combine.c (try_widen_shift_mode): Add COUNT, OUTER_CODE and OUTER_CONST arguments.
[gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
25
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
31
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
55
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
64
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
68
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
77
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "tm.h"
82 #include "rtl.h"
83 #include "tree.h"
84 #include "tm_p.h"
85 #include "flags.h"
86 #include "regs.h"
87 #include "hard-reg-set.h"
88 #include "basic-block.h"
89 #include "insn-config.h"
90 #include "function.h"
91 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
92 #include "expr.h"
93 #include "insn-attr.h"
94 #include "recog.h"
95 #include "real.h"
96 #include "toplev.h"
97 #include "target.h"
98 #include "optabs.h"
99 #include "insn-codes.h"
100 #include "rtlhooks-def.h"
101 /* Include output.h for dump_file. */
102 #include "output.h"
103 #include "params.h"
104 #include "timevar.h"
105 #include "tree-pass.h"
106 #include "df.h"
107 #include "cgraph.h"
108
109 /* Number of attempts to combine instructions in this function. */
110
111 static int combine_attempts;
112
113 /* Number of attempts that got as far as substitution in this function. */
114
115 static int combine_merges;
116
117 /* Number of instructions combined with added SETs in this function. */
118
119 static int combine_extras;
120
121 /* Number of instructions combined in this function. */
122
123 static int combine_successes;
124
125 /* Totals over entire compilation. */
126
127 static int total_attempts, total_merges, total_extras, total_successes;
128
129 /* combine_instructions may try to replace the right hand side of the
130 second instruction with the value of an associated REG_EQUAL note
131 before throwing it at try_combine. That is problematic when there
132 is a REG_DEAD note for a register used in the old right hand side
133 and can cause distribute_notes to do wrong things. This is the
134 second instruction if it has been so modified, null otherwise. */
135
136 static rtx i2mod;
137
138 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
139
140 static rtx i2mod_old_rhs;
141
142 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
143
144 static rtx i2mod_new_rhs;
145 \f
146 typedef struct reg_stat_struct {
147 /* Record last point of death of (hard or pseudo) register n. */
148 rtx last_death;
149
150 /* Record last point of modification of (hard or pseudo) register n. */
151 rtx last_set;
152
153 /* The next group of fields allows the recording of the last value assigned
154 to (hard or pseudo) register n. We use this information to see if an
155 operation being processed is redundant given a prior operation performed
156 on the register. For example, an `and' with a constant is redundant if
157 all the zero bits are already known to be turned off.
158
159 We use an approach similar to that used by cse, but change it in the
160 following ways:
161
162 (1) We do not want to reinitialize at each label.
163 (2) It is useful, but not critical, to know the actual value assigned
164 to a register. Often just its form is helpful.
165
166 Therefore, we maintain the following fields:
167
168 last_set_value the last value assigned
169 last_set_label records the value of label_tick when the
170 register was assigned
171 last_set_table_tick records the value of label_tick when a
172 value using the register is assigned
173 last_set_invalid set to nonzero when it is not valid
174 to use the value of this register in some
175 register's value
176
177 To understand the usage of these tables, it is important to understand
178 the distinction between the value in last_set_value being valid and
179 the register being validly contained in some other expression in the
180 table.
181
182 (The next two parameters are out of date).
183
184 reg_stat[i].last_set_value is valid if it is nonzero, and either
185 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
186
187 Register I may validly appear in any expression returned for the value
188 of another register if reg_n_sets[i] is 1. It may also appear in the
189 value for register J if reg_stat[j].last_set_invalid is zero, or
190 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
191
192 If an expression is found in the table containing a register which may
193 not validly appear in an expression, the register is replaced by
194 something that won't match, (clobber (const_int 0)). */
195
196 /* Record last value assigned to (hard or pseudo) register n. */
197
198 rtx last_set_value;
199
200 /* Record the value of label_tick when an expression involving register n
201 is placed in last_set_value. */
202
203 int last_set_table_tick;
204
205 /* Record the value of label_tick when the value for register n is placed in
206 last_set_value. */
207
208 int last_set_label;
209
210 /* These fields are maintained in parallel with last_set_value and are
211 used to store the mode in which the register was last set, the bits
212 that were known to be zero when it was last set, and the number of
213 sign bits copies it was known to have when it was last set. */
214
215 unsigned HOST_WIDE_INT last_set_nonzero_bits;
216 char last_set_sign_bit_copies;
217 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
218
219 /* Set nonzero if references to register n in expressions should not be
220 used. last_set_invalid is set nonzero when this register is being
221 assigned to and last_set_table_tick == label_tick. */
222
223 char last_set_invalid;
224
225 /* Some registers that are set more than once and used in more than one
226 basic block are nevertheless always set in similar ways. For example,
227 a QImode register may be loaded from memory in two places on a machine
228 where byte loads zero extend.
229
230 We record in the following fields if a register has some leading bits
231 that are always equal to the sign bit, and what we know about the
232 nonzero bits of a register, specifically which bits are known to be
233 zero.
234
235 If an entry is zero, it means that we don't know anything special. */
236
237 unsigned char sign_bit_copies;
238
239 unsigned HOST_WIDE_INT nonzero_bits;
240
241 /* Record the value of the label_tick when the last truncation
242 happened. The field truncated_to_mode is only valid if
243 truncation_label == label_tick. */
244
245 int truncation_label;
246
247 /* Record the last truncation seen for this register. If truncation
248 is not a nop to this mode we might be able to save an explicit
249 truncation if we know that value already contains a truncated
250 value. */
251
252 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
253 } reg_stat_type;
254
255 DEF_VEC_O(reg_stat_type);
256 DEF_VEC_ALLOC_O(reg_stat_type,heap);
257
258 static VEC(reg_stat_type,heap) *reg_stat;
259
260 /* Record the luid of the last insn that invalidated memory
261 (anything that writes memory, and subroutine calls, but not pushes). */
262
263 static int mem_last_set;
264
265 /* Record the luid of the last CALL_INSN
266 so we can tell whether a potential combination crosses any calls. */
267
268 static int last_call_luid;
269
270 /* When `subst' is called, this is the insn that is being modified
271 (by combining in a previous insn). The PATTERN of this insn
272 is still the old pattern partially modified and it should not be
273 looked at, but this may be used to examine the successors of the insn
274 to judge whether a simplification is valid. */
275
276 static rtx subst_insn;
277
278 /* This is the lowest LUID that `subst' is currently dealing with.
279 get_last_value will not return a value if the register was set at or
280 after this LUID. If not for this mechanism, we could get confused if
281 I2 or I1 in try_combine were an insn that used the old value of a register
282 to obtain a new value. In that case, we might erroneously get the
283 new value of the register when we wanted the old one. */
284
285 static int subst_low_luid;
286
287 /* This contains any hard registers that are used in newpat; reg_dead_at_p
288 must consider all these registers to be always live. */
289
290 static HARD_REG_SET newpat_used_regs;
291
292 /* This is an insn to which a LOG_LINKS entry has been added. If this
293 insn is the earlier than I2 or I3, combine should rescan starting at
294 that location. */
295
296 static rtx added_links_insn;
297
298 /* Basic block in which we are performing combines. */
299 static basic_block this_basic_block;
300 static bool optimize_this_for_speed_p;
301
302 \f
303 /* Length of the currently allocated uid_insn_cost array. */
304
305 static int max_uid_known;
306
307 /* The following array records the insn_rtx_cost for every insn
308 in the instruction stream. */
309
310 static int *uid_insn_cost;
311
312 /* The following array records the LOG_LINKS for every insn in the
313 instruction stream as an INSN_LIST rtx. */
314
315 static rtx *uid_log_links;
316
317 #define INSN_COST(INSN) (uid_insn_cost[INSN_UID (INSN)])
318 #define LOG_LINKS(INSN) (uid_log_links[INSN_UID (INSN)])
319
320 /* Incremented for each basic block. */
321
322 static int label_tick;
323
324 /* Reset to label_tick for each label. */
325
326 static int label_tick_ebb_start;
327
328 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
329 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
330
331 static enum machine_mode nonzero_bits_mode;
332
333 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
334 be safely used. It is zero while computing them and after combine has
335 completed. This former test prevents propagating values based on
336 previously set values, which can be incorrect if a variable is modified
337 in a loop. */
338
339 static int nonzero_sign_valid;
340
341 \f
342 /* Record one modification to rtl structure
343 to be undone by storing old_contents into *where. */
344
345 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE };
346
347 struct undo
348 {
349 struct undo *next;
350 enum undo_kind kind;
351 union { rtx r; int i; enum machine_mode m; } old_contents;
352 union { rtx *r; int *i; } where;
353 };
354
355 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
356 num_undo says how many are currently recorded.
357
358 other_insn is nonzero if we have modified some other insn in the process
359 of working on subst_insn. It must be verified too. */
360
361 struct undobuf
362 {
363 struct undo *undos;
364 struct undo *frees;
365 rtx other_insn;
366 };
367
368 static struct undobuf undobuf;
369
370 /* Number of times the pseudo being substituted for
371 was found and replaced. */
372
373 static int n_occurrences;
374
375 static rtx reg_nonzero_bits_for_combine (const_rtx, enum machine_mode, const_rtx,
376 enum machine_mode,
377 unsigned HOST_WIDE_INT,
378 unsigned HOST_WIDE_INT *);
379 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, enum machine_mode, const_rtx,
380 enum machine_mode,
381 unsigned int, unsigned int *);
382 static void do_SUBST (rtx *, rtx);
383 static void do_SUBST_INT (int *, int);
384 static void init_reg_last (void);
385 static void setup_incoming_promotions (rtx);
386 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
387 static int cant_combine_insn_p (rtx);
388 static int can_combine_p (rtx, rtx, rtx, rtx, rtx *, rtx *);
389 static int combinable_i3pat (rtx, rtx *, rtx, rtx, int, rtx *);
390 static int contains_muldiv (rtx);
391 static rtx try_combine (rtx, rtx, rtx, int *);
392 static void undo_all (void);
393 static void undo_commit (void);
394 static rtx *find_split_point (rtx *, rtx);
395 static rtx subst (rtx, rtx, rtx, int, int);
396 static rtx combine_simplify_rtx (rtx, enum machine_mode, int);
397 static rtx simplify_if_then_else (rtx);
398 static rtx simplify_set (rtx);
399 static rtx simplify_logical (rtx);
400 static rtx expand_compound_operation (rtx);
401 static const_rtx expand_field_assignment (const_rtx);
402 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
403 rtx, unsigned HOST_WIDE_INT, int, int, int);
404 static rtx extract_left_shift (rtx, int);
405 static rtx make_compound_operation (rtx, enum rtx_code);
406 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
407 unsigned HOST_WIDE_INT *);
408 static rtx canon_reg_for_combine (rtx, rtx);
409 static rtx force_to_mode (rtx, enum machine_mode,
410 unsigned HOST_WIDE_INT, int);
411 static rtx if_then_else_cond (rtx, rtx *, rtx *);
412 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
413 static int rtx_equal_for_field_assignment_p (rtx, rtx);
414 static rtx make_field_assignment (rtx);
415 static rtx apply_distributive_law (rtx);
416 static rtx distribute_and_simplify_rtx (rtx, int);
417 static rtx simplify_and_const_int_1 (enum machine_mode, rtx,
418 unsigned HOST_WIDE_INT);
419 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
420 unsigned HOST_WIDE_INT);
421 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
422 HOST_WIDE_INT, enum machine_mode, int *);
423 static rtx simplify_shift_const_1 (enum rtx_code, enum machine_mode, rtx, int);
424 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
425 int);
426 static int recog_for_combine (rtx *, rtx, rtx *);
427 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
428 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
429 static void update_table_tick (rtx);
430 static void record_value_for_reg (rtx, rtx, rtx);
431 static void check_promoted_subreg (rtx, rtx);
432 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
433 static void record_dead_and_set_regs (rtx);
434 static int get_last_value_validate (rtx *, rtx, int, int);
435 static rtx get_last_value (const_rtx);
436 static int use_crosses_set_p (const_rtx, int);
437 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
438 static int reg_dead_at_p (rtx, rtx);
439 static void move_deaths (rtx, rtx, int, rtx, rtx *);
440 static int reg_bitfield_target_p (rtx, rtx);
441 static void distribute_notes (rtx, rtx, rtx, rtx, rtx, rtx);
442 static void distribute_links (rtx);
443 static void mark_used_regs_combine (rtx);
444 static void record_promoted_value (rtx, rtx);
445 static int unmentioned_reg_p_1 (rtx *, void *);
446 static bool unmentioned_reg_p (rtx, rtx);
447 static int record_truncated_value (rtx *, void *);
448 static void record_truncated_values (rtx *, void *);
449 static bool reg_truncated_to_mode (enum machine_mode, const_rtx);
450 static rtx gen_lowpart_or_truncate (enum machine_mode, rtx);
451 \f
452
453 /* It is not safe to use ordinary gen_lowpart in combine.
454 See comments in gen_lowpart_for_combine. */
455 #undef RTL_HOOKS_GEN_LOWPART
456 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
457
458 /* Our implementation of gen_lowpart never emits a new pseudo. */
459 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
460 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
461
462 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
463 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
464
465 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
466 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
467
468 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
469 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
470
471 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
472
473 \f
474 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
475 PATTERN can not be split. Otherwise, it returns an insn sequence.
476 This is a wrapper around split_insns which ensures that the
477 reg_stat vector is made larger if the splitter creates a new
478 register. */
479
480 static rtx
481 combine_split_insns (rtx pattern, rtx insn)
482 {
483 rtx ret;
484 unsigned int nregs;
485
486 ret = split_insns (pattern, insn);
487 nregs = max_reg_num ();
488 if (nregs > VEC_length (reg_stat_type, reg_stat))
489 VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
490 return ret;
491 }
492
493 /* This is used by find_single_use to locate an rtx in LOC that
494 contains exactly one use of DEST, which is typically either a REG
495 or CC0. It returns a pointer to the innermost rtx expression
496 containing DEST. Appearances of DEST that are being used to
497 totally replace it are not counted. */
498
499 static rtx *
500 find_single_use_1 (rtx dest, rtx *loc)
501 {
502 rtx x = *loc;
503 enum rtx_code code = GET_CODE (x);
504 rtx *result = NULL;
505 rtx *this_result;
506 int i;
507 const char *fmt;
508
509 switch (code)
510 {
511 case CONST_INT:
512 case CONST:
513 case LABEL_REF:
514 case SYMBOL_REF:
515 case CONST_DOUBLE:
516 case CONST_VECTOR:
517 case CLOBBER:
518 return 0;
519
520 case SET:
521 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
522 of a REG that occupies all of the REG, the insn uses DEST if
523 it is mentioned in the destination or the source. Otherwise, we
524 need just check the source. */
525 if (GET_CODE (SET_DEST (x)) != CC0
526 && GET_CODE (SET_DEST (x)) != PC
527 && !REG_P (SET_DEST (x))
528 && ! (GET_CODE (SET_DEST (x)) == SUBREG
529 && REG_P (SUBREG_REG (SET_DEST (x)))
530 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
531 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
532 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
533 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
534 break;
535
536 return find_single_use_1 (dest, &SET_SRC (x));
537
538 case MEM:
539 case SUBREG:
540 return find_single_use_1 (dest, &XEXP (x, 0));
541
542 default:
543 break;
544 }
545
546 /* If it wasn't one of the common cases above, check each expression and
547 vector of this code. Look for a unique usage of DEST. */
548
549 fmt = GET_RTX_FORMAT (code);
550 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
551 {
552 if (fmt[i] == 'e')
553 {
554 if (dest == XEXP (x, i)
555 || (REG_P (dest) && REG_P (XEXP (x, i))
556 && REGNO (dest) == REGNO (XEXP (x, i))))
557 this_result = loc;
558 else
559 this_result = find_single_use_1 (dest, &XEXP (x, i));
560
561 if (result == NULL)
562 result = this_result;
563 else if (this_result)
564 /* Duplicate usage. */
565 return NULL;
566 }
567 else if (fmt[i] == 'E')
568 {
569 int j;
570
571 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
572 {
573 if (XVECEXP (x, i, j) == dest
574 || (REG_P (dest)
575 && REG_P (XVECEXP (x, i, j))
576 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
577 this_result = loc;
578 else
579 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
580
581 if (result == NULL)
582 result = this_result;
583 else if (this_result)
584 return NULL;
585 }
586 }
587 }
588
589 return result;
590 }
591
592
593 /* See if DEST, produced in INSN, is used only a single time in the
594 sequel. If so, return a pointer to the innermost rtx expression in which
595 it is used.
596
597 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
598
599 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
600 care about REG_DEAD notes or LOG_LINKS.
601
602 Otherwise, we find the single use by finding an insn that has a
603 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
604 only referenced once in that insn, we know that it must be the first
605 and last insn referencing DEST. */
606
607 static rtx *
608 find_single_use (rtx dest, rtx insn, rtx *ploc)
609 {
610 basic_block bb;
611 rtx next;
612 rtx *result;
613 rtx link;
614
615 #ifdef HAVE_cc0
616 if (dest == cc0_rtx)
617 {
618 next = NEXT_INSN (insn);
619 if (next == 0
620 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
621 return 0;
622
623 result = find_single_use_1 (dest, &PATTERN (next));
624 if (result && ploc)
625 *ploc = next;
626 return result;
627 }
628 #endif
629
630 if (!REG_P (dest))
631 return 0;
632
633 bb = BLOCK_FOR_INSN (insn);
634 for (next = NEXT_INSN (insn);
635 next && BLOCK_FOR_INSN (next) == bb;
636 next = NEXT_INSN (next))
637 if (INSN_P (next) && dead_or_set_p (next, dest))
638 {
639 for (link = LOG_LINKS (next); link; link = XEXP (link, 1))
640 if (XEXP (link, 0) == insn)
641 break;
642
643 if (link)
644 {
645 result = find_single_use_1 (dest, &PATTERN (next));
646 if (ploc)
647 *ploc = next;
648 return result;
649 }
650 }
651
652 return 0;
653 }
654 \f
655 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
656 insn. The substitution can be undone by undo_all. If INTO is already
657 set to NEWVAL, do not record this change. Because computing NEWVAL might
658 also call SUBST, we have to compute it before we put anything into
659 the undo table. */
660
661 static void
662 do_SUBST (rtx *into, rtx newval)
663 {
664 struct undo *buf;
665 rtx oldval = *into;
666
667 if (oldval == newval)
668 return;
669
670 /* We'd like to catch as many invalid transformations here as
671 possible. Unfortunately, there are way too many mode changes
672 that are perfectly valid, so we'd waste too much effort for
673 little gain doing the checks here. Focus on catching invalid
674 transformations involving integer constants. */
675 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
676 && CONST_INT_P (newval))
677 {
678 /* Sanity check that we're replacing oldval with a CONST_INT
679 that is a valid sign-extension for the original mode. */
680 gcc_assert (INTVAL (newval)
681 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
682
683 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
684 CONST_INT is not valid, because after the replacement, the
685 original mode would be gone. Unfortunately, we can't tell
686 when do_SUBST is called to replace the operand thereof, so we
687 perform this test on oldval instead, checking whether an
688 invalid replacement took place before we got here. */
689 gcc_assert (!(GET_CODE (oldval) == SUBREG
690 && CONST_INT_P (SUBREG_REG (oldval))));
691 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
692 && CONST_INT_P (XEXP (oldval, 0))));
693 }
694
695 if (undobuf.frees)
696 buf = undobuf.frees, undobuf.frees = buf->next;
697 else
698 buf = XNEW (struct undo);
699
700 buf->kind = UNDO_RTX;
701 buf->where.r = into;
702 buf->old_contents.r = oldval;
703 *into = newval;
704
705 buf->next = undobuf.undos, undobuf.undos = buf;
706 }
707
708 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
709
710 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
711 for the value of a HOST_WIDE_INT value (including CONST_INT) is
712 not safe. */
713
714 static void
715 do_SUBST_INT (int *into, int newval)
716 {
717 struct undo *buf;
718 int oldval = *into;
719
720 if (oldval == newval)
721 return;
722
723 if (undobuf.frees)
724 buf = undobuf.frees, undobuf.frees = buf->next;
725 else
726 buf = XNEW (struct undo);
727
728 buf->kind = UNDO_INT;
729 buf->where.i = into;
730 buf->old_contents.i = oldval;
731 *into = newval;
732
733 buf->next = undobuf.undos, undobuf.undos = buf;
734 }
735
736 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
737
738 /* Similar to SUBST, but just substitute the mode. This is used when
739 changing the mode of a pseudo-register, so that any other
740 references to the entry in the regno_reg_rtx array will change as
741 well. */
742
743 static void
744 do_SUBST_MODE (rtx *into, enum machine_mode newval)
745 {
746 struct undo *buf;
747 enum machine_mode oldval = GET_MODE (*into);
748
749 if (oldval == newval)
750 return;
751
752 if (undobuf.frees)
753 buf = undobuf.frees, undobuf.frees = buf->next;
754 else
755 buf = XNEW (struct undo);
756
757 buf->kind = UNDO_MODE;
758 buf->where.r = into;
759 buf->old_contents.m = oldval;
760 adjust_reg_mode (*into, newval);
761
762 buf->next = undobuf.undos, undobuf.undos = buf;
763 }
764
765 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE(&(INTO), (NEWVAL))
766 \f
767 /* Subroutine of try_combine. Determine whether the combine replacement
768 patterns NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to
769 insn_rtx_cost that the original instruction sequence I1, I2, I3 and
770 undobuf.other_insn. Note that I1 and/or NEWI2PAT may be NULL_RTX.
771 NEWOTHERPAT and undobuf.other_insn may also both be NULL_RTX. This
772 function returns false, if the costs of all instructions can be
773 estimated, and the replacements are more expensive than the original
774 sequence. */
775
776 static bool
777 combine_validate_cost (rtx i1, rtx i2, rtx i3, rtx newpat, rtx newi2pat,
778 rtx newotherpat)
779 {
780 int i1_cost, i2_cost, i3_cost;
781 int new_i2_cost, new_i3_cost;
782 int old_cost, new_cost;
783
784 /* Lookup the original insn_rtx_costs. */
785 i2_cost = INSN_COST (i2);
786 i3_cost = INSN_COST (i3);
787
788 if (i1)
789 {
790 i1_cost = INSN_COST (i1);
791 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0)
792 ? i1_cost + i2_cost + i3_cost : 0;
793 }
794 else
795 {
796 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
797 i1_cost = 0;
798 }
799
800 /* Calculate the replacement insn_rtx_costs. */
801 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
802 if (newi2pat)
803 {
804 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
805 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
806 ? new_i2_cost + new_i3_cost : 0;
807 }
808 else
809 {
810 new_cost = new_i3_cost;
811 new_i2_cost = 0;
812 }
813
814 if (undobuf.other_insn)
815 {
816 int old_other_cost, new_other_cost;
817
818 old_other_cost = INSN_COST (undobuf.other_insn);
819 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
820 if (old_other_cost > 0 && new_other_cost > 0)
821 {
822 old_cost += old_other_cost;
823 new_cost += new_other_cost;
824 }
825 else
826 old_cost = 0;
827 }
828
829 /* Disallow this recombination if both new_cost and old_cost are
830 greater than zero, and new_cost is greater than old cost. */
831 if (old_cost > 0
832 && new_cost > old_cost)
833 {
834 if (dump_file)
835 {
836 if (i1)
837 {
838 fprintf (dump_file,
839 "rejecting combination of insns %d, %d and %d\n",
840 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
841 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
842 i1_cost, i2_cost, i3_cost, old_cost);
843 }
844 else
845 {
846 fprintf (dump_file,
847 "rejecting combination of insns %d and %d\n",
848 INSN_UID (i2), INSN_UID (i3));
849 fprintf (dump_file, "original costs %d + %d = %d\n",
850 i2_cost, i3_cost, old_cost);
851 }
852
853 if (newi2pat)
854 {
855 fprintf (dump_file, "replacement costs %d + %d = %d\n",
856 new_i2_cost, new_i3_cost, new_cost);
857 }
858 else
859 fprintf (dump_file, "replacement cost %d\n", new_cost);
860 }
861
862 return false;
863 }
864
865 /* Update the uid_insn_cost array with the replacement costs. */
866 INSN_COST (i2) = new_i2_cost;
867 INSN_COST (i3) = new_i3_cost;
868 if (i1)
869 INSN_COST (i1) = 0;
870
871 return true;
872 }
873
874
875 /* Delete any insns that copy a register to itself. */
876
877 static void
878 delete_noop_moves (void)
879 {
880 rtx insn, next;
881 basic_block bb;
882
883 FOR_EACH_BB (bb)
884 {
885 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
886 {
887 next = NEXT_INSN (insn);
888 if (INSN_P (insn) && noop_move_p (insn))
889 {
890 if (dump_file)
891 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
892
893 delete_insn_and_edges (insn);
894 }
895 }
896 }
897 }
898
899 \f
900 /* Fill in log links field for all insns. */
901
902 static void
903 create_log_links (void)
904 {
905 basic_block bb;
906 rtx *next_use, insn;
907 df_ref *def_vec, *use_vec;
908
909 next_use = XCNEWVEC (rtx, max_reg_num ());
910
911 /* Pass through each block from the end, recording the uses of each
912 register and establishing log links when def is encountered.
913 Note that we do not clear next_use array in order to save time,
914 so we have to test whether the use is in the same basic block as def.
915
916 There are a few cases below when we do not consider the definition or
917 usage -- these are taken from original flow.c did. Don't ask me why it is
918 done this way; I don't know and if it works, I don't want to know. */
919
920 FOR_EACH_BB (bb)
921 {
922 FOR_BB_INSNS_REVERSE (bb, insn)
923 {
924 if (!INSN_P (insn))
925 continue;
926
927 /* Log links are created only once. */
928 gcc_assert (!LOG_LINKS (insn));
929
930 for (def_vec = DF_INSN_DEFS (insn); *def_vec; def_vec++)
931 {
932 df_ref def = *def_vec;
933 int regno = DF_REF_REGNO (def);
934 rtx use_insn;
935
936 if (!next_use[regno])
937 continue;
938
939 /* Do not consider if it is pre/post modification in MEM. */
940 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
941 continue;
942
943 /* Do not make the log link for frame pointer. */
944 if ((regno == FRAME_POINTER_REGNUM
945 && (! reload_completed || frame_pointer_needed))
946 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
947 || (regno == HARD_FRAME_POINTER_REGNUM
948 && (! reload_completed || frame_pointer_needed))
949 #endif
950 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
951 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
952 #endif
953 )
954 continue;
955
956 use_insn = next_use[regno];
957 if (BLOCK_FOR_INSN (use_insn) == bb)
958 {
959 /* flow.c claimed:
960
961 We don't build a LOG_LINK for hard registers contained
962 in ASM_OPERANDs. If these registers get replaced,
963 we might wind up changing the semantics of the insn,
964 even if reload can make what appear to be valid
965 assignments later. */
966 if (regno >= FIRST_PSEUDO_REGISTER
967 || asm_noperands (PATTERN (use_insn)) < 0)
968 {
969 /* Don't add duplicate links between instructions. */
970 rtx links;
971 for (links = LOG_LINKS (use_insn); links;
972 links = XEXP (links, 1))
973 if (insn == XEXP (links, 0))
974 break;
975
976 if (!links)
977 LOG_LINKS (use_insn) =
978 alloc_INSN_LIST (insn, LOG_LINKS (use_insn));
979 }
980 }
981 next_use[regno] = NULL_RTX;
982 }
983
984 for (use_vec = DF_INSN_USES (insn); *use_vec; use_vec++)
985 {
986 df_ref use = *use_vec;
987 int regno = DF_REF_REGNO (use);
988
989 /* Do not consider the usage of the stack pointer
990 by function call. */
991 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
992 continue;
993
994 next_use[regno] = insn;
995 }
996 }
997 }
998
999 free (next_use);
1000 }
1001
1002 /* Clear LOG_LINKS fields of insns. */
1003
1004 static void
1005 clear_log_links (void)
1006 {
1007 rtx insn;
1008
1009 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1010 if (INSN_P (insn))
1011 free_INSN_LIST_list (&LOG_LINKS (insn));
1012 }
1013
1014
1015
1016 \f
1017 /* Main entry point for combiner. F is the first insn of the function.
1018 NREGS is the first unused pseudo-reg number.
1019
1020 Return nonzero if the combiner has turned an indirect jump
1021 instruction into a direct jump. */
1022 static int
1023 combine_instructions (rtx f, unsigned int nregs)
1024 {
1025 rtx insn, next;
1026 #ifdef HAVE_cc0
1027 rtx prev;
1028 #endif
1029 rtx links, nextlinks;
1030 rtx first;
1031
1032 int new_direct_jump_p = 0;
1033
1034 for (first = f; first && !INSN_P (first); )
1035 first = NEXT_INSN (first);
1036 if (!first)
1037 return 0;
1038
1039 combine_attempts = 0;
1040 combine_merges = 0;
1041 combine_extras = 0;
1042 combine_successes = 0;
1043
1044 rtl_hooks = combine_rtl_hooks;
1045
1046 VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
1047
1048 init_recog_no_volatile ();
1049
1050 /* Allocate array for insn info. */
1051 max_uid_known = get_max_uid ();
1052 uid_log_links = XCNEWVEC (rtx, max_uid_known + 1);
1053 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1054
1055 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1056
1057 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1058 problems when, for example, we have j <<= 1 in a loop. */
1059
1060 nonzero_sign_valid = 0;
1061
1062 /* Scan all SETs and see if we can deduce anything about what
1063 bits are known to be zero for some registers and how many copies
1064 of the sign bit are known to exist for those registers.
1065
1066 Also set any known values so that we can use it while searching
1067 for what bits are known to be set. */
1068
1069 setup_incoming_promotions (first);
1070
1071 create_log_links ();
1072 label_tick_ebb_start = ENTRY_BLOCK_PTR->index;
1073 FOR_EACH_BB (this_basic_block)
1074 {
1075 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1076 last_call_luid = 0;
1077 mem_last_set = -1;
1078 label_tick = this_basic_block->index;
1079 if (!single_pred_p (this_basic_block)
1080 || single_pred (this_basic_block)->index != label_tick - 1)
1081 label_tick_ebb_start = label_tick;
1082 FOR_BB_INSNS (this_basic_block, insn)
1083 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1084 {
1085 subst_low_luid = DF_INSN_LUID (insn);
1086 subst_insn = insn;
1087
1088 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1089 insn);
1090 record_dead_and_set_regs (insn);
1091
1092 #ifdef AUTO_INC_DEC
1093 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1094 if (REG_NOTE_KIND (links) == REG_INC)
1095 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1096 insn);
1097 #endif
1098
1099 /* Record the current insn_rtx_cost of this instruction. */
1100 if (NONJUMP_INSN_P (insn))
1101 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1102 optimize_this_for_speed_p);
1103 if (dump_file)
1104 fprintf(dump_file, "insn_cost %d: %d\n",
1105 INSN_UID (insn), INSN_COST (insn));
1106 }
1107 }
1108
1109 nonzero_sign_valid = 1;
1110
1111 /* Now scan all the insns in forward order. */
1112
1113 label_tick_ebb_start = ENTRY_BLOCK_PTR->index;
1114 init_reg_last ();
1115 setup_incoming_promotions (first);
1116
1117 FOR_EACH_BB (this_basic_block)
1118 {
1119 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1120 last_call_luid = 0;
1121 mem_last_set = -1;
1122 label_tick = this_basic_block->index;
1123 if (!single_pred_p (this_basic_block)
1124 || single_pred (this_basic_block)->index != label_tick - 1)
1125 label_tick_ebb_start = label_tick;
1126 rtl_profile_for_bb (this_basic_block);
1127 for (insn = BB_HEAD (this_basic_block);
1128 insn != NEXT_INSN (BB_END (this_basic_block));
1129 insn = next ? next : NEXT_INSN (insn))
1130 {
1131 next = 0;
1132 if (INSN_P (insn))
1133 {
1134 /* See if we know about function return values before this
1135 insn based upon SUBREG flags. */
1136 check_promoted_subreg (insn, PATTERN (insn));
1137
1138 /* See if we can find hardregs and subreg of pseudos in
1139 narrower modes. This could help turning TRUNCATEs
1140 into SUBREGs. */
1141 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1142
1143 /* Try this insn with each insn it links back to. */
1144
1145 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1146 if ((next = try_combine (insn, XEXP (links, 0),
1147 NULL_RTX, &new_direct_jump_p)) != 0)
1148 goto retry;
1149
1150 /* Try each sequence of three linked insns ending with this one. */
1151
1152 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1153 {
1154 rtx link = XEXP (links, 0);
1155
1156 /* If the linked insn has been replaced by a note, then there
1157 is no point in pursuing this chain any further. */
1158 if (NOTE_P (link))
1159 continue;
1160
1161 for (nextlinks = LOG_LINKS (link);
1162 nextlinks;
1163 nextlinks = XEXP (nextlinks, 1))
1164 if ((next = try_combine (insn, link,
1165 XEXP (nextlinks, 0),
1166 &new_direct_jump_p)) != 0)
1167 goto retry;
1168 }
1169
1170 #ifdef HAVE_cc0
1171 /* Try to combine a jump insn that uses CC0
1172 with a preceding insn that sets CC0, and maybe with its
1173 logical predecessor as well.
1174 This is how we make decrement-and-branch insns.
1175 We need this special code because data flow connections
1176 via CC0 do not get entered in LOG_LINKS. */
1177
1178 if (JUMP_P (insn)
1179 && (prev = prev_nonnote_insn (insn)) != 0
1180 && NONJUMP_INSN_P (prev)
1181 && sets_cc0_p (PATTERN (prev)))
1182 {
1183 if ((next = try_combine (insn, prev,
1184 NULL_RTX, &new_direct_jump_p)) != 0)
1185 goto retry;
1186
1187 for (nextlinks = LOG_LINKS (prev); nextlinks;
1188 nextlinks = XEXP (nextlinks, 1))
1189 if ((next = try_combine (insn, prev,
1190 XEXP (nextlinks, 0),
1191 &new_direct_jump_p)) != 0)
1192 goto retry;
1193 }
1194
1195 /* Do the same for an insn that explicitly references CC0. */
1196 if (NONJUMP_INSN_P (insn)
1197 && (prev = prev_nonnote_insn (insn)) != 0
1198 && NONJUMP_INSN_P (prev)
1199 && sets_cc0_p (PATTERN (prev))
1200 && GET_CODE (PATTERN (insn)) == SET
1201 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1202 {
1203 if ((next = try_combine (insn, prev,
1204 NULL_RTX, &new_direct_jump_p)) != 0)
1205 goto retry;
1206
1207 for (nextlinks = LOG_LINKS (prev); nextlinks;
1208 nextlinks = XEXP (nextlinks, 1))
1209 if ((next = try_combine (insn, prev,
1210 XEXP (nextlinks, 0),
1211 &new_direct_jump_p)) != 0)
1212 goto retry;
1213 }
1214
1215 /* Finally, see if any of the insns that this insn links to
1216 explicitly references CC0. If so, try this insn, that insn,
1217 and its predecessor if it sets CC0. */
1218 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1219 if (NONJUMP_INSN_P (XEXP (links, 0))
1220 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
1221 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
1222 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
1223 && NONJUMP_INSN_P (prev)
1224 && sets_cc0_p (PATTERN (prev))
1225 && (next = try_combine (insn, XEXP (links, 0),
1226 prev, &new_direct_jump_p)) != 0)
1227 goto retry;
1228 #endif
1229
1230 /* Try combining an insn with two different insns whose results it
1231 uses. */
1232 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1233 for (nextlinks = XEXP (links, 1); nextlinks;
1234 nextlinks = XEXP (nextlinks, 1))
1235 if ((next = try_combine (insn, XEXP (links, 0),
1236 XEXP (nextlinks, 0),
1237 &new_direct_jump_p)) != 0)
1238 goto retry;
1239
1240 /* Try this insn with each REG_EQUAL note it links back to. */
1241 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1242 {
1243 rtx set, note;
1244 rtx temp = XEXP (links, 0);
1245 if ((set = single_set (temp)) != 0
1246 && (note = find_reg_equal_equiv_note (temp)) != 0
1247 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1248 /* Avoid using a register that may already been marked
1249 dead by an earlier instruction. */
1250 && ! unmentioned_reg_p (note, SET_SRC (set))
1251 && (GET_MODE (note) == VOIDmode
1252 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1253 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
1254 {
1255 /* Temporarily replace the set's source with the
1256 contents of the REG_EQUAL note. The insn will
1257 be deleted or recognized by try_combine. */
1258 rtx orig = SET_SRC (set);
1259 SET_SRC (set) = note;
1260 i2mod = temp;
1261 i2mod_old_rhs = copy_rtx (orig);
1262 i2mod_new_rhs = copy_rtx (note);
1263 next = try_combine (insn, i2mod, NULL_RTX,
1264 &new_direct_jump_p);
1265 i2mod = NULL_RTX;
1266 if (next)
1267 goto retry;
1268 SET_SRC (set) = orig;
1269 }
1270 }
1271
1272 if (!NOTE_P (insn))
1273 record_dead_and_set_regs (insn);
1274
1275 retry:
1276 ;
1277 }
1278 }
1279 }
1280
1281 default_rtl_profile ();
1282 clear_log_links ();
1283 clear_bb_flags ();
1284 new_direct_jump_p |= purge_all_dead_edges ();
1285 delete_noop_moves ();
1286
1287 /* Clean up. */
1288 free (uid_log_links);
1289 free (uid_insn_cost);
1290 VEC_free (reg_stat_type, heap, reg_stat);
1291
1292 {
1293 struct undo *undo, *next;
1294 for (undo = undobuf.frees; undo; undo = next)
1295 {
1296 next = undo->next;
1297 free (undo);
1298 }
1299 undobuf.frees = 0;
1300 }
1301
1302 total_attempts += combine_attempts;
1303 total_merges += combine_merges;
1304 total_extras += combine_extras;
1305 total_successes += combine_successes;
1306
1307 nonzero_sign_valid = 0;
1308 rtl_hooks = general_rtl_hooks;
1309
1310 /* Make recognizer allow volatile MEMs again. */
1311 init_recog ();
1312
1313 return new_direct_jump_p;
1314 }
1315
1316 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1317
1318 static void
1319 init_reg_last (void)
1320 {
1321 unsigned int i;
1322 reg_stat_type *p;
1323
1324 for (i = 0; VEC_iterate (reg_stat_type, reg_stat, i, p); ++i)
1325 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1326 }
1327 \f
1328 /* Set up any promoted values for incoming argument registers. */
1329
1330 static void
1331 setup_incoming_promotions (rtx first)
1332 {
1333 tree arg;
1334 bool strictly_local = false;
1335
1336 if (!targetm.calls.promote_function_args (TREE_TYPE (cfun->decl)))
1337 return;
1338
1339 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1340 arg = TREE_CHAIN (arg))
1341 {
1342 rtx reg = DECL_INCOMING_RTL (arg);
1343 int uns1, uns3;
1344 enum machine_mode mode1, mode2, mode3, mode4;
1345
1346 /* Only continue if the incoming argument is in a register. */
1347 if (!REG_P (reg))
1348 continue;
1349
1350 /* Determine, if possible, whether all call sites of the current
1351 function lie within the current compilation unit. (This does
1352 take into account the exporting of a function via taking its
1353 address, and so forth.) */
1354 strictly_local = cgraph_local_info (current_function_decl)->local;
1355
1356 /* The mode and signedness of the argument before any promotions happen
1357 (equal to the mode of the pseudo holding it at that stage). */
1358 mode1 = TYPE_MODE (TREE_TYPE (arg));
1359 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1360
1361 /* The mode and signedness of the argument after any source language and
1362 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1363 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1364 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1365
1366 /* The mode and signedness of the argument as it is actually passed,
1367 after any TARGET_PROMOTE_FUNCTION_ARGS-driven ABI promotions. */
1368 mode3 = promote_mode (DECL_ARG_TYPE (arg), mode2, &uns3, 1);
1369
1370 /* The mode of the register in which the argument is being passed. */
1371 mode4 = GET_MODE (reg);
1372
1373 /* Eliminate sign extensions in the callee when possible. Only
1374 do this when:
1375 (a) a mode promotion has occurred;
1376 (b) the mode of the register is the same as the mode of
1377 the argument as it is passed; and
1378 (c) the signedness does not change across any of the promotions; and
1379 (d) when no language-level promotions (which we cannot guarantee
1380 will have been done by an external caller) are necessary,
1381 unless we know that this function is only ever called from
1382 the current compilation unit -- all of whose call sites will
1383 do the mode1 --> mode2 promotion. */
1384 if (mode1 != mode3
1385 && mode3 == mode4
1386 && uns1 == uns3
1387 && (mode1 == mode2 || strictly_local))
1388 {
1389 /* Record that the value was promoted from mode1 to mode3,
1390 so that any sign extension at the head of the current
1391 function may be eliminated. */
1392 rtx x;
1393 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1394 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1395 record_value_for_reg (reg, first, x);
1396 }
1397 }
1398 }
1399
1400 /* Called via note_stores. If X is a pseudo that is narrower than
1401 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1402
1403 If we are setting only a portion of X and we can't figure out what
1404 portion, assume all bits will be used since we don't know what will
1405 be happening.
1406
1407 Similarly, set how many bits of X are known to be copies of the sign bit
1408 at all locations in the function. This is the smallest number implied
1409 by any set of X. */
1410
1411 static void
1412 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1413 {
1414 rtx insn = (rtx) data;
1415 unsigned int num;
1416
1417 if (REG_P (x)
1418 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1419 /* If this register is undefined at the start of the file, we can't
1420 say what its contents were. */
1421 && ! REGNO_REG_SET_P
1422 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x))
1423 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
1424 {
1425 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
1426
1427 if (set == 0 || GET_CODE (set) == CLOBBER)
1428 {
1429 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1430 rsp->sign_bit_copies = 1;
1431 return;
1432 }
1433
1434 /* If this register is being initialized using itself, and the
1435 register is uninitialized in this basic block, and there are
1436 no LOG_LINKS which set the register, then part of the
1437 register is uninitialized. In that case we can't assume
1438 anything about the number of nonzero bits.
1439
1440 ??? We could do better if we checked this in
1441 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1442 could avoid making assumptions about the insn which initially
1443 sets the register, while still using the information in other
1444 insns. We would have to be careful to check every insn
1445 involved in the combination. */
1446
1447 if (insn
1448 && reg_referenced_p (x, PATTERN (insn))
1449 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1450 REGNO (x)))
1451 {
1452 rtx link;
1453
1454 for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
1455 {
1456 if (dead_or_set_p (XEXP (link, 0), x))
1457 break;
1458 }
1459 if (!link)
1460 {
1461 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1462 rsp->sign_bit_copies = 1;
1463 return;
1464 }
1465 }
1466
1467 /* If this is a complex assignment, see if we can convert it into a
1468 simple assignment. */
1469 set = expand_field_assignment (set);
1470
1471 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1472 set what we know about X. */
1473
1474 if (SET_DEST (set) == x
1475 || (GET_CODE (SET_DEST (set)) == SUBREG
1476 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
1477 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
1478 && SUBREG_REG (SET_DEST (set)) == x))
1479 {
1480 rtx src = SET_SRC (set);
1481
1482 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1483 /* If X is narrower than a word and SRC is a non-negative
1484 constant that would appear negative in the mode of X,
1485 sign-extend it for use in reg_stat[].nonzero_bits because some
1486 machines (maybe most) will actually do the sign-extension
1487 and this is the conservative approach.
1488
1489 ??? For 2.5, try to tighten up the MD files in this regard
1490 instead of this kludge. */
1491
1492 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
1493 && CONST_INT_P (src)
1494 && INTVAL (src) > 0
1495 && 0 != (INTVAL (src)
1496 & ((HOST_WIDE_INT) 1
1497 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
1498 src = GEN_INT (INTVAL (src)
1499 | ((HOST_WIDE_INT) (-1)
1500 << GET_MODE_BITSIZE (GET_MODE (x))));
1501 #endif
1502
1503 /* Don't call nonzero_bits if it cannot change anything. */
1504 if (rsp->nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1505 rsp->nonzero_bits |= nonzero_bits (src, nonzero_bits_mode);
1506 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1507 if (rsp->sign_bit_copies == 0
1508 || rsp->sign_bit_copies > num)
1509 rsp->sign_bit_copies = num;
1510 }
1511 else
1512 {
1513 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1514 rsp->sign_bit_copies = 1;
1515 }
1516 }
1517 }
1518 \f
1519 /* See if INSN can be combined into I3. PRED and SUCC are optionally
1520 insns that were previously combined into I3 or that will be combined
1521 into the merger of INSN and I3.
1522
1523 Return 0 if the combination is not allowed for any reason.
1524
1525 If the combination is allowed, *PDEST will be set to the single
1526 destination of INSN and *PSRC to the single source, and this function
1527 will return 1. */
1528
1529 static int
1530 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED, rtx succ,
1531 rtx *pdest, rtx *psrc)
1532 {
1533 int i;
1534 const_rtx set = 0;
1535 rtx src, dest;
1536 rtx p;
1537 #ifdef AUTO_INC_DEC
1538 rtx link;
1539 #endif
1540 int all_adjacent = (succ ? (next_active_insn (insn) == succ
1541 && next_active_insn (succ) == i3)
1542 : next_active_insn (insn) == i3);
1543
1544 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1545 or a PARALLEL consisting of such a SET and CLOBBERs.
1546
1547 If INSN has CLOBBER parallel parts, ignore them for our processing.
1548 By definition, these happen during the execution of the insn. When it
1549 is merged with another insn, all bets are off. If they are, in fact,
1550 needed and aren't also supplied in I3, they may be added by
1551 recog_for_combine. Otherwise, it won't match.
1552
1553 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1554 note.
1555
1556 Get the source and destination of INSN. If more than one, can't
1557 combine. */
1558
1559 if (GET_CODE (PATTERN (insn)) == SET)
1560 set = PATTERN (insn);
1561 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1562 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1563 {
1564 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1565 {
1566 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1567 rtx note;
1568
1569 switch (GET_CODE (elt))
1570 {
1571 /* This is important to combine floating point insns
1572 for the SH4 port. */
1573 case USE:
1574 /* Combining an isolated USE doesn't make sense.
1575 We depend here on combinable_i3pat to reject them. */
1576 /* The code below this loop only verifies that the inputs of
1577 the SET in INSN do not change. We call reg_set_between_p
1578 to verify that the REG in the USE does not change between
1579 I3 and INSN.
1580 If the USE in INSN was for a pseudo register, the matching
1581 insn pattern will likely match any register; combining this
1582 with any other USE would only be safe if we knew that the
1583 used registers have identical values, or if there was
1584 something to tell them apart, e.g. different modes. For
1585 now, we forgo such complicated tests and simply disallow
1586 combining of USES of pseudo registers with any other USE. */
1587 if (REG_P (XEXP (elt, 0))
1588 && GET_CODE (PATTERN (i3)) == PARALLEL)
1589 {
1590 rtx i3pat = PATTERN (i3);
1591 int i = XVECLEN (i3pat, 0) - 1;
1592 unsigned int regno = REGNO (XEXP (elt, 0));
1593
1594 do
1595 {
1596 rtx i3elt = XVECEXP (i3pat, 0, i);
1597
1598 if (GET_CODE (i3elt) == USE
1599 && REG_P (XEXP (i3elt, 0))
1600 && (REGNO (XEXP (i3elt, 0)) == regno
1601 ? reg_set_between_p (XEXP (elt, 0),
1602 PREV_INSN (insn), i3)
1603 : regno >= FIRST_PSEUDO_REGISTER))
1604 return 0;
1605 }
1606 while (--i >= 0);
1607 }
1608 break;
1609
1610 /* We can ignore CLOBBERs. */
1611 case CLOBBER:
1612 break;
1613
1614 case SET:
1615 /* Ignore SETs whose result isn't used but not those that
1616 have side-effects. */
1617 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1618 && (!(note = find_reg_note (insn, REG_EH_REGION, NULL_RTX))
1619 || INTVAL (XEXP (note, 0)) <= 0)
1620 && ! side_effects_p (elt))
1621 break;
1622
1623 /* If we have already found a SET, this is a second one and
1624 so we cannot combine with this insn. */
1625 if (set)
1626 return 0;
1627
1628 set = elt;
1629 break;
1630
1631 default:
1632 /* Anything else means we can't combine. */
1633 return 0;
1634 }
1635 }
1636
1637 if (set == 0
1638 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1639 so don't do anything with it. */
1640 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1641 return 0;
1642 }
1643 else
1644 return 0;
1645
1646 if (set == 0)
1647 return 0;
1648
1649 set = expand_field_assignment (set);
1650 src = SET_SRC (set), dest = SET_DEST (set);
1651
1652 /* Don't eliminate a store in the stack pointer. */
1653 if (dest == stack_pointer_rtx
1654 /* Don't combine with an insn that sets a register to itself if it has
1655 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1656 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1657 /* Can't merge an ASM_OPERANDS. */
1658 || GET_CODE (src) == ASM_OPERANDS
1659 /* Can't merge a function call. */
1660 || GET_CODE (src) == CALL
1661 /* Don't eliminate a function call argument. */
1662 || (CALL_P (i3)
1663 && (find_reg_fusage (i3, USE, dest)
1664 || (REG_P (dest)
1665 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1666 && global_regs[REGNO (dest)])))
1667 /* Don't substitute into an incremented register. */
1668 || FIND_REG_INC_NOTE (i3, dest)
1669 || (succ && FIND_REG_INC_NOTE (succ, dest))
1670 /* Don't substitute into a non-local goto, this confuses CFG. */
1671 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1672 /* Make sure that DEST is not used after SUCC but before I3. */
1673 || (succ && ! all_adjacent
1674 && reg_used_between_p (dest, succ, i3))
1675 /* Make sure that the value that is to be substituted for the register
1676 does not use any registers whose values alter in between. However,
1677 If the insns are adjacent, a use can't cross a set even though we
1678 think it might (this can happen for a sequence of insns each setting
1679 the same destination; last_set of that register might point to
1680 a NOTE). If INSN has a REG_EQUIV note, the register is always
1681 equivalent to the memory so the substitution is valid even if there
1682 are intervening stores. Also, don't move a volatile asm or
1683 UNSPEC_VOLATILE across any other insns. */
1684 || (! all_adjacent
1685 && (((!MEM_P (src)
1686 || ! find_reg_note (insn, REG_EQUIV, src))
1687 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1688 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1689 || GET_CODE (src) == UNSPEC_VOLATILE))
1690 /* Don't combine across a CALL_INSN, because that would possibly
1691 change whether the life span of some REGs crosses calls or not,
1692 and it is a pain to update that information.
1693 Exception: if source is a constant, moving it later can't hurt.
1694 Accept that as a special case. */
1695 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1696 return 0;
1697
1698 /* DEST must either be a REG or CC0. */
1699 if (REG_P (dest))
1700 {
1701 /* If register alignment is being enforced for multi-word items in all
1702 cases except for parameters, it is possible to have a register copy
1703 insn referencing a hard register that is not allowed to contain the
1704 mode being copied and which would not be valid as an operand of most
1705 insns. Eliminate this problem by not combining with such an insn.
1706
1707 Also, on some machines we don't want to extend the life of a hard
1708 register. */
1709
1710 if (REG_P (src)
1711 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1712 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1713 /* Don't extend the life of a hard register unless it is
1714 user variable (if we have few registers) or it can't
1715 fit into the desired register (meaning something special
1716 is going on).
