INNER has a wider mode, and this is a constant extraction, try to
7287 make it smaller and adjust the byte to point to the byte containing
7288 the value. */
7289 if (wanted_inner_mode != VOIDmode
7290 && inner_mode != wanted_inner_mode
7291 && ! pos_rtx
7292 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
7293 && MEM_P (inner)
7294 && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7295 && ! MEM_VOLATILE_P (inner))
7296 {
7297 int offset = 0;
7298
7299 /* The computations below will be correct if the machine is big
7300 endian in both bits and bytes or little endian in bits and bytes.
7301 If it is mixed, we must adjust. */
7302
7303 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7304 adjust OFFSET to compensate. */
7305 if (BYTES_BIG_ENDIAN
7306 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
7307 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7308
7309 /* We can now move to the desired byte. */
7310 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7311 * GET_MODE_SIZE (wanted_inner_mode);
7312 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7313
7314 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7315 && is_mode != wanted_inner_mode)
7316 offset = (GET_MODE_SIZE (is_mode)
7317 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7318
7319 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7320 }
7321
7322 /* If INNER is not memory, get it into the proper mode. If we are changing
7323 its mode, POS must be a constant and smaller than the size of the new
7324 mode. */
7325 else if (!MEM_P (inner))
7326 {
7327 /* On the LHS, don't create paradoxical subregs implicitely truncating
7328 the register unless TRULY_NOOP_TRUNCATION. */
7329 if (in_dest
7330 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7331 wanted_inner_mode))
7332 return NULL_RTX;
7333
7334 if (GET_MODE (inner) != wanted_inner_mode
7335 && (pos_rtx != 0
7336 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7337 return NULL_RTX;
7338
7339 if (orig_pos < 0)
7340 return NULL_RTX;
7341
7342 inner = force_to_mode (inner, wanted_inner_mode,
7343 pos_rtx
7344 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7345 ? ~(unsigned HOST_WIDE_INT) 0
7346 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
7347 << orig_pos),
7348 0);
7349 }
7350
7351 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7352 have to zero extend. Otherwise, we can just use a SUBREG. */
7353 if (pos_rtx != 0
7354 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
7355 {
7356 rtx temp = simplify_gen_unary (ZERO_EXTEND, pos_mode, pos_rtx,
7357 GET_MODE (pos_rtx));
7358
7359 /* If we know that no extraneous bits are set, and that the high
7360 bit is not set, convert extraction to cheaper one - either
7361 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7362 cases. */
7363 if (flag_expensive_optimizations
7364 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7365 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7366 & ~(((unsigned HOST_WIDE_INT)
7367 GET_MODE_MASK (GET_MODE (pos_rtx)))
7368 >> 1))
7369 == 0)))
7370 {
7371 rtx temp1 = simplify_gen_unary (SIGN_EXTEND, pos_mode, pos_rtx,
7372 GET_MODE (pos_rtx));
7373
7374 /* Prefer ZERO_EXTENSION, since it gives more information to
7375 backends. */
7376 if (set_src_cost (temp1, optimize_this_for_speed_p)
7377 < set_src_cost (temp, optimize_this_for_speed_p))
7378 temp = temp1;
7379 }
7380 pos_rtx = temp;
7381 }
7382
7383 /* Make POS_RTX unless we already have it and it is correct. If we don't
7384 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7385 be a CONST_INT. */
7386 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7387 pos_rtx = orig_pos_rtx;
7388
7389 else if (pos_rtx == 0)
7390 pos_rtx = GEN_INT (pos);
7391
7392 /* Make the required operation. See if we can use existing rtx. */
7393 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7394 extraction_mode, inner, GEN_INT (len), pos_rtx);
7395 if (! in_dest)
7396 new_rtx = gen_lowpart (mode, new_rtx);
7397
7398 return new_rtx;
7399 }
7400 \f
7401 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
7402 with any other operations in X. Return X without that shift if so. */
7403
7404 static rtx
7405 extract_left_shift (rtx x, int count)
7406 {
7407 enum rtx_code code = GET_CODE (x);
7408 enum machine_mode mode = GET_MODE (x);
7409 rtx tem;
7410
7411 switch (code)
7412 {
7413 case ASHIFT:
7414 /* This is the shift itself. If it is wide enough, we will return
7415 either the value being shifted if the shift count is equal to
7416 COUNT or a shift for the difference. */
7417 if (CONST_INT_P (XEXP (x, 1))
7418 && INTVAL (XEXP (x, 1)) >= count)
7419 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7420 INTVAL (XEXP (x, 1)) - count);
7421 break;
7422
7423 case NEG: case NOT:
7424 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7425 return simplify_gen_unary (code, mode, tem, mode);
7426
7427 break;
7428
7429 case PLUS: case IOR: case XOR: case AND:
7430 /* If we can safely shift this constant and we find the inner shift,
7431 make a new operation. */
7432 if (CONST_INT_P (XEXP (x, 1))
7433 && (UINTVAL (XEXP (x, 1))
7434 & ((((unsigned HOST_WIDE_INT) 1 << count)) - 1)) == 0
7435 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7436 {
7437 HOST_WIDE_INT val = INTVAL (XEXP (x, 1)) >> count;
7438 return simplify_gen_binary (code, mode, tem,
7439 gen_int_mode (val, mode));
7440 }
7441 break;
7442
7443 default:
7444 break;
7445 }
7446
7447 return 0;
7448 }
7449 \f
7450 /* Look at the expression rooted at X. Look for expressions
7451 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
7452 Form these expressions.
7453
7454 Return the new rtx, usually just X.
7455
7456 Also, for machines like the VAX that don't have logical shift insns,
7457 try to convert logical to arithmetic shift operations in cases where
7458 they are equivalent. This undoes the canonicalizations to logical
7459 shifts done elsewhere.
7460
7461 We try, as much as possible, to re-use rtl expressions to save memory.
7462
7463 IN_CODE says what kind of expression we are processing. Normally, it is
7464 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
7465 being kludges), it is MEM. When processing the arguments of a comparison
7466 or a COMPARE against zero, it is COMPARE. */
7467
7468 rtx
7469 make_compound_operation (rtx x, enum rtx_code in_code)
7470 {
7471 enum rtx_code code = GET_CODE (x);
7472 enum machine_mode mode = GET_MODE (x);
7473 int mode_width = GET_MODE_PRECISION (mode);
7474 rtx rhs, lhs;
7475 enum rtx_code next_code;
7476 int i, j;
7477 rtx new_rtx = 0;
7478 rtx tem;
7479 const char *fmt;
7480
7481 /* Select the code to be used in recursive calls. Once we are inside an
7482 address, we stay there. If we have a comparison, set to COMPARE,
7483 but once inside, go back to our default of SET. */
7484
7485 next_code = (code == MEM ? MEM
7486 : ((code == PLUS || code == MINUS)
7487 && SCALAR_INT_MODE_P (mode)) ? MEM
7488 : ((code == COMPARE || COMPARISON_P (x))
7489 && XEXP (x, 1) == const0_rtx) ? COMPARE
7490 : in_code == COMPARE ? SET : in_code);
7491
7492 /* Process depending on the code of this operation. If NEW is set
7493 nonzero, it will be returned. */
7494
7495 switch (code)
7496 {
7497 case ASHIFT:
7498 /* Convert shifts by constants into multiplications if inside
7499 an address. */
7500 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7501 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7502 && INTVAL (XEXP (x, 1)) >= 0
7503 && SCALAR_INT_MODE_P (mode))
7504 {
7505 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
7506 HOST_WIDE_INT multval = (HOST_WIDE_INT) 1 << count;
7507
7508 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7509 if (GET_CODE (new_rtx) == NEG)
7510 {
7511 new_rtx = XEXP (new_rtx, 0);
7512 multval = -multval;
7513 }
7514 multval = trunc_int_for_mode (multval, mode);
7515 new_rtx = gen_rtx_MULT (mode, new_rtx, gen_int_mode (multval, mode));
7516 }
7517 break;
7518
7519 case PLUS:
7520 lhs = XEXP (x, 0);
7521 rhs = XEXP (x, 1);
7522 lhs = make_compound_operation (lhs, next_code);
7523 rhs = make_compound_operation (rhs, next_code);
7524 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG
7525 && SCALAR_INT_MODE_P (mode))
7526 {
7527 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
7528 XEXP (lhs, 1));
7529 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7530 }
7531 else if (GET_CODE (lhs) == MULT
7532 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
7533 {
7534 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
7535 simplify_gen_unary (NEG, mode,
7536 XEXP (lhs, 1),
7537 mode));
7538 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7539 }
7540 else
7541 {
7542 SUBST (XEXP (x, 0), lhs);
7543 SUBST (XEXP (x, 1), rhs);
7544 goto maybe_swap;
7545 }
7546 x = gen_lowpart (mode, new_rtx);
7547 goto maybe_swap;
7548
7549 case MINUS:
7550 lhs = XEXP (x, 0);
7551 rhs = XEXP (x, 1);
7552 lhs = make_compound_operation (lhs, next_code);
7553 rhs = make_compound_operation (rhs, next_code);
7554 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG
7555 && SCALAR_INT_MODE_P (mode))
7556 {
7557 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
7558 XEXP (rhs, 1));
7559 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7560 }
7561 else if (GET_CODE (rhs) == MULT
7562 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
7563 {
7564 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
7565 simplify_gen_unary (NEG, mode,
7566 XEXP (rhs, 1),
7567 mode));
7568 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7569 }
7570 else
7571 {
7572 SUBST (XEXP (x, 0), lhs);
7573 SUBST (XEXP (x, 1), rhs);
7574 return x;
7575 }
7576 return gen_lowpart (mode, new_rtx);
7577
7578 case AND:
7579 /* If the second operand is not a constant, we can't do anything
7580 with it. */
7581 if (!CONST_INT_P (XEXP (x, 1)))
7582 break;
7583
7584 /* If the constant is a power of two minus one and the first operand
7585 is a logical right shift, make an extraction. */
7586 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7587 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7588 {
7589 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7590 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
7591 0, in_code == COMPARE);
7592 }
7593
7594 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
7595 else if (GET_CODE (XEXP (x, 0)) == SUBREG
7596 && subreg_lowpart_p (XEXP (x, 0))
7597 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
7598 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7599 {
7600 new_rtx = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
7601 next_code);
7602 new_rtx = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new_rtx, 0,
7603 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
7604 0, in_code == COMPARE);
7605 }
7606 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
7607 else if ((GET_CODE (XEXP (x, 0)) == XOR
7608 || GET_CODE (XEXP (x, 0)) == IOR)
7609 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
7610 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
7611 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7612 {
7613 /* Apply the distributive law, and then try to make extractions. */
7614 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
7615 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
7616 XEXP (x, 1)),
7617 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
7618 XEXP (x, 1)));
7619 new_rtx = make_compound_operation (new_rtx, in_code);
7620 }
7621
7622 /* If we are have (and (rotate X C) M) and C is larger than the number
7623 of bits in M, this is an extraction. */
7624
7625 else if (GET_CODE (XEXP (x, 0)) == ROTATE
7626 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7627 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
7628 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
7629 {
7630 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7631 new_rtx = make_extraction (mode, new_rtx,
7632 (GET_MODE_PRECISION (mode)
7633 - INTVAL (XEXP (XEXP (x, 0), 1))),
7634 NULL_RTX, i, 1, 0, in_code == COMPARE);
7635 }
7636
7637 /* On machines without logical shifts, if the operand of the AND is
7638 a logical shift and our mask turns off all the propagated sign
7639 bits, we can replace the logical shift with an arithmetic shift. */
7640 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7641 && !have_insn_for (LSHIFTRT, mode)
7642 && have_insn_for (ASHIFTRT, mode)
7643 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7644 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7645 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7646 && mode_width <= HOST_BITS_PER_WIDE_INT)
7647 {
7648 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
7649
7650 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
7651 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
7652 SUBST (XEXP (x, 0),
7653 gen_rtx_ASHIFTRT (mode,
7654 make_compound_operation
7655 (XEXP (XEXP (x, 0), 0), next_code),
7656 XEXP (XEXP (x, 0), 1)));
7657 }
7658
7659 /* If the constant is one less than a power of two, this might be
7660 representable by an extraction even if no shift is present.
7661 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
7662 we are in a COMPARE. */
7663 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7664 new_rtx = make_extraction (mode,
7665 make_compound_operation (XEXP (x, 0),
7666 next_code),
7667 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
7668
7669 /* If we are in a comparison and this is an AND with a power of two,
7670 convert this into the appropriate bit extract. */
7671 else if (in_code == COMPARE
7672 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
7673 new_rtx = make_extraction (mode,
7674 make_compound_operation (XEXP (x, 0),
7675 next_code),
7676 i, NULL_RTX, 1, 1, 0, 1);
7677
7678 break;
7679
7680 case LSHIFTRT:
7681 /* If the sign bit is known to be zero, replace this with an
7682 arithmetic shift. */
7683 if (have_insn_for (ASHIFTRT, mode)
7684 && ! have_insn_for (LSHIFTRT, mode)
7685 && mode_width <= HOST_BITS_PER_WIDE_INT
7686 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
7687 {
7688 new_rtx = gen_rtx_ASHIFTRT (mode,
7689 make_compound_operation (XEXP (x, 0),
7690 next_code),
7691 XEXP (x, 1));
7692 break;
7693 }
7694
7695 /* ... fall through ... */
7696
7697 case ASHIFTRT:
7698 lhs = XEXP (x, 0);
7699 rhs = XEXP (x, 1);
7700
7701 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
7702 this is a SIGN_EXTRACT. */
7703 if (CONST_INT_P (rhs)
7704 && GET_CODE (lhs) == ASHIFT
7705 && CONST_INT_P (XEXP (lhs, 1))
7706 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
7707 && INTVAL (XEXP (lhs, 1)) >= 0
7708 && INTVAL (rhs) < mode_width)
7709 {
7710 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
7711 new_rtx = make_extraction (mode, new_rtx,
7712 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
7713 NULL_RTX, mode_width - INTVAL (rhs),
7714 code == LSHIFTRT, 0, in_code == COMPARE);
7715 break;
7716 }
7717
7718 /* See if we have operations between an ASHIFTRT and an ASHIFT.
7719 If so, try to merge the shifts into a SIGN_EXTEND. We could
7720 also do this for some cases of SIGN_EXTRACT, but it doesn't
7721 seem worth the effort; the case checked for occurs on Alpha. */
7722
7723 if (!OBJECT_P (lhs)
7724 && ! (GET_CODE (lhs) == SUBREG
7725 && (OBJECT_P (SUBREG_REG (lhs))))
7726 && CONST_INT_P (rhs)
7727 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
7728 && INTVAL (rhs) < mode_width
7729 && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
7730 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
7731 0, NULL_RTX, mode_width - INTVAL (rhs),
7732 code == LSHIFTRT, 0, in_code == COMPARE);
7733
7734 break;
7735
7736 case SUBREG:
7737 /* Call ourselves recursively on the inner expression. If we are
7738 narrowing the object and it has a different RTL code from
7739 what it originally did, do this SUBREG as a force_to_mode. */
7740 {
7741 rtx inner = SUBREG_REG (x), simplified;
7742 enum rtx_code subreg_code = in_code;
7743
7744 /* If in_code is COMPARE, it isn't always safe to pass it through
7745 to the recursive make_compound_operation call. */
7746 if (subreg_code == COMPARE
7747 && (!subreg_lowpart_p (x)
7748 || GET_CODE (inner) == SUBREG
7749 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
7750 is (const_int 0), rather than
7751 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0). */
7752 || (GET_CODE (inner) == AND
7753 && CONST_INT_P (XEXP (inner, 1))
7754 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
7755 && exact_log2 (UINTVAL (XEXP (inner, 1)))
7756 >= GET_MODE_BITSIZE (mode))))
7757 subreg_code = SET;
7758
7759 tem = make_compound_operation (inner, subreg_code);
7760
7761 simplified
7762 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
7763 if (simplified)
7764 tem = simplified;
7765
7766 if (GET_CODE (tem) != GET_CODE (inner)
7767 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
7768 && subreg_lowpart_p (x))
7769 {
7770 rtx newer
7771 = force_to_mode (tem, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
7772
7773 /* If we have something other than a SUBREG, we might have
7774 done an expansion, so rerun ourselves. */
7775 if (GET_CODE (newer) != SUBREG)
7776 newer = make_compound_operation (newer, in_code);
7777
7778 /* force_to_mode can expand compounds. If it just re-expanded the
7779 compound, use gen_lowpart to convert to the desired mode. */
7780 if (rtx_equal_p (newer, x)
7781 /* Likewise if it re-expanded the compound only partially.
7782 This happens for SUBREG of ZERO_EXTRACT if they extract
7783 the same number of bits. */
7784 || (GET_CODE (newer) == SUBREG
7785 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
7786 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
7787 && GET_CODE (inner) == AND
7788 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
7789 return gen_lowpart (GET_MODE (x), tem);
7790
7791 return newer;
7792 }
7793
7794 if (simplified)
7795 return tem;
7796 }
7797 break;
7798
7799 default:
7800 break;
7801 }
7802
7803 if (new_rtx)
7804 {
7805 x = gen_lowpart (mode, new_rtx);
7806 code = GET_CODE (x);
7807 }
7808
7809 /* Now recursively process each operand of this operation. We need to
7810 handle ZERO_EXTEND specially so that we don't lose track of the
7811 inner mode. */
7812 if (GET_CODE (x) == ZERO_EXTEND)
7813 {
7814 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7815 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
7816 new_rtx, GET_MODE (XEXP (x, 0)));
7817 if (tem)
7818 return tem;
7819 SUBST (XEXP (x, 0), new_rtx);
7820 return x;
7821 }
7822
7823 fmt = GET_RTX_FORMAT (code);
7824 for (i = 0; i < GET_RTX_LENGTH (code); i++)
7825 if (fmt[i] == 'e')
7826 {
7827 new_rtx = make_compound_operation (XEXP (x, i), next_code);
7828 SUBST (XEXP (x, i), new_rtx);
7829 }
7830 else if (fmt[i] == 'E')
7831 for (j = 0; j < XVECLEN (x, i); j++)
7832 {
7833 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
7834 SUBST (XVECEXP (x, i, j), new_rtx);
7835 }
7836
7837 maybe_swap:
7838 /* If this is a commutative operation, the changes to the operands
7839 may have made it noncanonical. */
7840 if (COMMUTATIVE_ARITH_P (x)
7841 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
7842 {
7843 tem = XEXP (x, 0);
7844 SUBST (XEXP (x, 0), XEXP (x, 1));
7845 SUBST (XEXP (x, 1), tem);
7846 }
7847
7848 return x;
7849 }
7850 \f
7851 /* Given M see if it is a value that would select a field of bits
7852 within an item, but not the entire word. Return -1 if not.
7853 Otherwise, return the starting position of the field, where 0 is the
7854 low-order bit.
7855
7856 *PLEN is set to the length of the field. */
7857
7858 static int
7859 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
7860 {
7861 /* Get the bit number of the first 1 bit from the right, -1 if none. */
7862 int pos = m ? ctz_hwi (m) : -1;
7863 int len = 0;
7864
7865 if (pos >= 0)
7866 /* Now shift off the low-order zero bits and see if we have a
7867 power of two minus 1. */
7868 len = exact_log2 ((m >> pos) + 1);
7869
7870 if (len <= 0)
7871 pos = -1;
7872
7873 *plen = len;
7874 return pos;
7875 }
7876 \f
7877 /* If X refers to a register that equals REG in value, replace these
7878 references with REG. */
7879 static rtx
7880 canon_reg_for_combine (rtx x, rtx reg)
7881 {
7882 rtx op0, op1, op2;
7883 const char *fmt;
7884 int i;
7885 bool copied;
7886
7887 enum rtx_code code = GET_CODE (x);
7888 switch (GET_RTX_CLASS (code))
7889 {
7890 case RTX_UNARY:
7891 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7892 if (op0 != XEXP (x, 0))
7893 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
7894 GET_MODE (reg));
7895 break;
7896
7897 case RTX_BIN_ARITH:
7898 case RTX_COMM_ARITH:
7899 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7900 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7901 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7902 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
7903 break;
7904
7905 case RTX_COMPARE:
7906 case RTX_COMM_COMPARE:
7907 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7908 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7909 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7910 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
7911 GET_MODE (op0), op0, op1);
7912 break;
7913
7914 case RTX_TERNARY:
7915 case RTX_BITFIELD_OPS:
7916 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7917 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7918 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
7919 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
7920 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
7921 GET_MODE (op0), op0, op1, op2);
7922
7923 case RTX_OBJ:
7924 if (REG_P (x))
7925 {
7926 if (rtx_equal_p (get_last_value (reg), x)
7927 || rtx_equal_p (reg, get_last_value (x)))
7928 return reg;
7929 else
7930 break;
7931 }
7932
7933 /* fall through */
7934
7935 default:
7936 fmt = GET_RTX_FORMAT (code);
7937 copied = false;
7938 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7939 if (fmt[i] == 'e')
7940 {
7941 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
7942 if (op != XEXP (x, i))
7943 {
7944 if (!copied)
7945 {
7946 copied = true;
7947 x = copy_rtx (x);
7948 }
7949 XEXP (x, i) = op;
7950 }
7951 }
7952 else if (fmt[i] == 'E')
7953 {
7954 int j;
7955 for (j = 0; j < XVECLEN (x, i); j++)
7956 {
7957 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
7958 if (op != XVECEXP (x, i, j))
7959 {
7960 if (!copied)
7961 {
7962 copied = true;
7963 x = copy_rtx (x);
7964 }
7965 XVECEXP (x, i, j) = op;
7966 }
7967 }
7968 }
7969
7970 break;
7971 }
7972
7973 return x;
7974 }
7975
7976 /* Return X converted to MODE. If the value is already truncated to
7977 MODE we can just return a subreg even though in the general case we
7978 would need an explicit truncation. */
7979
7980 static rtx
7981 gen_lowpart_or_truncate (enum machine_mode mode, rtx x)
7982 {
7983 if (!CONST_INT_P (x)
7984 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
7985 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
7986 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
7987 {
7988 /* Bit-cast X into an integer mode. */
7989 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
7990 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)), x);
7991 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode),
7992 x, GET_MODE (x));
7993 }
7994
7995 return gen_lowpart (mode, x);
7996 }
7997
7998 /* See if X can be simplified knowing that we will only refer to it in
7999 MODE and will only refer to those bits that are nonzero in MASK.
8000 If other bits are being computed or if masking operations are done
8001 that select a superset of the bits in MASK, they can sometimes be
8002 ignored.
8003
8004 Return a possibly simplified expression, but always convert X to
8005 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8006
8007 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8008 are all off in X. This is used when X will be complemented, by either
8009 NOT, NEG, or XOR. */
8010
8011 static rtx
8012 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
8013 int just_select)
8014 {
8015 enum rtx_code code = GET_CODE (x);
8016 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8017 enum machine_mode op_mode;
8018 unsigned HOST_WIDE_INT fuller_mask, nonzero;
8019 rtx op0, op1, temp;
8020
8021 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8022 code below will do the wrong thing since the mode of such an
8023 expression is VOIDmode.
8024
8025 Also do nothing if X is a CLOBBER; this can happen if X was
8026 the return value from a call to gen_lowpart. */
8027 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8028 return x;
8029
8030 /* We want to perform the operation is its present mode unless we know
8031 that the operation is valid in MODE, in which case we do the operation
8032 in MODE. */
8033 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8034 && have_insn_for (code, mode))
8035 ? mode : GET_MODE (x));
8036
8037 /* It is not valid to do a right-shift in a narrower mode
8038 than the one it came in with. */
8039 if ((code == LSHIFTRT || code == ASHIFTRT)
8040 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (GET_MODE (x)))
8041 op_mode = GET_MODE (x);
8042
8043 /* Truncate MASK to fit OP_MODE. */
8044 if (op_mode)
8045 mask &= GET_MODE_MASK (op_mode);
8046
8047 /* When we have an arithmetic operation, or a shift whose count we
8048 do not know, we need to assume that all bits up to the highest-order
8049 bit in MASK will be needed. This is how we form such a mask. */
8050 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
8051 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
8052 else
8053 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
8054 - 1);
8055
8056 /* Determine what bits of X are guaranteed to be (non)zero. */
8057 nonzero = nonzero_bits (x, mode);
8058
8059 /* If none of the bits in X are needed, return a zero. */
8060 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8061 x = const0_rtx;
8062
8063 /* If X is a CONST_INT, return a new one. Do this here since the
8064 test below will fail. */
8065 if (CONST_INT_P (x))
8066 {
8067 if (SCALAR_INT_MODE_P (mode))
8068 return gen_int_mode (INTVAL (x) & mask, mode);
8069 else
8070 {
8071 x = GEN_INT (INTVAL (x) & mask);
8072 return gen_lowpart_common (mode, x);
8073 }
8074 }
8075
8076 /* If X is narrower than MODE and we want all the bits in X's mode, just
8077 get X in the proper mode. */
8078 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
8079 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8080 return gen_lowpart (mode, x);
8081
8082 /* We can ignore the effect of a SUBREG if it narrows the mode or
8083 if the constant masks to zero all the bits the mode doesn't have. */
8084 if (GET_CODE (x) == SUBREG
8085 && subreg_lowpart_p (x)
8086 && ((GET_MODE_SIZE (GET_MODE (x))
8087 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8088 || (0 == (mask
8089 & GET_MODE_MASK (GET_MODE (x))
8090 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
8091 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8092
8093 /* The arithmetic simplifications here only work for scalar integer modes. */
8094 if (!SCALAR_INT_MODE_P (mode) || !SCALAR_INT_MODE_P (GET_MODE (x)))
8095 return gen_lowpart_or_truncate (mode, x);
8096
8097 switch (code)
8098 {
8099 case CLOBBER:
8100 /* If X is a (clobber (const_int)), return it since we know we are
8101 generating something that won't match. */
8102 return x;
8103
8104 case SIGN_EXTEND:
8105 case ZERO_EXTEND:
8106 case ZERO_EXTRACT:
8107 case SIGN_EXTRACT:
8108 x = expand_compound_operation (x);
8109 if (GET_CODE (x) != code)
8110 return force_to_mode (x, mode, mask, next_select);
8111 break;
8112
8113 case TRUNCATE:
8114 /* Similarly for a truncate. */
8115 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8116
8117 case AND:
8118 /* If this is an AND with a constant, convert it into an AND
8119 whose constant is the AND of that constant with MASK. If it
8120 remains an AND of MASK, delete it since it is redundant. */
8121
8122 if (CONST_INT_P (XEXP (x, 1)))
8123 {
8124 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8125 mask & INTVAL (XEXP (x, 1)));
8126
8127 /* If X is still an AND, see if it is an AND with a mask that
8128 is just some low-order bits. If so, and it is MASK, we don't
8129 need it. */
8130
8131 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8132 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
8133 == mask))
8134 x = XEXP (x, 0);
8135
8136 /* If it remains an AND, try making another AND with the bits
8137 in the mode mask that aren't in MASK turned on. If the
8138 constant in the AND is wide enough, this might make a
8139 cheaper constant. */
8140
8141 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8142 && GET_MODE_MASK (GET_MODE (x)) != mask
8143 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
8144 {
8145 unsigned HOST_WIDE_INT cval
8146 = UINTVAL (XEXP (x, 1))
8147 | (GET_MODE_MASK (GET_MODE (x)) & ~mask);
8148 rtx y;
8149
8150 y = simplify_gen_binary (AND, GET_MODE (x), XEXP (x, 0),
8151 gen_int_mode (cval, GET_MODE (x)));
8152 if (set_src_cost (y, optimize_this_for_speed_p)
8153 < set_src_cost (x, optimize_this_for_speed_p))
8154 x = y;
8155 }
8156
8157 break;
8158 }
8159
8160 goto binop;
8161
8162 case PLUS:
8163 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8164 low-order bits (as in an alignment operation) and FOO is already
8165 aligned to that boundary, mask C1 to that boundary as well.
