cp-tree.h (LOOKUP_SEEN_P, [...]): New.
[gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
23
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
29
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of success.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
55
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
64
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
68
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
77
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "backend.h"
82 #include "target.h"
83 #include "rtl.h"
84 #include "tree.h"
85 #include "cfghooks.h"
86 #include "predict.h"
87 #include "df.h"
88 #include "memmodel.h"
89 #include "tm_p.h"
90 #include "optabs.h"
91 #include "regs.h"
92 #include "emit-rtl.h"
93 #include "recog.h"
94 #include "cgraph.h"
95 #include "stor-layout.h"
96 #include "cfgrtl.h"
97 #include "cfgcleanup.h"
98 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
99 #include "explow.h"
100 #include "insn-attr.h"
101 #include "rtlhooks-def.h"
102 #include "params.h"
103 #include "tree-pass.h"
104 #include "valtrack.h"
105 #include "rtl-iter.h"
106 #include "print-rtl.h"
107
108 /* Number of attempts to combine instructions in this function. */
109
110 static int combine_attempts;
111
112 /* Number of attempts that got as far as substitution in this function. */
113
114 static int combine_merges;
115
116 /* Number of instructions combined with added SETs in this function. */
117
118 static int combine_extras;
119
120 /* Number of instructions combined in this function. */
121
122 static int combine_successes;
123
124 /* Totals over entire compilation. */
125
126 static int total_attempts, total_merges, total_extras, total_successes;
127
128 /* combine_instructions may try to replace the right hand side of the
129 second instruction with the value of an associated REG_EQUAL note
130 before throwing it at try_combine. That is problematic when there
131 is a REG_DEAD note for a register used in the old right hand side
132 and can cause distribute_notes to do wrong things. This is the
133 second instruction if it has been so modified, null otherwise. */
134
135 static rtx_insn *i2mod;
136
137 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
138
139 static rtx i2mod_old_rhs;
140
141 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
142
143 static rtx i2mod_new_rhs;
144 \f
145 struct reg_stat_type {
146 /* Record last point of death of (hard or pseudo) register n. */
147 rtx_insn *last_death;
148
149 /* Record last point of modification of (hard or pseudo) register n. */
150 rtx_insn *last_set;
151
152 /* The next group of fields allows the recording of the last value assigned
153 to (hard or pseudo) register n. We use this information to see if an
154 operation being processed is redundant given a prior operation performed
155 on the register. For example, an `and' with a constant is redundant if
156 all the zero bits are already known to be turned off.
157
158 We use an approach similar to that used by cse, but change it in the
159 following ways:
160
161 (1) We do not want to reinitialize at each label.
162 (2) It is useful, but not critical, to know the actual value assigned
163 to a register. Often just its form is helpful.
164
165 Therefore, we maintain the following fields:
166
167 last_set_value the last value assigned
168 last_set_label records the value of label_tick when the
169 register was assigned
170 last_set_table_tick records the value of label_tick when a
171 value using the register is assigned
172 last_set_invalid set to nonzero when it is not valid
173 to use the value of this register in some
174 register's value
175
176 To understand the usage of these tables, it is important to understand
177 the distinction between the value in last_set_value being valid and
178 the register being validly contained in some other expression in the
179 table.
180
181 (The next two parameters are out of date).
182
183 reg_stat[i].last_set_value is valid if it is nonzero, and either
184 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
185
186 Register I may validly appear in any expression returned for the value
187 of another register if reg_n_sets[i] is 1. It may also appear in the
188 value for register J if reg_stat[j].last_set_invalid is zero, or
189 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
190
191 If an expression is found in the table containing a register which may
192 not validly appear in an expression, the register is replaced by
193 something that won't match, (clobber (const_int 0)). */
194
195 /* Record last value assigned to (hard or pseudo) register n. */
196
197 rtx last_set_value;
198
199 /* Record the value of label_tick when an expression involving register n
200 is placed in last_set_value. */
201
202 int last_set_table_tick;
203
204 /* Record the value of label_tick when the value for register n is placed in
205 last_set_value. */
206
207 int last_set_label;
208
209 /* These fields are maintained in parallel with last_set_value and are
210 used to store the mode in which the register was last set, the bits
211 that were known to be zero when it was last set, and the number of
212 sign bits copies it was known to have when it was last set. */
213
214 unsigned HOST_WIDE_INT last_set_nonzero_bits;
215 char last_set_sign_bit_copies;
216 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
217
218 /* Set nonzero if references to register n in expressions should not be
219 used. last_set_invalid is set nonzero when this register is being
220 assigned to and last_set_table_tick == label_tick. */
221
222 char last_set_invalid;
223
224 /* Some registers that are set more than once and used in more than one
225 basic block are nevertheless always set in similar ways. For example,
226 a QImode register may be loaded from memory in two places on a machine
227 where byte loads zero extend.
228
229 We record in the following fields if a register has some leading bits
230 that are always equal to the sign bit, and what we know about the
231 nonzero bits of a register, specifically which bits are known to be
232 zero.
233
234 If an entry is zero, it means that we don't know anything special. */
235
236 unsigned char sign_bit_copies;
237
238 unsigned HOST_WIDE_INT nonzero_bits;
239
240 /* Record the value of the label_tick when the last truncation
241 happened. The field truncated_to_mode is only valid if
242 truncation_label == label_tick. */
243
244 int truncation_label;
245
246 /* Record the last truncation seen for this register. If truncation
247 is not a nop to this mode we might be able to save an explicit
248 truncation if we know that value already contains a truncated
249 value. */
250
251 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
252 };
253
254
255 static vec<reg_stat_type> reg_stat;
256
257 /* One plus the highest pseudo for which we track REG_N_SETS.
258 regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
259 but during combine_split_insns new pseudos can be created. As we don't have
260 updated DF information in that case, it is hard to initialize the array
261 after growing. The combiner only cares about REG_N_SETS (regno) == 1,
262 so instead of growing the arrays, just assume all newly created pseudos
263 during combine might be set multiple times. */
264
265 static unsigned int reg_n_sets_max;
266
267 /* Record the luid of the last insn that invalidated memory
268 (anything that writes memory, and subroutine calls, but not pushes). */
269
270 static int mem_last_set;
271
272 /* Record the luid of the last CALL_INSN
273 so we can tell whether a potential combination crosses any calls. */
274
275 static int last_call_luid;
276
277 /* When `subst' is called, this is the insn that is being modified
278 (by combining in a previous insn). The PATTERN of this insn
279 is still the old pattern partially modified and it should not be
280 looked at, but this may be used to examine the successors of the insn
281 to judge whether a simplification is valid. */
282
283 static rtx_insn *subst_insn;
284
285 /* This is the lowest LUID that `subst' is currently dealing with.
286 get_last_value will not return a value if the register was set at or
287 after this LUID. If not for this mechanism, we could get confused if
288 I2 or I1 in try_combine were an insn that used the old value of a register
289 to obtain a new value. In that case, we might erroneously get the
290 new value of the register when we wanted the old one. */
291
292 static int subst_low_luid;
293
294 /* This contains any hard registers that are used in newpat; reg_dead_at_p
295 must consider all these registers to be always live. */
296
297 static HARD_REG_SET newpat_used_regs;
298
299 /* This is an insn to which a LOG_LINKS entry has been added. If this
300 insn is the earlier than I2 or I3, combine should rescan starting at
301 that location. */
302
303 static rtx_insn *added_links_insn;
304
305 /* Basic block in which we are performing combines. */
306 static basic_block this_basic_block;
307 static bool optimize_this_for_speed_p;
308
309 \f
310 /* Length of the currently allocated uid_insn_cost array. */
311
312 static int max_uid_known;
313
314 /* The following array records the insn_rtx_cost for every insn
315 in the instruction stream. */
316
317 static int *uid_insn_cost;
318
319 /* The following array records the LOG_LINKS for every insn in the
320 instruction stream as struct insn_link pointers. */
321
322 struct insn_link {
323 rtx_insn *insn;
324 unsigned int regno;
325 struct insn_link *next;
326 };
327
328 static struct insn_link **uid_log_links;
329
330 static inline int
331 insn_uid_check (const_rtx insn)
332 {
333 int uid = INSN_UID (insn);
334 gcc_checking_assert (uid <= max_uid_known);
335 return uid;
336 }
337
338 #define INSN_COST(INSN) (uid_insn_cost[insn_uid_check (INSN)])
339 #define LOG_LINKS(INSN) (uid_log_links[insn_uid_check (INSN)])
340
341 #define FOR_EACH_LOG_LINK(L, INSN) \
342 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
343
344 /* Links for LOG_LINKS are allocated from this obstack. */
345
346 static struct obstack insn_link_obstack;
347
348 /* Allocate a link. */
349
350 static inline struct insn_link *
351 alloc_insn_link (rtx_insn *insn, unsigned int regno, struct insn_link *next)
352 {
353 struct insn_link *l
354 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
355 sizeof (struct insn_link));
356 l->insn = insn;
357 l->regno = regno;
358 l->next = next;
359 return l;
360 }
361
362 /* Incremented for each basic block. */
363
364 static int label_tick;
365
366 /* Reset to label_tick for each extended basic block in scanning order. */
367
368 static int label_tick_ebb_start;
369
370 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
371 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
372
373 static machine_mode nonzero_bits_mode;
374
375 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
376 be safely used. It is zero while computing them and after combine has
377 completed. This former test prevents propagating values based on
378 previously set values, which can be incorrect if a variable is modified
379 in a loop. */
380
381 static int nonzero_sign_valid;
382
383 \f
384 /* Record one modification to rtl structure
385 to be undone by storing old_contents into *where. */
386
387 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
388
389 struct undo
390 {
391 struct undo *next;
392 enum undo_kind kind;
393 union { rtx r; int i; machine_mode m; struct insn_link *l; } old_contents;
394 union { rtx *r; int *i; struct insn_link **l; } where;
395 };
396
397 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
398 num_undo says how many are currently recorded.