1717 Also avoid substituting a return register into I3, because
1718 reload can't handle a conflict with constraints of other
1719 inputs. */
1720 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1721 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1722 return 0;
1723 }
1724 else if (GET_CODE (dest) != CC0)
1725 return 0;
1726
1727
1728 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1729 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1730 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1731 {
1732 /* Don't substitute for a register intended as a clobberable
1733 operand. */
1734 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1735 if (rtx_equal_p (reg, dest))
1736 return 0;
1737
1738 /* If the clobber represents an earlyclobber operand, we must not
1739 substitute an expression containing the clobbered register.
1740 As we do not analyze the constraint strings here, we have to
1741 make the conservative assumption. However, if the register is
1742 a fixed hard reg, the clobber cannot represent any operand;
1743 we leave it up to the machine description to either accept or
1744 reject use-and-clobber patterns. */
1745 if (!REG_P (reg)
1746 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1747 || !fixed_regs[REGNO (reg)])
1748 if (reg_overlap_mentioned_p (reg, src))
1749 return 0;
1750 }
1751
1752 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1753 or not), reject, unless nothing volatile comes between it and I3 */
1754
1755 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1756 {
1757 /* Make sure succ doesn't contain a volatile reference. */
1758 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1759 return 0;
1760
1761 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1762 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1763 return 0;
1764 }
1765
1766 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1767 to be an explicit register variable, and was chosen for a reason. */
1768
1769 if (GET_CODE (src) == ASM_OPERANDS
1770 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1771 return 0;
1772
1773 /* If there are any volatile insns between INSN and I3, reject, because
1774 they might affect machine state. */
1775
1776 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1777 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1778 return 0;
1779
1780 /* If INSN contains an autoincrement or autodecrement, make sure that
1781 register is not used between there and I3, and not already used in
1782 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1783 Also insist that I3 not be a jump; if it were one
1784 and the incremented register were spilled, we would lose. */
1785
1786 #ifdef AUTO_INC_DEC
1787 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1788 if (REG_NOTE_KIND (link) == REG_INC
1789 && (JUMP_P (i3)
1790 || reg_used_between_p (XEXP (link, 0), insn, i3)
1791 || (pred != NULL_RTX
1792 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1793 || (succ != NULL_RTX
1794 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1795 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1796 return 0;
1797 #endif
1798
1799 #ifdef HAVE_cc0
1800 /* Don't combine an insn that follows a CC0-setting insn.
1801 An insn that uses CC0 must not be separated from the one that sets it.
1802 We do, however, allow I2 to follow a CC0-setting insn if that insn
1803 is passed as I1; in that case it will be deleted also.
1804 We also allow combining in this case if all the insns are adjacent
1805 because that would leave the two CC0 insns adjacent as well.
1806 It would be more logical to test whether CC0 occurs inside I1 or I2,
1807 but that would be much slower, and this ought to be equivalent. */
1808
1809 p = prev_nonnote_insn (insn);
1810 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
1811 && ! all_adjacent)
1812 return 0;
1813 #endif
1814
1815 /* If we get here, we have passed all the tests and the combination is
1816 to be allowed. */
1817
1818 *pdest = dest;
1819 *psrc = src;
1820
1821 return 1;
1822 }
1823 \f
1824 /* LOC is the location within I3 that contains its pattern or the component
1825 of a PARALLEL of the pattern. We validate that it is valid for combining.
1826
1827 One problem is if I3 modifies its output, as opposed to replacing it
1828 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1829 so would produce an insn that is not equivalent to the original insns.
1830
1831 Consider:
1832
1833 (set (reg:DI 101) (reg:DI 100))
1834 (set (subreg:SI (reg:DI 101) 0) <foo>)
1835
1836 This is NOT equivalent to:
1837
1838 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1839 (set (reg:DI 101) (reg:DI 100))])
1840
1841 Not only does this modify 100 (in which case it might still be valid
1842 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1843
1844 We can also run into a problem if I2 sets a register that I1
1845 uses and I1 gets directly substituted into I3 (not via I2). In that
1846 case, we would be getting the wrong value of I2DEST into I3, so we
1847 must reject the combination. This case occurs when I2 and I1 both
1848 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1849 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1850 of a SET must prevent combination from occurring.
1851
1852 Before doing the above check, we first try to expand a field assignment
1853 into a set of logical operations.
1854
1855 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1856 we place a register that is both set and used within I3. If more than one
1857 such register is detected, we fail.
1858
1859 Return 1 if the combination is valid, zero otherwise. */
1860
1861 static int
1862 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest,
1863 int i1_not_in_src, rtx *pi3dest_killed)
1864 {
1865 rtx x = *loc;
1866
1867 if (GET_CODE (x) == SET)
1868 {
1869 rtx set = x ;
1870 rtx dest = SET_DEST (set);
1871 rtx src = SET_SRC (set);
1872 rtx inner_dest = dest;
1873 rtx subdest;
1874
1875 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1876 || GET_CODE (inner_dest) == SUBREG
1877 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1878 inner_dest = XEXP (inner_dest, 0);
1879
1880 /* Check for the case where I3 modifies its output, as discussed
1881 above. We don't want to prevent pseudos from being combined
1882 into the address of a MEM, so only prevent the combination if
1883 i1 or i2 set the same MEM. */
1884 if ((inner_dest != dest &&
1885 (!MEM_P (inner_dest)
1886 || rtx_equal_p (i2dest, inner_dest)
1887 || (i1dest && rtx_equal_p (i1dest, inner_dest)))
1888 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1889 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1890
1891 /* This is the same test done in can_combine_p except we can't test
1892 all_adjacent; we don't have to, since this instruction will stay
1893 in place, thus we are not considering increasing the lifetime of
1894 INNER_DEST.
1895
1896 Also, if this insn sets a function argument, combining it with
1897 something that might need a spill could clobber a previous
1898 function argument; the all_adjacent test in can_combine_p also
1899 checks this; here, we do a more specific test for this case. */
1900
1901 || (REG_P (inner_dest)
1902 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1903 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1904 GET_MODE (inner_dest))))
1905 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1906 return 0;
1907
1908 /* If DEST is used in I3, it is being killed in this insn, so
1909 record that for later. We have to consider paradoxical
1910 subregs here, since they kill the whole register, but we
1911 ignore partial subregs, STRICT_LOW_PART, etc.
1912 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1913 STACK_POINTER_REGNUM, since these are always considered to be
1914 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1915 subdest = dest;
1916 if (GET_CODE (subdest) == SUBREG
1917 && (GET_MODE_SIZE (GET_MODE (subdest))
1918 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
1919 subdest = SUBREG_REG (subdest);
1920 if (pi3dest_killed
1921 && REG_P (subdest)
1922 && reg_referenced_p (subdest, PATTERN (i3))
1923 && REGNO (subdest) != FRAME_POINTER_REGNUM
1924 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1925 && REGNO (subdest) != HARD_FRAME_POINTER_REGNUM
1926 #endif
1927 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1928 && (REGNO (subdest) != ARG_POINTER_REGNUM
1929 || ! fixed_regs [REGNO (subdest)])
1930 #endif
1931 && REGNO (subdest) != STACK_POINTER_REGNUM)
1932 {
1933 if (*pi3dest_killed)
1934 return 0;
1935
1936 *pi3dest_killed = subdest;
1937 }
1938 }
1939
1940 else if (GET_CODE (x) == PARALLEL)
1941 {
1942 int i;
1943
1944 for (i = 0; i < XVECLEN (x, 0); i++)
1945 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1946 i1_not_in_src, pi3dest_killed))
1947 return 0;
1948 }
1949
1950 return 1;
1951 }
1952 \f
1953 /* Return 1 if X is an arithmetic expression that contains a multiplication
1954 and division. We don't count multiplications by powers of two here. */
1955
1956 static int
1957 contains_muldiv (rtx x)
1958 {
1959 switch (GET_CODE (x))
1960 {
1961 case MOD: case DIV: case UMOD: case UDIV:
1962 return 1;
1963
1964 case MULT:
1965 return ! (CONST_INT_P (XEXP (x, 1))
1966 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1967 default:
1968 if (BINARY_P (x))
1969 return contains_muldiv (XEXP (x, 0))
1970 || contains_muldiv (XEXP (x, 1));
1971
1972 if (UNARY_P (x))
1973 return contains_muldiv (XEXP (x, 0));
1974
1975 return 0;
1976 }
1977 }
1978 \f
1979 /* Determine whether INSN can be used in a combination. Return nonzero if
1980 not. This is used in try_combine to detect early some cases where we
1981 can't perform combinations. */
1982
1983 static int
1984 cant_combine_insn_p (rtx insn)
1985 {
1986 rtx set;
1987 rtx src, dest;
1988
1989 /* If this isn't really an insn, we can't do anything.
1990 This can occur when flow deletes an insn that it has merged into an
1991 auto-increment address. */
1992 if (! INSN_P (insn))
1993 return 1;
1994
1995 /* Never combine loads and stores involving hard regs that are likely
1996 to be spilled. The register allocator can usually handle such
1997 reg-reg moves by tying. If we allow the combiner to make
1998 substitutions of likely-spilled regs, reload might die.
1999 As an exception, we allow combinations involving fixed regs; these are
2000 not available to the register allocator so there's no risk involved. */
2001
2002 set = single_set (insn);
2003 if (! set)
2004 return 0;
2005 src = SET_SRC (set);
2006 dest = SET_DEST (set);
2007 if (GET_CODE (src) == SUBREG)
2008 src = SUBREG_REG (src);
2009 if (GET_CODE (dest) == SUBREG)
2010 dest = SUBREG_REG (dest);
2011 if (REG_P (src) && REG_P (dest)
2012 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
2013 && ! fixed_regs[REGNO (src)]
2014 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src))))
2015 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
2016 && ! fixed_regs[REGNO (dest)]
2017 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest))))))
2018 return 1;
2019
2020 return 0;
2021 }
2022
2023 struct likely_spilled_retval_info
2024 {
2025 unsigned regno, nregs;
2026 unsigned mask;
2027 };
2028
2029 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2030 hard registers that are known to be written to / clobbered in full. */
2031 static void
2032 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2033 {
2034 struct likely_spilled_retval_info *const info =
2035 (struct likely_spilled_retval_info *) data;
2036 unsigned regno, nregs;
2037 unsigned new_mask;
2038
2039 if (!REG_P (XEXP (set, 0)))
2040 return;
2041 regno = REGNO (x);
2042 if (regno >= info->regno + info->nregs)
2043 return;
2044 nregs = hard_regno_nregs[regno][GET_MODE (x)];
2045 if (regno + nregs <= info->regno)
2046 return;
2047 new_mask = (2U << (nregs - 1)) - 1;
2048 if (regno < info->regno)
2049 new_mask >>= info->regno - regno;
2050 else
2051 new_mask <<= regno - info->regno;
2052 info->mask &= ~new_mask;
2053 }
2054
2055 /* Return nonzero iff part of the return value is live during INSN, and
2056 it is likely spilled. This can happen when more than one insn is needed
2057 to copy the return value, e.g. when we consider to combine into the
2058 second copy insn for a complex value. */
2059
2060 static int
2061 likely_spilled_retval_p (rtx insn)
2062 {
2063 rtx use = BB_END (this_basic_block);
2064 rtx reg, p;
2065 unsigned regno, nregs;
2066 /* We assume here that no machine mode needs more than
2067 32 hard registers when the value overlaps with a register
2068 for which FUNCTION_VALUE_REGNO_P is true. */
2069 unsigned mask;
2070 struct likely_spilled_retval_info info;
2071
2072 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2073 return 0;
2074 reg = XEXP (PATTERN (use), 0);
2075 if (!REG_P (reg) || !FUNCTION_VALUE_REGNO_P (REGNO (reg)))
2076 return 0;
2077 regno = REGNO (reg);
2078 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
2079 if (nregs == 1)
2080 return 0;
2081 mask = (2U << (nregs - 1)) - 1;
2082
2083 /* Disregard parts of the return value that are set later. */
2084 info.regno = regno;
2085 info.nregs = nregs;
2086 info.mask = mask;
2087 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2088 if (INSN_P (p))
2089 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2090 mask = info.mask;
2091
2092 /* Check if any of the (probably) live return value registers is
2093 likely spilled. */
2094 nregs --;
2095 do
2096 {
2097 if ((mask & 1 << nregs)
2098 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno + nregs)))
2099 return 1;
2100 } while (nregs--);
2101 return 0;
2102 }
2103
2104 /* Adjust INSN after we made a change to its destination.
2105
2106 Changing the destination can invalidate notes that say something about
2107 the results of the insn and a LOG_LINK pointing to the insn. */
2108
2109 static void
2110 adjust_for_new_dest (rtx insn)
2111 {
2112 /* For notes, be conservative and simply remove them. */
2113 remove_reg_equal_equiv_notes (insn);
2114
2115 /* The new insn will have a destination that was previously the destination
2116 of an insn just above it. Call distribute_links to make a LOG_LINK from
2117 the next use of that destination. */
2118 distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
2119
2120 df_insn_rescan (insn);
2121 }
2122
2123 /* Return TRUE if combine can reuse reg X in mode MODE.
2124 ADDED_SETS is nonzero if the original set is still required. */
2125 static bool
2126 can_change_dest_mode (rtx x, int added_sets, enum machine_mode mode)
2127 {
2128 unsigned int regno;
2129
2130 if (!REG_P(x))
2131 return false;
2132
2133 regno = REGNO (x);
2134 /* Allow hard registers if the new mode is legal, and occupies no more
2135 registers than the old mode. */
2136 if (regno < FIRST_PSEUDO_REGISTER)
2137 return (HARD_REGNO_MODE_OK (regno, mode)
2138 && (hard_regno_nregs[regno][GET_MODE (x)]
2139 >= hard_regno_nregs[regno][mode]));
2140
2141 /* Or a pseudo that is only used once. */
2142 return (REG_N_SETS (regno) == 1 && !added_sets
2143 && !REG_USERVAR_P (x));
2144 }
2145
2146
2147 /* Check whether X, the destination of a set, refers to part of
2148 the register specified by REG. */
2149
2150 static bool
2151 reg_subword_p (rtx x, rtx reg)
2152 {
2153 /* Check that reg is an integer mode register. */
2154 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2155 return false;
2156
2157 if (GET_CODE (x) == STRICT_LOW_PART
2158 || GET_CODE (x) == ZERO_EXTRACT)
2159 x = XEXP (x, 0);
2160
2161 return GET_CODE (x) == SUBREG
2162 && SUBREG_REG (x) == reg
2163 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2164 }
2165
2166
2167 /* Delete the conditional jump INSN and adjust the CFG correspondingly.
2168 Note that the INSN should be deleted *after* removing dead edges, so
2169 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2170 but not for a (set (pc) (label_ref FOO)). */
2171
2172 static void
2173 update_cfg_for_uncondjump (rtx insn)
2174 {
2175 basic_block bb = BLOCK_FOR_INSN (insn);
2176
2177 if (BB_END (bb) == insn)
2178 purge_dead_edges (bb);
2179
2180 delete_insn (insn);
2181 if (EDGE_COUNT (bb->succs) == 1)
2182 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2183 }
2184
2185
2186 /* Try to combine the insns I1 and I2 into I3.
2187 Here I1 and I2 appear earlier than I3.
2188 I1 can be zero; then we combine just I2 into I3.
2189
2190 If we are combining three insns and the resulting insn is not recognized,
2191 try splitting it into two insns. If that happens, I2 and I3 are retained
2192 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
2193 are pseudo-deleted.
2194
2195 Return 0 if the combination does not work. Then nothing is changed.
2196 If we did the combination, return the insn at which combine should
2197 resume scanning.
2198
2199 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2200 new direct jump instruction. */
2201
2202 static rtx
2203 try_combine (rtx i3, rtx i2, rtx i1, int *new_direct_jump_p)
2204 {
2205 /* New patterns for I3 and I2, respectively. */
2206 rtx newpat, newi2pat = 0;
2207 rtvec newpat_vec_with_clobbers = 0;
2208 int substed_i2 = 0, substed_i1 = 0;
2209 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
2210 int added_sets_1, added_sets_2;
2211 /* Total number of SETs to put into I3. */
2212 int total_sets;
2213 /* Nonzero if I2's body now appears in I3. */
2214 int i2_is_used;
2215 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2216 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2217 /* Contains I3 if the destination of I3 is used in its source, which means
2218 that the old life of I3 is being killed. If that usage is placed into
2219 I2 and not in I3, a REG_DEAD note must be made. */
2220 rtx i3dest_killed = 0;
2221 /* SET_DEST and SET_SRC of I2 and I1. */
2222 rtx i2dest, i2src, i1dest = 0, i1src = 0;
2223 /* PATTERN (I1) and PATTERN (I2), or a copy of it in certain cases. */
2224 rtx i1pat = 0, i2pat = 0;
2225 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2226 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2227 int i2dest_killed = 0, i1dest_killed = 0;
2228 int i1_feeds_i3 = 0;
2229 /* Notes that must be added to REG_NOTES in I3 and I2. */
2230 rtx new_i3_notes, new_i2_notes;
2231 /* Notes that we substituted I3 into I2 instead of the normal case. */
2232 int i3_subst_into_i2 = 0;
2233 /* Notes that I1, I2 or I3 is a MULT operation. */
2234 int have_mult = 0;
2235 int swap_i2i3 = 0;
2236 int changed_i3_dest = 0;
2237
2238 int maxreg;
2239 rtx temp;
2240 rtx link;
2241 rtx other_pat = 0;
2242 rtx new_other_notes;
2243 int i;
2244
2245 /* Exit early if one of the insns involved can't be used for
2246 combinations. */
2247 if (cant_combine_insn_p (i3)
2248 || cant_combine_insn_p (i2)
2249 || (i1 && cant_combine_insn_p (i1))
2250 || likely_spilled_retval_p (i3))
2251 return 0;
2252
2253 combine_attempts++;
2254 undobuf.other_insn = 0;
2255
2256 /* Reset the hard register usage information. */
2257 CLEAR_HARD_REG_SET (newpat_used_regs);
2258
2259 if (dump_file && (dump_flags & TDF_DETAILS))
2260 {
2261 if (i1)
2262 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2263 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2264 else
2265 fprintf (dump_file, "\nTrying %d -> %d:\n",
2266 INSN_UID (i2), INSN_UID (i3));
2267 }
2268
2269 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
2270 code below, set I1 to be the earlier of the two insns. */
2271 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2272 temp = i1, i1 = i2, i2 = temp;
2273
2274 added_links_insn = 0;
2275
2276 /* First check for one important special-case that the code below will
2277 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2278 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2279 we may be able to replace that destination with the destination of I3.
2280 This occurs in the common code where we compute both a quotient and
2281 remainder into a structure, in which case we want to do the computation
2282 directly into the structure to avoid register-register copies.
2283
2284 Note that this case handles both multiple sets in I2 and also
2285 cases where I2 has a number of CLOBBER or PARALLELs.
2286
2287 We make very conservative checks below and only try to handle the
2288 most common cases of this. For example, we only handle the case
2289 where I2 and I3 are adjacent to avoid making difficult register
2290 usage tests. */
2291
2292 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2293 && REG_P (SET_SRC (PATTERN (i3)))
2294 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2295 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2296 && GET_CODE (PATTERN (i2)) == PARALLEL
2297 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2298 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2299 below would need to check what is inside (and reg_overlap_mentioned_p
2300 doesn't support those codes anyway). Don't allow those destinations;
2301 the resulting insn isn't likely to be recognized anyway. */
2302 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2303 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2304 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2305 SET_DEST (PATTERN (i3)))
2306 && next_real_insn (i2) == i3)
2307 {
2308 rtx p2 = PATTERN (i2);
2309
2310 /* Make sure that the destination of I3,
2311 which we are going to substitute into one output of I2,
2312 is not used within another output of I2. We must avoid making this:
2313 (parallel [(set (mem (reg 69)) ...)
2314 (set (reg 69) ...)])
2315 which is not well-defined as to order of actions.
2316 (Besides, reload can't handle output reloads for this.)
2317
2318 The problem can also happen if the dest of I3 is a memory ref,
2319 if another dest in I2 is an indirect memory ref. */
2320 for (i = 0; i < XVECLEN (p2, 0); i++)
2321 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2322 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2323 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2324 SET_DEST (XVECEXP (p2, 0, i))))
2325 break;
2326
2327 if (i == XVECLEN (p2, 0))
2328 for (i = 0; i < XVECLEN (p2, 0); i++)
2329 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2330 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2331 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2332 {
2333 combine_merges++;
2334
2335 subst_insn = i3;
2336 subst_low_luid = DF_INSN_LUID (i2);
2337
2338 added_sets_2 = added_sets_1 = 0;
2339 i2dest = SET_SRC (PATTERN (i3));
2340 i2dest_killed = dead_or_set_p (i2, i2dest);
2341
2342 /* Replace the dest in I2 with our dest and make the resulting
2343 insn the new pattern for I3. Then skip to where we
2344 validate the pattern. Everything was set up above. */
2345 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
2346 SET_DEST (PATTERN (i3)));
2347
2348 newpat = p2;
2349 i3_subst_into_i2 = 1;
2350 goto validate_replacement;
2351 }
2352 }
2353
2354 /* If I2 is setting a pseudo to a constant and I3 is setting some
2355 sub-part of it to another constant, merge them by making a new
2356 constant. */
2357 if (i1 == 0
2358 && (temp = single_set (i2)) != 0
2359 && (CONST_INT_P (SET_SRC (temp))
2360 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
2361 && GET_CODE (PATTERN (i3)) == SET
2362 && (CONST_INT_P (SET_SRC (PATTERN (i3)))
2363 || GET_CODE (SET_SRC (PATTERN (i3))) == CONST_DOUBLE)
2364 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp)))
2365 {
2366 rtx dest = SET_DEST (PATTERN (i3));
2367 int offset = -1;
2368 int width = 0;
2369
2370 if (GET_CODE (dest) == ZERO_EXTRACT)
2371 {
2372 if (CONST_INT_P (XEXP (dest, 1))
2373 && CONST_INT_P (XEXP (dest, 2)))
2374 {
2375 width = INTVAL (XEXP (dest, 1));
2376 offset = INTVAL (XEXP (dest, 2));
2377 dest = XEXP (dest, 0);
2378 if (BITS_BIG_ENDIAN)
2379 offset = GET_MODE_BITSIZE (GET_MODE (dest)) - width - offset;
2380 }
2381 }
2382 else
2383 {
2384 if (GET_CODE (dest) == STRICT_LOW_PART)
2385 dest = XEXP (dest, 0);
2386 width = GET_MODE_BITSIZE (GET_MODE (dest));
2387 offset = 0;
2388 }
2389
2390 if (offset >= 0)
2391 {
2392 /* If this is the low part, we're done. */
2393 if (subreg_lowpart_p (dest))
2394 ;
2395 /* Handle the case where inner is twice the size of outer. */
2396 else if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (temp)))
2397 == 2 * GET_MODE_BITSIZE (GET_MODE (dest)))
2398 offset += GET_MODE_BITSIZE (GET_MODE (dest));
2399 /* Otherwise give up for now. */
2400 else
2401 offset = -1;
2402 }
2403
2404 if (offset >= 0
2405 && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (temp)))
2406 <= HOST_BITS_PER_WIDE_INT * 2))
2407 {
2408 HOST_WIDE_INT mhi, ohi, ihi;
2409 HOST_WIDE_INT mlo, olo, ilo;
2410 rtx inner = SET_SRC (PATTERN (i3));
2411 rtx outer = SET_SRC (temp);
2412
2413 if (CONST_INT_P (outer))
2414 {
2415 olo = INTVAL (outer);
2416 ohi = olo < 0 ? -1 : 0;
2417 }
2418 else
2419 {
2420 olo = CONST_DOUBLE_LOW (outer);
2421 ohi = CONST_DOUBLE_HIGH (outer);
2422 }
2423
2424 if (CONST_INT_P (inner))
2425 {
2426 ilo = INTVAL (inner);
2427 ihi = ilo < 0 ? -1 : 0;
2428 }
2429 else
2430 {
2431 ilo = CONST_DOUBLE_LOW (inner);
2432 ihi = CONST_DOUBLE_HIGH (inner);
2433 }
2434
2435 if (width < HOST_BITS_PER_WIDE_INT)
2436 {
2437 mlo = ((unsigned HOST_WIDE_INT) 1 << width) - 1;
2438 mhi = 0;
2439 }
2440 else if (width < HOST_BITS_PER_WIDE_INT * 2)
2441 {
2442 mhi = ((unsigned HOST_WIDE_INT) 1
2443 << (width - HOST_BITS_PER_WIDE_INT)) - 1;
2444 mlo = -1;
2445 }
2446 else
2447 {
2448 mlo = -1;
2449 mhi = -1;
2450 }
2451
2452 ilo &= mlo;
2453 ihi &= mhi;
2454
2455 if (offset >= HOST_BITS_PER_WIDE_INT)
2456 {
2457 mhi = mlo << (offset - HOST_BITS_PER_WIDE_INT);
2458 mlo = 0;
2459 ihi = ilo << (offset - HOST_BITS_PER_WIDE_INT);
2460 ilo = 0;
2461 }
2462 else if (offset > 0)
2463 {
2464 mhi = (mhi << offset) | ((unsigned HOST_WIDE_INT) mlo
2465 >> (HOST_BITS_PER_WIDE_INT - offset));
2466 mlo = mlo << offset;
2467 ihi = (ihi << offset) | ((unsigned HOST_WIDE_INT) ilo
2468 >> (HOST_BITS_PER_WIDE_INT - offset));
2469 ilo = ilo << offset;
2470 }
2471
2472 olo = (olo & ~mlo) | ilo;
2473 ohi = (ohi & ~mhi) | ihi;
2474
2475 combine_merges++;
2476 subst_insn = i3;
2477 subst_low_luid = DF_INSN_LUID (i2);
2478 added_sets_2 = added_sets_1 = 0;
2479 i2dest = SET_DEST (temp);
2480 i2dest_killed = dead_or_set_p (i2, i2dest);
2481
2482 SUBST (SET_SRC (temp),
2483 immed_double_const (olo, ohi, GET_MODE (SET_DEST (temp))));
2484
2485 newpat = PATTERN (i2);
2486 goto validate_replacement;
2487 }
2488 }
2489
2490 #ifndef HAVE_cc0
2491 /* If we have no I1 and I2 looks like:
2492 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2493 (set Y OP)])
2494 make up a dummy I1 that is
2495 (set Y OP)
2496 and change I2 to be
2497 (set (reg:CC X) (compare:CC Y (const_int 0)))
2498
2499 (We can ignore any trailing CLOBBERs.)
2500
2501 This undoes a previous combination and allows us to match a branch-and-
2502 decrement insn. */
2503
2504 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
2505 && XVECLEN (PATTERN (i2), 0) >= 2
2506 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
2507 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2508 == MODE_CC)
2509 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2510 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2511 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
2512 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
2513 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2514 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
2515 {
2516 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
2517 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
2518 break;
2519
2520 if (i == 1)
2521 {
2522 /* We make I1 with the same INSN_UID as I2. This gives it
2523 the same DF_INSN_LUID for value tracking. Our fake I1 will
2524 never appear in the insn stream so giving it the same INSN_UID
2525 as I2 will not cause a problem. */
2526
2527 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
2528 BLOCK_FOR_INSN (i2), INSN_LOCATOR (i2),
2529 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX);
2530
2531 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2532 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2533 SET_DEST (PATTERN (i1)));
2534 }
2535 }
2536 #endif
2537
2538 /* Verify that I2 and I1 are valid for combining. */
2539 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
2540 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
2541 {
2542 undo_all ();
2543 return 0;
2544 }
2545
2546 /* Record whether I2DEST is used in I2SRC and similarly for the other
2547 cases. Knowing this will help in register status updating below. */
2548 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2549 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2550 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2551 i2dest_killed = dead_or_set_p (i2, i2dest);
2552 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2553
2554 /* See if I1 directly feeds into I3. It does if I1DEST is not used
2555 in I2SRC. */
2556 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
2557
2558 /* Ensure that I3's pattern can be the destination of combines. */
2559 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
2560 i1 && i2dest_in_i1src && i1_feeds_i3,
2561 &i3dest_killed))
2562 {
2563 undo_all ();
2564 return 0;
2565 }
2566
2567 /* See if any of the insns is a MULT operation. Unless one is, we will
2568 reject a combination that is, since it must be slower. Be conservative
2569 here. */
2570 if (GET_CODE (i2src) == MULT
2571 || (i1 != 0 && GET_CODE (i1src) == MULT)
2572 || (GET_CODE (PATTERN (i3)) == SET
2573 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
2574 have_mult = 1;
2575
2576 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
2577 We used to do this EXCEPT in one case: I3 has a post-inc in an
2578 output operand. However, that exception can give rise to insns like
2579 mov r3,(r3)+
2580 which is a famous insn on the PDP-11 where the value of r3 used as the
2581 source was model-dependent. Avoid this sort of thing. */
2582
2583 #if 0
2584 if (!(GET_CODE (PATTERN (i3)) == SET
2585 && REG_P (SET_SRC (PATTERN (i3)))
2586 && MEM_P (SET_DEST (PATTERN (i3)))
2587 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
2588 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
2589 /* It's not the exception. */
2590 #endif
2591 #ifdef AUTO_INC_DEC
2592 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
2593 if (REG_NOTE_KIND (link) == REG_INC
2594 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
2595 || (i1 != 0
2596 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
2597 {
2598 undo_all ();
2599 return 0;
2600 }
2601 #endif
2602
2603 /* See if the SETs in I1 or I2 need to be kept around in the merged
2604 instruction: whenever the value set there is still needed past I3.
2605 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
2606
2607 For the SET in I1, we have two cases: If I1 and I2 independently
2608 feed into I3, the set in I1 needs to be kept around if I1DEST dies
2609 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
2610 in I1 needs to be kept around unless I1DEST dies or is set in either
2611 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
2612 I1DEST. If so, we know I1 feeds into I2. */
2613
2614 added_sets_2 = ! dead_or_set_p (i3, i2dest);
2615
2616 added_sets_1
2617 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
2618 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
2619
2620 /* If the set in I2 needs to be kept around, we must make a copy of
2621 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
2622 PATTERN (I2), we are only substituting for the original I1DEST, not into
2623 an already-substituted copy. This also prevents making self-referential
2624 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
2625 I2DEST. */
2626
2627 if (added_sets_2)
2628 {
2629 if (GET_CODE (PATTERN (i2)) == PARALLEL)
2630 i2pat = gen_rtx_SET (VOIDmode, i2dest, copy_rtx (i2src));
2631 else
2632 i2pat = copy_rtx (PATTERN (i2));
2633 }
2634
2635 if (added_sets_1)
2636 {
2637 if (GET_CODE (PATTERN (i1)) == PARALLEL)
2638 i1pat = gen_rtx_SET (VOIDmode, i1dest, copy_rtx (i1src));
2639 else
2640 i1pat = copy_rtx (PATTERN (i1));
2641 }
2642
2643 combine_merges++;
2644
2645 /* Substitute in the latest insn for the regs set by the earlier ones. */
2646
2647 maxreg = max_reg_num ();
2648
2649 subst_insn = i3;
2650
2651 #ifndef HAVE_cc0
2652 /* Many machines that don't use CC0 have insns that can both perform an
2653 arithmetic operation and set the condition code. These operations will
2654 be represented as a PARALLEL with the first element of the vector
2655 being a COMPARE of an arithmetic operation with the constant zero.
2656 The second element of the vector will set some pseudo to the result
2657 of the same arithmetic operation. If we simplify the COMPARE, we won't
2658 match such a pattern and so will generate an extra insn. Here we test
2659 for this case, where both the comparison and the operation result are
2660 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
2661 I2SRC. Later we will make the PARALLEL that contains I2. */
2662
2663 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
2664 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
2665 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
2666 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
2667 {
2668 #ifdef SELECT_CC_MODE
2669 rtx *cc_use;
2670 enum machine_mode compare_mode;
2671 #endif
2672
2673 newpat = PATTERN (i3);
2674 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
2675
2676 i2_is_used = 1;
2677
2678 #ifdef SELECT_CC_MODE
2679 /* See if a COMPARE with the operand we substituted in should be done
2680 with the mode that is currently being used. If not, do the same
2681 processing we do in `subst' for a SET; namely, if the destination
2682 is used only once, try to replace it with a register of the proper
2683 mode and also replace the COMPARE. */
2684 if (undobuf.other_insn == 0
2685 && (cc_use = find_single_use (SET_DEST (newpat), i3,
2686 &undobuf.other_insn))
2687 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
2688 i2src, const0_rtx))
2689 != GET_MODE (SET_DEST (newpat))))
2690 {
2691 if (can_change_dest_mode(SET_DEST (newpat), added_sets_2,
2692 compare_mode))
2693 {
2694 unsigned int regno = REGNO (SET_DEST (newpat));
2695 rtx new_dest;
2696
2697 if (regno < FIRST_PSEUDO_REGISTER)
2698 new_dest = gen_rtx_REG (compare_mode, regno);
2699 else
2700 {
2701 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
2702 new_dest = regno_reg_rtx[regno];
2703 }
2704
2705 SUBST (SET_DEST (newpat), new_dest);
2706 SUBST (XEXP (*cc_use, 0), new_dest);
2707 SUBST (SET_SRC (newpat),
2708 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
2709 }
2710 else
2711 undobuf.other_insn = 0;
2712 }
2713 #endif
2714 }
2715 else
2716 #endif
2717 {
2718 /* It is possible that the source of I2 or I1 may be performing
2719 an unneeded operation, such as a ZERO_EXTEND of something
2720 that is known to have the high part zero. Handle that case
2721 by letting subst look at the innermost one of them.
2722
2723 Another way to do this would be to have a function that tries
2724 to simplify a single insn instead of merging two or more
2725 insns. We don't do this because of the potential of infinite
2726 loops and because of the potential extra memory required.
2727 However, doing it the way we are is a bit of a kludge and
2728 doesn't catch all cases.
2729
2730 But only do this if -fexpensive-optimizations since it slows
2731 things down and doesn't usually win.
2732
2733 This is not done in the COMPARE case above because the
2734 unmodified I2PAT is used in the PARALLEL and so a pattern
2735 with a modified I2SRC would not match. */
2736
2737 if (flag_expensive_optimizations)
2738 {
2739 /* Pass pc_rtx so no substitutions are done, just
2740 simplifications. */
2741 if (i1)
2742 {
2743 subst_low_luid = DF_INSN_LUID (i1);
2744 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
2745 }
2746 else
2747 {
2748 subst_low_luid = DF_INSN_LUID (i2);
2749 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
2750 }
2751 }
2752
2753 n_occurrences = 0; /* `subst' counts here */
2754
2755 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
2756 need to make a unique copy of I2SRC each time we substitute it
2757 to avoid self-referential rtl. */
2758
2759 subst_low_luid = DF_INSN_LUID (i2);
2760 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
2761 ! i1_feeds_i3 && i1dest_in_i1src);
2762 substed_i2 = 1;
2763
2764 /* Record whether i2's body now appears within i3's body. */
2765 i2_is_used = n_occurrences;
2766 }
2767
2768 /* If we already got a failure, don't try to do more. Otherwise,
2769 try to substitute in I1 if we have it. */
2770
2771 if (i1 && GET_CODE (newpat) != CLOBBER)
2772 {
2773 /* Check that an autoincrement side-effect on I1 has not been lost.
2774 This happens if I1DEST is mentioned in I2 and dies there, and
2775 has disappeared from the new pattern. */
2776 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2777 && !i1_feeds_i3
2778 && dead_or_set_p (i2, i1dest)
2779 && !reg_overlap_mentioned_p (i1dest, newpat))
2780 /* Before we can do this substitution, we must redo the test done
2781 above (see detailed comments there) that ensures that I1DEST
2782 isn't mentioned in any SETs in NEWPAT that are field assignments. */
2783 || !combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX, 0, 0))
2784 {
2785 undo_all ();
2786 return 0;
2787 }
2788
2789 n_occurrences = 0;
2790 subst_low_luid = DF_INSN_LUID (i1);
2791 newpat = subst (newpat, i1dest, i1src, 0, 0);
2792 substed_i1 = 1;
2793 }
2794
2795 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2796 to count all the ways that I2SRC and I1SRC can be used. */
2797 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
2798 && i2_is_used + added_sets_2 > 1)
2799 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2800 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2801 > 1))
2802 /* Fail if we tried to make a new register. */
2803 || max_reg_num () != maxreg
2804 /* Fail if we couldn't do something and have a CLOBBER. */
2805 || GET_CODE (newpat) == CLOBBER
2806 /* Fail if this new pattern is a MULT and we didn't have one before
2807 at the outer level. */
2808 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2809 && ! have_mult))
2810 {
2811 undo_all ();
2812 return 0;
2813 }
2814
2815 /* If the actions of the earlier insns must be kept
2816 in addition to substituting them into the latest one,
2817 we must make a new PARALLEL for the latest insn
2818 to hold additional the SETs. */
2819
2820 if (added_sets_1 || added_sets_2)
2821 {
2822 combine_extras++;
2823
2824 if (GET_CODE (newpat) == PARALLEL)
2825 {
2826 rtvec old = XVEC (newpat, 0);
2827 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2828 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2829 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2830 sizeof (old->elem[0]) * old->num_elem);
2831 }
2832 else
2833 {
2834 rtx old = newpat;
2835 total_sets = 1 + added_sets_1 + added_sets_2;
2836 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2837 XVECEXP (newpat, 0, 0) = old;
2838 }
2839
2840 if (added_sets_1)
2841 XVECEXP (newpat, 0, --total_sets) = i1pat;
2842
2843 if (added_sets_2)
2844 {
2845 /* If there is no I1, use I2's body as is. We used to also not do
2846 the subst call below if I2 was substituted into I3,
2847 but that could lose a simplification. */
2848 if (i1 == 0)
2849 XVECEXP (newpat, 0, --total_sets) = i2pat;
2850 else
2851 /* See comment where i2pat is assigned. */
2852 XVECEXP (newpat, 0, --total_sets)
2853 = subst (i2pat, i1dest, i1src, 0, 0);
2854 }
2855 }
2856
2857 /* We come here when we are replacing a destination in I2 with the
2858 destination of I3. */
2859 validate_replacement:
2860
2861 /* Note which hard regs this insn has as inputs. */
2862 mark_used_regs_combine (newpat);
2863
2864 /* If recog_for_combine fails, it strips existing clobbers. If we'll
2865 consider splitting this pattern, we might need these clobbers. */
2866 if (i1 && GET_CODE (newpat) == PARALLEL
2867 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
2868 {
2869 int len = XVECLEN (newpat, 0);
2870
2871 newpat_vec_with_clobbers = rtvec_alloc (len);
2872 for (i = 0; i < len; i++)
2873 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
2874 }
2875
2876 /* Is the result of combination a valid instruction? */
2877 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2878
2879 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2880 the second SET's destination is a register that is unused and isn't
2881 marked as an instruction that might trap in an EH region. In that case,
2882 we just need the first SET. This can occur when simplifying a divmod
2883 insn. We *must* test for this case here because the code below that
2884 splits two independent SETs doesn't handle this case correctly when it
2885 updates the register status.
2886
2887 It's pointless doing this if we originally had two sets, one from
2888 i3, and one from i2. Combining then splitting the parallel results
2889 in the original i2 again plus an invalid insn (which we delete).
2890 The net effect is only to move instructions around, which makes
2891 debug info less accurate.
2892
2893 Also check the case where the first SET's destination is unused.
2894 That would not cause incorrect code, but does cause an unneeded
2895 insn to remain. */
2896
2897 if (insn_code_number < 0
2898 && !(added_sets_2 && i1 == 0)
2899 && GET_CODE (newpat) == PARALLEL
2900 && XVECLEN (newpat, 0) == 2
2901 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2902 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2903 && asm_noperands (newpat) < 0)
2904 {
2905 rtx set0 = XVECEXP (newpat, 0, 0);
2906 rtx set1 = XVECEXP (newpat, 0, 1);
2907 rtx note;
2908
2909 if (((REG_P (SET_DEST (set1))
2910 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
2911 || (GET_CODE (SET_DEST (set1)) == SUBREG
2912 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
2913 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2914 || INTVAL (XEXP (note, 0)) <= 0)
2915 && ! side_effects_p (SET_SRC (set1)))
2916 {
2917 newpat = set0;
2918 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2919 }
2920
2921 else if (((REG_P (SET_DEST (set0))
2922 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
2923 || (GET_CODE (SET_DEST (set0)) == SUBREG
2924 && find_reg_note (i3, REG_UNUSED,
2925 SUBREG_REG (SET_DEST (set0)))))
2926 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2927 || INTVAL (XEXP (note, 0)) <= 0)
2928 && ! side_effects_p (SET_SRC (set0)))
2929 {
2930 newpat = set1;
2931 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2932
2933 if (insn_code_number >= 0)
2934 changed_i3_dest = 1;
2935 }
2936 }
2937
2938 /* If we were combining three insns and the result is a simple SET
2939 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2940 insns. There are two ways to do this. It can be split using a
2941 machine-specific method (like when you have an addition of a large
2942 constant) or by combine in the function find_split_point. */
2943
2944 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2945 && asm_noperands (newpat) < 0)
2946 {
2947 rtx parallel, m_split, *split;
2948
2949 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2950 use I2DEST as a scratch register will help. In the latter case,
2951 convert I2DEST to the mode of the source of NEWPAT if we can. */
2952
2953 m_split = combine_split_insns (newpat, i3);
2954
2955 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2956 inputs of NEWPAT. */
2957
2958 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2959 possible to try that as a scratch reg. This would require adding
2960 more code to make it work though. */
2961
2962 if (m_split == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
2963 {
2964 enum machine_mode new_mode = GET_MODE (SET_DEST (newpat));
2965
2966 /* First try to split using the original register as a
2967 scratch register. */
2968 parallel = gen_rtx_PARALLEL (VOIDmode,
2969 gen_rtvec (2, newpat,
2970 gen_rtx_CLOBBER (VOIDmode,
2971 i2dest)));
2972 m_split = combine_split_insns (parallel, i3);
2973
2974 /* If that didn't work, try changing the mode of I2DEST if
2975 we can. */
2976 if (m_split == 0
2977 && new_mode != GET_MODE (i2dest)
2978 && new_mode != VOIDmode
2979 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
2980 {
2981 enum machine_mode old_mode = GET_MODE (i2dest);
2982 rtx ni2dest;
2983
2984 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
2985 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
2986 else
2987 {
2988 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
2989 ni2dest = regno_reg_rtx[REGNO (i2dest)];
2990 }
2991
2992 parallel = (gen_rtx_PARALLEL
2993 (VOIDmode,
2994 gen_rtvec (2, newpat,
2995 gen_rtx_CLOBBER (VOIDmode,
2996 ni2dest))));
2997 m_split = combine_split_insns (parallel, i3);
2998
2999 if (m_split == 0
3000 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3001 {
3002 struct undo *buf;
3003
3004 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3005 buf = undobuf.undos;
3006 undobuf.undos = buf->next;
3007 buf->next = undobuf.frees;
3008 undobuf.frees = buf;
3009 }
3010 }
3011 }
3012
3013 /* If recog_for_combine has discarded clobbers, try to use them
3014 again for the split. */
3015 if (m_split == 0 && newpat_vec_with_clobbers)
3016 {
3017 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3018 m_split = combine_split_insns (parallel, i3);
3019 }
3020
3021 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
3022 {
3023 m_split = PATTERN (m_split);
3024 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
3025 if (insn_code_number >= 0)
3026 newpat = m_split;
3027 }
3028 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
3029 && (next_real_insn (i2) == i3
3030 || ! use_crosses_set_p (PATTERN (m_split), DF_INSN_LUID (i2))))
3031 {
3032 rtx i2set, i3set;
3033 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
3034 newi2pat = PATTERN (m_split);
3035
3036 i3set = single_set (NEXT_INSN (m_split));
3037 i2set = single_set (m_split);
3038
3039 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3040
3041 /* If I2 or I3 has multiple SETs, we won't know how to track
3042 register status, so don't use these insns. If I2's destination
3043 is used between I2 and I3, we also can't use these insns. */
3044
3045 if (i2_code_number >= 0 && i2set && i3set
3046 && (next_real_insn (i2) == i3
3047 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3048 insn_code_number = recog_for_combine (&newi3pat, i3,
3049 &new_i3_notes);
3050 if (insn_code_number >= 0)
3051 newpat = newi3pat;
3052
3053 /* It is possible that both insns now set the destination of I3.
3054 If so, we must show an extra use of it. */
3055
3056 if (insn_code_number >= 0)
3057 {
3058 rtx new_i3_dest = SET_DEST (i3set);
3059 rtx new_i2_dest = SET_DEST (i2set);
3060
3061 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3062 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3063 || GET_CODE (new_i3_dest) == SUBREG)
3064 new_i3_dest = XEXP (new_i3_dest, 0);
3065
3066 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3067 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3068 || GET_CODE (new_i2_dest) == SUBREG)
3069 new_i2_dest = XEXP (new_i2_dest, 0);
3070
3071 if (REG_P (new_i3_dest)
3072 && REG_P (new_i2_dest)
3073 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
3074 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3075 }
3076 }
3077
3078 /* If we can split it and use I2DEST, go ahead and see if that
3079 helps things be recognized. Verify that none of the registers
3080 are set between I2 and I3. */
3081 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
3082 #ifdef HAVE_cc0
3083 && REG_P (i2dest)
3084 #endif
3085 /* We need I2DEST in the proper mode. If it is a hard register
3086 or the only use of a pseudo, we can change its mode.
3087 Make sure we don't change a hard register to have a mode that
3088 isn't valid for it, or change the number of registers. */
3089 && (GET_MODE (*split) == GET_MODE (i2dest)
3090 || GET_MODE (*split) == VOIDmode
3091 || can_change_dest_mode (i2dest, added_sets_2,
3092 GET_MODE (*split)))
3093 && (next_real_insn (i2) == i3
3094 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3095 /* We can't overwrite I2DEST if its value is still used by
3096 NEWPAT. */
3097 && ! reg_referenced_p (i2dest, newpat))
3098 {
3099 rtx newdest = i2dest;
3100 enum rtx_code split_code = GET_CODE (*split);
3101 enum machine_mode split_mode = GET_MODE (*split);
3102 bool subst_done = false;
3103 newi2pat = NULL_RTX;
3104
3105 /* Get NEWDEST as a register in the proper mode. We have already
3106 validated that we can do this. */
3107 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3108 {
3109 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3110 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3111 else
3112 {
3113 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3114 newdest = regno_reg_rtx[REGNO (i2dest)];
3115 }
3116 }
3117
3118 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3119 an ASHIFT. This can occur if it was inside a PLUS and hence
3120 appeared to be a memory address. This is a kludge. */
3121 if (split_code == MULT
3122 && CONST_INT_P (XEXP (*split, 1))
3123 && INTVAL (XEXP (*split, 1)) > 0
3124 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
3125 {
3126 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3127 XEXP (*split, 0), GEN_INT (i)));
3128 /* Update split_code because we may not have a multiply
3129 anymore. */
3130 split_code = GET_CODE (*split);
3131 }
3132
3133 #ifdef INSN_SCHEDULING
3134 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3135 be written as a ZERO_EXTEND. */
3136 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3137 {
3138 #ifdef LOAD_EXTEND_OP
3139 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3140 what it really is. */
3141 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
3142 == SIGN_EXTEND)
3143 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3144 SUBREG_REG (*split)));
3145 else
3146 #endif
3147 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3148 SUBREG_REG (*split)));
3149 }
3150 #endif
3151
3152 /* Attempt to split binary operators using arithmetic identities. */
3153 if (BINARY_P (SET_SRC (newpat))
3154 && split_mode == GET_MODE (SET_SRC (newpat))
3155 && ! side_effects_p (SET_SRC (newpat)))
3156 {
3157 rtx setsrc = SET_SRC (newpat);
3158 enum machine_mode mode = GET_MODE (setsrc);
3159 enum rtx_code code = GET_CODE (setsrc);
3160 rtx src_op0 = XEXP (setsrc, 0);
3161 rtx src_op1 = XEXP (setsrc, 1);
3162
3163 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3164 if (rtx_equal_p (src_op0, src_op1))
3165 {
3166 newi2pat = gen_rtx_SET (VOIDmode, newdest, src_op0);
3167 SUBST (XEXP (setsrc, 0), newdest);
3168 SUBST (XEXP (setsrc, 1), newdest);
3169 subst_done = true;
3170 }
3171 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3172 else if ((code == PLUS || code == MULT)
3173 && GET_CODE (src_op0) == code
3174 && GET_CODE (XEXP (src_op0, 0)) == code
3175 && (INTEGRAL_MODE_P (mode)
3176 || (FLOAT_MODE_P (mode)
3177 && flag_unsafe_math_optimizations)))
3178 {
3179 rtx p = XEXP (XEXP (src_op0, 0), 0);
3180 rtx q = XEXP (XEXP (src_op0, 0), 1);
3181 rtx r = XEXP (src_op0, 1);
3182 rtx s = src_op1;
3183
3184 /* Split both "((X op Y) op X) op Y" and
3185 "((X op Y) op Y) op X" as "T op T" where T is
3186 "X op Y". */
3187 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3188 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3189 {
3190 newi2pat = gen_rtx_SET (VOIDmode, newdest,
3191 XEXP (src_op0, 0));
3192 SUBST (XEXP (setsrc, 0), newdest);
3193 SUBST (XEXP (setsrc, 1), newdest);
3194 subst_done = true;
3195 }
3196 /* Split "((X op X) op Y) op Y)" as "T op T" where
3197 T is "X op Y". */
3198 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3199 {
3200 rtx tmp = simplify_gen_binary (code, mode, p, r);
3201 newi2pat = gen_rtx_SET (VOIDmode, newdest, tmp);
3202 SUBST (XEXP (setsrc, 0), newdest);
3203 SUBST (XEXP (setsrc, 1), newdest);
3204 subst_done = true;
3205 }
3206 }
3207 }
3208
3209 if (!subst_done)
3210 {
3211 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
3212 SUBST (*split, newdest);
3213 }
3214
3215 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3216
3217 /* recog_for_combine might have added CLOBBERs to newi2pat.
3218 Make sure NEWPAT does not depend on the clobbered regs. */
3219 if (GET_CODE (newi2pat) == PARALLEL)
3220 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3221 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3222 {
3223 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3224 if (reg_overlap_mentioned_p (reg, newpat))
3225 {
3226 undo_all ();
3227 return 0;
3228 }
3229 }
3230
3231 /* If the split point was a MULT and we didn't have one before,
3232 don't use one now. */
3233 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3234 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3235 }
3236 }
3237
3238 /* Check for a case where we loaded from memory in a narrow mode and
3239 then sign extended it, but we need both registers. In that case,
3240 we have a PARALLEL with both loads from the same memory location.
3241 We can split this into a load from memory followed by a register-register
3242 copy. This saves at least one insn, more if register allocation can
3243 eliminate the copy.
3244
3245 We cannot do this if the destination of the first assignment is a
3246 condition code register or cc0. We eliminate this case by making sure
3247 the SET_DEST and SET_SRC have the same mode.