8166 This may eliminate that PLUS and, later, the AND. */
8167
8168 {
8169 unsigned int width = GET_MODE_PRECISION (mode);
8170 unsigned HOST_WIDE_INT smask = mask;
8171
8172 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8173 number, sign extend it. */
8174
8175 if (width < HOST_BITS_PER_WIDE_INT
8176 && (smask & (HOST_WIDE_INT_1U << (width - 1))) != 0)
8177 smask |= HOST_WIDE_INT_M1U << width;
8178
8179 if (CONST_INT_P (XEXP (x, 1))
8180 && exact_log2 (- smask) >= 0
8181 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8182 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8183 return force_to_mode (plus_constant (GET_MODE (x), XEXP (x, 0),
8184 (INTVAL (XEXP (x, 1)) & smask)),
8185 mode, smask, next_select);
8186 }
8187
8188 /* ... fall through ... */
8189
8190 case MULT:
8191 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8192 most significant bit in MASK since carries from those bits will
8193 affect the bits we are interested in. */
8194 mask = fuller_mask;
8195 goto binop;
8196
8197 case MINUS:
8198 /* If X is (minus C Y) where C's least set bit is larger than any bit
8199 in the mask, then we may replace with (neg Y). */
8200 if (CONST_INT_P (XEXP (x, 0))
8201 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
8202 & -INTVAL (XEXP (x, 0))))
8203 > mask))
8204 {
8205 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
8206 GET_MODE (x));
8207 return force_to_mode (x, mode, mask, next_select);
8208 }
8209
8210 /* Similarly, if C contains every bit in the fuller_mask, then we may
8211 replace with (not Y). */
8212 if (CONST_INT_P (XEXP (x, 0))
8213 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8214 {
8215 x = simplify_gen_unary (NOT, GET_MODE (x),
8216 XEXP (x, 1), GET_MODE (x));
8217 return force_to_mode (x, mode, mask, next_select);
8218 }
8219
8220 mask = fuller_mask;
8221 goto binop;
8222
8223 case IOR:
8224 case XOR:
8225 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8226 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8227 operation which may be a bitfield extraction. Ensure that the
8228 constant we form is not wider than the mode of X. */
8229
8230 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8231 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8232 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8233 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8234 && CONST_INT_P (XEXP (x, 1))
8235 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8236 + floor_log2 (INTVAL (XEXP (x, 1))))
8237 < GET_MODE_PRECISION (GET_MODE (x)))
8238 && (UINTVAL (XEXP (x, 1))
8239 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
8240 {
8241 temp = gen_int_mode ((INTVAL (XEXP (x, 1)) & mask)
8242 << INTVAL (XEXP (XEXP (x, 0), 1)),
8243 GET_MODE (x));
8244 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
8245 XEXP (XEXP (x, 0), 0), temp);
8246 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
8247 XEXP (XEXP (x, 0), 1));
8248 return force_to_mode (x, mode, mask, next_select);
8249 }
8250
8251 binop:
8252 /* For most binary operations, just propagate into the operation and
8253 change the mode if we have an operation of that mode. */
8254
8255 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8256 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8257
8258 /* If we ended up truncating both operands, truncate the result of the
8259 operation instead. */
8260 if (GET_CODE (op0) == TRUNCATE
8261 && GET_CODE (op1) == TRUNCATE)
8262 {
8263 op0 = XEXP (op0, 0);
8264 op1 = XEXP (op1, 0);
8265 }
8266
8267 op0 = gen_lowpart_or_truncate (op_mode, op0);
8268 op1 = gen_lowpart_or_truncate (op_mode, op1);
8269
8270 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8271 x = simplify_gen_binary (code, op_mode, op0, op1);
8272 break;
8273
8274 case ASHIFT:
8275 /* For left shifts, do the same, but just for the first operand.
8276 However, we cannot do anything with shifts where we cannot
8277 guarantee that the counts are smaller than the size of the mode
8278 because such a count will have a different meaning in a
8279 wider mode. */
8280
8281 if (! (CONST_INT_P (XEXP (x, 1))
8282 && INTVAL (XEXP (x, 1)) >= 0
8283 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
8284 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8285 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8286 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
8287 break;
8288
8289 /* If the shift count is a constant and we can do arithmetic in
8290 the mode of the shift, refine which bits we need. Otherwise, use the
8291 conservative form of the mask. */
8292 if (CONST_INT_P (XEXP (x, 1))
8293 && INTVAL (XEXP (x, 1)) >= 0
8294 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
8295 && HWI_COMPUTABLE_MODE_P (op_mode))
8296 mask >>= INTVAL (XEXP (x, 1));
8297 else
8298 mask = fuller_mask;
8299
8300 op0 = gen_lowpart_or_truncate (op_mode,
8301 force_to_mode (XEXP (x, 0), op_mode,
8302 mask, next_select));
8303
8304 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8305 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8306 break;
8307
8308 case LSHIFTRT:
8309 /* Here we can only do something if the shift count is a constant,
8310 this shift constant is valid for the host, and we can do arithmetic
8311 in OP_MODE. */
8312
8313 if (CONST_INT_P (XEXP (x, 1))
8314 && INTVAL (XEXP (x, 1)) >= 0
8315 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8316 && HWI_COMPUTABLE_MODE_P (op_mode))
8317 {
8318 rtx inner = XEXP (x, 0);
8319 unsigned HOST_WIDE_INT inner_mask;
8320
8321 /* Select the mask of the bits we need for the shift operand. */
8322 inner_mask = mask << INTVAL (XEXP (x, 1));
8323
8324 /* We can only change the mode of the shift if we can do arithmetic
8325 in the mode of the shift and INNER_MASK is no wider than the
8326 width of X's mode. */
8327 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
8328 op_mode = GET_MODE (x);
8329
8330 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8331
8332 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
8333 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8334 }
8335
8336 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8337 shift and AND produces only copies of the sign bit (C2 is one less
8338 than a power of two), we can do this with just a shift. */
8339
8340 if (GET_CODE (x) == LSHIFTRT
8341 && CONST_INT_P (XEXP (x, 1))
8342 /* The shift puts one of the sign bit copies in the least significant
8343 bit. */
8344 && ((INTVAL (XEXP (x, 1))
8345 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8346 >= GET_MODE_PRECISION (GET_MODE (x)))
8347 && exact_log2 (mask + 1) >= 0
8348 /* Number of bits left after the shift must be more than the mask
8349 needs. */
8350 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
8351 <= GET_MODE_PRECISION (GET_MODE (x)))
8352 /* Must be more sign bit copies than the mask needs. */
8353 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
8354 >= exact_log2 (mask + 1)))
8355 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8356 GEN_INT (GET_MODE_PRECISION (GET_MODE (x))
8357 - exact_log2 (mask + 1)));
8358
8359 goto shiftrt;
8360
8361 case ASHIFTRT:
8362 /* If we are just looking for the sign bit, we don't need this shift at
8363 all, even if it has a variable count. */
8364 if (val_signbit_p (GET_MODE (x), mask))
8365 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8366
8367 /* If this is a shift by a constant, get a mask that contains those bits
8368 that are not copies of the sign bit. We then have two cases: If
8369 MASK only includes those bits, this can be a logical shift, which may
8370 allow simplifications. If MASK is a single-bit field not within
8371 those bits, we are requesting a copy of the sign bit and hence can
8372 shift the sign bit to the appropriate location. */
8373
8374 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
8375 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8376 {
8377 int i;
8378
8379 /* If the considered data is wider than HOST_WIDE_INT, we can't
8380 represent a mask for all its bits in a single scalar.
8381 But we only care about the lower bits, so calculate these. */
8382
8383 if (GET_MODE_PRECISION (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
8384 {
8385 nonzero = ~(unsigned HOST_WIDE_INT) 0;
8386
8387 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8388 is the number of bits a full-width mask would have set.
8389 We need only shift if these are fewer than nonzero can
8390 hold. If not, we must keep all bits set in nonzero. */
8391
8392 if (GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8393 < HOST_BITS_PER_WIDE_INT)
8394 nonzero >>= INTVAL (XEXP (x, 1))
8395 + HOST_BITS_PER_WIDE_INT
8396 - GET_MODE_PRECISION (GET_MODE (x)) ;
8397 }
8398 else
8399 {
8400 nonzero = GET_MODE_MASK (GET_MODE (x));
8401 nonzero >>= INTVAL (XEXP (x, 1));
8402 }
8403
8404 if ((mask & ~nonzero) == 0)
8405 {
8406 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
8407 XEXP (x, 0), INTVAL (XEXP (x, 1)));
8408 if (GET_CODE (x) != ASHIFTRT)
8409 return force_to_mode (x, mode, mask, next_select);
8410 }
8411
8412 else if ((i = exact_log2 (mask)) >= 0)
8413 {
8414 x = simplify_shift_const
8415 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8416 GET_MODE_PRECISION (GET_MODE (x)) - 1 - i);
8417
8418 if (GET_CODE (x) != ASHIFTRT)
8419 return force_to_mode (x, mode, mask, next_select);
8420 }
8421 }
8422
8423 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
8424 even if the shift count isn't a constant. */
8425 if (mask == 1)
8426 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8427 XEXP (x, 0), XEXP (x, 1));
8428
8429 shiftrt:
8430
8431 /* If this is a zero- or sign-extension operation that just affects bits
8432 we don't care about, remove it. Be sure the call above returned
8433 something that is still a shift. */
8434
8435 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
8436 && CONST_INT_P (XEXP (x, 1))
8437 && INTVAL (XEXP (x, 1)) >= 0
8438 && (INTVAL (XEXP (x, 1))
8439 <= GET_MODE_PRECISION (GET_MODE (x)) - (floor_log2 (mask) + 1))
8440 && GET_CODE (XEXP (x, 0)) == ASHIFT
8441 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
8442 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
8443 next_select);
8444
8445 break;
8446
8447 case ROTATE:
8448 case ROTATERT:
8449 /* If the shift count is constant and we can do computations
8450 in the mode of X, compute where the bits we care about are.
8451 Otherwise, we can't do anything. Don't change the mode of
8452 the shift or propagate MODE into the shift, though. */
8453 if (CONST_INT_P (XEXP (x, 1))
8454 && INTVAL (XEXP (x, 1)) >= 0)
8455 {
8456 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
8457 GET_MODE (x),
8458 gen_int_mode (mask, GET_MODE (x)),
8459 XEXP (x, 1));
8460 if (temp && CONST_INT_P (temp))
8461 SUBST (XEXP (x, 0),
8462 force_to_mode (XEXP (x, 0), GET_MODE (x),
8463 INTVAL (temp), next_select));
8464 }
8465 break;
8466
8467 case NEG:
8468 /* If we just want the low-order bit, the NEG isn't needed since it
8469 won't change the low-order bit. */
8470 if (mask == 1)
8471 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
8472
8473 /* We need any bits less significant than the most significant bit in
8474 MASK since carries from those bits will affect the bits we are
8475 interested in. */
8476 mask = fuller_mask;
8477 goto unop;
8478
8479 case NOT:
8480 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
8481 same as the XOR case above. Ensure that the constant we form is not
8482 wider than the mode of X. */
8483
8484 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8485 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8486 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8487 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
8488 < GET_MODE_PRECISION (GET_MODE (x)))
8489 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
8490 {
8491 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
8492 GET_MODE (x));
8493 temp = simplify_gen_binary (XOR, GET_MODE (x),
8494 XEXP (XEXP (x, 0), 0), temp);
8495 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8496 temp, XEXP (XEXP (x, 0), 1));
8497
8498 return force_to_mode (x, mode, mask, next_select);
8499 }
8500
8501 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
8502 use the full mask inside the NOT. */
8503 mask = fuller_mask;
8504
8505 unop:
8506 op0 = gen_lowpart_or_truncate (op_mode,
8507 force_to_mode (XEXP (x, 0), mode, mask,
8508 next_select));
8509 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8510 x = simplify_gen_unary (code, op_mode, op0, op_mode);
8511 break;
8512
8513 case NE:
8514 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
8515 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
8516 which is equal to STORE_FLAG_VALUE. */
8517 if ((mask & ~STORE_FLAG_VALUE) == 0
8518 && XEXP (x, 1) == const0_rtx
8519 && GET_MODE (XEXP (x, 0)) == mode
8520 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
8521 && (nonzero_bits (XEXP (x, 0), mode)
8522 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
8523 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8524
8525 break;
8526
8527 case IF_THEN_ELSE:
8528 /* We have no way of knowing if the IF_THEN_ELSE can itself be
8529 written in a narrower mode. We play it safe and do not do so. */
8530
8531 SUBST (XEXP (x, 1),
8532 gen_lowpart_or_truncate (GET_MODE (x),
8533 force_to_mode (XEXP (x, 1), mode,
8534 mask, next_select)));
8535 SUBST (XEXP (x, 2),
8536 gen_lowpart_or_truncate (GET_MODE (x),
8537 force_to_mode (XEXP (x, 2), mode,
8538 mask, next_select)));
8539 break;
8540
8541 default:
8542 break;
8543 }
8544
8545 /* Ensure we return a value of the proper mode. */
8546 return gen_lowpart_or_truncate (mode, x);
8547 }
8548 \f
8549 /* Return nonzero if X is an expression that has one of two values depending on
8550 whether some other value is zero or nonzero. In that case, we return the
8551 value that is being tested, *PTRUE is set to the value if the rtx being
8552 returned has a nonzero value, and *PFALSE is set to the other alternative.
8553
8554 If we return zero, we set *PTRUE and *PFALSE to X. */
8555
8556 static rtx
8557 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
8558 {
8559 enum machine_mode mode = GET_MODE (x);
8560 enum rtx_code code = GET_CODE (x);
8561 rtx cond0, cond1, true0, true1, false0, false1;
8562 unsigned HOST_WIDE_INT nz;
8563
8564 /* If we are comparing a value against zero, we are done. */
8565 if ((code == NE || code == EQ)
8566 && XEXP (x, 1) == const0_rtx)
8567 {
8568 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
8569 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
8570 return XEXP (x, 0);
8571 }
8572
8573 /* If this is a unary operation whose operand has one of two values, apply
8574 our opcode to compute those values. */
8575 else if (UNARY_P (x)
8576 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
8577 {
8578 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
8579 *pfalse = simplify_gen_unary (code, mode, false0,
8580 GET_MODE (XEXP (x, 0)));
8581 return cond0;
8582 }
8583
8584 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
8585 make can't possibly match and would suppress other optimizations. */
8586 else if (code == COMPARE)
8587 ;
8588
8589 /* If this is a binary operation, see if either side has only one of two
8590 values. If either one does or if both do and they are conditional on
8591 the same value, compute the new true and false values. */
8592 else if (BINARY_P (x))
8593 {
8594 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
8595 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
8596
8597 if ((cond0 != 0 || cond1 != 0)
8598 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
8599 {
8600 /* If if_then_else_cond returned zero, then true/false are the
8601 same rtl. We must copy one of them to prevent invalid rtl
8602 sharing. */
8603 if (cond0 == 0)
8604 true0 = copy_rtx (true0);
8605 else if (cond1 == 0)
8606 true1 = copy_rtx (true1);
8607
8608 if (COMPARISON_P (x))
8609 {
8610 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
8611 true0, true1);
8612 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
8613 false0, false1);
8614 }
8615 else
8616 {
8617 *ptrue = simplify_gen_binary (code, mode, true0, true1);
8618 *pfalse = simplify_gen_binary (code, mode, false0, false1);
8619 }
8620
8621 return cond0 ? cond0 : cond1;
8622 }
8623
8624 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
8625 operands is zero when the other is nonzero, and vice-versa,
8626 and STORE_FLAG_VALUE is 1 or -1. */
8627
8628 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8629 && (code == PLUS || code == IOR || code == XOR || code == MINUS
8630 || code == UMAX)
8631 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8632 {
8633 rtx op0 = XEXP (XEXP (x, 0), 1);
8634 rtx op1 = XEXP (XEXP (x, 1), 1);
8635
8636 cond0 = XEXP (XEXP (x, 0), 0);
8637 cond1 = XEXP (XEXP (x, 1), 0);
8638
8639 if (COMPARISON_P (cond0)
8640 && COMPARISON_P (cond1)
8641 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8642 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8643 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8644 || ((swap_condition (GET_CODE (cond0))
8645 == reversed_comparison_code (cond1, NULL))
8646 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8647 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8648 && ! side_effects_p (x))
8649 {
8650 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
8651 *pfalse = simplify_gen_binary (MULT, mode,
8652 (code == MINUS
8653 ? simplify_gen_unary (NEG, mode,
8654 op1, mode)
8655 : op1),
8656 const_true_rtx);
8657 return cond0;
8658 }
8659 }
8660
8661 /* Similarly for MULT, AND and UMIN, except that for these the result
8662 is always zero. */
8663 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8664 && (code == MULT || code == AND || code == UMIN)
8665 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8666 {
8667 cond0 = XEXP (XEXP (x, 0), 0);
8668 cond1 = XEXP (XEXP (x, 1), 0);
8669
8670 if (COMPARISON_P (cond0)
8671 && COMPARISON_P (cond1)
8672 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8673 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8674 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8675 || ((swap_condition (GET_CODE (cond0))
8676 == reversed_comparison_code (cond1, NULL))
8677 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8678 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8679 && ! side_effects_p (x))
8680 {
8681 *ptrue = *pfalse = const0_rtx;
8682 return cond0;
8683 }
8684 }
8685 }
8686
8687 else if (code == IF_THEN_ELSE)
8688 {
8689 /* If we have IF_THEN_ELSE already, extract the condition and
8690 canonicalize it if it is NE or EQ. */
8691 cond0 = XEXP (x, 0);
8692 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
8693 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
8694 return XEXP (cond0, 0);
8695 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
8696 {
8697 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
8698 return XEXP (cond0, 0);
8699 }
8700 else
8701 return cond0;
8702 }
8703
8704 /* If X is a SUBREG, we can narrow both the true and false values
8705 if the inner expression, if there is a condition. */
8706 else if (code == SUBREG
8707 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
8708 &true0, &false0)))
8709 {
8710 true0 = simplify_gen_subreg (mode, true0,
8711 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8712 false0 = simplify_gen_subreg (mode, false0,
8713 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8714 if (true0 && false0)
8715 {
8716 *ptrue = true0;
8717 *pfalse = false0;
8718 return cond0;
8719 }
8720 }
8721
8722 /* If X is a constant, this isn't special and will cause confusions
8723 if we treat it as such. Likewise if it is equivalent to a constant. */
8724 else if (CONSTANT_P (x)
8725 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
8726 ;
8727
8728 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
8729 will be least confusing to the rest of the compiler. */
8730 else if (mode == BImode)
8731 {
8732 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
8733 return x;
8734 }
8735
8736 /* If X is known to be either 0 or -1, those are the true and
8737 false values when testing X. */
8738 else if (x == constm1_rtx || x == const0_rtx
8739 || (mode != VOIDmode
8740 && num_sign_bit_copies (x, mode) == GET_MODE_PRECISION (mode)))
8741 {
8742 *ptrue = constm1_rtx, *pfalse = const0_rtx;
8743 return x;
8744 }
8745
8746 /* Likewise for 0 or a single bit. */
8747 else if (HWI_COMPUTABLE_MODE_P (mode)
8748 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
8749 {
8750 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
8751 return x;
8752 }
8753
8754 /* Otherwise fail; show no condition with true and false values the same. */
8755 *ptrue = *pfalse = x;
8756 return 0;
8757 }
8758 \f
8759 /* Return the value of expression X given the fact that condition COND
8760 is known to be true when applied to REG as its first operand and VAL
8761 as its second. X is known to not be shared and so can be modified in
8762 place.
8763
8764 We only handle the simplest cases, and specifically those cases that
8765 arise with IF_THEN_ELSE expressions. */
8766
8767 static rtx
8768 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
8769 {
8770 enum rtx_code code = GET_CODE (x);
8771 rtx temp;
8772 const char *fmt;
8773 int i, j;
8774
8775 if (side_effects_p (x))
8776 return x;
8777
8778 /* If either operand of the condition is a floating point value,
8779 then we have to avoid collapsing an EQ comparison. */
8780 if (cond == EQ
8781 && rtx_equal_p (x, reg)
8782 && ! FLOAT_MODE_P (GET_MODE (x))
8783 && ! FLOAT_MODE_P (GET_MODE (val)))
8784 return val;
8785
8786 if (cond == UNEQ && rtx_equal_p (x, reg))
8787 return val;
8788
8789 /* If X is (abs REG) and we know something about REG's relationship
8790 with zero, we may be able to simplify this. */
8791
8792 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
8793 switch (cond)
8794 {
8795 case GE: case GT: case EQ:
8796 return XEXP (x, 0);
8797 case LT: case LE:
8798 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
8799 XEXP (x, 0),
8800 GET_MODE (XEXP (x, 0)));
8801 default:
8802 break;
8803 }
8804
8805 /* The only other cases we handle are MIN, MAX, and comparisons if the
8806 operands are the same as REG and VAL. */
8807
8808 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
8809 {
8810 if (rtx_equal_p (XEXP (x, 0), val))
8811 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
8812
8813 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
8814 {
8815 if (COMPARISON_P (x))
8816 {
8817 if (comparison_dominates_p (cond, code))
8818 return const_true_rtx;
8819
8820 code = reversed_comparison_code (x, NULL);
8821 if (code != UNKNOWN
8822 && comparison_dominates_p (cond, code))
8823 return const0_rtx;
8824 else
8825 return x;
8826 }
8827 else if (code == SMAX || code == SMIN
8828 || code == UMIN || code == UMAX)
8829 {
8830 int unsignedp = (code == UMIN || code == UMAX);
8831
8832 /* Do not reverse the condition when it is NE or EQ.