399
400 other_insn is nonzero if we have modified some other insn in the process
401 of working on subst_insn. It must be verified too. */
402
403 struct undobuf
404 {
405 struct undo *undos;
406 struct undo *frees;
407 rtx_insn *other_insn;
408 };
409
410 static struct undobuf undobuf;
411
412 /* Number of times the pseudo being substituted for
413 was found and replaced. */
414
415 static int n_occurrences;
416
417 static rtx reg_nonzero_bits_for_combine (const_rtx, machine_mode, const_rtx,
418 machine_mode,
419 unsigned HOST_WIDE_INT,
420 unsigned HOST_WIDE_INT *);
421 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, machine_mode, const_rtx,
422 machine_mode,
423 unsigned int, unsigned int *);
424 static void do_SUBST (rtx *, rtx);
425 static void do_SUBST_INT (int *, int);
426 static void init_reg_last (void);
427 static void setup_incoming_promotions (rtx_insn *);
428 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
429 static int cant_combine_insn_p (rtx_insn *);
430 static int can_combine_p (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
431 rtx_insn *, rtx_insn *, rtx *, rtx *);
432 static int combinable_i3pat (rtx_insn *, rtx *, rtx, rtx, rtx, int, int, rtx *);
433 static int contains_muldiv (rtx);
434 static rtx_insn *try_combine (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
435 int *, rtx_insn *);
436 static void undo_all (void);
437 static void undo_commit (void);
438 static rtx *find_split_point (rtx *, rtx_insn *, bool);
439 static rtx subst (rtx, rtx, rtx, int, int, int);
440 static rtx combine_simplify_rtx (rtx, machine_mode, int, int);
441 static rtx simplify_if_then_else (rtx);
442 static rtx simplify_set (rtx);
443 static rtx simplify_logical (rtx);
444 static rtx expand_compound_operation (rtx);
445 static const_rtx expand_field_assignment (const_rtx);
446 static rtx make_extraction (machine_mode, rtx, HOST_WIDE_INT,
447 rtx, unsigned HOST_WIDE_INT, int, int, int);
448 static rtx extract_left_shift (rtx, int);
449 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
450 unsigned HOST_WIDE_INT *);
451 static rtx canon_reg_for_combine (rtx, rtx);
452 static rtx force_to_mode (rtx, machine_mode,
453 unsigned HOST_WIDE_INT, int);
454 static rtx if_then_else_cond (rtx, rtx *, rtx *);
455 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
456 static int rtx_equal_for_field_assignment_p (rtx, rtx, bool = false);
457 static rtx make_field_assignment (rtx);
458 static rtx apply_distributive_law (rtx);
459 static rtx distribute_and_simplify_rtx (rtx, int);
460 static rtx simplify_and_const_int_1 (machine_mode, rtx,
461 unsigned HOST_WIDE_INT);
462 static rtx simplify_and_const_int (rtx, machine_mode, rtx,
463 unsigned HOST_WIDE_INT);
464 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
465 HOST_WIDE_INT, machine_mode, int *);
466 static rtx simplify_shift_const_1 (enum rtx_code, machine_mode, rtx, int);
467 static rtx simplify_shift_const (rtx, enum rtx_code, machine_mode, rtx,
468 int);
469 static int recog_for_combine (rtx *, rtx_insn *, rtx *);
470 static rtx gen_lowpart_for_combine (machine_mode, rtx);
471 static enum rtx_code simplify_compare_const (enum rtx_code, machine_mode,
472 rtx, rtx *);
473 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
474 static void update_table_tick (rtx);
475 static void record_value_for_reg (rtx, rtx_insn *, rtx);
476 static void check_promoted_subreg (rtx_insn *, rtx);
477 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
478 static void record_dead_and_set_regs (rtx_insn *);
479 static int get_last_value_validate (rtx *, rtx_insn *, int, int);
480 static rtx get_last_value (const_rtx);
481 static int use_crosses_set_p (const_rtx, int);
482 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
483 static int reg_dead_at_p (rtx, rtx_insn *);
484 static void move_deaths (rtx, rtx, int, rtx_insn *, rtx *);
485 static int reg_bitfield_target_p (rtx, rtx);
486 static void distribute_notes (rtx, rtx_insn *, rtx_insn *, rtx_insn *, rtx, rtx, rtx);
487 static void distribute_links (struct insn_link *);
488 static void mark_used_regs_combine (rtx);
489 static void record_promoted_value (rtx_insn *, rtx);
490 static bool unmentioned_reg_p (rtx, rtx);
491 static void record_truncated_values (rtx *, void *);
492 static bool reg_truncated_to_mode (machine_mode, const_rtx);
493 static rtx gen_lowpart_or_truncate (machine_mode, rtx);
494 \f
495
496 /* It is not safe to use ordinary gen_lowpart in combine.
497 See comments in gen_lowpart_for_combine. */
498 #undef RTL_HOOKS_GEN_LOWPART
499 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
500
501 /* Our implementation of gen_lowpart never emits a new pseudo. */
502 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
503 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
504
505 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
506 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
507
508 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
509 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
510
511 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
512 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
513
514 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
515
516 \f
517 /* Convenience wrapper for the canonicalize_comparison target hook.
518 Target hooks cannot use enum rtx_code. */
519 static inline void
520 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
521 bool op0_preserve_value)
522 {
523 int code_int = (int)*code;
524 targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
525 *code = (enum rtx_code)code_int;
526 }
527
528 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
529 PATTERN can not be split. Otherwise, it returns an insn sequence.
530 This is a wrapper around split_insns which ensures that the
531 reg_stat vector is made larger if the splitter creates a new
532 register. */
533
534 static rtx_insn *
535 combine_split_insns (rtx pattern, rtx_insn *insn)
536 {
537 rtx_insn *ret;
538 unsigned int nregs;
539
540 ret = split_insns (pattern, insn);
541 nregs = max_reg_num ();
542 if (nregs > reg_stat.length ())
543 reg_stat.safe_grow_cleared (nregs);
544 return ret;
545 }
546
547 /* This is used by find_single_use to locate an rtx in LOC that
548 contains exactly one use of DEST, which is typically either a REG
549 or CC0. It returns a pointer to the innermost rtx expression
550 containing DEST. Appearances of DEST that are being used to
551 totally replace it are not counted. */
552
553 static rtx *
554 find_single_use_1 (rtx dest, rtx *loc)
555 {
556 rtx x = *loc;
557 enum rtx_code code = GET_CODE (x);
558 rtx *result = NULL;
559 rtx *this_result;
560 int i;
561 const char *fmt;
562
563 switch (code)
564 {
565 case CONST:
566 case LABEL_REF:
567 case SYMBOL_REF:
568 CASE_CONST_ANY:
569 case CLOBBER:
570 return 0;
571
572 case SET:
573 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
574 of a REG that occupies all of the REG, the insn uses DEST if
575 it is mentioned in the destination or the source. Otherwise, we
576 need just check the source. */
577 if (GET_CODE (SET_DEST (x)) != CC0
578 && GET_CODE (SET_DEST (x)) != PC
579 && !REG_P (SET_DEST (x))
580 && ! (GET_CODE (SET_DEST (x)) == SUBREG
581 && REG_P (SUBREG_REG (SET_DEST (x)))
582 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
583 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
584 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
585 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
586 break;
587
588 return find_single_use_1 (dest, &SET_SRC (x));
589
590 case MEM:
591 case SUBREG:
592 return find_single_use_1 (dest, &XEXP (x, 0));
593
594 default:
595 break;
596 }
597
598 /* If it wasn't one of the common cases above, check each expression and
599 vector of this code. Look for a unique usage of DEST. */
600
601 fmt = GET_RTX_FORMAT (code);
602 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
603 {
604 if (fmt[i] == 'e')
605 {
606 if (dest == XEXP (x, i)
607 || (REG_P (dest) && REG_P (XEXP (x, i))
608 && REGNO (dest) == REGNO (XEXP (x, i))))
609 this_result = loc;
610 else
611 this_result = find_single_use_1 (dest, &XEXP (x, i));
612
613 if (result == NULL)
614 result = this_result;
615 else if (this_result)
616 /* Duplicate usage. */
617 return NULL;
618 }
619 else if (fmt[i] == 'E')
620 {
621 int j;
622
623 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
624 {
625 if (XVECEXP (x, i, j) == dest
626 || (REG_P (dest)
627 && REG_P (XVECEXP (x, i, j))
628 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
629 this_result = loc;
630 else
631 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
632
633 if (result == NULL)
634 result = this_result;
635 else if (this_result)
636 return NULL;
637 }
638 }
639 }
640
641 return result;
642 }
643
644
645 /* See if DEST, produced in INSN, is used only a single time in the
646 sequel. If so, return a pointer to the innermost rtx expression in which
647 it is used.