3248
3249 We cannot do this if the destination of the second assignment is
3250 a register that we have already assumed is zero-extended. Similarly
3251 for a SUBREG of such a register. */
3252
3253 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3254 && GET_CODE (newpat) == PARALLEL
3255 && XVECLEN (newpat, 0) == 2
3256 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3257 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3258 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3259 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3260 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3261 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3262 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3263 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3264 DF_INSN_LUID (i2))
3265 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3266 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3267 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
3268 (REG_P (temp)
3269 && VEC_index (reg_stat_type, reg_stat,
3270 REGNO (temp))->nonzero_bits != 0
3271 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
3272 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
3273 && (VEC_index (reg_stat_type, reg_stat,
3274 REGNO (temp))->nonzero_bits
3275 != GET_MODE_MASK (word_mode))))
3276 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3277 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3278 (REG_P (temp)
3279 && VEC_index (reg_stat_type, reg_stat,
3280 REGNO (temp))->nonzero_bits != 0
3281 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
3282 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
3283 && (VEC_index (reg_stat_type, reg_stat,
3284 REGNO (temp))->nonzero_bits
3285 != GET_MODE_MASK (word_mode)))))
3286 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3287 SET_SRC (XVECEXP (newpat, 0, 1)))
3288 && ! find_reg_note (i3, REG_UNUSED,
3289 SET_DEST (XVECEXP (newpat, 0, 0))))
3290 {
3291 rtx ni2dest;
3292
3293 newi2pat = XVECEXP (newpat, 0, 0);
3294 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3295 newpat = XVECEXP (newpat, 0, 1);
3296 SUBST (SET_SRC (newpat),
3297 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3298 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3299
3300 if (i2_code_number >= 0)
3301 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3302
3303 if (insn_code_number >= 0)
3304 swap_i2i3 = 1;
3305 }
3306
3307 /* Similarly, check for a case where we have a PARALLEL of two independent
3308 SETs but we started with three insns. In this case, we can do the sets
3309 as two separate insns. This case occurs when some SET allows two
3310 other insns to combine, but the destination of that SET is still live. */
3311
3312 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3313 && GET_CODE (newpat) == PARALLEL
3314 && XVECLEN (newpat, 0) == 2
3315 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3316 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3317 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3318 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3319 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3320 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3321 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3322 DF_INSN_LUID (i2))
3323 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3324 XVECEXP (newpat, 0, 0))
3325 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3326 XVECEXP (newpat, 0, 1))
3327 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3328 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1))))
3329 #ifdef HAVE_cc0
3330 /* We cannot split the parallel into two sets if both sets
3331 reference cc0. */
3332 && ! (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0))
3333 && reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 1)))
3334 #endif
3335 )
3336 {
3337 /* Normally, it doesn't matter which of the two is done first,
3338 but it does if one references cc0. In that case, it has to
3339 be first. */
3340 #ifdef HAVE_cc0
3341 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
3342 {
3343 newi2pat = XVECEXP (newpat, 0, 0);
3344 newpat = XVECEXP (newpat, 0, 1);
3345 }
3346 else
3347 #endif
3348 {
3349 newi2pat = XVECEXP (newpat, 0, 1);
3350 newpat = XVECEXP (newpat, 0, 0);
3351 }
3352
3353 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3354
3355 if (i2_code_number >= 0)
3356 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3357 }
3358
3359 /* If it still isn't recognized, fail and change things back the way they
3360 were. */
3361 if ((insn_code_number < 0
3362 /* Is the result a reasonable ASM_OPERANDS? */
3363 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
3364 {
3365 undo_all ();
3366 return 0;
3367 }
3368
3369 /* If we had to change another insn, make sure it is valid also. */
3370 if (undobuf.other_insn)
3371 {
3372 CLEAR_HARD_REG_SET (newpat_used_regs);
3373
3374 other_pat = PATTERN (undobuf.other_insn);
3375 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
3376 &new_other_notes);
3377
3378 if (other_code_number < 0 && ! check_asm_operands (other_pat))
3379 {
3380 undo_all ();
3381 return 0;
3382 }
3383 }
3384
3385 #ifdef HAVE_cc0
3386 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
3387 they are adjacent to each other or not. */
3388 {
3389 rtx p = prev_nonnote_insn (i3);
3390 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
3391 && sets_cc0_p (newi2pat))
3392 {
3393 undo_all ();
3394 return 0;
3395 }
3396 }
3397 #endif
3398
3399 /* Only allow this combination if insn_rtx_costs reports that the
3400 replacement instructions are cheaper than the originals. */
3401 if (!combine_validate_cost (i1, i2, i3, newpat, newi2pat, other_pat))
3402 {
3403 undo_all ();
3404 return 0;
3405 }
3406
3407 /* If we will be able to accept this, we have made a
3408 change to the destination of I3. This requires us to
3409 do a few adjustments. */
3410
3411 if (changed_i3_dest)
3412 {
3413 PATTERN (i3) = newpat;
3414 adjust_for_new_dest (i3);
3415 }
3416
3417 /* We now know that we can do this combination. Merge the insns and
3418 update the status of registers and LOG_LINKS. */
3419
3420 if (undobuf.other_insn)
3421 {
3422 rtx note, next;
3423
3424 PATTERN (undobuf.other_insn) = other_pat;
3425
3426 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
3427 are still valid. Then add any non-duplicate notes added by
3428 recog_for_combine. */
3429 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
3430 {
3431 next = XEXP (note, 1);
3432
3433 if (REG_NOTE_KIND (note) == REG_UNUSED
3434 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
3435 remove_note (undobuf.other_insn, note);
3436 }
3437
3438 distribute_notes (new_other_notes, undobuf.other_insn,
3439 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
3440 }
3441
3442 if (swap_i2i3)
3443 {
3444 rtx insn;
3445 rtx link;
3446 rtx ni2dest;
3447
3448 /* I3 now uses what used to be its destination and which is now
3449 I2's destination. This requires us to do a few adjustments. */
3450 PATTERN (i3) = newpat;
3451 adjust_for_new_dest (i3);
3452
3453 /* We need a LOG_LINK from I3 to I2. But we used to have one,
3454 so we still will.
3455
3456 However, some later insn might be using I2's dest and have
3457 a LOG_LINK pointing at I3. We must remove this link.
3458 The simplest way to remove the link is to point it at I1,
3459 which we know will be a NOTE. */
3460
3461 /* newi2pat is usually a SET here; however, recog_for_combine might
3462 have added some clobbers. */
3463 if (GET_CODE (newi2pat) == PARALLEL)
3464 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
3465 else
3466 ni2dest = SET_DEST (newi2pat);
3467
3468 for (insn = NEXT_INSN (i3);
3469 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3470 || insn != BB_HEAD (this_basic_block->next_bb));
3471 insn = NEXT_INSN (insn))
3472 {
3473 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
3474 {
3475 for (link = LOG_LINKS (insn); link;
3476 link = XEXP (link, 1))
3477 if (XEXP (link, 0) == i3)
3478 XEXP (link, 0) = i1;
3479
3480 break;
3481 }
3482 }
3483 }
3484
3485 {
3486 rtx i3notes, i2notes, i1notes = 0;
3487 rtx i3links, i2links, i1links = 0;
3488 rtx midnotes = 0;
3489 unsigned int regno;
3490 /* Compute which registers we expect to eliminate. newi2pat may be setting
3491 either i3dest or i2dest, so we must check it. Also, i1dest may be the
3492 same as i3dest, in which case newi2pat may be setting i1dest. */
3493 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
3494 || i2dest_in_i2src || i2dest_in_i1src
3495 || !i2dest_killed
3496 ? 0 : i2dest);
3497 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src
3498 || (newi2pat && reg_set_p (i1dest, newi2pat))
3499 || !i1dest_killed
3500 ? 0 : i1dest);
3501
3502 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
3503 clear them. */
3504 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
3505 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
3506 if (i1)
3507 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
3508
3509 /* Ensure that we do not have something that should not be shared but
3510 occurs multiple times in the new insns. Check this by first
3511 resetting all the `used' flags and then copying anything is shared. */
3512
3513 reset_used_flags (i3notes);
3514 reset_used_flags (i2notes);
3515 reset_used_flags (i1notes);
3516 reset_used_flags (newpat);
3517 reset_used_flags (newi2pat);
3518 if (undobuf.other_insn)
3519 reset_used_flags (PATTERN (undobuf.other_insn));
3520
3521 i3notes = copy_rtx_if_shared (i3notes);
3522 i2notes = copy_rtx_if_shared (i2notes);
3523 i1notes = copy_rtx_if_shared (i1notes);
3524 newpat = copy_rtx_if_shared (newpat);
3525 newi2pat = copy_rtx_if_shared (newi2pat);
3526 if (undobuf.other_insn)
3527 reset_used_flags (PATTERN (undobuf.other_insn));
3528
3529 INSN_CODE (i3) = insn_code_number;
3530 PATTERN (i3) = newpat;
3531
3532 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
3533 {
3534 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
3535
3536 reset_used_flags (call_usage);
3537 call_usage = copy_rtx (call_usage);
3538
3539 if (substed_i2)
3540 replace_rtx (call_usage, i2dest, i2src);
3541
3542 if (substed_i1)
3543 replace_rtx (call_usage, i1dest, i1src);
3544
3545 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
3546 }
3547
3548 if (undobuf.other_insn)
3549 INSN_CODE (undobuf.other_insn) = other_code_number;
3550
3551 /* We had one special case above where I2 had more than one set and
3552 we replaced a destination of one of those sets with the destination
3553 of I3. In that case, we have to update LOG_LINKS of insns later
3554 in this basic block. Note that this (expensive) case is rare.
3555
3556 Also, in this case, we must pretend that all REG_NOTEs for I2
3557 actually came from I3, so that REG_UNUSED notes from I2 will be
3558 properly handled. */
3559
3560 if (i3_subst_into_i2)
3561 {
3562 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
3563 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
3564 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
3565 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
3566 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
3567 && ! find_reg_note (i2, REG_UNUSED,
3568 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
3569 for (temp = NEXT_INSN (i2);
3570 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3571 || BB_HEAD (this_basic_block) != temp);
3572 temp = NEXT_INSN (temp))
3573 if (temp != i3 && INSN_P (temp))
3574 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
3575 if (XEXP (link, 0) == i2)
3576 XEXP (link, 0) = i3;
3577
3578 if (i3notes)
3579 {
3580 rtx link = i3notes;
3581 while (XEXP (link, 1))
3582 link = XEXP (link, 1);
3583 XEXP (link, 1) = i2notes;
3584 }
3585 else
3586 i3notes = i2notes;
3587 i2notes = 0;
3588 }
3589
3590 LOG_LINKS (i3) = 0;
3591 REG_NOTES (i3) = 0;
3592 LOG_LINKS (i2) = 0;
3593 REG_NOTES (i2) = 0;
3594
3595 if (newi2pat)
3596 {
3597 INSN_CODE (i2) = i2_code_number;
3598 PATTERN (i2) = newi2pat;
3599 }
3600 else
3601 SET_INSN_DELETED (i2);
3602
3603 if (i1)
3604 {
3605 LOG_LINKS (i1) = 0;
3606 REG_NOTES (i1) = 0;
3607 SET_INSN_DELETED (i1);
3608 }
3609
3610 /* Get death notes for everything that is now used in either I3 or
3611 I2 and used to die in a previous insn. If we built two new
3612 patterns, move from I1 to I2 then I2 to I3 so that we get the
3613 proper movement on registers that I2 modifies. */
3614
3615 if (newi2pat)
3616 {
3617 move_deaths (newi2pat, NULL_RTX, DF_INSN_LUID (i1), i2, &midnotes);
3618 move_deaths (newpat, newi2pat, DF_INSN_LUID (i1), i3, &midnotes);
3619 }
3620 else
3621 move_deaths (newpat, NULL_RTX, i1 ? DF_INSN_LUID (i1) : DF_INSN_LUID (i2),
3622 i3, &midnotes);
3623
3624 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
3625 if (i3notes)
3626 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
3627 elim_i2, elim_i1);
3628 if (i2notes)
3629 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
3630 elim_i2, elim_i1);
3631 if (i1notes)
3632 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
3633 elim_i2, elim_i1);
3634 if (midnotes)
3635 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3636 elim_i2, elim_i1);
3637
3638 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
3639 know these are REG_UNUSED and want them to go to the desired insn,
3640 so we always pass it as i3. */
3641
3642 if (newi2pat && new_i2_notes)
3643 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3644
3645 if (new_i3_notes)
3646 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
3647
3648 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
3649 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
3650 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
3651 in that case, it might delete I2. Similarly for I2 and I1.
3652 Show an additional death due to the REG_DEAD note we make here. If
3653 we discard it in distribute_notes, we will decrement it again. */
3654
3655 if (i3dest_killed)
3656 {
3657 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
3658 distribute_notes (alloc_reg_note (REG_DEAD, i3dest_killed,
3659 NULL_RTX),
3660 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1);
3661 else
3662 distribute_notes (alloc_reg_note (REG_DEAD, i3dest_killed,
3663 NULL_RTX),
3664 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3665 elim_i2, elim_i1);
3666 }
3667
3668 if (i2dest_in_i2src)
3669 {
3670 if (newi2pat && reg_set_p (i2dest, newi2pat))
3671 distribute_notes (alloc_reg_note (REG_DEAD, i2dest, NULL_RTX),
3672 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3673 else
3674 distribute_notes (alloc_reg_note (REG_DEAD, i2dest, NULL_RTX),
3675 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3676 NULL_RTX, NULL_RTX);
3677 }
3678
3679 if (i1dest_in_i1src)
3680 {
3681 if (newi2pat && reg_set_p (i1dest, newi2pat))
3682 distribute_notes (alloc_reg_note (REG_DEAD, i1dest, NULL_RTX),
3683 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3684 else
3685 distribute_notes (alloc_reg_note (REG_DEAD, i1dest, NULL_RTX),
3686 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3687 NULL_RTX, NULL_RTX);
3688 }
3689
3690 distribute_links (i3links);
3691 distribute_links (i2links);
3692 distribute_links (i1links);
3693
3694 if (REG_P (i2dest))
3695 {
3696 rtx link;
3697 rtx i2_insn = 0, i2_val = 0, set;
3698
3699 /* The insn that used to set this register doesn't exist, and
3700 this life of the register may not exist either. See if one of
3701 I3's links points to an insn that sets I2DEST. If it does,
3702 that is now the last known value for I2DEST. If we don't update
3703 this and I2 set the register to a value that depended on its old
3704 contents, we will get confused. If this insn is used, thing
3705 will be set correctly in combine_instructions. */
3706
3707 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3708 if ((set = single_set (XEXP (link, 0))) != 0
3709 && rtx_equal_p (i2dest, SET_DEST (set)))
3710 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
3711
3712 record_value_for_reg (i2dest, i2_insn, i2_val);
3713
3714 /* If the reg formerly set in I2 died only once and that was in I3,
3715 zero its use count so it won't make `reload' do any work. */
3716 if (! added_sets_2
3717 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
3718 && ! i2dest_in_i2src)
3719 {
3720 regno = REGNO (i2dest);
3721 INC_REG_N_SETS (regno, -1);
3722 }
3723 }
3724
3725 if (i1 && REG_P (i1dest))
3726 {
3727 rtx link;
3728 rtx i1_insn = 0, i1_val = 0, set;
3729
3730 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3731 if ((set = single_set (XEXP (link, 0))) != 0
3732 && rtx_equal_p (i1dest, SET_DEST (set)))
3733 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
3734
3735 record_value_for_reg (i1dest, i1_insn, i1_val);
3736
3737 regno = REGNO (i1dest);
3738 if (! added_sets_1 && ! i1dest_in_i1src)
3739 INC_REG_N_SETS (regno, -1);
3740 }
3741
3742 /* Update reg_stat[].nonzero_bits et al for any changes that may have
3743 been made to this insn. The order of
3744 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
3745 can affect nonzero_bits of newpat */
3746 if (newi2pat)
3747 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
3748 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
3749 }
3750
3751 if (undobuf.other_insn != NULL_RTX)
3752 {
3753 if (dump_file)
3754 {
3755 fprintf (dump_file, "modifying other_insn ");
3756 dump_insn_slim (dump_file, undobuf.other_insn);
3757 }
3758 df_insn_rescan (undobuf.other_insn);
3759 }
3760
3761 if (i1 && !(NOTE_P(i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
3762 {
3763 if (dump_file)
3764 {
3765 fprintf (dump_file, "modifying insn i1 ");
3766 dump_insn_slim (dump_file, i1);
3767 }
3768 df_insn_rescan (i1);
3769 }
3770
3771 if (i2 && !(NOTE_P(i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
3772 {
3773 if (dump_file)
3774 {
3775 fprintf (dump_file, "modifying insn i2 ");
3776 dump_insn_slim (dump_file, i2);
3777 }
3778 df_insn_rescan (i2);
3779 }
3780
3781 if (i3 && !(NOTE_P(i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
3782 {
3783 if (dump_file)
3784 {
3785 fprintf (dump_file, "modifying insn i3 ");
3786 dump_insn_slim (dump_file, i3);
3787 }
3788 df_insn_rescan (i3);
3789 }
3790
3791 /* Set new_direct_jump_p if a new return or simple jump instruction
3792 has been created. Adjust the CFG accordingly. */
3793
3794 if (returnjump_p (i3) || any_uncondjump_p (i3))
3795 {
3796 *new_direct_jump_p = 1;
3797 mark_jump_label (PATTERN (i3), i3, 0);
3798 update_cfg_for_uncondjump (i3);
3799 }
3800
3801 if (undobuf.other_insn != NULL_RTX
3802 && (returnjump_p (undobuf.other_insn)
3803 || any_uncondjump_p (undobuf.other_insn)))
3804 {
3805 *new_direct_jump_p = 1;
3806 update_cfg_for_uncondjump (undobuf.other_insn);
3807 }
3808
3809 /* A noop might also need cleaning up of CFG, if it comes from the
3810 simplification of a jump. */
3811 if (GET_CODE (newpat) == SET
3812 && SET_SRC (newpat) == pc_rtx
3813 && SET_DEST (newpat) == pc_rtx)
3814 {
3815 *new_direct_jump_p = 1;
3816 update_cfg_for_uncondjump (i3);
3817 }
3818
3819 combine_successes++;
3820 undo_commit ();
3821
3822 if (added_links_insn
3823 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
3824 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
3825 return added_links_insn;
3826 else
3827 return newi2pat ? i2 : i3;
3828 }
3829 \f
3830 /* Undo all the modifications recorded in undobuf. */
3831
3832 static void
3833 undo_all (void)
3834 {
3835 struct undo *undo, *next;
3836
3837 for (undo = undobuf.undos; undo; undo = next)
3838 {
3839 next = undo->next;
3840 switch (undo->kind)
3841 {
3842 case UNDO_RTX:
3843 *undo->where.r = undo->old_contents.r;
3844 break;
3845 case UNDO_INT:
3846 *undo->where.i = undo->old_contents.i;
3847 break;
3848 case UNDO_MODE:
3849 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
3850 break;
3851 default:
3852 gcc_unreachable ();
3853 }
3854
3855 undo->next = undobuf.frees;
3856 undobuf.frees = undo;
3857 }
3858
3859 undobuf.undos = 0;
3860 }
3861
3862 /* We've committed to accepting the changes we made. Move all
3863 of the undos to the free list. */
3864
3865 static void
3866 undo_commit (void)
3867 {
3868 struct undo *undo, *next;
3869
3870 for (undo = undobuf.undos; undo; undo = next)
3871 {
3872 next = undo->next;
3873 undo->next = undobuf.frees;
3874 undobuf.frees = undo;
3875 }
3876 undobuf.undos = 0;
3877 }
3878 \f
3879 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
3880 where we have an arithmetic expression and return that point. LOC will
3881 be inside INSN.
3882
3883 try_combine will call this function to see if an insn can be split into
3884 two insns. */
3885
3886 static rtx *
3887 find_split_point (rtx *loc, rtx insn)
3888 {
3889 rtx x = *loc;
3890 enum rtx_code code = GET_CODE (x);
3891 rtx *split;
3892 unsigned HOST_WIDE_INT len = 0;
3893 HOST_WIDE_INT pos = 0;
3894 int unsignedp = 0;
3895 rtx inner = NULL_RTX;
3896
3897 /* First special-case some codes. */
3898 switch (code)
3899 {
3900 case SUBREG:
3901 #ifdef INSN_SCHEDULING
3902 /* If we are making a paradoxical SUBREG invalid, it becomes a split
3903 point. */
3904 if (MEM_P (SUBREG_REG (x)))
3905 return loc;
3906 #endif
3907 return find_split_point (&SUBREG_REG (x), insn);
3908
3909 case MEM:
3910 #ifdef HAVE_lo_sum
3911 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
3912 using LO_SUM and HIGH. */
3913 if (GET_CODE (XEXP (x, 0)) == CONST
3914 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3915 {
3916 SUBST (XEXP (x, 0),
3917 gen_rtx_LO_SUM (Pmode,
3918 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
3919 XEXP (x, 0)));
3920 return &XEXP (XEXP (x, 0), 0);
3921 }
3922 #endif
3923
3924 /* If we have a PLUS whose second operand is a constant and the
3925 address is not valid, perhaps will can split it up using
3926 the machine-specific way to split large constants. We use
3927 the first pseudo-reg (one of the virtual regs) as a placeholder;
3928 it will not remain in the result. */
3929 if (GET_CODE (XEXP (x, 0)) == PLUS
3930 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
3931 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
3932 {
3933 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3934 rtx seq = combine_split_insns (gen_rtx_SET (VOIDmode, reg,
3935 XEXP (x, 0)),
3936 subst_insn);
3937
3938 /* This should have produced two insns, each of which sets our
3939 placeholder. If the source of the second is a valid address,
3940 we can make put both sources together and make a split point
3941 in the middle. */
3942
3943 if (seq
3944 && NEXT_INSN (seq) != NULL_RTX
3945 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
3946 && NONJUMP_INSN_P (seq)
3947 && GET_CODE (PATTERN (seq)) == SET
3948 && SET_DEST (PATTERN (seq)) == reg
3949 && ! reg_mentioned_p (reg,
3950 SET_SRC (PATTERN (seq)))
3951 && NONJUMP_INSN_P (NEXT_INSN (seq))
3952 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
3953 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
3954 && memory_address_p (GET_MODE (x),
3955 SET_SRC (PATTERN (NEXT_INSN (seq)))))
3956 {
3957 rtx src1 = SET_SRC (PATTERN (seq));
3958 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
3959
3960 /* Replace the placeholder in SRC2 with SRC1. If we can
3961 find where in SRC2 it was placed, that can become our
3962 split point and we can replace this address with SRC2.
3963 Just try two obvious places. */
3964
3965 src2 = replace_rtx (src2, reg, src1);
3966 split = 0;
3967 if (XEXP (src2, 0) == src1)
3968 split = &XEXP (src2, 0);
3969 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
3970 && XEXP (XEXP (src2, 0), 0) == src1)
3971 split = &XEXP (XEXP (src2, 0), 0);
3972
3973 if (split)
3974 {
3975 SUBST (XEXP (x, 0), src2);
3976 return split;
3977 }
3978 }
3979
3980 /* If that didn't work, perhaps the first operand is complex and
3981 needs to be computed separately, so make a split point there.
3982 This will occur on machines that just support REG + CONST
3983 and have a constant moved through some previous computation. */
3984
3985 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
3986 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3987 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
3988 return &XEXP (XEXP (x, 0), 0);
3989 }
3990
3991 /* If we have a PLUS whose first operand is complex, try computing it
3992 separately by making a split there. */
3993 if (GET_CODE (XEXP (x, 0)) == PLUS
3994 && ! memory_address_p (GET_MODE (x), XEXP (x, 0))
3995 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
3996 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3997 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
3998 return &XEXP (XEXP (x, 0), 0);
3999 break;
4000
4001 case SET:
4002 #ifdef HAVE_cc0
4003 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4004 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4005 we need to put the operand into a register. So split at that
4006 point. */
4007
4008 if (SET_DEST (x) == cc0_rtx
4009 && GET_CODE (SET_SRC (x)) != COMPARE
4010 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4011 && !OBJECT_P (SET_SRC (x))
4012 && ! (GET_CODE (SET_SRC (x)) == SUBREG
4013 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4014 return &SET_SRC (x);
4015 #endif
4016
4017 /* See if we can split SET_SRC as it stands. */
4018 split = find_split_point (&SET_SRC (x), insn);
4019 if (split && split != &SET_SRC (x))
4020 return split;
4021
4022 /* See if we can split SET_DEST as it stands. */
4023 split = find_split_point (&SET_DEST (x), insn);
4024 if (split && split != &SET_DEST (x))
4025 return split;
4026
4027 /* See if this is a bitfield assignment with everything constant. If
4028 so, this is an IOR of an AND, so split it into that. */
4029 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4030 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
4031 <= HOST_BITS_PER_WIDE_INT)
4032 && CONST_INT_P (XEXP (SET_DEST (x), 1))
4033 && CONST_INT_P (XEXP (SET_DEST (x), 2))
4034 && CONST_INT_P (SET_SRC (x))
4035 && ((INTVAL (XEXP (SET_DEST (x), 1))
4036 + INTVAL (XEXP (SET_DEST (x), 2)))
4037 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
4038 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4039 {
4040 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4041 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4042 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4043 rtx dest = XEXP (SET_DEST (x), 0);
4044 enum machine_mode mode = GET_MODE (dest);
4045 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
4046 rtx or_mask;
4047
4048 if (BITS_BIG_ENDIAN)
4049 pos = GET_MODE_BITSIZE (mode) - len - pos;
4050
4051 or_mask = gen_int_mode (src << pos, mode);
4052 if (src == mask)
4053 SUBST (SET_SRC (x),
4054 simplify_gen_binary (IOR, mode, dest, or_mask));
4055 else
4056 {
4057 rtx negmask = gen_int_mode (~(mask << pos), mode);
4058 SUBST (SET_SRC (x),
4059 simplify_gen_binary (IOR, mode,
4060 simplify_gen_binary (AND, mode,
4061 dest, negmask),
4062 or_mask));
4063 }
4064
4065 SUBST (SET_DEST (x), dest);
4066
4067 split = find_split_point (&SET_SRC (x), insn);
4068 if (split && split != &SET_SRC (x))
4069 return split;
4070 }
4071
4072 /* Otherwise, see if this is an operation that we can split into two.
4073 If so, try to split that. */
4074 code = GET_CODE (SET_SRC (x));
4075
4076 switch (code)
4077 {
4078 case AND:
4079 /* If we are AND'ing with a large constant that is only a single
4080 bit and the result is only being used in a context where we
4081 need to know if it is zero or nonzero, replace it with a bit
4082 extraction. This will avoid the large constant, which might
4083 have taken more than one insn to make. If the constant were
4084 not a valid argument to the AND but took only one insn to make,
4085 this is no worse, but if it took more than one insn, it will
4086 be better. */
4087
4088 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4089 && REG_P (XEXP (SET_SRC (x), 0))
4090 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4091 && REG_P (SET_DEST (x))
4092 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
4093 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4094 && XEXP (*split, 0) == SET_DEST (x)
4095 && XEXP (*split, 1) == const0_rtx)
4096 {
4097 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4098 XEXP (SET_SRC (x), 0),
4099 pos, NULL_RTX, 1, 1, 0, 0);
4100 if (extraction != 0)
4101 {
4102 SUBST (SET_SRC (x), extraction);
4103 return find_split_point (loc, insn);
4104 }
4105 }
4106 break;
4107
4108 case NE:
4109 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4110 is known to be on, this can be converted into a NEG of a shift. */
4111 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
4112 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
4113 && 1 <= (pos = exact_log2
4114 (nonzero_bits (XEXP (SET_SRC (x), 0),
4115 GET_MODE (XEXP (SET_SRC (x), 0))))))
4116 {
4117 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
4118
4119 SUBST (SET_SRC (x),
4120 gen_rtx_NEG (mode,
4121 gen_rtx_LSHIFTRT (mode,
4122 XEXP (SET_SRC (x), 0),
4123 GEN_INT (pos))));
4124
4125 split = find_split_point (&SET_SRC (x), insn);
4126 if (split && split != &SET_SRC (x))
4127 return split;
4128 }
4129 break;
4130
4131 case SIGN_EXTEND:
4132 inner = XEXP (SET_SRC (x), 0);
4133
4134 /* We can't optimize if either mode is a partial integer
4135 mode as we don't know how many bits are significant
4136 in those modes. */
4137 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
4138 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
4139 break;
4140
4141 pos = 0;
4142 len = GET_MODE_BITSIZE (GET_MODE (inner));
4143 unsignedp = 0;
4144 break;
4145
4146 case SIGN_EXTRACT:
4147 case ZERO_EXTRACT:
4148 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4149 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
4150 {
4151 inner = XEXP (SET_SRC (x), 0);
4152 len = INTVAL (XEXP (SET_SRC (x), 1));
4153 pos = INTVAL (XEXP (SET_SRC (x), 2));
4154
4155 if (BITS_BIG_ENDIAN)
4156 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
4157 unsignedp = (code == ZERO_EXTRACT);
4158 }
4159 break;
4160
4161 default:
4162 break;
4163 }
4164
4165 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
4166 {
4167 enum machine_mode mode = GET_MODE (SET_SRC (x));
4168
4169 /* For unsigned, we have a choice of a shift followed by an
4170 AND or two shifts. Use two shifts for field sizes where the
4171 constant might be too large. We assume here that we can
4172 always at least get 8-bit constants in an AND insn, which is
4173 true for every current RISC. */
4174
4175 if (unsignedp && len <= 8)
4176 {
4177 SUBST (SET_SRC (x),
4178 gen_rtx_AND (mode,
4179 gen_rtx_LSHIFTRT
4180 (mode, gen_lowpart (mode, inner),
4181 GEN_INT (pos)),
4182 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
4183
4184 split = find_split_point (&SET_SRC (x), insn);
4185 if (split && split != &SET_SRC (x))
4186 return split;
4187 }
4188 else
4189 {
4190 SUBST (SET_SRC (x),
4191 gen_rtx_fmt_ee
4192 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
4193 gen_rtx_ASHIFT (mode,
4194 gen_lowpart (mode, inner),
4195 GEN_INT (GET_MODE_BITSIZE (mode)
4196 - len - pos)),
4197 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
4198
4199 split = find_split_point (&SET_SRC (x), insn);
4200 if (split && split != &SET_SRC (x))
4201 return split;
4202 }
4203 }
4204
4205 /* See if this is a simple operation with a constant as the second
4206 operand. It might be that this constant is out of range and hence
4207 could be used as a split point. */
4208 if (BINARY_P (SET_SRC (x))
4209 && CONSTANT_P (XEXP (SET_SRC (x), 1))
4210 && (OBJECT_P (XEXP (SET_SRC (x), 0))
4211 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
4212 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
4213 return &XEXP (SET_SRC (x), 1);
4214
4215 /* Finally, see if this is a simple operation with its first operand
4216 not in a register. The operation might require this operand in a
4217 register, so return it as a split point. We can always do this
4218 because if the first operand were another operation, we would have
4219 already found it as a split point. */
4220 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
4221 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
4222 return &XEXP (SET_SRC (x), 0);
4223
4224 return 0;
4225
4226 case AND:
4227 case IOR:
4228 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
4229 it is better to write this as (not (ior A B)) so we can split it.
4230 Similarly for IOR. */
4231 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
4232 {
4233 SUBST (*loc,
4234 gen_rtx_NOT (GET_MODE (x),
4235 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
4236 GET_MODE (x),
4237 XEXP (XEXP (x, 0), 0),
4238 XEXP (XEXP (x, 1), 0))));
4239 return find_split_point (loc, insn);
4240 }
4241
4242 /* Many RISC machines have a large set of logical insns. If the
4243 second operand is a NOT, put it first so we will try to split the
4244 other operand first. */
4245 if (GET_CODE (XEXP (x, 1)) == NOT)
4246 {
4247 rtx tem = XEXP (x, 0);
4248 SUBST (XEXP (x, 0), XEXP (x, 1));
4249 SUBST (XEXP (x, 1), tem);
4250 }
4251 break;
4252
4253 default:
4254 break;
4255 }
4256
4257 /* Otherwise, select our actions depending on our rtx class. */
4258 switch (GET_RTX_CLASS (code))
4259 {
4260 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
4261 case RTX_TERNARY:
4262 split = find_split_point (&XEXP (x, 2), insn);
4263 if (split)
4264 return split;
4265 /* ... fall through ... */
4266 case RTX_BIN_ARITH:
4267 case RTX_COMM_ARITH:
4268 case RTX_COMPARE:
4269 case RTX_COMM_COMPARE:
4270 split = find_split_point (&XEXP (x, 1), insn);
4271 if (split)
4272 return split;
4273 /* ... fall through ... */
4274 case RTX_UNARY:
4275 /* Some machines have (and (shift ...) ...) insns. If X is not
4276 an AND, but XEXP (X, 0) is, use it as our split point. */
4277 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
4278 return &XEXP (x, 0);
4279
4280 split = find_split_point (&XEXP (x, 0), insn);
4281 if (split)
4282 return split;
4283 return loc;
4284
4285 default:
4286 /* Otherwise, we don't have a split point. */
4287 return 0;
4288 }
4289 }
4290 \f
4291 /* Throughout X, replace FROM with TO, and return the result.
4292 The result is TO if X is FROM;
4293 otherwise the result is X, but its contents may have been modified.
4294 If they were modified, a record was made in undobuf so that
4295 undo_all will (among other things) return X to its original state.
4296
4297 If the number of changes necessary is too much to record to undo,
4298 the excess changes are not made, so the result is invalid.
4299 The changes already made can still be undone.
4300 undobuf.num_undo is incremented for such changes, so by testing that
4301 the caller can tell whether the result is valid.
4302
4303 `n_occurrences' is incremented each time FROM is replaced.
4304
4305 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
4306
4307 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
4308 by copying if `n_occurrences' is nonzero. */
4309
4310 static rtx
4311 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
4312 {
4313 enum rtx_code code = GET_CODE (x);
4314 enum machine_mode op0_mode = VOIDmode;
4315 const char *fmt;
4316 int len, i;
4317 rtx new_rtx;
4318
4319 /* Two expressions are equal if they are identical copies of a shared
4320 RTX or if they are both registers with the same register number
4321 and mode. */
4322
4323 #define COMBINE_RTX_EQUAL_P(X,Y) \
4324 ((X) == (Y) \
4325 || (REG_P (X) && REG_P (Y) \
4326 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
4327
4328 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
4329 {
4330 n_occurrences++;
4331 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
4332 }
4333
4334 /* If X and FROM are the same register but different modes, they
4335 will not have been seen as equal above. However, the log links code
4336 will make a LOG_LINKS entry for that case. If we do nothing, we
4337 will try to rerecognize our original insn and, when it succeeds,
4338 we will delete the feeding insn, which is incorrect.
4339
4340 So force this insn not to match in this (rare) case. */
4341 if (! in_dest && code == REG && REG_P (from)
4342 && reg_overlap_mentioned_p (x, from))
4343 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
4344
4345 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
4346 of which may contain things that can be combined. */
4347 if (code != MEM && code != LO_SUM && OBJECT_P (x))
4348 return x;
4349
4350 /* It is possible to have a subexpression appear twice in the insn.
4351 Suppose that FROM is a register that appears within TO.
4352 Then, after that subexpression has been scanned once by `subst',
4353 the second time it is scanned, TO may be found. If we were
4354 to scan TO here, we would find FROM within it and create a
4355 self-referent rtl structure which is completely wrong. */
4356 if (COMBINE_RTX_EQUAL_P (x, to))
4357 return to;
4358
4359 /* Parallel asm_operands need special attention because all of the
4360 inputs are shared across the arms. Furthermore, unsharing the
4361 rtl results in recognition failures. Failure to handle this case
4362 specially can result in circular rtl.
4363
4364 Solve this by doing a normal pass across the first entry of the
4365 parallel, and only processing the SET_DESTs of the subsequent
4366 entries. Ug. */
4367
4368 if (code == PARALLEL
4369 && GET_CODE (XVECEXP (x, 0, 0)) == SET
4370 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
4371 {
4372 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
4373
4374 /* If this substitution failed, this whole thing fails. */
4375 if (GET_CODE (new_rtx) == CLOBBER
4376 && XEXP (new_rtx, 0) == const0_rtx)
4377 return new_rtx;
4378
4379 SUBST (XVECEXP (x, 0, 0), new_rtx);
4380
4381 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
4382 {
4383 rtx dest = SET_DEST (XVECEXP (x, 0, i));
4384
4385 if (!REG_P (dest)
4386 && GET_CODE (dest) != CC0
4387 && GET_CODE (dest) != PC)
4388 {
4389 new_rtx = subst (dest, from, to, 0, unique_copy);
4390
4391 /* If this substitution failed, this whole thing fails. */
4392 if (GET_CODE (new_rtx) == CLOBBER
4393 && XEXP (new_rtx, 0) == const0_rtx)
4394 return new_rtx;
4395
4396 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
4397 }
4398 }
4399 }
4400 else
4401 {
4402 len = GET_RTX_LENGTH (code);
4403 fmt = GET_RTX_FORMAT (code);
4404
4405 /* We don't need to process a SET_DEST that is a register, CC0,
4406 or PC, so set up to skip this common case. All other cases
4407 where we want to suppress replacing something inside a
4408 SET_SRC are handled via the IN_DEST operand. */
4409 if (code == SET
4410 && (REG_P (SET_DEST (x))
4411 || GET_CODE (SET_DEST (x)) == CC0
4412 || GET_CODE (SET_DEST (x)) == PC))
4413 fmt = "ie";
4414
4415 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
4416 constant. */
4417 if (fmt[0] == 'e')
4418 op0_mode = GET_MODE (XEXP (x, 0));
4419
4420 for (i = 0; i < len; i++)
4421 {
4422 if (fmt[i] == 'E')
4423 {
4424 int j;
4425 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4426 {
4427 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
4428 {
4429 new_rtx = (unique_copy && n_occurrences
4430 ? copy_rtx (to) : to);
4431 n_occurrences++;
4432 }
4433 else
4434 {
4435 new_rtx = subst (XVECEXP (x, i, j), from, to, 0,
4436 unique_copy);
4437
4438 /* If this substitution failed, this whole thing
4439 fails. */
4440 if (GET_CODE (new_rtx) == CLOBBER
4441 && XEXP (new_rtx, 0) == const0_rtx)
4442 return new_rtx;
4443 }
4444
4445 SUBST (XVECEXP (x, i, j), new_rtx);
4446 }
4447 }
4448 else if (fmt[i] == 'e')
4449 {
4450 /* If this is a register being set, ignore it. */
4451 new_rtx = XEXP (x, i);
4452 if (in_dest
4453 && i == 0
4454 && (((code == SUBREG || code == ZERO_EXTRACT)
4455 && REG_P (new_rtx))
4456 || code == STRICT_LOW_PART))
4457 ;
4458
4459 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
4460 {
4461 /* In general, don't install a subreg involving two
4462 modes not tieable. It can worsen register
4463 allocation, and can even make invalid reload
4464 insns, since the reg inside may need to be copied
4465 from in the outside mode, and that may be invalid
4466 if it is an fp reg copied in integer mode.
4467
4468 We allow two exceptions to this: It is valid if
4469 it is inside another SUBREG and the mode of that
4470 SUBREG and the mode of the inside of TO is
4471 tieable and it is valid if X is a SET that copies
4472 FROM to CC0. */
4473
4474 if (GET_CODE (to) == SUBREG
4475 && ! MODES_TIEABLE_P (GET_MODE (to),
4476 GET_MODE (SUBREG_REG (to)))
4477 && ! (code == SUBREG
4478 && MODES_TIEABLE_P (GET_MODE (x),
4479 GET_MODE (SUBREG_REG (to))))
4480 #ifdef HAVE_cc0
4481 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
4482 #endif
4483 )
4484 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
4485
4486 #ifdef CANNOT_CHANGE_MODE_CLASS
4487 if (code == SUBREG
4488 && REG_P (to)
4489 && REGNO (to) < FIRST_PSEUDO_REGISTER
4490 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
4491 GET_MODE (to),
4492 GET_MODE (x)))
4493 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
4494 #endif
4495
4496 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
4497 n_occurrences++;
4498 }
4499 else
4500 /* If we are in a SET_DEST, suppress most cases unless we
4501 have gone inside a MEM, in which case we want to
4502 simplify the address. We assume here that things that
4503 are actually part of the destination have their inner
4504 parts in the first expression. This is true for SUBREG,
4505 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
4506 things aside from REG and MEM that should appear in a
4507 SET_DEST. */
4508 new_rtx = subst (XEXP (x, i), from, to,
4509 (((in_dest
4510 && (code == SUBREG || code == STRICT_LOW_PART
4511 || code == ZERO_EXTRACT))
4512 || code == SET)
4513 && i == 0), unique_copy);
4514
4515 /* If we found that we will have to reject this combination,
4516 indicate that by returning the CLOBBER ourselves, rather than
4517 an expression containing it. This will speed things up as
4518 well as prevent accidents where two CLOBBERs are considered
4519 to be equal, thus producing an incorrect simplification. */
4520
4521 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
4522 return new_rtx;
4523
4524 if (GET_CODE (x) == SUBREG
4525 && (CONST_INT_P (new_rtx)
4526 || GET_CODE (new_rtx) == CONST_DOUBLE))
4527 {
4528 enum machine_mode mode = GET_MODE (x);
4529
4530 x = simplify_subreg (GET_MODE (x), new_rtx,
4531 GET_MODE (SUBREG_REG (x)),
4532 SUBREG_BYTE (x));
4533 if (! x)
4534 x = gen_rtx_CLOBBER (mode, const0_rtx);
4535 }
4536 else if (CONST_INT_P (new_rtx)
4537 && GET_CODE (x) == ZERO_EXTEND)
4538 {
4539 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
4540 new_rtx, GET_MODE (XEXP (x, 0)));
4541 gcc_assert (x);
4542 }
4543 else
4544 SUBST (XEXP (x, i), new_rtx);
4545 }
4546 }
4547 }
4548
4549 /* Check if we are loading something from the constant pool via float
4550 extension; in this case we would undo compress_float_constant
4551 optimization and degenerate constant load to an immediate value. */
4552 if (GET_CODE (x) == FLOAT_EXTEND
4553 && MEM_P (XEXP (x, 0))
4554 && MEM_READONLY_P (XEXP (x, 0)))
4555 {
4556 rtx tmp = avoid_constant_pool_reference (x);
4557 if (x != tmp)
4558 return x;
4559 }
4560
4561 /* Try to simplify X. If the simplification changed the code, it is likely
4562 that further simplification will help, so loop, but limit the number
4563 of repetitions that will be performed. */
4564
4565 for (i = 0; i < 4; i++)
4566 {
4567 /* If X is sufficiently simple, don't bother trying to do anything
4568 with it. */
4569 if (code != CONST_INT && code != REG && code != CLOBBER)
4570 x = combine_simplify_rtx (x, op0_mode, in_dest);
4571
4572 if (GET_CODE (x) == code)
4573 break;
4574
4575 code = GET_CODE (x);
4576
4577 /* We no longer know the original mode of operand 0 since we
4578 have changed the form of X) */
4579 op0_mode = VOIDmode;
4580 }
4581
4582 return x;
4583 }
4584 \f
4585 /* Simplify X, a piece of RTL. We just operate on the expression at the
4586 outer level; call `subst' to simplify recursively. Return the new
4587 expression.
4588
4589 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
4590 if we are inside a SET_DEST. */
4591
4592 static rtx
4593 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest)
4594 {
4595 enum rtx_code code = GET_CODE (x);
4596 enum machine_mode mode = GET_MODE (x);
4597 rtx temp;
4598 int i;
4599
4600 /* If this is a commutative operation, put a constant last and a complex
4601 expression first. We don't need to do this for comparisons here. */
4602 if (COMMUTATIVE_ARITH_P (x)
4603 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
4604 {
4605 temp = XEXP (x, 0);
4606 SUBST (XEXP (x, 0), XEXP (x, 1));
4607 SUBST (XEXP (x, 1), temp);
4608 }
4609
4610 /* If this is a simple operation applied to an IF_THEN_ELSE, try
4611 applying it to the arms of the IF_THEN_ELSE. This often simplifies
4612 things. Check for cases where both arms are testing the same
4613 condition.
4614
4615 Don't do anything if all operands are very simple. */
4616
4617 if ((BINARY_P (x)
4618 && ((!OBJECT_P (XEXP (x, 0))
4619 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4620 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
4621 || (!OBJECT_P (XEXP (x, 1))
4622 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
4623 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
4624 || (UNARY_P (x)
4625 && (!OBJECT_P (XEXP (x, 0))
4626 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4627 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
4628 {
4629 rtx cond, true_rtx, false_rtx;
4630
4631 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
4632 if (cond != 0
4633 /* If everything is a comparison, what we have is highly unlikely
4634 to be simpler, so don't use it. */
4635 && ! (COMPARISON_P (x)
4636 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
4637 {
4638 rtx cop1 = const0_rtx;
4639 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
4640
4641 if (cond_code == NE && COMPARISON_P (cond))
4642 return x;
4643
4644 /* Simplify the alternative arms; this may collapse the true and
4645 false arms to store-flag values. Be careful to use copy_rtx
4646 here since true_rtx or false_rtx might share RTL with x as a
4647 result of the if_then_else_cond call above. */
4648 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
4649 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
4650
4651 /* If true_rtx and false_rtx are not general_operands, an if_then_else
4652 is unlikely to be simpler. */
4653 if (general_operand (true_rtx, VOIDmode)
4654 && general_operand (false_rtx, VOIDmode))
4655 {
4656 enum rtx_code reversed;
4657
4658 /* Restarting if we generate a store-flag expression will cause
4659 us to loop. Just drop through in this case. */
4660
4661 /* If the result values are STORE_FLAG_VALUE and zero, we can
4662 just make the comparison operation. */
4663 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
4664 x = simplify_gen_relational (cond_code, mode, VOIDmode,
4665 cond, cop1);
4666 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
4667 && ((reversed = reversed_comparison_code_parts
4668 (cond_code, cond, cop1, NULL))
4669 != UNKNOWN))
4670 x = simplify_gen_relational (reversed, mode, VOIDmode,
4671 cond, cop1);
4672
4673 /* Likewise, we can make the negate of a comparison operation
4674 if the result values are - STORE_FLAG_VALUE and zero. */
4675 else if (CONST_INT_P (true_rtx)
4676 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
4677 && false_rtx == const0_rtx)
4678 x = simplify_gen_unary (NEG, mode,
4679 simplify_gen_relational (cond_code,
4680 mode, VOIDmode,
4681 cond, cop1),
4682 mode);
4683 else if (CONST_INT_P (false_rtx)
4684 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
4685 && true_rtx == const0_rtx
4686 && ((reversed = reversed_comparison_code_parts
4687 (cond_code, cond, cop1, NULL))
4688 != UNKNOWN))
4689 x = simplify_gen_unary (NEG, mode,
4690 simplify_gen_relational (reversed,
4691 mode, VOIDmode,
4692 cond, cop1),
4693 mode);
4694 else
4695 return gen_rtx_IF_THEN_ELSE (mode,
4696 simplify_gen_relational (cond_code,
4697 mode,
4698 VOIDmode,
4699 cond,
4700 cop1),
4701 true_rtx, false_rtx);
4702
4703 code = GET_CODE (x);
4704 op0_mode = VOIDmode;
4705 }
4706 }
4707 }
4708
4709 /* Try to fold this expression in case we have constants that weren't
4710 present before. */
4711 temp = 0;
4712 switch (GET_RTX_CLASS (code))
4713 {
4714 case RTX_UNARY:
4715 if (op0_mode == VOIDmode)
4716 op0_mode = GET_MODE (XEXP (x, 0));
4717 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
4718 break;
4719 case RTX_COMPARE:
4720 case RTX_COMM_COMPARE:
4721 {
4722 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
4723 if (cmp_mode == VOIDmode)
4724 {
4725 cmp_mode = GET_MODE (XEXP (x, 1));
4726 if (cmp_mode == VOIDmode)
4727 cmp_mode = op0_mode;
4728 }
4729 temp = simplify_relational_operation (code, mode, cmp_mode,
4730 XEXP (x, 0), XEXP (x, 1));
4731 }
4732 break;
4733 case RTX_COMM_ARITH:
4734 case RTX_BIN_ARITH:
4735 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
4736 break;
4737 case RTX_BITFIELD_OPS:
4738 case RTX_TERNARY:
4739 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
4740 XEXP (x, 1), XEXP (x, 2));
4741 break;
4742 default:
4743 break;
4744 }
4745
4746 if (temp)
4747 {
4748 x = temp;
4749 code = GET_CODE (temp);
4750 op0_mode = VOIDmode;
4751 mode = GET_MODE (temp);
4752 }
4753
4754 /* First see if we can apply the inverse distributive law. */
4755 if (code == PLUS || code == MINUS
4756 || code == AND || code == IOR || code == XOR)
4757 {
4758 x = apply_distributive_law (x);
4759 code = GET_CODE (x);
4760 op0_mode = VOIDmode;
4761 }
4762
4763 /* If CODE is an associative operation not otherwise handled, see if we
4764 can associate some operands. This can win if they are constants or
4765 if they are logically related (i.e. (a & b) & a). */
4766 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
4767 || code == AND || code == IOR || code == XOR
4768 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
4769 && ((INTEGRAL_MODE_P (mode) && code != DIV)
4770 || (flag_associative_math && FLOAT_MODE_P (mode))))
4771 {
4772 if (GET_CODE (XEXP (x, 0)) == code)
4773 {
4774 rtx other = XEXP (XEXP (x, 0), 0);
4775 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
4776 rtx inner_op1 = XEXP (x, 1);
4777 rtx inner;
4778
4779 /* Make sure we pass the constant operand if any as the second
4780 one if this is a commutative operation. */
4781 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
4782 {
4783 rtx tem = inner_op0;
4784 inner_op0 = inner_op1;
4785 inner_op1 = tem;
4786 }
4787 inner = simplify_binary_operation (code == MINUS ? PLUS
4788 : code == DIV ? MULT
4789 : code,
4790 mode, inner_op0, inner_op1);
4791
4792 /* For commutative operations, try the other pair if that one
4793 didn't simplify. */
4794 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
4795 {
4796 other = XEXP (XEXP (x, 0), 1);
4797 inner = simplify_binary_operation (code, mode,
4798 XEXP (XEXP (x, 0), 0),
4799 XEXP (x, 1));
4800 }
4801
4802 if (inner)
4803 return simplify_gen_binary (code, mode, other, inner);
4804 }
4805 }
4806
4807 /* A little bit of algebraic simplification here. */
4808 switch (code)
4809 {
4810 case MEM:
4811 /* Ensure that our address has any ASHIFTs converted to MULT in case
4812 address-recognizing predicates are called later. */
4813 temp = make_compound_operation (XEXP (x, 0), MEM);
4814 SUBST (XEXP (x, 0), temp);
4815 break;
4816
4817 case SUBREG:
4818 if (op0_mode == VOIDmode)
4819 op0_mode = GET_MODE (SUBREG_REG (x));
4820
4821 /* See if this can be moved to simplify_subreg. */
4822 if (CONSTANT_P (SUBREG_REG (x))
4823 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
4824 /* Don't call gen_lowpart if the inner mode
4825 is VOIDmode and we cannot simplify it, as SUBREG without
4826 inner mode is invalid. */
4827 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
4828 || gen_lowpart_common (mode, SUBREG_REG (x))))
4829 return gen_lowpart (mode, SUBREG_REG (x));
4830
4831 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
4832 break;
4833 {
4834 rtx temp;
4835 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
4836 SUBREG_BYTE (x));
4837 if (temp)
4838 return temp;
4839 }
4840
4841 /* Don't change the mode of the MEM if that would change the meaning
4842 of the address. */
4843 if (MEM_P (SUBREG_REG (x))
4844 && (MEM_VOLATILE_P (SUBREG_REG (x))
4845 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
4846 return gen_rtx_CLOBBER (mode, const0_rtx);
4847
4848 /* Note that we cannot do any narrowing for non-constants since
4849 we might have been counting on using the fact that some bits were
4850 zero. We now do this in the SET. */
4851
4852 break;
4853
4854 case NEG:
4855 temp = expand_compound_operation (XEXP (x, 0));
4856
4857 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4858 replaced by (lshiftrt X C). This will convert
4859 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4860
4861 if (GET_CODE (temp) == ASHIFTRT
4862 && CONST_INT_P (XEXP (temp, 1))
4863 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4864 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
4865 INTVAL (XEXP (temp, 1)));
4866
4867 /* If X has only a single bit that might be nonzero, say, bit I, convert
4868 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4869 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4870 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4871 or a SUBREG of one since we'd be making the expression more
4872 complex if it was just a register. */
4873
4874 if (!REG_P (temp)
4875 && ! (GET_CODE (temp) == SUBREG
4876 && REG_P (SUBREG_REG (temp)))
4877 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4878 {
4879 rtx temp1 = simplify_shift_const
4880 (NULL_RTX, ASHIFTRT, mode,
4881 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4882 GET_MODE_BITSIZE (mode) - 1 - i),
4883 GET_MODE_BITSIZE (mode) - 1 - i);
4884
4885 /* If all we did was surround TEMP with the two shifts, we
4886 haven't improved anything, so don't use it. Otherwise,
4887 we are better off with TEMP1. */
4888 if (GET_CODE (temp1) != ASHIFTRT
4889 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4890 || XEXP (XEXP (temp1, 0), 0) != temp)
4891 return temp1;
4892 }
4893 break;
4894
4895 case TRUNCATE:
4896 /* We can't handle truncation to a partial integer mode here
4897 because we don't know the real bitsize of the partial
4898 integer mode. */
4899 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4900 break;
4901
4902 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
4903 SUBST (XEXP (x, 0),
4904 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4905 GET_MODE_MASK (mode), 0));
4906
4907 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
4908 whose value is a comparison can be replaced with a subreg if
4909 STORE_FLAG_VALUE permits. */
4910 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4911 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4912 && (temp = get_last_value (XEXP (x, 0)))
4913 && COMPARISON_P (temp))
4914 return gen_lowpart (mode, XEXP (x, 0));
4915 break;
4916
4917 case CONST:
4918 /* (const (const X)) can become (const X). Do it this way rather than
4919 returning the inner CONST since CONST can be shared with a
4920 REG_EQUAL note. */
4921 if (GET_CODE (XEXP (x, 0)) == CONST)
4922 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4923 break;
4924
4925 #ifdef HAVE_lo_sum
4926 case LO_SUM:
4927 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4928 can add in an offset. find_split_point will split this address up
4929 again if it doesn't match. */
4930 if (GET_CODE (XEXP (x, 0)) == HIGH
4931 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4932 return XEXP (x, 1);
4933 break;
4934 #endif
4935
4936 case PLUS:
4937 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4938 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4939 bit-field and can be replaced by either a sign_extend or a
4940 sign_extract. The `and' may be a zero_extend and the two
4941 <c>, -<c> constants may be reversed. */
4942 if (GET_CODE (XEXP (x, 0)) == XOR
4943 && CONST_INT_P (XEXP (x, 1))
4944 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4945 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4946 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4947 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4948 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4949 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4950 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
4951 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4952 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4953 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4954 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4955 == (unsigned int) i + 1))))
4956 return simplify_shift_const
4957 (NULL_RTX, ASHIFTRT, mode,
4958 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4959 XEXP (XEXP (XEXP (x, 0), 0), 0),
4960 GET_MODE_BITSIZE (mode) - (i + 1)),
4961 GET_MODE_BITSIZE (mode) - (i + 1));
4962
4963 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4964 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4965 the bitsize of the mode - 1. This allows simplification of
4966 "a = (b & 8) == 0;" */
4967 if (XEXP (x, 1) == constm1_rtx
4968 && !REG_P (XEXP (x, 0))
4969 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4970 && REG_P (SUBREG_REG (XEXP (x, 0))))
4971 && nonzero_bits (XEXP (x, 0), mode) == 1)
4972 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4973 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4974 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4975 GET_MODE_BITSIZE (mode) - 1),
4976 GET_MODE_BITSIZE (mode) - 1);
4977
4978 /* If we are adding two things that have no bits in common, convert
4979 the addition into an IOR. This will often be further simplified,
4980 for example in cases like ((a & 1) + (a & 2)), which can
4981 become a & 3. */
4982
4983 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4984 && (nonzero_bits (XEXP (x, 0), mode)
4985 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4986 {
4987 /* Try to simplify the expression further. */
4988 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4989 temp = combine_simplify_rtx (tor, mode, in_dest);
4990
4991 /* If we could, great. If not, do not go ahead with the IOR
4992 replacement, since PLUS appears in many special purpose
4993 address arithmetic instructions. */
4994 if (GET_CODE (temp) != CLOBBER && temp != tor)
4995 return temp;
4996 }
4997 break;
4998
4999 case MINUS:
5000 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
5001 (and <foo> (const_int pow2-1)) */
5002 if (GET_CODE (XEXP (x, 1)) == AND
5003 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
5004 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
5005 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
5006 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
5007 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
5008 break;
5009
5010 case MULT:
5011 /* If we have (mult (plus A B) C), apply the distributive law and then
5012 the inverse distributive law to see if things simplify. This
5013 occurs mostly in addresses, often when unrolling loops. */
5014
5015 if (GET_CODE (XEXP (x, 0)) == PLUS)
5016 {
5017 rtx result = distribute_and_simplify_rtx (x, 0);
5018 if (result)
5019 return result;
5020 }
5021
5022 /* Try simplify a*(b/c) as (a*b)/c. */
5023 if (FLOAT_MODE_P (mode) && flag_associative_math
5024 && GET_CODE (XEXP (x, 0)) == DIV)
5025 {
5026 rtx tem = simplify_binary_operation (MULT, mode,
5027 XEXP (XEXP (x, 0), 0),
5028 XEXP (x, 1));
5029 if (tem)
5030 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
5031 }
5032 break;
5033
5034 case UDIV:
5035 /* If this is a divide by a power of two, treat it as a shift if
5036 its first operand is a shift. */
5037 if (CONST_INT_P (XEXP (x, 1))
5038 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
5039 && (GET_CODE (XEXP (x, 0)) == ASHIFT
5040 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
5041 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
5042 || GET_CODE (XEXP (x, 0)) == ROTATE
5043 || GET_CODE (XEXP (x, 0)) == ROTATERT))
5044 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
5045 break;
5046
5047 case EQ: case NE:
5048 case GT: case GTU: case GE: case GEU:
5049 case LT: case LTU: case LE: case LEU:
5050 case UNEQ: case LTGT:
5051 case UNGT: case UNGE:
5052 case UNLT: case UNLE:
5053 case UNORDERED: case ORDERED:
5054 /* If the first operand is a condition code, we can't do anything
5055 with it. */
5056 if (GET_CODE (XEXP (x, 0)) == COMPARE
5057 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
5058 && ! CC0_P (XEXP (x, 0))))
5059 {
5060 rtx op0 = XEXP (x, 0);
5061 rtx op1 = XEXP (x, 1);
5062 enum rtx_code new_code;
5063
5064 if (GET_CODE (op0) == COMPARE)
5065 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5066
5067 /* Simplify our comparison, if possible. */
5068 new_code = simplify_comparison (code, &op0, &op1);
5069
5070 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
5071 if only the low-order bit is possibly nonzero in X (such as when
5072 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
5073 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
5074 known to be either 0 or -1, NE becomes a NEG and EQ becomes
5075 (plus X 1).