8833 This is because we cannot conclude anything about
8834 the value of 'SMAX (x, y)' when x is not equal to y,
8835 but we can when x equals y. */
8836 if ((code == SMAX || code == UMAX)
8837 && ! (cond == EQ || cond == NE))
8838 cond = reverse_condition (cond);
8839
8840 switch (cond)
8841 {
8842 case GE: case GT:
8843 return unsignedp ? x : XEXP (x, 1);
8844 case LE: case LT:
8845 return unsignedp ? x : XEXP (x, 0);
8846 case GEU: case GTU:
8847 return unsignedp ? XEXP (x, 1) : x;
8848 case LEU: case LTU:
8849 return unsignedp ? XEXP (x, 0) : x;
8850 default:
8851 break;
8852 }
8853 }
8854 }
8855 }
8856 else if (code == SUBREG)
8857 {
8858 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
8859 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
8860
8861 if (SUBREG_REG (x) != r)
8862 {
8863 /* We must simplify subreg here, before we lose track of the
8864 original inner_mode. */
8865 new_rtx = simplify_subreg (GET_MODE (x), r,
8866 inner_mode, SUBREG_BYTE (x));
8867 if (new_rtx)
8868 return new_rtx;
8869 else
8870 SUBST (SUBREG_REG (x), r);
8871 }
8872
8873 return x;
8874 }
8875 /* We don't have to handle SIGN_EXTEND here, because even in the
8876 case of replacing something with a modeless CONST_INT, a
8877 CONST_INT is already (supposed to be) a valid sign extension for
8878 its narrower mode, which implies it's already properly
8879 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
8880 story is different. */
8881 else if (code == ZERO_EXTEND)
8882 {
8883 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
8884 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
8885
8886 if (XEXP (x, 0) != r)
8887 {
8888 /* We must simplify the zero_extend here, before we lose
8889 track of the original inner_mode. */
8890 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
8891 r, inner_mode);
8892 if (new_rtx)
8893 return new_rtx;
8894 else
8895 SUBST (XEXP (x, 0), r);
8896 }
8897
8898 return x;
8899 }
8900
8901 fmt = GET_RTX_FORMAT (code);
8902 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8903 {
8904 if (fmt[i] == 'e')
8905 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
8906 else if (fmt[i] == 'E')
8907 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8908 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
8909 cond, reg, val));
8910 }
8911
8912 return x;
8913 }
8914 \f
8915 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
8916 assignment as a field assignment. */
8917
8918 static int
8919 rtx_equal_for_field_assignment_p (rtx x, rtx y)
8920 {
8921 if (x == y || rtx_equal_p (x, y))
8922 return 1;
8923
8924 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
8925 return 0;
8926
8927 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
8928 Note that all SUBREGs of MEM are paradoxical; otherwise they
8929 would have been rewritten. */
8930 if (MEM_P (x) && GET_CODE (y) == SUBREG
8931 && MEM_P (SUBREG_REG (y))
8932 && rtx_equal_p (SUBREG_REG (y),
8933 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
8934 return 1;
8935
8936 if (MEM_P (y) && GET_CODE (x) == SUBREG
8937 && MEM_P (SUBREG_REG (x))
8938 && rtx_equal_p (SUBREG_REG (x),
8939 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
8940 return 1;
8941
8942 /* We used to see if get_last_value of X and Y were the same but that's
8943 not correct. In one direction, we'll cause the assignment to have
8944 the wrong destination and in the case, we'll import a register into this
8945 insn that might have already have been dead. So fail if none of the
8946 above cases are true. */
8947 return 0;
8948 }
8949 \f
8950 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
8951 Return that assignment if so.
8952
8953 We only handle the most common cases. */
8954
8955 static rtx
8956 make_field_assignment (rtx x)
8957 {
8958 rtx dest = SET_DEST (x);
8959 rtx src = SET_SRC (x);
8960 rtx assign;
8961 rtx rhs, lhs;
8962 HOST_WIDE_INT c1;
8963 HOST_WIDE_INT pos;
8964 unsigned HOST_WIDE_INT len;
8965 rtx other;
8966 enum machine_mode mode;
8967
8968 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
8969 a clear of a one-bit field. We will have changed it to
8970 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
8971 for a SUBREG. */
8972
8973 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
8974 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
8975 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
8976 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8977 {
8978 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8979 1, 1, 1, 0);
8980 if (assign != 0)
8981 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8982 return x;
8983 }
8984
8985 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
8986 && subreg_lowpart_p (XEXP (src, 0))
8987 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
8988 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
8989 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
8990 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
8991 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
8992 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8993 {
8994 assign = make_extraction (VOIDmode, dest, 0,
8995 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
8996 1, 1, 1, 0);
8997 if (assign != 0)
8998 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8999 return x;
9000 }
9001
9002 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9003 one-bit field. */
9004 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9005 && XEXP (XEXP (src, 0), 0) == const1_rtx
9006 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9007 {
9008 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9009 1, 1, 1, 0);
9010 if (assign != 0)
9011 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
9012 return x;
9013 }
9014
9015 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9016 SRC is an AND with all bits of that field set, then we can discard
9017 the AND. */
9018 if (GET_CODE (dest) == ZERO_EXTRACT
9019 && CONST_INT_P (XEXP (dest, 1))
9020 && GET_CODE (src) == AND
9021 && CONST_INT_P (XEXP (src, 1)))
9022 {
9023 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9024 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9025 unsigned HOST_WIDE_INT ze_mask;
9026
9027 if (width >= HOST_BITS_PER_WIDE_INT)
9028 ze_mask = -1;
9029 else
9030 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9031
9032 /* Complete overlap. We can remove the source AND. */
9033 if ((and_mask & ze_mask) == ze_mask)
9034 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
9035
9036 /* Partial overlap. We can reduce the source AND. */
9037 if ((and_mask & ze_mask) != and_mask)
9038 {
9039 mode = GET_MODE (src);
9040 src = gen_rtx_AND (mode, XEXP (src, 0),
9041 gen_int_mode (and_mask & ze_mask, mode));
9042 return gen_rtx_SET (VOIDmode, dest, src);
9043 }
9044 }
9045
9046 /* The other case we handle is assignments into a constant-position
9047 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9048 a mask that has all one bits except for a group of zero bits and
9049 OTHER is known to have zeros where C1 has ones, this is such an
9050 assignment. Compute the position and length from C1. Shift OTHER
9051 to the appropriate position, force it to the required mode, and
9052 make the extraction. Check for the AND in both operands. */
9053
9054 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9055 return x;
9056
9057 rhs = expand_compound_operation (XEXP (src, 0));
9058 lhs = expand_compound_operation (XEXP (src, 1));
9059
9060 if (GET_CODE (rhs) == AND
9061 && CONST_INT_P (XEXP (rhs, 1))
9062 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9063 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9064 else if (GET_CODE (lhs) == AND
9065 && CONST_INT_P (XEXP (lhs, 1))
9066 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9067 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9068 else
9069 return x;
9070
9071 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
9072 if (pos < 0 || pos + len > GET_MODE_PRECISION (GET_MODE (dest))
9073 || GET_MODE_PRECISION (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
9074 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
9075 return x;
9076
9077 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9078 if (assign == 0)
9079 return x;
9080
9081 /* The mode to use for the source is the mode of the assignment, or of
9082 what is inside a possible STRICT_LOW_PART. */
9083 mode = (GET_CODE (assign) == STRICT_LOW_PART
9084 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9085
9086 /* Shift OTHER right POS places and make it the source, restricting it
9087 to the proper length and mode. */
9088
9089 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9090 GET_MODE (src),
9091 other, pos),
9092 dest);
9093 src = force_to_mode (src, mode,
9094 GET_MODE_PRECISION (mode) >= HOST_BITS_PER_WIDE_INT
9095 ? ~(unsigned HOST_WIDE_INT) 0
9096 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
9097 0);
9098
9099 /* If SRC is masked by an AND that does not make a difference in
9100 the value being stored, strip it. */
9101 if (GET_CODE (assign) == ZERO_EXTRACT
9102 && CONST_INT_P (XEXP (assign, 1))
9103 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9104 && GET_CODE (src) == AND
9105 && CONST_INT_P (XEXP (src, 1))
9106 && UINTVAL (XEXP (src, 1))
9107 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1)
9108 src = XEXP (src, 0);
9109
9110 return gen_rtx_SET (VOIDmode, assign, src);
9111 }
9112 \f
9113 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9114 if so. */
9115
9116 static rtx
9117 apply_distributive_law (rtx x)
9118 {
9119 enum rtx_code code = GET_CODE (x);
9120 enum rtx_code inner_code;
9121 rtx lhs, rhs, other;
9122 rtx tem;
9123
9124 /* Distributivity is not true for floating point as it can change the
9125 value. So we don't do it unless -funsafe-math-optimizations. */
9126 if (FLOAT_MODE_P (GET_MODE (x))
9127 && ! flag_unsafe_math_optimizations)
9128 return x;
9129
9130 /* The outer operation can only be one of the following: */
9131 if (code != IOR && code != AND && code != XOR
9132 && code != PLUS && code != MINUS)
9133 return x;
9134
9135 lhs = XEXP (x, 0);
9136 rhs = XEXP (x, 1);
9137
9138 /* If either operand is a primitive we can't do anything, so get out
9139 fast. */
9140 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9141 return x;
9142
9143 lhs = expand_compound_operation (lhs);
9144 rhs = expand_compound_operation (rhs);
9145 inner_code = GET_CODE (lhs);
9146 if (inner_code != GET_CODE (rhs))
9147 return x;
9148
9149 /* See if the inner and outer operations distribute. */
9150 switch (inner_code)
9151 {
9152 case LSHIFTRT:
9153 case ASHIFTRT:
9154 case AND:
9155 case IOR:
9156 /* These all distribute except over PLUS. */
9157 if (code == PLUS || code == MINUS)
9158 return x;
9159 break;
9160
9161 case MULT:
9162 if (code != PLUS && code != MINUS)
9163 return x;
9164 break;
9165
9166 case ASHIFT:
9167 /* This is also a multiply, so it distributes over everything. */
9168 break;
9169
9170 /* This used to handle SUBREG, but this turned out to be counter-
9171 productive, since (subreg (op ...)) usually is not handled by
9172 insn patterns, and this "optimization" therefore transformed
9173 recognizable patterns into unrecognizable ones. Therefore the
9174 SUBREG case was removed from here.
9175
9176 It is possible that distributing SUBREG over arithmetic operations
9177 leads to an intermediate result than can then be optimized further,
9178 e.g. by moving the outer SUBREG to the other side of a SET as done
9179 in simplify_set. This seems to have been the original intent of
9180 handling SUBREGs here.
9181
9182 However, with current GCC this does not appear to actually happen,
9183 at least on major platforms. If some case is found where removing
9184 the SUBREG case here prevents follow-on optimizations, distributing
9185 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9186
9187 default:
9188 return x;
9189 }
9190
9191 /* Set LHS and RHS to the inner operands (A and B in the example
9192 above) and set OTHER to the common operand (C in the example).
9193 There is only one way to do this unless the inner operation is
9194 commutative. */
9195 if (COMMUTATIVE_ARITH_P (lhs)
9196 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9197 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9198 else if (COMMUTATIVE_ARITH_P (lhs)
9199 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9200 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9201 else if (COMMUTATIVE_ARITH_P (lhs)
9202 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9203 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9204 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9205 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9206 else
9207 return x;
9208
9209 /* Form the new inner operation, seeing if it simplifies first. */
9210 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9211
9212 /* There is one exception to the general way of distributing:
9213 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9214 if (code == XOR && inner_code == IOR)
9215 {
9216 inner_code = AND;
9217 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9218 }
9219
9220 /* We may be able to continuing distributing the result, so call
9221 ourselves recursively on the inner operation before forming the
9222 outer operation, which we return. */
9223 return simplify_gen_binary (inner_code, GET_MODE (x),
9224 apply_distributive_law (tem), other);
9225 }
9226
9227 /* See if X is of the form (* (+ A B) C), and if so convert to
9228 (+ (* A C) (* B C)) and try to simplify.
9229
9230 Most of the time, this results in no change. However, if some of
9231 the operands are the same or inverses of each other, simplifications
9232 will result.
9233
9234 For example, (and (ior A B) (not B)) can occur as the result of
9235 expanding a bit field assignment. When we apply the distributive
9236 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9237 which then simplifies to (and (A (not B))).
9238
9239 Note that no checks happen on the validity of applying the inverse
9240 distributive law. This is pointless since we can do it in the
9241 few places where this routine is called.
9242
9243 N is the index of the term that is decomposed (the arithmetic operation,
9244 i.e. (+ A B) in the first example above). !N is the index of the term that
9245 is distributed, i.e. of C in the first example above. */
9246 static rtx
9247 distribute_and_simplify_rtx (rtx x, int n)
9248 {
9249 enum machine_mode mode;
9250 enum rtx_code outer_code, inner_code;
9251 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9252
9253 /* Distributivity is not true for floating point as it can change the
9254 value. So we don't do it unless -funsafe-math-optimizations. */
9255 if (FLOAT_MODE_P (GET_MODE (x))
9256 && ! flag_unsafe_math_optimizations)
9257 return NULL_RTX;
9258
9259 decomposed = XEXP (x, n);
9260 if (!ARITHMETIC_P (decomposed))
9261 return NULL_RTX;
9262
9263 mode = GET_MODE (x);
9264 outer_code = GET_CODE (x);
9265 distributed = XEXP (x, !n);
9266
9267 inner_code = GET_CODE (decomposed);
9268 inner_op0 = XEXP (decomposed, 0);
9269 inner_op1 = XEXP (decomposed, 1);
9270
9271 /* Special case (and (xor B C) (not A)), which is equivalent to
9272 (xor (ior A B) (ior A C)) */
9273 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
9274 {
9275 distributed = XEXP (distributed, 0);
9276 outer_code = IOR;
9277 }
9278
9279 if (n == 0)
9280 {
9281 /* Distribute the second term. */
9282 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
9283 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
9284 }
9285 else
9286 {
9287 /* Distribute the first term. */
9288 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
9289 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
9290 }
9291
9292 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
9293 new_op0, new_op1));
9294 if (GET_CODE (tmp) != outer_code
9295 && (set_src_cost (tmp, optimize_this_for_speed_p)
9296 < set_src_cost (x, optimize_this_for_speed_p)))
9297 return tmp;
9298
9299 return NULL_RTX;
9300 }
9301 \f
9302 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9303 in MODE. Return an equivalent form, if different from (and VAROP
9304 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
9305
9306 static rtx
9307 simplify_and_const_int_1 (enum machine_mode mode, rtx varop,
9308 unsigned HOST_WIDE_INT constop)
9309 {
9310 unsigned HOST_WIDE_INT nonzero;
9311 unsigned HOST_WIDE_INT orig_constop;
9312 rtx orig_varop;
9313 int i;
9314
9315 orig_varop = varop;
9316 orig_constop = constop;
9317 if (GET_CODE (varop) == CLOBBER)
9318 return NULL_RTX;
9319
9320 /* Simplify VAROP knowing that we will be only looking at some of the
9321 bits in it.
9322
9323 Note by passing in CONSTOP, we guarantee that the bits not set in
9324 CONSTOP are not significant and will never be examined. We must
9325 ensure that is the case by explicitly masking out those bits
9326 before returning. */
9327 varop = force_to_mode (varop, mode, constop, 0);
9328
9329 /* If VAROP is a CLOBBER, we will fail so return it. */
9330 if (GET_CODE (varop) == CLOBBER)
9331 return varop;
9332
9333 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
9334 to VAROP and return the new constant. */
9335 if (CONST_INT_P (varop))
9336 return gen_int_mode (INTVAL (varop) & constop, mode);
9337
9338 /* See what bits may be nonzero in VAROP. Unlike the general case of
9339 a call to nonzero_bits, here we don't care about bits outside
9340 MODE. */
9341
9342 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
9343
9344 /* Turn off all bits in the constant that are known to already be zero.
9345 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
9346 which is tested below. */
9347
9348 constop &= nonzero;
9349
9350 /* If we don't have any bits left, return zero. */
9351 if (constop == 0)
9352 return const0_rtx;
9353
9354 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
9355 a power of two, we can replace this with an ASHIFT. */
9356 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
9357 && (i = exact_log2 (constop)) >= 0)
9358 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
9359
9360 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
9361 or XOR, then try to apply the distributive law. This may eliminate
9362 operations if either branch can be simplified because of the AND.
9363 It may also make some cases more complex, but those cases probably
9364 won't match a pattern either with or without this. */
9365
9366 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
9367 return
9368 gen_lowpart
9369 (mode,
9370 apply_distributive_law
9371 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
9372 simplify_and_const_int (NULL_RTX,
9373 GET_MODE (varop),
9374 XEXP (varop, 0),
9375 constop),
9376 simplify_and_const_int (NULL_RTX,
9377 GET_MODE (varop),
9378 XEXP (varop, 1),
9379 constop))));
9380
9381 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
9382 the AND and see if one of the operands simplifies to zero. If so, we
9383 may eliminate it. */
9384
9385 if (GET_CODE (varop) == PLUS
9386 && exact_log2 (constop + 1) >= 0)
9387 {
9388 rtx o0, o1;
9389
9390 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
9391 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
9392 if (o0 == const0_rtx)
9393 return o1;
9394 if (o1 == const0_rtx)
9395 return o0;
9396 }
9397
9398 /* Make a SUBREG if necessary. If we can't make it, fail. */
9399 varop = gen_lowpart (mode, varop);
9400 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9401 return NULL_RTX;
9402
9403 /* If we are only masking insignificant bits, return VAROP. */
9404 if (constop == nonzero)
9405 return varop;
9406
9407 if (varop == orig_varop && constop == orig_constop)
9408 return NULL_RTX;
9409
9410 /* Otherwise, return an AND. */
9411 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
9412 }
9413
9414
9415 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
9416 in MODE.
9417
9418 Return an equivalent form, if different from X. Otherwise, return X. If
9419 X is zero, we are to always construct the equivalent form. */
9420
9421 static rtx
9422 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
9423 unsigned HOST_WIDE_INT constop)
9424 {
9425 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
9426 if (tem)
9427 return tem;
9428
9429 if (!x)
9430 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
9431 gen_int_mode (constop, mode));
9432 if (GET_MODE (x) != mode)
9433 x = gen_lowpart (mode, x);
9434 return x;
9435 }
9436 \f
9437 /* Given a REG, X, compute which bits in X can be nonzero.
9438 We don't care about bits outside of those defined in MODE.
9439
9440 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
9441 a shift, AND, or zero_extract, we can do better. */
9442
9443 static rtx
9444 reg_nonzero_bits_for_combine (const_rtx x, enum machine_mode mode,
9445 const_rtx known_x ATTRIBUTE_UNUSED,
9446 enum machine_mode known_mode ATTRIBUTE_UNUSED,
9447 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
9448 unsigned HOST_WIDE_INT *nonzero)
9449 {
9450 rtx tem;
9451 reg_stat_type *rsp;
9452
9453 /* If X is a register whose nonzero bits value is current, use it.
9454 Otherwise, if X is a register whose value we can find, use that
9455 value. Otherwise, use the previously-computed global nonzero bits
9456 for this register. */
9457
9458 rsp = &reg_stat[REGNO (x)];
9459 if (rsp->last_set_value != 0
9460 && (rsp->last_set_mode == mode
9461 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
9462 && GET_MODE_CLASS (mode) == MODE_INT))
9463 && ((rsp->last_set_label >= label_tick_ebb_start
9464 && rsp->last_set_label < label_tick)
9465 || (rsp->last_set_label == label_tick
9466 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9467 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9468 && REG_N_SETS (REGNO (x)) == 1
9469 && !REGNO_REG_SET_P
9470 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
9471 {
9472 *nonzero &= rsp->last_set_nonzero_bits;
9473 return NULL;
9474 }
9475
9476 tem = get_last_value (x);
9477
9478 if (tem)
9479 {
9480 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
9481 /* If X is narrower than MODE and TEM is a non-negative
9482 constant that would appear negative in the mode of X,
9483 sign-extend it for use in reg_nonzero_bits because some
9484 machines (maybe most) will actually do the sign-extension
9485 and this is the conservative approach.
9486
9487 ??? For 2.5, try to tighten up the MD files in this regard
9488 instead of this kludge. */
9489
9490 if (GET_MODE_PRECISION (GET_MODE (x)) < GET_MODE_PRECISION (mode)
9491 && CONST_INT_P (tem)
9492 && INTVAL (tem) > 0
9493 && val_signbit_known_set_p (GET_MODE (x), INTVAL (tem)))
9494 tem = GEN_INT (INTVAL (tem) | ~GET_MODE_MASK (GET_MODE (x)));
9495 #endif
9496 return tem;
9497 }
9498 else if (nonzero_sign_valid && rsp->nonzero_bits)
9499 {
9500 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
9501
9502 if (GET_MODE_PRECISION (GET_MODE (x)) < GET_MODE_PRECISION (mode))
9503 /* We don't know anything about the upper bits. */
9504 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
9505 *nonzero &= mask;
9506 }
9507
9508 return NULL;
9509 }
9510
9511 /* Return the number of bits at the high-order end of X that are known to
9512 be equal to the sign bit. X will be used in mode MODE; if MODE is
9513 VOIDmode, X will be used in its own mode. The returned value will always
9514 be between 1 and the number of bits in MODE. */
9515
9516 static rtx
9517 reg_num_sign_bit_copies_for_combine (const_rtx x, enum machine_mode mode,
9518 const_rtx known_x ATTRIBUTE_UNUSED,
9519 enum machine_mode known_mode
9520 ATTRIBUTE_UNUSED,
9521 unsigned int known_ret ATTRIBUTE_UNUSED,
9522 unsigned int *result)
9523 {
9524 rtx tem;
9525 reg_stat_type *rsp;
9526
9527 rsp = &reg_stat[REGNO (x)];
9528 if (rsp->last_set_value != 0
9529 && rsp->last_set_mode == mode
9530 && ((rsp->last_set_label >= label_tick_ebb_start
9531 && rsp->last_set_label < label_tick)
9532 || (rsp->last_set_label == label_tick
9533 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9534 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9535 && REG_N_SETS (REGNO (x)) == 1
9536 && !REGNO_REG_SET_P
9537 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
9538 {
9539 *result = rsp->last_set_sign_bit_copies;
9540 return NULL;
9541 }
9542
9543 tem = get_last_value (x);
9544 if (tem != 0)
9545 return tem;
9546
9547 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
9548 && GET_MODE_PRECISION (GET_MODE (x)) == GET_MODE_PRECISION (mode))
9549 *result = rsp->sign_bit_copies;
9550
9551 return NULL;
9552 }
9553 \f
9554 /* Return the number of "extended" bits there are in X, when interpreted
9555 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
9556 unsigned quantities, this is the number of high-order zero bits.
9557 For signed quantities, this is the number of copies of the sign bit
9558 minus 1. In both case, this function returns the number of "spare"
9559 bits. For example, if two quantities for which this function returns
9560 at least 1 are added, the addition is known not to overflow.
9561
9562 This function will always return 0 unless called during combine, which
9563 implies that it must be called from a define_split. */
9564
9565 unsigned int
9566 extended_count (const_rtx x, enum machine_mode mode, int unsignedp)
9567 {
9568 if (nonzero_sign_valid == 0)
9569 return 0;
9570
9571 return (unsignedp
9572 ? (HWI_COMPUTABLE_MODE_P (mode)
9573 ? (unsigned int) (GET_MODE_PRECISION (mode) - 1
9574 - floor_log2 (nonzero_bits (x, mode)))
9575 : 0)
9576 : num_sign_bit_copies (x, mode) - 1);
9577 }
9578
9579 /* This function is called from `simplify_shift_const' to merge two
9580 outer operations. Specifically, we have already found that we need
9581 to perform operation *POP0 with constant *PCONST0 at the outermost
9582 position. We would now like to also perform OP1 with constant CONST1
9583 (with *POP0 being done last).
9584
9585 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
9586 the resulting operation. *PCOMP_P is set to 1 if we would need to
9587 complement the innermost operand, otherwise it is unchanged.
9588
9589 MODE is the mode in which the operation will be done. No bits outside
9590 the width of this mode matter. It is assumed that the width of this mode
9591 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
9592
9593 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
9594 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
9595 result is simply *PCONST0.
9596
9597 If the resulting operation cannot be expressed as one operation, we
9598 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
9599
9600 static int
9601 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
9602 {
9603 enum rtx_code op0 = *pop0;
9604 HOST_WIDE_INT const0 = *pconst0;
9605
9606 const0 &= GET_MODE_MASK (mode);
9607 const1 &= GET_MODE_MASK (mode);
9608
9609 /* If OP0 is an AND, clear unimportant bits in CONST1. */
9610 if (op0 == AND)
9611 const1 &= const0;
9612
9613 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
9614 if OP0 is SET. */
9615
9616 if (op1 == UNKNOWN || op0 == SET)
9617 return 1;
9618
9619 else if (op0 == UNKNOWN)
9620 op0 = op1, const0 = const1;
9621
9622 else if (op0 == op1)
9623 {
9624 switch (op0)
9625 {
9626 case AND:
9627 const0 &= const1;
9628 break;
9629 case IOR:
9630 const0 |= const1;
9631 break;
9632 case XOR:
9633 const0 ^= const1;
9634 break;
9635 case PLUS:
9636 const0 += const1;
9637 break;
9638 case NEG:
9639 op0 = UNKNOWN;
9640 break;
9641 default:
9642 break;
9643 }
9644 }
9645
9646 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
9647 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
9648 return 0;
9649
9650 /* If the two constants aren't the same, we can't do anything. The
9651 remaining six cases can all be done. */
9652 else if (const0 != const1)
9653 return 0;
9654
9655 else
9656 switch (op0)
9657 {
9658 case IOR:
9659 if (op1 == AND)
9660 /* (a & b) | b == b */
9661 op0 = SET;
9662 else /* op1 == XOR */
9663 /* (a ^ b) | b == a | b */
9664 {;}
9665 break;
9666
9667 case XOR:
9668 if (op1 == AND)
9669 /* (a & b) ^ b == (~a) & b */
9670 op0 = AND, *pcomp_p = 1;
9671 else /* op1 == IOR */
9672 /* (a | b) ^ b == a & ~b */
9673 op0 = AND, const0 = ~const0;
9674 break;
9675
9676 case AND:
9677 if (op1 == IOR)
9678 /* (a | b) & b == b */
9679 op0 = SET;
9680 else /* op1 == XOR */
9681 /* (a ^ b) & b) == (~a) & b */
9682 *pcomp_p = 1;
9683 break;
9684 default:
9685 break;
9686 }
9687
9688 /* Check for NO-OP cases. */
9689 const0 &= GET_MODE_MASK (mode);
9690 if (const0 == 0
9691 && (op0 == IOR || op0 == XOR || op0 == PLUS))
9692 op0 = UNKNOWN;
9693 else if (const0 == 0 && op0 == AND)
9694 op0 = SET;
9695 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
9696 && op0 == AND)
9697 op0 = UNKNOWN;
9698
9699 *pop0 = op0;
9700
9701 /* ??? Slightly redundant with the above mask, but not entirely.
9702 Moving this above means we'd have to sign-extend the mode mask
9703 for the final test. */
9704 if (op0 != UNKNOWN && op0 != NEG)
9705 *pconst0 = trunc_int_for_mode (const0, mode);
9706
9707 return 1;
9708 }
9709 \f
9710 /* A helper to simplify_shift_const_1 to determine the mode we can perform
9711 the shift in. The original shift operation CODE is performed on OP in
9712 ORIG_MODE. Return the wider mode MODE if we can perform the operation
9713 in that mode. Return ORIG_MODE otherwise. We can also assume that the
9714 result of the shift is subject to operation OUTER_CODE with operand
9715 OUTER_CONST. */
9716
9717 static enum machine_mode
9718 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
9719 enum machine_mode orig_mode, enum machine_mode mode,
9720 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
9721 {
9722 if (orig_mode == mode)
9723 return mode;
9724 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
9725
9726 /* In general we can't perform in wider mode for right shift and rotate. */
9727 switch (code)
9728 {
9729 case ASHIFTRT:
9730 /* We can still widen if the bits brought in from the left are identical
9731 to the sign bit of ORIG_MODE. */
9732 if (num_sign_bit_copies (op, mode)
9733 > (unsigned) (GET_MODE_PRECISION (mode)
9734 - GET_MODE_PRECISION (orig_mode)))
9735 return mode;
9736 return orig_mode;
9737
9738 case LSHIFTRT:
9739 /* Similarly here but with zero bits. */
9740 if (HWI_COMPUTABLE_MODE_P (mode)
9741 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
9742 return mode;
9743
9744 /* We can also widen if the bits brought in will be masked off. This
9745 operation is performed in ORIG_MODE. */
9746 if (outer_code == AND)
9747 {
9748 int care_bits = low_bitmask_len (orig_mode, outer_const);
9749
9750 if (care_bits >= 0
9751 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
9752 return mode;
9753 }
9754 /* fall through */
9755
9756 case ROTATE:
9757 return orig_mode;
9758
9759 case ROTATERT:
9760 gcc_unreachable ();
9761
9762 default:
9763 return mode;
9764 }
9765 }
9766
9767 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
9768 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
9769 if we cannot simplify it. Otherwise, return a simplified value.