648
649 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
650
651 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
652 care about REG_DEAD notes or LOG_LINKS.
653
654 Otherwise, we find the single use by finding an insn that has a
655 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
656 only referenced once in that insn, we know that it must be the first
657 and last insn referencing DEST. */
658
659 static rtx *
660 find_single_use (rtx dest, rtx_insn *insn, rtx_insn **ploc)
661 {
662 basic_block bb;
663 rtx_insn *next;
664 rtx *result;
665 struct insn_link *link;
666
667 if (dest == cc0_rtx)
668 {
669 next = NEXT_INSN (insn);
670 if (next == 0
671 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
672 return 0;
673
674 result = find_single_use_1 (dest, &PATTERN (next));
675 if (result && ploc)
676 *ploc = next;
677 return result;
678 }
679
680 if (!REG_P (dest))
681 return 0;
682
683 bb = BLOCK_FOR_INSN (insn);
684 for (next = NEXT_INSN (insn);
685 next && BLOCK_FOR_INSN (next) == bb;
686 next = NEXT_INSN (next))
687 if (NONDEBUG_INSN_P (next) && dead_or_set_p (next, dest))
688 {
689 FOR_EACH_LOG_LINK (link, next)
690 if (link->insn == insn && link->regno == REGNO (dest))
691 break;
692
693 if (link)
694 {
695 result = find_single_use_1 (dest, &PATTERN (next));
696 if (ploc)
697 *ploc = next;
698 return result;
699 }
700 }
701
702 return 0;
703 }
704 \f
705 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
706 insn. The substitution can be undone by undo_all. If INTO is already
707 set to NEWVAL, do not record this change. Because computing NEWVAL might
708 also call SUBST, we have to compute it before we put anything into
709 the undo table. */
710
711 static void
712 do_SUBST (rtx *into, rtx newval)
713 {
714 struct undo *buf;
715 rtx oldval = *into;
716
717 if (oldval == newval)
718 return;
719
720 /* We'd like to catch as many invalid transformations here as
721 possible. Unfortunately, there are way too many mode changes
722 that are perfectly valid, so we'd waste too much effort for
723 little gain doing the checks here. Focus on catching invalid
724 transformations involving integer constants. */
725 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
726 && CONST_INT_P (newval))
727 {
728 /* Sanity check that we're replacing oldval with a CONST_INT
729 that is a valid sign-extension for the original mode. */
730 gcc_assert (INTVAL (newval)
731 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
732
733 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
734 CONST_INT is not valid, because after the replacement, the
735 original mode would be gone. Unfortunately, we can't tell
736 when do_SUBST is called to replace the operand thereof, so we
737 perform this test on oldval instead, checking whether an
738 invalid replacement took place before we got here. */
739 gcc_assert (!(GET_CODE (oldval) == SUBREG
740 && CONST_INT_P (SUBREG_REG (oldval))));
741 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
742 && CONST_INT_P (XEXP (oldval, 0))));
743 }
744
745 if (undobuf.frees)
746 buf = undobuf.frees, undobuf.frees = buf->next;
747 else
748 buf = XNEW (struct undo);
749
750 buf->kind = UNDO_RTX;
751 buf->where.r = into;
752 buf->old_contents.r = oldval;
753 *into = newval;
754
755 buf->next = undobuf.undos, undobuf.undos = buf;
756 }
757
758 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
759
760 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
761 for the value of a HOST_WIDE_INT value (including CONST_INT) is
762 not safe. */
763
764 static void
765 do_SUBST_INT (int *into, int newval)
766 {
767 struct undo *buf;
768 int oldval = *into;
769
770 if (oldval == newval)
771 return;
772
773 if (undobuf.frees)
774 buf = undobuf.frees, undobuf.frees = buf->next;
775 else
776 buf = XNEW (struct undo);
777
778 buf->kind = UNDO_INT;
779 buf->where.i = into;
780 buf->old_contents.i = oldval;
781 *into = newval;
782
783 buf->next = undobuf.undos, undobuf.undos = buf;
784 }
785
786 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
787
788 /* Similar to SUBST, but just substitute the mode. This is used when
789 changing the mode of a pseudo-register, so that any other
790 references to the entry in the regno_reg_rtx array will change as
791 well. */
792
793 static void
794 do_SUBST_MODE (rtx *into, machine_mode newval)
795 {
796 struct undo *buf;
797 machine_mode oldval = GET_MODE (*into);
798
799 if (oldval == newval)
800 return;
801
802 if (undobuf.frees)
803 buf = undobuf.frees, undobuf.frees = buf->next;
804 else
805 buf = XNEW (struct undo);
806
807 buf->kind = UNDO_MODE;
808 buf->where.r = into;
809 buf->old_contents.m = oldval;
810 adjust_reg_mode (*into, newval);
811
812 buf->next = undobuf.undos, undobuf.undos = buf;
813 }
814
815 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE (&(INTO), (NEWVAL))
816
817 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
818
819 static void
820 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
821 {
822 struct undo *buf;
823 struct insn_link * oldval = *into;
824
825 if (oldval == newval)
826 return;
827
828 if (undobuf.frees)
829 buf = undobuf.frees, undobuf.frees = buf->next;
830 else
831 buf = XNEW (struct undo);
832
833 buf->kind = UNDO_LINKS;
834 buf->where.l = into;
835 buf->old_contents.l = oldval;
836 *into = newval;
837
838 buf->next = undobuf.undos, undobuf.undos = buf;
839 }
840
841 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
842 \f
843 /* Subroutine of try_combine. Determine whether the replacement patterns
844 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_rtx_cost
845 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
846 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
847 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
848 of all the instructions can be estimated and the replacements are more
849 expensive than the original sequence. */
850
851 static bool
852 combine_validate_cost (rtx_insn *i0, rtx_insn *i1, rtx_insn *i2, rtx_insn *i3,
853 rtx newpat, rtx newi2pat, rtx newotherpat)
854 {
855 int i0_cost, i1_cost, i2_cost, i3_cost;
856 int new_i2_cost, new_i3_cost;
857 int old_cost, new_cost;
858
859 /* Lookup the original insn_rtx_costs. */
860 i2_cost = INSN_COST (i2);
861 i3_cost = INSN_COST (i3);
862
863 if (i1)
864 {
865 i1_cost = INSN_COST (i1);
866 if (i0)
867 {
868 i0_cost = INSN_COST (i0);
869 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
870 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
871 }
872 else
873 {
874 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
875 ? i1_cost + i2_cost + i3_cost : 0);
876 i0_cost = 0;
877 }
878 }
879 else
880 {
881 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
882 i1_cost = i0_cost = 0;
883 }
884
885 /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
886 correct that. */
887 if (old_cost && i1 && INSN_UID (i1) == INSN_UID (i2))
888 old_cost -= i1_cost;
889
890
891 /* Calculate the replacement insn_rtx_costs. */
892 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
893 if (newi2pat)
894 {
895 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
896 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
897 ? new_i2_cost + new_i3_cost : 0;
898 }
899 else
900 {
901 new_cost = new_i3_cost;
902 new_i2_cost = 0;
903 }
904
905 if (undobuf.other_insn)
906 {
907 int old_other_cost, new_other_cost;
908
909 old_other_cost = INSN_COST (undobuf.other_insn);
910 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
911 if (old_other_cost > 0 && new_other_cost > 0)
912 {
913 old_cost += old_other_cost;
914 new_cost += new_other_cost;
915 }
916 else