5076
5077 Remove any ZERO_EXTRACT we made when thinking this was a
5078 comparison. It may now be simpler to use, e.g., an AND. If a
5079 ZERO_EXTRACT is indeed appropriate, it will be placed back by
5080 the call to make_compound_operation in the SET case. */
5081
5082 if (STORE_FLAG_VALUE == 1
5083 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5084 && op1 == const0_rtx
5085 && mode == GET_MODE (op0)
5086 && nonzero_bits (op0, mode) == 1)
5087 return gen_lowpart (mode,
5088 expand_compound_operation (op0));
5089
5090 else if (STORE_FLAG_VALUE == 1
5091 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5092 && op1 == const0_rtx
5093 && mode == GET_MODE (op0)
5094 && (num_sign_bit_copies (op0, mode)
5095 == GET_MODE_BITSIZE (mode)))
5096 {
5097 op0 = expand_compound_operation (op0);
5098 return simplify_gen_unary (NEG, mode,
5099 gen_lowpart (mode, op0),
5100 mode);
5101 }
5102
5103 else if (STORE_FLAG_VALUE == 1
5104 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5105 && op1 == const0_rtx
5106 && mode == GET_MODE (op0)
5107 && nonzero_bits (op0, mode) == 1)
5108 {
5109 op0 = expand_compound_operation (op0);
5110 return simplify_gen_binary (XOR, mode,
5111 gen_lowpart (mode, op0),
5112 const1_rtx);
5113 }
5114
5115 else if (STORE_FLAG_VALUE == 1
5116 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5117 && op1 == const0_rtx
5118 && mode == GET_MODE (op0)
5119 && (num_sign_bit_copies (op0, mode)
5120 == GET_MODE_BITSIZE (mode)))
5121 {
5122 op0 = expand_compound_operation (op0);
5123 return plus_constant (gen_lowpart (mode, op0), 1);
5124 }
5125
5126 /* If STORE_FLAG_VALUE is -1, we have cases similar to
5127 those above. */
5128 if (STORE_FLAG_VALUE == -1
5129 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5130 && op1 == const0_rtx
5131 && (num_sign_bit_copies (op0, mode)
5132 == GET_MODE_BITSIZE (mode)))
5133 return gen_lowpart (mode,
5134 expand_compound_operation (op0));
5135
5136 else if (STORE_FLAG_VALUE == -1
5137 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5138 && op1 == const0_rtx
5139 && mode == GET_MODE (op0)
5140 && nonzero_bits (op0, mode) == 1)
5141 {
5142 op0 = expand_compound_operation (op0);
5143 return simplify_gen_unary (NEG, mode,
5144 gen_lowpart (mode, op0),
5145 mode);
5146 }
5147
5148 else if (STORE_FLAG_VALUE == -1
5149 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5150 && op1 == const0_rtx
5151 && mode == GET_MODE (op0)
5152 && (num_sign_bit_copies (op0, mode)
5153 == GET_MODE_BITSIZE (mode)))
5154 {
5155 op0 = expand_compound_operation (op0);
5156 return simplify_gen_unary (NOT, mode,
5157 gen_lowpart (mode, op0),
5158 mode);
5159 }
5160
5161 /* If X is 0/1, (eq X 0) is X-1. */
5162 else if (STORE_FLAG_VALUE == -1
5163 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5164 && op1 == const0_rtx
5165 && mode == GET_MODE (op0)
5166 && nonzero_bits (op0, mode) == 1)
5167 {
5168 op0 = expand_compound_operation (op0);
5169 return plus_constant (gen_lowpart (mode, op0), -1);
5170 }
5171
5172 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
5173 one bit that might be nonzero, we can convert (ne x 0) to
5174 (ashift x c) where C puts the bit in the sign bit. Remove any
5175 AND with STORE_FLAG_VALUE when we are done, since we are only
5176 going to test the sign bit. */
5177 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5178 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5179 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5180 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5181 && op1 == const0_rtx
5182 && mode == GET_MODE (op0)
5183 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
5184 {
5185 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
5186 expand_compound_operation (op0),
5187 GET_MODE_BITSIZE (mode) - 1 - i);
5188 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
5189 return XEXP (x, 0);
5190 else
5191 return x;
5192 }
5193
5194 /* If the code changed, return a whole new comparison. */
5195 if (new_code != code)
5196 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
5197
5198 /* Otherwise, keep this operation, but maybe change its operands.
5199 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
5200 SUBST (XEXP (x, 0), op0);
5201 SUBST (XEXP (x, 1), op1);
5202 }
5203 break;
5204
5205 case IF_THEN_ELSE:
5206 return simplify_if_then_else (x);
5207
5208 case ZERO_EXTRACT:
5209 case SIGN_EXTRACT:
5210 case ZERO_EXTEND:
5211 case SIGN_EXTEND:
5212 /* If we are processing SET_DEST, we are done. */
5213 if (in_dest)
5214 return x;
5215
5216 return expand_compound_operation (x);
5217
5218 case SET:
5219 return simplify_set (x);
5220
5221 case AND:
5222 case IOR:
5223 return simplify_logical (x);
5224
5225 case ASHIFT:
5226 case LSHIFTRT:
5227 case ASHIFTRT:
5228 case ROTATE:
5229 case ROTATERT:
5230 /* If this is a shift by a constant amount, simplify it. */
5231 if (CONST_INT_P (XEXP (x, 1)))
5232 return simplify_shift_const (x, code, mode, XEXP (x, 0),
5233 INTVAL (XEXP (x, 1)));
5234
5235 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
5236 SUBST (XEXP (x, 1),
5237 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
5238 ((HOST_WIDE_INT) 1
5239 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
5240 - 1,
5241 0));
5242 break;
5243
5244 default:
5245 break;
5246 }
5247
5248 return x;
5249 }
5250 \f
5251 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
5252
5253 static rtx
5254 simplify_if_then_else (rtx x)
5255 {
5256 enum machine_mode mode = GET_MODE (x);
5257 rtx cond = XEXP (x, 0);
5258 rtx true_rtx = XEXP (x, 1);
5259 rtx false_rtx = XEXP (x, 2);
5260 enum rtx_code true_code = GET_CODE (cond);
5261 int comparison_p = COMPARISON_P (cond);
5262 rtx temp;
5263 int i;
5264 enum rtx_code false_code;
5265 rtx reversed;
5266
5267 /* Simplify storing of the truth value. */
5268 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
5269 return simplify_gen_relational (true_code, mode, VOIDmode,
5270 XEXP (cond, 0), XEXP (cond, 1));
5271
5272 /* Also when the truth value has to be reversed. */
5273 if (comparison_p
5274 && true_rtx == const0_rtx && false_rtx == const_true_rtx
5275 && (reversed = reversed_comparison (cond, mode)))
5276 return reversed;
5277
5278 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
5279 in it is being compared against certain values. Get the true and false
5280 comparisons and see if that says anything about the value of each arm. */
5281
5282 if (comparison_p
5283 && ((false_code = reversed_comparison_code (cond, NULL))
5284 != UNKNOWN)
5285 && REG_P (XEXP (cond, 0)))
5286 {
5287 HOST_WIDE_INT nzb;
5288 rtx from = XEXP (cond, 0);
5289 rtx true_val = XEXP (cond, 1);
5290 rtx false_val = true_val;
5291 int swapped = 0;
5292
5293 /* If FALSE_CODE is EQ, swap the codes and arms. */
5294
5295 if (false_code == EQ)
5296 {
5297 swapped = 1, true_code = EQ, false_code = NE;
5298 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5299 }
5300
5301 /* If we are comparing against zero and the expression being tested has
5302 only a single bit that might be nonzero, that is its value when it is
5303 not equal to zero. Similarly if it is known to be -1 or 0. */
5304
5305 if (true_code == EQ && true_val == const0_rtx
5306 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
5307 {
5308 false_code = EQ;
5309 false_val = GEN_INT (trunc_int_for_mode (nzb, GET_MODE (from)));
5310 }
5311 else if (true_code == EQ && true_val == const0_rtx
5312 && (num_sign_bit_copies (from, GET_MODE (from))
5313 == GET_MODE_BITSIZE (GET_MODE (from))))
5314 {
5315 false_code = EQ;
5316 false_val = constm1_rtx;
5317 }
5318
5319 /* Now simplify an arm if we know the value of the register in the
5320 branch and it is used in the arm. Be careful due to the potential
5321 of locally-shared RTL. */
5322
5323 if (reg_mentioned_p (from, true_rtx))
5324 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
5325 from, true_val),
5326 pc_rtx, pc_rtx, 0, 0);
5327 if (reg_mentioned_p (from, false_rtx))
5328 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
5329 from, false_val),
5330 pc_rtx, pc_rtx, 0, 0);
5331
5332 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
5333 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
5334
5335 true_rtx = XEXP (x, 1);
5336 false_rtx = XEXP (x, 2);
5337 true_code = GET_CODE (cond);
5338 }
5339
5340 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
5341 reversed, do so to avoid needing two sets of patterns for
5342 subtract-and-branch insns. Similarly if we have a constant in the true
5343 arm, the false arm is the same as the first operand of the comparison, or
5344 the false arm is more complicated than the true arm. */
5345
5346 if (comparison_p
5347 && reversed_comparison_code (cond, NULL) != UNKNOWN
5348 && (true_rtx == pc_rtx
5349 || (CONSTANT_P (true_rtx)
5350 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
5351 || true_rtx == const0_rtx
5352 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
5353 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
5354 && !OBJECT_P (false_rtx))
5355 || reg_mentioned_p (true_rtx, false_rtx)
5356 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
5357 {
5358 true_code = reversed_comparison_code (cond, NULL);
5359 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
5360 SUBST (XEXP (x, 1), false_rtx);
5361 SUBST (XEXP (x, 2), true_rtx);
5362
5363 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5364 cond = XEXP (x, 0);
5365
5366 /* It is possible that the conditional has been simplified out. */
5367 true_code = GET_CODE (cond);
5368 comparison_p = COMPARISON_P (cond);
5369 }
5370
5371 /* If the two arms are identical, we don't need the comparison. */
5372
5373 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
5374 return true_rtx;
5375
5376 /* Convert a == b ? b : a to "a". */
5377 if (true_code == EQ && ! side_effects_p (cond)
5378 && !HONOR_NANS (mode)
5379 && rtx_equal_p (XEXP (cond, 0), false_rtx)
5380 && rtx_equal_p (XEXP (cond, 1), true_rtx))
5381 return false_rtx;
5382 else if (true_code == NE && ! side_effects_p (cond)
5383 && !HONOR_NANS (mode)
5384 && rtx_equal_p (XEXP (cond, 0), true_rtx)
5385 && rtx_equal_p (XEXP (cond, 1), false_rtx))
5386 return true_rtx;
5387
5388 /* Look for cases where we have (abs x) or (neg (abs X)). */
5389
5390 if (GET_MODE_CLASS (mode) == MODE_INT
5391 && comparison_p
5392 && XEXP (cond, 1) == const0_rtx
5393 && GET_CODE (false_rtx) == NEG
5394 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
5395 && rtx_equal_p (true_rtx, XEXP (cond, 0))
5396 && ! side_effects_p (true_rtx))
5397 switch (true_code)
5398 {
5399 case GT:
5400 case GE:
5401 return simplify_gen_unary (ABS, mode, true_rtx, mode);
5402 case LT:
5403 case LE:
5404 return
5405 simplify_gen_unary (NEG, mode,
5406 simplify_gen_unary (ABS, mode, true_rtx, mode),
5407 mode);
5408 default:
5409 break;
5410 }
5411
5412 /* Look for MIN or MAX. */
5413
5414 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
5415 && comparison_p
5416 && rtx_equal_p (XEXP (cond, 0), true_rtx)
5417 && rtx_equal_p (XEXP (cond, 1), false_rtx)
5418 && ! side_effects_p (cond))
5419 switch (true_code)
5420 {
5421 case GE:
5422 case GT:
5423 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
5424 case LE:
5425 case LT:
5426 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
5427 case GEU:
5428 case GTU:
5429 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
5430 case LEU:
5431 case LTU:
5432 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
5433 default:
5434 break;
5435 }
5436
5437 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
5438 second operand is zero, this can be done as (OP Z (mult COND C2)) where
5439 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
5440 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
5441 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
5442 neither 1 or -1, but it isn't worth checking for. */
5443
5444 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5445 && comparison_p
5446 && GET_MODE_CLASS (mode) == MODE_INT
5447 && ! side_effects_p (x))
5448 {
5449 rtx t = make_compound_operation (true_rtx, SET);
5450 rtx f = make_compound_operation (false_rtx, SET);
5451 rtx cond_op0 = XEXP (cond, 0);
5452 rtx cond_op1 = XEXP (cond, 1);
5453 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
5454 enum machine_mode m = mode;
5455 rtx z = 0, c1 = NULL_RTX;
5456
5457 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
5458 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
5459 || GET_CODE (t) == ASHIFT
5460 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
5461 && rtx_equal_p (XEXP (t, 0), f))
5462 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
5463
5464 /* If an identity-zero op is commutative, check whether there
5465 would be a match if we swapped the operands. */
5466 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
5467 || GET_CODE (t) == XOR)
5468 && rtx_equal_p (XEXP (t, 1), f))
5469 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
5470 else if (GET_CODE (t) == SIGN_EXTEND
5471 && (GET_CODE (XEXP (t, 0)) == PLUS
5472 || GET_CODE (XEXP (t, 0)) == MINUS
5473 || GET_CODE (XEXP (t, 0)) == IOR
5474 || GET_CODE (XEXP (t, 0)) == XOR
5475 || GET_CODE (XEXP (t, 0)) == ASHIFT
5476 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5477 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5478 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5479 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5480 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5481 && (num_sign_bit_copies (f, GET_MODE (f))
5482 > (unsigned int)
5483 (GET_MODE_BITSIZE (mode)
5484 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
5485 {
5486 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5487 extend_op = SIGN_EXTEND;
5488 m = GET_MODE (XEXP (t, 0));
5489 }
5490 else if (GET_CODE (t) == SIGN_EXTEND
5491 && (GET_CODE (XEXP (t, 0)) == PLUS
5492 || GET_CODE (XEXP (t, 0)) == IOR
5493 || GET_CODE (XEXP (t, 0)) == XOR)
5494 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5495 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5496 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5497 && (num_sign_bit_copies (f, GET_MODE (f))
5498 > (unsigned int)
5499 (GET_MODE_BITSIZE (mode)
5500 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
5501 {
5502 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5503 extend_op = SIGN_EXTEND;
5504 m = GET_MODE (XEXP (t, 0));
5505 }
5506 else if (GET_CODE (t) == ZERO_EXTEND
5507 && (GET_CODE (XEXP (t, 0)) == PLUS
5508 || GET_CODE (XEXP (t, 0)) == MINUS
5509 || GET_CODE (XEXP (t, 0)) == IOR
5510 || GET_CODE (XEXP (t, 0)) == XOR
5511 || GET_CODE (XEXP (t, 0)) == ASHIFT
5512 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5513 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5514 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5515 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5516 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5517 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5518 && ((nonzero_bits (f, GET_MODE (f))
5519 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
5520 == 0))
5521 {
5522 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5523 extend_op = ZERO_EXTEND;
5524 m = GET_MODE (XEXP (t, 0));
5525 }
5526 else if (GET_CODE (t) == ZERO_EXTEND
5527 && (GET_CODE (XEXP (t, 0)) == PLUS
5528 || GET_CODE (XEXP (t, 0)) == IOR
5529 || GET_CODE (XEXP (t, 0)) == XOR)
5530 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5531 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5532 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5533 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5534 && ((nonzero_bits (f, GET_MODE (f))
5535 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
5536 == 0))
5537 {
5538 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5539 extend_op = ZERO_EXTEND;
5540 m = GET_MODE (XEXP (t, 0));
5541 }
5542
5543 if (z)
5544 {
5545 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
5546 cond_op0, cond_op1),
5547 pc_rtx, pc_rtx, 0, 0);
5548 temp = simplify_gen_binary (MULT, m, temp,
5549 simplify_gen_binary (MULT, m, c1,
5550 const_true_rtx));
5551 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
5552 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
5553
5554 if (extend_op != UNKNOWN)
5555 temp = simplify_gen_unary (extend_op, mode, temp, m);
5556
5557 return temp;
5558 }
5559 }
5560
5561 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
5562 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
5563 negation of a single bit, we can convert this operation to a shift. We
5564 can actually do this more generally, but it doesn't seem worth it. */
5565
5566 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5567 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
5568 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
5569 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
5570 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
5571 == GET_MODE_BITSIZE (mode))
5572 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
5573 return
5574 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5575 gen_lowpart (mode, XEXP (cond, 0)), i);
5576
5577 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
5578 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5579 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
5580 && GET_MODE (XEXP (cond, 0)) == mode
5581 && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
5582 == nonzero_bits (XEXP (cond, 0), mode)
5583 && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
5584 return XEXP (cond, 0);
5585
5586 return x;
5587 }
5588 \f
5589 /* Simplify X, a SET expression. Return the new expression. */
5590
5591 static rtx
5592 simplify_set (rtx x)
5593 {
5594 rtx src = SET_SRC (x);
5595 rtx dest = SET_DEST (x);
5596 enum machine_mode mode
5597 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
5598 rtx other_insn;
5599 rtx *cc_use;
5600
5601 /* (set (pc) (return)) gets written as (return). */
5602 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
5603 return src;
5604
5605 /* Now that we know for sure which bits of SRC we are using, see if we can
5606 simplify the expression for the object knowing that we only need the
5607 low-order bits. */
5608
5609 if (GET_MODE_CLASS (mode) == MODE_INT
5610 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5611 {
5612 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, 0);
5613 SUBST (SET_SRC (x), src);
5614 }
5615
5616 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5617 the comparison result and try to simplify it unless we already have used
5618 undobuf.other_insn. */
5619 if ((GET_MODE_CLASS (mode) == MODE_CC
5620 || GET_CODE (src) == COMPARE
5621 || CC0_P (dest))
5622 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5623 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5624 && COMPARISON_P (*cc_use)
5625 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5626 {
5627 enum rtx_code old_code = GET_CODE (*cc_use);
5628 enum rtx_code new_code;
5629 rtx op0, op1, tmp;
5630 int other_changed = 0;
5631 enum machine_mode compare_mode = GET_MODE (dest);
5632
5633 if (GET_CODE (src) == COMPARE)
5634 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5635 else
5636 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
5637
5638 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
5639 op0, op1);
5640 if (!tmp)
5641 new_code = old_code;
5642 else if (!CONSTANT_P (tmp))
5643 {
5644 new_code = GET_CODE (tmp);
5645 op0 = XEXP (tmp, 0);
5646 op1 = XEXP (tmp, 1);
5647 }
5648 else
5649 {
5650 rtx pat = PATTERN (other_insn);
5651 undobuf.other_insn = other_insn;
5652 SUBST (*cc_use, tmp);
5653
5654 /* Attempt to simplify CC user. */
5655 if (GET_CODE (pat) == SET)
5656 {
5657 rtx new_rtx = simplify_rtx (SET_SRC (pat));
5658 if (new_rtx != NULL_RTX)
5659 SUBST (SET_SRC (pat), new_rtx);
5660 }
5661
5662 /* Convert X into a no-op move. */
5663 SUBST (SET_DEST (x), pc_rtx);
5664 SUBST (SET_SRC (x), pc_rtx);
5665 return x;
5666 }
5667
5668 /* Simplify our comparison, if possible. */
5669 new_code = simplify_comparison (new_code, &op0, &op1);
5670
5671 #ifdef SELECT_CC_MODE
5672 /* If this machine has CC modes other than CCmode, check to see if we
5673 need to use a different CC mode here. */
5674 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5675 compare_mode = GET_MODE (op0);
5676 else
5677 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5678
5679 #ifndef HAVE_cc0
5680 /* If the mode changed, we have to change SET_DEST, the mode in the
5681 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5682 a hard register, just build new versions with the proper mode. If it
5683 is a pseudo, we lose unless it is only time we set the pseudo, in
5684 which case we can safely change its mode. */
5685 if (compare_mode != GET_MODE (dest))
5686 {
5687 if (can_change_dest_mode (dest, 0, compare_mode))
5688 {
5689 unsigned int regno = REGNO (dest);
5690 rtx new_dest;
5691
5692 if (regno < FIRST_PSEUDO_REGISTER)
5693 new_dest = gen_rtx_REG (compare_mode, regno);
5694 else
5695 {
5696 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
5697 new_dest = regno_reg_rtx[regno];
5698 }
5699
5700 SUBST (SET_DEST (x), new_dest);
5701 SUBST (XEXP (*cc_use, 0), new_dest);
5702 other_changed = 1;
5703
5704 dest = new_dest;
5705 }
5706 }
5707 #endif /* cc0 */
5708 #endif /* SELECT_CC_MODE */
5709
5710 /* If the code changed, we have to build a new comparison in
5711 undobuf.other_insn. */
5712 if (new_code != old_code)
5713 {
5714 int other_changed_previously = other_changed;
5715 unsigned HOST_WIDE_INT mask;
5716 rtx old_cc_use = *cc_use;
5717
5718 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5719 dest, const0_rtx));
5720 other_changed = 1;
5721
5722 /* If the only change we made was to change an EQ into an NE or
5723 vice versa, OP0 has only one bit that might be nonzero, and OP1
5724 is zero, check if changing the user of the condition code will
5725 produce a valid insn. If it won't, we can keep the original code
5726 in that insn by surrounding our operation with an XOR. */
5727
5728 if (((old_code == NE && new_code == EQ)
5729 || (old_code == EQ && new_code == NE))
5730 && ! other_changed_previously && op1 == const0_rtx
5731 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5732 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5733 {
5734 rtx pat = PATTERN (other_insn), note = 0;
5735
5736 if ((recog_for_combine (&pat, other_insn, &note) < 0
5737 && ! check_asm_operands (pat)))
5738 {
5739 *cc_use = old_cc_use;
5740 other_changed = 0;
5741
5742 op0 = simplify_gen_binary (XOR, GET_MODE (op0),
5743 op0, GEN_INT (mask));
5744 }
5745 }
5746 }
5747
5748 if (other_changed)
5749 undobuf.other_insn = other_insn;
5750
5751 /* Otherwise, if we didn't previously have a COMPARE in the
5752 correct mode, we need one. */
5753 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5754 {
5755 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5756 src = SET_SRC (x);
5757 }
5758 else if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
5759 {
5760 SUBST (SET_SRC (x), op0);
5761 src = SET_SRC (x);
5762 }
5763 /* Otherwise, update the COMPARE if needed. */
5764 else if (XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
5765 {
5766 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5767 src = SET_SRC (x);
5768 }
5769 }
5770 else
5771 {
5772 /* Get SET_SRC in a form where we have placed back any
5773 compound expressions. Then do the checks below. */
5774 src = make_compound_operation (src, SET);
5775 SUBST (SET_SRC (x), src);
5776 }
5777
5778 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5779 and X being a REG or (subreg (reg)), we may be able to convert this to
5780 (set (subreg:m2 x) (op)).
5781
5782 We can always do this if M1 is narrower than M2 because that means that
5783 we only care about the low bits of the result.
5784
5785 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5786 perform a narrower operation than requested since the high-order bits will
5787 be undefined. On machine where it is defined, this transformation is safe
5788 as long as M1 and M2 have the same number of words. */
5789
5790 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5791 && !OBJECT_P (SUBREG_REG (src))
5792 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5793 / UNITS_PER_WORD)
5794 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5795 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5796 #ifndef WORD_REGISTER_OPERATIONS
5797 && (GET_MODE_SIZE (GET_MODE (src))
5798 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5799 #endif
5800 #ifdef CANNOT_CHANGE_MODE_CLASS
5801 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
5802 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
5803 GET_MODE (SUBREG_REG (src)),
5804 GET_MODE (src)))
5805 #endif
5806 && (REG_P (dest)
5807 || (GET_CODE (dest) == SUBREG
5808 && REG_P (SUBREG_REG (dest)))))
5809 {
5810 SUBST (SET_DEST (x),
5811 gen_lowpart (GET_MODE (SUBREG_REG (src)),
5812 dest));
5813 SUBST (SET_SRC (x), SUBREG_REG (src));
5814
5815 src = SET_SRC (x), dest = SET_DEST (x);
5816 }
5817
5818 #ifdef HAVE_cc0
5819 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5820 in SRC. */
5821 if (dest == cc0_rtx
5822 && GET_CODE (src) == SUBREG
5823 && subreg_lowpart_p (src)
5824 && (GET_MODE_BITSIZE (GET_MODE (src))
5825 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5826 {
5827 rtx inner = SUBREG_REG (src);
5828 enum machine_mode inner_mode = GET_MODE (inner);
5829
5830 /* Here we make sure that we don't have a sign bit on. */
5831 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5832 && (nonzero_bits (inner, inner_mode)
5833 < ((unsigned HOST_WIDE_INT) 1
5834 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
5835 {
5836 SUBST (SET_SRC (x), inner);
5837 src = SET_SRC (x);
5838 }
5839 }
5840 #endif
5841
5842 #ifdef LOAD_EXTEND_OP
5843 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5844 would require a paradoxical subreg. Replace the subreg with a
5845 zero_extend to avoid the reload that would otherwise be required. */
5846
5847 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5848 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (src)))
5849 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
5850 && SUBREG_BYTE (src) == 0
5851 && (GET_MODE_SIZE (GET_MODE (src))
5852 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5853 && MEM_P (SUBREG_REG (src)))
5854 {
5855 SUBST (SET_SRC (x),
5856 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5857 GET_MODE (src), SUBREG_REG (src)));
5858
5859 src = SET_SRC (x);
5860 }
5861 #endif
5862
5863 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5864 are comparing an item known to be 0 or -1 against 0, use a logical
5865 operation instead. Check for one of the arms being an IOR of the other
5866 arm with some value. We compute three terms to be IOR'ed together. In
5867 practice, at most two will be nonzero. Then we do the IOR's. */
5868
5869 if (GET_CODE (dest) != PC
5870 && GET_CODE (src) == IF_THEN_ELSE
5871 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5872 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5873 && XEXP (XEXP (src, 0), 1) == const0_rtx
5874 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5875 #ifdef HAVE_conditional_move
5876 && ! can_conditionally_move_p (GET_MODE (src))
5877 #endif
5878 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5879 GET_MODE (XEXP (XEXP (src, 0), 0)))
5880 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5881 && ! side_effects_p (src))
5882 {
5883 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5884 ? XEXP (src, 1) : XEXP (src, 2));
5885 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5886 ? XEXP (src, 2) : XEXP (src, 1));
5887 rtx term1 = const0_rtx, term2, term3;
5888
5889 if (GET_CODE (true_rtx) == IOR
5890 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5891 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
5892 else if (GET_CODE (true_rtx) == IOR
5893 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5894 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
5895 else if (GET_CODE (false_rtx) == IOR
5896 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5897 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
5898 else if (GET_CODE (false_rtx) == IOR
5899 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5900 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
5901
5902 term2 = simplify_gen_binary (AND, GET_MODE (src),
5903 XEXP (XEXP (src, 0), 0), true_rtx);
5904 term3 = simplify_gen_binary (AND, GET_MODE (src),
5905 simplify_gen_unary (NOT, GET_MODE (src),
5906 XEXP (XEXP (src, 0), 0),
5907 GET_MODE (src)),
5908 false_rtx);
5909
5910 SUBST (SET_SRC (x),
5911 simplify_gen_binary (IOR, GET_MODE (src),
5912 simplify_gen_binary (IOR, GET_MODE (src),
5913 term1, term2),
5914 term3));
5915
5916 src = SET_SRC (x);
5917 }
5918
5919 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5920 whole thing fail. */
5921 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5922 return src;
5923 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5924 return dest;
5925 else
5926 /* Convert this into a field assignment operation, if possible. */
5927 return make_field_assignment (x);
5928 }
5929 \f
5930 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5931 result. */
5932
5933 static rtx
5934 simplify_logical (rtx x)
5935 {
5936 enum machine_mode mode = GET_MODE (x);
5937 rtx op0 = XEXP (x, 0);
5938 rtx op1 = XEXP (x, 1);
5939
5940 switch (GET_CODE (x))
5941 {
5942 case AND:
5943 /* We can call simplify_and_const_int only if we don't lose
5944 any (sign) bits when converting INTVAL (op1) to
5945 "unsigned HOST_WIDE_INT". */
5946 if (CONST_INT_P (op1)
5947 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5948 || INTVAL (op1) > 0))
5949 {
5950 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5951 if (GET_CODE (x) != AND)
5952 return x;
5953
5954 op0 = XEXP (x, 0);
5955 op1 = XEXP (x, 1);
5956 }
5957
5958 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
5959 apply the distributive law and then the inverse distributive
5960 law to see if things simplify. */
5961 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5962 {
5963 rtx result = distribute_and_simplify_rtx (x, 0);
5964 if (result)
5965 return result;
5966 }
5967 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5968 {
5969 rtx result = distribute_and_simplify_rtx (x, 1);
5970 if (result)
5971 return result;
5972 }
5973 break;
5974
5975 case IOR:
5976 /* If we have (ior (and A B) C), apply the distributive law and then
5977 the inverse distributive law to see if things simplify. */
5978
5979 if (GET_CODE (op0) == AND)
5980 {
5981 rtx result = distribute_and_simplify_rtx (x, 0);
5982 if (result)
5983 return result;
5984 }
5985
5986 if (GET_CODE (op1) == AND)
5987 {
5988 rtx result = distribute_and_simplify_rtx (x, 1);
5989 if (result)
5990 return result;
5991 }
5992 break;
5993
5994 default:
5995 gcc_unreachable ();
5996 }
5997
5998 return x;
5999 }
6000 \f
6001 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6002 operations" because they can be replaced with two more basic operations.
6003 ZERO_EXTEND is also considered "compound" because it can be replaced with
6004 an AND operation, which is simpler, though only one operation.
6005
6006 The function expand_compound_operation is called with an rtx expression
6007 and will convert it to the appropriate shifts and AND operations,
6008 simplifying at each stage.
6009
6010 The function make_compound_operation is called to convert an expression
6011 consisting of shifts and ANDs into the equivalent compound expression.
6012 It is the inverse of this function, loosely speaking. */
6013
6014 static rtx
6015 expand_compound_operation (rtx x)
6016 {
6017 unsigned HOST_WIDE_INT pos = 0, len;
6018 int unsignedp = 0;
6019 unsigned int modewidth;
6020 rtx tem;
6021
6022 switch (GET_CODE (x))
6023 {
6024 case ZERO_EXTEND:
6025 unsignedp = 1;
6026 case SIGN_EXTEND:
6027 /* We can't necessarily use a const_int for a multiword mode;
6028 it depends on implicitly extending the value.
6029 Since we don't know the right way to extend it,
6030 we can't tell whether the implicit way is right.
6031
6032 Even for a mode that is no wider than a const_int,
6033 we can't win, because we need to sign extend one of its bits through
6034 the rest of it, and we don't know which bit. */
6035 if (CONST_INT_P (XEXP (x, 0)))
6036 return x;
6037
6038 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
6039 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
6040 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
6041 reloaded. If not for that, MEM's would very rarely be safe.
6042
6043 Reject MODEs bigger than a word, because we might not be able
6044 to reference a two-register group starting with an arbitrary register
6045 (and currently gen_lowpart might crash for a SUBREG). */
6046
6047 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
6048 return x;
6049
6050 /* Reject MODEs that aren't scalar integers because turning vector
6051 or complex modes into shifts causes problems. */
6052
6053 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6054 return x;
6055
6056 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
6057 /* If the inner object has VOIDmode (the only way this can happen
6058 is if it is an ASM_OPERANDS), we can't do anything since we don't
6059 know how much masking to do. */
6060 if (len == 0)
6061 return x;
6062
6063 break;
6064
6065 case ZERO_EXTRACT:
6066 unsignedp = 1;
6067
6068 /* ... fall through ... */
6069
6070 case SIGN_EXTRACT:
6071 /* If the operand is a CLOBBER, just return it. */
6072 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
6073 return XEXP (x, 0);
6074
6075 if (!CONST_INT_P (XEXP (x, 1))
6076 || !CONST_INT_P (XEXP (x, 2))
6077 || GET_MODE (XEXP (x, 0)) == VOIDmode)
6078 return x;
6079
6080 /* Reject MODEs that aren't scalar integers because turning vector
6081 or complex modes into shifts causes problems. */
6082
6083 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6084 return x;
6085
6086 len = INTVAL (XEXP (x, 1));
6087 pos = INTVAL (XEXP (x, 2));
6088
6089 /* This should stay within the object being extracted, fail otherwise. */
6090 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
6091 return x;
6092
6093 if (BITS_BIG_ENDIAN)
6094 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
6095
6096 break;
6097
6098 default:
6099 return x;
6100 }
6101 /* Convert sign extension to zero extension, if we know that the high
6102 bit is not set, as this is easier to optimize. It will be converted
6103 back to cheaper alternative in make_extraction. */
6104 if (GET_CODE (x) == SIGN_EXTEND
6105 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6106 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
6107 & ~(((unsigned HOST_WIDE_INT)
6108 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
6109 >> 1))
6110 == 0)))
6111 {
6112 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
6113 rtx temp2 = expand_compound_operation (temp);
6114
6115 /* Make sure this is a profitable operation. */
6116 if (rtx_cost (x, SET, optimize_this_for_speed_p)
6117 > rtx_cost (temp2, SET, optimize_this_for_speed_p))
6118 return temp2;
6119 else if (rtx_cost (x, SET, optimize_this_for_speed_p)
6120 > rtx_cost (temp, SET, optimize_this_for_speed_p))
6121 return temp;
6122 else
6123 return x;
6124 }
6125
6126 /* We can optimize some special cases of ZERO_EXTEND. */
6127 if (GET_CODE (x) == ZERO_EXTEND)
6128 {
6129 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
6130 know that the last value didn't have any inappropriate bits
6131 set. */
6132 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6133 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6134 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6135 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
6136 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6137 return XEXP (XEXP (x, 0), 0);
6138
6139 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6140 if (GET_CODE (XEXP (x, 0)) == SUBREG
6141 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6142 && subreg_lowpart_p (XEXP (x, 0))
6143 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6144 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
6145 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6146 return SUBREG_REG (XEXP (x, 0));
6147
6148 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
6149 is a comparison and STORE_FLAG_VALUE permits. This is like
6150 the first case, but it works even when GET_MODE (x) is larger
6151 than HOST_WIDE_INT. */
6152 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6153 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6154 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
6155 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
6156 <= HOST_BITS_PER_WIDE_INT)
6157 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
6158 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6159 return XEXP (XEXP (x, 0), 0);
6160
6161 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6162 if (GET_CODE (XEXP (x, 0)) == SUBREG
6163 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6164 && subreg_lowpart_p (XEXP (x, 0))
6165 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
6166 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
6167 <= HOST_BITS_PER_WIDE_INT)
6168 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
6169 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6170 return SUBREG_REG (XEXP (x, 0));
6171
6172 }
6173
6174 /* If we reach here, we want to return a pair of shifts. The inner
6175 shift is a left shift of BITSIZE - POS - LEN bits. The outer
6176 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
6177 logical depending on the value of UNSIGNEDP.
6178
6179 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
6180 converted into an AND of a shift.
6181
6182 We must check for the case where the left shift would have a negative
6183 count. This can happen in a case like (x >> 31) & 255 on machines
6184 that can't shift by a constant. On those machines, we would first
6185 combine the shift with the AND to produce a variable-position
6186 extraction. Then the constant of 31 would be substituted in to produce
6187 a such a position. */
6188
6189 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
6190 if (modewidth + len >= pos)
6191 {
6192 enum machine_mode mode = GET_MODE (x);
6193 tem = gen_lowpart (mode, XEXP (x, 0));
6194 if (!tem || GET_CODE (tem) == CLOBBER)
6195 return x;
6196 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6197 tem, modewidth - pos - len);
6198 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
6199 mode, tem, modewidth - len);
6200 }
6201 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
6202 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
6203 simplify_shift_const (NULL_RTX, LSHIFTRT,
6204 GET_MODE (x),
6205 XEXP (x, 0), pos),
6206 ((HOST_WIDE_INT) 1 << len) - 1);
6207 else
6208 /* Any other cases we can't handle. */
6209 return x;
6210
6211 /* If we couldn't do this for some reason, return the original
6212 expression. */
6213 if (GET_CODE (tem) == CLOBBER)
6214 return x;
6215
6216 return tem;
6217 }
6218 \f
6219 /* X is a SET which contains an assignment of one object into
6220 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
6221 or certain SUBREGS). If possible, convert it into a series of
6222 logical operations.
6223
6224 We half-heartedly support variable positions, but do not at all
6225 support variable lengths. */
6226
6227 static const_rtx
6228 expand_field_assignment (const_rtx x)
6229 {
6230 rtx inner;
6231 rtx pos; /* Always counts from low bit. */
6232 int len;
6233 rtx mask, cleared, masked;
6234 enum machine_mode compute_mode;
6235
6236 /* Loop until we find something we can't simplify. */
6237 while (1)
6238 {
6239 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
6240 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
6241 {
6242 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
6243 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
6244 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
6245 }
6246 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
6247 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
6248 {
6249 inner = XEXP (SET_DEST (x), 0);
6250 len = INTVAL (XEXP (SET_DEST (x), 1));
6251 pos = XEXP (SET_DEST (x), 2);
6252
6253 /* A constant position should stay within the width of INNER. */
6254 if (CONST_INT_P (pos)
6255 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
6256 break;
6257
6258 if (BITS_BIG_ENDIAN)
6259 {
6260 if (CONST_INT_P (pos))
6261 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
6262 - INTVAL (pos));
6263 else if (GET_CODE (pos) == MINUS
6264 && CONST_INT_P (XEXP (pos, 1))
6265 && (INTVAL (XEXP (pos, 1))
6266 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
6267 /* If position is ADJUST - X, new position is X. */
6268 pos = XEXP (pos, 0);
6269 else
6270 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
6271 GEN_INT (GET_MODE_BITSIZE (
6272 GET_MODE (inner))
6273 - len),
6274 pos);
6275 }
6276 }
6277
6278 /* A SUBREG between two modes that occupy the same numbers of words
6279 can be done by moving the SUBREG to the source. */
6280 else if (GET_CODE (SET_DEST (x)) == SUBREG
6281 /* We need SUBREGs to compute nonzero_bits properly. */
6282 && nonzero_sign_valid
6283 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
6284 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
6285 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
6286 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
6287 {
6288 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
6289 gen_lowpart
6290 (GET_MODE (SUBREG_REG (SET_DEST (x))),
6291 SET_SRC (x)));
6292 continue;
6293 }
6294 else
6295 break;
6296
6297 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6298 inner = SUBREG_REG (inner);
6299
6300 compute_mode = GET_MODE (inner);
6301
6302 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6303 if (! SCALAR_INT_MODE_P (compute_mode))
6304 {
6305 enum machine_mode imode;
6306
6307 /* Don't do anything for vector or complex integral types. */
6308 if (! FLOAT_MODE_P (compute_mode))
6309 break;
6310
6311 /* Try to find an integral mode to pun with. */
6312 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
6313 if (imode == BLKmode)
6314 break;
6315
6316 compute_mode = imode;
6317 inner = gen_lowpart (imode, inner);
6318 }
6319
6320 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6321 if (len >= HOST_BITS_PER_WIDE_INT)
6322 break;
6323
6324 /* Now compute the equivalent expression. Make a copy of INNER
6325 for the SET_DEST in case it is a MEM into which we will substitute;
6326 we don't want shared RTL in that case. */
6327 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
6328 cleared = simplify_gen_binary (AND, compute_mode,
6329 simplify_gen_unary (NOT, compute_mode,
6330 simplify_gen_binary (ASHIFT,
6331 compute_mode,
6332 mask, pos),
6333 compute_mode),
6334 inner);
6335 masked = simplify_gen_binary (ASHIFT, compute_mode,
6336 simplify_gen_binary (
6337 AND, compute_mode,
6338 gen_lowpart (compute_mode, SET_SRC (x)),
6339 mask),
6340 pos);
6341
6342 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
6343 simplify_gen_binary (IOR, compute_mode,
6344 cleared, masked));
6345 }
6346
6347 return x;
6348 }
6349 \f
6350 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6351 it is an RTX that represents a variable starting position; otherwise,
6352 POS is the (constant) starting bit position (counted from the LSB).
6353
6354 UNSIGNEDP is nonzero for an unsigned reference and zero for a
6355 signed reference.
6356
6357 IN_DEST is nonzero if this is a reference in the destination of a
6358 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6359 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6360 be used.
6361
6362 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6363 ZERO_EXTRACT should be built even for bits starting at bit 0.
6364
6365 MODE is the desired mode of the result (if IN_DEST == 0).
6366
6367 The result is an RTX for the extraction or NULL_RTX if the target
6368 can't handle it. */
6369
6370 static rtx
6371 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
6372 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
6373 int in_dest, int in_compare)
6374 {
6375 /* This mode describes the size of the storage area
6376 to fetch the overall value from. Within that, we
6377 ignore the POS lowest bits, etc. */
6378 enum machine_mode is_mode = GET_MODE (inner);
6379 enum machine_mode inner_mode;
6380 enum machine_mode wanted_inner_mode;
6381 enum machine_mode wanted_inner_reg_mode = word_mode;
6382 enum machine_mode pos_mode = word_mode;
6383 enum machine_mode extraction_mode = word_mode;
6384 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6385 rtx new_rtx = 0;
6386 rtx orig_pos_rtx = pos_rtx;
6387 HOST_WIDE_INT orig_pos;
6388
6389 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6390 {
6391 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
6392 consider just the QI as the memory to extract from.
6393 The subreg adds or removes high bits; its mode is
6394 irrelevant to the meaning of this extraction,
6395 since POS and LEN count from the lsb. */
6396 if (MEM_P (SUBREG_REG (inner)))
6397 is_mode = GET_MODE (SUBREG_REG (inner));
6398 inner = SUBREG_REG (inner);
6399 }
6400 else if (GET_CODE (inner) == ASHIFT
6401 && CONST_INT_P (XEXP (inner, 1))
6402 && pos_rtx == 0 && pos == 0
6403 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
6404 {
6405 /* We're extracting the least significant bits of an rtx
6406 (ashift X (const_int C)), where LEN > C. Extract the
6407 least significant (LEN - C) bits of X, giving an rtx
6408 whose mode is MODE, then shift it left C times. */
6409 new_rtx = make_extraction (mode, XEXP (inner, 0),
6410 0, 0, len - INTVAL (XEXP (inner, 1)),
6411 unsignedp, in_dest, in_compare);
6412 if (new_rtx != 0)
6413 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
6414 }
6415
6416 inner_mode = GET_MODE (inner);
6417
6418 if (pos_rtx && CONST_INT_P (pos_rtx))
6419 pos = INTVAL (pos_rtx), pos_rtx = 0;
6420
6421 /* See if this can be done without an extraction. We never can if the
6422 width of the field is not the same as that of some integer mode. For
6423 registers, we can only avoid the extraction if the position is at the
6424 low-order bit and this is either not in the destination or we have the
6425 appropriate STRICT_LOW_PART operation available.
6426
6427 For MEM, we can avoid an extract if the field starts on an appropriate
6428 boundary and we can change the mode of the memory reference. */
6429
6430 if (tmode != BLKmode
6431 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6432 && !MEM_P (inner)
6433 && (inner_mode == tmode
6434 || !REG_P (inner)
6435 || TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
6436 GET_MODE_BITSIZE (inner_mode))
6437 || reg_truncated_to_mode (tmode, inner))
6438 && (! in_dest
6439 || (REG_P (inner)
6440 && have_insn_for (STRICT_LOW_PART, tmode))))
6441 || (MEM_P (inner) && pos_rtx == 0
6442 && (pos
6443 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6444 : BITS_PER_UNIT)) == 0
6445 /* We can't do this if we are widening INNER_MODE (it
6446 may not be aligned, for one thing). */
6447 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6448 && (inner_mode == tmode
6449 || (! mode_dependent_address_p (XEXP (inner, 0))
6450 && ! MEM_VOLATILE_P (inner))))))
6451 {
6452 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6453 field. If the original and current mode are the same, we need not
6454 adjust the offset. Otherwise, we do if bytes big endian.