9770
9771 The shift is normally computed in the widest mode we find in VAROP, as
9772 long as it isn't a different number of words than RESULT_MODE. Exceptions
9773 are ASHIFTRT and ROTATE, which are always done in their original mode. */
9774
9775 static rtx
9776 simplify_shift_const_1 (enum rtx_code code, enum machine_mode result_mode,
9777 rtx varop, int orig_count)
9778 {
9779 enum rtx_code orig_code = code;
9780 rtx orig_varop = varop;
9781 int count;
9782 enum machine_mode mode = result_mode;
9783 enum machine_mode shift_mode, tmode;
9784 unsigned int mode_words
9785 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
9786 /* We form (outer_op (code varop count) (outer_const)). */
9787 enum rtx_code outer_op = UNKNOWN;
9788 HOST_WIDE_INT outer_const = 0;
9789 int complement_p = 0;
9790 rtx new_rtx, x;
9791
9792 /* Make sure and truncate the "natural" shift on the way in. We don't
9793 want to do this inside the loop as it makes it more difficult to
9794 combine shifts. */
9795 if (SHIFT_COUNT_TRUNCATED)
9796 orig_count &= GET_MODE_BITSIZE (mode) - 1;
9797
9798 /* If we were given an invalid count, don't do anything except exactly
9799 what was requested. */
9800
9801 if (orig_count < 0 || orig_count >= (int) GET_MODE_PRECISION (mode))
9802 return NULL_RTX;
9803
9804 count = orig_count;
9805
9806 /* Unless one of the branches of the `if' in this loop does a `continue',
9807 we will `break' the loop after the `if'. */
9808
9809 while (count != 0)
9810 {
9811 /* If we have an operand of (clobber (const_int 0)), fail. */
9812 if (GET_CODE (varop) == CLOBBER)
9813 return NULL_RTX;
9814
9815 /* Convert ROTATERT to ROTATE. */
9816 if (code == ROTATERT)
9817 {
9818 unsigned int bitsize = GET_MODE_PRECISION (result_mode);
9819 code = ROTATE;
9820 if (VECTOR_MODE_P (result_mode))
9821 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
9822 else
9823 count = bitsize - count;
9824 }
9825
9826 shift_mode = try_widen_shift_mode (code, varop, count, result_mode,
9827 mode, outer_op, outer_const);
9828
9829 /* Handle cases where the count is greater than the size of the mode
9830 minus 1. For ASHIFT, use the size minus one as the count (this can
9831 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9832 take the count modulo the size. For other shifts, the result is
9833 zero.
9834
9835 Since these shifts are being produced by the compiler by combining
9836 multiple operations, each of which are defined, we know what the
9837 result is supposed to be. */
9838
9839 if (count > (GET_MODE_PRECISION (shift_mode) - 1))
9840 {
9841 if (code == ASHIFTRT)
9842 count = GET_MODE_PRECISION (shift_mode) - 1;
9843 else if (code == ROTATE || code == ROTATERT)
9844 count %= GET_MODE_PRECISION (shift_mode);
9845 else
9846 {
9847 /* We can't simply return zero because there may be an
9848 outer op. */
9849 varop = const0_rtx;
9850 count = 0;
9851 break;
9852 }
9853 }
9854
9855 /* If we discovered we had to complement VAROP, leave. Making a NOT
9856 here would cause an infinite loop. */
9857 if (complement_p)
9858 break;
9859
9860 /* An arithmetic right shift of a quantity known to be -1 or 0
9861 is a no-op. */
9862 if (code == ASHIFTRT
9863 && (num_sign_bit_copies (varop, shift_mode)
9864 == GET_MODE_PRECISION (shift_mode)))
9865 {
9866 count = 0;
9867 break;
9868 }
9869
9870 /* If we are doing an arithmetic right shift and discarding all but
9871 the sign bit copies, this is equivalent to doing a shift by the
9872 bitsize minus one. Convert it into that shift because it will often
9873 allow other simplifications. */
9874
9875 if (code == ASHIFTRT
9876 && (count + num_sign_bit_copies (varop, shift_mode)
9877 >= GET_MODE_PRECISION (shift_mode)))
9878 count = GET_MODE_PRECISION (shift_mode) - 1;
9879
9880 /* We simplify the tests below and elsewhere by converting
9881 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9882 `make_compound_operation' will convert it to an ASHIFTRT for
9883 those machines (such as VAX) that don't have an LSHIFTRT. */
9884 if (code == ASHIFTRT
9885 && val_signbit_known_clear_p (shift_mode,
9886 nonzero_bits (varop, shift_mode)))
9887 code = LSHIFTRT;
9888
9889 if (((code == LSHIFTRT
9890 && HWI_COMPUTABLE_MODE_P (shift_mode)
9891 && !(nonzero_bits (varop, shift_mode) >> count))
9892 || (code == ASHIFT
9893 && HWI_COMPUTABLE_MODE_P (shift_mode)
9894 && !((nonzero_bits (varop, shift_mode) << count)
9895 & GET_MODE_MASK (shift_mode))))
9896 && !side_effects_p (varop))
9897 varop = const0_rtx;
9898
9899 switch (GET_CODE (varop))
9900 {
9901 case SIGN_EXTEND:
9902 case ZERO_EXTEND:
9903 case SIGN_EXTRACT:
9904 case ZERO_EXTRACT:
9905 new_rtx = expand_compound_operation (varop);
9906 if (new_rtx != varop)
9907 {
9908 varop = new_rtx;
9909 continue;
9910 }
9911 break;
9912
9913 case MEM:
9914 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9915 minus the width of a smaller mode, we can do this with a
9916 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9917 if ((code == ASHIFTRT || code == LSHIFTRT)
9918 && ! mode_dependent_address_p (XEXP (varop, 0),
9919 MEM_ADDR_SPACE (varop))
9920 && ! MEM_VOLATILE_P (varop)
9921 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9922 MODE_INT, 1)) != BLKmode)
9923 {
9924 new_rtx = adjust_address_nv (varop, tmode,
9925 BYTES_BIG_ENDIAN ? 0
9926 : count / BITS_PER_UNIT);
9927
9928 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9929 : ZERO_EXTEND, mode, new_rtx);
9930 count = 0;
9931 continue;
9932 }
9933 break;
9934
9935 case SUBREG:
9936 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9937 the same number of words as what we've seen so far. Then store
9938 the widest mode in MODE. */
9939 if (subreg_lowpart_p (varop)
9940 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9941 > GET_MODE_SIZE (GET_MODE (varop)))
9942 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9943 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9944 == mode_words
9945 && GET_MODE_CLASS (GET_MODE (varop)) == MODE_INT
9946 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (varop))) == MODE_INT)
9947 {
9948 varop = SUBREG_REG (varop);
9949 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9950 mode = GET_MODE (varop);
9951 continue;
9952 }
9953 break;
9954
9955 case MULT:
9956 /* Some machines use MULT instead of ASHIFT because MULT
9957 is cheaper. But it is still better on those machines to
9958 merge two shifts into one. */
9959 if (CONST_INT_P (XEXP (varop, 1))
9960 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
9961 {
9962 varop
9963 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
9964 XEXP (varop, 0),
9965 GEN_INT (exact_log2 (
9966 UINTVAL (XEXP (varop, 1)))));
9967 continue;
9968 }
9969 break;
9970
9971 case UDIV:
9972 /* Similar, for when divides are cheaper. */
9973 if (CONST_INT_P (XEXP (varop, 1))
9974 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
9975 {
9976 varop
9977 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
9978 XEXP (varop, 0),
9979 GEN_INT (exact_log2 (
9980 UINTVAL (XEXP (varop, 1)))));
9981 continue;
9982 }
9983 break;
9984
9985 case ASHIFTRT:
9986 /* If we are extracting just the sign bit of an arithmetic
9987 right shift, that shift is not needed. However, the sign
9988 bit of a wider mode may be different from what would be
9989 interpreted as the sign bit in a narrower mode, so, if
9990 the result is narrower, don't discard the shift. */
9991 if (code == LSHIFTRT
9992 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9993 && (GET_MODE_BITSIZE (result_mode)
9994 >= GET_MODE_BITSIZE (GET_MODE (varop))))
9995 {
9996 varop = XEXP (varop, 0);
9997 continue;
9998 }
9999
10000 /* ... fall through ... */
10001
10002 case LSHIFTRT:
10003 case ASHIFT:
10004 case ROTATE:
10005 /* Here we have two nested shifts. The result is usually the
10006 AND of a new shift with a mask. We compute the result below. */
10007 if (CONST_INT_P (XEXP (varop, 1))
10008 && INTVAL (XEXP (varop, 1)) >= 0
10009 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (GET_MODE (varop))
10010 && HWI_COMPUTABLE_MODE_P (result_mode)
10011 && HWI_COMPUTABLE_MODE_P (mode)
10012 && !VECTOR_MODE_P (result_mode))
10013 {
10014 enum rtx_code first_code = GET_CODE (varop);
10015 unsigned int first_count = INTVAL (XEXP (varop, 1));
10016 unsigned HOST_WIDE_INT mask;
10017 rtx mask_rtx;
10018
10019 /* We have one common special case. We can't do any merging if
10020 the inner code is an ASHIFTRT of a smaller mode. However, if
10021 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10022 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10023 we can convert it to
10024 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10025 This simplifies certain SIGN_EXTEND operations. */
10026 if (code == ASHIFT && first_code == ASHIFTRT
10027 && count == (GET_MODE_PRECISION (result_mode)
10028 - GET_MODE_PRECISION (GET_MODE (varop))))
10029 {
10030 /* C3 has the low-order C1 bits zero. */
10031
10032 mask = GET_MODE_MASK (mode)
10033 & ~(((unsigned HOST_WIDE_INT) 1 << first_count) - 1);
10034
10035 varop = simplify_and_const_int (NULL_RTX, result_mode,
10036 XEXP (varop, 0), mask);
10037 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
10038 varop, count);
10039 count = first_count;
10040 code = ASHIFTRT;
10041 continue;
10042 }
10043
10044 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10045 than C1 high-order bits equal to the sign bit, we can convert
10046 this to either an ASHIFT or an ASHIFTRT depending on the
10047 two counts.
10048
10049 We cannot do this if VAROP's mode is not SHIFT_MODE. */
10050
10051 if (code == ASHIFTRT && first_code == ASHIFT
10052 && GET_MODE (varop) == shift_mode
10053 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
10054 > first_count))
10055 {
10056 varop = XEXP (varop, 0);
10057 count -= first_count;
10058 if (count < 0)
10059 {
10060 count = -count;
10061 code = ASHIFT;
10062 }
10063
10064 continue;
10065 }
10066
10067 /* There are some cases we can't do. If CODE is ASHIFTRT,
10068 we can only do this if FIRST_CODE is also ASHIFTRT.
10069
10070 We can't do the case when CODE is ROTATE and FIRST_CODE is
10071 ASHIFTRT.
10072
10073 If the mode of this shift is not the mode of the outer shift,
10074 we can't do this if either shift is a right shift or ROTATE.
10075
10076 Finally, we can't do any of these if the mode is too wide
10077 unless the codes are the same.
10078
10079 Handle the case where the shift codes are the same
10080 first. */
10081
10082 if (code == first_code)
10083 {
10084 if (GET_MODE (varop) != result_mode
10085 && (code == ASHIFTRT || code == LSHIFTRT
10086 || code == ROTATE))
10087 break;
10088
10089 count += first_count;
10090 varop = XEXP (varop, 0);
10091 continue;
10092 }
10093
10094 if (code == ASHIFTRT
10095 || (code == ROTATE && first_code == ASHIFTRT)
10096 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
10097 || (GET_MODE (varop) != result_mode
10098 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10099 || first_code == ROTATE
10100 || code == ROTATE)))
10101 break;
10102
10103 /* To compute the mask to apply after the shift, shift the
10104 nonzero bits of the inner shift the same way the
10105 outer shift will. */
10106
10107 mask_rtx = gen_int_mode (nonzero_bits (varop, GET_MODE (varop)),
10108 result_mode);
10109
10110 mask_rtx
10111 = simplify_const_binary_operation (code, result_mode, mask_rtx,
10112 GEN_INT (count));
10113
10114 /* Give up if we can't compute an outer operation to use. */
10115 if (mask_rtx == 0
10116 || !CONST_INT_P (mask_rtx)
10117 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10118 INTVAL (mask_rtx),
10119 result_mode, &complement_p))
10120 break;
10121
10122 /* If the shifts are in the same direction, we add the
10123 counts. Otherwise, we subtract them. */
10124 if ((code == ASHIFTRT || code == LSHIFTRT)
10125 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10126 count += first_count;
10127 else
10128 count -= first_count;
10129
10130 /* If COUNT is positive, the new shift is usually CODE,
10131 except for the two exceptions below, in which case it is
10132 FIRST_CODE. If the count is negative, FIRST_CODE should
10133 always be used */
10134 if (count > 0
10135 && ((first_code == ROTATE && code == ASHIFT)
10136 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10137 code = first_code;
10138 else if (count < 0)
10139 code = first_code, count = -count;
10140
10141 varop = XEXP (varop, 0);
10142 continue;
10143 }
10144
10145 /* If we have (A << B << C) for any shift, we can convert this to
10146 (A << C << B). This wins if A is a constant. Only try this if
10147 B is not a constant. */
10148
10149 else if (GET_CODE (varop) == code
10150 && CONST_INT_P (XEXP (varop, 0))
10151 && !CONST_INT_P (XEXP (varop, 1)))
10152 {
10153 rtx new_rtx = simplify_const_binary_operation (code, mode,
10154 XEXP (varop, 0),
10155 GEN_INT (count));
10156 varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
10157 count = 0;
10158 continue;
10159 }
10160 break;
10161
10162 case NOT:
10163 if (VECTOR_MODE_P (mode))
10164 break;
10165
10166 /* Make this fit the case below. */
10167 varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
10168 continue;
10169
10170 case IOR:
10171 case AND:
10172 case XOR:
10173 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10174 with C the size of VAROP - 1 and the shift is logical if
10175 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10176 we have an (le X 0) operation. If we have an arithmetic shift
10177 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10178 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10179
10180 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10181 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10182 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10183 && (code == LSHIFTRT || code == ASHIFTRT)
10184 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10185 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10186 {
10187 count = 0;
10188 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
10189 const0_rtx);
10190
10191 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10192 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10193
10194 continue;
10195 }
10196
10197 /* If we have (shift (logical)), move the logical to the outside
10198 to allow it to possibly combine with another logical and the
10199 shift to combine with another shift. This also canonicalizes to
10200 what a ZERO_EXTRACT looks like. Also, some machines have
10201 (and (shift)) insns. */
10202
10203 if (CONST_INT_P (XEXP (varop, 1))
10204 /* We can't do this if we have (ashiftrt (xor)) and the
10205 constant has its sign bit set in shift_mode. */
10206 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10207 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10208 shift_mode))
10209 && (new_rtx = simplify_const_binary_operation
10210 (code, result_mode,
10211 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10212 GEN_INT (count))) != 0
10213 && CONST_INT_P (new_rtx)
10214 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10215 INTVAL (new_rtx), result_mode, &complement_p))
10216 {
10217 varop = XEXP (varop, 0);
10218 continue;
10219 }
10220
10221 /* If we can't do that, try to simplify the shift in each arm of the
10222 logical expression, make a new logical expression, and apply
10223 the inverse distributive law. This also can't be done
10224 for some (ashiftrt (xor)). */
10225 if (CONST_INT_P (XEXP (varop, 1))
10226 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10227 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10228 shift_mode)))
10229 {
10230 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10231 XEXP (varop, 0), count);
10232 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10233 XEXP (varop, 1), count);
10234
10235 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
10236 lhs, rhs);
10237 varop = apply_distributive_law (varop);
10238
10239 count = 0;
10240 continue;
10241 }
10242 break;
10243
10244 case EQ:
10245 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10246 says that the sign bit can be tested, FOO has mode MODE, C is
10247 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
10248 that may be nonzero. */
10249 if (code == LSHIFTRT
10250 && XEXP (varop, 1) == const0_rtx
10251 && GET_MODE (XEXP (varop, 0)) == result_mode
10252 && count == (GET_MODE_PRECISION (result_mode) - 1)
10253 && HWI_COMPUTABLE_MODE_P (result_mode)
10254 && STORE_FLAG_VALUE == -1
10255 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10256 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10257 &complement_p))
10258 {
10259 varop = XEXP (varop, 0);
10260 count = 0;
10261 continue;
10262 }
10263 break;
10264
10265 case NEG:
10266 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
10267 than the number of bits in the mode is equivalent to A. */
10268 if (code == LSHIFTRT
10269 && count == (GET_MODE_PRECISION (result_mode) - 1)
10270 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
10271 {
10272 varop = XEXP (varop, 0);
10273 count = 0;
10274 continue;
10275 }
10276
10277 /* NEG commutes with ASHIFT since it is multiplication. Move the
10278 NEG outside to allow shifts to combine. */
10279 if (code == ASHIFT
10280 && merge_outer_ops (&outer_op, &outer_const, NEG, 0, result_mode,
10281 &complement_p))
10282 {
10283 varop = XEXP (varop, 0);
10284 continue;
10285 }
10286 break;
10287
10288 case PLUS:
10289 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
10290 is one less than the number of bits in the mode is
10291 equivalent to (xor A 1). */
10292 if (code == LSHIFTRT
10293 && count == (GET_MODE_PRECISION (result_mode) - 1)
10294 && XEXP (varop, 1) == constm1_rtx
10295 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10296 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10297 &complement_p))
10298 {
10299 count = 0;
10300 varop = XEXP (varop, 0);
10301 continue;
10302 }
10303
10304 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
10305 that might be nonzero in BAR are those being shifted out and those
10306 bits are known zero in FOO, we can replace the PLUS with FOO.
10307 Similarly in the other operand order. This code occurs when
10308 we are computing the size of a variable-size array. */
10309
10310 if ((code == ASHIFTRT || code == LSHIFTRT)
10311 && count < HOST_BITS_PER_WIDE_INT
10312 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
10313 && (nonzero_bits (XEXP (varop, 1), result_mode)
10314 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
10315 {
10316 varop = XEXP (varop, 0);
10317 continue;
10318 }
10319 else if ((code == ASHIFTRT || code == LSHIFTRT)
10320 && count < HOST_BITS_PER_WIDE_INT
10321 && HWI_COMPUTABLE_MODE_P (result_mode)
10322 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10323 >> count)
10324 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10325 & nonzero_bits (XEXP (varop, 1),
10326 result_mode)))
10327 {
10328 varop = XEXP (varop, 1);
10329 continue;
10330 }
10331
10332 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
10333 if (code == ASHIFT
10334 && CONST_INT_P (XEXP (varop, 1))
10335 && (new_rtx = simplify_const_binary_operation (ASHIFT, result_mode,
10336 XEXP (varop, 1),
10337 GEN_INT (count))) != 0
10338 && CONST_INT_P (new_rtx)
10339 && merge_outer_ops (&outer_op, &outer_const, PLUS,
10340 INTVAL (new_rtx), result_mode, &complement_p))
10341 {
10342 varop = XEXP (varop, 0);
10343 continue;
10344 }
10345
10346 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
10347 signbit', and attempt to change the PLUS to an XOR and move it to
10348 the outer operation as is done above in the AND/IOR/XOR case
10349 leg for shift(logical). See details in logical handling above
10350 for reasoning in doing so. */
10351 if (code == LSHIFTRT
10352 && CONST_INT_P (XEXP (varop, 1))
10353 && mode_signbit_p (result_mode, XEXP (varop, 1))
10354 && (new_rtx = simplify_const_binary_operation (code, result_mode,
10355 XEXP (varop, 1),
10356 GEN_INT (count))) != 0
10357 && CONST_INT_P (new_rtx)
10358 && merge_outer_ops (&outer_op, &outer_const, XOR,
10359 INTVAL (new_rtx), result_mode, &complement_p))
10360 {
10361 varop = XEXP (varop, 0);
10362 continue;
10363 }
10364
10365 break;
10366
10367 case MINUS:
10368 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
10369 with C the size of VAROP - 1 and the shift is logical if
10370 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10371 we have a (gt X 0) operation. If the shift is arithmetic with
10372 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
10373 we have a (neg (gt X 0)) operation. */
10374
10375 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10376 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
10377 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10378 && (code == LSHIFTRT || code == ASHIFTRT)
10379 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10380 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
10381 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10382 {
10383 count = 0;
10384 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
10385 const0_rtx);
10386
10387 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10388 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10389
10390 continue;
10391 }
10392 break;
10393
10394 case TRUNCATE:
10395 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
10396 if the truncate does not affect the value. */
10397 if (code == LSHIFTRT
10398 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
10399 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10400 && (INTVAL (XEXP (XEXP (varop, 0), 1))
10401 >= (GET_MODE_PRECISION (GET_MODE (XEXP (varop, 0)))
10402 - GET_MODE_PRECISION (GET_MODE (varop)))))
10403 {
10404 rtx varop_inner = XEXP (varop, 0);
10405
10406 varop_inner
10407 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
10408 XEXP (varop_inner, 0),
10409 GEN_INT
10410 (count + INTVAL (XEXP (varop_inner, 1))));
10411 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
10412 count = 0;
10413 continue;
10414 }
10415 break;
10416
10417 default:
10418 break;
10419 }
10420
10421 break;
10422 }
10423
10424 shift_mode = try_widen_shift_mode (code, varop, count, result_mode, mode,
10425 outer_op, outer_const);
10426
10427 /* We have now finished analyzing the shift. The result should be
10428 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
10429 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
10430 to the result of the shift. OUTER_CONST is the relevant constant,
10431 but we must turn off all bits turned off in the shift. */
10432
10433 if (outer_op == UNKNOWN
10434 && orig_code == code && orig_count == count
10435 && varop == orig_varop
10436 && shift_mode == GET_MODE (varop))
10437 return NULL_RTX;
10438
10439 /* Make a SUBREG if necessary. If we can't make it, fail. */
10440 varop = gen_lowpart (shift_mode, varop);
10441 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10442 return NULL_RTX;
10443
10444 /* If we have an outer operation and we just made a shift, it is
10445 possible that we could have simplified the shift were it not
10446 for the outer operation. So try to do the simplification
10447 recursively. */
10448
10449 if (outer_op != UNKNOWN)
10450 x = simplify_shift_const_1 (code, shift_mode, varop, count);
10451 else
10452 x = NULL_RTX;
10453
10454 if (x == NULL_RTX)
10455 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
10456
10457 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
10458 turn off all the bits that the shift would have turned off. */
10459 if (orig_code == LSHIFTRT && result_mode != shift_mode)
10460 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
10461 GET_MODE_MASK (result_mode) >> orig_count);
10462
10463 /* Do the remainder of the processing in RESULT_MODE. */
10464 x = gen_lowpart_or_truncate (result_mode, x);
10465
10466 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
10467 operation. */
10468 if (complement_p)
10469 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
10470
10471 if (outer_op != UNKNOWN)
10472 {
10473 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
10474 && GET_MODE_PRECISION (result_mode) < HOST_BITS_PER_WIDE_INT)
10475 outer_const = trunc_int_for_mode (outer_const, result_mode);
10476
10477 if (outer_op == AND)
10478 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
10479 else if (outer_op == SET)
10480 {
10481 /* This means that we have determined that the result is
10482 equivalent to a constant. This should be rare. */
10483 if (!side_effects_p (x))
10484 x = GEN_INT (outer_const);
10485 }
10486 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
10487 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
10488 else
10489 x = simplify_gen_binary (outer_op, result_mode, x,
10490 GEN_INT (outer_const));
10491 }
10492
10493 return x;
10494 }
10495
10496 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
10497 The result of the shift is RESULT_MODE. If we cannot simplify it,
10498 return X or, if it is NULL, synthesize the expression with
10499 simplify_gen_binary. Otherwise, return a simplified value.
10500
10501 The shift is normally computed in the widest mode we find in VAROP, as
10502 long as it isn't a different number of words than RESULT_MODE. Exceptions
10503 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10504
10505 static rtx
10506 simplify_shift_const (rtx x, enum rtx_code code, enum machine_mode result_mode,
10507 rtx varop, int count)
10508 {
10509 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
10510 if (tem)
10511 return tem;
10512
10513 if (!x)
10514 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
10515 if (GET_MODE (x) != result_mode)
10516 x = gen_lowpart (result_mode, x);
10517 return x;
10518 }
10519
10520 \f
10521 /* Like recog, but we receive the address of a pointer to a new pattern.
10522 We try to match the rtx that the pointer points to.
10523 If that fails, we may try to modify or replace the pattern,
10524 storing the replacement into the same pointer object.
10525
10526 Modifications include deletion or addition of CLOBBERs.
10527
10528 PNOTES is a pointer to a location where any REG_UNUSED notes added for
10529 the CLOBBERs are placed.
10530
10531 The value is the final insn code from the pattern ultimately matched,
10532 or -1. */
10533
10534 static int
10535 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
10536 {
10537 rtx pat = *pnewpat;
10538 rtx pat_without_clobbers;
10539 int insn_code_number;
10540 int num_clobbers_to_add = 0;
10541 int i;
10542 rtx notes = NULL_RTX;
10543 rtx old_notes, old_pat;
10544 int old_icode;
10545
10546 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
10547 we use to indicate that something didn't match. If we find such a
10548 thing, force rejection. */
10549 if (GET_CODE (pat) == PARALLEL)
10550 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
10551 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
10552 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
10553 return -1;
10554
10555 old_pat = PATTERN (insn);
10556 old_notes = REG_NOTES (insn);
10557 PATTERN (insn) = pat;
10558 REG_NOTES (insn) = NULL_RTX;
10559
10560 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10561 if (dump_file && (dump_flags & TDF_DETAILS))
10562 {
10563 if (insn_code_number < 0)
10564 fputs ("Failed to match this instruction:\n", dump_file);
10565 else
10566 fputs ("Successfully matched this instruction:\n", dump_file);
10567 print_rtl_single (dump_file, pat);
10568 }
10569
10570 /* If it isn't, there is the possibility that we previously had an insn
10571 that clobbered some register as a side effect, but the combined
10572 insn doesn't need to do that. So try once more without the clobbers
10573 unless this represents an ASM insn. */
10574
10575 if (insn_code_number < 0 && ! check_asm_operands (pat)
10576 && GET_CODE (pat) == PARALLEL)
10577 {
10578 int pos;
10579
10580 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
10581 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
10582 {
10583 if (i != pos)
10584 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
10585 pos++;
10586 }
10587
10588 SUBST_INT (XVECLEN (pat, 0), pos);
10589
10590 if (pos == 1)
10591 pat = XVECEXP (pat, 0, 0);
10592
10593 PATTERN (insn) = pat;
10594 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10595 if (dump_file && (dump_flags & TDF_DETAILS))
10596 {
10597 if (insn_code_number < 0)
10598 fputs ("Failed to match this instruction:\n", dump_file);
10599 else
10600 fputs ("Successfully matched this instruction:\n", dump_file);
10601 print_rtl_single (dump_file, pat);
10602 }
10603 }
10604
10605 pat_without_clobbers = pat;
10606
10607 PATTERN (insn) = old_pat;
10608 REG_NOTES (insn) = old_notes;
10609
10610 /* Recognize all noop sets, these will be killed by followup pass. */
10611 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
10612 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
10613
10614 /* If we had any clobbers to add, make a new pattern than contains
10615 them. Then check to make sure that all of them are dead. */
10616 if (num_clobbers_to_add)
10617 {
10618 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
10619 rtvec_alloc (GET_CODE (pat) == PARALLEL
10620 ? (XVECLEN (pat, 0)
10621 + num_clobbers_to_add)
10622 : num_clobbers_to_add + 1));
10623
10624 if (GET_CODE (pat) == PARALLEL)
10625 for (i = 0; i < XVECLEN (pat, 0); i++)
10626 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
10627 else
10628 XVECEXP (newpat, 0, 0) = pat;
10629
10630 add_clobbers (newpat, insn_code_number);
10631
10632 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
10633 i < XVECLEN (newpat, 0); i++)
10634 {
10635 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
10636 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
10637 return -1;
10638 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
10639 {
10640 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
10641 notes = alloc_reg_note (REG_UNUSED,
10642 XEXP (XVECEXP (newpat, 0, i), 0), notes);
10643 }
10644 }
10645 pat = newpat;
10646 }
10647
10648 if (insn_code_number >= 0
10649 && insn_code_number != NOOP_MOVE_INSN_CODE)
10650 {
10651 old_pat = PATTERN (insn);
10652 old_notes = REG_NOTES (insn);
10653 old_icode = INSN_CODE (insn);
10654 PATTERN (insn) = pat;
10655 REG_NOTES (insn) = notes;
10656
10657 /* Allow targets to reject combined insn. */
10658 if (!targetm.legitimate_combined_insn (insn))
10659 {
10660 if (dump_file && (dump_flags & TDF_DETAILS))
10661 fputs ("Instruction not appropriate for target.",
10662 dump_file);
10663
10664 /* Callers expect recog_for_combine to strip
10665 clobbers from the pattern on failure. */
10666 pat = pat_without_clobbers;
10667 notes = NULL_RTX;
10668
10669 insn_code_number = -1;
10670 }
10671
10672 PATTERN (insn) = old_pat;
10673 REG_NOTES (insn) = old_notes;
10674 INSN_CODE (insn) = old_icode;
10675 }
10676
10677 *pnewpat = pat;
10678 *pnotes = notes;
10679
10680 return insn_code_number;
10681 }
10682 \f
10683 /* Like gen_lowpart_general but for use by combine. In combine it
10684 is not possible to create any new pseudoregs. However, it is
10685 safe to create invalid memory addresses, because combine will
10686 try to recognize them and all they will do is make the combine
10687 attempt fail.