917 old_cost = 0;
918 }
919
920 /* Disallow this combination if both new_cost and old_cost are greater than
921 zero, and new_cost is greater than old cost. */
922 int reject = old_cost > 0 && new_cost > old_cost;
923
924 if (dump_file)
925 {
926 fprintf (dump_file, "%s combination of insns ",
927 reject ? "rejecting" : "allowing");
928 if (i0)
929 fprintf (dump_file, "%d, ", INSN_UID (i0));
930 if (i1 && INSN_UID (i1) != INSN_UID (i2))
931 fprintf (dump_file, "%d, ", INSN_UID (i1));
932 fprintf (dump_file, "%d and %d\n", INSN_UID (i2), INSN_UID (i3));
933
934 fprintf (dump_file, "original costs ");
935 if (i0)
936 fprintf (dump_file, "%d + ", i0_cost);
937 if (i1 && INSN_UID (i1) != INSN_UID (i2))
938 fprintf (dump_file, "%d + ", i1_cost);
939 fprintf (dump_file, "%d + %d = %d\n", i2_cost, i3_cost, old_cost);
940
941 if (newi2pat)
942 fprintf (dump_file, "replacement costs %d + %d = %d\n",
943 new_i2_cost, new_i3_cost, new_cost);
944 else
945 fprintf (dump_file, "replacement cost %d\n", new_cost);
946 }
947
948 if (reject)
949 return false;
950
951 /* Update the uid_insn_cost array with the replacement costs. */
952 INSN_COST (i2) = new_i2_cost;
953 INSN_COST (i3) = new_i3_cost;
954 if (i1)
955 {
956 INSN_COST (i1) = 0;
957 if (i0)
958 INSN_COST (i0) = 0;
959 }
960
961 return true;
962 }
963
964
965 /* Delete any insns that copy a register to itself. */
966
967 static void
968 delete_noop_moves (void)
969 {
970 rtx_insn *insn, *next;
971 basic_block bb;
972
973 FOR_EACH_BB_FN (bb, cfun)
974 {
975 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
976 {
977 next = NEXT_INSN (insn);
978 if (INSN_P (insn) && noop_move_p (insn))
979 {
980 if (dump_file)
981 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
982
983 delete_insn_and_edges (insn);
984 }
985 }
986 }
987 }
988
989 \f
990 /* Return false if we do not want to (or cannot) combine DEF. */
991 static bool
992 can_combine_def_p (df_ref def)
993 {
994 /* Do not consider if it is pre/post modification in MEM. */
995 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
996 return false;
997
998 unsigned int regno = DF_REF_REGNO (def);
999
1000 /* Do not combine frame pointer adjustments. */
1001 if ((regno == FRAME_POINTER_REGNUM
1002 && (!reload_completed || frame_pointer_needed))
1003 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
1004 && regno == HARD_FRAME_POINTER_REGNUM
1005 && (!reload_completed || frame_pointer_needed))
1006 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1007 && regno == ARG_POINTER_REGNUM && fixed_regs[regno]))
1008 return false;
1009
1010 return true;
1011 }
1012
1013 /* Return false if we do not want to (or cannot) combine USE. */
1014 static bool
1015 can_combine_use_p (df_ref use)
1016 {
1017 /* Do not consider the usage of the stack pointer by function call. */
1018 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1019 return false;
1020
1021 return true;
1022 }
1023
1024 /* Fill in log links field for all insns. */
1025
1026 static void
1027 create_log_links (void)
1028 {
1029 basic_block bb;
1030 rtx_insn **next_use;
1031 rtx_insn *insn;
1032 df_ref def, use;
1033
1034 next_use = XCNEWVEC (rtx_insn *, max_reg_num ());
1035
1036 /* Pass through each block from the end, recording the uses of each
1037 register and establishing log links when def is encountered.
1038 Note that we do not clear next_use array in order to save time,
1039 so we have to test whether the use is in the same basic block as def.
1040
1041 There are a few cases below when we do not consider the definition or
1042 usage -- these are taken from original flow.c did. Don't ask me why it is
1043 done this way; I don't know and if it works, I don't want to know. */
1044
1045 FOR_EACH_BB_FN (bb, cfun)
1046 {
1047 FOR_BB_INSNS_REVERSE (bb, insn)
1048 {
1049 if (!NONDEBUG_INSN_P (insn))
1050 continue;
1051
1052 /* Log links are created only once. */
1053 gcc_assert (!LOG_LINKS (insn));
1054
1055 FOR_EACH_INSN_DEF (def, insn)
1056 {
1057 unsigned int regno = DF_REF_REGNO (def);
1058 rtx_insn *use_insn;
1059
1060 if (!next_use[regno])
1061 continue;
1062
1063 if (!can_combine_def_p (def))
1064 continue;
1065
1066 use_insn = next_use[regno];
1067 next_use[regno] = NULL;
1068
1069 if (BLOCK_FOR_INSN (use_insn) != bb)
1070 continue;
1071
1072 /* flow.c claimed:
1073
1074 We don't build a LOG_LINK for hard registers contained
1075 in ASM_OPERANDs. If these registers get replaced,
1076 we might wind up changing the semantics of the insn,
1077 even if reload can make what appear to be valid
1078 assignments later. */
1079 if (regno < FIRST_PSEUDO_REGISTER
1080 && asm_noperands (PATTERN (use_insn)) >= 0)
1081 continue;
1082
1083 /* Don't add duplicate links between instructions. */
1084 struct insn_link *links;
1085 FOR_EACH_LOG_LINK (links, use_insn)
1086 if (insn == links->insn && regno == links->regno)
1087 break;
1088
1089 if (!links)
1090 LOG_LINKS (use_insn)
1091 = alloc_insn_link (insn, regno, LOG_LINKS (use_insn));
1092 }
1093
1094 FOR_EACH_INSN_USE (use, insn)
1095 if (can_combine_use_p (use))
1096 next_use[DF_REF_REGNO (use)] = insn;
1097 }
1098 }
1099
1100 free (next_use);
1101 }
1102
1103 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1104 true if we found a LOG_LINK that proves that A feeds B. This only works
1105 if there are no instructions between A and B which could have a link
1106 depending on A, since in that case we would not record a link for B.
1107 We also check the implicit dependency created by a cc0 setter/user
1108 pair. */
1109
1110 static bool
1111 insn_a_feeds_b (rtx_insn *a, rtx_insn *b)
1112 {
1113 struct insn_link *links;
1114 FOR_EACH_LOG_LINK (links, b)
1115 if (links->insn == a)
1116 return true;
1117 if (HAVE_cc0 && sets_cc0_p (a))
1118 return true;
1119 return false;
1120 }
1121 \f
1122 /* Main entry point for combiner. F is the first insn of the function.
1123 NREGS is the first unused pseudo-reg number.
1124
1125 Return nonzero if the combiner has turned an indirect jump
1126 instruction into a direct jump. */
1127 static int
1128 combine_instructions (rtx_insn *f, unsigned int nregs)
1129 {
1130 rtx_insn *insn, *next;
1131 rtx_insn *prev;
1132 struct insn_link *links, *nextlinks;
1133 rtx_insn *first;
1134 basic_block last_bb;
1135
1136 int new_direct_jump_p = 0;
1137
1138 for (first = f; first && !NONDEBUG_INSN_P (first); )
1139 first = NEXT_INSN (first);
1140 if (!first)
1141 return 0;
1142
1143 combine_attempts = 0;
1144 combine_merges = 0;
1145 combine_extras = 0;
1146 combine_successes = 0;
1147
1148 rtl_hooks = combine_rtl_hooks;
1149
1150 reg_stat.safe_grow_cleared (nregs);
1151
1152 init_recog_no_volatile ();
1153
1154 /* Allocate array for insn info. */
1155 max_uid_known = get_max_uid ();
1156 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1157 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1158 gcc_obstack_init (&insn_link_obstack);
1159
1160 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1161
1162 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1163 problems when, for example, we have j <<= 1 in a loop. */
1164
1165 nonzero_sign_valid = 0;
1166 label_tick = label_tick_ebb_start = 1;
1167
1168 /* Scan all SETs and see if we can deduce anything about what
1169 bits are known to be zero for some registers and how many copies
1170 of the sign bit are known to exist for those registers.
1171
1172 Also set any known values so that we can use it while searching
1173 for what bits are known to be set. */
1174
1175 setup_incoming_promotions (first);
1176 /* Allow the entry block and the first block to fall into the same EBB.