6455
6456 If INNER is not a MEM, get a piece consisting of just the field
6457 of interest (in this case POS % BITS_PER_WORD must be 0). */
6458
6459 if (MEM_P (inner))
6460 {
6461 HOST_WIDE_INT offset;
6462
6463 /* POS counts from lsb, but make OFFSET count in memory order. */
6464 if (BYTES_BIG_ENDIAN)
6465 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6466 else
6467 offset = pos / BITS_PER_UNIT;
6468
6469 new_rtx = adjust_address_nv (inner, tmode, offset);
6470 }
6471 else if (REG_P (inner))
6472 {
6473 if (tmode != inner_mode)
6474 {
6475 /* We can't call gen_lowpart in a DEST since we
6476 always want a SUBREG (see below) and it would sometimes
6477 return a new hard register. */
6478 if (pos || in_dest)
6479 {
6480 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6481
6482 if (WORDS_BIG_ENDIAN
6483 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6484 final_word = ((GET_MODE_SIZE (inner_mode)
6485 - GET_MODE_SIZE (tmode))
6486 / UNITS_PER_WORD) - final_word;
6487
6488 final_word *= UNITS_PER_WORD;
6489 if (BYTES_BIG_ENDIAN &&
6490 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6491 final_word += (GET_MODE_SIZE (inner_mode)
6492 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6493
6494 /* Avoid creating invalid subregs, for example when
6495 simplifying (x>>32)&255. */
6496 if (!validate_subreg (tmode, inner_mode, inner, final_word))
6497 return NULL_RTX;
6498
6499 new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
6500 }
6501 else
6502 new_rtx = gen_lowpart (tmode, inner);
6503 }
6504 else
6505 new_rtx = inner;
6506 }
6507 else
6508 new_rtx = force_to_mode (inner, tmode,
6509 len >= HOST_BITS_PER_WIDE_INT
6510 ? ~(unsigned HOST_WIDE_INT) 0
6511 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6512 0);
6513
6514 /* If this extraction is going into the destination of a SET,
6515 make a STRICT_LOW_PART unless we made a MEM. */
6516
6517 if (in_dest)
6518 return (MEM_P (new_rtx) ? new_rtx
6519 : (GET_CODE (new_rtx) != SUBREG
6520 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6521 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
6522
6523 if (mode == tmode)
6524 return new_rtx;
6525
6526 if (CONST_INT_P (new_rtx))
6527 return gen_int_mode (INTVAL (new_rtx), mode);
6528
6529 /* If we know that no extraneous bits are set, and that the high
6530 bit is not set, convert the extraction to the cheaper of
6531 sign and zero extension, that are equivalent in these cases. */
6532 if (flag_expensive_optimizations
6533 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6534 && ((nonzero_bits (new_rtx, tmode)
6535 & ~(((unsigned HOST_WIDE_INT)
6536 GET_MODE_MASK (tmode))
6537 >> 1))
6538 == 0)))
6539 {
6540 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
6541 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
6542
6543 /* Prefer ZERO_EXTENSION, since it gives more information to
6544 backends. */
6545 if (rtx_cost (temp, SET, optimize_this_for_speed_p)
6546 <= rtx_cost (temp1, SET, optimize_this_for_speed_p))
6547 return temp;
6548 return temp1;
6549 }
6550
6551 /* Otherwise, sign- or zero-extend unless we already are in the
6552 proper mode. */
6553
6554 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6555 mode, new_rtx));
6556 }
6557
6558 /* Unless this is a COMPARE or we have a funny memory reference,
6559 don't do anything with zero-extending field extracts starting at
6560 the low-order bit since they are simple AND operations. */
6561 if (pos_rtx == 0 && pos == 0 && ! in_dest
6562 && ! in_compare && unsignedp)
6563 return 0;
6564
6565 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
6566 if the position is not a constant and the length is not 1. In all
6567 other cases, we would only be going outside our object in cases when
6568 an original shift would have been undefined. */
6569 if (MEM_P (inner)
6570 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6571 || (pos_rtx != 0 && len != 1)))
6572 return 0;
6573
6574 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6575 and the mode for the result. */
6576 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6577 {
6578 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6579 pos_mode = mode_for_extraction (EP_insv, 2);
6580 extraction_mode = mode_for_extraction (EP_insv, 3);
6581 }
6582
6583 if (! in_dest && unsignedp
6584 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6585 {
6586 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6587 pos_mode = mode_for_extraction (EP_extzv, 3);
6588 extraction_mode = mode_for_extraction (EP_extzv, 0);
6589 }
6590
6591 if (! in_dest && ! unsignedp
6592 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6593 {
6594 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6595 pos_mode = mode_for_extraction (EP_extv, 3);
6596 extraction_mode = mode_for_extraction (EP_extv, 0);
6597 }
6598
6599 /* Never narrow an object, since that might not be safe. */
6600
6601 if (mode != VOIDmode
6602 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6603 extraction_mode = mode;
6604
6605 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6606 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6607 pos_mode = GET_MODE (pos_rtx);
6608
6609 /* If this is not from memory, the desired mode is the preferred mode
6610 for an extraction pattern's first input operand, or word_mode if there
6611 is none. */
6612 if (!MEM_P (inner))
6613 wanted_inner_mode = wanted_inner_reg_mode;
6614 else
6615 {
6616 /* Be careful not to go beyond the extracted object and maintain the
6617 natural alignment of the memory. */
6618 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
6619 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
6620 > GET_MODE_BITSIZE (wanted_inner_mode))
6621 {
6622 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
6623 gcc_assert (wanted_inner_mode != VOIDmode);
6624 }
6625
6626 /* If we have to change the mode of memory and cannot, the desired mode
6627 is EXTRACTION_MODE. */
6628 if (inner_mode != wanted_inner_mode
6629 && (mode_dependent_address_p (XEXP (inner, 0))
6630 || MEM_VOLATILE_P (inner)
6631 || pos_rtx))
6632 wanted_inner_mode = extraction_mode;
6633 }
6634
6635 orig_pos = pos;
6636
6637 if (BITS_BIG_ENDIAN)
6638 {
6639 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6640 BITS_BIG_ENDIAN style. If position is constant, compute new
6641 position. Otherwise, build subtraction.
6642 Note that POS is relative to the mode of the original argument.
6643 If it's a MEM we need to recompute POS relative to that.
6644 However, if we're extracting from (or inserting into) a register,
6645 we want to recompute POS relative to wanted_inner_mode. */
6646 int width = (MEM_P (inner)
6647 ? GET_MODE_BITSIZE (is_mode)
6648 : GET_MODE_BITSIZE (wanted_inner_mode));
6649
6650 if (pos_rtx == 0)
6651 pos = width - len - pos;
6652 else
6653 pos_rtx
6654 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6655 /* POS may be less than 0 now, but we check for that below.
6656 Note that it can only be less than 0 if !MEM_P (inner). */
6657 }
6658
6659 /* If INNER has a wider mode, and this is a constant extraction, try to
6660 make it smaller and adjust the byte to point to the byte containing
6661 the value. */
6662 if (wanted_inner_mode != VOIDmode
6663 && inner_mode != wanted_inner_mode
6664 && ! pos_rtx
6665 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6666 && MEM_P (inner)
6667 && ! mode_dependent_address_p (XEXP (inner, 0))
6668 && ! MEM_VOLATILE_P (inner))
6669 {
6670 int offset = 0;
6671
6672 /* The computations below will be correct if the machine is big
6673 endian in both bits and bytes or little endian in bits and bytes.
6674 If it is mixed, we must adjust. */
6675
6676 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6677 adjust OFFSET to compensate. */
6678 if (BYTES_BIG_ENDIAN
6679 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6680 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6681
6682 /* We can now move to the desired byte. */
6683 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
6684 * GET_MODE_SIZE (wanted_inner_mode);
6685 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6686
6687 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6688 && is_mode != wanted_inner_mode)
6689 offset = (GET_MODE_SIZE (is_mode)
6690 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6691
6692 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6693 }
6694
6695 /* If INNER is not memory, get it into the proper mode. If we are changing
6696 its mode, POS must be a constant and smaller than the size of the new
6697 mode. */
6698 else if (!MEM_P (inner))
6699 {
6700 /* On the LHS, don't create paradoxical subregs implicitely truncating
6701 the register unless TRULY_NOOP_TRUNCATION. */
6702 if (in_dest
6703 && !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (inner)),
6704 GET_MODE_BITSIZE (wanted_inner_mode)))
6705 return NULL_RTX;
6706
6707 if (GET_MODE (inner) != wanted_inner_mode
6708 && (pos_rtx != 0
6709 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6710 return NULL_RTX;
6711
6712 if (orig_pos < 0)
6713 return NULL_RTX;
6714
6715 inner = force_to_mode (inner, wanted_inner_mode,
6716 pos_rtx
6717 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6718 ? ~(unsigned HOST_WIDE_INT) 0
6719 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6720 << orig_pos),
6721 0);
6722 }
6723
6724 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6725 have to zero extend. Otherwise, we can just use a SUBREG. */
6726 if (pos_rtx != 0
6727 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6728 {
6729 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6730
6731 /* If we know that no extraneous bits are set, and that the high
6732 bit is not set, convert extraction to cheaper one - either
6733 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6734 cases. */
6735 if (flag_expensive_optimizations
6736 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6737 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6738 & ~(((unsigned HOST_WIDE_INT)
6739 GET_MODE_MASK (GET_MODE (pos_rtx)))
6740 >> 1))
6741 == 0)))
6742 {
6743 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6744
6745 /* Prefer ZERO_EXTENSION, since it gives more information to
6746 backends. */
6747 if (rtx_cost (temp1, SET, optimize_this_for_speed_p)
6748 < rtx_cost (temp, SET, optimize_this_for_speed_p))
6749 temp = temp1;
6750 }
6751 pos_rtx = temp;
6752 }
6753 else if (pos_rtx != 0
6754 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6755 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
6756
6757 /* Make POS_RTX unless we already have it and it is correct. If we don't
6758 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6759 be a CONST_INT. */
6760 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6761 pos_rtx = orig_pos_rtx;
6762
6763 else if (pos_rtx == 0)
6764 pos_rtx = GEN_INT (pos);
6765
6766 /* Make the required operation. See if we can use existing rtx. */
6767 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6768 extraction_mode, inner, GEN_INT (len), pos_rtx);
6769 if (! in_dest)
6770 new_rtx = gen_lowpart (mode, new_rtx);
6771
6772 return new_rtx;
6773 }
6774 \f
6775 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6776 with any other operations in X. Return X without that shift if so. */
6777
6778 static rtx
6779 extract_left_shift (rtx x, int count)
6780 {
6781 enum rtx_code code = GET_CODE (x);
6782 enum machine_mode mode = GET_MODE (x);
6783 rtx tem;
6784
6785 switch (code)
6786 {
6787 case ASHIFT:
6788 /* This is the shift itself. If it is wide enough, we will return
6789 either the value being shifted if the shift count is equal to
6790 COUNT or a shift for the difference. */
6791 if (CONST_INT_P (XEXP (x, 1))
6792 && INTVAL (XEXP (x, 1)) >= count)
6793 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6794 INTVAL (XEXP (x, 1)) - count);
6795 break;
6796
6797 case NEG: case NOT:
6798 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6799 return simplify_gen_unary (code, mode, tem, mode);
6800
6801 break;
6802
6803 case PLUS: case IOR: case XOR: case AND:
6804 /* If we can safely shift this constant and we find the inner shift,
6805 make a new operation. */
6806 if (CONST_INT_P (XEXP (x, 1))
6807 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6808 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6809 return simplify_gen_binary (code, mode, tem,
6810 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6811
6812 break;
6813
6814 default:
6815 break;
6816 }
6817
6818 return 0;
6819 }
6820 \f
6821 /* Look at the expression rooted at X. Look for expressions
6822 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6823 Form these expressions.
6824
6825 Return the new rtx, usually just X.
6826
6827 Also, for machines like the VAX that don't have logical shift insns,
6828 try to convert logical to arithmetic shift operations in cases where
6829 they are equivalent. This undoes the canonicalizations to logical
6830 shifts done elsewhere.
6831
6832 We try, as much as possible, to re-use rtl expressions to save memory.
6833
6834 IN_CODE says what kind of expression we are processing. Normally, it is
6835 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6836 being kludges), it is MEM. When processing the arguments of a comparison
6837 or a COMPARE against zero, it is COMPARE. */
6838
6839 static rtx
6840 make_compound_operation (rtx x, enum rtx_code in_code)
6841 {
6842 enum rtx_code code = GET_CODE (x);
6843 enum machine_mode mode = GET_MODE (x);
6844 int mode_width = GET_MODE_BITSIZE (mode);
6845 rtx rhs, lhs;
6846 enum rtx_code next_code;
6847 int i, j;
6848 rtx new_rtx = 0;
6849 rtx tem;
6850 const char *fmt;
6851
6852 /* Select the code to be used in recursive calls. Once we are inside an
6853 address, we stay there. If we have a comparison, set to COMPARE,
6854 but once inside, go back to our default of SET. */
6855
6856 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6857 : ((code == COMPARE || COMPARISON_P (x))
6858 && XEXP (x, 1) == const0_rtx) ? COMPARE
6859 : in_code == COMPARE ? SET : in_code);
6860
6861 /* Process depending on the code of this operation. If NEW is set
6862 nonzero, it will be returned. */
6863
6864 switch (code)
6865 {
6866 case ASHIFT:
6867 /* Convert shifts by constants into multiplications if inside
6868 an address. */
6869 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
6870 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6871 && INTVAL (XEXP (x, 1)) >= 0)
6872 {
6873 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
6874 new_rtx = gen_rtx_MULT (mode, new_rtx,
6875 GEN_INT ((HOST_WIDE_INT) 1
6876 << INTVAL (XEXP (x, 1))));
6877 }
6878 break;
6879
6880 case AND:
6881 /* If the second operand is not a constant, we can't do anything
6882 with it. */
6883 if (!CONST_INT_P (XEXP (x, 1)))
6884 break;
6885
6886 /* If the constant is a power of two minus one and the first operand
6887 is a logical right shift, make an extraction. */
6888 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6889 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6890 {
6891 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6892 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
6893 0, in_code == COMPARE);
6894 }
6895
6896 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6897 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6898 && subreg_lowpart_p (XEXP (x, 0))
6899 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6900 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6901 {
6902 new_rtx = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6903 next_code);
6904 new_rtx = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new_rtx, 0,
6905 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6906 0, in_code == COMPARE);
6907 }
6908 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6909 else if ((GET_CODE (XEXP (x, 0)) == XOR
6910 || GET_CODE (XEXP (x, 0)) == IOR)
6911 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6912 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6913 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6914 {
6915 /* Apply the distributive law, and then try to make extractions. */
6916 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6917 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6918 XEXP (x, 1)),
6919 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6920 XEXP (x, 1)));
6921 new_rtx = make_compound_operation (new_rtx, in_code);
6922 }
6923
6924 /* If we are have (and (rotate X C) M) and C is larger than the number
6925 of bits in M, this is an extraction. */
6926
6927 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6928 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
6929 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6930 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6931 {
6932 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6933 new_rtx = make_extraction (mode, new_rtx,
6934 (GET_MODE_BITSIZE (mode)
6935 - INTVAL (XEXP (XEXP (x, 0), 1))),
6936 NULL_RTX, i, 1, 0, in_code == COMPARE);
6937 }
6938
6939 /* On machines without logical shifts, if the operand of the AND is
6940 a logical shift and our mask turns off all the propagated sign
6941 bits, we can replace the logical shift with an arithmetic shift. */
6942 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6943 && !have_insn_for (LSHIFTRT, mode)
6944 && have_insn_for (ASHIFTRT, mode)
6945 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
6946 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6947 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6948 && mode_width <= HOST_BITS_PER_WIDE_INT)
6949 {
6950 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6951
6952 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6953 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6954 SUBST (XEXP (x, 0),
6955 gen_rtx_ASHIFTRT (mode,
6956 make_compound_operation
6957 (XEXP (XEXP (x, 0), 0), next_code),
6958 XEXP (XEXP (x, 0), 1)));
6959 }
6960
6961 /* If the constant is one less than a power of two, this might be
6962 representable by an extraction even if no shift is present.
6963 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6964 we are in a COMPARE. */
6965 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6966 new_rtx = make_extraction (mode,
6967 make_compound_operation (XEXP (x, 0),
6968 next_code),
6969 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6970
6971 /* If we are in a comparison and this is an AND with a power of two,
6972 convert this into the appropriate bit extract. */
6973 else if (in_code == COMPARE
6974 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6975 new_rtx = make_extraction (mode,
6976 make_compound_operation (XEXP (x, 0),
6977 next_code),
6978 i, NULL_RTX, 1, 1, 0, 1);
6979
6980 break;
6981
6982 case LSHIFTRT:
6983 /* If the sign bit is known to be zero, replace this with an
6984 arithmetic shift. */
6985 if (have_insn_for (ASHIFTRT, mode)
6986 && ! have_insn_for (LSHIFTRT, mode)
6987 && mode_width <= HOST_BITS_PER_WIDE_INT
6988 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6989 {
6990 new_rtx = gen_rtx_ASHIFTRT (mode,
6991 make_compound_operation (XEXP (x, 0),
6992 next_code),
6993 XEXP (x, 1));
6994 break;
6995 }
6996
6997 /* ... fall through ... */
6998
6999 case ASHIFTRT:
7000 lhs = XEXP (x, 0);
7001 rhs = XEXP (x, 1);
7002
7003 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
7004 this is a SIGN_EXTRACT. */
7005 if (CONST_INT_P (rhs)
7006 && GET_CODE (lhs) == ASHIFT
7007 && CONST_INT_P (XEXP (lhs, 1))
7008 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
7009 && INTVAL (rhs) < mode_width)
7010 {
7011 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
7012 new_rtx = make_extraction (mode, new_rtx,
7013 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
7014 NULL_RTX, mode_width - INTVAL (rhs),
7015 code == LSHIFTRT, 0, in_code == COMPARE);
7016 break;
7017 }
7018
7019 /* See if we have operations between an ASHIFTRT and an ASHIFT.
7020 If so, try to merge the shifts into a SIGN_EXTEND. We could
7021 also do this for some cases of SIGN_EXTRACT, but it doesn't
7022 seem worth the effort; the case checked for occurs on Alpha. */
7023
7024 if (!OBJECT_P (lhs)
7025 && ! (GET_CODE (lhs) == SUBREG
7026 && (OBJECT_P (SUBREG_REG (lhs))))
7027 && CONST_INT_P (rhs)
7028 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
7029 && INTVAL (rhs) < mode_width
7030 && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
7031 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
7032 0, NULL_RTX, mode_width - INTVAL (rhs),
7033 code == LSHIFTRT, 0, in_code == COMPARE);
7034
7035 break;
7036
7037 case SUBREG:
7038 /* Call ourselves recursively on the inner expression. If we are
7039 narrowing the object and it has a different RTL code from
7040 what it originally did, do this SUBREG as a force_to_mode. */
7041
7042 tem = make_compound_operation (SUBREG_REG (x), in_code);
7043
7044 {
7045 rtx simplified;
7046 simplified = simplify_subreg (GET_MODE (x), tem, GET_MODE (tem),
7047 SUBREG_BYTE (x));
7048
7049 if (simplified)
7050 tem = simplified;
7051
7052 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
7053 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
7054 && subreg_lowpart_p (x))
7055 {
7056 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
7057 0);
7058
7059 /* If we have something other than a SUBREG, we might have
7060 done an expansion, so rerun ourselves. */
7061 if (GET_CODE (newer) != SUBREG)
7062 newer = make_compound_operation (newer, in_code);
7063
7064 return newer;
7065 }
7066
7067 if (simplified)
7068 return tem;
7069 }
7070 break;
7071
7072 default:
7073 break;
7074 }
7075
7076 if (new_rtx)
7077 {
7078 x = gen_lowpart (mode, new_rtx);
7079 code = GET_CODE (x);
7080 }
7081
7082 /* Now recursively process each operand of this operation. */
7083 fmt = GET_RTX_FORMAT (code);
7084 for (i = 0; i < GET_RTX_LENGTH (code); i++)
7085 if (fmt[i] == 'e')
7086 {
7087 new_rtx = make_compound_operation (XEXP (x, i), next_code);
7088 SUBST (XEXP (x, i), new_rtx);
7089 }
7090 else if (fmt[i] == 'E')
7091 for (j = 0; j < XVECLEN (x, i); j++)
7092 {
7093 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
7094 SUBST (XVECEXP (x, i, j), new_rtx);
7095 }
7096
7097 /* If this is a commutative operation, the changes to the operands
7098 may have made it noncanonical. */
7099 if (COMMUTATIVE_ARITH_P (x)
7100 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
7101 {
7102 tem = XEXP (x, 0);
7103 SUBST (XEXP (x, 0), XEXP (x, 1));
7104 SUBST (XEXP (x, 1), tem);
7105 }
7106
7107 return x;
7108 }
7109 \f
7110 /* Given M see if it is a value that would select a field of bits
7111 within an item, but not the entire word. Return -1 if not.
7112 Otherwise, return the starting position of the field, where 0 is the
7113 low-order bit.
7114
7115 *PLEN is set to the length of the field. */
7116
7117 static int
7118 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
7119 {
7120 /* Get the bit number of the first 1 bit from the right, -1 if none. */
7121 int pos = exact_log2 (m & -m);
7122 int len = 0;
7123
7124 if (pos >= 0)
7125 /* Now shift off the low-order zero bits and see if we have a
7126 power of two minus 1. */
7127 len = exact_log2 ((m >> pos) + 1);
7128
7129 if (len <= 0)
7130 pos = -1;
7131
7132 *plen = len;
7133 return pos;
7134 }
7135 \f
7136 /* If X refers to a register that equals REG in value, replace these
7137 references with REG. */
7138 static rtx
7139 canon_reg_for_combine (rtx x, rtx reg)
7140 {
7141 rtx op0, op1, op2;
7142 const char *fmt;
7143 int i;
7144 bool copied;
7145
7146 enum rtx_code code = GET_CODE (x);
7147 switch (GET_RTX_CLASS (code))
7148 {
7149 case RTX_UNARY:
7150 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7151 if (op0 != XEXP (x, 0))
7152 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
7153 GET_MODE (reg));
7154 break;
7155
7156 case RTX_BIN_ARITH:
7157 case RTX_COMM_ARITH:
7158 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7159 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7160 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7161 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
7162 break;
7163
7164 case RTX_COMPARE:
7165 case RTX_COMM_COMPARE:
7166 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7167 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7168 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7169 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
7170 GET_MODE (op0), op0, op1);
7171 break;
7172
7173 case RTX_TERNARY:
7174 case RTX_BITFIELD_OPS:
7175 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7176 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7177 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
7178 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
7179 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
7180 GET_MODE (op0), op0, op1, op2);
7181
7182 case RTX_OBJ:
7183 if (REG_P (x))
7184 {
7185 if (rtx_equal_p (get_last_value (reg), x)
7186 || rtx_equal_p (reg, get_last_value (x)))
7187 return reg;
7188 else
7189 break;
7190 }
7191
7192 /* fall through */
7193
7194 default:
7195 fmt = GET_RTX_FORMAT (code);
7196 copied = false;
7197 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7198 if (fmt[i] == 'e')
7199 {
7200 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
7201 if (op != XEXP (x, i))
7202 {
7203 if (!copied)
7204 {
7205 copied = true;
7206 x = copy_rtx (x);
7207 }
7208 XEXP (x, i) = op;
7209 }
7210 }
7211 else if (fmt[i] == 'E')
7212 {
7213 int j;
7214 for (j = 0; j < XVECLEN (x, i); j++)
7215 {
7216 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
7217 if (op != XVECEXP (x, i, j))
7218 {
7219 if (!copied)
7220 {
7221 copied = true;
7222 x = copy_rtx (x);
7223 }
7224 XVECEXP (x, i, j) = op;
7225 }
7226 }
7227 }
7228
7229 break;
7230 }
7231
7232 return x;
7233 }
7234
7235 /* Return X converted to MODE. If the value is already truncated to
7236 MODE we can just return a subreg even though in the general case we
7237 would need an explicit truncation. */
7238
7239 static rtx
7240 gen_lowpart_or_truncate (enum machine_mode mode, rtx x)
7241 {
7242 if (GET_MODE_SIZE (GET_MODE (x)) <= GET_MODE_SIZE (mode)
7243 || TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
7244 GET_MODE_BITSIZE (GET_MODE (x)))
7245 || (REG_P (x) && reg_truncated_to_mode (mode, x)))
7246 return gen_lowpart (mode, x);
7247 else
7248 return simplify_gen_unary (TRUNCATE, mode, x, GET_MODE (x));
7249 }
7250
7251 /* See if X can be simplified knowing that we will only refer to it in
7252 MODE and will only refer to those bits that are nonzero in MASK.
7253 If other bits are being computed or if masking operations are done
7254 that select a superset of the bits in MASK, they can sometimes be
7255 ignored.
7256
7257 Return a possibly simplified expression, but always convert X to
7258 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
7259
7260 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
7261 are all off in X. This is used when X will be complemented, by either
7262 NOT, NEG, or XOR. */
7263
7264 static rtx
7265 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
7266 int just_select)
7267 {
7268 enum rtx_code code = GET_CODE (x);
7269 int next_select = just_select || code == XOR || code == NOT || code == NEG;
7270 enum machine_mode op_mode;
7271 unsigned HOST_WIDE_INT fuller_mask, nonzero;
7272 rtx op0, op1, temp;
7273
7274 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
7275 code below will do the wrong thing since the mode of such an
7276 expression is VOIDmode.
7277
7278 Also do nothing if X is a CLOBBER; this can happen if X was
7279 the return value from a call to gen_lowpart. */
7280 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
7281 return x;
7282
7283 /* We want to perform the operation is its present mode unless we know
7284 that the operation is valid in MODE, in which case we do the operation
7285 in MODE. */
7286 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
7287 && have_insn_for (code, mode))
7288 ? mode : GET_MODE (x));
7289
7290 /* It is not valid to do a right-shift in a narrower mode
7291 than the one it came in with. */
7292 if ((code == LSHIFTRT || code == ASHIFTRT)
7293 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
7294 op_mode = GET_MODE (x);
7295
7296 /* Truncate MASK to fit OP_MODE. */
7297 if (op_mode)
7298 mask &= GET_MODE_MASK (op_mode);
7299
7300 /* When we have an arithmetic operation, or a shift whose count we
7301 do not know, we need to assume that all bits up to the highest-order
7302 bit in MASK will be needed. This is how we form such a mask. */
7303 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
7304 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
7305 else
7306 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
7307 - 1);
7308
7309 /* Determine what bits of X are guaranteed to be (non)zero. */
7310 nonzero = nonzero_bits (x, mode);
7311
7312 /* If none of the bits in X are needed, return a zero. */
7313 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
7314 x = const0_rtx;
7315
7316 /* If X is a CONST_INT, return a new one. Do this here since the
7317 test below will fail. */
7318 if (CONST_INT_P (x))
7319 {
7320 if (SCALAR_INT_MODE_P (mode))
7321 return gen_int_mode (INTVAL (x) & mask, mode);
7322 else
7323 {
7324 x = GEN_INT (INTVAL (x) & mask);
7325 return gen_lowpart_common (mode, x);
7326 }
7327 }
7328
7329 /* If X is narrower than MODE and we want all the bits in X's mode, just
7330 get X in the proper mode. */
7331 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
7332 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
7333 return gen_lowpart (mode, x);
7334
7335 /* The arithmetic simplifications here do the wrong thing on vector modes. */
7336 if (VECTOR_MODE_P (mode) || VECTOR_MODE_P (GET_MODE (x)))
7337 return gen_lowpart (mode, x);
7338
7339 switch (code)
7340 {
7341 case CLOBBER:
7342 /* If X is a (clobber (const_int)), return it since we know we are
7343 generating something that won't match. */
7344 return x;
7345
7346 case SIGN_EXTEND:
7347 case ZERO_EXTEND:
7348 case ZERO_EXTRACT:
7349 case SIGN_EXTRACT:
7350 x = expand_compound_operation (x);
7351 if (GET_CODE (x) != code)
7352 return force_to_mode (x, mode, mask, next_select);
7353 break;
7354
7355 case SUBREG:
7356 if (subreg_lowpart_p (x)
7357 /* We can ignore the effect of this SUBREG if it narrows the mode or
7358 if the constant masks to zero all the bits the mode doesn't
7359 have. */
7360 && ((GET_MODE_SIZE (GET_MODE (x))
7361 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
7362 || (0 == (mask
7363 & GET_MODE_MASK (GET_MODE (x))
7364 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
7365 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
7366 break;
7367
7368 case TRUNCATE:
7369 /* Similarly for a truncate. */
7370 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
7371
7372 case AND:
7373 /* If this is an AND with a constant, convert it into an AND
7374 whose constant is the AND of that constant with MASK. If it
7375 remains an AND of MASK, delete it since it is redundant. */
7376
7377 if (CONST_INT_P (XEXP (x, 1)))
7378 {
7379 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
7380 mask & INTVAL (XEXP (x, 1)));
7381
7382 /* If X is still an AND, see if it is an AND with a mask that
7383 is just some low-order bits. If so, and it is MASK, we don't
7384 need it. */
7385
7386 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
7387 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
7388 == mask))
7389 x = XEXP (x, 0);
7390
7391 /* If it remains an AND, try making another AND with the bits
7392 in the mode mask that aren't in MASK turned on. If the
7393 constant in the AND is wide enough, this might make a
7394 cheaper constant. */
7395
7396 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
7397 && GET_MODE_MASK (GET_MODE (x)) != mask
7398 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
7399 {
7400 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
7401 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
7402 int width = GET_MODE_BITSIZE (GET_MODE (x));
7403 rtx y;
7404
7405 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
7406 number, sign extend it. */
7407 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
7408 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7409 cval |= (HOST_WIDE_INT) -1 << width;
7410
7411 y = simplify_gen_binary (AND, GET_MODE (x),
7412 XEXP (x, 0), GEN_INT (cval));
7413 if (rtx_cost (y, SET, optimize_this_for_speed_p)
7414 < rtx_cost (x, SET, optimize_this_for_speed_p))
7415 x = y;
7416 }
7417
7418 break;
7419 }
7420
7421 goto binop;
7422
7423 case PLUS:
7424 /* In (and (plus FOO C1) M), if M is a mask that just turns off
7425 low-order bits (as in an alignment operation) and FOO is already
7426 aligned to that boundary, mask C1 to that boundary as well.
7427 This may eliminate that PLUS and, later, the AND. */
7428
7429 {
7430 unsigned int width = GET_MODE_BITSIZE (mode);
7431 unsigned HOST_WIDE_INT smask = mask;
7432
7433 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
7434 number, sign extend it. */
7435
7436 if (width < HOST_BITS_PER_WIDE_INT
7437 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7438 smask |= (HOST_WIDE_INT) -1 << width;
7439
7440 if (CONST_INT_P (XEXP (x, 1))
7441 && exact_log2 (- smask) >= 0
7442 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
7443 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
7444 return force_to_mode (plus_constant (XEXP (x, 0),
7445 (INTVAL (XEXP (x, 1)) & smask)),
7446 mode, smask, next_select);
7447 }
7448
7449 /* ... fall through ... */
7450
7451 case MULT:
7452 /* For PLUS, MINUS and MULT, we need any bits less significant than the
7453 most significant bit in MASK since carries from those bits will
7454 affect the bits we are interested in. */
7455 mask = fuller_mask;
7456 goto binop;
7457
7458 case MINUS:
7459 /* If X is (minus C Y) where C's least set bit is larger than any bit
7460 in the mask, then we may replace with (neg Y). */
7461 if (CONST_INT_P (XEXP (x, 0))
7462 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
7463 & -INTVAL (XEXP (x, 0))))
7464 > mask))
7465 {
7466 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
7467 GET_MODE (x));
7468 return force_to_mode (x, mode, mask, next_select);
7469 }
7470
7471 /* Similarly, if C contains every bit in the fuller_mask, then we may
7472 replace with (not Y). */
7473 if (CONST_INT_P (XEXP (x, 0))
7474 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
7475 == INTVAL (XEXP (x, 0))))
7476 {
7477 x = simplify_gen_unary (NOT, GET_MODE (x),
7478 XEXP (x, 1), GET_MODE (x));
7479 return force_to_mode (x, mode, mask, next_select);
7480 }
7481
7482 mask = fuller_mask;
7483 goto binop;
7484
7485 case IOR:
7486 case XOR:
7487 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
7488 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
7489 operation which may be a bitfield extraction. Ensure that the
7490 constant we form is not wider than the mode of X. */
7491
7492 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7493 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7494 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7495 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7496 && CONST_INT_P (XEXP (x, 1))
7497 && ((INTVAL (XEXP (XEXP (x, 0), 1))
7498 + floor_log2 (INTVAL (XEXP (x, 1))))
7499 < GET_MODE_BITSIZE (GET_MODE (x)))
7500 && (INTVAL (XEXP (x, 1))
7501 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
7502 {
7503 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
7504 << INTVAL (XEXP (XEXP (x, 0), 1)));
7505 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
7506 XEXP (XEXP (x, 0), 0), temp);
7507 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
7508 XEXP (XEXP (x, 0), 1));
7509 return force_to_mode (x, mode, mask, next_select);
7510 }
7511
7512 binop:
7513 /* For most binary operations, just propagate into the operation and
7514 change the mode if we have an operation of that mode. */
7515
7516 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
7517 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
7518
7519 /* If we ended up truncating both operands, truncate the result of the
7520 operation instead. */
7521 if (GET_CODE (op0) == TRUNCATE
7522 && GET_CODE (op1) == TRUNCATE)
7523 {
7524 op0 = XEXP (op0, 0);
7525 op1 = XEXP (op1, 0);
7526 }
7527
7528 op0 = gen_lowpart_or_truncate (op_mode, op0);
7529 op1 = gen_lowpart_or_truncate (op_mode, op1);
7530
7531 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7532 x = simplify_gen_binary (code, op_mode, op0, op1);
7533 break;
7534
7535 case ASHIFT:
7536 /* For left shifts, do the same, but just for the first operand.
7537 However, we cannot do anything with shifts where we cannot
7538 guarantee that the counts are smaller than the size of the mode
7539 because such a count will have a different meaning in a
7540 wider mode. */
7541
7542 if (! (CONST_INT_P (XEXP (x, 1))
7543 && INTVAL (XEXP (x, 1)) >= 0
7544 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
7545 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
7546 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
7547 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
7548 break;
7549
7550 /* If the shift count is a constant and we can do arithmetic in
7551 the mode of the shift, refine which bits we need. Otherwise, use the
7552 conservative form of the mask. */
7553 if (CONST_INT_P (XEXP (x, 1))
7554 && INTVAL (XEXP (x, 1)) >= 0
7555 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7556 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7557 mask >>= INTVAL (XEXP (x, 1));
7558 else
7559 mask = fuller_mask;
7560
7561 op0 = gen_lowpart_or_truncate (op_mode,
7562 force_to_mode (XEXP (x, 0), op_mode,
7563 mask, next_select));
7564
7565 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7566 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
7567 break;
7568
7569 case LSHIFTRT:
7570 /* Here we can only do something if the shift count is a constant,
7571 this shift constant is valid for the host, and we can do arithmetic
7572 in OP_MODE. */
7573
7574 if (CONST_INT_P (XEXP (x, 1))
7575 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7576 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7577 {
7578 rtx inner = XEXP (x, 0);
7579 unsigned HOST_WIDE_INT inner_mask;
7580
7581 /* Select the mask of the bits we need for the shift operand. */
7582 inner_mask = mask << INTVAL (XEXP (x, 1));
7583
7584 /* We can only change the mode of the shift if we can do arithmetic
7585 in the mode of the shift and INNER_MASK is no wider than the
7586 width of X's mode. */
7587 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
7588 op_mode = GET_MODE (x);
7589
7590 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
7591
7592 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7593 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7594 }
7595
7596 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7597 shift and AND produces only copies of the sign bit (C2 is one less
7598 than a power of two), we can do this with just a shift. */
7599
7600 if (GET_CODE (x) == LSHIFTRT
7601 && CONST_INT_P (XEXP (x, 1))
7602 /* The shift puts one of the sign bit copies in the least significant
7603 bit. */
7604 && ((INTVAL (XEXP (x, 1))
7605 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7606 >= GET_MODE_BITSIZE (GET_MODE (x)))
7607 && exact_log2 (mask + 1) >= 0
7608 /* Number of bits left after the shift must be more than the mask
7609 needs. */
7610 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7611 <= GET_MODE_BITSIZE (GET_MODE (x)))
7612 /* Must be more sign bit copies than the mask needs. */
7613 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7614 >= exact_log2 (mask + 1)))
7615 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7616 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7617 - exact_log2 (mask + 1)));
7618
7619 goto shiftrt;
7620
7621 case ASHIFTRT:
7622 /* If we are just looking for the sign bit, we don't need this shift at
7623 all, even if it has a variable count. */
7624 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7625 && (mask == ((unsigned HOST_WIDE_INT) 1
7626 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7627 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
7628
7629 /* If this is a shift by a constant, get a mask that contains those bits
7630 that are not copies of the sign bit. We then have two cases: If
7631 MASK only includes those bits, this can be a logical shift, which may
7632 allow simplifications. If MASK is a single-bit field not within
7633 those bits, we are requesting a copy of the sign bit and hence can
7634 shift the sign bit to the appropriate location. */
7635
7636 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
7637 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7638 {
7639 int i;
7640
7641 /* If the considered data is wider than HOST_WIDE_INT, we can't
7642 represent a mask for all its bits in a single scalar.
7643 But we only care about the lower bits, so calculate these. */
7644
7645 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7646 {
7647 nonzero = ~(HOST_WIDE_INT) 0;
7648
7649 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7650 is the number of bits a full-width mask would have set.
7651 We need only shift if these are fewer than nonzero can
7652 hold. If not, we must keep all bits set in nonzero. */
7653
7654 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7655 < HOST_BITS_PER_WIDE_INT)
7656 nonzero >>= INTVAL (XEXP (x, 1))
7657 + HOST_BITS_PER_WIDE_INT
7658 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7659 }
7660 else
7661 {
7662 nonzero = GET_MODE_MASK (GET_MODE (x));
7663 nonzero >>= INTVAL (XEXP (x, 1));
7664 }
7665
7666 if ((mask & ~nonzero) == 0)
7667 {
7668 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
7669 XEXP (x, 0), INTVAL (XEXP (x, 1)));
7670 if (GET_CODE (x) != ASHIFTRT)
7671 return force_to_mode (x, mode, mask, next_select);
7672 }
7673
7674 else if ((i = exact_log2 (mask)) >= 0)
7675 {
7676 x = simplify_shift_const
7677 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7678 GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7679
7680 if (GET_CODE (x) != ASHIFTRT)
7681 return force_to_mode (x, mode, mask, next_select);
7682 }
7683 }
7684
7685 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7686 even if the shift count isn't a constant. */
7687 if (mask == 1)
7688 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7689 XEXP (x, 0), XEXP (x, 1));
7690
7691 shiftrt:
7692
7693 /* If this is a zero- or sign-extension operation that just affects bits
7694 we don't care about, remove it. Be sure the call above returned
7695 something that is still a shift. */
7696
7697 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7698 && CONST_INT_P (XEXP (x, 1))
7699 && INTVAL (XEXP (x, 1)) >= 0
7700 && (INTVAL (XEXP (x, 1))
7701 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7702 && GET_CODE (XEXP (x, 0)) == ASHIFT
7703 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
7704 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7705 next_select);
7706
7707 break;
7708
7709 case ROTATE:
7710 case ROTATERT:
7711 /* If the shift count is constant and we can do computations
7712 in the mode of X, compute where the bits we care about are.
7713 Otherwise, we can't do anything. Don't change the mode of
7714 the shift or propagate MODE into the shift, though. */
7715 if (CONST_INT_P (XEXP (x, 1))
7716 && INTVAL (XEXP (x, 1)) >= 0)
7717 {
7718 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7719 GET_MODE (x), GEN_INT (mask),
7720 XEXP (x, 1));
7721 if (temp && CONST_INT_P (temp))
7722 SUBST (XEXP (x, 0),
7723 force_to_mode (XEXP (x, 0), GET_MODE (x),
7724 INTVAL (temp), next_select));
7725 }
7726 break;
7727
7728 case NEG:
7729 /* If we just want the low-order bit, the NEG isn't needed since it
7730 won't change the low-order bit. */
7731 if (mask == 1)
7732 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
7733
7734 /* We need any bits less significant than the most significant bit in
7735 MASK since carries from those bits will affect the bits we are
7736 interested in. */
7737 mask = fuller_mask;
7738 goto unop;
7739
7740 case NOT:
7741 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7742 same as the XOR case above. Ensure that the constant we form is not
7743 wider than the mode of X. */
7744
7745 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7746 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7747 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7748 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7749 < GET_MODE_BITSIZE (GET_MODE (x)))
7750 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7751 {
7752 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
7753 GET_MODE (x));
7754 temp = simplify_gen_binary (XOR, GET_MODE (x),
7755 XEXP (XEXP (x, 0), 0), temp);
7756 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7757 temp, XEXP (XEXP (x, 0), 1));
7758
7759 return force_to_mode (x, mode, mask, next_select);
7760 }
7761
7762 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7763 use the full mask inside the NOT. */
7764 mask = fuller_mask;
7765
7766 unop:
7767 op0 = gen_lowpart_or_truncate (op_mode,
7768 force_to_mode (XEXP (x, 0), mode, mask,
7769 next_select));
7770 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7771 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7772 break;
7773
7774 case NE:
7775 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7776 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7777 which is equal to STORE_FLAG_VALUE. */
7778 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7779 && GET_MODE (XEXP (x, 0)) == mode
7780 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7781 && (nonzero_bits (XEXP (x, 0), mode)
7782 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
7783 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
7784
7785 break;
7786
7787 case IF_THEN_ELSE:
7788 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7789 written in a narrower mode. We play it safe and do not do so. */
7790
7791 SUBST (XEXP (x, 1),
7792 gen_lowpart_or_truncate (GET_MODE (x),
7793 force_to_mode (XEXP (x, 1), mode,
7794 mask, next_select)));
7795 SUBST (XEXP (x, 2),
7796 gen_lowpart_or_truncate (GET_MODE (x),
7797 force_to_mode (XEXP (x, 2), mode,
7798 mask, next_select)));
7799 break;
7800
7801 default:
7802 break;
7803 }
7804
7805 /* Ensure we return a value of the proper mode. */
7806 return gen_lowpart_or_truncate (mode, x);
7807 }
7808 \f
7809 /* Return nonzero if X is an expression that has one of two values depending on
7810 whether some other value is zero or nonzero. In that case, we return the
7811 value that is being tested, *PTRUE is set to the value if the rtx being
7812 returned has a nonzero value, and *PFALSE is set to the other alternative.
7813
7814 If we return zero, we set *PTRUE and *PFALSE to X. */
7815
7816 static rtx
7817 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
7818 {
7819 enum machine_mode mode = GET_MODE (x);
7820 enum rtx_code code = GET_CODE (x);
7821 rtx cond0, cond1, true0, true1, false0, false1;
7822 unsigned HOST_WIDE_INT nz;
7823
7824 /* If we are comparing a value against zero, we are done. */
7825 if ((code == NE || code == EQ)
7826 && XEXP (x, 1) == const0_rtx)
7827 {
7828 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7829 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7830 return XEXP (x, 0);
7831 }
7832
7833 /* If this is a unary operation whose operand has one of two values, apply
7834 our opcode to compute those values. */
7835 else if (UNARY_P (x)
7836 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7837 {
7838 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7839 *pfalse = simplify_gen_unary (code, mode, false0,
7840 GET_MODE (XEXP (x, 0)));
7841 return cond0;
7842 }
7843
7844 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7845 make can't possibly match and would suppress other optimizations. */
7846 else if (code == COMPARE)
7847 ;
7848
7849 /* If this is a binary operation, see if either side has only one of two
7850 values. If either one does or if both do and they are conditional on
7851 the same value, compute the new true and false values. */
7852 else if (BINARY_P (x))
7853 {
7854 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7855 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7856
7857 if ((cond0 != 0 || cond1 != 0)
7858 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7859 {
7860 /* If if_then_else_cond returned zero, then true/false are the
7861 same rtl. We must copy one of them to prevent invalid rtl
7862 sharing. */
7863 if (cond0 == 0)
7864 true0 = copy_rtx (true0);
7865 else if (cond1 == 0)
7866 true1 = copy_rtx (true1);
7867
7868 if (COMPARISON_P (x))
7869 {
7870 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
7871 true0, true1);
7872 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
7873 false0, false1);
7874 }
7875 else
7876 {
7877 *ptrue = simplify_gen_binary (code, mode, true0, true1);
7878 *pfalse = simplify_gen_binary (code, mode, false0, false1);
7879 }
7880
7881 return cond0 ? cond0 : cond1;
7882 }
7883
7884 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7885 operands is zero when the other is nonzero, and vice-versa,
7886 and STORE_FLAG_VALUE is 1 or -1. */
7887
7888 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7889 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7890 || code == UMAX)
7891 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7892 {
7893 rtx op0 = XEXP (XEXP (x, 0), 1);
7894 rtx op1 = XEXP (XEXP (x, 1), 1);
7895
7896 cond0 = XEXP (XEXP (x, 0), 0);
7897 cond1 = XEXP (XEXP (x, 1), 0);
7898
7899 if (COMPARISON_P (cond0)
7900 && COMPARISON_P (cond1)
7901 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7902 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7903 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7904 || ((swap_condition (GET_CODE (cond0))
7905 == reversed_comparison_code (cond1, NULL))
7906 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7907 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7908 && ! side_effects_p (x))
7909 {
7910 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
7911 *pfalse = simplify_gen_binary (MULT, mode,
7912 (code == MINUS
7913 ? simplify_gen_unary (NEG, mode,
7914 op1, mode)
7915 : op1),
7916 const_true_rtx);
7917 return cond0;
7918 }
7919 }
7920
7921 /* Similarly for MULT, AND and UMIN, except that for these the result
7922 is always zero. */
7923 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7924 && (code == MULT || code == AND || code == UMIN)
7925 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7926 {
7927 cond0 = XEXP (XEXP (x, 0), 0);
7928 cond1 = XEXP (XEXP (x, 1), 0);
7929
7930 if (COMPARISON_P (cond0)
7931 && COMPARISON_P (cond1)
7932 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7933 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7934 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7935 || ((swap_condition (GET_CODE (cond0))
7936 == reversed_comparison_code (cond1, NULL))
7937 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7938 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7939 && ! side_effects_p (x))
7940 {
7941 *ptrue = *pfalse = const0_rtx;
7942 return cond0;
7943 }
7944 }
7945 }
7946
7947 else if (code == IF_THEN_ELSE)
7948 {
7949 /* If we have IF_THEN_ELSE already, extract the condition and
7950 canonicalize it if it is NE or EQ. */
7951 cond0 = XEXP (x, 0);
7952 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7953 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7954 return XEXP (cond0, 0);
7955 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7956 {
7957 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7958 return XEXP (cond0, 0);
7959 }
7960 else
7961 return cond0;
7962 }
7963
7964 /* If X is a SUBREG, we can narrow both the true and false values
7965 if the inner expression, if there is a condition. */
7966 else if (code == SUBREG
7967 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7968 &true0, &false0)))
7969 {
7970 true0 = simplify_gen_subreg (mode, true0,
7971 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7972 false0 = simplify_gen_subreg (mode, false0,
7973 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7974 if (true0 && false0)
7975 {
7976 *ptrue = true0;
7977 *pfalse = false0;
7978 return cond0;
7979 }
7980 }
7981
7982 /* If X is a constant, this isn't special and will cause confusions
7983 if we treat it as such. Likewise if it is equivalent to a constant. */
7984 else if (CONSTANT_P (x)
7985 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7986 ;
7987
7988 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7989 will be least confusing to the rest of the compiler. */
7990 else if (mode == BImode)
7991 {
7992 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7993 return x;
7994 }
7995
7996 /* If X is known to be either 0 or -1, those are the true and
7997 false values when testing X. */
7998 else if (x == constm1_rtx || x == const0_rtx
7999 || (mode != VOIDmode
8000 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
8001 {
8002 *ptrue = constm1_rtx, *pfalse = const0_rtx;
8003 return x;
8004 }
8005
8006 /* Likewise for 0 or a single bit. */
8007 else if (SCALAR_INT_MODE_P (mode)
8008 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8009 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
8010 {
8011 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
8012 return x;
8013 }
8014
8015 /* Otherwise fail; show no condition with true and false values the same. */
8016 *ptrue = *pfalse = x;
8017 return 0;
8018 }
8019 \f
8020 /* Return the value of expression X given the fact that condition COND
8021 is known to be true when applied to REG as its first operand and VAL
8022 as its second. X is known to not be shared and so can be modified in
8023 place.
8024
8025 We only handle the simplest cases, and specifically those cases that
8026 arise with IF_THEN_ELSE expressions. */
8027
8028 static rtx
8029 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
8030 {
8031 enum rtx_code code = GET_CODE (x);
8032 rtx temp;
8033 const char *fmt;
8034 int i, j;
8035
8036 if (side_effects_p (x))
8037 return x;
8038
8039 /* If either operand of the condition is a floating point value,
8040 then we have to avoid collapsing an EQ comparison. */
8041 if (cond == EQ
8042 && rtx_equal_p (x, reg)
8043 && ! FLOAT_MODE_P (GET_MODE (x))
8044 && ! FLOAT_MODE_P (GET_MODE (val)))
8045 return val;
8046
8047 if (cond == UNEQ && rtx_equal_p (x, reg))
8048 return val;
8049
8050 /* If X is (abs REG) and we know something about REG's relationship
8051 with zero, we may be able to simplify this. */
8052
8053 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
8054 switch (cond)
8055 {
8056 case GE: case GT: case EQ:
8057 return XEXP (x, 0);
8058 case LT: case LE:
8059 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
8060 XEXP (x, 0),
8061 GET_MODE (XEXP (x, 0)));
8062 default:
8063 break;
8064 }
8065
8066 /* The only other cases we handle are MIN, MAX, and comparisons if the
8067 operands are the same as REG and VAL. */
8068
8069 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
8070 {
8071 if (rtx_equal_p (XEXP (x, 0), val))
8072 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
8073
8074 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
8075 {
8076 if (COMPARISON_P (x))
8077 {
8078 if (comparison_dominates_p (cond, code))
8079 return const_true_rtx;
8080
8081 code = reversed_comparison_code (x, NULL);
8082 if (code != UNKNOWN
8083 && comparison_dominates_p (cond, code))
8084 return const0_rtx;
8085 else
8086 return x;
8087 }
8088 else if (code == SMAX || code == SMIN
8089 || code == UMIN || code == UMAX)
8090 {
8091 int unsignedp = (code == UMIN || code == UMAX);
8092
8093 /* Do not reverse the condition when it is NE or EQ.