10688
10689 If for some reason this cannot do its job, an rtx
10690 (clobber (const_int 0)) is returned.
10691 An insn containing that will not be recognized. */
10692
10693 static rtx
10694 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
10695 {
10696 enum machine_mode imode = GET_MODE (x);
10697 unsigned int osize = GET_MODE_SIZE (omode);
10698 unsigned int isize = GET_MODE_SIZE (imode);
10699 rtx result;
10700
10701 if (omode == imode)
10702 return x;
10703
10704 /* We can only support MODE being wider than a word if X is a
10705 constant integer or has a mode the same size. */
10706 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
10707 && ! (CONST_SCALAR_INT_P (x) || isize == osize))
10708 goto fail;
10709
10710 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
10711 won't know what to do. So we will strip off the SUBREG here and
10712 process normally. */
10713 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
10714 {
10715 x = SUBREG_REG (x);
10716
10717 /* For use in case we fall down into the address adjustments
10718 further below, we need to adjust the known mode and size of
10719 x; imode and isize, since we just adjusted x. */
10720 imode = GET_MODE (x);
10721
10722 if (imode == omode)
10723 return x;
10724
10725 isize = GET_MODE_SIZE (imode);
10726 }
10727
10728 result = gen_lowpart_common (omode, x);
10729
10730 if (result)
10731 return result;
10732
10733 if (MEM_P (x))
10734 {
10735 int offset = 0;
10736
10737 /* Refuse to work on a volatile memory ref or one with a mode-dependent
10738 address. */
10739 if (MEM_VOLATILE_P (x)
10740 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
10741 goto fail;
10742
10743 /* If we want to refer to something bigger than the original memref,
10744 generate a paradoxical subreg instead. That will force a reload
10745 of the original memref X. */
10746 if (isize < osize)
10747 return gen_rtx_SUBREG (omode, x, 0);
10748
10749 if (WORDS_BIG_ENDIAN)
10750 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
10751
10752 /* Adjust the address so that the address-after-the-data is
10753 unchanged. */
10754 if (BYTES_BIG_ENDIAN)
10755 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
10756
10757 return adjust_address_nv (x, omode, offset);
10758 }
10759
10760 /* If X is a comparison operator, rewrite it in a new mode. This
10761 probably won't match, but may allow further simplifications. */
10762 else if (COMPARISON_P (x))
10763 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
10764
10765 /* If we couldn't simplify X any other way, just enclose it in a
10766 SUBREG. Normally, this SUBREG won't match, but some patterns may
10767 include an explicit SUBREG or we may simplify it further in combine. */
10768 else
10769 {
10770 int offset = 0;
10771 rtx res;
10772
10773 offset = subreg_lowpart_offset (omode, imode);
10774 if (imode == VOIDmode)
10775 {
10776 imode = int_mode_for_mode (omode);
10777 x = gen_lowpart_common (imode, x);
10778 if (x == NULL)
10779 goto fail;
10780 }
10781 res = simplify_gen_subreg (omode, x, imode, offset);
10782 if (res)
10783 return res;
10784 }
10785
10786 fail:
10787 return gen_rtx_CLOBBER (omode, const0_rtx);
10788 }
10789 \f
10790 /* Try to simplify a comparison between OP0 and a constant OP1,
10791 where CODE is the comparison code that will be tested, into a
10792 (CODE OP0 const0_rtx) form.
10793
10794 The result is a possibly different comparison code to use.
10795 *POP1 may be updated. */
10796
10797 static enum rtx_code
10798 simplify_compare_const (enum rtx_code code, rtx op0, rtx *pop1)
10799 {
10800 enum machine_mode mode = GET_MODE (op0);
10801 unsigned int mode_width = GET_MODE_PRECISION (mode);
10802 HOST_WIDE_INT const_op = INTVAL (*pop1);
10803
10804 /* Get the constant we are comparing against and turn off all bits
10805 not on in our mode. */
10806 if (mode != VOIDmode)
10807 const_op = trunc_int_for_mode (const_op, mode);
10808
10809 /* If we are comparing against a constant power of two and the value
10810 being compared can only have that single bit nonzero (e.g., it was
10811 `and'ed with that bit), we can replace this with a comparison
10812 with zero. */
10813 if (const_op
10814 && (code == EQ || code == NE || code == GE || code == GEU
10815 || code == LT || code == LTU)
10816 && mode_width <= HOST_BITS_PER_WIDE_INT
10817 && exact_log2 (const_op & GET_MODE_MASK (mode)) >= 0
10818 && (nonzero_bits (op0, mode)
10819 == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (mode))))
10820 {
10821 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10822 const_op = 0;
10823 }
10824
10825 /* Similarly, if we are comparing a value known to be either -1 or
10826 0 with -1, change it to the opposite comparison against zero. */
10827 if (const_op == -1
10828 && (code == EQ || code == NE || code == GT || code == LE
10829 || code == GEU || code == LTU)
10830 && num_sign_bit_copies (op0, mode) == mode_width)
10831 {
10832 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10833 const_op = 0;
10834 }
10835
10836 /* Do some canonicalizations based on the comparison code. We prefer
10837 comparisons against zero and then prefer equality comparisons.
10838 If we can reduce the size of a constant, we will do that too. */
10839 switch (code)
10840 {
10841 case LT:
10842 /* < C is equivalent to <= (C - 1) */
10843 if (const_op > 0)
10844 {
10845 const_op -= 1;
10846 code = LE;
10847 /* ... fall through to LE case below. */
10848 }
10849 else
10850 break;
10851
10852 case LE:
10853 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10854 if (const_op < 0)
10855 {
10856 const_op += 1;
10857 code = LT;
10858 }
10859
10860 /* If we are doing a <= 0 comparison on a value known to have
10861 a zero sign bit, we can replace this with == 0. */
10862 else if (const_op == 0
10863 && mode_width <= HOST_BITS_PER_WIDE_INT
10864 && (nonzero_bits (op0, mode)
10865 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10866 == 0)
10867 code = EQ;
10868 break;
10869
10870 case GE:
10871 /* >= C is equivalent to > (C - 1). */
10872 if (const_op > 0)
10873 {
10874 const_op -= 1;
10875 code = GT;
10876 /* ... fall through to GT below. */
10877 }
10878 else
10879 break;
10880
10881 case GT:
10882 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10883 if (const_op < 0)
10884 {
10885 const_op += 1;
10886 code = GE;
10887 }
10888
10889 /* If we are doing a > 0 comparison on a value known to have
10890 a zero sign bit, we can replace this with != 0. */
10891 else if (const_op == 0
10892 && mode_width <= HOST_BITS_PER_WIDE_INT
10893 && (nonzero_bits (op0, mode)
10894 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10895 == 0)
10896 code = NE;
10897 break;
10898
10899 case LTU:
10900 /* < C is equivalent to <= (C - 1). */
10901 if (const_op > 0)
10902 {
10903 const_op -= 1;
10904 code = LEU;
10905 /* ... fall through ... */
10906 }
10907 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10908 else if (mode_width <= HOST_BITS_PER_WIDE_INT
10909 && (unsigned HOST_WIDE_INT) const_op
10910 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
10911 {
10912 const_op = 0;
10913 code = GE;
10914 break;
10915 }
10916 else
10917 break;
10918
10919 case LEU:
10920 /* unsigned <= 0 is equivalent to == 0 */
10921 if (const_op == 0)
10922 code = EQ;
10923 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10924 else if (mode_width <= HOST_BITS_PER_WIDE_INT
10925 && (unsigned HOST_WIDE_INT) const_op
10926 == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
10927 {
10928 const_op = 0;
10929 code = GE;
10930 }
10931 break;
10932
10933 case GEU:
10934 /* >= C is equivalent to > (C - 1). */
10935 if (const_op > 1)
10936 {
10937 const_op -= 1;
10938 code = GTU;
10939 /* ... fall through ... */
10940 }
10941
10942 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10943 else if (mode_width <= HOST_BITS_PER_WIDE_INT
10944 && (unsigned HOST_WIDE_INT) const_op
10945 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
10946 {
10947 const_op = 0;
10948 code = LT;
10949 break;
10950 }
10951 else
10952 break;
10953
10954 case GTU:
10955 /* unsigned > 0 is equivalent to != 0 */
10956 if (const_op == 0)
10957 code = NE;
10958 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10959 else if (mode_width <= HOST_BITS_PER_WIDE_INT
10960 && (unsigned HOST_WIDE_INT) const_op
10961 == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
10962 {
10963 const_op = 0;
10964 code = LT;
10965 }
10966 break;
10967
10968 default:
10969 break;
10970 }
10971
10972 *pop1 = GEN_INT (const_op);
10973 return code;
10974 }
10975 \f
10976 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
10977 comparison code that will be tested.
10978
10979 The result is a possibly different comparison code to use. *POP0 and
10980 *POP1 may be updated.
10981
10982 It is possible that we might detect that a comparison is either always
10983 true or always false. However, we do not perform general constant
10984 folding in combine, so this knowledge isn't useful. Such tautologies
10985 should have been detected earlier. Hence we ignore all such cases. */
10986
10987 static enum rtx_code
10988 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
10989 {
10990 rtx op0 = *pop0;
10991 rtx op1 = *pop1;
10992 rtx tem, tem1;
10993 int i;
10994 enum machine_mode mode, tmode;
10995
10996 /* Try a few ways of applying the same transformation to both operands. */
10997 while (1)
10998 {
10999 #ifndef WORD_REGISTER_OPERATIONS
11000 /* The test below this one won't handle SIGN_EXTENDs on these machines,
11001 so check specially. */
11002 if (code != GTU && code != GEU && code != LTU && code != LEU
11003 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
11004 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11005 && GET_CODE (XEXP (op1, 0)) == ASHIFT
11006 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
11007 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
11008 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
11009 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
11010 && CONST_INT_P (XEXP (op0, 1))
11011 && XEXP (op0, 1) == XEXP (op1, 1)
11012 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11013 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
11014 && (INTVAL (XEXP (op0, 1))
11015 == (GET_MODE_PRECISION (GET_MODE (op0))
11016 - (GET_MODE_PRECISION
11017 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
11018 {
11019 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
11020 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
11021 }
11022 #endif
11023
11024 /* If both operands are the same constant shift, see if we can ignore the
11025 shift. We can if the shift is a rotate or if the bits shifted out of
11026 this shift are known to be zero for both inputs and if the type of
11027 comparison is compatible with the shift. */
11028 if (GET_CODE (op0) == GET_CODE (op1)
11029 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
11030 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
11031 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
11032 && (code != GT && code != LT && code != GE && code != LE))
11033 || (GET_CODE (op0) == ASHIFTRT
11034 && (code != GTU && code != LTU
11035 && code != GEU && code != LEU)))
11036 && CONST_INT_P (XEXP (op0, 1))
11037 && INTVAL (XEXP (op0, 1)) >= 0
11038 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11039 && XEXP (op0, 1) == XEXP (op1, 1))
11040 {
11041 enum machine_mode mode = GET_MODE (op0);
11042 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11043 int shift_count = INTVAL (XEXP (op0, 1));
11044
11045 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
11046 mask &= (mask >> shift_count) << shift_count;
11047 else if (GET_CODE (op0) == ASHIFT)
11048 mask = (mask & (mask << shift_count)) >> shift_count;
11049
11050 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
11051 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
11052 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
11053 else
11054 break;
11055 }
11056
11057 /* If both operands are AND's of a paradoxical SUBREG by constant, the
11058 SUBREGs are of the same mode, and, in both cases, the AND would
11059 be redundant if the comparison was done in the narrower mode,
11060 do the comparison in the narrower mode (e.g., we are AND'ing with 1
11061 and the operand's possibly nonzero bits are 0xffffff01; in that case
11062 if we only care about QImode, we don't need the AND). This case
11063 occurs if the output mode of an scc insn is not SImode and
11064 STORE_FLAG_VALUE == 1 (e.g., the 386).
11065
11066 Similarly, check for a case where the AND's are ZERO_EXTEND
11067 operations from some narrower mode even though a SUBREG is not
11068 present. */
11069
11070 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
11071 && CONST_INT_P (XEXP (op0, 1))
11072 && CONST_INT_P (XEXP (op1, 1)))
11073 {
11074 rtx inner_op0 = XEXP (op0, 0);
11075 rtx inner_op1 = XEXP (op1, 0);
11076 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
11077 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
11078 int changed = 0;
11079
11080 if (paradoxical_subreg_p (inner_op0)
11081 && GET_CODE (inner_op1) == SUBREG
11082 && (GET_MODE (SUBREG_REG (inner_op0))
11083 == GET_MODE (SUBREG_REG (inner_op1)))
11084 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (inner_op0)))
11085 <= HOST_BITS_PER_WIDE_INT)
11086 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
11087 GET_MODE (SUBREG_REG (inner_op0)))))
11088 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
11089 GET_MODE (SUBREG_REG (inner_op1))))))
11090 {
11091 op0 = SUBREG_REG (inner_op0);
11092 op1 = SUBREG_REG (inner_op1);
11093
11094 /* The resulting comparison is always unsigned since we masked
11095 off the original sign bit. */
11096 code = unsigned_condition (code);
11097
11098 changed = 1;
11099 }
11100
11101 else if (c0 == c1)
11102 for (tmode = GET_CLASS_NARROWEST_MODE
11103 (GET_MODE_CLASS (GET_MODE (op0)));
11104 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
11105 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
11106 {
11107 op0 = gen_lowpart (tmode, inner_op0);
11108 op1 = gen_lowpart (tmode, inner_op1);
11109 code = unsigned_condition (code);
11110 changed = 1;
11111 break;
11112 }
11113
11114 if (! changed)
11115 break;
11116 }
11117
11118 /* If both operands are NOT, we can strip off the outer operation
11119 and adjust the comparison code for swapped operands; similarly for
11120 NEG, except that this must be an equality comparison. */
11121 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
11122 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
11123 && (code == EQ || code == NE)))
11124 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
11125
11126 else
11127 break;
11128 }
11129
11130 /* If the first operand is a constant, swap the operands and adjust the
11131 comparison code appropriately, but don't do this if the second operand
11132 is already a constant integer. */
11133 if (swap_commutative_operands_p (op0, op1))
11134 {
11135 tem = op0, op0 = op1, op1 = tem;
11136 code = swap_condition (code);
11137 }
11138
11139 /* We now enter a loop during which we will try to simplify the comparison.
11140 For the most part, we only are concerned with comparisons with zero,
11141 but some things may really be comparisons with zero but not start
11142 out looking that way. */
11143
11144 while (CONST_INT_P (op1))
11145 {
11146 enum machine_mode mode = GET_MODE (op0);
11147 unsigned int mode_width = GET_MODE_PRECISION (mode);
11148 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11149 int equality_comparison_p;
11150 int sign_bit_comparison_p;
11151 int unsigned_comparison_p;
11152 HOST_WIDE_INT const_op;
11153
11154 /* We only want to handle integral modes. This catches VOIDmode,
11155 CCmode, and the floating-point modes. An exception is that we
11156 can handle VOIDmode if OP0 is a COMPARE or a comparison
11157 operation. */
11158
11159 if (GET_MODE_CLASS (mode) != MODE_INT
11160 && ! (mode == VOIDmode
11161 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
11162 break;
11163
11164 /* Try to simplify the compare to constant, possibly changing the
11165 comparison op, and/or changing op1 to zero. */
11166 code = simplify_compare_const (code, op0, &op1);
11167 const_op = INTVAL (op1);
11168
11169 /* Compute some predicates to simplify code below. */
11170
11171 equality_comparison_p = (code == EQ || code == NE);
11172 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
11173 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
11174 || code == GEU);
11175
11176 /* If this is a sign bit comparison and we can do arithmetic in
11177 MODE, say that we will only be needing the sign bit of OP0. */
11178 if (sign_bit_comparison_p && HWI_COMPUTABLE_MODE_P (mode))
11179 op0 = force_to_mode (op0, mode,
11180 (unsigned HOST_WIDE_INT) 1
11181 << (GET_MODE_PRECISION (mode) - 1),
11182 0);
11183
11184 /* Now try cases based on the opcode of OP0. If none of the cases
11185 does a "continue", we exit this loop immediately after the
11186 switch. */
11187
11188 switch (GET_CODE (op0))
11189 {
11190 case ZERO_EXTRACT:
11191 /* If we are extracting a single bit from a variable position in
11192 a constant that has only a single bit set and are comparing it
11193 with zero, we can convert this into an equality comparison
11194 between the position and the location of the single bit. */
11195 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
11196 have already reduced the shift count modulo the word size. */
11197 if (!SHIFT_COUNT_TRUNCATED
11198 && CONST_INT_P (XEXP (op0, 0))
11199 && XEXP (op0, 1) == const1_rtx
11200 && equality_comparison_p && const_op == 0
11201 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
11202 {
11203 if (BITS_BIG_ENDIAN)
11204 i = BITS_PER_WORD - 1 - i;
11205
11206 op0 = XEXP (op0, 2);
11207 op1 = GEN_INT (i);
11208 const_op = i;
11209
11210 /* Result is nonzero iff shift count is equal to I. */
11211 code = reverse_condition (code);
11212 continue;
11213 }
11214
11215 /* ... fall through ... */
11216
11217 case SIGN_EXTRACT:
11218 tem = expand_compound_operation (op0);
11219 if (tem != op0)
11220 {
11221 op0 = tem;
11222 continue;
11223 }
11224 break;
11225
11226 case NOT:
11227 /* If testing for equality, we can take the NOT of the constant. */
11228 if (equality_comparison_p
11229 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
11230 {
11231 op0 = XEXP (op0, 0);
11232 op1 = tem;
11233 continue;
11234 }
11235
11236 /* If just looking at the sign bit, reverse the sense of the
11237 comparison. */
11238 if (sign_bit_comparison_p)
11239 {
11240 op0 = XEXP (op0, 0);
11241 code = (code == GE ? LT : GE);
11242 continue;
11243 }
11244 break;
11245
11246 case NEG:
11247 /* If testing for equality, we can take the NEG of the constant. */
11248 if (equality_comparison_p
11249 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
11250 {
11251 op0 = XEXP (op0, 0);
11252 op1 = tem;
11253 continue;
11254 }
11255
11256 /* The remaining cases only apply to comparisons with zero. */
11257 if (const_op != 0)
11258 break;
11259
11260 /* When X is ABS or is known positive,
11261 (neg X) is < 0 if and only if X != 0. */
11262
11263 if (sign_bit_comparison_p
11264 && (GET_CODE (XEXP (op0, 0)) == ABS
11265 || (mode_width <= HOST_BITS_PER_WIDE_INT
11266 && (nonzero_bits (XEXP (op0, 0), mode)
11267 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11268 == 0)))
11269 {
11270 op0 = XEXP (op0, 0);
11271 code = (code == LT ? NE : EQ);
11272 continue;
11273 }
11274
11275 /* If we have NEG of something whose two high-order bits are the
11276 same, we know that "(-a) < 0" is equivalent to "a > 0". */
11277 if (num_sign_bit_copies (op0, mode) >= 2)
11278 {
11279 op0 = XEXP (op0, 0);
11280 code = swap_condition (code);
11281 continue;
11282 }
11283 break;
11284
11285 case ROTATE:
11286 /* If we are testing equality and our count is a constant, we
11287 can perform the inverse operation on our RHS. */
11288 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
11289 && (tem = simplify_binary_operation (ROTATERT, mode,
11290 op1, XEXP (op0, 1))) != 0)
11291 {
11292 op0 = XEXP (op0, 0);
11293 op1 = tem;
11294 continue;
11295 }
11296
11297 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
11298 a particular bit. Convert it to an AND of a constant of that
11299 bit. This will be converted into a ZERO_EXTRACT. */
11300 if (const_op == 0 && sign_bit_comparison_p
11301 && CONST_INT_P (XEXP (op0, 1))
11302 && mode_width <= HOST_BITS_PER_WIDE_INT)
11303 {
11304 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11305 ((unsigned HOST_WIDE_INT) 1
11306 << (mode_width - 1
11307 - INTVAL (XEXP (op0, 1)))));
11308 code = (code == LT ? NE : EQ);
11309 continue;
11310 }
11311
11312 /* Fall through. */
11313
11314 case ABS:
11315 /* ABS is ignorable inside an equality comparison with zero. */
11316 if (const_op == 0 && equality_comparison_p)
11317 {
11318 op0 = XEXP (op0, 0);
11319 continue;
11320 }
11321 break;
11322
11323 case SIGN_EXTEND:
11324 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
11325 (compare FOO CONST) if CONST fits in FOO's mode and we
11326 are either testing inequality or have an unsigned
11327 comparison with ZERO_EXTEND or a signed comparison with
11328 SIGN_EXTEND. But don't do it if we don't have a compare
11329 insn of the given mode, since we'd have to revert it
11330 later on, and then we wouldn't know whether to sign- or
11331 zero-extend. */
11332 mode = GET_MODE (XEXP (op0, 0));
11333 if (GET_MODE_CLASS (mode) == MODE_INT
11334 && ! unsigned_comparison_p
11335 && HWI_COMPUTABLE_MODE_P (mode)
11336 && trunc_int_for_mode (const_op, mode) == const_op
11337 && have_insn_for (COMPARE, mode))
11338 {
11339 op0 = XEXP (op0, 0);
11340 continue;
11341 }
11342 break;
11343
11344 case SUBREG:
11345 /* Check for the case where we are comparing A - C1 with C2, that is
11346
11347 (subreg:MODE (plus (A) (-C1))) op (C2)
11348
11349 with C1 a constant, and try to lift the SUBREG, i.e. to do the
11350 comparison in the wider mode. One of the following two conditions
11351 must be true in order for this to be valid:
11352
11353 1. The mode extension results in the same bit pattern being added
11354 on both sides and the comparison is equality or unsigned. As
11355 C2 has been truncated to fit in MODE, the pattern can only be
11356 all 0s or all 1s.
11357
11358 2. The mode extension results in the sign bit being copied on
11359 each side.