1177 Conceptually the incoming promotions are assigned to the entry block. */
1178 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1179
1180 create_log_links ();
1181 FOR_EACH_BB_FN (this_basic_block, cfun)
1182 {
1183 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1184 last_call_luid = 0;
1185 mem_last_set = -1;
1186
1187 label_tick++;
1188 if (!single_pred_p (this_basic_block)
1189 || single_pred (this_basic_block) != last_bb)
1190 label_tick_ebb_start = label_tick;
1191 last_bb = this_basic_block;
1192
1193 FOR_BB_INSNS (this_basic_block, insn)
1194 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1195 {
1196 rtx links;
1197
1198 subst_low_luid = DF_INSN_LUID (insn);
1199 subst_insn = insn;
1200
1201 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1202 insn);
1203 record_dead_and_set_regs (insn);
1204
1205 if (AUTO_INC_DEC)
1206 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1207 if (REG_NOTE_KIND (links) == REG_INC)
1208 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1209 insn);
1210
1211 /* Record the current insn_rtx_cost of this instruction. */
1212 if (NONJUMP_INSN_P (insn))
1213 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1214 optimize_this_for_speed_p);
1215 if (dump_file)
1216 fprintf (dump_file, "insn_cost %d: %d\n",
1217 INSN_UID (insn), INSN_COST (insn));
1218 }
1219 }
1220
1221 nonzero_sign_valid = 1;
1222
1223 /* Now scan all the insns in forward order. */
1224 label_tick = label_tick_ebb_start = 1;
1225 init_reg_last ();
1226 setup_incoming_promotions (first);
1227 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1228 int max_combine = PARAM_VALUE (PARAM_MAX_COMBINE_INSNS);
1229
1230 FOR_EACH_BB_FN (this_basic_block, cfun)
1231 {
1232 rtx_insn *last_combined_insn = NULL;
1233 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1234 last_call_luid = 0;
1235 mem_last_set = -1;
1236
1237 label_tick++;
1238 if (!single_pred_p (this_basic_block)
1239 || single_pred (this_basic_block) != last_bb)
1240 label_tick_ebb_start = label_tick;
1241 last_bb = this_basic_block;
1242
1243 rtl_profile_for_bb (this_basic_block);
1244 for (insn = BB_HEAD (this_basic_block);
1245 insn != NEXT_INSN (BB_END (this_basic_block));
1246 insn = next ? next : NEXT_INSN (insn))
1247 {
1248 next = 0;
1249 if (!NONDEBUG_INSN_P (insn))
1250 continue;
1251
1252 while (last_combined_insn
1253 && (!NONDEBUG_INSN_P (last_combined_insn)
1254 || last_combined_insn->deleted ()))
1255 last_combined_insn = PREV_INSN (last_combined_insn);
1256 if (last_combined_insn == NULL_RTX
1257 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1258 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1259 last_combined_insn = insn;
1260
1261 /* See if we know about function return values before this
1262 insn based upon SUBREG flags. */
1263 check_promoted_subreg (insn, PATTERN (insn));
1264
1265 /* See if we can find hardregs and subreg of pseudos in
1266 narrower modes. This could help turning TRUNCATEs
1267 into SUBREGs. */
1268 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1269
1270 /* Try this insn with each insn it links back to. */
1271
1272 FOR_EACH_LOG_LINK (links, insn)
1273 if ((next = try_combine (insn, links->insn, NULL,
1274 NULL, &new_direct_jump_p,
1275 last_combined_insn)) != 0)
1276 {
1277 statistics_counter_event (cfun, "two-insn combine", 1);
1278 goto retry;
1279 }
1280
1281 /* Try each sequence of three linked insns ending with this one. */
1282
1283 if (max_combine >= 3)
1284 FOR_EACH_LOG_LINK (links, insn)
1285 {
1286 rtx_insn *link = links->insn;
1287
1288 /* If the linked insn has been replaced by a note, then there
1289 is no point in pursuing this chain any further. */
1290 if (NOTE_P (link))
1291 continue;
1292
1293 FOR_EACH_LOG_LINK (nextlinks, link)
1294 if ((next = try_combine (insn, link, nextlinks->insn,
1295 NULL, &new_direct_jump_p,
1296 last_combined_insn)) != 0)
1297 {
1298 statistics_counter_event (cfun, "three-insn combine", 1);
1299 goto retry;
1300 }
1301 }
1302
1303 /* Try to combine a jump insn that uses CC0
1304 with a preceding insn that sets CC0, and maybe with its
1305 logical predecessor as well.
1306 This is how we make decrement-and-branch insns.
1307 We need this special code because data flow connections
1308 via CC0 do not get entered in LOG_LINKS. */
1309
1310 if (HAVE_cc0
1311 && JUMP_P (insn)
1312 && (prev = prev_nonnote_insn (insn)) != 0
1313 && NONJUMP_INSN_P (prev)
1314 && sets_cc0_p (PATTERN (prev)))
1315 {
1316 if ((next = try_combine (insn, prev, NULL, NULL,
1317 &new_direct_jump_p,
1318 last_combined_insn)) != 0)
1319 goto retry;
1320
1321 FOR_EACH_LOG_LINK (nextlinks, prev)
1322 if ((next = try_combine (insn, prev, nextlinks->insn,
1323 NULL, &new_direct_jump_p,
1324 last_combined_insn)) != 0)
1325 goto retry;
1326 }
1327
1328 /* Do the same for an insn that explicitly references CC0. */
1329 if (HAVE_cc0 && NONJUMP_INSN_P (insn)
1330 && (prev = prev_nonnote_insn (insn)) != 0
1331 && NONJUMP_INSN_P (prev)
1332 && sets_cc0_p (PATTERN (prev))
1333 && GET_CODE (PATTERN (insn)) == SET
1334 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1335 {
1336 if ((next = try_combine (insn, prev, NULL, NULL,
1337 &new_direct_jump_p,
1338 last_combined_insn)) != 0)
1339 goto retry;
1340
1341 FOR_EACH_LOG_LINK (nextlinks, prev)
1342 if ((next = try_combine (insn, prev, nextlinks->insn,
1343 NULL, &new_direct_jump_p,
1344 last_combined_insn)) != 0)
1345 goto retry;
1346 }
1347
1348 /* Finally, see if any of the insns that this insn links to
1349 explicitly references CC0. If so, try this insn, that insn,
1350 and its predecessor if it sets CC0. */
1351 if (HAVE_cc0)
1352 {
1353 FOR_EACH_LOG_LINK (links, insn)
1354 if (NONJUMP_INSN_P (links->insn)
1355 && GET_CODE (PATTERN (links->insn)) == SET
1356 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1357 && (prev = prev_nonnote_insn (links->insn)) != 0
1358 && NONJUMP_INSN_P (prev)
1359 && sets_cc0_p (PATTERN (prev))
1360 && (next = try_combine (insn, links->insn,
1361 prev, NULL, &new_direct_jump_p,
1362 last_combined_insn)) != 0)
1363 goto retry;
1364 }
1365
1366 /* Try combining an insn with two different insns whose results it
1367 uses. */
1368 if (max_combine >= 3)
1369 FOR_EACH_LOG_LINK (links, insn)
1370 for (nextlinks = links->next; nextlinks;
1371 nextlinks = nextlinks->next)
1372 if ((next = try_combine (insn, links->insn,
1373 nextlinks->insn, NULL,
1374 &new_direct_jump_p,
1375 last_combined_insn)) != 0)
1376
1377 {
1378 statistics_counter_event (cfun, "three-insn combine", 1);
1379 goto retry;
1380 }
1381
1382 /* Try four-instruction combinations. */
1383 if (max_combine >= 4)
1384 FOR_EACH_LOG_LINK (links, insn)
1385 {
1386 struct insn_link *next1;
1387 rtx_insn *link = links->insn;
1388
1389 /* If the linked insn has been replaced by a note, then there
1390 is no point in pursuing this chain any further. */
1391 if (NOTE_P (link))
1392 continue;
1393
1394 FOR_EACH_LOG_LINK (next1, link)
1395 {
1396 rtx_insn *link1 = next1->insn;
1397 if (NOTE_P (link1))
1398 continue;
1399 /* I0 -> I1 -> I2 -> I3. */
1400 FOR_EACH_LOG_LINK (nextlinks, link1)
1401 if ((next = try_combine (insn, link, link1,
1402 nextlinks->insn,
1403 &new_direct_jump_p,
1404 last_combined_insn)) != 0)
1405 {
1406 statistics_counter_event (cfun, "four-insn combine", 1);
1407 goto retry;
1408 }
1409 /* I0, I1 -> I2, I2 -> I3. */
1410 for (nextlinks = next1->next; nextlinks;
1411 nextlinks = nextlinks->next)
1412 if ((next = try_combine (insn, link, link1,
1413 nextlinks->insn,
1414 &new_direct_jump_p,
1415 last_combined_insn)) != 0)
1416 {
1417 statistics_counter_event (cfun, "four-insn combine", 1);
1418 goto retry;
1419 }
1420 }
1421
1422 for (next1 = links->next; next1; next1 = next1->next)
1423 {
1424 rtx_insn *link1 = next1->insn;
1425 if (NOTE_P (link1))
1426 continue;
1427 /* I0 -> I2; I1, I2 -> I3. */
1428 FOR_EACH_LOG_LINK (nextlinks, link)
1429 if ((next = try_combine (insn, link, link1,
1430 nextlinks->insn,
1431 &new_direct_jump_p,
1432 last_combined_insn)) != 0)
1433 {
1434 statistics_counter_event (cfun, "four-insn combine", 1);
1435 goto retry;
1436 }
1437 /* I0 -> I1; I1, I2 -> I3. */
1438 FOR_EACH_LOG_LINK (nextlinks, link1)
1439 if ((next = try_combine (insn, link, link1,
1440 nextlinks->insn,
1441 &new_direct_jump_p,
1442 last_combined_insn)) != 0)
1443 {
1444 statistics_counter_event (cfun, "four-insn combine", 1);