8094 This is because we cannot conclude anything about
8095 the value of 'SMAX (x, y)' when x is not equal to y,
8096 but we can when x equals y. */
8097 if ((code == SMAX || code == UMAX)
8098 && ! (cond == EQ || cond == NE))
8099 cond = reverse_condition (cond);
8100
8101 switch (cond)
8102 {
8103 case GE: case GT:
8104 return unsignedp ? x : XEXP (x, 1);
8105 case LE: case LT:
8106 return unsignedp ? x : XEXP (x, 0);
8107 case GEU: case GTU:
8108 return unsignedp ? XEXP (x, 1) : x;
8109 case LEU: case LTU:
8110 return unsignedp ? XEXP (x, 0) : x;
8111 default:
8112 break;
8113 }
8114 }
8115 }
8116 }
8117 else if (code == SUBREG)
8118 {
8119 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
8120 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
8121
8122 if (SUBREG_REG (x) != r)
8123 {
8124 /* We must simplify subreg here, before we lose track of the
8125 original inner_mode. */
8126 new_rtx = simplify_subreg (GET_MODE (x), r,
8127 inner_mode, SUBREG_BYTE (x));
8128 if (new_rtx)
8129 return new_rtx;
8130 else
8131 SUBST (SUBREG_REG (x), r);
8132 }
8133
8134 return x;
8135 }
8136 /* We don't have to handle SIGN_EXTEND here, because even in the
8137 case of replacing something with a modeless CONST_INT, a
8138 CONST_INT is already (supposed to be) a valid sign extension for
8139 its narrower mode, which implies it's already properly
8140 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
8141 story is different. */
8142 else if (code == ZERO_EXTEND)
8143 {
8144 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
8145 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
8146
8147 if (XEXP (x, 0) != r)
8148 {
8149 /* We must simplify the zero_extend here, before we lose
8150 track of the original inner_mode. */
8151 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
8152 r, inner_mode);
8153 if (new_rtx)
8154 return new_rtx;
8155 else
8156 SUBST (XEXP (x, 0), r);
8157 }
8158
8159 return x;
8160 }
8161
8162 fmt = GET_RTX_FORMAT (code);
8163 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8164 {
8165 if (fmt[i] == 'e')
8166 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
8167 else if (fmt[i] == 'E')
8168 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8169 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
8170 cond, reg, val));
8171 }
8172
8173 return x;
8174 }
8175 \f
8176 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
8177 assignment as a field assignment. */
8178
8179 static int
8180 rtx_equal_for_field_assignment_p (rtx x, rtx y)
8181 {
8182 if (x == y || rtx_equal_p (x, y))
8183 return 1;
8184
8185 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
8186 return 0;
8187
8188 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
8189 Note that all SUBREGs of MEM are paradoxical; otherwise they
8190 would have been rewritten. */
8191 if (MEM_P (x) && GET_CODE (y) == SUBREG
8192 && MEM_P (SUBREG_REG (y))
8193 && rtx_equal_p (SUBREG_REG (y),
8194 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
8195 return 1;
8196
8197 if (MEM_P (y) && GET_CODE (x) == SUBREG
8198 && MEM_P (SUBREG_REG (x))
8199 && rtx_equal_p (SUBREG_REG (x),
8200 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
8201 return 1;
8202
8203 /* We used to see if get_last_value of X and Y were the same but that's
8204 not correct. In one direction, we'll cause the assignment to have
8205 the wrong destination and in the case, we'll import a register into this
8206 insn that might have already have been dead. So fail if none of the
8207 above cases are true. */
8208 return 0;
8209 }
8210 \f
8211 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
8212 Return that assignment if so.
8213
8214 We only handle the most common cases. */
8215
8216 static rtx
8217 make_field_assignment (rtx x)
8218 {
8219 rtx dest = SET_DEST (x);
8220 rtx src = SET_SRC (x);
8221 rtx assign;
8222 rtx rhs, lhs;
8223 HOST_WIDE_INT c1;
8224 HOST_WIDE_INT pos;
8225 unsigned HOST_WIDE_INT len;
8226 rtx other;
8227 enum machine_mode mode;
8228
8229 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
8230 a clear of a one-bit field. We will have changed it to
8231 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
8232 for a SUBREG. */
8233
8234 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
8235 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
8236 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
8237 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8238 {
8239 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8240 1, 1, 1, 0);
8241 if (assign != 0)
8242 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8243 return x;
8244 }
8245
8246 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
8247 && subreg_lowpart_p (XEXP (src, 0))
8248 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
8249 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
8250 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
8251 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
8252 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
8253 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8254 {
8255 assign = make_extraction (VOIDmode, dest, 0,
8256 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
8257 1, 1, 1, 0);
8258 if (assign != 0)
8259 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8260 return x;
8261 }
8262
8263 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
8264 one-bit field. */
8265 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
8266 && XEXP (XEXP (src, 0), 0) == const1_rtx
8267 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8268 {
8269 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8270 1, 1, 1, 0);
8271 if (assign != 0)
8272 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
8273 return x;
8274 }
8275
8276 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
8277 SRC is an AND with all bits of that field set, then we can discard
8278 the AND. */
8279 if (GET_CODE (dest) == ZERO_EXTRACT
8280 && CONST_INT_P (XEXP (dest, 1))
8281 && GET_CODE (src) == AND
8282 && CONST_INT_P (XEXP (src, 1)))
8283 {
8284 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
8285 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
8286 unsigned HOST_WIDE_INT ze_mask;
8287
8288 if (width >= HOST_BITS_PER_WIDE_INT)
8289 ze_mask = -1;
8290 else
8291 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
8292
8293 /* Complete overlap. We can remove the source AND. */
8294 if ((and_mask & ze_mask) == ze_mask)
8295 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
8296
8297 /* Partial overlap. We can reduce the source AND. */
8298 if ((and_mask & ze_mask) != and_mask)
8299 {
8300 mode = GET_MODE (src);
8301 src = gen_rtx_AND (mode, XEXP (src, 0),
8302 gen_int_mode (and_mask & ze_mask, mode));
8303 return gen_rtx_SET (VOIDmode, dest, src);
8304 }
8305 }
8306
8307 /* The other case we handle is assignments into a constant-position
8308 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
8309 a mask that has all one bits except for a group of zero bits and
8310 OTHER is known to have zeros where C1 has ones, this is such an
8311 assignment. Compute the position and length from C1. Shift OTHER
8312 to the appropriate position, force it to the required mode, and
8313 make the extraction. Check for the AND in both operands. */
8314
8315 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
8316 return x;
8317
8318 rhs = expand_compound_operation (XEXP (src, 0));
8319 lhs = expand_compound_operation (XEXP (src, 1));
8320
8321 if (GET_CODE (rhs) == AND
8322 && CONST_INT_P (XEXP (rhs, 1))
8323 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
8324 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
8325 else if (GET_CODE (lhs) == AND
8326 && CONST_INT_P (XEXP (lhs, 1))
8327 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
8328 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
8329 else
8330 return x;
8331
8332 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
8333 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
8334 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
8335 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
8336 return x;
8337
8338 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
8339 if (assign == 0)
8340 return x;
8341
8342 /* The mode to use for the source is the mode of the assignment, or of
8343 what is inside a possible STRICT_LOW_PART. */
8344 mode = (GET_CODE (assign) == STRICT_LOW_PART
8345 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
8346
8347 /* Shift OTHER right POS places and make it the source, restricting it
8348 to the proper length and mode. */
8349
8350 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
8351 GET_MODE (src),
8352 other, pos),
8353 dest);
8354 src = force_to_mode (src, mode,
8355 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
8356 ? ~(unsigned HOST_WIDE_INT) 0
8357 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
8358 0);
8359
8360 /* If SRC is masked by an AND that does not make a difference in
8361 the value being stored, strip it. */
8362 if (GET_CODE (assign) == ZERO_EXTRACT
8363 && CONST_INT_P (XEXP (assign, 1))
8364 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
8365 && GET_CODE (src) == AND
8366 && CONST_INT_P (XEXP (src, 1))
8367 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
8368 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
8369 src = XEXP (src, 0);
8370
8371 return gen_rtx_SET (VOIDmode, assign, src);
8372 }
8373 \f
8374 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
8375 if so. */
8376
8377 static rtx
8378 apply_distributive_law (rtx x)
8379 {
8380 enum rtx_code code = GET_CODE (x);
8381 enum rtx_code inner_code;
8382 rtx lhs, rhs, other;
8383 rtx tem;
8384
8385 /* Distributivity is not true for floating point as it can change the
8386 value. So we don't do it unless -funsafe-math-optimizations. */
8387 if (FLOAT_MODE_P (GET_MODE (x))
8388 && ! flag_unsafe_math_optimizations)
8389 return x;
8390
8391 /* The outer operation can only be one of the following: */
8392 if (code != IOR && code != AND && code != XOR
8393 && code != PLUS && code != MINUS)
8394 return x;
8395
8396 lhs = XEXP (x, 0);
8397 rhs = XEXP (x, 1);
8398
8399 /* If either operand is a primitive we can't do anything, so get out
8400 fast. */
8401 if (OBJECT_P (lhs) || OBJECT_P (rhs))
8402 return x;
8403
8404 lhs = expand_compound_operation (lhs);
8405 rhs = expand_compound_operation (rhs);
8406 inner_code = GET_CODE (lhs);
8407 if (inner_code != GET_CODE (rhs))
8408 return x;
8409
8410 /* See if the inner and outer operations distribute. */
8411 switch (inner_code)
8412 {
8413 case LSHIFTRT:
8414 case ASHIFTRT:
8415 case AND:
8416 case IOR:
8417 /* These all distribute except over PLUS. */
8418 if (code == PLUS || code == MINUS)
8419 return x;
8420 break;
8421
8422 case MULT:
8423 if (code != PLUS && code != MINUS)
8424 return x;
8425 break;
8426
8427 case ASHIFT:
8428 /* This is also a multiply, so it distributes over everything. */
8429 break;
8430
8431 case SUBREG:
8432 /* Non-paradoxical SUBREGs distributes over all operations,
8433 provided the inner modes and byte offsets are the same, this
8434 is an extraction of a low-order part, we don't convert an fp
8435 operation to int or vice versa, this is not a vector mode,
8436 and we would not be converting a single-word operation into a
8437 multi-word operation. The latter test is not required, but
8438 it prevents generating unneeded multi-word operations. Some
8439 of the previous tests are redundant given the latter test,
8440 but are retained because they are required for correctness.
8441
8442 We produce the result slightly differently in this case. */
8443
8444 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
8445 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
8446 || ! subreg_lowpart_p (lhs)
8447 || (GET_MODE_CLASS (GET_MODE (lhs))
8448 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
8449 || (GET_MODE_SIZE (GET_MODE (lhs))
8450 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
8451 || VECTOR_MODE_P (GET_MODE (lhs))
8452 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD
8453 /* Result might need to be truncated. Don't change mode if
8454 explicit truncation is needed. */
8455 || !TRULY_NOOP_TRUNCATION
8456 (GET_MODE_BITSIZE (GET_MODE (x)),
8457 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (lhs)))))
8458 return x;
8459
8460 tem = simplify_gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
8461 SUBREG_REG (lhs), SUBREG_REG (rhs));
8462 return gen_lowpart (GET_MODE (x), tem);
8463
8464 default:
8465 return x;
8466 }
8467
8468 /* Set LHS and RHS to the inner operands (A and B in the example
8469 above) and set OTHER to the common operand (C in the example).
8470 There is only one way to do this unless the inner operation is
8471 commutative. */
8472 if (COMMUTATIVE_ARITH_P (lhs)
8473 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
8474 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
8475 else if (COMMUTATIVE_ARITH_P (lhs)
8476 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
8477 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
8478 else if (COMMUTATIVE_ARITH_P (lhs)
8479 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
8480 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
8481 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
8482 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
8483 else
8484 return x;
8485
8486 /* Form the new inner operation, seeing if it simplifies first. */
8487 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
8488
8489 /* There is one exception to the general way of distributing:
8490 (a | c) ^ (b | c) -> (a ^ b) & ~c */
8491 if (code == XOR && inner_code == IOR)
8492 {
8493 inner_code = AND;
8494 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
8495 }
8496
8497 /* We may be able to continuing distributing the result, so call
8498 ourselves recursively on the inner operation before forming the
8499 outer operation, which we return. */
8500 return simplify_gen_binary (inner_code, GET_MODE (x),
8501 apply_distributive_law (tem), other);
8502 }
8503
8504 /* See if X is of the form (* (+ A B) C), and if so convert to
8505 (+ (* A C) (* B C)) and try to simplify.
8506
8507 Most of the time, this results in no change. However, if some of
8508 the operands are the same or inverses of each other, simplifications
8509 will result.
8510
8511 For example, (and (ior A B) (not B)) can occur as the result of
8512 expanding a bit field assignment. When we apply the distributive
8513 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
8514 which then simplifies to (and (A (not B))).
8515
8516 Note that no checks happen on the validity of applying the inverse
8517 distributive law. This is pointless since we can do it in the
8518 few places where this routine is called.
8519
8520 N is the index of the term that is decomposed (the arithmetic operation,
8521 i.e. (+ A B) in the first example above). !N is the index of the term that
8522 is distributed, i.e. of C in the first example above. */
8523 static rtx
8524 distribute_and_simplify_rtx (rtx x, int n)
8525 {
8526 enum machine_mode mode;
8527 enum rtx_code outer_code, inner_code;
8528 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
8529
8530 decomposed = XEXP (x, n);
8531 if (!ARITHMETIC_P (decomposed))
8532 return NULL_RTX;
8533
8534 mode = GET_MODE (x);
8535 outer_code = GET_CODE (x);
8536 distributed = XEXP (x, !n);
8537
8538 inner_code = GET_CODE (decomposed);
8539 inner_op0 = XEXP (decomposed, 0);
8540 inner_op1 = XEXP (decomposed, 1);
8541
8542 /* Special case (and (xor B C) (not A)), which is equivalent to
8543 (xor (ior A B) (ior A C)) */
8544 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
8545 {
8546 distributed = XEXP (distributed, 0);
8547 outer_code = IOR;
8548 }
8549
8550 if (n == 0)
8551 {
8552 /* Distribute the second term. */
8553 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
8554 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
8555 }
8556 else
8557 {
8558 /* Distribute the first term. */
8559 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
8560 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
8561 }
8562
8563 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
8564 new_op0, new_op1));
8565 if (GET_CODE (tmp) != outer_code
8566 && rtx_cost (tmp, SET, optimize_this_for_speed_p)
8567 < rtx_cost (x, SET, optimize_this_for_speed_p))
8568 return tmp;
8569
8570 return NULL_RTX;
8571 }
8572 \f
8573 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
8574 in MODE. Return an equivalent form, if different from (and VAROP
8575 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
8576
8577 static rtx
8578 simplify_and_const_int_1 (enum machine_mode mode, rtx varop,
8579 unsigned HOST_WIDE_INT constop)
8580 {
8581 unsigned HOST_WIDE_INT nonzero;
8582 unsigned HOST_WIDE_INT orig_constop;
8583 rtx orig_varop;
8584 int i;
8585
8586 orig_varop = varop;
8587 orig_constop = constop;
8588 if (GET_CODE (varop) == CLOBBER)
8589 return NULL_RTX;
8590
8591 /* Simplify VAROP knowing that we will be only looking at some of the
8592 bits in it.
8593
8594 Note by passing in CONSTOP, we guarantee that the bits not set in
8595 CONSTOP are not significant and will never be examined. We must
8596 ensure that is the case by explicitly masking out those bits
8597 before returning. */
8598 varop = force_to_mode (varop, mode, constop, 0);
8599
8600 /* If VAROP is a CLOBBER, we will fail so return it. */
8601 if (GET_CODE (varop) == CLOBBER)
8602 return varop;
8603
8604 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
8605 to VAROP and return the new constant. */
8606 if (CONST_INT_P (varop))
8607 return gen_int_mode (INTVAL (varop) & constop, mode);
8608
8609 /* See what bits may be nonzero in VAROP. Unlike the general case of
8610 a call to nonzero_bits, here we don't care about bits outside
8611 MODE. */
8612
8613 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
8614
8615 /* Turn off all bits in the constant that are known to already be zero.
8616 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
8617 which is tested below. */
8618
8619 constop &= nonzero;
8620
8621 /* If we don't have any bits left, return zero. */
8622 if (constop == 0)
8623 return const0_rtx;
8624
8625 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
8626 a power of two, we can replace this with an ASHIFT. */
8627 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
8628 && (i = exact_log2 (constop)) >= 0)
8629 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
8630
8631 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
8632 or XOR, then try to apply the distributive law. This may eliminate
8633 operations if either branch can be simplified because of the AND.
8634 It may also make some cases more complex, but those cases probably
8635 won't match a pattern either with or without this. */
8636
8637 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
8638 return
8639 gen_lowpart
8640 (mode,
8641 apply_distributive_law
8642 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
8643 simplify_and_const_int (NULL_RTX,
8644 GET_MODE (varop),
8645 XEXP (varop, 0),
8646 constop),
8647 simplify_and_const_int (NULL_RTX,
8648 GET_MODE (varop),
8649 XEXP (varop, 1),
8650 constop))));
8651
8652 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
8653 the AND and see if one of the operands simplifies to zero. If so, we
8654 may eliminate it. */
8655
8656 if (GET_CODE (varop) == PLUS
8657 && exact_log2 (constop + 1) >= 0)
8658 {
8659 rtx o0, o1;
8660
8661 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
8662 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
8663 if (o0 == const0_rtx)
8664 return o1;
8665 if (o1 == const0_rtx)
8666 return o0;
8667 }
8668
8669 /* Make a SUBREG if necessary. If we can't make it, fail. */
8670 varop = gen_lowpart (mode, varop);
8671 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
8672 return NULL_RTX;
8673
8674 /* If we are only masking insignificant bits, return VAROP. */
8675 if (constop == nonzero)
8676 return varop;
8677
8678 if (varop == orig_varop && constop == orig_constop)
8679 return NULL_RTX;
8680
8681 /* Otherwise, return an AND. */
8682 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
8683 }
8684
8685
8686 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
8687 in MODE.
8688
8689 Return an equivalent form, if different from X. Otherwise, return X. If
8690 X is zero, we are to always construct the equivalent form. */
8691
8692 static rtx
8693 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
8694 unsigned HOST_WIDE_INT constop)
8695 {
8696 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
8697 if (tem)
8698 return tem;
8699
8700 if (!x)
8701 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
8702 gen_int_mode (constop, mode));
8703 if (GET_MODE (x) != mode)
8704 x = gen_lowpart (mode, x);
8705 return x;
8706 }
8707 \f
8708 /* Given a REG, X, compute which bits in X can be nonzero.
8709 We don't care about bits outside of those defined in MODE.
8710
8711 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8712 a shift, AND, or zero_extract, we can do better. */
8713
8714 static rtx
8715 reg_nonzero_bits_for_combine (const_rtx x, enum machine_mode mode,
8716 const_rtx known_x ATTRIBUTE_UNUSED,
8717 enum machine_mode known_mode ATTRIBUTE_UNUSED,
8718 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
8719 unsigned HOST_WIDE_INT *nonzero)
8720 {
8721 rtx tem;
8722 reg_stat_type *rsp;
8723
8724 /* If X is a register whose nonzero bits value is current, use it.
8725 Otherwise, if X is a register whose value we can find, use that
8726 value. Otherwise, use the previously-computed global nonzero bits
8727 for this register. */
8728
8729 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
8730 if (rsp->last_set_value != 0
8731 && (rsp->last_set_mode == mode
8732 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
8733 && GET_MODE_CLASS (mode) == MODE_INT))
8734 && ((rsp->last_set_label >= label_tick_ebb_start
8735 && rsp->last_set_label < label_tick)
8736 || (rsp->last_set_label == label_tick
8737 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
8738 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8739 && REG_N_SETS (REGNO (x)) == 1
8740 && !REGNO_REG_SET_P
8741 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
8742 {
8743 *nonzero &= rsp->last_set_nonzero_bits;
8744 return NULL;
8745 }
8746
8747 tem = get_last_value (x);
8748
8749 if (tem)
8750 {
8751 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8752 /* If X is narrower than MODE and TEM is a non-negative
8753 constant that would appear negative in the mode of X,
8754 sign-extend it for use in reg_nonzero_bits because some
8755 machines (maybe most) will actually do the sign-extension
8756 and this is the conservative approach.
8757
8758 ??? For 2.5, try to tighten up the MD files in this regard
8759 instead of this kludge. */
8760
8761 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode)
8762 && CONST_INT_P (tem)
8763 && INTVAL (tem) > 0
8764 && 0 != (INTVAL (tem)
8765 & ((HOST_WIDE_INT) 1
8766 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8767 tem = GEN_INT (INTVAL (tem)
8768 | ((HOST_WIDE_INT) (-1)
8769 << GET_MODE_BITSIZE (GET_MODE (x))));
8770 #endif
8771 return tem;
8772 }
8773 else if (nonzero_sign_valid && rsp->nonzero_bits)
8774 {
8775 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
8776
8777 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode))
8778 /* We don't know anything about the upper bits. */
8779 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8780 *nonzero &= mask;
8781 }
8782
8783 return NULL;
8784 }
8785
8786 /* Return the number of bits at the high-order end of X that are known to
8787 be equal to the sign bit. X will be used in mode MODE; if MODE is
8788 VOIDmode, X will be used in its own mode. The returned value will always
8789 be between 1 and the number of bits in MODE. */
8790
8791 static rtx
8792 reg_num_sign_bit_copies_for_combine (const_rtx x, enum machine_mode mode,
8793 const_rtx known_x ATTRIBUTE_UNUSED,
8794 enum machine_mode known_mode
8795 ATTRIBUTE_UNUSED,
8796 unsigned int known_ret ATTRIBUTE_UNUSED,
8797 unsigned int *result)
8798 {
8799 rtx tem;
8800 reg_stat_type *rsp;
8801
8802 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
8803 if (rsp->last_set_value != 0
8804 && rsp->last_set_mode == mode
8805 && ((rsp->last_set_label >= label_tick_ebb_start
8806 && rsp->last_set_label < label_tick)
8807 || (rsp->last_set_label == label_tick
8808 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
8809 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8810 && REG_N_SETS (REGNO (x)) == 1
8811 && !REGNO_REG_SET_P
8812 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
8813 {
8814 *result = rsp->last_set_sign_bit_copies;
8815 return NULL;
8816 }
8817
8818 tem = get_last_value (x);
8819 if (tem != 0)
8820 return tem;
8821
8822 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
8823 && GET_MODE_BITSIZE (GET_MODE (x)) == GET_MODE_BITSIZE (mode))
8824 *result = rsp->sign_bit_copies;
8825
8826 return NULL;
8827 }
8828 \f
8829 /* Return the number of "extended" bits there are in X, when interpreted
8830 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8831 unsigned quantities, this is the number of high-order zero bits.
8832 For signed quantities, this is the number of copies of the sign bit
8833 minus 1. In both case, this function returns the number of "spare"
8834 bits. For example, if two quantities for which this function returns
8835 at least 1 are added, the addition is known not to overflow.
8836
8837 This function will always return 0 unless called during combine, which
8838 implies that it must be called from a define_split. */
8839
8840 unsigned int
8841 extended_count (const_rtx x, enum machine_mode mode, int unsignedp)
8842 {
8843 if (nonzero_sign_valid == 0)
8844 return 0;
8845
8846 return (unsignedp
8847 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8848 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
8849 - floor_log2 (nonzero_bits (x, mode)))
8850 : 0)
8851 : num_sign_bit_copies (x, mode) - 1);
8852 }
8853 \f
8854 /* This function is called from `simplify_shift_const' to merge two
8855 outer operations. Specifically, we have already found that we need
8856 to perform operation *POP0 with constant *PCONST0 at the outermost
8857 position. We would now like to also perform OP1 with constant CONST1
8858 (with *POP0 being done last).
8859
8860 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8861 the resulting operation. *PCOMP_P is set to 1 if we would need to
8862 complement the innermost operand, otherwise it is unchanged.
8863
8864 MODE is the mode in which the operation will be done. No bits outside
8865 the width of this mode matter. It is assumed that the width of this mode
8866 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8867
8868 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
8869 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8870 result is simply *PCONST0.
8871
8872 If the resulting operation cannot be expressed as one operation, we
8873 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8874
8875 static int
8876 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
8877 {
8878 enum rtx_code op0 = *pop0;
8879 HOST_WIDE_INT const0 = *pconst0;
8880
8881 const0 &= GET_MODE_MASK (mode);
8882 const1 &= GET_MODE_MASK (mode);
8883
8884 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8885 if (op0 == AND)
8886 const1 &= const0;
8887
8888 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
8889 if OP0 is SET. */
8890
8891 if (op1 == UNKNOWN || op0 == SET)
8892 return 1;
8893
8894 else if (op0 == UNKNOWN)
8895 op0 = op1, const0 = const1;
8896
8897 else if (op0 == op1)
8898 {
8899 switch (op0)
8900 {
8901 case AND:
8902 const0 &= const1;
8903 break;
8904 case IOR:
8905 const0 |= const1;
8906 break;
8907 case XOR:
8908 const0 ^= const1;
8909 break;
8910 case PLUS:
8911 const0 += const1;
8912 break;
8913 case NEG:
8914 op0 = UNKNOWN;
8915 break;
8916 default:
8917 break;
8918 }
8919 }
8920
8921 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8922 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8923 return 0;
8924
8925 /* If the two constants aren't the same, we can't do anything. The
8926 remaining six cases can all be done. */
8927 else if (const0 != const1)
8928 return 0;
8929
8930 else
8931 switch (op0)
8932 {
8933 case IOR:
8934 if (op1 == AND)
8935 /* (a & b) | b == b */
8936 op0 = SET;
8937 else /* op1 == XOR */
8938 /* (a ^ b) | b == a | b */
8939 {;}
8940 break;
8941
8942 case XOR:
8943 if (op1 == AND)
8944 /* (a & b) ^ b == (~a) & b */
8945 op0 = AND, *pcomp_p = 1;
8946 else /* op1 == IOR */
8947 /* (a | b) ^ b == a & ~b */
8948 op0 = AND, const0 = ~const0;
8949 break;
8950
8951 case AND:
8952 if (op1 == IOR)
8953 /* (a | b) & b == b */
8954 op0 = SET;
8955 else /* op1 == XOR */
8956 /* (a ^ b) & b) == (~a) & b */
8957 *pcomp_p = 1;
8958 break;
8959 default:
8960 break;
8961 }
8962
8963 /* Check for NO-OP cases. */
8964 const0 &= GET_MODE_MASK (mode);
8965 if (const0 == 0
8966 && (op0 == IOR || op0 == XOR || op0 == PLUS))
8967 op0 = UNKNOWN;
8968 else if (const0 == 0 && op0 == AND)
8969 op0 = SET;
8970 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8971 && op0 == AND)
8972 op0 = UNKNOWN;
8973
8974 *pop0 = op0;
8975
8976 /* ??? Slightly redundant with the above mask, but not entirely.
8977 Moving this above means we'd have to sign-extend the mode mask
8978 for the final test. */
8979 if (op0 != UNKNOWN && op0 != NEG)
8980 *pconst0 = trunc_int_for_mode (const0, mode);
8981
8982 return 1;
8983 }
8984 \f
8985 /* A helper to simplify_shift_const_1 to determine the mode we can perform
8986 the shift in. The original shift operation CODE is performed on OP in
8987 ORIG_MODE. Return the wider mode MODE if we can perform the operation
8988 in that mode. Return ORIG_MODE otherwise. We can also assume that the
8989 result of the shift is subject to operation OUTER_CODE with operand
8990 OUTER_CONST. */
8991
8992 static enum machine_mode
8993 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
8994 enum machine_mode orig_mode, enum machine_mode mode,
8995 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
8996 {
8997 if (orig_mode == mode)
8998 return mode;
8999 gcc_assert (GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (orig_mode));
9000
9001 /* In general we can't perform in wider mode for right shift and rotate. */
9002 switch (code)
9003 {
9004 case ASHIFTRT:
9005 /* We can still widen if the bits brought in from the left are identical
9006 to the sign bit of ORIG_MODE. */
9007 if (num_sign_bit_copies (op, mode)
9008 > (unsigned) (GET_MODE_BITSIZE (mode)
9009 - GET_MODE_BITSIZE (orig_mode)))
9010 return mode;
9011 return orig_mode;
9012
9013 case LSHIFTRT:
9014 /* Similarly here but with zero bits. */
9015 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9016 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
9017 return mode;
9018
9019 /* We can also widen if the bits brought in will be masked off. This
9020 operation is performed in ORIG_MODE. */
9021 if (outer_code == AND
9022 && GET_MODE_BITSIZE (orig_mode) <= HOST_BITS_PER_WIDE_INT)
9023 {
9024 int care_bits;
9025
9026 outer_const &= GET_MODE_MASK (orig_mode);
9027 care_bits = exact_log2 (outer_const + 1);
9028
9029 if (care_bits >= 0
9030 && GET_MODE_BITSIZE (orig_mode) - care_bits >= count)
9031 return mode;
9032 }
9033 /* fall through */
9034
9035 case ROTATE:
9036 return orig_mode;
9037
9038 case ROTATERT:
9039 gcc_unreachable ();
9040
9041 default:
9042 return mode;
9043 }
9044 }
9045
9046 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
9047 The result of the shift is RESULT_MODE. Return NULL_RTX if we cannot
9048 simplify it. Otherwise, return a simplified value.
9049
9050 The shift is normally computed in the widest mode we find in VAROP, as
9051 long as it isn't a different number of words than RESULT_MODE. Exceptions
9052 are ASHIFTRT and ROTATE, which are always done in their original mode. */
9053
9054 static rtx
9055 simplify_shift_const_1 (enum rtx_code code, enum machine_mode result_mode,
9056 rtx varop, int orig_count)
9057 {
9058 enum rtx_code orig_code = code;
9059 rtx orig_varop = varop;
9060 int count;
9061 enum machine_mode mode = result_mode;
9062 enum machine_mode shift_mode, tmode;
9063 unsigned int mode_words
9064 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
9065 /* We form (outer_op (code varop count) (outer_const)). */
9066 enum rtx_code outer_op = UNKNOWN;
9067 HOST_WIDE_INT outer_const = 0;
9068 int complement_p = 0;
9069 rtx new_rtx, x;
9070
9071 /* Make sure and truncate the "natural" shift on the way in. We don't
9072 want to do this inside the loop as it makes it more difficult to
9073 combine shifts. */
9074 if (SHIFT_COUNT_TRUNCATED)
9075 orig_count &= GET_MODE_BITSIZE (mode) - 1;
9076
9077 /* If we were given an invalid count, don't do anything except exactly
9078 what was requested. */
9079
9080 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
9081 return NULL_RTX;
9082
9083 count = orig_count;
9084
9085 /* Unless one of the branches of the `if' in this loop does a `continue',
9086 we will `break' the loop after the `if'. */
9087
9088 while (count != 0)
9089 {
9090 /* If we have an operand of (clobber (const_int 0)), fail. */
9091 if (GET_CODE (varop) == CLOBBER)
9092 return NULL_RTX;
9093
9094 /* Convert ROTATERT to ROTATE. */
9095 if (code == ROTATERT)
9096 {
9097 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
9098 code = ROTATE;
9099 if (VECTOR_MODE_P (result_mode))
9100 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
9101 else
9102 count = bitsize - count;
9103 }
9104
9105 shift_mode = try_widen_shift_mode (code, varop, count, result_mode,
9106 mode, outer_op, outer_const);
9107
9108 /* Handle cases where the count is greater than the size of the mode
9109 minus 1. For ASHIFT, use the size minus one as the count (this can
9110 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9111 take the count modulo the size. For other shifts, the result is
9112 zero.
9113
9114 Since these shifts are being produced by the compiler by combining
9115 multiple operations, each of which are defined, we know what the
9116 result is supposed to be. */
9117
9118 if (count > (GET_MODE_BITSIZE (shift_mode) - 1))
9119 {
9120 if (code == ASHIFTRT)
9121 count = GET_MODE_BITSIZE (shift_mode) - 1;
9122 else if (code == ROTATE || code == ROTATERT)
9123 count %= GET_MODE_BITSIZE (shift_mode);
9124 else
9125 {
9126 /* We can't simply return zero because there may be an
9127 outer op. */
9128 varop = const0_rtx;
9129 count = 0;
9130 break;
9131 }
9132 }
9133
9134 /* If we discovered we had to complement VAROP, leave. Making a NOT
9135 here would cause an infinite loop. */
9136 if (complement_p)
9137 break;
9138
9139 /* An arithmetic right shift of a quantity known to be -1 or 0
9140 is a no-op. */
9141 if (code == ASHIFTRT
9142 && (num_sign_bit_copies (varop, shift_mode)
9143 == GET_MODE_BITSIZE (shift_mode)))
9144 {
9145 count = 0;
9146 break;
9147 }
9148
9149 /* If we are doing an arithmetic right shift and discarding all but
9150 the sign bit copies, this is equivalent to doing a shift by the
9151 bitsize minus one. Convert it into that shift because it will often
9152 allow other simplifications. */
9153
9154 if (code == ASHIFTRT
9155 && (count + num_sign_bit_copies (varop, shift_mode)
9156 >= GET_MODE_BITSIZE (shift_mode)))
9157 count = GET_MODE_BITSIZE (shift_mode) - 1;
9158
9159 /* We simplify the tests below and elsewhere by converting
9160 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9161 `make_compound_operation' will convert it to an ASHIFTRT for
9162 those machines (such as VAX) that don't have an LSHIFTRT. */
9163 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9164 && code == ASHIFTRT
9165 && ((nonzero_bits (varop, shift_mode)
9166 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
9167 == 0))
9168 code = LSHIFTRT;
9169
9170 if (((code == LSHIFTRT
9171 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9172 && !(nonzero_bits (varop, shift_mode) >> count))
9173 || (code == ASHIFT
9174 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9175 && !((nonzero_bits (varop, shift_mode) << count)
9176 & GET_MODE_MASK (shift_mode))))
9177 && !side_effects_p (varop))
9178 varop = const0_rtx;
9179
9180 switch (GET_CODE (varop))
9181 {
9182 case SIGN_EXTEND:
9183 case ZERO_EXTEND:
9184 case SIGN_EXTRACT:
9185 case ZERO_EXTRACT:
9186 new_rtx = expand_compound_operation (varop);
9187 if (new_rtx != varop)
9188 {
9189 varop = new_rtx;
9190 continue;
9191 }
9192 break;
9193
9194 case MEM:
9195 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9196 minus the width of a smaller mode, we can do this with a
9197 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9198 if ((code == ASHIFTRT || code == LSHIFTRT)
9199 && ! mode_dependent_address_p (XEXP (varop, 0))
9200 && ! MEM_VOLATILE_P (varop)
9201 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9202 MODE_INT, 1)) != BLKmode)
9203 {
9204 new_rtx = adjust_address_nv (varop, tmode,
9205 BYTES_BIG_ENDIAN ? 0
9206 : count / BITS_PER_UNIT);
9207
9208 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9209 : ZERO_EXTEND, mode, new_rtx);
9210 count = 0;
9211 continue;
9212 }
9213 break;
9214
9215 case SUBREG:
9216 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9217 the same number of words as what we've seen so far. Then store
9218 the widest mode in MODE. */
9219 if (subreg_lowpart_p (varop)
9220 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9221 > GET_MODE_SIZE (GET_MODE (varop)))
9222 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9223 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9224 == mode_words)
9225 {
9226 varop = SUBREG_REG (varop);
9227 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9228 mode = GET_MODE (varop);
9229 continue;
9230 }
9231 break;
9232
9233 case MULT:
9234 /* Some machines use MULT instead of ASHIFT because MULT
9235 is cheaper. But it is still better on those machines to
9236 merge two shifts into one. */
9237 if (CONST_INT_P (XEXP (varop, 1))
9238 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9239 {
9240 varop
9241 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
9242 XEXP (varop, 0),
9243 GEN_INT (exact_log2 (
9244 INTVAL (XEXP (varop, 1)))));
9245 continue;
9246 }
9247 break;
9248
9249 case UDIV:
9250 /* Similar, for when divides are cheaper. */
9251 if (CONST_INT_P (XEXP (varop, 1))
9252 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9253 {
9254 varop
9255 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
9256 XEXP (varop, 0),
9257 GEN_INT (exact_log2 (
9258 INTVAL (XEXP (varop, 1)))));
9259 continue;
9260 }
9261 break;
9262
9263 case ASHIFTRT:
9264 /* If we are extracting just the sign bit of an arithmetic
9265 right shift, that shift is not needed. However, the sign
9266 bit of a wider mode may be different from what would be
9267 interpreted as the sign bit in a narrower mode, so, if
9268 the result is narrower, don't discard the shift. */
9269 if (code == LSHIFTRT
9270 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9271 && (GET_MODE_BITSIZE (result_mode)
9272 >= GET_MODE_BITSIZE (GET_MODE (varop))))
9273 {
9274 varop = XEXP (varop, 0);
9275 continue;
9276 }
9277
9278 /* ... fall through ... */
9279
9280 case LSHIFTRT:
9281 case ASHIFT:
9282 case ROTATE:
9283 /* Here we have two nested shifts. The result is usually the
9284 AND of a new shift with a mask. We compute the result below. */
9285 if (CONST_INT_P (XEXP (varop, 1))
9286 && INTVAL (XEXP (varop, 1)) >= 0
9287 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
9288 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9289 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9290 && !VECTOR_MODE_P (result_mode))
9291 {
9292 enum rtx_code first_code = GET_CODE (varop);
9293 unsigned int first_count = INTVAL (XEXP (varop, 1));
9294 unsigned HOST_WIDE_INT mask;
9295 rtx mask_rtx;
9296
9297 /* We have one common special case. We can't do any merging if
9298 the inner code is an ASHIFTRT of a smaller mode. However, if
9299 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
9300 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
9301 we can convert it to
9302 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
9303 This simplifies certain SIGN_EXTEND operations. */
9304 if (code == ASHIFT && first_code == ASHIFTRT
9305 && count == (GET_MODE_BITSIZE (result_mode)
9306 - GET_MODE_BITSIZE (GET_MODE (varop))))
9307 {
9308 /* C3 has the low-order C1 bits zero. */
9309
9310 mask = (GET_MODE_MASK (mode)
9311 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
9312
9313 varop = simplify_and_const_int (NULL_RTX, result_mode,
9314 XEXP (varop, 0), mask);
9315 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
9316 varop, count);
9317 count = first_count;
9318 code = ASHIFTRT;
9319 continue;
9320 }
9321
9322 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
9323 than C1 high-order bits equal to the sign bit, we can convert
9324 this to either an ASHIFT or an ASHIFTRT depending on the
9325 two counts.
9326
9327 We cannot do this if VAROP's mode is not SHIFT_MODE. */
9328
9329 if (code == ASHIFTRT && first_code == ASHIFT
9330 && GET_MODE (varop) == shift_mode
9331 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
9332 > first_count))
9333 {
9334 varop = XEXP (varop, 0);
9335 count -= first_count;
9336 if (count < 0)
9337 {
9338 count = -count;
9339 code = ASHIFT;
9340 }
9341
9342 continue;
9343 }
9344
9345 /* There are some cases we can't do. If CODE is ASHIFTRT,
9346 we can only do this if FIRST_CODE is also ASHIFTRT.
9347
9348 We can't do the case when CODE is ROTATE and FIRST_CODE is
9349 ASHIFTRT.
9350
9351 If the mode of this shift is not the mode of the outer shift,
9352 we can't do this if either shift is a right shift or ROTATE.
9353
9354 Finally, we can't do any of these if the mode is too wide
9355 unless the codes are the same.
9356
9357 Handle the case where the shift codes are the same
9358 first. */
9359
9360 if (code == first_code)
9361 {
9362 if (GET_MODE (varop) != result_mode
9363 && (code == ASHIFTRT || code == LSHIFTRT
9364 || code == ROTATE))
9365 break;
9366
9367 count += first_count;
9368 varop = XEXP (varop, 0);
9369 continue;
9370 }
9371
9372 if (code == ASHIFTRT
9373 || (code == ROTATE && first_code == ASHIFTRT)
9374 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
9375 || (GET_MODE (varop) != result_mode
9376 && (first_code == ASHIFTRT || first_code == LSHIFTRT
9377 || first_code == ROTATE
9378 || code == ROTATE)))
9379 break;
9380
9381 /* To compute the mask to apply after the shift, shift the
9382 nonzero bits of the inner shift the same way the
9383 outer shift will. */
9384
9385 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
9386
9387 mask_rtx
9388 = simplify_const_binary_operation (code, result_mode, mask_rtx,
9389 GEN_INT (count));
9390
9391 /* Give up if we can't compute an outer operation to use. */
9392 if (mask_rtx == 0
9393 || !CONST_INT_P (mask_rtx)
9394 || ! merge_outer_ops (&outer_op, &outer_const, AND,
9395 INTVAL (mask_rtx),
9396 result_mode, &complement_p))
9397 break;
9398
9399 /* If the shifts are in the same direction, we add the
9400 counts. Otherwise, we subtract them. */
9401 if ((code == ASHIFTRT || code == LSHIFTRT)
9402 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
9403 count += first_count;
9404 else
9405 count -= first_count;
9406
9407 /* If COUNT is positive, the new shift is usually CODE,
9408 except for the two exceptions below, in which case it is
9409 FIRST_CODE. If the count is negative, FIRST_CODE should
9410 always be used */
9411 if (count > 0
9412 && ((first_code == ROTATE && code == ASHIFT)
9413 || (first_code == ASHIFTRT && code == LSHIFTRT)))
9414 code = first_code;
9415 else if (count < 0)
9416 code = first_code, count = -count;
9417
9418 varop = XEXP (varop, 0);
9419 continue;
9420 }
9421
9422 /* If we have (A << B << C) for any shift, we can convert this to
9423 (A << C << B). This wins if A is a constant. Only try this if
9424 B is not a constant. */
9425
9426 else if (GET_CODE (varop) == code
9427 && CONST_INT_P (XEXP (varop, 0))
9428 && !CONST_INT_P (XEXP (varop, 1)))
9429 {
9430 rtx new_rtx = simplify_const_binary_operation (code, mode,
9431 XEXP (varop, 0),
9432 GEN_INT (count));
9433 varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
9434 count = 0;
9435 continue;
9436 }
9437 break;
9438
9439 case NOT:
9440 if (VECTOR_MODE_P (mode))
9441 break;
9442
9443 /* Make this fit the case below. */
9444 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
9445 GEN_INT (GET_MODE_MASK (mode)));
9446 continue;
9447
9448 case IOR:
9449 case AND:
9450 case XOR:
9451 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
9452 with C the size of VAROP - 1 and the shift is logical if
9453 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9454 we have an (le X 0) operation. If we have an arithmetic shift
9455 and STORE_FLAG_VALUE is 1 or we have a logical shift with
9456 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
9457
9458 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
9459 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
9460 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9461 && (code == LSHIFTRT || code == ASHIFTRT)
9462 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9463 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9464 {
9465 count = 0;
9466 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
9467 const0_rtx);
9468
9469 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9470 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9471
9472 continue;
9473 }
9474
9475 /* If we have (shift (logical)), move the logical to the outside
9476 to allow it to possibly combine with another logical and the
9477 shift to combine with another shift. This also canonicalizes to
9478 what a ZERO_EXTRACT looks like. Also, some machines have
9479 (and (shift)) insns. */
9480
9481 if (CONST_INT_P (XEXP (varop, 1))
9482 /* We can't do this if we have (ashiftrt (xor)) and the
9483 constant has its sign bit set in shift_mode. */
9484 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9485 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9486 shift_mode))
9487 && (new_rtx = simplify_const_binary_operation (code, result_mode,
9488 XEXP (varop, 1),
9489 GEN_INT (count))) != 0
9490 && CONST_INT_P (new_rtx)
9491 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9492 INTVAL (new_rtx), result_mode, &complement_p))
9493 {
9494 varop = XEXP (varop, 0);
9495 continue;
9496 }
9497
9498 /* If we can't do that, try to simplify the shift in each arm of the
9499 logical expression, make a new logical expression, and apply
9500 the inverse distributive law. This also can't be done
9501 for some (ashiftrt (xor)). */
9502 if (CONST_INT_P (XEXP (varop, 1))
9503 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9504 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9505 shift_mode)))
9506 {
9507 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9508 XEXP (varop, 0), count);
9509 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9510 XEXP (varop, 1), count);
9511
9512 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
9513 lhs, rhs);
9514 varop = apply_distributive_law (varop);
9515
9516 count = 0;
9517 continue;
9518 }
9519 break;
9520
9521 case EQ:
9522 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9523 says that the sign bit can be tested, FOO has mode MODE, C is
9524 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9525 that may be nonzero. */
9526 if (code == LSHIFTRT
9527 && XEXP (varop, 1) == const0_rtx
9528 && GET_MODE (XEXP (varop, 0)) == result_mode
9529 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9530 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9531 && STORE_FLAG_VALUE == -1
9532 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9533 && merge_outer_ops (&outer_op, &outer_const, XOR,
9534 (HOST_WIDE_INT) 1, result_mode,
9535 &complement_p))
9536 {
9537 varop = XEXP (varop, 0);
9538 count = 0;
9539 continue;
9540 }
9541 break;
9542
9543 case NEG:
9544 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9545 than the number of bits in the mode is equivalent to A. */
9546 if (code == LSHIFTRT
9547 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9548 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9549 {
9550 varop = XEXP (varop, 0);
9551 count = 0;
9552 continue;
9553 }
9554
9555 /* NEG commutes with ASHIFT since it is multiplication. Move the
9556 NEG outside to allow shifts to combine. */
9557 if (code == ASHIFT
9558 && merge_outer_ops (&outer_op, &outer_const, NEG,
9559 (HOST_WIDE_INT) 0, result_mode,
9560 &complement_p))
9561 {
9562 varop = XEXP (varop, 0);
9563 continue;
9564 }
9565 break;
9566
9567 case PLUS:
9568 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9569 is one less than the number of bits in the mode is
9570 equivalent to (xor A 1). */
9571 if (code == LSHIFTRT
9572 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9573 && XEXP (varop, 1) == constm1_rtx
9574 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9575 && merge_outer_ops (&outer_op, &outer_const, XOR,
9576 (HOST_WIDE_INT) 1, result_mode,
9577 &complement_p))
9578 {
9579 count = 0;
9580 varop = XEXP (varop, 0);
9581 continue;
9582 }
9583
9584 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9585 that might be nonzero in BAR are those being shifted out and those
9586 bits are known zero in FOO, we can replace the PLUS with FOO.
9587 Similarly in the other operand order. This code occurs when
9588 we are computing the size of a variable-size array. */
9589
9590 if ((code == ASHIFTRT || code == LSHIFTRT)
9591 && count < HOST_BITS_PER_WIDE_INT
9592 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9593 && (nonzero_bits (XEXP (varop, 1), result_mode)
9594 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9595 {
9596 varop = XEXP (varop, 0);
9597 continue;
9598 }
9599 else if ((code == ASHIFTRT || code == LSHIFTRT)
9600 && count < HOST_BITS_PER_WIDE_INT
9601 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9602 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9603 >> count)
9604 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9605 & nonzero_bits (XEXP (varop, 1),
9606 result_mode)))
9607 {
9608 varop = XEXP (varop, 1);
9609 continue;
9610 }
9611
9612 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9613 if (code == ASHIFT
9614 && CONST_INT_P (XEXP (varop, 1))
9615 && (new_rtx = simplify_const_binary_operation (ASHIFT, result_mode,
9616 XEXP (varop, 1),
9617 GEN_INT (count))) != 0
9618 && CONST_INT_P (new_rtx)
9619 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9620 INTVAL (new_rtx), result_mode, &complement_p))
9621 {
9622 varop = XEXP (varop, 0);
9623 continue;
9624 }
9625
9626 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
9627 signbit', and attempt to change the PLUS to an XOR and move it to
9628 the outer operation as is done above in the AND/IOR/XOR case
9629 leg for shift(logical). See details in logical handling above
9630 for reasoning in doing so. */
9631 if (code == LSHIFTRT
9632 && CONST_INT_P (XEXP (varop, 1))
9633 && mode_signbit_p (result_mode, XEXP (varop, 1))
9634 && (new_rtx = simplify_const_binary_operation (code, result_mode,
9635 XEXP (varop, 1),
9636 GEN_INT (count))) != 0
9637 && CONST_INT_P (new_rtx)
9638 && merge_outer_ops (&outer_op, &outer_const, XOR,
9639 INTVAL (new_rtx), result_mode, &complement_p))
9640 {
9641 varop = XEXP (varop, 0);
9642 continue;
9643 }
9644
9645 break;
9646
9647 case MINUS:
9648 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9649 with C the size of VAROP - 1 and the shift is logical if
9650 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9651 we have a (gt X 0) operation. If the shift is arithmetic with
9652 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9653 we have a (neg (gt X 0)) operation. */
9654
9655 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9656 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9657 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9658 && (code == LSHIFTRT || code == ASHIFTRT)
9659 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
9660 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
9661 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9662 {
9663 count = 0;
9664 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9665 const0_rtx);
9666
9667 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9668 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9669
9670 continue;
9671 }
9672 break;
9673
9674 case TRUNCATE:
9675 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9676 if the truncate does not affect the value. */
9677 if (code == LSHIFTRT
9678 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9679 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
9680 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9681 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9682 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9683 {
9684 rtx varop_inner = XEXP (varop, 0);
9685
9686 varop_inner
9687 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9688 XEXP (varop_inner, 0),
9689 GEN_INT
9690 (count + INTVAL (XEXP (varop_inner, 1))));
9691 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9692 count = 0;
9693 continue;
9694 }
9695 break;
9696
9697 default:
9698 break;
9699 }
9700
9701 break;
9702 }
9703
9704 shift_mode = try_widen_shift_mode (code, varop, count, result_mode, mode,
9705 outer_op, outer_const);
9706
9707 /* We have now finished analyzing the shift. The result should be
9708 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9709 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
9710 to the result of the shift. OUTER_CONST is the relevant constant,
9711 but we must turn off all bits turned off in the shift. */
9712
9713 if (outer_op == UNKNOWN
9714 && orig_code == code && orig_count == count
9715 && varop == orig_varop
9716 && shift_mode == GET_MODE (varop))
9717 return NULL_RTX;
9718
9719 /* Make a SUBREG if necessary. If we can't make it, fail. */
9720 varop = gen_lowpart (shift_mode, varop);
9721 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9722 return NULL_RTX;
9723
9724 /* If we have an outer operation and we just made a shift, it is
9725 possible that we could have simplified the shift were it not
9726 for the outer operation. So try to do the simplification
9727 recursively. */
9728
9729 if (outer_op != UNKNOWN)
9730 x = simplify_shift_const_1 (code, shift_mode, varop, count);
9731 else
9732 x = NULL_RTX;
9733
9734 if (x == NULL_RTX)
9735 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
9736
9737 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9738 turn off all the bits that the shift would have turned off. */
9739 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9740 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9741 GET_MODE_MASK (result_mode) >> orig_count);
9742
9743 /* Do the remainder of the processing in RESULT_MODE. */
9744 x = gen_lowpart_or_truncate (result_mode, x);
9745
9746 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9747 operation. */
9748 if (complement_p)
9749 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
9750
9751 if (outer_op != UNKNOWN)
9752 {
9753 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
9754 && GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9755 outer_const = trunc_int_for_mode (outer_const, result_mode);
9756
9757 if (outer_op == AND)
9758 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9759 else if (outer_op == SET)
9760 {
9761 /* This means that we have determined that the result is
9762 equivalent to a constant. This should be rare. */
9763 if (!side_effects_p (x))
9764 x = GEN_INT (outer_const);
9765 }
9766 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
9767 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9768 else
9769 x = simplify_gen_binary (outer_op, result_mode, x,
9770 GEN_INT (outer_const));
9771 }
9772
9773 return x;
9774 }
9775
9776 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
9777 The result of the shift is RESULT_MODE. If we cannot simplify it,
9778 return X or, if it is NULL, synthesize the expression with
9779 simplify_gen_binary. Otherwise, return a simplified value.
9780
9781 The shift is normally computed in the widest mode we find in VAROP, as
9782 long as it isn't a different number of words than RESULT_MODE. Exceptions
9783 are ASHIFTRT and ROTATE, which are always done in their original mode. */
9784
9785 static rtx
9786 simplify_shift_const (rtx x, enum rtx_code code, enum machine_mode result_mode,
9787 rtx varop, int count)
9788 {
9789 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
9790 if (tem)
9791 return tem;
9792
9793 if (!x)
9794 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
9795 if (GET_MODE (x) != result_mode)
9796 x = gen_lowpart (result_mode, x);
9797 return x;
9798 }
9799
9800 \f
9801 /* Like recog, but we receive the address of a pointer to a new pattern.