11360
11361 The difficulty here is that we have predicates for A but not for
11362 (A - C1) so we need to check that C1 is within proper bounds so
11363 as to perturbate A as little as possible. */
11364
11365 if (mode_width <= HOST_BITS_PER_WIDE_INT
11366 && subreg_lowpart_p (op0)
11367 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) > mode_width
11368 && GET_CODE (SUBREG_REG (op0)) == PLUS
11369 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
11370 {
11371 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
11372 rtx a = XEXP (SUBREG_REG (op0), 0);
11373 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
11374
11375 if ((c1 > 0
11376 && (unsigned HOST_WIDE_INT) c1
11377 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
11378 && (equality_comparison_p || unsigned_comparison_p)
11379 /* (A - C1) zero-extends if it is positive and sign-extends
11380 if it is negative, C2 both zero- and sign-extends. */
11381 && ((0 == (nonzero_bits (a, inner_mode)
11382 & ~GET_MODE_MASK (mode))
11383 && const_op >= 0)
11384 /* (A - C1) sign-extends if it is positive and 1-extends
11385 if it is negative, C2 both sign- and 1-extends. */
11386 || (num_sign_bit_copies (a, inner_mode)
11387 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
11388 - mode_width)
11389 && const_op < 0)))
11390 || ((unsigned HOST_WIDE_INT) c1
11391 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
11392 /* (A - C1) always sign-extends, like C2. */
11393 && num_sign_bit_copies (a, inner_mode)
11394 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
11395 - (mode_width - 1))))
11396 {
11397 op0 = SUBREG_REG (op0);
11398 continue;
11399 }
11400 }
11401
11402 /* If the inner mode is narrower and we are extracting the low part,
11403 we can treat the SUBREG as if it were a ZERO_EXTEND. */
11404 if (subreg_lowpart_p (op0)
11405 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) < mode_width)
11406 /* Fall through */ ;
11407 else
11408 break;
11409
11410 /* ... fall through ... */
11411
11412 case ZERO_EXTEND:
11413 mode = GET_MODE (XEXP (op0, 0));
11414 if (GET_MODE_CLASS (mode) == MODE_INT
11415 && (unsigned_comparison_p || equality_comparison_p)
11416 && HWI_COMPUTABLE_MODE_P (mode)
11417 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
11418 && const_op >= 0
11419 && have_insn_for (COMPARE, mode))
11420 {
11421 op0 = XEXP (op0, 0);
11422 continue;
11423 }
11424 break;
11425
11426 case PLUS:
11427 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
11428 this for equality comparisons due to pathological cases involving
11429 overflows. */
11430 if (equality_comparison_p
11431 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11432 op1, XEXP (op0, 1))))
11433 {
11434 op0 = XEXP (op0, 0);
11435 op1 = tem;
11436 continue;
11437 }
11438
11439 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
11440 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
11441 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
11442 {
11443 op0 = XEXP (XEXP (op0, 0), 0);
11444 code = (code == LT ? EQ : NE);
11445 continue;
11446 }
11447 break;
11448
11449 case MINUS:
11450 /* We used to optimize signed comparisons against zero, but that
11451 was incorrect. Unsigned comparisons against zero (GTU, LEU)
11452 arrive here as equality comparisons, or (GEU, LTU) are
11453 optimized away. No need to special-case them. */
11454
11455 /* (eq (minus A B) C) -> (eq A (plus B C)) or
11456 (eq B (minus A C)), whichever simplifies. We can only do
11457 this for equality comparisons due to pathological cases involving
11458 overflows. */
11459 if (equality_comparison_p
11460 && 0 != (tem = simplify_binary_operation (PLUS, mode,
11461 XEXP (op0, 1), op1)))
11462 {
11463 op0 = XEXP (op0, 0);
11464 op1 = tem;
11465 continue;
11466 }
11467
11468 if (equality_comparison_p
11469 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11470 XEXP (op0, 0), op1)))
11471 {
11472 op0 = XEXP (op0, 1);
11473 op1 = tem;
11474 continue;
11475 }
11476
11477 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
11478 of bits in X minus 1, is one iff X > 0. */
11479 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
11480 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11481 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
11482 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11483 {
11484 op0 = XEXP (op0, 1);
11485 code = (code == GE ? LE : GT);
11486 continue;
11487 }
11488 break;
11489
11490 case XOR:
11491 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
11492 if C is zero or B is a constant. */
11493 if (equality_comparison_p
11494 && 0 != (tem = simplify_binary_operation (XOR, mode,
11495 XEXP (op0, 1), op1)))
11496 {
11497 op0 = XEXP (op0, 0);
11498 op1 = tem;
11499 continue;
11500 }
11501 break;
11502
11503 case EQ: case NE:
11504 case UNEQ: case LTGT:
11505 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
11506 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
11507 case UNORDERED: case ORDERED:
11508 /* We can't do anything if OP0 is a condition code value, rather
11509 than an actual data value. */
11510 if (const_op != 0
11511 || CC0_P (XEXP (op0, 0))
11512 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
11513 break;
11514
11515 /* Get the two operands being compared. */
11516 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
11517 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
11518 else
11519 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
11520
11521 /* Check for the cases where we simply want the result of the
11522 earlier test or the opposite of that result. */
11523 if (code == NE || code == EQ
11524 || (val_signbit_known_set_p (GET_MODE (op0), STORE_FLAG_VALUE)
11525 && (code == LT || code == GE)))
11526 {
11527 enum rtx_code new_code;
11528 if (code == LT || code == NE)
11529 new_code = GET_CODE (op0);
11530 else
11531 new_code = reversed_comparison_code (op0, NULL);
11532
11533 if (new_code != UNKNOWN)
11534 {
11535 code = new_code;
11536 op0 = tem;
11537 op1 = tem1;
11538 continue;
11539 }
11540 }
11541 break;
11542
11543 case IOR:
11544 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
11545 iff X <= 0. */
11546 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
11547 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
11548 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11549 {
11550 op0 = XEXP (op0, 1);
11551 code = (code == GE ? GT : LE);
11552 continue;
11553 }
11554 break;
11555
11556 case AND:
11557 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
11558 will be converted to a ZERO_EXTRACT later. */
11559 if (const_op == 0 && equality_comparison_p
11560 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11561 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
11562 {
11563 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
11564 XEXP (XEXP (op0, 0), 1));
11565 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
11566 continue;
11567 }
11568
11569 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
11570 zero and X is a comparison and C1 and C2 describe only bits set
11571 in STORE_FLAG_VALUE, we can compare with X. */
11572 if (const_op == 0 && equality_comparison_p
11573 && mode_width <= HOST_BITS_PER_WIDE_INT
11574 && CONST_INT_P (XEXP (op0, 1))
11575 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
11576 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11577 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
11578 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
11579 {
11580 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11581 << INTVAL (XEXP (XEXP (op0, 0), 1)));
11582 if ((~STORE_FLAG_VALUE & mask) == 0
11583 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
11584 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
11585 && COMPARISON_P (tem))))
11586 {
11587 op0 = XEXP (XEXP (op0, 0), 0);
11588 continue;
11589 }
11590 }
11591
11592 /* If we are doing an equality comparison of an AND of a bit equal
11593 to the sign bit, replace this with a LT or GE comparison of
11594 the underlying value. */
11595 if (equality_comparison_p
11596 && const_op == 0
11597 && CONST_INT_P (XEXP (op0, 1))
11598 && mode_width <= HOST_BITS_PER_WIDE_INT
11599 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11600 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11601 {
11602 op0 = XEXP (op0, 0);
11603 code = (code == EQ ? GE : LT);
11604 continue;
11605 }
11606
11607 /* If this AND operation is really a ZERO_EXTEND from a narrower
11608 mode, the constant fits within that mode, and this is either an
11609 equality or unsigned comparison, try to do this comparison in
11610 the narrower mode.
11611
11612 Note that in:
11613
11614 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
11615 -> (ne:DI (reg:SI 4) (const_int 0))
11616
11617 unless TRULY_NOOP_TRUNCATION allows it or the register is
11618 known to hold a value of the required mode the
11619 transformation is invalid. */
11620 if ((equality_comparison_p || unsigned_comparison_p)
11621 && CONST_INT_P (XEXP (op0, 1))
11622 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
11623 & GET_MODE_MASK (mode))
11624 + 1)) >= 0
11625 && const_op >> i == 0
11626 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode
11627 && (TRULY_NOOP_TRUNCATION_MODES_P (tmode, GET_MODE (op0))
11628 || (REG_P (XEXP (op0, 0))
11629 && reg_truncated_to_mode (tmode, XEXP (op0, 0)))))
11630 {
11631 op0 = gen_lowpart (tmode, XEXP (op0, 0));
11632 continue;
11633 }
11634
11635 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
11636 fits in both M1 and M2 and the SUBREG is either paradoxical
11637 or represents the low part, permute the SUBREG and the AND
11638 and try again. */
11639 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
11640 {
11641 unsigned HOST_WIDE_INT c1;
11642 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
11643 /* Require an integral mode, to avoid creating something like
11644 (AND:SF ...). */
11645 if (SCALAR_INT_MODE_P (tmode)
11646 /* It is unsafe to commute the AND into the SUBREG if the
11647 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
11648 not defined. As originally written the upper bits
11649 have a defined value due to the AND operation.
11650 However, if we commute the AND inside the SUBREG then
11651 they no longer have defined values and the meaning of
11652 the code has been changed. */
11653 && (0
11654 #ifdef WORD_REGISTER_OPERATIONS
11655 || (mode_width > GET_MODE_PRECISION (tmode)
11656 && mode_width <= BITS_PER_WORD)
11657 #endif
11658 || (mode_width <= GET_MODE_PRECISION (tmode)
11659 && subreg_lowpart_p (XEXP (op0, 0))))
11660 && CONST_INT_P (XEXP (op0, 1))
11661 && mode_width <= HOST_BITS_PER_WIDE_INT
11662 && HWI_COMPUTABLE_MODE_P (tmode)
11663 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
11664 && (c1 & ~GET_MODE_MASK (tmode)) == 0
11665 && c1 != mask
11666 && c1 != GET_MODE_MASK (tmode))
11667 {
11668 op0 = simplify_gen_binary (AND, tmode,
11669 SUBREG_REG (XEXP (op0, 0)),
11670 gen_int_mode (c1, tmode));
11671 op0 = gen_lowpart (mode, op0);
11672 continue;
11673 }
11674 }
11675
11676 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
11677 if (const_op == 0 && equality_comparison_p
11678 && XEXP (op0, 1) == const1_rtx
11679 && GET_CODE (XEXP (op0, 0)) == NOT)
11680 {
11681 op0 = simplify_and_const_int (NULL_RTX, mode,
11682 XEXP (XEXP (op0, 0), 0), 1);
11683 code = (code == NE ? EQ : NE);
11684 continue;
11685 }
11686
11687 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
11688 (eq (and (lshiftrt X) 1) 0).
11689 Also handle the case where (not X) is expressed using xor. */
11690 if (const_op == 0 && equality_comparison_p
11691 && XEXP (op0, 1) == const1_rtx
11692 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
11693 {
11694 rtx shift_op = XEXP (XEXP (op0, 0), 0);
11695 rtx shift_count = XEXP (XEXP (op0, 0), 1);
11696
11697 if (GET_CODE (shift_op) == NOT
11698 || (GET_CODE (shift_op) == XOR
11699 && CONST_INT_P (XEXP (shift_op, 1))
11700 && CONST_INT_P (shift_count)
11701 && HWI_COMPUTABLE_MODE_P (mode)
11702 && (UINTVAL (XEXP (shift_op, 1))
11703 == (unsigned HOST_WIDE_INT) 1
11704 << INTVAL (shift_count))))
11705 {
11706 op0
11707 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
11708 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
11709 code = (code == NE ? EQ : NE);
11710 continue;
11711 }
11712 }
11713 break;
11714
11715 case ASHIFT:
11716 /* If we have (compare (ashift FOO N) (const_int C)) and
11717 the high order N bits of FOO (N+1 if an inequality comparison)
11718 are known to be zero, we can do this by comparing FOO with C
11719 shifted right N bits so long as the low-order N bits of C are
11720 zero. */
11721 if (CONST_INT_P (XEXP (op0, 1))
11722 && INTVAL (XEXP (op0, 1)) >= 0
11723 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
11724 < HOST_BITS_PER_WIDE_INT)
11725 && (((unsigned HOST_WIDE_INT) const_op
11726 & (((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1)))
11727 - 1)) == 0)
11728 && mode_width <= HOST_BITS_PER_WIDE_INT
11729 && (nonzero_bits (XEXP (op0, 0), mode)
11730 & ~(mask >> (INTVAL (XEXP (op0, 1))
11731 + ! equality_comparison_p))) == 0)
11732 {
11733 /* We must perform a logical shift, not an arithmetic one,
11734 as we want the top N bits of C to be zero. */
11735 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
11736
11737 temp >>= INTVAL (XEXP (op0, 1));
11738 op1 = gen_int_mode (temp, mode);
11739 op0 = XEXP (op0, 0);
11740 continue;
11741 }
11742
11743 /* If we are doing a sign bit comparison, it means we are testing
11744 a particular bit. Convert it to the appropriate AND. */
11745 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
11746 && mode_width <= HOST_BITS_PER_WIDE_INT)
11747 {
11748 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11749 ((unsigned HOST_WIDE_INT) 1
11750 << (mode_width - 1
11751 - INTVAL (XEXP (op0, 1)))));
11752 code = (code == LT ? NE : EQ);
11753 continue;
11754 }
11755
11756 /* If this an equality comparison with zero and we are shifting
11757 the low bit to the sign bit, we can convert this to an AND of the
11758 low-order bit. */
11759 if (const_op == 0 && equality_comparison_p
11760 && CONST_INT_P (XEXP (op0, 1))
11761 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
11762 {
11763 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
11764 continue;
11765 }
11766 break;
11767
11768 case ASHIFTRT:
11769 /* If this is an equality comparison with zero, we can do this
11770 as a logical shift, which might be much simpler. */
11771 if (equality_comparison_p && const_op == 0
11772 && CONST_INT_P (XEXP (op0, 1)))
11773 {
11774 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
11775 XEXP (op0, 0),
11776 INTVAL (XEXP (op0, 1)));
11777 continue;
11778 }
11779
11780 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
11781 do the comparison in a narrower mode. */
11782 if (! unsigned_comparison_p
11783 && CONST_INT_P (XEXP (op0, 1))
11784 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11785 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11786 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11787 MODE_INT, 1)) != BLKmode
11788 && (((unsigned HOST_WIDE_INT) const_op
11789 + (GET_MODE_MASK (tmode) >> 1) + 1)
11790 <= GET_MODE_MASK (tmode)))
11791 {
11792 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
11793 continue;
11794 }
11795
11796 /* Likewise if OP0 is a PLUS of a sign extension with a
11797 constant, which is usually represented with the PLUS
11798 between the shifts. */
11799 if (! unsigned_comparison_p
11800 && CONST_INT_P (XEXP (op0, 1))
11801 && GET_CODE (XEXP (op0, 0)) == PLUS
11802 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11803 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
11804 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
11805 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11806 MODE_INT, 1)) != BLKmode
11807 && (((unsigned HOST_WIDE_INT) const_op
11808 + (GET_MODE_MASK (tmode) >> 1) + 1)
11809 <= GET_MODE_MASK (tmode)))
11810 {
11811 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
11812 rtx add_const = XEXP (XEXP (op0, 0), 1);
11813 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
11814 add_const, XEXP (op0, 1));
11815
11816 op0 = simplify_gen_binary (PLUS, tmode,
11817 gen_lowpart (tmode, inner),
11818 new_const);
11819 continue;
11820 }
11821
11822 /* ... fall through ... */
11823 case LSHIFTRT:
11824 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
11825 the low order N bits of FOO are known to be zero, we can do this
11826 by comparing FOO with C shifted left N bits so long as no
11827 overflow occurs. Even if the low order N bits of FOO aren't known
11828 to be zero, if the comparison is >= or < we can use the same
11829 optimization and for > or <= by setting all the low
11830 order N bits in the comparison constant. */
11831 if (CONST_INT_P (XEXP (op0, 1))
11832 && INTVAL (XEXP (op0, 1)) > 0
11833 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11834 && mode_width <= HOST_BITS_PER_WIDE_INT
11835 && (((unsigned HOST_WIDE_INT) const_op
11836 + (GET_CODE (op0) != LSHIFTRT
11837 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
11838 + 1)
11839 : 0))
11840 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
11841 {
11842 unsigned HOST_WIDE_INT low_bits
11843 = (nonzero_bits (XEXP (op0, 0), mode)
11844 & (((unsigned HOST_WIDE_INT) 1
11845 << INTVAL (XEXP (op0, 1))) - 1));
11846 if (low_bits == 0 || !equality_comparison_p)
11847 {
11848 /* If the shift was logical, then we must make the condition
11849 unsigned. */
11850 if (GET_CODE (op0) == LSHIFTRT)
11851 code = unsigned_condition (code);
11852
11853 const_op <<= INTVAL (XEXP (op0, 1));
11854 if (low_bits != 0
11855 && (code == GT || code == GTU
11856 || code == LE || code == LEU))
11857 const_op
11858 |= (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1);
11859 op1 = GEN_INT (const_op);
11860 op0 = XEXP (op0, 0);
11861 continue;
11862 }
11863 }
11864
11865 /* If we are using this shift to extract just the sign bit, we
11866 can replace this with an LT or GE comparison. */
11867 if (const_op == 0
11868 && (equality_comparison_p || sign_bit_comparison_p)
11869 && CONST_INT_P (XEXP (op0, 1))
11870 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
11871 {
11872 op0 = XEXP (op0, 0);
11873 code = (code == NE || code == GT ? LT : GE);
11874 continue;
11875 }
11876 break;
11877
11878 default:
11879 break;
11880 }
11881
11882 break;
11883 }
11884
11885 /* Now make any compound operations involved in this comparison. Then,
11886 check for an outmost SUBREG on OP0 that is not doing anything or is
11887 paradoxical. The latter transformation must only be performed when
11888 it is known that the "extra" bits will be the same in op0 and op1 or
11889 that they don't matter. There are three cases to consider:
11890
11891 1. SUBREG_REG (op0) is a register. In this case the bits are don't
11892 care bits and we can assume they have any convenient value. So
11893 making the transformation is safe.
11894
11895 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
11896 In this case the upper bits of op0 are undefined. We should not make
11897 the simplification in that case as we do not know the contents of
11898 those bits.
11899
11900 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
11901 UNKNOWN. In that case we know those bits are zeros or ones. We must
11902 also be sure that they are the same as the upper bits of op1.
11903
11904 We can never remove a SUBREG for a non-equality comparison because
11905 the sign bit is in a different place in the underlying object. */
11906
11907 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
11908 op1 = make_compound_operation (op1, SET);
11909
11910 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
11911 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11912 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
11913 && (code == NE || code == EQ))
11914 {
11915 if (paradoxical_subreg_p (op0))
11916 {
11917 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
11918 implemented. */
11919 if (REG_P (SUBREG_REG (op0)))
11920 {
11921 op0 = SUBREG_REG (op0);
11922 op1 = gen_lowpart (GET_MODE (op0), op1);
11923 }
11924 }
11925 else if ((GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0)))
11926 <= HOST_BITS_PER_WIDE_INT)
11927 && (nonzero_bits (SUBREG_REG (op0),
11928 GET_MODE (SUBREG_REG (op0)))
11929 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11930 {
11931 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
11932
11933 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
11934 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11935 op0 = SUBREG_REG (op0), op1 = tem;
11936 }
11937 }
11938
11939 /* We now do the opposite procedure: Some machines don't have compare
11940 insns in all modes. If OP0's mode is an integer mode smaller than a
11941 word and we can't do a compare in that mode, see if there is a larger
11942 mode for which we can do the compare. There are a number of cases in
11943 which we can use the wider mode. */
11944
11945 mode = GET_MODE (op0);
11946 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11947 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
11948 && ! have_insn_for (COMPARE, mode))
11949 for (tmode = GET_MODE_WIDER_MODE (mode);
11950 (tmode != VOIDmode && HWI_COMPUTABLE_MODE_P (tmode));
11951 tmode = GET_MODE_WIDER_MODE (tmode))
11952 if (have_insn_for (COMPARE, tmode))
11953 {
11954 int zero_extended;
11955
11956 /* If this is a test for negative, we can make an explicit
11957 test of the sign bit. Test this first so we can use
11958 a paradoxical subreg to extend OP0. */
11959
11960 if (op1 == const0_rtx && (code == LT || code == GE)
11961 && HWI_COMPUTABLE_MODE_P (mode))
11962 {
11963 unsigned HOST_WIDE_INT sign
11964 = (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1);
11965 op0 = simplify_gen_binary (AND, tmode,
11966 gen_lowpart (tmode, op0),
11967 gen_int_mode (sign, mode));
11968 code = (code == LT) ? NE : EQ;
11969 break;
11970 }
11971
11972 /* If the only nonzero bits in OP0 and OP1 are those in the
11973 narrower mode and this is an equality or unsigned comparison,
11974 we can use the wider mode. Similarly for sign-extended
11975 values, in which case it is true for all comparisons. */
11976 zero_extended = ((code == EQ || code == NE
11977 || code == GEU || code == GTU
11978 || code == LEU || code == LTU)
11979 && (nonzero_bits (op0, tmode)
11980 & ~GET_MODE_MASK (mode)) == 0
11981 && ((CONST_INT_P (op1)
11982 || (nonzero_bits (op1, tmode)
11983 & ~GET_MODE_MASK (mode)) == 0)));
11984
11985 if (zero_extended
11986 || ((num_sign_bit_copies (op0, tmode)
11987 > (unsigned int) (GET_MODE_PRECISION (tmode)
11988 - GET_MODE_PRECISION (mode)))
11989 && (num_sign_bit_copies (op1, tmode)
11990 > (unsigned int) (GET_MODE_PRECISION (tmode)
11991 - GET_MODE_PRECISION (mode)))))
11992 {
11993 /* If OP0 is an AND and we don't have an AND in MODE either,
11994 make a new AND in the proper mode. */
11995 if (GET_CODE (op0) == AND
11996 && !have_insn_for (AND, mode))
11997 op0 = simplify_gen_binary (AND, tmode,
11998 gen_lowpart (tmode,
11999 XEXP (op0, 0)),
12000 gen_lowpart (tmode,
12001 XEXP (op0, 1)));
12002 else
12003 {
12004 if (zero_extended)
12005 {
12006 op0 = simplify_gen_unary (ZERO_EXTEND, tmode, op0, mode);
12007 op1 = simplify_gen_unary (ZERO_EXTEND, tmode, op1, mode);
12008 }
12009 else
12010 {
12011 op0 = simplify_gen_unary (SIGN_EXTEND, tmode, op0, mode);
12012 op1 = simplify_gen_unary (SIGN_EXTEND, tmode, op1, mode);
12013 }
12014 break;
12015 }
12016 }
12017 }
12018
12019 /* We may have changed the comparison operands. Re-canonicalize. */
12020 if (swap_commutative_operands_p (op0, op1))
12021 {
12022 tem = op0, op0 = op1, op1 = tem;
12023 code = swap_condition (code);
12024 }
12025
12026 /* If this machine only supports a subset of valid comparisons, see if we
12027 can convert an unsupported one into a supported one. */
12028 target_canonicalize_comparison (&code, &op0, &op1, 0);
12029
12030 *pop0 = op0;
12031 *pop1 = op1;
12032
12033 return code;
12034 }
12035 \f
12036 /* Utility function for record_value_for_reg. Count number of
12037 rtxs in X. */
12038 static int
12039 count_rtxs (rtx x)
12040 {
12041 enum rtx_code code = GET_CODE (x);
12042 const char *fmt;
12043 int i, j, ret = 1;
12044
12045 if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
12046 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
12047 {
12048 rtx x0 = XEXP (x, 0);
12049 rtx x1 = XEXP (x, 1);
12050
12051 if (x0 == x1)
12052 return 1 + 2 * count_rtxs (x0);
12053
12054 if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
12055 || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
12056 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12057 return 2 + 2 * count_rtxs (x0)
12058 + count_rtxs (x == XEXP (x1, 0)
12059 ? XEXP (x1, 1) : XEXP (x1, 0));
12060
12061 if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
12062 || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
12063 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12064 return 2 + 2 * count_rtxs (x1)
12065 + count_rtxs (x == XEXP (x0, 0)
12066 ? XEXP (x0, 1) : XEXP (x0, 0));
12067 }
12068
12069 fmt = GET_RTX_FORMAT (code);
12070 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12071 if (fmt[i] == 'e')
12072 ret += count_rtxs (XEXP (x, i));
12073 else if (fmt[i] == 'E')
12074 for (j = 0; j < XVECLEN (x, i); j++)
12075 ret += count_rtxs (XVECEXP (x, i, j));
12076
12077 return ret;
12078 }
12079 \f
12080 /* Utility function for following routine. Called when X is part of a value
12081 being stored into last_set_value. Sets last_set_table_tick
12082 for each register mentioned. Similar to mention_regs in cse.c */
12083
12084 static void
12085 update_table_tick (rtx x)
12086 {
12087 enum rtx_code code = GET_CODE (x);
12088 const char *fmt = GET_RTX_FORMAT (code);
12089 int i, j;
12090
12091 if (code == REG)
12092 {
12093 unsigned int regno = REGNO (x);
12094 unsigned int endregno = END_REGNO (x);
12095 unsigned int r;
12096
12097 for (r = regno; r < endregno; r++)
12098 {
12099 reg_stat_type *rsp = &reg_stat[r];
12100 rsp->last_set_table_tick = label_tick;
12101 }
12102
12103 return;
12104 }
12105
12106 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12107 if (fmt[i] == 'e')
12108 {
12109 /* Check for identical subexpressions. If x contains
12110 identical subexpression we only have to traverse one of
12111 them. */
12112 if (i == 0 && ARITHMETIC_P (x))
12113 {
12114 /* Note that at this point x1 has already been
12115 processed. */
12116 rtx x0 = XEXP (x, 0);
12117 rtx x1 = XEXP (x, 1);
12118
12119 /* If x0 and x1 are identical then there is no need to
12120 process x0. */
12121 if (x0 == x1)
12122 break;
12123
12124 /* If x0 is identical to a subexpression of x1 then while
12125 processing x1, x0 has already been processed. Thus we
12126 are done with x. */
12127 if (ARITHMETIC_P (x1)
12128 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12129 break;
12130
12131 /* If x1 is identical to a subexpression of x0 then we
12132 still have to process the rest of x0. */
12133 if (ARITHMETIC_P (x0)
12134 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12135 {
12136 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
12137 break;
12138 }
12139 }
12140
12141 update_table_tick (XEXP (x, i));
12142 }
12143 else if (fmt[i] == 'E')
12144 for (j = 0; j < XVECLEN (x, i); j++)
12145 update_table_tick (XVECEXP (x, i, j));
12146 }
12147
12148 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
12149 are saying that the register is clobbered and we no longer know its
12150 value. If INSN is zero, don't update reg_stat[].last_set; this is
12151 only permitted with VALUE also zero and is used to invalidate the
12152 register. */
12153
12154 static void
12155 record_value_for_reg (rtx reg, rtx insn, rtx value)
12156 {
12157 unsigned int regno = REGNO (reg);
12158 unsigned int endregno = END_REGNO (reg);
12159 unsigned int i;
12160 reg_stat_type *rsp;
12161
12162 /* If VALUE contains REG and we have a previous value for REG, substitute
12163 the previous value. */
12164 if (value && insn && reg_overlap_mentioned_p (reg, value))
12165 {
12166 rtx tem;
12167
12168 /* Set things up so get_last_value is allowed to see anything set up to
12169 our insn. */
12170 subst_low_luid = DF_INSN_LUID (insn);
12171 tem = get_last_value (reg);
12172
12173 /* If TEM is simply a binary operation with two CLOBBERs as operands,
12174 it isn't going to be useful and will take a lot of time to process,
12175 so just use the CLOBBER. */
12176
12177 if (tem)
12178 {
12179 if (ARITHMETIC_P (tem)
12180 && GET_CODE (XEXP (tem, 0)) == CLOBBER
12181 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
12182 tem = XEXP (tem, 0);
12183 else if (count_occurrences (value, reg, 1) >= 2)
12184 {
12185 /* If there are two or more occurrences of REG in VALUE,
12186 prevent the value from growing too much. */
12187 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
12188 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
12189 }
12190
12191 value = replace_rtx (copy_rtx (value), reg, tem);
12192 }
12193 }
12194
12195 /* For each register modified, show we don't know its value, that
12196 we don't know about its bitwise content, that its value has been
12197 updated, and that we don't know the location of the death of the
12198 register. */
12199 for (i = regno; i < endregno; i++)
12200 {
12201 rsp = &reg_stat[i];
12202
12203 if (insn)
12204 rsp->last_set = insn;
12205
12206 rsp->last_set_value = 0;
12207 rsp->last_set_mode = VOIDmode;
12208 rsp->last_set_nonzero_bits = 0;
12209 rsp->last_set_sign_bit_copies = 0;
12210 rsp->last_death = 0;
12211 rsp->truncated_to_mode = VOIDmode;
12212 }
12213
12214 /* Mark registers that are being referenced in this value. */
12215 if (value)
12216 update_table_tick (value);
12217
12218 /* Now update the status of each register being set.