1445 goto retry;
1446 }
1447 }
1448 }
1449
1450 /* Try this insn with each REG_EQUAL note it links back to. */
1451 FOR_EACH_LOG_LINK (links, insn)
1452 {
1453 rtx set, note;
1454 rtx_insn *temp = links->insn;
1455 if ((set = single_set (temp)) != 0
1456 && (note = find_reg_equal_equiv_note (temp)) != 0
1457 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1458 /* Avoid using a register that may already been marked
1459 dead by an earlier instruction. */
1460 && ! unmentioned_reg_p (note, SET_SRC (set))
1461 && (GET_MODE (note) == VOIDmode
1462 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1463 : (GET_MODE (SET_DEST (set)) == GET_MODE (note)
1464 && (GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
1465 || (GET_MODE (XEXP (SET_DEST (set), 0))
1466 == GET_MODE (note))))))
1467 {
1468 /* Temporarily replace the set's source with the
1469 contents of the REG_EQUAL note. The insn will
1470 be deleted or recognized by try_combine. */
1471 rtx orig_src = SET_SRC (set);
1472 rtx orig_dest = SET_DEST (set);
1473 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT)
1474 SET_DEST (set) = XEXP (SET_DEST (set), 0);
1475 SET_SRC (set) = note;
1476 i2mod = temp;
1477 i2mod_old_rhs = copy_rtx (orig_src);
1478 i2mod_new_rhs = copy_rtx (note);
1479 next = try_combine (insn, i2mod, NULL, NULL,
1480 &new_direct_jump_p,
1481 last_combined_insn);
1482 i2mod = NULL;
1483 if (next)
1484 {
1485 statistics_counter_event (cfun, "insn-with-note combine", 1);
1486 goto retry;
1487 }
1488 SET_SRC (set) = orig_src;
1489 SET_DEST (set) = orig_dest;
1490 }
1491 }
1492
1493 if (!NOTE_P (insn))
1494 record_dead_and_set_regs (insn);
1495
1496 retry:
1497 ;
1498 }
1499 }
1500
1501 default_rtl_profile ();
1502 clear_bb_flags ();
1503 new_direct_jump_p |= purge_all_dead_edges ();
1504 delete_noop_moves ();
1505
1506 /* Clean up. */
1507 obstack_free (&insn_link_obstack, NULL);
1508 free (uid_log_links);
1509 free (uid_insn_cost);
1510 reg_stat.release ();
1511
1512 {
1513 struct undo *undo, *next;
1514 for (undo = undobuf.frees; undo; undo = next)
1515 {
1516 next = undo->next;
1517 free (undo);
1518 }
1519 undobuf.frees = 0;
1520 }
1521
1522 total_attempts += combine_attempts;
1523 total_merges += combine_merges;
1524 total_extras += combine_extras;
1525 total_successes += combine_successes;
1526
1527 nonzero_sign_valid = 0;
1528 rtl_hooks = general_rtl_hooks;
1529
1530 /* Make recognizer allow volatile MEMs again. */
1531 init_recog ();
1532
1533 return new_direct_jump_p;
1534 }
1535
1536 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1537
1538 static void
1539 init_reg_last (void)
1540 {
1541 unsigned int i;
1542 reg_stat_type *p;
1543
1544 FOR_EACH_VEC_ELT (reg_stat, i, p)
1545 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1546 }
1547 \f
1548 /* Set up any promoted values for incoming argument registers. */
1549
1550 static void
1551 setup_incoming_promotions (rtx_insn *first)
1552 {
1553 tree arg;
1554 bool strictly_local = false;
1555
1556 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1557 arg = DECL_CHAIN (arg))
1558 {
1559 rtx x, reg = DECL_INCOMING_RTL (arg);
1560 int uns1, uns3;
1561 machine_mode mode1, mode2, mode3, mode4;
1562
1563 /* Only continue if the incoming argument is in a register. */
1564 if (!REG_P (reg))
1565 continue;
1566
1567 /* Determine, if possible, whether all call sites of the current
1568 function lie within the current compilation unit. (This does
1569 take into account the exporting of a function via taking its
1570 address, and so forth.) */
1571 strictly_local = cgraph_node::local_info (current_function_decl)->local;
1572
1573 /* The mode and signedness of the argument before any promotions happen
1574 (equal to the mode of the pseudo holding it at that stage). */
1575 mode1 = TYPE_MODE (TREE_TYPE (arg));
1576 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1577
1578 /* The mode and signedness of the argument after any source language and
1579 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1580 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1581 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1582
1583 /* The mode and signedness of the argument as it is actually passed,
1584 see assign_parm_setup_reg in function.c. */
1585 mode3 = promote_function_mode (TREE_TYPE (arg), mode1, &uns3,
1586 TREE_TYPE (cfun->decl), 0);
1587
1588 /* The mode of the register in which the argument is being passed. */
1589 mode4 = GET_MODE (reg);
1590
1591 /* Eliminate sign extensions in the callee when:
1592 (a) A mode promotion has occurred; */
1593 if (mode1 == mode3)
1594 continue;
1595 /* (b) The mode of the register is the same as the mode of
1596 the argument as it is passed; */
1597 if (mode3 != mode4)
1598 continue;
1599 /* (c) There's no language level extension; */
1600 if (mode1 == mode2)
1601 ;
1602 /* (c.1) All callers are from the current compilation unit. If that's
1603 the case we don't have to rely on an ABI, we only have to know
1604 what we're generating right now, and we know that we will do the
1605 mode1 to mode2 promotion with the given sign. */
1606 else if (!strictly_local)
1607 continue;
1608 /* (c.2) The combination of the two promotions is useful. This is
1609 true when the signs match, or if the first promotion is unsigned.
1610 In the later case, (sign_extend (zero_extend x)) is the same as
1611 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1612 else if (uns1)
1613 uns3 = true;
1614 else if (uns3)
1615 continue;
1616
1617 /* Record that the value was promoted from mode1 to mode3,
1618 so that any sign extension at the head of the current
1619 function may be eliminated. */
1620 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1621 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1622 record_value_for_reg (reg, first, x);
1623 }
1624 }
1625
1626 /* If MODE has a precision lower than PREC and SRC is a non-negative constant
1627 that would appear negative in MODE, sign-extend SRC for use in nonzero_bits
1628 because some machines (maybe most) will actually do the sign-extension and
1629 this is the conservative approach.
1630
1631 ??? For 2.5, try to tighten up the MD files in this regard instead of this
1632 kludge. */
1633
1634 static rtx
1635 sign_extend_short_imm (rtx src, machine_mode mode, unsigned int prec)
1636 {
1637 if (GET_MODE_PRECISION (mode) < prec
1638 && CONST_INT_P (src)
1639 && INTVAL (src) > 0
1640 && val_signbit_known_set_p (mode, INTVAL (src)))
1641 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (mode));
1642
1643 return src;
1644 }
1645
1646 /* Update RSP for pseudo-register X from INSN's REG_EQUAL note (if one exists)
1647 and SET. */
1648
1649 static void
1650 update_rsp_from_reg_equal (reg_stat_type *rsp, rtx_insn *insn, const_rtx set,
1651 rtx x)
1652 {
1653 rtx reg_equal_note = insn ? find_reg_equal_equiv_note (insn) : NULL_RTX;
1654 unsigned HOST_WIDE_INT bits = 0;
1655 rtx reg_equal = NULL, src = SET_SRC (set);
1656 unsigned int num = 0;
1657
1658 if (reg_equal_note)
1659 reg_equal = XEXP (reg_equal_note, 0);
1660
1661 if (SHORT_IMMEDIATES_SIGN_EXTEND)
1662 {
1663 src = sign_extend_short_imm (src, GET_MODE (x), BITS_PER_WORD);
1664 if (reg_equal)
1665 reg_equal = sign_extend_short_imm (reg_equal, GET_MODE (x), BITS_PER_WORD);
1666 }
1667
1668 /* Don't call nonzero_bits if it cannot change anything. */
1669 if (rsp->nonzero_bits != HOST_WIDE_INT_M1U)
1670 {
1671 bits = nonzero_bits (src, nonzero_bits_mode);
1672 if (reg_equal && bits)
1673 bits &= nonzero_bits (reg_equal, nonzero_bits_mode);
1674 rsp->nonzero_bits |= bits;
1675 }
1676
1677 /* Don't call num_sign_bit_copies if it cannot change anything. */
1678 if (rsp->sign_bit_copies != 1)
1679 {
1680 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1681 if (reg_equal && num != GET_MODE_PRECISION (GET_MODE (x)))
1682 {
1683 unsigned int numeq = num_sign_bit_copies (reg_equal, GET_MODE (x));
1684 if (num == 0 || numeq > num)
1685 num = numeq;
1686 }
1687 if (rsp->sign_bit_copies == 0 || num < rsp->sign_bit_copies)
1688 rsp->sign_bit_copies = num;
1689 }
1690 }
1691
1692 /* Called via note_stores. If X is a pseudo that is narrower than
1693 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1694
1695 If we are setting only a portion of X and we can't figure out what
1696 portion, assume all bits will be used since we don't know what will
1697 be happening.