9802 We try to match the rtx that the pointer points to.
9803 If that fails, we may try to modify or replace the pattern,
9804 storing the replacement into the same pointer object.
9805
9806 Modifications include deletion or addition of CLOBBERs.
9807
9808 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9809 the CLOBBERs are placed.
9810
9811 The value is the final insn code from the pattern ultimately matched,
9812 or -1. */
9813
9814 static int
9815 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
9816 {
9817 rtx pat = *pnewpat;
9818 int insn_code_number;
9819 int num_clobbers_to_add = 0;
9820 int i;
9821 rtx notes = 0;
9822 rtx old_notes, old_pat;
9823
9824 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9825 we use to indicate that something didn't match. If we find such a
9826 thing, force rejection. */
9827 if (GET_CODE (pat) == PARALLEL)
9828 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9829 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9830 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9831 return -1;
9832
9833 old_pat = PATTERN (insn);
9834 old_notes = REG_NOTES (insn);
9835 PATTERN (insn) = pat;
9836 REG_NOTES (insn) = 0;
9837
9838 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9839 if (dump_file && (dump_flags & TDF_DETAILS))
9840 {
9841 if (insn_code_number < 0)
9842 fputs ("Failed to match this instruction:\n", dump_file);
9843 else
9844 fputs ("Successfully matched this instruction:\n", dump_file);
9845 print_rtl_single (dump_file, pat);
9846 }
9847
9848 /* If it isn't, there is the possibility that we previously had an insn
9849 that clobbered some register as a side effect, but the combined
9850 insn doesn't need to do that. So try once more without the clobbers
9851 unless this represents an ASM insn. */
9852
9853 if (insn_code_number < 0 && ! check_asm_operands (pat)
9854 && GET_CODE (pat) == PARALLEL)
9855 {
9856 int pos;
9857
9858 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9859 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9860 {
9861 if (i != pos)
9862 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9863 pos++;
9864 }
9865
9866 SUBST_INT (XVECLEN (pat, 0), pos);
9867
9868 if (pos == 1)
9869 pat = XVECEXP (pat, 0, 0);
9870
9871 PATTERN (insn) = pat;
9872 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9873 if (dump_file && (dump_flags & TDF_DETAILS))
9874 {
9875 if (insn_code_number < 0)
9876 fputs ("Failed to match this instruction:\n", dump_file);
9877 else
9878 fputs ("Successfully matched this instruction:\n", dump_file);
9879 print_rtl_single (dump_file, pat);
9880 }
9881 }
9882 PATTERN (insn) = old_pat;
9883 REG_NOTES (insn) = old_notes;
9884
9885 /* Recognize all noop sets, these will be killed by followup pass. */
9886 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9887 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9888
9889 /* If we had any clobbers to add, make a new pattern than contains
9890 them. Then check to make sure that all of them are dead. */
9891 if (num_clobbers_to_add)
9892 {
9893 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9894 rtvec_alloc (GET_CODE (pat) == PARALLEL
9895 ? (XVECLEN (pat, 0)
9896 + num_clobbers_to_add)
9897 : num_clobbers_to_add + 1));
9898
9899 if (GET_CODE (pat) == PARALLEL)
9900 for (i = 0; i < XVECLEN (pat, 0); i++)
9901 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9902 else
9903 XVECEXP (newpat, 0, 0) = pat;
9904
9905 add_clobbers (newpat, insn_code_number);
9906
9907 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9908 i < XVECLEN (newpat, 0); i++)
9909 {
9910 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
9911 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9912 return -1;
9913 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
9914 {
9915 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
9916 notes = alloc_reg_note (REG_UNUSED,
9917 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9918 }
9919 }
9920 pat = newpat;
9921 }
9922
9923 *pnewpat = pat;
9924 *pnotes = notes;
9925
9926 return insn_code_number;
9927 }
9928 \f
9929 /* Like gen_lowpart_general but for use by combine. In combine it
9930 is not possible to create any new pseudoregs. However, it is
9931 safe to create invalid memory addresses, because combine will
9932 try to recognize them and all they will do is make the combine
9933 attempt fail.
9934
9935 If for some reason this cannot do its job, an rtx
9936 (clobber (const_int 0)) is returned.
9937 An insn containing that will not be recognized. */
9938
9939 static rtx
9940 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
9941 {
9942 enum machine_mode imode = GET_MODE (x);
9943 unsigned int osize = GET_MODE_SIZE (omode);
9944 unsigned int isize = GET_MODE_SIZE (imode);
9945 rtx result;
9946
9947 if (omode == imode)
9948 return x;
9949
9950 /* Return identity if this is a CONST or symbolic reference. */
9951 if (omode == Pmode
9952 && (GET_CODE (x) == CONST
9953 || GET_CODE (x) == SYMBOL_REF
9954 || GET_CODE (x) == LABEL_REF))
9955 return x;
9956
9957 /* We can only support MODE being wider than a word if X is a
9958 constant integer or has a mode the same size. */
9959 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
9960 && ! ((imode == VOIDmode
9961 && (CONST_INT_P (x)
9962 || GET_CODE (x) == CONST_DOUBLE))
9963 || isize == osize))
9964 goto fail;
9965
9966 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9967 won't know what to do. So we will strip off the SUBREG here and
9968 process normally. */
9969 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
9970 {
9971 x = SUBREG_REG (x);
9972
9973 /* For use in case we fall down into the address adjustments
9974 further below, we need to adjust the known mode and size of
9975 x; imode and isize, since we just adjusted x. */
9976 imode = GET_MODE (x);
9977
9978 if (imode == omode)
9979 return x;
9980
9981 isize = GET_MODE_SIZE (imode);
9982 }
9983
9984 result = gen_lowpart_common (omode, x);
9985
9986 if (result)
9987 return result;
9988
9989 if (MEM_P (x))
9990 {
9991 int offset = 0;
9992
9993 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9994 address. */
9995 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9996 goto fail;
9997
9998 /* If we want to refer to something bigger than the original memref,
9999 generate a paradoxical subreg instead. That will force a reload
10000 of the original memref X. */
10001 if (isize < osize)
10002 return gen_rtx_SUBREG (omode, x, 0);
10003
10004 if (WORDS_BIG_ENDIAN)
10005 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
10006
10007 /* Adjust the address so that the address-after-the-data is
10008 unchanged. */
10009 if (BYTES_BIG_ENDIAN)
10010 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
10011
10012 return adjust_address_nv (x, omode, offset);
10013 }
10014
10015 /* If X is a comparison operator, rewrite it in a new mode. This
10016 probably won't match, but may allow further simplifications. */
10017 else if (COMPARISON_P (x))
10018 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
10019
10020 /* If we couldn't simplify X any other way, just enclose it in a
10021 SUBREG. Normally, this SUBREG won't match, but some patterns may
10022 include an explicit SUBREG or we may simplify it further in combine. */
10023 else
10024 {
10025 int offset = 0;
10026 rtx res;
10027
10028 offset = subreg_lowpart_offset (omode, imode);
10029 if (imode == VOIDmode)
10030 {
10031 imode = int_mode_for_mode (omode);
10032 x = gen_lowpart_common (imode, x);
10033 if (x == NULL)
10034 goto fail;
10035 }
10036 res = simplify_gen_subreg (omode, x, imode, offset);
10037 if (res)
10038 return res;
10039 }
10040
10041 fail:
10042 return gen_rtx_CLOBBER (omode, const0_rtx);
10043 }
10044 \f
10045 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
10046 comparison code that will be tested.
10047
10048 The result is a possibly different comparison code to use. *POP0 and
10049 *POP1 may be updated.
10050
10051 It is possible that we might detect that a comparison is either always
10052 true or always false. However, we do not perform general constant
10053 folding in combine, so this knowledge isn't useful. Such tautologies
10054 should have been detected earlier. Hence we ignore all such cases. */
10055
10056 static enum rtx_code
10057 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
10058 {
10059 rtx op0 = *pop0;
10060 rtx op1 = *pop1;
10061 rtx tem, tem1;
10062 int i;
10063 enum machine_mode mode, tmode;
10064
10065 /* Try a few ways of applying the same transformation to both operands. */
10066 while (1)
10067 {
10068 #ifndef WORD_REGISTER_OPERATIONS
10069 /* The test below this one won't handle SIGN_EXTENDs on these machines,
10070 so check specially. */
10071 if (code != GTU && code != GEU && code != LTU && code != LEU
10072 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
10073 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10074 && GET_CODE (XEXP (op1, 0)) == ASHIFT
10075 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
10076 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
10077 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
10078 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
10079 && CONST_INT_P (XEXP (op0, 1))
10080 && XEXP (op0, 1) == XEXP (op1, 1)
10081 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10082 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
10083 && (INTVAL (XEXP (op0, 1))
10084 == (GET_MODE_BITSIZE (GET_MODE (op0))
10085 - (GET_MODE_BITSIZE
10086 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
10087 {
10088 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
10089 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
10090 }
10091 #endif
10092
10093 /* If both operands are the same constant shift, see if we can ignore the
10094 shift. We can if the shift is a rotate or if the bits shifted out of
10095 this shift are known to be zero for both inputs and if the type of
10096 comparison is compatible with the shift. */
10097 if (GET_CODE (op0) == GET_CODE (op1)
10098 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10099 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
10100 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
10101 && (code != GT && code != LT && code != GE && code != LE))
10102 || (GET_CODE (op0) == ASHIFTRT
10103 && (code != GTU && code != LTU
10104 && code != GEU && code != LEU)))
10105 && CONST_INT_P (XEXP (op0, 1))
10106 && INTVAL (XEXP (op0, 1)) >= 0
10107 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10108 && XEXP (op0, 1) == XEXP (op1, 1))
10109 {
10110 enum machine_mode mode = GET_MODE (op0);
10111 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10112 int shift_count = INTVAL (XEXP (op0, 1));
10113
10114 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
10115 mask &= (mask >> shift_count) << shift_count;
10116 else if (GET_CODE (op0) == ASHIFT)
10117 mask = (mask & (mask << shift_count)) >> shift_count;
10118
10119 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
10120 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
10121 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
10122 else
10123 break;
10124 }
10125
10126 /* If both operands are AND's of a paradoxical SUBREG by constant, the
10127 SUBREGs are of the same mode, and, in both cases, the AND would
10128 be redundant if the comparison was done in the narrower mode,
10129 do the comparison in the narrower mode (e.g., we are AND'ing with 1
10130 and the operand's possibly nonzero bits are 0xffffff01; in that case
10131 if we only care about QImode, we don't need the AND). This case
10132 occurs if the output mode of an scc insn is not SImode and
10133 STORE_FLAG_VALUE == 1 (e.g., the 386).
10134
10135 Similarly, check for a case where the AND's are ZERO_EXTEND
10136 operations from some narrower mode even though a SUBREG is not
10137 present. */
10138
10139 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
10140 && CONST_INT_P (XEXP (op0, 1))
10141 && CONST_INT_P (XEXP (op1, 1)))
10142 {
10143 rtx inner_op0 = XEXP (op0, 0);
10144 rtx inner_op1 = XEXP (op1, 0);
10145 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
10146 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
10147 int changed = 0;
10148
10149 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
10150 && (GET_MODE_SIZE (GET_MODE (inner_op0))
10151 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
10152 && (GET_MODE (SUBREG_REG (inner_op0))
10153 == GET_MODE (SUBREG_REG (inner_op1)))
10154 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
10155 <= HOST_BITS_PER_WIDE_INT)
10156 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
10157 GET_MODE (SUBREG_REG (inner_op0)))))
10158 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
10159 GET_MODE (SUBREG_REG (inner_op1))))))
10160 {
10161 op0 = SUBREG_REG (inner_op0);
10162 op1 = SUBREG_REG (inner_op1);
10163
10164 /* The resulting comparison is always unsigned since we masked
10165 off the original sign bit. */
10166 code = unsigned_condition (code);
10167
10168 changed = 1;
10169 }
10170
10171 else if (c0 == c1)
10172 for (tmode = GET_CLASS_NARROWEST_MODE
10173 (GET_MODE_CLASS (GET_MODE (op0)));
10174 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
10175 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
10176 {
10177 op0 = gen_lowpart (tmode, inner_op0);
10178 op1 = gen_lowpart (tmode, inner_op1);
10179 code = unsigned_condition (code);
10180 changed = 1;
10181 break;
10182 }
10183
10184 if (! changed)
10185 break;
10186 }
10187
10188 /* If both operands are NOT, we can strip off the outer operation
10189 and adjust the comparison code for swapped operands; similarly for
10190 NEG, except that this must be an equality comparison. */
10191 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
10192 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
10193 && (code == EQ || code == NE)))
10194 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
10195
10196 else
10197 break;
10198 }
10199
10200 /* If the first operand is a constant, swap the operands and adjust the
10201 comparison code appropriately, but don't do this if the second operand
10202 is already a constant integer. */
10203 if (swap_commutative_operands_p (op0, op1))
10204 {
10205 tem = op0, op0 = op1, op1 = tem;
10206 code = swap_condition (code);
10207 }
10208
10209 /* We now enter a loop during which we will try to simplify the comparison.
10210 For the most part, we only are concerned with comparisons with zero,
10211 but some things may really be comparisons with zero but not start
10212 out looking that way. */
10213
10214 while (CONST_INT_P (op1))
10215 {
10216 enum machine_mode mode = GET_MODE (op0);
10217 unsigned int mode_width = GET_MODE_BITSIZE (mode);
10218 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10219 int equality_comparison_p;
10220 int sign_bit_comparison_p;
10221 int unsigned_comparison_p;
10222 HOST_WIDE_INT const_op;
10223
10224 /* We only want to handle integral modes. This catches VOIDmode,
10225 CCmode, and the floating-point modes. An exception is that we
10226 can handle VOIDmode if OP0 is a COMPARE or a comparison
10227 operation. */
10228
10229 if (GET_MODE_CLASS (mode) != MODE_INT
10230 && ! (mode == VOIDmode
10231 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
10232 break;
10233
10234 /* Get the constant we are comparing against and turn off all bits
10235 not on in our mode. */
10236 const_op = INTVAL (op1);
10237 if (mode != VOIDmode)
10238 const_op = trunc_int_for_mode (const_op, mode);
10239 op1 = GEN_INT (const_op);
10240
10241 /* If we are comparing against a constant power of two and the value
10242 being compared can only have that single bit nonzero (e.g., it was
10243 `and'ed with that bit), we can replace this with a comparison
10244 with zero. */
10245 if (const_op
10246 && (code == EQ || code == NE || code == GE || code == GEU
10247 || code == LT || code == LTU)
10248 && mode_width <= HOST_BITS_PER_WIDE_INT
10249 && exact_log2 (const_op) >= 0
10250 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10251 {
10252 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10253 op1 = const0_rtx, const_op = 0;
10254 }
10255
10256 /* Similarly, if we are comparing a value known to be either -1 or
10257 0 with -1, change it to the opposite comparison against zero. */
10258
10259 if (const_op == -1
10260 && (code == EQ || code == NE || code == GT || code == LE
10261 || code == GEU || code == LTU)
10262 && num_sign_bit_copies (op0, mode) == mode_width)
10263 {
10264 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10265 op1 = const0_rtx, const_op = 0;
10266 }
10267
10268 /* Do some canonicalizations based on the comparison code. We prefer
10269 comparisons against zero and then prefer equality comparisons.
10270 If we can reduce the size of a constant, we will do that too. */
10271
10272 switch (code)
10273 {
10274 case LT:
10275 /* < C is equivalent to <= (C - 1) */
10276 if (const_op > 0)
10277 {
10278 const_op -= 1;
10279 op1 = GEN_INT (const_op);
10280 code = LE;
10281 /* ... fall through to LE case below. */
10282 }
10283 else
10284 break;
10285
10286 case LE:
10287 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10288 if (const_op < 0)
10289 {
10290 const_op += 1;
10291 op1 = GEN_INT (const_op);
10292 code = LT;
10293 }
10294
10295 /* If we are doing a <= 0 comparison on a value known to have
10296 a zero sign bit, we can replace this with == 0. */
10297 else if (const_op == 0
10298 && mode_width <= HOST_BITS_PER_WIDE_INT
10299 && (nonzero_bits (op0, mode)
10300 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10301 code = EQ;
10302 break;
10303
10304 case GE:
10305 /* >= C is equivalent to > (C - 1). */
10306 if (const_op > 0)
10307 {
10308 const_op -= 1;
10309 op1 = GEN_INT (const_op);
10310 code = GT;
10311 /* ... fall through to GT below. */
10312 }
10313 else
10314 break;
10315
10316 case GT:
10317 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10318 if (const_op < 0)
10319 {
10320 const_op += 1;
10321 op1 = GEN_INT (const_op);
10322 code = GE;
10323 }
10324
10325 /* If we are doing a > 0 comparison on a value known to have
10326 a zero sign bit, we can replace this with != 0. */
10327 else if (const_op == 0
10328 && mode_width <= HOST_BITS_PER_WIDE_INT
10329 && (nonzero_bits (op0, mode)
10330 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10331 code = NE;
10332 break;
10333
10334 case LTU:
10335 /* < C is equivalent to <= (C - 1). */
10336 if (const_op > 0)
10337 {
10338 const_op -= 1;
10339 op1 = GEN_INT (const_op);
10340 code = LEU;
10341 /* ... fall through ... */
10342 }
10343
10344 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10345 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10346 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10347 {
10348 const_op = 0, op1 = const0_rtx;
10349 code = GE;
10350 break;
10351 }
10352 else
10353 break;
10354
10355 case LEU:
10356 /* unsigned <= 0 is equivalent to == 0 */
10357 if (const_op == 0)
10358 code = EQ;
10359
10360 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10361 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10362 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10363 {
10364 const_op = 0, op1 = const0_rtx;
10365 code = GE;
10366 }
10367 break;
10368
10369 case GEU:
10370 /* >= C is equivalent to > (C - 1). */
10371 if (const_op > 1)
10372 {
10373 const_op -= 1;
10374 op1 = GEN_INT (const_op);
10375 code = GTU;
10376 /* ... fall through ... */
10377 }
10378
10379 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10380 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10381 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10382 {
10383 const_op = 0, op1 = const0_rtx;
10384 code = LT;
10385 break;
10386 }
10387 else
10388 break;
10389
10390 case GTU:
10391 /* unsigned > 0 is equivalent to != 0 */
10392 if (const_op == 0)
10393 code = NE;
10394
10395 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10396 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10397 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10398 {
10399 const_op = 0, op1 = const0_rtx;
10400 code = LT;
10401 }
10402 break;
10403
10404 default:
10405 break;
10406 }
10407
10408 /* Compute some predicates to simplify code below. */
10409
10410 equality_comparison_p = (code == EQ || code == NE);
10411 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
10412 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
10413 || code == GEU);
10414
10415 /* If this is a sign bit comparison and we can do arithmetic in
10416 MODE, say that we will only be needing the sign bit of OP0. */
10417 if (sign_bit_comparison_p
10418 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10419 op0 = force_to_mode (op0, mode,
10420 ((HOST_WIDE_INT) 1
10421 << (GET_MODE_BITSIZE (mode) - 1)),
10422 0);
10423
10424 /* Now try cases based on the opcode of OP0. If none of the cases
10425 does a "continue", we exit this loop immediately after the
10426 switch. */
10427
10428 switch (GET_CODE (op0))
10429 {
10430 case ZERO_EXTRACT:
10431 /* If we are extracting a single bit from a variable position in
10432 a constant that has only a single bit set and are comparing it
10433 with zero, we can convert this into an equality comparison
10434 between the position and the location of the single bit. */
10435 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
10436 have already reduced the shift count modulo the word size. */
10437 if (!SHIFT_COUNT_TRUNCATED
10438 && CONST_INT_P (XEXP (op0, 0))
10439 && XEXP (op0, 1) == const1_rtx
10440 && equality_comparison_p && const_op == 0
10441 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
10442 {
10443 if (BITS_BIG_ENDIAN)
10444 {
10445 enum machine_mode new_mode
10446 = mode_for_extraction (EP_extzv, 1);
10447 if (new_mode == MAX_MACHINE_MODE)
10448 i = BITS_PER_WORD - 1 - i;
10449 else
10450 {
10451 mode = new_mode;
10452 i = (GET_MODE_BITSIZE (mode) - 1 - i);
10453 }
10454 }
10455
10456 op0 = XEXP (op0, 2);
10457 op1 = GEN_INT (i);
10458 const_op = i;
10459
10460 /* Result is nonzero iff shift count is equal to I. */
10461 code = reverse_condition (code);
10462 continue;
10463 }
10464
10465 /* ... fall through ... */
10466
10467 case SIGN_EXTRACT:
10468 tem = expand_compound_operation (op0);
10469 if (tem != op0)
10470 {
10471 op0 = tem;
10472 continue;
10473 }
10474 break;
10475
10476 case NOT:
10477 /* If testing for equality, we can take the NOT of the constant. */
10478 if (equality_comparison_p
10479 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
10480 {
10481 op0 = XEXP (op0, 0);
10482 op1 = tem;
10483 continue;
10484 }
10485
10486 /* If just looking at the sign bit, reverse the sense of the
10487 comparison. */
10488 if (sign_bit_comparison_p)
10489 {
10490 op0 = XEXP (op0, 0);
10491 code = (code == GE ? LT : GE);
10492 continue;
10493 }
10494 break;
10495
10496 case NEG:
10497 /* If testing for equality, we can take the NEG of the constant. */
10498 if (equality_comparison_p
10499 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
10500 {
10501 op0 = XEXP (op0, 0);
10502 op1 = tem;
10503 continue;
10504 }
10505
10506 /* The remaining cases only apply to comparisons with zero. */
10507 if (const_op != 0)
10508 break;
10509
10510 /* When X is ABS or is known positive,
10511 (neg X) is < 0 if and only if X != 0. */
10512
10513 if (sign_bit_comparison_p
10514 && (GET_CODE (XEXP (op0, 0)) == ABS
10515 || (mode_width <= HOST_BITS_PER_WIDE_INT
10516 && (nonzero_bits (XEXP (op0, 0), mode)
10517 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10518 {
10519 op0 = XEXP (op0, 0);
10520 code = (code == LT ? NE : EQ);
10521 continue;
10522 }
10523
10524 /* If we have NEG of something whose two high-order bits are the
10525 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10526 if (num_sign_bit_copies (op0, mode) >= 2)
10527 {
10528 op0 = XEXP (op0, 0);
10529 code = swap_condition (code);
10530 continue;
10531 }
10532 break;
10533
10534 case ROTATE:
10535 /* If we are testing equality and our count is a constant, we
10536 can perform the inverse operation on our RHS. */
10537 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
10538 && (tem = simplify_binary_operation (ROTATERT, mode,
10539 op1, XEXP (op0, 1))) != 0)
10540 {
10541 op0 = XEXP (op0, 0);
10542 op1 = tem;
10543 continue;
10544 }
10545
10546 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10547 a particular bit. Convert it to an AND of a constant of that
10548 bit. This will be converted into a ZERO_EXTRACT. */
10549 if (const_op == 0 && sign_bit_comparison_p
10550 && CONST_INT_P (XEXP (op0, 1))
10551 && mode_width <= HOST_BITS_PER_WIDE_INT)
10552 {
10553 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10554 ((HOST_WIDE_INT) 1
10555 << (mode_width - 1
10556 - INTVAL (XEXP (op0, 1)))));
10557 code = (code == LT ? NE : EQ);
10558 continue;
10559 }
10560
10561 /* Fall through. */
10562
10563 case ABS:
10564 /* ABS is ignorable inside an equality comparison with zero. */
10565 if (const_op == 0 && equality_comparison_p)
10566 {
10567 op0 = XEXP (op0, 0);
10568 continue;
10569 }
10570 break;
10571
10572 case SIGN_EXTEND:
10573 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
10574 (compare FOO CONST) if CONST fits in FOO's mode and we
10575 are either testing inequality or have an unsigned
10576 comparison with ZERO_EXTEND or a signed comparison with
10577 SIGN_EXTEND. But don't do it if we don't have a compare
10578 insn of the given mode, since we'd have to revert it
10579 later on, and then we wouldn't know whether to sign- or
10580 zero-extend. */
10581 mode = GET_MODE (XEXP (op0, 0));
10582 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10583 && ! unsigned_comparison_p
10584 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10585 && ((unsigned HOST_WIDE_INT) const_op
10586 < (((unsigned HOST_WIDE_INT) 1
10587 << (GET_MODE_BITSIZE (mode) - 1))))
10588 && have_insn_for (COMPARE, mode))
10589 {
10590 op0 = XEXP (op0, 0);
10591 continue;
10592 }
10593 break;
10594
10595 case SUBREG:
10596 /* Check for the case where we are comparing A - C1 with C2, that is
10597
10598 (subreg:MODE (plus (A) (-C1))) op (C2)
10599
10600 with C1 a constant, and try to lift the SUBREG, i.e. to do the
10601 comparison in the wider mode. One of the following two conditions
10602 must be true in order for this to be valid:
10603
10604 1. The mode extension results in the same bit pattern being added
10605 on both sides and the comparison is equality or unsigned. As
10606 C2 has been truncated to fit in MODE, the pattern can only be
10607 all 0s or all 1s.
10608
10609 2. The mode extension results in the sign bit being copied on
10610 each side.
10611
10612 The difficulty here is that we have predicates for A but not for
10613 (A - C1) so we need to check that C1 is within proper bounds so
10614 as to perturbate A as little as possible. */
10615
10616 if (mode_width <= HOST_BITS_PER_WIDE_INT
10617 && subreg_lowpart_p (op0)
10618 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) > mode_width
10619 && GET_CODE (SUBREG_REG (op0)) == PLUS
10620 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
10621 {
10622 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
10623 rtx a = XEXP (SUBREG_REG (op0), 0);
10624 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
10625
10626 if ((c1 > 0
10627 && (unsigned HOST_WIDE_INT) c1
10628 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
10629 && (equality_comparison_p || unsigned_comparison_p)
10630 /* (A - C1) zero-extends if it is positive and sign-extends
10631 if it is negative, C2 both zero- and sign-extends. */
10632 && ((0 == (nonzero_bits (a, inner_mode)
10633 & ~GET_MODE_MASK (mode))
10634 && const_op >= 0)
10635 /* (A - C1) sign-extends if it is positive and 1-extends
10636 if it is negative, C2 both sign- and 1-extends. */
10637 || (num_sign_bit_copies (a, inner_mode)
10638 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10639 - mode_width)
10640 && const_op < 0)))
10641 || ((unsigned HOST_WIDE_INT) c1
10642 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
10643 /* (A - C1) always sign-extends, like C2. */
10644 && num_sign_bit_copies (a, inner_mode)
10645 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10646 - (mode_width - 1))))
10647 {
10648 op0 = SUBREG_REG (op0);
10649 continue;
10650 }
10651 }
10652
10653 /* If the inner mode is narrower and we are extracting the low part,
10654 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10655 if (subreg_lowpart_p (op0)
10656 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10657 /* Fall through */ ;
10658 else
10659 break;
10660
10661 /* ... fall through ... */
10662
10663 case ZERO_EXTEND:
10664 mode = GET_MODE (XEXP (op0, 0));
10665 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10666 && (unsigned_comparison_p || equality_comparison_p)
10667 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10668 && ((unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode))
10669 && have_insn_for (COMPARE, mode))
10670 {
10671 op0 = XEXP (op0, 0);
10672 continue;
10673 }
10674 break;
10675
10676 case PLUS:
10677 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10678 this for equality comparisons due to pathological cases involving
10679 overflows. */
10680 if (equality_comparison_p
10681 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10682 op1, XEXP (op0, 1))))
10683 {
10684 op0 = XEXP (op0, 0);
10685 op1 = tem;
10686 continue;
10687 }
10688
10689 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10690 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10691 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10692 {
10693 op0 = XEXP (XEXP (op0, 0), 0);
10694 code = (code == LT ? EQ : NE);
10695 continue;
10696 }
10697 break;
10698
10699 case MINUS:
10700 /* We used to optimize signed comparisons against zero, but that
10701 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10702 arrive here as equality comparisons, or (GEU, LTU) are
10703 optimized away. No need to special-case them. */
10704
10705 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10706 (eq B (minus A C)), whichever simplifies. We can only do
10707 this for equality comparisons due to pathological cases involving
10708 overflows. */
10709 if (equality_comparison_p
10710 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10711 XEXP (op0, 1), op1)))
10712 {
10713 op0 = XEXP (op0, 0);
10714 op1 = tem;
10715 continue;
10716 }
10717
10718 if (equality_comparison_p
10719 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10720 XEXP (op0, 0), op1)))
10721 {
10722 op0 = XEXP (op0, 1);
10723 op1 = tem;
10724 continue;
10725 }
10726
10727 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10728 of bits in X minus 1, is one iff X > 0. */
10729 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10730 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
10731 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10732 == mode_width - 1
10733 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10734 {
10735 op0 = XEXP (op0, 1);
10736 code = (code == GE ? LE : GT);
10737 continue;
10738 }
10739 break;
10740
10741 case XOR:
10742 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10743 if C is zero or B is a constant. */
10744 if (equality_comparison_p
10745 && 0 != (tem = simplify_binary_operation (XOR, mode,
10746 XEXP (op0, 1), op1)))
10747 {
10748 op0 = XEXP (op0, 0);
10749 op1 = tem;
10750 continue;
10751 }
10752 break;
10753
10754 case EQ: case NE:
10755 case UNEQ: case LTGT:
10756 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10757 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10758 case UNORDERED: case ORDERED:
10759 /* We can't do anything if OP0 is a condition code value, rather
10760 than an actual data value. */
10761 if (const_op != 0
10762 || CC0_P (XEXP (op0, 0))
10763 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10764 break;
10765
10766 /* Get the two operands being compared. */
10767 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10768 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10769 else
10770 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10771
10772 /* Check for the cases where we simply want the result of the
10773 earlier test or the opposite of that result. */
10774 if (code == NE || code == EQ
10775 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10776 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10777 && (STORE_FLAG_VALUE
10778 & (((HOST_WIDE_INT) 1
10779 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10780 && (code == LT || code == GE)))
10781 {
10782 enum rtx_code new_code;
10783 if (code == LT || code == NE)
10784 new_code = GET_CODE (op0);
10785 else
10786 new_code = reversed_comparison_code (op0, NULL);
10787
10788 if (new_code != UNKNOWN)
10789 {
10790 code = new_code;
10791 op0 = tem;
10792 op1 = tem1;
10793 continue;
10794 }
10795 }
10796 break;
10797
10798 case IOR:
10799 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
10800 iff X <= 0. */
10801 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10802 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10803 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10804 {
10805 op0 = XEXP (op0, 1);
10806 code = (code == GE ? GT : LE);
10807 continue;
10808 }
10809 break;
10810
10811 case AND:
10812 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10813 will be converted to a ZERO_EXTRACT later. */
10814 if (const_op == 0 && equality_comparison_p
10815 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10816 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10817 {
10818 op0 = simplify_and_const_int
10819 (NULL_RTX, mode, gen_rtx_LSHIFTRT (mode,
10820 XEXP (op0, 1),
10821 XEXP (XEXP (op0, 0), 1)),
10822 (HOST_WIDE_INT) 1);
10823 continue;
10824 }
10825
10826 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10827 zero and X is a comparison and C1 and C2 describe only bits set
10828 in STORE_FLAG_VALUE, we can compare with X. */
10829 if (const_op == 0 && equality_comparison_p
10830 && mode_width <= HOST_BITS_PER_WIDE_INT
10831 && CONST_INT_P (XEXP (op0, 1))
10832 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10833 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
10834 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10835 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10836 {
10837 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10838 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10839 if ((~STORE_FLAG_VALUE & mask) == 0
10840 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
10841 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10842 && COMPARISON_P (tem))))
10843 {
10844 op0 = XEXP (XEXP (op0, 0), 0);
10845 continue;
10846 }
10847 }
10848
10849 /* If we are doing an equality comparison of an AND of a bit equal
10850 to the sign bit, replace this with a LT or GE comparison of
10851 the underlying value. */
10852 if (equality_comparison_p
10853 && const_op == 0
10854 && CONST_INT_P (XEXP (op0, 1))
10855 && mode_width <= HOST_BITS_PER_WIDE_INT
10856 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10857 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10858 {
10859 op0 = XEXP (op0, 0);
10860 code = (code == EQ ? GE : LT);
10861 continue;
10862 }
10863
10864 /* If this AND operation is really a ZERO_EXTEND from a narrower
10865 mode, the constant fits within that mode, and this is either an
10866 equality or unsigned comparison, try to do this comparison in
10867 the narrower mode.
10868
10869 Note that in:
10870
10871 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
10872 -> (ne:DI (reg:SI 4) (const_int 0))
10873
10874 unless TRULY_NOOP_TRUNCATION allows it or the register is
10875 known to hold a value of the required mode the
10876 transformation is invalid. */
10877 if ((equality_comparison_p || unsigned_comparison_p)
10878 && CONST_INT_P (XEXP (op0, 1))
10879 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10880 & GET_MODE_MASK (mode))
10881 + 1)) >= 0
10882 && const_op >> i == 0
10883 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode
10884 && (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
10885 GET_MODE_BITSIZE (GET_MODE (op0)))
10886 || (REG_P (XEXP (op0, 0))
10887 && reg_truncated_to_mode (tmode, XEXP (op0, 0)))))
10888 {
10889 op0 = gen_lowpart (tmode, XEXP (op0, 0));
10890 continue;
10891 }
10892
10893 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
10894 fits in both M1 and M2 and the SUBREG is either paradoxical
10895 or represents the low part, permute the SUBREG and the AND
10896 and try again. */
10897 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
10898 {
10899 unsigned HOST_WIDE_INT c1;
10900 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
10901 /* Require an integral mode, to avoid creating something like
10902 (AND:SF ...). */
10903 if (SCALAR_INT_MODE_P (tmode)
10904 /* It is unsafe to commute the AND into the SUBREG if the
10905 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
10906 not defined. As originally written the upper bits
10907 have a defined value due to the AND operation.
10908 However, if we commute the AND inside the SUBREG then
10909 they no longer have defined values and the meaning of
10910 the code has been changed. */
10911 && (0
10912 #ifdef WORD_REGISTER_OPERATIONS
10913 || (mode_width > GET_MODE_BITSIZE (tmode)
10914 && mode_width <= BITS_PER_WORD)
10915 #endif
10916 || (mode_width <= GET_MODE_BITSIZE (tmode)
10917 && subreg_lowpart_p (XEXP (op0, 0))))
10918 && CONST_INT_P (XEXP (op0, 1))
10919 && mode_width <= HOST_BITS_PER_WIDE_INT
10920 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
10921 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
10922 && (c1 & ~GET_MODE_MASK (tmode)) == 0
10923 && c1 != mask
10924 && c1 != GET_MODE_MASK (tmode))
10925 {
10926 op0 = simplify_gen_binary (AND, tmode,
10927 SUBREG_REG (XEXP (op0, 0)),
10928 gen_int_mode (c1, tmode));
10929 op0 = gen_lowpart (mode, op0);
10930 continue;
10931 }
10932 }
10933
10934 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
10935 if (const_op == 0 && equality_comparison_p
10936 && XEXP (op0, 1) == const1_rtx
10937 && GET_CODE (XEXP (op0, 0)) == NOT)
10938 {
10939 op0 = simplify_and_const_int
10940 (NULL_RTX, mode, XEXP (XEXP (op0, 0), 0), (HOST_WIDE_INT) 1);
10941 code = (code == NE ? EQ : NE);
10942 continue;
10943 }
10944
10945 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10946 (eq (and (lshiftrt X) 1) 0).
10947 Also handle the case where (not X) is expressed using xor. */
10948 if (const_op == 0 && equality_comparison_p
10949 && XEXP (op0, 1) == const1_rtx
10950 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
10951 {
10952 rtx shift_op = XEXP (XEXP (op0, 0), 0);
10953 rtx shift_count = XEXP (XEXP (op0, 0), 1);
10954
10955 if (GET_CODE (shift_op) == NOT
10956 || (GET_CODE (shift_op) == XOR
10957 && CONST_INT_P (XEXP (shift_op, 1))
10958 && CONST_INT_P (shift_count)
10959 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10960 && (INTVAL (XEXP (shift_op, 1))
10961 == (HOST_WIDE_INT) 1 << INTVAL (shift_count))))
10962 {
10963 op0 = simplify_and_const_int
10964 (NULL_RTX, mode,
10965 gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count),
10966 (HOST_WIDE_INT) 1);
10967 code = (code == NE ? EQ : NE);
10968 continue;
10969 }
10970 }
10971 break;
10972
10973 case ASHIFT:
10974 /* If we have (compare (ashift FOO N) (const_int C)) and
10975 the high order N bits of FOO (N+1 if an inequality comparison)
10976 are known to be zero, we can do this by comparing FOO with C
10977 shifted right N bits so long as the low-order N bits of C are
10978 zero. */
10979 if (CONST_INT_P (XEXP (op0, 1))
10980 && INTVAL (XEXP (op0, 1)) >= 0
10981 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10982 < HOST_BITS_PER_WIDE_INT)
10983 && ((const_op
10984 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10985 && mode_width <= HOST_BITS_PER_WIDE_INT
10986 && (nonzero_bits (XEXP (op0, 0), mode)
10987 & ~(mask >> (INTVAL (XEXP (op0, 1))
10988 + ! equality_comparison_p))) == 0)
10989 {
10990 /* We must perform a logical shift, not an arithmetic one,
10991 as we want the top N bits of C to be zero. */
10992 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10993
10994 temp >>= INTVAL (XEXP (op0, 1));
10995 op1 = gen_int_mode (temp, mode);
10996 op0 = XEXP (op0, 0);
10997 continue;
10998 }
10999
11000 /* If we are doing a sign bit comparison, it means we are testing
11001 a particular bit. Convert it to the appropriate AND. */
11002 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
11003 && mode_width <= HOST_BITS_PER_WIDE_INT)
11004 {
11005 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11006 ((HOST_WIDE_INT) 1
11007 << (mode_width - 1
11008 - INTVAL (XEXP (op0, 1)))));
11009 code = (code == LT ? NE : EQ);
11010 continue;
11011 }
11012
11013 /* If this an equality comparison with zero and we are shifting
11014 the low bit to the sign bit, we can convert this to an AND of the
11015 low-order bit. */
11016 if (const_op == 0 && equality_comparison_p
11017 && CONST_INT_P (XEXP (op0, 1))
11018 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11019 == mode_width - 1)
11020 {
11021 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11022 (HOST_WIDE_INT) 1);
11023 continue;
11024 }
11025 break;
11026
11027 case ASHIFTRT:
11028 /* If this is an equality comparison with zero, we can do this
11029 as a logical shift, which might be much simpler. */
11030 if (equality_comparison_p && const_op == 0
11031 && CONST_INT_P (XEXP (op0, 1)))
11032 {
11033 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
11034 XEXP (op0, 0),
11035 INTVAL (XEXP (op0, 1)));
11036 continue;
11037 }
11038
11039 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
11040 do the comparison in a narrower mode. */
11041 if (! unsigned_comparison_p
11042 && CONST_INT_P (XEXP (op0, 1))
11043 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11044 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11045 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11046 MODE_INT, 1)) != BLKmode
11047 && (((unsigned HOST_WIDE_INT) const_op
11048 + (GET_MODE_MASK (tmode) >> 1) + 1)
11049 <= GET_MODE_MASK (tmode)))
11050 {
11051 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
11052 continue;
11053 }
11054
11055 /* Likewise if OP0 is a PLUS of a sign extension with a
11056 constant, which is usually represented with the PLUS
11057 between the shifts. */
11058 if (! unsigned_comparison_p
11059 && CONST_INT_P (XEXP (op0, 1))
11060 && GET_CODE (XEXP (op0, 0)) == PLUS
11061 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11062 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
11063 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
11064 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11065 MODE_INT, 1)) != BLKmode
11066 && (((unsigned HOST_WIDE_INT) const_op
11067 + (GET_MODE_MASK (tmode) >> 1) + 1)
11068 <= GET_MODE_MASK (tmode)))
11069 {
11070 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
11071 rtx add_const = XEXP (XEXP (op0, 0), 1);
11072 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
11073 add_const, XEXP (op0, 1));
11074
11075 op0 = simplify_gen_binary (PLUS, tmode,
11076 gen_lowpart (tmode, inner),
11077 new_const);
11078 continue;
11079 }
11080
11081 /* ... fall through ... */
11082 case LSHIFTRT:
11083 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
11084 the low order N bits of FOO are known to be zero, we can do this
11085 by comparing FOO with C shifted left N bits so long as no
11086 overflow occurs. */
11087 if (CONST_INT_P (XEXP (op0, 1))
11088 && INTVAL (XEXP (op0, 1)) >= 0
11089 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11090 && mode_width <= HOST_BITS_PER_WIDE_INT
11091 && (nonzero_bits (XEXP (op0, 0), mode)
11092 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
11093 && (((unsigned HOST_WIDE_INT) const_op
11094 + (GET_CODE (op0) != LSHIFTRT
11095 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
11096 + 1)
11097 : 0))
11098 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
11099 {
11100 /* If the shift was logical, then we must make the condition
11101 unsigned. */
11102 if (GET_CODE (op0) == LSHIFTRT)
11103 code = unsigned_condition (code);
11104
11105 const_op <<= INTVAL (XEXP (op0, 1));
11106 op1 = GEN_INT (const_op);
11107 op0 = XEXP (op0, 0);
11108 continue;
11109 }
11110
11111 /* If we are using this shift to extract just the sign bit, we
11112 can replace this with an LT or GE comparison. */
11113 if (const_op == 0
11114 && (equality_comparison_p || sign_bit_comparison_p)
11115 && CONST_INT_P (XEXP (op0, 1))
11116 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11117 == mode_width - 1)
11118 {
11119 op0 = XEXP (op0, 0);
11120 code = (code == NE || code == GT ? LT : GE);
11121 continue;
11122 }
11123 break;
11124
11125 default:
11126 break;
11127 }
11128
11129 break;
11130 }
11131
11132 /* Now make any compound operations involved in this comparison. Then,
11133 check for an outmost SUBREG on OP0 that is not doing anything or is
11134 paradoxical. The latter transformation must only be performed when
11135 it is known that the "extra" bits will be the same in op0 and op1 or
11136 that they don't matter. There are three cases to consider:
11137
11138 1. SUBREG_REG (op0) is a register. In this case the bits are don't
11139 care bits and we can assume they have any convenient value. So
11140 making the transformation is safe.
11141
11142 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
11143 In this case the upper bits of op0 are undefined. We should not make
11144 the simplification in that case as we do not know the contents of
11145 those bits.
11146
11147 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
11148 UNKNOWN. In that case we know those bits are zeros or ones. We must
11149 also be sure that they are the same as the upper bits of op1.
11150
11151 We can never remove a SUBREG for a non-equality comparison because
11152 the sign bit is in a different place in the underlying object. */
11153
11154 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
11155 op1 = make_compound_operation (op1, SET);
11156
11157 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
11158 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11159 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
11160 && (code == NE || code == EQ))
11161 {
11162 if (GET_MODE_SIZE (GET_MODE (op0))
11163 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
11164 {
11165 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
11166 implemented. */
11167 if (REG_P (SUBREG_REG (op0)))
11168 {
11169 op0 = SUBREG_REG (op0);
11170 op1 = gen_lowpart (GET_MODE (op0), op1);
11171 }
11172 }
11173 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
11174 <= HOST_BITS_PER_WIDE_INT)
11175 && (nonzero_bits (SUBREG_REG (op0),
11176 GET_MODE (SUBREG_REG (op0)))
11177 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11178 {
11179 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
11180
11181 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
11182 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11183 op0 = SUBREG_REG (op0), op1 = tem;
11184 }
11185 }
11186
11187 /* We now do the opposite procedure: Some machines don't have compare
11188 insns in all modes. If OP0's mode is an integer mode smaller than a
11189 word and we can't do a compare in that mode, see if there is a larger
11190 mode for which we can do the compare. There are a number of cases in
11191 which we can use the wider mode. */
11192
11193 mode = GET_MODE (op0);
11194 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11195 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
11196 && ! have_insn_for (COMPARE, mode))
11197 for (tmode = GET_MODE_WIDER_MODE (mode);
11198 (tmode != VOIDmode
11199 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
11200 tmode = GET_MODE_WIDER_MODE (tmode))
11201 if (have_insn_for (COMPARE, tmode))
11202 {
11203 int zero_extended;
11204
11205 /* If the only nonzero bits in OP0 and OP1 are those in the
11206 narrower mode and this is an equality or unsigned comparison,
11207 we can use the wider mode. Similarly for sign-extended
11208 values, in which case it is true for all comparisons. */
11209 zero_extended = ((code == EQ || code == NE
11210 || code == GEU || code == GTU
11211 || code == LEU || code == LTU)
11212 && (nonzero_bits (op0, tmode)
11213 & ~GET_MODE_MASK (mode)) == 0
11214 && ((CONST_INT_P (op1)
11215 || (nonzero_bits (op1, tmode)
11216 & ~GET_MODE_MASK (mode)) == 0)));
11217
11218 if (zero_extended
11219 || ((num_sign_bit_copies (op0, tmode)
11220 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11221 - GET_MODE_BITSIZE (mode)))
11222 && (num_sign_bit_copies (op1, tmode)
11223 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11224 - GET_MODE_BITSIZE (mode)))))
11225 {
11226 /* If OP0 is an AND and we don't have an AND in MODE either,
11227 make a new AND in the proper mode. */
11228 if (GET_CODE (op0) == AND
11229 && !have_insn_for (AND, mode))
11230 op0 = simplify_gen_binary (AND, tmode,
11231 gen_lowpart (tmode,
11232 XEXP (op0, 0)),
11233 gen_lowpart (tmode,
11234 XEXP (op0, 1)));
11235
11236 op0 = gen_lowpart (tmode, op0);
11237 if (zero_extended && CONST_INT_P (op1))
11238 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
11239 op1 = gen_lowpart (tmode, op1);
11240 break;
11241 }
11242
11243 /* If this is a test for negative, we can make an explicit
11244 test of the sign bit. */
11245
11246 if (op1 == const0_rtx && (code == LT || code == GE)
11247 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11248 {
11249 op0 = simplify_gen_binary (AND, tmode,
11250 gen_lowpart (tmode, op0),
11251 GEN_INT ((HOST_WIDE_INT) 1
11252 << (GET_MODE_BITSIZE (mode)
11253 - 1)));
11254 code = (code == LT) ? NE : EQ;
11255 break;
11256 }
11257 }
11258
11259 #ifdef CANONICALIZE_COMPARISON
11260 /* If this machine only supports a subset of valid comparisons, see if we
11261 can convert an unsupported one into a supported one. */
11262 CANONICALIZE_COMPARISON (code, op0, op1);
11263 #endif
11264
11265 *pop0 = op0;
11266 *pop1 = op1;
11267
11268 return code;
11269 }
11270 \f
11271 /* Utility function for record_value_for_reg. Count number of
11272 rtxs in X. */
11273 static int
11274 count_rtxs (rtx x)
11275 {
11276 enum rtx_code code = GET_CODE (x);
11277 const char *fmt;
11278 int i, j, ret = 1;
11279
11280 if (GET_RTX_CLASS (code) == '2'
11281 || GET_RTX_CLASS (code) == 'c')
11282 {
11283 rtx x0 = XEXP (x, 0);
11284 rtx x1 = XEXP (x, 1);
11285
11286 if (x0 == x1)
11287 return 1 + 2 * count_rtxs (x0);
11288
11289 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
11290 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
11291 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11292 return 2 + 2 * count_rtxs (x0)
11293 + count_rtxs (x == XEXP (x1, 0)
11294 ? XEXP (x1, 1) : XEXP (x1, 0));
11295
11296 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
11297 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
11298 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11299 return 2 + 2 * count_rtxs (x1)
11300 + count_rtxs (x == XEXP (x0, 0)
11301 ? XEXP (x0, 1) : XEXP (x0, 0));
11302 }
11303
11304 fmt = GET_RTX_FORMAT (code);
11305 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11306 if (fmt[i] == 'e')
11307 ret += count_rtxs (XEXP (x, i));
11308 else if (fmt[i] == 'E')
11309 for (j = 0; j < XVECLEN (x, i); j++)
11310 ret += count_rtxs (XVECEXP (x, i, j));
11311
11312 return ret;
11313 }
11314 \f
11315 /* Utility function for following routine. Called when X is part of a value
11316 being stored into last_set_value. Sets last_set_table_tick
11317 for each register mentioned. Similar to mention_regs in cse.c */
11318
11319 static void
11320 update_table_tick (rtx x)
11321 {
11322 enum rtx_code code = GET_CODE (x);
11323 const char *fmt = GET_RTX_FORMAT (code);
11324 int i, j;
11325
11326 if (code == REG)
11327 {
11328 unsigned int regno = REGNO (x);
11329 unsigned int endregno = END_REGNO (x);
11330 unsigned int r;
11331
11332 for (r = regno; r < endregno; r++)
11333 {
11334 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, r);
11335 rsp->last_set_table_tick = label_tick;
11336 }
11337
11338 return;
11339 }
11340
11341 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11342 if (fmt[i] == 'e')
11343 {
11344 /* Check for identical subexpressions. If x contains
11345 identical subexpression we only have to traverse one of
11346 them. */
11347 if (i == 0 && ARITHMETIC_P (x))
11348 {
11349 /* Note that at this point x1 has already been
11350 processed. */
11351 rtx x0 = XEXP (x, 0);
11352 rtx x1 = XEXP (x, 1);
11353
11354 /* If x0 and x1 are identical then there is no need to
11355 process x0. */
11356 if (x0 == x1)
11357 break;
11358
11359 /* If x0 is identical to a subexpression of x1 then while
11360 processing x1, x0 has already been processed. Thus we
11361 are done with x. */
11362 if (ARITHMETIC_P (x1)
11363 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11364 break;
11365
11366 /* If x1 is identical to a subexpression of x0 then we
11367 still have to process the rest of x0. */
11368 if (ARITHMETIC_P (x0)
11369 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11370 {
11371 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
11372 break;
11373 }
11374 }
11375
11376 update_table_tick (XEXP (x, i));
11377 }
11378 else if (fmt[i] == 'E')
11379 for (j = 0; j < XVECLEN (x, i); j++)
11380 update_table_tick (XVECEXP (x, i, j));
11381 }
11382
11383 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
11384 are saying that the register is clobbered and we no longer know its
11385 value. If INSN is zero, don't update reg_stat[].last_set; this is
11386 only permitted with VALUE also zero and is used to invalidate the
11387 register. */
11388
11389 static void
11390 record_value_for_reg (rtx reg, rtx insn, rtx value)
11391 {
11392 unsigned int regno = REGNO (reg);
11393 unsigned int endregno = END_REGNO (reg);
11394 unsigned int i;
11395 reg_stat_type *rsp;
11396
11397 /* If VALUE contains REG and we have a previous value for REG, substitute
11398 the previous value. */
11399 if (value && insn && reg_overlap_mentioned_p (reg, value))
11400 {
11401 rtx tem;
11402
11403 /* Set things up so get_last_value is allowed to see anything set up to
11404 our insn. */
11405 subst_low_luid = DF_INSN_LUID (insn);
11406 tem = get_last_value (reg);
11407
11408 /* If TEM is simply a binary operation with two CLOBBERs as operands,
11409 it isn't going to be useful and will take a lot of time to process,
11410 so just use the CLOBBER. */
11411
11412 if (tem)
11413 {
11414 if (ARITHMETIC_P (tem)
11415 && GET_CODE (XEXP (tem, 0)) == CLOBBER
11416 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
11417 tem = XEXP (tem, 0);
11418 else if (count_occurrences (value, reg, 1) >= 2)
11419 {
11420 /* If there are two or more occurrences of REG in VALUE,
11421 prevent the value from growing too much. */
11422 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
11423 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
11424 }
11425
11426 value = replace_rtx (copy_rtx (value), reg, tem);
11427 }
11428 }
11429
11430 /* For each register modified, show we don't know its value, that
11431 we don't know about its bitwise content, that its value has been
11432 updated, and that we don't know the location of the death of the
11433 register. */
11434 for (i = regno; i < endregno; i++)
11435 {
11436 rsp = VEC_index (reg_stat_type, reg_stat, i);
11437
11438 if (insn)
11439 rsp->last_set = insn;
11440
11441 rsp->last_set_value = 0;
11442 rsp->last_set_mode = VOIDmode;
11443 rsp->last_set_nonzero_bits = 0;
11444 rsp->last_set_sign_bit_copies = 0;
11445 rsp->last_death = 0;
11446 rsp->truncated_to_mode = VOIDmode;
11447 }
11448
11449 /* Mark registers that are being referenced in this value. */
11450 if (value)
11451 update_table_tick (value);
11452
11453 /* Now update the status of each register being set.