12219 If someone is using this register in this block, set this register
12220 to invalid since we will get confused between the two lives in this
12221 basic block. This makes using this register always invalid. In cse, we
12222 scan the table to invalidate all entries using this register, but this
12223 is too much work for us. */
12224
12225 for (i = regno; i < endregno; i++)
12226 {
12227 rsp = &reg_stat[i];
12228 rsp->last_set_label = label_tick;
12229 if (!insn
12230 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
12231 rsp->last_set_invalid = 1;
12232 else
12233 rsp->last_set_invalid = 0;
12234 }
12235
12236 /* The value being assigned might refer to X (like in "x++;"). In that
12237 case, we must replace it with (clobber (const_int 0)) to prevent
12238 infinite loops. */
12239 rsp = &reg_stat[regno];
12240 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
12241 {
12242 value = copy_rtx (value);
12243 if (!get_last_value_validate (&value, insn, label_tick, 1))
12244 value = 0;
12245 }
12246
12247 /* For the main register being modified, update the value, the mode, the
12248 nonzero bits, and the number of sign bit copies. */
12249
12250 rsp->last_set_value = value;
12251
12252 if (value)
12253 {
12254 enum machine_mode mode = GET_MODE (reg);
12255 subst_low_luid = DF_INSN_LUID (insn);
12256 rsp->last_set_mode = mode;
12257 if (GET_MODE_CLASS (mode) == MODE_INT
12258 && HWI_COMPUTABLE_MODE_P (mode))
12259 mode = nonzero_bits_mode;
12260 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
12261 rsp->last_set_sign_bit_copies
12262 = num_sign_bit_copies (value, GET_MODE (reg));
12263 }
12264 }
12265
12266 /* Called via note_stores from record_dead_and_set_regs to handle one
12267 SET or CLOBBER in an insn. DATA is the instruction in which the
12268 set is occurring. */
12269
12270 static void
12271 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
12272 {
12273 rtx record_dead_insn = (rtx) data;
12274
12275 if (GET_CODE (dest) == SUBREG)
12276 dest = SUBREG_REG (dest);
12277
12278 if (!record_dead_insn)
12279 {
12280 if (REG_P (dest))
12281 record_value_for_reg (dest, NULL_RTX, NULL_RTX);
12282 return;
12283 }
12284
12285 if (REG_P (dest))
12286 {
12287 /* If we are setting the whole register, we know its value. Otherwise
12288 show that we don't know the value. We can handle SUBREG in
12289 some cases. */
12290 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
12291 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
12292 else if (GET_CODE (setter) == SET
12293 && GET_CODE (SET_DEST (setter)) == SUBREG
12294 && SUBREG_REG (SET_DEST (setter)) == dest
12295 && GET_MODE_PRECISION (GET_MODE (dest)) <= BITS_PER_WORD
12296 && subreg_lowpart_p (SET_DEST (setter)))
12297 record_value_for_reg (dest, record_dead_insn,
12298 gen_lowpart (GET_MODE (dest),
12299 SET_SRC (setter)));
12300 else
12301 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
12302 }
12303 else if (MEM_P (dest)
12304 /* Ignore pushes, they clobber nothing. */
12305 && ! push_operand (dest, GET_MODE (dest)))
12306 mem_last_set = DF_INSN_LUID (record_dead_insn);
12307 }
12308
12309 /* Update the records of when each REG was most recently set or killed
12310 for the things done by INSN. This is the last thing done in processing
12311 INSN in the combiner loop.
12312
12313 We update reg_stat[], in particular fields last_set, last_set_value,
12314 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
12315 last_death, and also the similar information mem_last_set (which insn
12316 most recently modified memory) and last_call_luid (which insn was the
12317 most recent subroutine call). */
12318
12319 static void
12320 record_dead_and_set_regs (rtx insn)
12321 {
12322 rtx link;
12323 unsigned int i;
12324
12325 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
12326 {
12327 if (REG_NOTE_KIND (link) == REG_DEAD
12328 && REG_P (XEXP (link, 0)))
12329 {
12330 unsigned int regno = REGNO (XEXP (link, 0));
12331 unsigned int endregno = END_REGNO (XEXP (link, 0));
12332
12333 for (i = regno; i < endregno; i++)
12334 {
12335 reg_stat_type *rsp;
12336
12337 rsp = &reg_stat[i];
12338 rsp->last_death = insn;
12339 }
12340 }
12341 else if (REG_NOTE_KIND (link) == REG_INC)
12342 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
12343 }
12344
12345 if (CALL_P (insn))
12346 {
12347 hard_reg_set_iterator hrsi;
12348 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, i, hrsi)
12349 {
12350 reg_stat_type *rsp;
12351
12352 rsp = &reg_stat[i];
12353 rsp->last_set_invalid = 1;
12354 rsp->last_set = insn;
12355 rsp->last_set_value = 0;
12356 rsp->last_set_mode = VOIDmode;
12357 rsp->last_set_nonzero_bits = 0;
12358 rsp->last_set_sign_bit_copies = 0;
12359 rsp->last_death = 0;
12360 rsp->truncated_to_mode = VOIDmode;
12361 }
12362
12363 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
12364
12365 /* We can't combine into a call pattern. Remember, though, that
12366 the return value register is set at this LUID. We could
12367 still replace a register with the return value from the
12368 wrong subroutine call! */
12369 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
12370 }
12371 else
12372 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
12373 }
12374
12375 /* If a SUBREG has the promoted bit set, it is in fact a property of the
12376 register present in the SUBREG, so for each such SUBREG go back and
12377 adjust nonzero and sign bit information of the registers that are
12378 known to have some zero/sign bits set.
12379
12380 This is needed because when combine blows the SUBREGs away, the
12381 information on zero/sign bits is lost and further combines can be
12382 missed because of that. */
12383
12384 static void
12385 record_promoted_value (rtx insn, rtx subreg)
12386 {
12387 struct insn_link *links;
12388 rtx set;
12389 unsigned int regno = REGNO (SUBREG_REG (subreg));
12390 enum machine_mode mode = GET_MODE (subreg);
12391
12392 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
12393 return;
12394
12395 for (links = LOG_LINKS (insn); links;)
12396 {
12397 reg_stat_type *rsp;
12398
12399 insn = links->insn;
12400 set = single_set (insn);
12401
12402 if (! set || !REG_P (SET_DEST (set))
12403 || REGNO (SET_DEST (set)) != regno
12404 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
12405 {
12406 links = links->next;
12407 continue;
12408 }
12409
12410 rsp = &reg_stat[regno];
12411 if (rsp->last_set == insn)
12412 {
12413 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
12414 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
12415 }
12416
12417 if (REG_P (SET_SRC (set)))
12418 {
12419 regno = REGNO (SET_SRC (set));
12420 links = LOG_LINKS (insn);
12421 }
12422 else
12423 break;
12424 }
12425 }
12426
12427 /* Check if X, a register, is known to contain a value already
12428 truncated to MODE. In this case we can use a subreg to refer to
12429 the truncated value even though in the generic case we would need
12430 an explicit truncation. */
12431
12432 static bool
12433 reg_truncated_to_mode (enum machine_mode mode, const_rtx x)
12434 {
12435 reg_stat_type *rsp = &reg_stat[REGNO (x)];
12436 enum machine_mode truncated = rsp->truncated_to_mode;
12437
12438 if (truncated == 0
12439 || rsp->truncation_label < label_tick_ebb_start)
12440 return false;
12441 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
12442 return true;
12443 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
12444 return true;
12445 return false;
12446 }
12447
12448 /* Callback for for_each_rtx. If *P is a hard reg or a subreg record the mode
12449 that the register is accessed in. For non-TRULY_NOOP_TRUNCATION targets we
12450 might be able to turn a truncate into a subreg using this information.
12451 Return -1 if traversing *P is complete or 0 otherwise. */
12452
12453 static int
12454 record_truncated_value (rtx *p, void *data ATTRIBUTE_UNUSED)
12455 {
12456 rtx x = *p;
12457 enum machine_mode truncated_mode;
12458 reg_stat_type *rsp;
12459
12460 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
12461 {
12462 enum machine_mode original_mode = GET_MODE (SUBREG_REG (x));
12463 truncated_mode = GET_MODE (x);
12464
12465 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
12466 return -1;
12467
12468 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
12469 return -1;
12470
12471 x = SUBREG_REG (x);
12472 }
12473 /* ??? For hard-regs we now record everything. We might be able to
12474 optimize this using last_set_mode. */
12475 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
12476 truncated_mode = GET_MODE (x);
12477 else
12478 return 0;
12479
12480 rsp = &reg_stat[REGNO (x)];
12481 if (rsp->truncated_to_mode == 0
12482 || rsp->truncation_label < label_tick_ebb_start
12483 || (GET_MODE_SIZE (truncated_mode)
12484 < GET_MODE_SIZE (rsp->truncated_to_mode)))
12485 {
12486 rsp->truncated_to_mode = truncated_mode;
12487 rsp->truncation_label = label_tick;
12488 }
12489
12490 return -1;
12491 }
12492
12493 /* Callback for note_uses. Find hardregs and subregs of pseudos and
12494 the modes they are used in. This can help truning TRUNCATEs into
12495 SUBREGs. */
12496
12497 static void
12498 record_truncated_values (rtx *x, void *data ATTRIBUTE_UNUSED)
12499 {
12500 for_each_rtx (x, record_truncated_value, NULL);
12501 }
12502
12503 /* Scan X for promoted SUBREGs. For each one found,
12504 note what it implies to the registers used in it. */
12505
12506 static void
12507 check_promoted_subreg (rtx insn, rtx x)
12508 {
12509 if (GET_CODE (x) == SUBREG
12510 && SUBREG_PROMOTED_VAR_P (x)
12511 && REG_P (SUBREG_REG (x)))
12512 record_promoted_value (insn, x);
12513 else
12514 {
12515 const char *format = GET_RTX_FORMAT (GET_CODE (x));
12516 int i, j;
12517
12518 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
12519 switch (format[i])
12520 {
12521 case 'e':
12522 check_promoted_subreg (insn, XEXP (x, i));
12523 break;
12524 case 'V':
12525 case 'E':
12526 if (XVEC (x, i) != 0)
12527 for (j = 0; j < XVECLEN (x, i); j++)
12528 check_promoted_subreg (insn, XVECEXP (x, i, j));
12529 break;
12530 }
12531 }
12532 }
12533 \f
12534 /* Verify that all the registers and memory references mentioned in *LOC are
12535 still valid. *LOC was part of a value set in INSN when label_tick was
12536 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
12537 the invalid references with (clobber (const_int 0)) and return 1. This
12538 replacement is useful because we often can get useful information about
12539 the form of a value (e.g., if it was produced by a shift that always
12540 produces -1 or 0) even though we don't know exactly what registers it
12541 was produced from. */
12542
12543 static int
12544 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
12545 {
12546 rtx x = *loc;
12547 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
12548 int len = GET_RTX_LENGTH (GET_CODE (x));
12549 int i, j;
12550
12551 if (REG_P (x))
12552 {
12553 unsigned int regno = REGNO (x);
12554 unsigned int endregno = END_REGNO (x);
12555 unsigned int j;
12556
12557 for (j = regno; j < endregno; j++)
12558 {
12559 reg_stat_type *rsp = &reg_stat[j];
12560 if (rsp->last_set_invalid
12561 /* If this is a pseudo-register that was only set once and not
12562 live at the beginning of the function, it is always valid. */
12563 || (! (regno >= FIRST_PSEUDO_REGISTER
12564 && REG_N_SETS (regno) == 1
12565 && (!REGNO_REG_SET_P
12566 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno)))
12567 && rsp->last_set_label > tick))
12568 {
12569 if (replace)
12570 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
12571 return replace;
12572 }
12573 }
12574
12575 return 1;
12576 }
12577 /* If this is a memory reference, make sure that there were no stores after
12578 it that might have clobbered the value. We don't have alias info, so we
12579 assume any store invalidates it. Moreover, we only have local UIDs, so
12580 we also assume that there were stores in the intervening basic blocks. */
12581 else if (MEM_P (x) && !MEM_READONLY_P (x)
12582 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
12583 {
12584 if (replace)
12585 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
12586 return replace;
12587 }
12588
12589 for (i = 0; i < len; i++)
12590 {
12591 if (fmt[i] == 'e')
12592 {
12593 /* Check for identical subexpressions. If x contains
12594 identical subexpression we only have to traverse one of
12595 them. */
12596 if (i == 1 && ARITHMETIC_P (x))
12597 {
12598 /* Note that at this point x0 has already been checked
12599 and found valid. */
12600 rtx x0 = XEXP (x, 0);
12601 rtx x1 = XEXP (x, 1);
12602
12603 /* If x0 and x1 are identical then x is also valid. */
12604 if (x0 == x1)
12605 return 1;
12606
12607 /* If x1 is identical to a subexpression of x0 then
12608 while checking x0, x1 has already been checked. Thus
12609 it is valid and so as x. */
12610 if (ARITHMETIC_P (x0)
12611 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12612 return 1;
12613
12614 /* If x0 is identical to a subexpression of x1 then x is
12615 valid iff the rest of x1 is valid. */
12616 if (ARITHMETIC_P (x1)
12617 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12618 return
12619 get_last_value_validate (&XEXP (x1,
12620 x0 == XEXP (x1, 0) ? 1 : 0),
12621 insn, tick, replace);
12622 }
12623
12624 if (get_last_value_validate (&XEXP (x, i), insn, tick,
12625 replace) == 0)
12626 return 0;
12627 }
12628 else if (fmt[i] == 'E')
12629 for (j = 0; j < XVECLEN (x, i); j++)
12630 if (get_last_value_validate (&XVECEXP (x, i, j),
12631 insn, tick, replace) == 0)
12632 return 0;
12633 }
12634
12635 /* If we haven't found a reason for it to be invalid, it is valid. */
12636 return 1;
12637 }
12638
12639 /* Get the last value assigned to X, if known. Some registers
12640 in the value may be replaced with (clobber (const_int 0)) if their value
12641 is known longer known reliably. */
12642
12643 static rtx
12644 get_last_value (const_rtx x)
12645 {
12646 unsigned int regno;
12647 rtx value;
12648 reg_stat_type *rsp;
12649
12650 /* If this is a non-paradoxical SUBREG, get the value of its operand and
12651 then convert it to the desired mode. If this is a paradoxical SUBREG,
12652 we cannot predict what values the "extra" bits might have. */
12653 if (GET_CODE (x) == SUBREG
12654 && subreg_lowpart_p (x)
12655 && !paradoxical_subreg_p (x)
12656 && (value = get_last_value (SUBREG_REG (x))) != 0)
12657 return gen_lowpart (GET_MODE (x), value);
12658
12659 if (!REG_P (x))
12660 return 0;
12661
12662 regno = REGNO (x);
12663 rsp = &reg_stat[regno];
12664 value = rsp->last_set_value;
12665
12666 /* If we don't have a value, or if it isn't for this basic block and
12667 it's either a hard register, set more than once, or it's a live
12668 at the beginning of the function, return 0.
12669
12670 Because if it's not live at the beginning of the function then the reg
12671 is always set before being used (is never used without being set).
12672 And, if it's set only once, and it's always set before use, then all
12673 uses must have the same last value, even if it's not from this basic
12674 block. */
12675
12676 if (value == 0
12677 || (rsp->last_set_label < label_tick_ebb_start
12678 && (regno < FIRST_PSEUDO_REGISTER
12679 || REG_N_SETS (regno) != 1
12680 || REGNO_REG_SET_P
12681 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno))))
12682 return 0;
12683
12684 /* If the value was set in a later insn than the ones we are processing,
12685 we can't use it even if the register was only set once. */
12686 if (rsp->last_set_label == label_tick
12687 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
12688 return 0;
12689
12690 /* If the value has all its registers valid, return it. */
12691 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
12692 return value;
12693
12694 /* Otherwise, make a copy and replace any invalid register with
12695 (clobber (const_int 0)). If that fails for some reason, return 0. */
12696
12697 value = copy_rtx (value);
12698 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
12699 return value;
12700
12701 return 0;
12702 }
12703 \f
12704 /* Return nonzero if expression X refers to a REG or to memory
12705 that is set in an instruction more recent than FROM_LUID. */
12706
12707 static int
12708 use_crosses_set_p (const_rtx x, int from_luid)
12709 {
12710 const char *fmt;
12711 int i;
12712 enum rtx_code code = GET_CODE (x);
12713
12714 if (code == REG)
12715 {
12716 unsigned int regno = REGNO (x);
12717 unsigned endreg = END_REGNO (x);
12718
12719 #ifdef PUSH_ROUNDING
12720 /* Don't allow uses of the stack pointer to be moved,
12721 because we don't know whether the move crosses a push insn. */
12722 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
12723 return 1;
12724 #endif
12725 for (; regno < endreg; regno++)
12726 {
12727 reg_stat_type *rsp = &reg_stat[regno];
12728 if (rsp->last_set
12729 && rsp->last_set_label == label_tick
12730 && DF_INSN_LUID (rsp->last_set) > from_luid)
12731 return 1;
12732 }
12733 return 0;
12734 }
12735
12736 if (code == MEM && mem_last_set > from_luid)
12737 return 1;
12738
12739 fmt = GET_RTX_FORMAT (code);
12740
12741 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12742 {
12743 if (fmt[i] == 'E')
12744 {
12745 int j;
12746 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12747 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
12748 return 1;
12749 }
12750 else if (fmt[i] == 'e'
12751 && use_crosses_set_p (XEXP (x, i), from_luid))
12752 return 1;
12753 }
12754 return 0;
12755 }
12756 \f
12757 /* Define three variables used for communication between the following
12758 routines. */
12759
12760 static unsigned int reg_dead_regno, reg_dead_endregno;
12761 static int reg_dead_flag;
12762
12763 /* Function called via note_stores from reg_dead_at_p.
12764
12765 If DEST is within [reg_dead_regno, reg_dead_endregno), set
12766 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
12767
12768 static void
12769 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
12770 {
12771 unsigned int regno, endregno;
12772
12773 if (!REG_P (dest))
12774 return;
12775
12776 regno = REGNO (dest);
12777 endregno = END_REGNO (dest);
12778 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
12779 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
12780 }
12781
12782 /* Return nonzero if REG is known to be dead at INSN.
12783
12784 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
12785 referencing REG, it is dead. If we hit a SET referencing REG, it is
12786 live. Otherwise, see if it is live or dead at the start of the basic
12787 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
12788 must be assumed to be always live. */
12789
12790 static int
12791 reg_dead_at_p (rtx reg, rtx insn)
12792 {
12793 basic_block block;
12794 unsigned int i;
12795
12796 /* Set variables for reg_dead_at_p_1. */
12797 reg_dead_regno = REGNO (reg);
12798 reg_dead_endregno = END_REGNO (reg);
12799
12800 reg_dead_flag = 0;
12801
12802 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
12803 we allow the machine description to decide whether use-and-clobber
12804 patterns are OK. */
12805 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
12806 {
12807 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12808 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
12809 return 0;
12810 }
12811
12812 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
12813 beginning of basic block. */
12814 block = BLOCK_FOR_INSN (insn);
12815 for (;;)
12816 {
12817 if (INSN_P (insn))
12818 {
12819 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
12820 if (reg_dead_flag)
12821 return reg_dead_flag == 1 ? 1 : 0;
12822
12823 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
12824 return 1;
12825 }
12826
12827 if (insn == BB_HEAD (block))
12828 break;
12829
12830 insn = PREV_INSN (insn);
12831 }
12832
12833 /* Look at live-in sets for the basic block that we were in. */
12834 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12835 if (REGNO_REG_SET_P (df_get_live_in (block), i))
12836 return 0;
12837
12838 return 1;
12839 }
12840 \f
12841 /* Note hard registers in X that are used. */
12842
12843 static void
12844 mark_used_regs_combine (rtx x)
12845 {
12846 RTX_CODE code = GET_CODE (x);
12847 unsigned int regno;
12848 int i;
12849
12850 switch (code)
12851 {
12852 case LABEL_REF:
12853 case SYMBOL_REF:
12854 case CONST:
12855 CASE_CONST_ANY:
12856 case PC:
12857 case ADDR_VEC:
12858 case ADDR_DIFF_VEC:
12859 case ASM_INPUT:
12860 #ifdef HAVE_cc0
12861 /* CC0 must die in the insn after it is set, so we don't need to take
12862 special note of it here. */
12863 case CC0:
12864 #endif
12865 return;
12866
12867 case CLOBBER:
12868 /* If we are clobbering a MEM, mark any hard registers inside the
12869 address as used. */
12870 if (MEM_P (XEXP (x, 0)))
12871 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
12872 return;
12873
12874 case REG:
12875 regno = REGNO (x);
12876 /* A hard reg in a wide mode may really be multiple registers.
12877 If so, mark all of them just like the first. */
12878 if (regno < FIRST_PSEUDO_REGISTER)
12879 {
12880 /* None of this applies to the stack, frame or arg pointers. */
12881 if (regno == STACK_POINTER_REGNUM
12882 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
12883 || regno == HARD_FRAME_POINTER_REGNUM
12884 #endif
12885 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
12886 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
12887 #endif
12888 || regno == FRAME_POINTER_REGNUM)
12889 return;
12890
12891 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
12892 }
12893 return;
12894
12895 case SET:
12896 {
12897 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
12898 the address. */
12899 rtx testreg = SET_DEST (x);
12900
12901 while (GET_CODE (testreg) == SUBREG
12902 || GET_CODE (testreg) == ZERO_EXTRACT
12903 || GET_CODE (testreg) == STRICT_LOW_PART)
12904 testreg = XEXP (testreg, 0);
12905
12906 if (MEM_P (testreg))
12907 mark_used_regs_combine (XEXP (testreg, 0));
12908
12909 mark_used_regs_combine (SET_SRC (x));
12910 }
12911 return;
12912
12913 default:
12914 break;
12915 }
12916
12917 /* Recursively scan the operands of this expression. */
12918
12919 {
12920 const char *fmt = GET_RTX_FORMAT (code);
12921
12922 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12923 {
12924 if (fmt[i] == 'e')
12925 mark_used_regs_combine (XEXP (x, i));
12926 else if (fmt[i] == 'E')
12927 {
12928 int j;
12929
12930 for (j = 0; j < XVECLEN (x, i); j++)
12931 mark_used_regs_combine (XVECEXP (x, i, j));
12932 }
12933 }
12934 }
12935 }
12936 \f
12937 /* Remove register number REGNO from the dead registers list of INSN.
12938
12939 Return the note used to record the death, if there was one. */
12940
12941 rtx
12942 remove_death (unsigned int regno, rtx insn)
12943 {
12944 rtx note = find_regno_note (insn, REG_DEAD, regno);
12945
12946 if (note)
12947 remove_note (insn, note);
12948
12949 return note;
12950 }
12951
12952 /* For each register (hardware or pseudo) used within expression X, if its
12953 death is in an instruction with luid between FROM_LUID (inclusive) and
12954 TO_INSN (exclusive), put a REG_DEAD note for that register in the
12955 list headed by PNOTES.
12956
12957 That said, don't move registers killed by maybe_kill_insn.
12958
12959 This is done when X is being merged by combination into TO_INSN. These
12960 notes will then be distributed as needed. */
12961
12962 static void
12963 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx to_insn,
12964 rtx *pnotes)
12965 {
12966 const char *fmt;
12967 int len, i;
12968 enum rtx_code code = GET_CODE (x);
12969
12970 if (code == REG)
12971 {
12972 unsigned int regno = REGNO (x);
12973 rtx where_dead = reg_stat[regno].last_death;
12974
12975 /* Don't move the register if it gets killed in between from and to. */
12976 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
12977 && ! reg_referenced_p (x, maybe_kill_insn))
12978 return;
12979
12980 if (where_dead
12981 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
12982 && DF_INSN_LUID (where_dead) >= from_luid
12983 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
12984 {
12985 rtx note = remove_death (regno, where_dead);
12986
12987 /* It is possible for the call above to return 0. This can occur
12988 when last_death points to I2 or I1 that we combined with.
12989 In that case make a new note.
12990
12991 We must also check for the case where X is a hard register
12992 and NOTE is a death note for a range of hard registers
12993 including X. In that case, we must put REG_DEAD notes for
12994 the remaining registers in place of NOTE. */
12995
12996 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
12997 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12998 > GET_MODE_SIZE (GET_MODE (x))))
12999 {
13000 unsigned int deadregno = REGNO (XEXP (note, 0));
13001 unsigned int deadend = END_HARD_REGNO (XEXP (note, 0));
13002 unsigned int ourend = END_HARD_REGNO (x);
13003 unsigned int i;
13004
13005 for (i = deadregno; i < deadend; i++)
13006 if (i < regno || i >= ourend)
13007 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
13008 }
13009
13010 /* If we didn't find any note, or if we found a REG_DEAD note that
13011 covers only part of the given reg, and we have a multi-reg hard
13012 register, then to be safe we must check for REG_DEAD notes
13013 for each register other than the first. They could have
13014 their own REG_DEAD notes lying around. */
13015 else if ((note == 0
13016 || (note != 0
13017 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13018 < GET_MODE_SIZE (GET_MODE (x)))))
13019 && regno < FIRST_PSEUDO_REGISTER
13020 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
13021 {
13022 unsigned int ourend = END_HARD_REGNO (x);
13023 unsigned int i, offset;
13024 rtx oldnotes = 0;
13025
13026 if (note)
13027 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
13028 else
13029 offset = 1;
13030
13031 for (i = regno + offset; i < ourend; i++)
13032 move_deaths (regno_reg_rtx[i],
13033 maybe_kill_insn, from_luid, to_insn, &oldnotes);
13034 }
13035
13036 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
13037 {
13038 XEXP (note, 1) = *pnotes;
13039 *pnotes = note;
13040 }
13041 else
13042 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
13043 }
13044
13045 return;
13046 }
13047
13048 else if (GET_CODE (x) == SET)
13049 {
13050 rtx dest = SET_DEST (x);
13051
13052 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
13053
13054 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
13055 that accesses one word of a multi-word item, some
13056 piece of everything register in the expression is used by
13057 this insn, so remove any old death. */
13058 /* ??? So why do we test for equality of the sizes? */
13059
13060 if (GET_CODE (dest) == ZERO_EXTRACT
13061 || GET_CODE (dest) == STRICT_LOW_PART
13062 || (GET_CODE (dest) == SUBREG
13063 && (((GET_MODE_SIZE (GET_MODE (dest))
13064 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
13065 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
13066 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
13067 {
13068 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
13069 return;
13070 }
13071
13072 /* If this is some other SUBREG, we know it replaces the entire
13073 value, so use that as the destination. */
13074 if (GET_CODE (dest) == SUBREG)
13075 dest = SUBREG_REG (dest);
13076
13077 /* If this is a MEM, adjust deaths of anything used in the address.