1698
1699 Similarly, set how many bits of X are known to be copies of the sign bit
1700 at all locations in the function. This is the smallest number implied
1701 by any set of X. */
1702
1703 static void
1704 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1705 {
1706 rtx_insn *insn = (rtx_insn *) data;
1707
1708 if (REG_P (x)
1709 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1710 /* If this register is undefined at the start of the file, we can't
1711 say what its contents were. */
1712 && ! REGNO_REG_SET_P
1713 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), REGNO (x))
1714 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
1715 {
1716 reg_stat_type *rsp = &reg_stat[REGNO (x)];
1717
1718 if (set == 0 || GET_CODE (set) == CLOBBER)
1719 {
1720 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1721 rsp->sign_bit_copies = 1;
1722 return;
1723 }
1724
1725 /* If this register is being initialized using itself, and the
1726 register is uninitialized in this basic block, and there are
1727 no LOG_LINKS which set the register, then part of the
1728 register is uninitialized. In that case we can't assume
1729 anything about the number of nonzero bits.
1730
1731 ??? We could do better if we checked this in
1732 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1733 could avoid making assumptions about the insn which initially
1734 sets the register, while still using the information in other
1735 insns. We would have to be careful to check every insn
1736 involved in the combination. */
1737
1738 if (insn
1739 && reg_referenced_p (x, PATTERN (insn))
1740 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1741 REGNO (x)))
1742 {
1743 struct insn_link *link;
1744
1745 FOR_EACH_LOG_LINK (link, insn)
1746 if (dead_or_set_p (link->insn, x))
1747 break;
1748 if (!link)
1749 {
1750 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1751 rsp->sign_bit_copies = 1;
1752 return;
1753 }
1754 }
1755
1756 /* If this is a complex assignment, see if we can convert it into a
1757 simple assignment. */
1758 set = expand_field_assignment (set);
1759
1760 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1761 set what we know about X. */
1762
1763 if (SET_DEST (set) == x
1764 || (paradoxical_subreg_p (SET_DEST (set))
1765 && SUBREG_REG (SET_DEST (set)) == x))
1766 update_rsp_from_reg_equal (rsp, insn, set, x);
1767 else
1768 {
1769 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1770 rsp->sign_bit_copies = 1;
1771 }
1772 }
1773 }
1774 \f
1775 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1776 optionally insns that were previously combined into I3 or that will be
1777 combined into the merger of INSN and I3. The order is PRED, PRED2,
1778 INSN, SUCC, SUCC2, I3.
1779
1780 Return 0 if the combination is not allowed for any reason.
1781
1782 If the combination is allowed, *PDEST will be set to the single
1783 destination of INSN and *PSRC to the single source, and this function
1784 will return 1. */
1785
1786 static int
1787 can_combine_p (rtx_insn *insn, rtx_insn *i3, rtx_insn *pred ATTRIBUTE_UNUSED,
1788 rtx_insn *pred2 ATTRIBUTE_UNUSED, rtx_insn *succ, rtx_insn *succ2,
1789 rtx *pdest, rtx *psrc)
1790 {
1791 int i;
1792 const_rtx set = 0;
1793 rtx src, dest;
1794 rtx_insn *p;
1795 rtx link;
1796 bool all_adjacent = true;
1797 int (*is_volatile_p) (const_rtx);
1798
1799 if (succ)
1800 {
1801 if (succ2)
1802 {
1803 if (next_active_insn (succ2) != i3)
1804 all_adjacent = false;
1805 if (next_active_insn (succ) != succ2)
1806 all_adjacent = false;
1807 }
1808 else if (next_active_insn (succ) != i3)
1809 all_adjacent = false;
1810 if (next_active_insn (insn) != succ)
1811 all_adjacent = false;
1812 }
1813 else if (next_active_insn (insn) != i3)
1814 all_adjacent = false;
1815
1816 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1817 or a PARALLEL consisting of such a SET and CLOBBERs.
1818
1819 If INSN has CLOBBER parallel parts, ignore them for our processing.
1820 By definition, these happen during the execution of the insn. When it
1821 is merged with another insn, all bets are off. If they are, in fact,
1822 needed and aren't also supplied in I3, they may be added by
1823 recog_for_combine. Otherwise, it won't match.
1824
1825 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1826 note.
1827
1828 Get the source and destination of INSN. If more than one, can't
1829 combine. */
1830
1831 if (GET_CODE (PATTERN (insn)) == SET)
1832 set = PATTERN (insn);
1833 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1834 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1835 {
1836 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1837 {
1838 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1839
1840 switch (GET_CODE (elt))
1841 {
1842 /* This is important to combine floating point insns
1843 for the SH4 port. */
1844 case USE:
1845 /* Combining an isolated USE doesn't make sense.
1846 We depend here on combinable_i3pat to reject them. */
1847 /* The code below this loop only verifies that the inputs of
1848 the SET in INSN do not change. We call reg_set_between_p
1849 to verify that the REG in the USE does not change between
1850 I3 and INSN.
1851 If the USE in INSN was for a pseudo register, the matching
1852 insn pattern will likely match any register; combining this
1853 with any other USE would only be safe if we knew that the
1854 used registers have identical values, or if there was
1855 something to tell them apart, e.g. different modes. For
1856 now, we forgo such complicated tests and simply disallow
1857 combining of USES of pseudo registers with any other USE. */
1858 if (REG_P (XEXP (elt, 0))
1859 && GET_CODE (PATTERN (i3)) == PARALLEL)
1860 {
1861 rtx i3pat = PATTERN (i3);
1862 int i = XVECLEN (i3pat, 0) - 1;
1863 unsigned int regno = REGNO (XEXP (elt, 0));
1864
1865 do
1866 {
1867 rtx i3elt = XVECEXP (i3pat, 0, i);
1868
1869 if (GET_CODE (i3elt) == USE
1870 && REG_P (XEXP (i3elt, 0))
1871 && (REGNO (XEXP (i3elt, 0)) == regno
1872 ? reg_set_between_p (XEXP (elt, 0),
1873 PREV_INSN (insn), i3)
1874 : regno >= FIRST_PSEUDO_REGISTER))
1875 return 0;
1876 }
1877 while (--i >= 0);
1878 }
1879 break;
1880
1881 /* We can ignore CLOBBERs. */
1882 case CLOBBER:
1883 break;
1884
1885 case SET:
1886 /* Ignore SETs whose result isn't used but not those that
1887 have side-effects. */
1888 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1889 && insn_nothrow_p (insn)
1890 && !side_effects_p (elt))
1891 break;
1892
1893 /* If we have already found a SET, this is a second one and
1894 so we cannot combine with this insn. */
1895 if (set)
1896 return 0;
1897
1898 set = elt;
1899 break;
1900
1901 default:
1902 /* Anything else means we can't combine. */
1903 return 0;
1904 }
1905 }
1906
1907 if (set == 0
1908 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1909 so don't do anything with it. */
1910 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1911 return 0;
1912 }
1913 else
1914 return 0;
1915
1916 if (set == 0)
1917 return 0;
1918
1919 /* The simplification in expand_field_assignment may call back to
1920 get_last_value, so set safe guard here. */
1921 subst_low_luid = DF_INSN_LUID (insn);
1922
1923 set = expand_field_assignment (set);
1924 src = SET_SRC (set), dest = SET_DEST (set);
1925
1926 /* Do not eliminate user-specified register if it is in an
1927 asm input because we may break the register asm usage defined
1928 in GCC manual if allow to do so.