11454 If someone is using this register in this block, set this register
11455 to invalid since we will get confused between the two lives in this
11456 basic block. This makes using this register always invalid. In cse, we
11457 scan the table to invalidate all entries using this register, but this
11458 is too much work for us. */
11459
11460 for (i = regno; i < endregno; i++)
11461 {
11462 rsp = VEC_index (reg_stat_type, reg_stat, i);
11463 rsp->last_set_label = label_tick;
11464 if (!insn
11465 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
11466 rsp->last_set_invalid = 1;
11467 else
11468 rsp->last_set_invalid = 0;
11469 }
11470
11471 /* The value being assigned might refer to X (like in "x++;"). In that
11472 case, we must replace it with (clobber (const_int 0)) to prevent
11473 infinite loops. */
11474 rsp = VEC_index (reg_stat_type, reg_stat, regno);
11475 if (value && ! get_last_value_validate (&value, insn,
11476 rsp->last_set_label, 0))
11477 {
11478 value = copy_rtx (value);
11479 if (! get_last_value_validate (&value, insn,
11480 rsp->last_set_label, 1))
11481 value = 0;
11482 }
11483
11484 /* For the main register being modified, update the value, the mode, the
11485 nonzero bits, and the number of sign bit copies. */
11486
11487 rsp->last_set_value = value;
11488
11489 if (value)
11490 {
11491 enum machine_mode mode = GET_MODE (reg);
11492 subst_low_luid = DF_INSN_LUID (insn);
11493 rsp->last_set_mode = mode;
11494 if (GET_MODE_CLASS (mode) == MODE_INT
11495 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11496 mode = nonzero_bits_mode;
11497 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
11498 rsp->last_set_sign_bit_copies
11499 = num_sign_bit_copies (value, GET_MODE (reg));
11500 }
11501 }
11502
11503 /* Called via note_stores from record_dead_and_set_regs to handle one
11504 SET or CLOBBER in an insn. DATA is the instruction in which the
11505 set is occurring. */
11506
11507 static void
11508 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
11509 {
11510 rtx record_dead_insn = (rtx) data;
11511
11512 if (GET_CODE (dest) == SUBREG)
11513 dest = SUBREG_REG (dest);
11514
11515 if (!record_dead_insn)
11516 {
11517 if (REG_P (dest))
11518 record_value_for_reg (dest, NULL_RTX, NULL_RTX);
11519 return;
11520 }
11521
11522 if (REG_P (dest))
11523 {
11524 /* If we are setting the whole register, we know its value. Otherwise
11525 show that we don't know the value. We can handle SUBREG in
11526 some cases. */
11527 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
11528 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
11529 else if (GET_CODE (setter) == SET
11530 && GET_CODE (SET_DEST (setter)) == SUBREG
11531 && SUBREG_REG (SET_DEST (setter)) == dest
11532 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
11533 && subreg_lowpart_p (SET_DEST (setter)))
11534 record_value_for_reg (dest, record_dead_insn,
11535 gen_lowpart (GET_MODE (dest),
11536 SET_SRC (setter)));
11537 else
11538 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11539 }
11540 else if (MEM_P (dest)
11541 /* Ignore pushes, they clobber nothing. */
11542 && ! push_operand (dest, GET_MODE (dest)))
11543 mem_last_set = DF_INSN_LUID (record_dead_insn);
11544 }
11545
11546 /* Update the records of when each REG was most recently set or killed
11547 for the things done by INSN. This is the last thing done in processing
11548 INSN in the combiner loop.
11549
11550 We update reg_stat[], in particular fields last_set, last_set_value,
11551 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
11552 last_death, and also the similar information mem_last_set (which insn
11553 most recently modified memory) and last_call_luid (which insn was the
11554 most recent subroutine call). */
11555
11556 static void
11557 record_dead_and_set_regs (rtx insn)
11558 {
11559 rtx link;
11560 unsigned int i;
11561
11562 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11563 {
11564 if (REG_NOTE_KIND (link) == REG_DEAD
11565 && REG_P (XEXP (link, 0)))
11566 {
11567 unsigned int regno = REGNO (XEXP (link, 0));
11568 unsigned int endregno = END_REGNO (XEXP (link, 0));
11569
11570 for (i = regno; i < endregno; i++)
11571 {
11572 reg_stat_type *rsp;
11573
11574 rsp = VEC_index (reg_stat_type, reg_stat, i);
11575 rsp->last_death = insn;
11576 }
11577 }
11578 else if (REG_NOTE_KIND (link) == REG_INC)
11579 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11580 }
11581
11582 if (CALL_P (insn))
11583 {
11584 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11585 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11586 {
11587 reg_stat_type *rsp;
11588
11589 rsp = VEC_index (reg_stat_type, reg_stat, i);
11590 rsp->last_set_invalid = 1;
11591 rsp->last_set = insn;
11592 rsp->last_set_value = 0;
11593 rsp->last_set_mode = VOIDmode;
11594 rsp->last_set_nonzero_bits = 0;
11595 rsp->last_set_sign_bit_copies = 0;
11596 rsp->last_death = 0;
11597 rsp->truncated_to_mode = VOIDmode;
11598 }
11599
11600 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
11601
11602 /* We can't combine into a call pattern. Remember, though, that
11603 the return value register is set at this LUID. We could
11604 still replace a register with the return value from the
11605 wrong subroutine call! */
11606 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
11607 }
11608 else
11609 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11610 }
11611
11612 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11613 register present in the SUBREG, so for each such SUBREG go back and
11614 adjust nonzero and sign bit information of the registers that are
11615 known to have some zero/sign bits set.
11616
11617 This is needed because when combine blows the SUBREGs away, the
11618 information on zero/sign bits is lost and further combines can be
11619 missed because of that. */
11620
11621 static void
11622 record_promoted_value (rtx insn, rtx subreg)
11623 {
11624 rtx links, set;
11625 unsigned int regno = REGNO (SUBREG_REG (subreg));
11626 enum machine_mode mode = GET_MODE (subreg);
11627
11628 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11629 return;
11630
11631 for (links = LOG_LINKS (insn); links;)
11632 {
11633 reg_stat_type *rsp;
11634
11635 insn = XEXP (links, 0);
11636 set = single_set (insn);
11637
11638 if (! set || !REG_P (SET_DEST (set))
11639 || REGNO (SET_DEST (set)) != regno
11640 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11641 {
11642 links = XEXP (links, 1);
11643 continue;
11644 }
11645
11646 rsp = VEC_index (reg_stat_type, reg_stat, regno);
11647 if (rsp->last_set == insn)
11648 {
11649 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11650 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
11651 }
11652
11653 if (REG_P (SET_SRC (set)))
11654 {
11655 regno = REGNO (SET_SRC (set));
11656 links = LOG_LINKS (insn);
11657 }
11658 else
11659 break;
11660 }
11661 }
11662
11663 /* Check if X, a register, is known to contain a value already
11664 truncated to MODE. In this case we can use a subreg to refer to
11665 the truncated value even though in the generic case we would need
11666 an explicit truncation. */
11667
11668 static bool
11669 reg_truncated_to_mode (enum machine_mode mode, const_rtx x)
11670 {
11671 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
11672 enum machine_mode truncated = rsp->truncated_to_mode;
11673
11674 if (truncated == 0
11675 || rsp->truncation_label < label_tick_ebb_start)
11676 return false;
11677 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
11678 return true;
11679 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
11680 GET_MODE_BITSIZE (truncated)))
11681 return true;
11682 return false;
11683 }
11684
11685 /* Callback for for_each_rtx. If *P is a hard reg or a subreg record the mode
11686 that the register is accessed in. For non-TRULY_NOOP_TRUNCATION targets we
11687 might be able to turn a truncate into a subreg using this information.
11688 Return -1 if traversing *P is complete or 0 otherwise. */
11689
11690 static int
11691 record_truncated_value (rtx *p, void *data ATTRIBUTE_UNUSED)
11692 {
11693 rtx x = *p;
11694 enum machine_mode truncated_mode;
11695 reg_stat_type *rsp;
11696
11697 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
11698 {
11699 enum machine_mode original_mode = GET_MODE (SUBREG_REG (x));
11700 truncated_mode = GET_MODE (x);
11701
11702 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
11703 return -1;
11704
11705 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (truncated_mode),
11706 GET_MODE_BITSIZE (original_mode)))
11707 return -1;
11708
11709 x = SUBREG_REG (x);
11710 }
11711 /* ??? For hard-regs we now record everything. We might be able to
11712 optimize this using last_set_mode. */
11713 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
11714 truncated_mode = GET_MODE (x);
11715 else
11716 return 0;
11717
11718 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
11719 if (rsp->truncated_to_mode == 0
11720 || rsp->truncation_label < label_tick_ebb_start
11721 || (GET_MODE_SIZE (truncated_mode)
11722 < GET_MODE_SIZE (rsp->truncated_to_mode)))
11723 {
11724 rsp->truncated_to_mode = truncated_mode;
11725 rsp->truncation_label = label_tick;
11726 }
11727
11728 return -1;
11729 }
11730
11731 /* Callback for note_uses. Find hardregs and subregs of pseudos and
11732 the modes they are used in. This can help truning TRUNCATEs into
11733 SUBREGs. */
11734
11735 static void
11736 record_truncated_values (rtx *x, void *data ATTRIBUTE_UNUSED)
11737 {
11738 for_each_rtx (x, record_truncated_value, NULL);
11739 }
11740
11741 /* Scan X for promoted SUBREGs. For each one found,
11742 note what it implies to the registers used in it. */
11743
11744 static void
11745 check_promoted_subreg (rtx insn, rtx x)
11746 {
11747 if (GET_CODE (x) == SUBREG
11748 && SUBREG_PROMOTED_VAR_P (x)
11749 && REG_P (SUBREG_REG (x)))
11750 record_promoted_value (insn, x);
11751 else
11752 {
11753 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11754 int i, j;
11755
11756 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11757 switch (format[i])
11758 {
11759 case 'e':
11760 check_promoted_subreg (insn, XEXP (x, i));
11761 break;
11762 case 'V':
11763 case 'E':
11764 if (XVEC (x, i) != 0)
11765 for (j = 0; j < XVECLEN (x, i); j++)
11766 check_promoted_subreg (insn, XVECEXP (x, i, j));
11767 break;
11768 }
11769 }
11770 }
11771 \f
11772 /* Utility routine for the following function. Verify that all the registers
11773 mentioned in *LOC are valid when *LOC was part of a value set when
11774 label_tick == TICK. Return 0 if some are not.
11775
11776 If REPLACE is nonzero, replace the invalid reference with
11777 (clobber (const_int 0)) and return 1. This replacement is useful because
11778 we often can get useful information about the form of a value (e.g., if
11779 it was produced by a shift that always produces -1 or 0) even though
11780 we don't know exactly what registers it was produced from. */
11781
11782 static int
11783 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
11784 {
11785 rtx x = *loc;
11786 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11787 int len = GET_RTX_LENGTH (GET_CODE (x));
11788 int i, j;
11789
11790 if (REG_P (x))
11791 {
11792 unsigned int regno = REGNO (x);
11793 unsigned int endregno = END_REGNO (x);
11794 unsigned int j;
11795
11796 for (j = regno; j < endregno; j++)
11797 {
11798 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, j);
11799 if (rsp->last_set_invalid
11800 /* If this is a pseudo-register that was only set once and not
11801 live at the beginning of the function, it is always valid. */
11802 || (! (regno >= FIRST_PSEUDO_REGISTER
11803 && REG_N_SETS (regno) == 1
11804 && (!REGNO_REG_SET_P
11805 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno)))
11806 && rsp->last_set_label > tick))
11807 {
11808 if (replace)
11809 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11810 return replace;
11811 }
11812 }
11813
11814 return 1;
11815 }
11816 /* If this is a memory reference, make sure that there were
11817 no stores after it that might have clobbered the value. We don't
11818 have alias info, so we assume any store invalidates it. */
11819 else if (MEM_P (x) && !MEM_READONLY_P (x)
11820 && DF_INSN_LUID (insn) <= mem_last_set)
11821 {
11822 if (replace)
11823 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11824 return replace;
11825 }
11826
11827 for (i = 0; i < len; i++)
11828 {
11829 if (fmt[i] == 'e')
11830 {
11831 /* Check for identical subexpressions. If x contains
11832 identical subexpression we only have to traverse one of
11833 them. */
11834 if (i == 1 && ARITHMETIC_P (x))
11835 {
11836 /* Note that at this point x0 has already been checked
11837 and found valid. */
11838 rtx x0 = XEXP (x, 0);
11839 rtx x1 = XEXP (x, 1);
11840
11841 /* If x0 and x1 are identical then x is also valid. */
11842 if (x0 == x1)
11843 return 1;
11844
11845 /* If x1 is identical to a subexpression of x0 then
11846 while checking x0, x1 has already been checked. Thus
11847 it is valid and so as x. */
11848 if (ARITHMETIC_P (x0)
11849 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11850 return 1;
11851
11852 /* If x0 is identical to a subexpression of x1 then x is
11853 valid iff the rest of x1 is valid. */
11854 if (ARITHMETIC_P (x1)
11855 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11856 return
11857 get_last_value_validate (&XEXP (x1,
11858 x0 == XEXP (x1, 0) ? 1 : 0),
11859 insn, tick, replace);
11860 }
11861
11862 if (get_last_value_validate (&XEXP (x, i), insn, tick,
11863 replace) == 0)
11864 return 0;
11865 }
11866 else if (fmt[i] == 'E')
11867 for (j = 0; j < XVECLEN (x, i); j++)
11868 if (get_last_value_validate (&XVECEXP (x, i, j),
11869 insn, tick, replace) == 0)
11870 return 0;
11871 }
11872
11873 /* If we haven't found a reason for it to be invalid, it is valid. */
11874 return 1;
11875 }
11876
11877 /* Get the last value assigned to X, if known. Some registers
11878 in the value may be replaced with (clobber (const_int 0)) if their value
11879 is known longer known reliably. */
11880
11881 static rtx
11882 get_last_value (const_rtx x)
11883 {
11884 unsigned int regno;
11885 rtx value;
11886 reg_stat_type *rsp;
11887
11888 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11889 then convert it to the desired mode. If this is a paradoxical SUBREG,
11890 we cannot predict what values the "extra" bits might have. */
11891 if (GET_CODE (x) == SUBREG
11892 && subreg_lowpart_p (x)
11893 && (GET_MODE_SIZE (GET_MODE (x))
11894 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11895 && (value = get_last_value (SUBREG_REG (x))) != 0)
11896 return gen_lowpart (GET_MODE (x), value);
11897
11898 if (!REG_P (x))
11899 return 0;
11900
11901 regno = REGNO (x);
11902 rsp = VEC_index (reg_stat_type, reg_stat, regno);
11903 value = rsp->last_set_value;
11904
11905 /* If we don't have a value, or if it isn't for this basic block and
11906 it's either a hard register, set more than once, or it's a live
11907 at the beginning of the function, return 0.
11908
11909 Because if it's not live at the beginning of the function then the reg
11910 is always set before being used (is never used without being set).
11911 And, if it's set only once, and it's always set before use, then all
11912 uses must have the same last value, even if it's not from this basic
11913 block. */
11914
11915 if (value == 0
11916 || (rsp->last_set_label < label_tick_ebb_start
11917 && (regno < FIRST_PSEUDO_REGISTER
11918 || REG_N_SETS (regno) != 1
11919 || REGNO_REG_SET_P
11920 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno))))
11921 return 0;
11922
11923 /* If the value was set in a later insn than the ones we are processing,
11924 we can't use it even if the register was only set once. */
11925 if (rsp->last_set_label == label_tick
11926 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
11927 return 0;
11928
11929 /* If the value has all its registers valid, return it. */
11930 if (get_last_value_validate (&value, rsp->last_set,
11931 rsp->last_set_label, 0))
11932 return value;
11933
11934 /* Otherwise, make a copy and replace any invalid register with
11935 (clobber (const_int 0)). If that fails for some reason, return 0. */
11936
11937 value = copy_rtx (value);
11938 if (get_last_value_validate (&value, rsp->last_set,
11939 rsp->last_set_label, 1))
11940 return value;
11941
11942 return 0;
11943 }
11944 \f
11945 /* Return nonzero if expression X refers to a REG or to memory
11946 that is set in an instruction more recent than FROM_LUID. */
11947
11948 static int
11949 use_crosses_set_p (const_rtx x, int from_luid)
11950 {
11951 const char *fmt;
11952 int i;
11953 enum rtx_code code = GET_CODE (x);
11954
11955 if (code == REG)
11956 {
11957 unsigned int regno = REGNO (x);
11958 unsigned endreg = END_REGNO (x);
11959
11960 #ifdef PUSH_ROUNDING
11961 /* Don't allow uses of the stack pointer to be moved,
11962 because we don't know whether the move crosses a push insn. */
11963 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11964 return 1;
11965 #endif
11966 for (; regno < endreg; regno++)
11967 {
11968 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
11969 if (rsp->last_set
11970 && rsp->last_set_label == label_tick
11971 && DF_INSN_LUID (rsp->last_set) > from_luid)
11972 return 1;
11973 }
11974 return 0;
11975 }
11976
11977 if (code == MEM && mem_last_set > from_luid)
11978 return 1;
11979
11980 fmt = GET_RTX_FORMAT (code);
11981
11982 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11983 {
11984 if (fmt[i] == 'E')
11985 {
11986 int j;
11987 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11988 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
11989 return 1;
11990 }
11991 else if (fmt[i] == 'e'
11992 && use_crosses_set_p (XEXP (x, i), from_luid))
11993 return 1;
11994 }
11995 return 0;
11996 }
11997 \f
11998 /* Define three variables used for communication between the following
11999 routines. */
12000
12001 static unsigned int reg_dead_regno, reg_dead_endregno;
12002 static int reg_dead_flag;
12003
12004 /* Function called via note_stores from reg_dead_at_p.
12005
12006 If DEST is within [reg_dead_regno, reg_dead_endregno), set
12007 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
12008
12009 static void
12010 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
12011 {
12012 unsigned int regno, endregno;
12013
12014 if (!REG_P (dest))
12015 return;
12016
12017 regno = REGNO (dest);
12018 endregno = END_REGNO (dest);
12019 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
12020 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
12021 }
12022
12023 /* Return nonzero if REG is known to be dead at INSN.
12024
12025 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
12026 referencing REG, it is dead. If we hit a SET referencing REG, it is
12027 live. Otherwise, see if it is live or dead at the start of the basic
12028 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
12029 must be assumed to be always live. */
12030
12031 static int
12032 reg_dead_at_p (rtx reg, rtx insn)
12033 {
12034 basic_block block;
12035 unsigned int i;
12036
12037 /* Set variables for reg_dead_at_p_1. */
12038 reg_dead_regno = REGNO (reg);
12039 reg_dead_endregno = END_REGNO (reg);
12040
12041 reg_dead_flag = 0;
12042
12043 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
12044 we allow the machine description to decide whether use-and-clobber
12045 patterns are OK. */
12046 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
12047 {
12048 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12049 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
12050 return 0;
12051 }
12052
12053 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
12054 beginning of basic block. */
12055 block = BLOCK_FOR_INSN (insn);
12056 for (;;)
12057 {
12058 if (INSN_P (insn))
12059 {
12060 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
12061 if (reg_dead_flag)
12062 return reg_dead_flag == 1 ? 1 : 0;
12063
12064 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
12065 return 1;
12066 }
12067
12068 if (insn == BB_HEAD (block))
12069 break;
12070
12071 insn = PREV_INSN (insn);
12072 }
12073
12074 /* Look at live-in sets for the basic block that we were in. */
12075 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12076 if (REGNO_REG_SET_P (df_get_live_in (block), i))
12077 return 0;
12078
12079 return 1;
12080 }
12081 \f
12082 /* Note hard registers in X that are used. */
12083
12084 static void
12085 mark_used_regs_combine (rtx x)
12086 {
12087 RTX_CODE code = GET_CODE (x);
12088 unsigned int regno;
12089 int i;
12090
12091 switch (code)
12092 {
12093 case LABEL_REF:
12094 case SYMBOL_REF:
12095 case CONST_INT:
12096 case CONST:
12097 case CONST_DOUBLE:
12098 case CONST_VECTOR:
12099 case PC:
12100 case ADDR_VEC:
12101 case ADDR_DIFF_VEC:
12102 case ASM_INPUT:
12103 #ifdef HAVE_cc0
12104 /* CC0 must die in the insn after it is set, so we don't need to take
12105 special note of it here. */
12106 case CC0:
12107 #endif
12108 return;
12109
12110 case CLOBBER:
12111 /* If we are clobbering a MEM, mark any hard registers inside the
12112 address as used. */
12113 if (MEM_P (XEXP (x, 0)))
12114 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
12115 return;
12116
12117 case REG:
12118 regno = REGNO (x);
12119 /* A hard reg in a wide mode may really be multiple registers.
12120 If so, mark all of them just like the first. */
12121 if (regno < FIRST_PSEUDO_REGISTER)
12122 {
12123 /* None of this applies to the stack, frame or arg pointers. */
12124 if (regno == STACK_POINTER_REGNUM
12125 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
12126 || regno == HARD_FRAME_POINTER_REGNUM
12127 #endif
12128 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
12129 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
12130 #endif
12131 || regno == FRAME_POINTER_REGNUM)
12132 return;
12133
12134 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
12135 }
12136 return;
12137
12138 case SET:
12139 {
12140 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
12141 the address. */
12142 rtx testreg = SET_DEST (x);
12143
12144 while (GET_CODE (testreg) == SUBREG
12145 || GET_CODE (testreg) == ZERO_EXTRACT
12146 || GET_CODE (testreg) == STRICT_LOW_PART)
12147 testreg = XEXP (testreg, 0);
12148
12149 if (MEM_P (testreg))
12150 mark_used_regs_combine (XEXP (testreg, 0));
12151
12152 mark_used_regs_combine (SET_SRC (x));
12153 }
12154 return;
12155
12156 default:
12157 break;
12158 }
12159
12160 /* Recursively scan the operands of this expression. */
12161
12162 {
12163 const char *fmt = GET_RTX_FORMAT (code);
12164
12165 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12166 {
12167 if (fmt[i] == 'e')
12168 mark_used_regs_combine (XEXP (x, i));
12169 else if (fmt[i] == 'E')
12170 {
12171 int j;
12172
12173 for (j = 0; j < XVECLEN (x, i); j++)
12174 mark_used_regs_combine (XVECEXP (x, i, j));
12175 }
12176 }
12177 }
12178 }
12179 \f
12180 /* Remove register number REGNO from the dead registers list of INSN.
12181
12182 Return the note used to record the death, if there was one. */
12183
12184 rtx
12185 remove_death (unsigned int regno, rtx insn)
12186 {
12187 rtx note = find_regno_note (insn, REG_DEAD, regno);
12188
12189 if (note)
12190 remove_note (insn, note);
12191
12192 return note;
12193 }
12194
12195 /* For each register (hardware or pseudo) used within expression X, if its
12196 death is in an instruction with luid between FROM_LUID (inclusive) and
12197 TO_INSN (exclusive), put a REG_DEAD note for that register in the
12198 list headed by PNOTES.
12199
12200 That said, don't move registers killed by maybe_kill_insn.
12201
12202 This is done when X is being merged by combination into TO_INSN. These
12203 notes will then be distributed as needed. */
12204
12205 static void
12206 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx to_insn,
12207 rtx *pnotes)
12208 {
12209 const char *fmt;
12210 int len, i;
12211 enum rtx_code code = GET_CODE (x);
12212
12213 if (code == REG)
12214 {
12215 unsigned int regno = REGNO (x);
12216 rtx where_dead = VEC_index (reg_stat_type, reg_stat, regno)->last_death;
12217
12218 /* Don't move the register if it gets killed in between from and to. */
12219 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
12220 && ! reg_referenced_p (x, maybe_kill_insn))
12221 return;
12222
12223 if (where_dead
12224 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
12225 && DF_INSN_LUID (where_dead) >= from_luid
12226 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
12227 {
12228 rtx note = remove_death (regno, where_dead);
12229
12230 /* It is possible for the call above to return 0. This can occur
12231 when last_death points to I2 or I1 that we combined with.
12232 In that case make a new note.
12233
12234 We must also check for the case where X is a hard register
12235 and NOTE is a death note for a range of hard registers
12236 including X. In that case, we must put REG_DEAD notes for
12237 the remaining registers in place of NOTE. */
12238
12239 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
12240 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12241 > GET_MODE_SIZE (GET_MODE (x))))
12242 {
12243 unsigned int deadregno = REGNO (XEXP (note, 0));
12244 unsigned int deadend = END_HARD_REGNO (XEXP (note, 0));
12245 unsigned int ourend = END_HARD_REGNO (x);
12246 unsigned int i;
12247
12248 for (i = deadregno; i < deadend; i++)
12249 if (i < regno || i >= ourend)
12250 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
12251 }
12252
12253 /* If we didn't find any note, or if we found a REG_DEAD note that
12254 covers only part of the given reg, and we have a multi-reg hard
12255 register, then to be safe we must check for REG_DEAD notes
12256 for each register other than the first. They could have
12257 their own REG_DEAD notes lying around. */
12258 else if ((note == 0
12259 || (note != 0
12260 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12261 < GET_MODE_SIZE (GET_MODE (x)))))
12262 && regno < FIRST_PSEUDO_REGISTER
12263 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
12264 {
12265 unsigned int ourend = END_HARD_REGNO (x);
12266 unsigned int i, offset;
12267 rtx oldnotes = 0;
12268
12269 if (note)
12270 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
12271 else
12272 offset = 1;
12273
12274 for (i = regno + offset; i < ourend; i++)
12275 move_deaths (regno_reg_rtx[i],
12276 maybe_kill_insn, from_luid, to_insn, &oldnotes);
12277 }
12278
12279 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
12280 {
12281 XEXP (note, 1) = *pnotes;
12282 *pnotes = note;
12283 }
12284 else
12285 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
12286 }
12287
12288 return;
12289 }
12290
12291 else if (GET_CODE (x) == SET)
12292 {
12293 rtx dest = SET_DEST (x);
12294
12295 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
12296
12297 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
12298 that accesses one word of a multi-word item, some
12299 piece of everything register in the expression is used by
12300 this insn, so remove any old death. */
12301 /* ??? So why do we test for equality of the sizes? */
12302
12303 if (GET_CODE (dest) == ZERO_EXTRACT
12304 || GET_CODE (dest) == STRICT_LOW_PART
12305 || (GET_CODE (dest) == SUBREG
12306 && (((GET_MODE_SIZE (GET_MODE (dest))
12307 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
12308 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
12309 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
12310 {
12311 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
12312 return;
12313 }
12314
12315 /* If this is some other SUBREG, we know it replaces the entire
12316 value, so use that as the destination. */
12317 if (GET_CODE (dest) == SUBREG)
12318 dest = SUBREG_REG (dest);
12319
12320 /* If this is a MEM, adjust deaths of anything used in the address.
12321 For a REG (the only other possibility), the entire value is
12322 being replaced so the old value is not used in this insn. */
12323
12324 if (MEM_P (dest))
12325 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
12326 to_insn, pnotes);
12327 return;
12328 }
12329
12330 else if (GET_CODE (x) == CLOBBER)
12331 return;
12332
12333 len = GET_RTX_LENGTH (code);
12334 fmt = GET_RTX_FORMAT (code);
12335
12336 for (i = 0; i < len; i++)
12337 {
12338 if (fmt[i] == 'E')
12339 {
12340 int j;
12341 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12342 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
12343 to_insn, pnotes);
12344 }
12345 else if (fmt[i] == 'e')
12346 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
12347 }
12348 }
12349 \f
12350 /* Return 1 if X is the target of a bit-field assignment in BODY, the
12351 pattern of an insn. X must be a REG. */
12352
12353 static int
12354 reg_bitfield_target_p (rtx x, rtx body)
12355 {
12356 int i;
12357
12358 if (GET_CODE (body) == SET)
12359 {
12360 rtx dest = SET_DEST (body);
12361 rtx target;
12362 unsigned int regno, tregno, endregno, endtregno;
12363
12364 if (GET_CODE (dest) == ZERO_EXTRACT)
12365 target = XEXP (dest, 0);
12366 else if (GET_CODE (dest) == STRICT_LOW_PART)
12367 target = SUBREG_REG (XEXP (dest, 0));
12368 else
12369 return 0;
12370
12371 if (GET_CODE (target) == SUBREG)
12372 target = SUBREG_REG (target);
12373
12374 if (!REG_P (target))
12375 return 0;
12376
12377 tregno = REGNO (target), regno = REGNO (x);
12378 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
12379 return target == x;
12380
12381 endtregno = end_hard_regno (GET_MODE (target), tregno);
12382 endregno = end_hard_regno (GET_MODE (x), regno);
12383
12384 return endregno > tregno && regno < endtregno;
12385 }
12386
12387 else if (GET_CODE (body) == PARALLEL)
12388 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
12389 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
12390 return 1;
12391
12392 return 0;
12393 }
12394 \f
12395 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
12396 as appropriate. I3 and I2 are the insns resulting from the combination
12397 insns including FROM (I2 may be zero).
12398
12399 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
12400 not need REG_DEAD notes because they are being substituted for. This
12401 saves searching in the most common cases.
12402
12403 Each note in the list is either ignored or placed on some insns, depending
12404 on the type of note. */
12405
12406 static void
12407 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2, rtx elim_i2,
12408 rtx elim_i1)
12409 {
12410 rtx note, next_note;
12411 rtx tem;
12412
12413 for (note = notes; note; note = next_note)
12414 {
12415 rtx place = 0, place2 = 0;
12416
12417 next_note = XEXP (note, 1);
12418 switch (REG_NOTE_KIND (note))
12419 {
12420 case REG_BR_PROB:
12421 case REG_BR_PRED:
12422 /* Doesn't matter much where we put this, as long as it's somewhere.
12423 It is preferable to keep these notes on branches, which is most
12424 likely to be i3. */
12425 place = i3;
12426 break;
12427
12428 case REG_VALUE_PROFILE:
12429 /* Just get rid of this note, as it is unused later anyway. */
12430 break;
12431
12432 case REG_NON_LOCAL_GOTO:
12433 if (JUMP_P (i3))
12434 place = i3;
12435 else
12436 {
12437 gcc_assert (i2 && JUMP_P (i2));
12438 place = i2;
12439 }
12440 break;
12441
12442 case REG_EH_REGION:
12443 /* These notes must remain with the call or trapping instruction. */
12444 if (CALL_P (i3))
12445 place = i3;
12446 else if (i2 && CALL_P (i2))
12447 place = i2;
12448 else
12449 {
12450 gcc_assert (flag_non_call_exceptions);
12451 if (may_trap_p (i3))
12452 place = i3;
12453 else if (i2 && may_trap_p (i2))
12454 place = i2;
12455 /* ??? Otherwise assume we've combined things such that we
12456 can now prove that the instructions can't trap. Drop the
12457 note in this case. */
12458 }
12459 break;
12460
12461 case REG_NORETURN:
12462 case REG_SETJMP:
12463 /* These notes must remain with the call. It should not be
12464 possible for both I2 and I3 to be a call. */
12465 if (CALL_P (i3))
12466 place = i3;
12467 else
12468 {
12469 gcc_assert (i2 && CALL_P (i2));
12470 place = i2;
12471 }
12472 break;
12473
12474 case REG_UNUSED:
12475 /* Any clobbers for i3 may still exist, and so we must process
12476 REG_UNUSED notes from that insn.
12477
12478 Any clobbers from i2 or i1 can only exist if they were added by
12479 recog_for_combine. In that case, recog_for_combine created the
12480 necessary REG_UNUSED notes. Trying to keep any original
12481 REG_UNUSED notes from these insns can cause incorrect output
12482 if it is for the same register as the original i3 dest.
12483 In that case, we will notice that the register is set in i3,
12484 and then add a REG_UNUSED note for the destination of i3, which
12485 is wrong. However, it is possible to have REG_UNUSED notes from
12486 i2 or i1 for register which were both used and clobbered, so
12487 we keep notes from i2 or i1 if they will turn into REG_DEAD
12488 notes. */
12489
12490 /* If this register is set or clobbered in I3, put the note there
12491 unless there is one already. */
12492 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
12493 {
12494 if (from_insn != i3)
12495 break;
12496
12497 if (! (REG_P (XEXP (note, 0))
12498 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
12499 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
12500 place = i3;
12501 }
12502 /* Otherwise, if this register is used by I3, then this register
12503 now dies here, so we must put a REG_DEAD note here unless there
12504 is one already. */
12505 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
12506 && ! (REG_P (XEXP (note, 0))
12507 ? find_regno_note (i3, REG_DEAD,
12508 REGNO (XEXP (note, 0)))
12509 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
12510 {
12511 PUT_REG_NOTE_KIND (note, REG_DEAD);
12512 place = i3;
12513 }
12514 break;
12515
12516 case REG_EQUAL:
12517 case REG_EQUIV:
12518 case REG_NOALIAS:
12519 /* These notes say something about results of an insn. We can
12520 only support them if they used to be on I3 in which case they
12521 remain on I3. Otherwise they are ignored.
12522
12523 If the note refers to an expression that is not a constant, we
12524 must also ignore the note since we cannot tell whether the
12525 equivalence is still true. It might be possible to do
12526 slightly better than this (we only have a problem if I2DEST
12527 or I1DEST is present in the expression), but it doesn't
12528 seem worth the trouble. */
12529
12530 if (from_insn == i3
12531 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
12532 place = i3;
12533 break;
12534
12535 case REG_INC:
12536 /* These notes say something about how a register is used. They must
12537 be present on any use of the register in I2 or I3. */
12538 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
12539 place = i3;
12540
12541 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
12542 {
12543 if (place)
12544 place2 = i2;
12545 else
12546 place = i2;
12547 }
12548 break;
12549
12550 case REG_LABEL_TARGET:
12551 case REG_LABEL_OPERAND:
12552 /* This can show up in several ways -- either directly in the
12553 pattern, or hidden off in the constant pool with (or without?)
12554 a REG_EQUAL note. */
12555 /* ??? Ignore the without-reg_equal-note problem for now. */
12556 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
12557 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
12558 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12559 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12560 place = i3;
12561
12562 if (i2
12563 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12564 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12565 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12566 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12567 {
12568 if (place)
12569 place2 = i2;
12570 else
12571 place = i2;
12572 }
12573
12574 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
12575 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
12576 there. */
12577 if (place && JUMP_P (place)
12578 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
12579 && (JUMP_LABEL (place) == NULL
12580 || JUMP_LABEL (place) == XEXP (note, 0)))
12581 {
12582 rtx label = JUMP_LABEL (place);
12583
12584 if (!label)
12585 JUMP_LABEL (place) = XEXP (note, 0);
12586 else if (LABEL_P (label))
12587 LABEL_NUSES (label)--;
12588 }
12589
12590 if (place2 && JUMP_P (place2)
12591 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
12592 && (JUMP_LABEL (place2) == NULL
12593 || JUMP_LABEL (place2) == XEXP (note, 0)))
12594 {
12595 rtx label = JUMP_LABEL (place2);
12596
12597 if (!label)
12598 JUMP_LABEL (place2) = XEXP (note, 0);
12599 else if (LABEL_P (label))
12600 LABEL_NUSES (label)--;
12601 place2 = 0;
12602 }
12603 break;
12604
12605 case REG_NONNEG:
12606 /* This note says something about the value of a register prior
12607 to the execution of an insn. It is too much trouble to see
12608 if the note is still correct in all situations. It is better
12609 to simply delete it. */
12610 break;
12611
12612 case REG_DEAD:
12613 /* If we replaced the right hand side of FROM_INSN with a
12614 REG_EQUAL note, the original use of the dying register
12615 will not have been combined into I3 and I2. In such cases,
12616 FROM_INSN is guaranteed to be the first of the combined
12617 instructions, so we simply need to search back before
12618 FROM_INSN for the previous use or set of this register,
12619 then alter the notes there appropriately.
12620
12621 If the register is used as an input in I3, it dies there.
12622 Similarly for I2, if it is nonzero and adjacent to I3.
12623
12624 If the register is not used as an input in either I3 or I2
12625 and it is not one of the registers we were supposed to eliminate,
12626 there are two possibilities. We might have a non-adjacent I2
12627 or we might have somehow eliminated an additional register
12628 from a computation. For example, we might have had A & B where
12629 we discover that B will always be zero. In this case we will
12630 eliminate the reference to A.
12631
12632 In both cases, we must search to see if we can find a previous
12633 use of A and put the death note there. */
12634
12635 if (from_insn
12636 && from_insn == i2mod
12637 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
12638 tem = from_insn;
12639 else
12640 {
12641 if (from_insn
12642 && CALL_P (from_insn)
12643 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12644 place = from_insn;
12645 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12646 place = i3;
12647 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12648 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12649 place = i2;
12650 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
12651 && !(i2mod
12652 && reg_overlap_mentioned_p (XEXP (note, 0),
12653 i2mod_old_rhs)))
12654 || rtx_equal_p (XEXP (note, 0), elim_i1))
12655 break;
12656 tem = i3;
12657 }
12658
12659 if (place == 0)
12660 {
12661 basic_block bb = this_basic_block;
12662
12663 for (tem = PREV_INSN (tem); place == 0; tem = PREV_INSN (tem))
12664 {
12665 if (! INSN_P (tem))
12666 {
12667 if (tem == BB_HEAD (bb))
12668 break;
12669 continue;
12670 }
12671
12672 /* If the register is being set at TEM, see if that is all
12673 TEM is doing. If so, delete TEM. Otherwise, make this
12674 into a REG_UNUSED note instead. Don't delete sets to
12675 global register vars. */
12676 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
12677 || !global_regs[REGNO (XEXP (note, 0))])
12678 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
12679 {
12680 rtx set = single_set (tem);
12681 rtx inner_dest = 0;
12682 #ifdef HAVE_cc0
12683 rtx cc0_setter = NULL_RTX;
12684 #endif
12685
12686 if (set != 0)
12687 for (inner_dest = SET_DEST (set);
12688 (GET_CODE (inner_dest) == STRICT_LOW_PART
12689 || GET_CODE (inner_dest) == SUBREG
12690 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12691 inner_dest = XEXP (inner_dest, 0))
12692 ;
12693
12694 /* Verify that it was the set, and not a clobber that
12695 modified the register.
12696
12697 CC0 targets must be careful to maintain setter/user
12698 pairs. If we cannot delete the setter due to side
12699 effects, mark the user with an UNUSED note instead
12700 of deleting it. */
12701
12702 if (set != 0 && ! side_effects_p (SET_SRC (set))
12703 && rtx_equal_p (XEXP (note, 0), inner_dest)
12704 #ifdef HAVE_cc0
12705 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12706 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12707 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12708 #endif
12709 )
12710 {
12711 /* Move the notes and links of TEM elsewhere.
12712 This might delete other dead insns recursively.
12713 First set the pattern to something that won't use
12714 any register. */
12715 rtx old_notes = REG_NOTES (tem);
12716
12717 PATTERN (tem) = pc_rtx;
12718 REG_NOTES (tem) = NULL;
12719
12720 distribute_notes (old_notes, tem, tem, NULL_RTX,
12721 NULL_RTX, NULL_RTX);
12722 distribute_links (LOG_LINKS (tem));
12723
12724 SET_INSN_DELETED (tem);
12725 if (tem == i2)
12726 i2 = NULL_RTX;
12727
12728 #ifdef HAVE_cc0
12729 /* Delete the setter too. */
12730 if (cc0_setter)
12731 {
12732 PATTERN (cc0_setter) = pc_rtx;
12733 old_notes = REG_NOTES (cc0_setter);
12734 REG_NOTES (cc0_setter) = NULL;
12735
12736 distribute_notes (old_notes, cc0_setter,
12737 cc0_setter, NULL_RTX,
12738 NULL_RTX, NULL_RTX);
12739 distribute_links (LOG_LINKS (cc0_setter));
12740
12741 SET_INSN_DELETED (cc0_setter);
12742 if (cc0_setter == i2)
12743 i2 = NULL_RTX;
12744 }
12745 #endif
12746 }
12747 else
12748 {
12749 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12750
12751 /* If there isn't already a REG_UNUSED note, put one
12752 here. Do not place a REG_DEAD note, even if
12753 the register is also used here; that would not
12754 match the algorithm used in lifetime analysis
12755 and can cause the consistency check in the
12756 scheduler to fail. */
12757 if (! find_regno_note (tem, REG_UNUSED,
12758 REGNO (XEXP (note, 0))))
12759 place = tem;
12760 break;
12761 }
12762 }
12763 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12764 || (CALL_P (tem)
12765 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12766 {
12767 place = tem;
12768
12769 /* If we are doing a 3->2 combination, and we have a
12770 register which formerly died in i3 and was not used
12771 by i2, which now no longer dies in i3 and is used in
12772 i2 but does not die in i2, and place is between i2
12773 and i3, then we may need to move a link from place to
12774 i2. */
12775 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
12776 && from_insn
12777 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
12778 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12779 {
12780 rtx links = LOG_LINKS (place);
12781 LOG_LINKS (place) = 0;
12782 distribute_links (links);
12783 }
12784 break;
12785 }
12786
12787 if (tem == BB_HEAD (bb))
12788 break;
12789 }
12790
12791 }
12792
12793 /* If the register is set or already dead at PLACE, we needn't do
12794 anything with this note if it is still a REG_DEAD note.
12795 We check here if it is set at all, not if is it totally replaced,
12796 which is what `dead_or_set_p' checks, so also check for it being
12797 set partially. */
12798
12799 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12800 {
12801 unsigned int regno = REGNO (XEXP (note, 0));
12802 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
12803
12804 if (dead_or_set_p (place, XEXP (note, 0))
12805 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12806 {
12807 /* Unless the register previously died in PLACE, clear
12808 last_death. [I no longer understand why this is
12809 being done.] */
12810 if (rsp->last_death != place)
12811 rsp->last_death = 0;
12812 place = 0;
12813 }
12814 else
12815 rsp->last_death = place;
12816
12817 /* If this is a death note for a hard reg that is occupying
12818 multiple registers, ensure that we are still using all
12819 parts of the object. If we find a piece of the object
12820 that is unused, we must arrange for an appropriate REG_DEAD
12821 note to be added for it. However, we can't just emit a USE
12822 and tag the note to it, since the register might actually
12823 be dead; so we recourse, and the recursive call then finds
12824 the previous insn that used this register. */
12825
12826 if (place && regno < FIRST_PSEUDO_REGISTER
12827 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
12828 {
12829 unsigned int endregno = END_HARD_REGNO (XEXP (note, 0));
12830 int all_used = 1;
12831 unsigned int i;
12832
12833 for (i = regno; i < endregno; i++)
12834 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12835 && ! find_regno_fusage (place, USE, i))
12836 || dead_or_set_regno_p (place, i))
12837 all_used = 0;
12838
12839 if (! all_used)
12840 {
12841 /* Put only REG_DEAD notes for pieces that are
12842 not already dead or set. */
12843
12844 for (i = regno; i < endregno;
12845 i += hard_regno_nregs[i][reg_raw_mode[i]])
12846 {
12847 rtx piece = regno_reg_rtx[i];
12848 basic_block bb = this_basic_block;
12849
12850 if (! dead_or_set_p (place, piece)
12851 && ! reg_bitfield_target_p (piece,
12852 PATTERN (place)))
12853 {
12854 rtx new_note = alloc_reg_note (REG_DEAD, piece,
12855 NULL_RTX);
12856
12857 distribute_notes (new_note, place, place,
12858 NULL_RTX, NULL_RTX, NULL_RTX);
12859 }
12860 else if (! refers_to_regno_p (i, i + 1,
12861 PATTERN (place), 0)
12862 && ! find_regno_fusage (place, USE, i))
12863 for (tem = PREV_INSN (place); ;
12864 tem = PREV_INSN (tem))
12865 {
12866 if (! INSN_P (tem))
12867 {
12868 if (tem == BB_HEAD (bb))
12869 break;
12870 continue;
12871 }
12872 if (dead_or_set_p (tem, piece)
12873 || reg_bitfield_target_p (piece,
12874 PATTERN (tem)))
12875 {
12876 add_reg_note (tem, REG_UNUSED, piece);
12877 break;
12878 }
12879 }
12880
12881 }
12882
12883 place = 0;
12884 }
12885 }
12886 }
12887 break;
12888
12889 default:
12890 /* Any other notes should not be present at this point in the
12891 compilation. */
12892 gcc_unreachable ();
12893 }
12894
12895 if (place)
12896 {
12897 XEXP (note, 1) = REG_NOTES (place);
12898 REG_NOTES (place) = note;
12899 }
12900
12901 if (place2)
12902 add_reg_note (place2, REG_NOTE_KIND (note), XEXP (note, 0));
12903 }
12904 }
12905 \f
12906 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12907 I3, I2, and I1 to new locations. This is also called to add a link
12908 pointing at I3 when I3's destination is changed. */
12909
12910 static void
12911 distribute_links (rtx links)
12912 {
12913 rtx link, next_link;
12914
12915 for (link = links; link; link = next_link)
12916 {
12917 rtx place = 0;
12918 rtx insn;
12919 rtx set, reg;
12920
12921 next_link = XEXP (link, 1);
12922
12923 /* If the insn that this link points to is a NOTE or isn't a single
12924 set, ignore it. In the latter case, it isn't clear what we
12925 can do other than ignore the link, since we can't tell which
12926 register it was for. Such links wouldn't be used by combine
12927 anyway.
12928
12929 It is not possible for the destination of the target of the link to
12930 have been changed by combine. The only potential of this is if we
12931 replace I3, I2, and I1 by I3 and I2. But in that case the
12932 destination of I2 also remains unchanged. */
12933
12934 if (NOTE_P (XEXP (link, 0))
12935 || (set = single_set (XEXP (link, 0))) == 0)
12936 continue;
12937
12938 reg = SET_DEST (set);
12939 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12940 || GET_CODE (reg) == STRICT_LOW_PART)
12941 reg = XEXP (reg, 0);
12942
12943 /* A LOG_LINK is defined as being placed on the first insn that uses
12944 a register and points to the insn that sets the register. Start
12945 searching at the next insn after the target of the link and stop
12946 when we reach a set of the register or the end of the basic block.
12947
12948 Note that this correctly handles the link that used to point from
12949 I3 to I2. Also note that not much searching is typically done here
12950 since most links don't point very far away. */
12951
12952 for (insn = NEXT_INSN (XEXP (link, 0));
12953 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
12954 || BB_HEAD (this_basic_block->next_bb) != insn));
12955 insn = NEXT_INSN (insn))
12956 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12957 {
12958 if (reg_referenced_p (reg, PATTERN (insn)))
12959 place = insn;
12960 break;
12961 }
12962 else if (CALL_P (insn)
12963 && find_reg_fusage (insn, USE, reg))
12964 {
12965 place = insn;
12966 break;
12967 }
12968 else if (INSN_P (insn) && reg_set_p (reg, insn))
12969 break;
12970
12971 /* If we found a place to put the link, place it there unless there
12972 is already a link to the same insn as LINK at that point. */
12973
12974 if (place)
12975 {
12976 rtx link2;
12977
12978 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12979 if (XEXP (link2, 0) == XEXP (link, 0))
12980 break;
12981
12982 if (link2 == 0)
12983 {
12984 XEXP (link, 1) = LOG_LINKS (place);
12985 LOG_LINKS (place) = link;
12986
12987 /* Set added_links_insn to the earliest insn we added a
12988 link to. */
12989 if (added_links_insn == 0
12990 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
12991 added_links_insn = place;
12992 }
12993 }
12994 }
12995 }
12996 \f
12997 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
12998 Check whether the expression pointer to by LOC is a register or
12999 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
13000 Otherwise return zero. */
13001
13002 static int
13003 unmentioned_reg_p_1 (rtx *loc, void *expr)
13004 {
13005 rtx x = *loc;
13006
13007 if (x != NULL_RTX
13008 && (REG_P (x) || MEM_P (x))
13009 && ! reg_mentioned_p (x, (rtx) expr))
13010 return 1;
13011 return 0;
13012 }
13013
13014 /* Check for any register or memory mentioned in EQUIV that is not
13015 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
13016 of EXPR where some registers may have been replaced by constants. */
13017
13018 static bool
13019 unmentioned_reg_p (rtx equiv, rtx expr)
13020 {
13021 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
13022 }
13023 \f
13024 void
13025 dump_combine_stats (FILE *file)
13026 {
13027 fprintf
13028 (file,
13029 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
13030 combine_attempts, combine_merges, combine_extras, combine_successes);
13031 }
13032
13033 void
13034 dump_combine_total_stats (FILE *file)
13035 {
13036 fprintf
13037 (file,
13038 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
13039 total_attempts, total_merges, total_extras, total_successes);
13040 }
13041 \f
13042 static bool
13043 gate_handle_combine (void)
13044 {
13045 return (optimize > 0);
13046 }
13047
13048 /* Try combining insns through substitution. */
13049 static unsigned int
13050 rest_of_handle_combine (void)
13051 {
13052 int rebuild_jump_labels_after_combine;
13053
13054 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
13055 df_note_add_problem ();
13056 df_analyze ();
13057
13058 regstat_init_n_sets_and_refs ();
13059
13060 rebuild_jump_labels_after_combine
13061 = combine_instructions (get_insns (), max_reg_num ());
13062
13063 /* Combining insns may have turned an indirect jump into a
13064 direct jump. Rebuild the JUMP_LABEL fields of jumping
13065 instructions. */
13066 if (rebuild_jump_labels_after_combine)
13067 {
13068 timevar_push (TV_JUMP);
13069 rebuild_jump_labels (get_insns ());
13070 cleanup_cfg (0);
13071 timevar_pop (TV_JUMP);
13072 }
13073
13074 regstat_free_n_sets_and_refs ();
13075 return 0;
13076 }
13077
13078 struct rtl_opt_pass pass_combine =
13079 {
13080 {
13081 RTL_PASS,
13082 "combine", /* name */
13083 gate_handle_combine, /* gate */
13084 rest_of_handle_combine, /* execute */
13085 NULL, /* sub */
13086 NULL, /* next */
13087 0, /* static_pass_number */
13088 TV_COMBINE, /* tv_id */
13089 PROP_cfglayout, /* properties_required */
13090 0, /* properties_provided */
13091 0, /* properties_destroyed */
13092 0, /* todo_flags_start */
13093 TODO_dump_func |
13094 TODO_df_finish | TODO_verify_rtl_sharing |
13095 TODO_ggc_collect, /* todo_flags_finish */
13096 }
13097 };