13078 For a REG (the only other possibility), the entire value is
13079 being replaced so the old value is not used in this insn. */
13080
13081 if (MEM_P (dest))
13082 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
13083 to_insn, pnotes);
13084 return;
13085 }
13086
13087 else if (GET_CODE (x) == CLOBBER)
13088 return;
13089
13090 len = GET_RTX_LENGTH (code);
13091 fmt = GET_RTX_FORMAT (code);
13092
13093 for (i = 0; i < len; i++)
13094 {
13095 if (fmt[i] == 'E')
13096 {
13097 int j;
13098 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13099 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
13100 to_insn, pnotes);
13101 }
13102 else if (fmt[i] == 'e')
13103 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
13104 }
13105 }
13106 \f
13107 /* Return 1 if X is the target of a bit-field assignment in BODY, the
13108 pattern of an insn. X must be a REG. */
13109
13110 static int
13111 reg_bitfield_target_p (rtx x, rtx body)
13112 {
13113 int i;
13114
13115 if (GET_CODE (body) == SET)
13116 {
13117 rtx dest = SET_DEST (body);
13118 rtx target;
13119 unsigned int regno, tregno, endregno, endtregno;
13120
13121 if (GET_CODE (dest) == ZERO_EXTRACT)
13122 target = XEXP (dest, 0);
13123 else if (GET_CODE (dest) == STRICT_LOW_PART)
13124 target = SUBREG_REG (XEXP (dest, 0));
13125 else
13126 return 0;
13127
13128 if (GET_CODE (target) == SUBREG)
13129 target = SUBREG_REG (target);
13130
13131 if (!REG_P (target))
13132 return 0;
13133
13134 tregno = REGNO (target), regno = REGNO (x);
13135 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
13136 return target == x;
13137
13138 endtregno = end_hard_regno (GET_MODE (target), tregno);
13139 endregno = end_hard_regno (GET_MODE (x), regno);
13140
13141 return endregno > tregno && regno < endtregno;
13142 }
13143
13144 else if (GET_CODE (body) == PARALLEL)
13145 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
13146 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
13147 return 1;
13148
13149 return 0;
13150 }
13151 \f
13152 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
13153 as appropriate. I3 and I2 are the insns resulting from the combination
13154 insns including FROM (I2 may be zero).
13155
13156 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
13157 not need REG_DEAD notes because they are being substituted for. This
13158 saves searching in the most common cases.
13159
13160 Each note in the list is either ignored or placed on some insns, depending
13161 on the type of note. */
13162
13163 static void
13164 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2, rtx elim_i2,
13165 rtx elim_i1, rtx elim_i0)
13166 {
13167 rtx note, next_note;
13168 rtx tem;
13169
13170 for (note = notes; note; note = next_note)
13171 {
13172 rtx place = 0, place2 = 0;
13173
13174 next_note = XEXP (note, 1);
13175 switch (REG_NOTE_KIND (note))
13176 {
13177 case REG_BR_PROB:
13178 case REG_BR_PRED:
13179 /* Doesn't matter much where we put this, as long as it's somewhere.
13180 It is preferable to keep these notes on branches, which is most
13181 likely to be i3. */
13182 place = i3;
13183 break;
13184
13185 case REG_NON_LOCAL_GOTO:
13186 if (JUMP_P (i3))
13187 place = i3;
13188 else
13189 {
13190 gcc_assert (i2 && JUMP_P (i2));
13191 place = i2;
13192 }
13193 break;
13194
13195 case REG_EH_REGION:
13196 /* These notes must remain with the call or trapping instruction. */
13197 if (CALL_P (i3))
13198 place = i3;
13199 else if (i2 && CALL_P (i2))
13200 place = i2;
13201 else
13202 {
13203 gcc_assert (cfun->can_throw_non_call_exceptions);
13204 if (may_trap_p (i3))
13205 place = i3;
13206 else if (i2 && may_trap_p (i2))
13207 place = i2;
13208 /* ??? Otherwise assume we've combined things such that we
13209 can now prove that the instructions can't trap. Drop the
13210 note in this case. */
13211 }
13212 break;
13213
13214 case REG_ARGS_SIZE:
13215 /* ??? How to distribute between i3-i1. Assume i3 contains the
13216 entire adjustment. Assert i3 contains at least some adjust. */
13217 if (!noop_move_p (i3))
13218 {
13219 int old_size, args_size = INTVAL (XEXP (note, 0));
13220 /* fixup_args_size_notes looks at REG_NORETURN note,
13221 so ensure the note is placed there first. */
13222 if (CALL_P (i3))
13223 {
13224 rtx *np;
13225 for (np = &next_note; *np; np = &XEXP (*np, 1))
13226 if (REG_NOTE_KIND (*np) == REG_NORETURN)
13227 {
13228 rtx n = *np;
13229 *np = XEXP (n, 1);
13230 XEXP (n, 1) = REG_NOTES (i3);
13231 REG_NOTES (i3) = n;
13232 break;
13233 }
13234 }
13235 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
13236 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
13237 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
13238 gcc_assert (old_size != args_size
13239 || (CALL_P (i3)
13240 && !ACCUMULATE_OUTGOING_ARGS
13241 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
13242 }
13243 break;
13244
13245 case REG_NORETURN:
13246 case REG_SETJMP:
13247 case REG_TM:
13248 /* These notes must remain with the call. It should not be
13249 possible for both I2 and I3 to be a call. */
13250 if (CALL_P (i3))
13251 place = i3;
13252 else
13253 {
13254 gcc_assert (i2 && CALL_P (i2));
13255 place = i2;
13256 }
13257 break;
13258
13259 case REG_UNUSED:
13260 /* Any clobbers for i3 may still exist, and so we must process
13261 REG_UNUSED notes from that insn.
13262
13263 Any clobbers from i2 or i1 can only exist if they were added by
13264 recog_for_combine. In that case, recog_for_combine created the
13265 necessary REG_UNUSED notes. Trying to keep any original
13266 REG_UNUSED notes from these insns can cause incorrect output
13267 if it is for the same register as the original i3 dest.
13268 In that case, we will notice that the register is set in i3,
13269 and then add a REG_UNUSED note for the destination of i3, which
13270 is wrong. However, it is possible to have REG_UNUSED notes from
13271 i2 or i1 for register which were both used and clobbered, so
13272 we keep notes from i2 or i1 if they will turn into REG_DEAD
13273 notes. */
13274
13275 /* If this register is set or clobbered in I3, put the note there
13276 unless there is one already. */
13277 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
13278 {
13279 if (from_insn != i3)
13280 break;
13281
13282 if (! (REG_P (XEXP (note, 0))
13283 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
13284 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
13285 place = i3;
13286 }
13287 /* Otherwise, if this register is used by I3, then this register
13288 now dies here, so we must put a REG_DEAD note here unless there
13289 is one already. */
13290 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
13291 && ! (REG_P (XEXP (note, 0))
13292 ? find_regno_note (i3, REG_DEAD,
13293 REGNO (XEXP (note, 0)))
13294 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
13295 {
13296 PUT_REG_NOTE_KIND (note, REG_DEAD);
13297 place = i3;
13298 }
13299 break;
13300
13301 case REG_EQUAL:
13302 case REG_EQUIV:
13303 case REG_NOALIAS:
13304 /* These notes say something about results of an insn. We can
13305 only support them if they used to be on I3 in which case they
13306 remain on I3. Otherwise they are ignored.
13307
13308 If the note refers to an expression that is not a constant, we
13309 must also ignore the note since we cannot tell whether the
13310 equivalence is still true. It might be possible to do
13311 slightly better than this (we only have a problem if I2DEST
13312 or I1DEST is present in the expression), but it doesn't
13313 seem worth the trouble. */
13314
13315 if (from_insn == i3
13316 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
13317 place = i3;
13318 break;
13319
13320 case REG_INC:
13321 /* These notes say something about how a register is used. They must
13322 be present on any use of the register in I2 or I3. */
13323 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
13324 place = i3;
13325
13326 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
13327 {
13328 if (place)
13329 place2 = i2;
13330 else
13331 place = i2;
13332 }
13333 break;
13334
13335 case REG_LABEL_TARGET:
13336 case REG_LABEL_OPERAND:
13337 /* This can show up in several ways -- either directly in the
13338 pattern, or hidden off in the constant pool with (or without?)
13339 a REG_EQUAL note. */
13340 /* ??? Ignore the without-reg_equal-note problem for now. */
13341 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
13342 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
13343 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
13344 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
13345 place = i3;
13346
13347 if (i2
13348 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
13349 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
13350 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
13351 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
13352 {
13353 if (place)
13354 place2 = i2;
13355 else
13356 place = i2;
13357 }
13358
13359 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
13360 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
13361 there. */
13362 if (place && JUMP_P (place)
13363 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13364 && (JUMP_LABEL (place) == NULL
13365 || JUMP_LABEL (place) == XEXP (note, 0)))
13366 {
13367 rtx label = JUMP_LABEL (place);
13368
13369 if (!label)
13370 JUMP_LABEL (place) = XEXP (note, 0);
13371 else if (LABEL_P (label))
13372 LABEL_NUSES (label)--;
13373 }
13374
13375 if (place2 && JUMP_P (place2)
13376 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13377 && (JUMP_LABEL (place2) == NULL
13378 || JUMP_LABEL (place2) == XEXP (note, 0)))
13379 {
13380 rtx label = JUMP_LABEL (place2);
13381
13382 if (!label)
13383 JUMP_LABEL (place2) = XEXP (note, 0);
13384 else if (LABEL_P (label))
13385 LABEL_NUSES (label)--;
13386 place2 = 0;
13387 }
13388 break;
13389
13390 case REG_NONNEG:
13391 /* This note says something about the value of a register prior
13392 to the execution of an insn. It is too much trouble to see
13393 if the note is still correct in all situations. It is better
13394 to simply delete it. */
13395 break;
13396
13397 case REG_DEAD:
13398 /* If we replaced the right hand side of FROM_INSN with a
13399 REG_EQUAL note, the original use of the dying register
13400 will not have been combined into I3 and I2. In such cases,
13401 FROM_INSN is guaranteed to be the first of the combined
13402 instructions, so we simply need to search back before
13403 FROM_INSN for the previous use or set of this register,
13404 then alter the notes there appropriately.
13405
13406 If the register is used as an input in I3, it dies there.
13407 Similarly for I2, if it is nonzero and adjacent to I3.
13408
13409 If the register is not used as an input in either I3 or I2
13410 and it is not one of the registers we were supposed to eliminate,
13411 there are two possibilities. We might have a non-adjacent I2
13412 or we might have somehow eliminated an additional register
13413 from a computation. For example, we might have had A & B where
13414 we discover that B will always be zero. In this case we will
13415 eliminate the reference to A.
13416
13417 In both cases, we must search to see if we can find a previous
13418 use of A and put the death note there. */
13419
13420 if (from_insn
13421 && from_insn == i2mod
13422 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
13423 tem = from_insn;
13424 else
13425 {
13426 if (from_insn
13427 && CALL_P (from_insn)
13428 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
13429 place = from_insn;
13430 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
13431 place = i3;
13432 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
13433 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13434 place = i2;
13435 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
13436 && !(i2mod
13437 && reg_overlap_mentioned_p (XEXP (note, 0),
13438 i2mod_old_rhs)))
13439 || rtx_equal_p (XEXP (note, 0), elim_i1)
13440 || rtx_equal_p (XEXP (note, 0), elim_i0))
13441 break;
13442 tem = i3;
13443 }
13444
13445 if (place == 0)
13446 {
13447 basic_block bb = this_basic_block;
13448
13449 for (tem = PREV_INSN (tem); place == 0; tem = PREV_INSN (tem))
13450 {
13451 if (!NONDEBUG_INSN_P (tem))
13452 {
13453 if (tem == BB_HEAD (bb))
13454 break;
13455 continue;
13456 }
13457
13458 /* If the register is being set at TEM, see if that is all
13459 TEM is doing. If so, delete TEM. Otherwise, make this
13460 into a REG_UNUSED note instead. Don't delete sets to
13461 global register vars. */
13462 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
13463 || !global_regs[REGNO (XEXP (note, 0))])
13464 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
13465 {
13466 rtx set = single_set (tem);
13467 rtx inner_dest = 0;
13468 #ifdef HAVE_cc0
13469 rtx cc0_setter = NULL_RTX;
13470 #endif
13471
13472 if (set != 0)
13473 for (inner_dest = SET_DEST (set);
13474 (GET_CODE (inner_dest) == STRICT_LOW_PART
13475 || GET_CODE (inner_dest) == SUBREG
13476 || GET_CODE (inner_dest) == ZERO_EXTRACT);
13477 inner_dest = XEXP (inner_dest, 0))
13478 ;
13479
13480 /* Verify that it was the set, and not a clobber that
13481 modified the register.
13482
13483 CC0 targets must be careful to maintain setter/user
13484 pairs. If we cannot delete the setter due to side
13485 effects, mark the user with an UNUSED note instead
13486 of deleting it. */
13487
13488 if (set != 0 && ! side_effects_p (SET_SRC (set))
13489 && rtx_equal_p (XEXP (note, 0), inner_dest)
13490 #ifdef HAVE_cc0
13491 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
13492 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
13493 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
13494 #endif
13495 )
13496 {
13497 /* Move the notes and links of TEM elsewhere.
13498 This might delete other dead insns recursively.
13499 First set the pattern to something that won't use
13500 any register. */
13501 rtx old_notes = REG_NOTES (tem);
13502
13503 PATTERN (tem) = pc_rtx;
13504 REG_NOTES (tem) = NULL;
13505
13506 distribute_notes (old_notes, tem, tem, NULL_RTX,
13507 NULL_RTX, NULL_RTX, NULL_RTX);
13508 distribute_links (LOG_LINKS (tem));
13509
13510 SET_INSN_DELETED (tem);
13511 if (tem == i2)
13512 i2 = NULL_RTX;
13513
13514 #ifdef HAVE_cc0
13515 /* Delete the setter too. */
13516 if (cc0_setter)
13517 {
13518 PATTERN (cc0_setter) = pc_rtx;
13519 old_notes = REG_NOTES (cc0_setter);
13520 REG_NOTES (cc0_setter) = NULL;
13521
13522 distribute_notes (old_notes, cc0_setter,
13523 cc0_setter, NULL_RTX,
13524 NULL_RTX, NULL_RTX, NULL_RTX);
13525 distribute_links (LOG_LINKS (cc0_setter));
13526
13527 SET_INSN_DELETED (cc0_setter);
13528 if (cc0_setter == i2)
13529 i2 = NULL_RTX;
13530 }
13531 #endif
13532 }
13533 else
13534 {
13535 PUT_REG_NOTE_KIND (note, REG_UNUSED);
13536
13537 /* If there isn't already a REG_UNUSED note, put one
13538 here. Do not place a REG_DEAD note, even if
13539 the register is also used here; that would not
13540 match the algorithm used in lifetime analysis
13541 and can cause the consistency check in the
13542 scheduler to fail. */
13543 if (! find_regno_note (tem, REG_UNUSED,
13544 REGNO (XEXP (note, 0))))
13545 place = tem;
13546 break;
13547 }
13548 }
13549 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
13550 || (CALL_P (tem)
13551 && find_reg_fusage (tem, USE, XEXP (note, 0))))
13552 {
13553 place = tem;
13554
13555 /* If we are doing a 3->2 combination, and we have a
13556 register which formerly died in i3 and was not used
13557 by i2, which now no longer dies in i3 and is used in
13558 i2 but does not die in i2, and place is between i2
13559 and i3, then we may need to move a link from place to
13560 i2. */
13561 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
13562 && from_insn
13563 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
13564 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13565 {
13566 struct insn_link *links = LOG_LINKS (place);
13567 LOG_LINKS (place) = NULL;
13568 distribute_links (links);
13569 }
13570 break;
13571 }
13572
13573 if (tem == BB_HEAD (bb))
13574 break;
13575 }
13576
13577 }
13578
13579 /* If the register is set or already dead at PLACE, we needn't do
13580 anything with this note if it is still a REG_DEAD note.
13581 We check here if it is set at all, not if is it totally replaced,
13582 which is what `dead_or_set_p' checks, so also check for it being
13583 set partially. */
13584
13585 if (place && REG_NOTE_KIND (note) == REG_DEAD)
13586 {
13587 unsigned int regno = REGNO (XEXP (note, 0));
13588 reg_stat_type *rsp = &reg_stat[regno];
13589
13590 if (dead_or_set_p (place, XEXP (note, 0))
13591 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
13592 {
13593 /* Unless the register previously died in PLACE, clear
13594 last_death. [I no longer understand why this is
13595 being done.] */
13596 if (rsp->last_death != place)
13597 rsp->last_death = 0;
13598 place = 0;
13599 }
13600 else
13601 rsp->last_death = place;
13602
13603 /* If this is a death note for a hard reg that is occupying
13604 multiple registers, ensure that we are still using all
13605 parts of the object. If we find a piece of the object
13606 that is unused, we must arrange for an appropriate REG_DEAD
13607 note to be added for it. However, we can't just emit a USE
13608 and tag the note to it, since the register might actually
13609 be dead; so we recourse, and the recursive call then finds
13610 the previous insn that used this register. */
13611
13612 if (place && regno < FIRST_PSEUDO_REGISTER
13613 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
13614 {
13615 unsigned int endregno = END_HARD_REGNO (XEXP (note, 0));
13616 bool all_used = true;
13617 unsigned int i;
13618
13619 for (i = regno; i < endregno; i++)
13620 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
13621 && ! find_regno_fusage (place, USE, i))
13622 || dead_or_set_regno_p (place, i))
13623 {
13624 all_used = false;
13625 break;
13626 }
13627
13628 if (! all_used)
13629 {
13630 /* Put only REG_DEAD notes for pieces that are
13631 not already dead or set. */
13632
13633 for (i = regno; i < endregno;
13634 i += hard_regno_nregs[i][reg_raw_mode[i]])
13635 {
13636 rtx piece = regno_reg_rtx[i];
13637 basic_block bb = this_basic_block;
13638
13639 if (! dead_or_set_p (place, piece)
13640 && ! reg_bitfield_target_p (piece,
13641 PATTERN (place)))
13642 {
13643 rtx new_note = alloc_reg_note (REG_DEAD, piece,
13644 NULL_RTX);
13645
13646 distribute_notes (new_note, place, place,
13647 NULL_RTX, NULL_RTX, NULL_RTX,
13648 NULL_RTX);
13649 }
13650 else if (! refers_to_regno_p (i, i + 1,
13651 PATTERN (place), 0)
13652 && ! find_regno_fusage (place, USE, i))
13653 for (tem = PREV_INSN (place); ;
13654 tem = PREV_INSN (tem))
13655 {
13656 if (!NONDEBUG_INSN_P (tem))
13657 {
13658 if (tem == BB_HEAD (bb))
13659 break;
13660 continue;
13661 }
13662 if (dead_or_set_p (tem, piece)
13663 || reg_bitfield_target_p (piece,
13664 PATTERN (tem)))
13665 {
13666 add_reg_note (tem, REG_UNUSED, piece);
13667 break;
13668 }
13669 }
13670 }
13671
13672 place = 0;
13673 }
13674 }
13675 }
13676 break;
13677
13678 default:
13679 /* Any other notes should not be present at this point in the
13680 compilation. */
13681 gcc_unreachable ();
13682 }
13683
13684 if (place)
13685 {
13686 XEXP (note, 1) = REG_NOTES (place);
13687 REG_NOTES (place) = note;
13688 }
13689
13690 if (place2)
13691 add_shallow_copy_of_reg_note (place2, note);
13692 }
13693 }
13694 \f
13695 /* Similarly to above, distribute the LOG_LINKS that used to be present on
13696 I3, I2, and I1 to new locations. This is also called to add a link
13697 pointing at I3 when I3's destination is changed. */
13698
13699 static void
13700 distribute_links (struct insn_link *links)
13701 {
13702 struct insn_link *link, *next_link;
13703
13704 for (link = links; link; link = next_link)
13705 {
13706 rtx place = 0;
13707 rtx insn;
13708 rtx set, reg;
13709
13710 next_link = link->next;
13711
13712 /* If the insn that this link points to is a NOTE or isn't a single
13713 set, ignore it. In the latter case, it isn't clear what we
13714 can do other than ignore the link, since we can't tell which
13715 register it was for. Such links wouldn't be used by combine
13716 anyway.
13717
13718 It is not possible for the destination of the target of the link to
13719 have been changed by combine. The only potential of this is if we
13720 replace I3, I2, and I1 by I3 and I2. But in that case the
13721 destination of I2 also remains unchanged. */
13722
13723 if (NOTE_P (link->insn)
13724 || (set = single_set (link->insn)) == 0)
13725 continue;
13726
13727 reg = SET_DEST (set);
13728 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
13729 || GET_CODE (reg) == STRICT_LOW_PART)
13730 reg = XEXP (reg, 0);
13731
13732 /* A LOG_LINK is defined as being placed on the first insn that uses
13733 a register and points to the insn that sets the register. Start
13734 searching at the next insn after the target of the link and stop
13735 when we reach a set of the register or the end of the basic block.
13736
13737 Note that this correctly handles the link that used to point from
13738 I3 to I2. Also note that not much searching is typically done here
13739 since most links don't point very far away. */
13740
13741 for (insn = NEXT_INSN (link->insn);
13742 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
13743 || BB_HEAD (this_basic_block->next_bb) != insn));
13744 insn = NEXT_INSN (insn))
13745 if (DEBUG_INSN_P (insn))
13746 continue;
13747 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
13748 {
13749 if (reg_referenced_p (reg, PATTERN (insn)))
13750 place = insn;
13751 break;
13752 }
13753 else if (CALL_P (insn)
13754 && find_reg_fusage (insn, USE, reg))
13755 {
13756 place = insn;
13757 break;
13758 }
13759 else if (INSN_P (insn) && reg_set_p (reg, insn))
13760 break;
13761
13762 /* If we found a place to put the link, place it there unless there
13763 is already a link to the same insn as LINK at that point. */
13764
13765 if (place)
13766 {
13767 struct insn_link *link2;
13768
13769 FOR_EACH_LOG_LINK (link2, place)
13770 if (link2->insn == link->insn)
13771 break;
13772
13773 if (link2 == NULL)
13774 {
13775 link->next = LOG_LINKS (place);
13776 LOG_LINKS (place) = link;
13777
13778 /* Set added_links_insn to the earliest insn we added a
13779 link to. */
13780 if (added_links_insn == 0
13781 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
13782 added_links_insn = place;
13783 }
13784 }
13785 }
13786 }
13787 \f
13788 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
13789 Check whether the expression pointer to by LOC is a register or
13790 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
13791 Otherwise return zero. */
13792
13793 static int
13794 unmentioned_reg_p_1 (rtx *loc, void *expr)
13795 {
13796 rtx x = *loc;
13797
13798 if (x != NULL_RTX
13799 && (REG_P (x) || MEM_P (x))
13800 && ! reg_mentioned_p (x, (rtx) expr))
13801 return 1;
13802 return 0;
13803 }
13804
13805 /* Check for any register or memory mentioned in EQUIV that is not
13806 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
13807 of EXPR where some registers may have been replaced by constants. */
13808
13809 static bool
13810 unmentioned_reg_p (rtx equiv, rtx expr)
13811 {
13812 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
13813 }
13814 \f
13815 DEBUG_FUNCTION void
13816 dump_combine_stats (FILE *file)
13817 {
13818 fprintf
13819 (file,
13820 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
13821 combine_attempts, combine_merges, combine_extras, combine_successes);
13822 }
13823
13824 void
13825 dump_combine_total_stats (FILE *file)
13826 {
13827 fprintf
13828 (file,
13829 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
13830 total_attempts, total_merges, total_extras, total_successes);
13831 }
13832 \f
13833 static bool
13834 gate_handle_combine (void)
13835 {
13836 return (optimize > 0);
13837 }
13838
13839 /* Try combining insns through substitution. */
13840 static unsigned int
13841 rest_of_handle_combine (void)
13842 {
13843 int rebuild_jump_labels_after_combine;
13844
13845 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
13846 df_note_add_problem ();
13847 df_analyze ();
13848
13849 regstat_init_n_sets_and_refs ();
13850
13851 rebuild_jump_labels_after_combine
13852 = combine_instructions (get_insns (), max_reg_num ());
13853
13854 /* Combining insns may have turned an indirect jump into a
13855 direct jump. Rebuild the JUMP_LABEL fields of jumping
13856 instructions. */
13857 if (rebuild_jump_labels_after_combine)
13858 {
13859 timevar_push (TV_JUMP);
13860 rebuild_jump_labels (get_insns ());
13861 cleanup_cfg (0);
13862 timevar_pop (TV_JUMP);
13863 }
13864
13865 regstat_free_n_sets_and_refs ();
13866 return 0;
13867 }
13868
13869 namespace {
13870
13871 const pass_data pass_data_combine =
13872 {
13873 RTL_PASS, /* type */
13874 "combine", /* name */
13875 OPTGROUP_NONE, /* optinfo_flags */
13876 true, /* has_gate */
13877 true, /* has_execute */
13878 TV_COMBINE, /* tv_id */
13879 PROP_cfglayout, /* properties_required */
13880 0, /* properties_provided */
13881 0, /* properties_destroyed */
13882 0, /* todo_flags_start */
13883 ( TODO_df_finish | TODO_verify_rtl_sharing ), /* todo_flags_finish */
13884 };
13885
13886 class pass_combine : public rtl_opt_pass
13887 {
13888 public:
13889 pass_combine (gcc::context *ctxt)
13890 : rtl_opt_pass (pass_data_combine, ctxt)
13891 {}
13892
13893 /* opt_pass methods: */
13894 bool gate () { return gate_handle_combine (); }
13895 unsigned int execute () { return rest_of_handle_combine (); }
13896
13897 }; // class pass_combine
13898
13899 } // anon namespace
13900
13901 rtl_opt_pass *
13902 make_pass_combine (gcc::context *ctxt)
13903 {
13904 return new pass_combine (ctxt);
13905 }