1929 Be aware that this may cover more cases than we expect but this
1930 should be harmless. */
1931 if (REG_P (dest) && REG_USERVAR_P (dest) && HARD_REGISTER_P (dest)
1932 && extract_asm_operands (PATTERN (i3)))
1933 return 0;
1934
1935 /* Don't eliminate a store in the stack pointer. */
1936 if (dest == stack_pointer_rtx
1937 /* Don't combine with an insn that sets a register to itself if it has
1938 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1939 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1940 /* Can't merge an ASM_OPERANDS. */
1941 || GET_CODE (src) == ASM_OPERANDS
1942 /* Can't merge a function call. */
1943 || GET_CODE (src) == CALL
1944 /* Don't eliminate a function call argument. */
1945 || (CALL_P (i3)
1946 && (find_reg_fusage (i3, USE, dest)
1947 || (REG_P (dest)
1948 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1949 && global_regs[REGNO (dest)])))
1950 /* Don't substitute into an incremented register. */
1951 || FIND_REG_INC_NOTE (i3, dest)
1952 || (succ && FIND_REG_INC_NOTE (succ, dest))
1953 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1954 /* Don't substitute into a non-local goto, this confuses CFG. */
1955 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1956 /* Make sure that DEST is not used after INSN but before SUCC, or
1957 after SUCC and before SUCC2, or after SUCC2 but before I3. */
1958 || (!all_adjacent
1959 && ((succ2
1960 && (reg_used_between_p (dest, succ2, i3)
1961 || reg_used_between_p (dest, succ, succ2)))
1962 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))
1963 || (succ
1964 /* SUCC and SUCC2 can be split halves from a PARALLEL; in
1965 that case SUCC is not in the insn stream, so use SUCC2
1966 instead for this test. */
1967 && reg_used_between_p (dest, insn,
1968 succ2
1969 && INSN_UID (succ) == INSN_UID (succ2)
1970 ? succ2 : succ))))
1971 /* Make sure that the value that is to be substituted for the register
1972 does not use any registers whose values alter in between. However,
1973 If the insns are adjacent, a use can't cross a set even though we
1974 think it might (this can happen for a sequence of insns each setting
1975 the same destination; last_set of that register might point to
1976 a NOTE). If INSN has a REG_EQUIV note, the register is always
1977 equivalent to the memory so the substitution is valid even if there
1978 are intervening stores. Also, don't move a volatile asm or
1979 UNSPEC_VOLATILE across any other insns. */
1980 || (! all_adjacent
1981 && (((!MEM_P (src)
1982 || ! find_reg_note (insn, REG_EQUIV, src))
1983 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1984 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1985 || GET_CODE (src) == UNSPEC_VOLATILE))
1986 /* Don't combine across a CALL_INSN, because that would possibly
1987 change whether the life span of some REGs crosses calls or not,
1988 and it is a pain to update that information.
1989 Exception: if source is a constant, moving it later can't hurt.
1990 Accept that as a special case. */
1991 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1992 return 0;
1993
1994 /* DEST must either be a REG or CC0. */
1995 if (REG_P (dest))
1996 {
1997 /* If register alignment is being enforced for multi-word items in all
1998 cases except for parameters, it is possible to have a register copy
1999 insn referencing a hard register that is not allowed to contain the
2000 mode being copied and which would not be valid as an operand of most
2001 insns. Eliminate this problem by not combining with such an insn.
2002
2003 Also, on some machines we don't want to extend the life of a hard
2004 register. */
2005
2006 if (REG_P (src)
2007 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
2008 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
2009 /* Don't extend the life of a hard register unless it is
2010 user variable (if we have few registers) or it can't
2011 fit into the desired register (meaning something special
2012 is going on).
2013 Also avoid substituting a return register into I3, because
2014 reload can't handle a conflict with constraints of other
2015 inputs. */
2016 || (REGNO (src) < FIRST_PSEUDO_REGISTER
2017 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
2018 return 0;
2019 }
2020 else if (GET_CODE (dest) != CC0)
2021 return 0;
2022
2023
2024 if (GET_CODE (PATTERN (i3)) == PARALLEL)
2025 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
2026 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
2027 {
2028 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
2029
2030 /* If the clobber represents an earlyclobber operand, we must not
2031 substitute an expression containing the clobbered register.
2032 As we do not analyze the constraint strings here, we have to
2033 make the conservative assumption. However, if the register is
2034 a fixed hard reg, the clobber cannot represent any operand;
2035 we leave it up to the machine description to either accept or
2036 reject use-and-clobber patterns. */
2037 if (!REG_P (reg)
2038 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
2039 || !fixed_regs[REGNO (reg)])
2040 if (reg_overlap_mentioned_p (reg, src))
2041 return 0;
2042 }
2043
2044 /* If INSN contains anything volatile, or is an `asm' (whether volatile
2045 or not), reject, unless nothing volatile comes between it and I3 */
2046
2047 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
2048 {
2049 /* Make sure neither succ nor succ2 contains a volatile reference. */
2050 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
2051 return 0;
2052 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
2053 return 0;
2054 /* We'll check insns between INSN and I3 below. */
2055 }
2056
2057 /* If INSN is an asm, and DEST is a hard register, reject, since it has
2058 to be an explicit register variable, and was chosen for a reason. */
2059
2060 if (GET_CODE (src) == ASM_OPERANDS
2061 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
2062 return 0;
2063
2064 /* If INSN contains volatile references (specifically volatile MEMs),
2065 we cannot combine across any other volatile references.
2066 Even if INSN doesn't contain volatile references, any intervening
2067 volatile insn might affect machine state. */
2068
2069 is_volatile_p = volatile_refs_p (PATTERN (insn))
2070 ? volatile_refs_p
2071 : volatile_insn_p;
2072
2073 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
2074 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
2075 return 0;
2076
2077 /* If INSN contains an autoincrement or autodecrement, make sure that
2078 register is not used between there and I3, and not already used in
2079 I3 either. Neither must it be used in PRED or SUCC, if they exist.
2080 Also insist that I3 not be a jump; if it were one
2081 and the incremented register were spilled, we would lose. */
2082
2083 if (AUTO_INC_DEC)
2084 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2085 if (REG_NOTE_KIND (link) == REG_INC
2086 && (JUMP_P (i3)
2087 || reg_used_between_p (XEXP (link, 0), insn, i3)
2088 || (pred != NULL_RTX
2089 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
2090 || (pred2 != NULL_RTX
2091 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
2092 || (succ != NULL_RTX
2093 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
2094 || (succ2 != NULL_RTX
2095 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
2096 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
2097 return 0;
2098
2099 /* Don't combine an insn that follows a CC0-setting insn.
2100 An insn that uses CC0 must not be separated from the one that sets it.
2101 We do, however, allow I2 to follow a CC0-setting insn if that insn
2102 is passed as I1; in that case it will be deleted also.
2103 We also allow combining in this case if all the insns are adjacent
2104 because that would leave the two CC0 insns adjacent as well.
2105 It would be more logical to test whether CC0 occurs inside I1 or I2,
2106 but that would be much slower, and this ought to be equivalent. */
2107
2108 if (HAVE_cc0)
2109 {
2110 p = prev_nonnote_insn (insn);
2111 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2112 && ! all_adjacent)
2113 return 0;
2114 }
2115
2116 /* If we get here, we have passed all the tests and the combination is
2117 to be allowed. */
2118
2119 *pdest = dest;
2120 *psrc = src;
2121
2122 return 1;
2123 }
2124 \f
2125 /* LOC is the location within I3 that contains its pattern or the component
2126 of a PARALLEL of the pattern. We validate that it is valid for combining.
2127
2128 One problem is if I3 modifies its output, as opposed to replacing it
2129 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2130 doing so would produce an insn that is not equivalent to the original insns.
2131
2132 Consider:
2133
2134 (set (reg:DI 101) (reg:DI 100))
2135 (set (subreg:SI (reg:DI 101) 0) <foo>)
2136
2137 This is NOT equivalent to:
2138
2139 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2140 (set (reg:DI 101) (reg:DI 100))])
2141
2142 Not only does this modify 100 (in which case it might still be valid
2143 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2144
2145 We can also run into a problem if I2 sets a register that I1
2146 uses and I1 gets directly substituted into I3 (not via I2). In that
2147 case, we would be getting the wrong value of I2DEST into I3, so we
2148 must reject the combination. This case occurs when I2 and I1 both
2149 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2150 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2151 of a SET must prevent combination from occurring. The same situation
2152 can occur for I0, in which case I0_NOT_IN_SRC is set.
2153
2154 Before doing the above check, we first try to expand a field assignment
2155 into a set of logical operations.
2156
2157 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2158 we place a register that is both set and used within I3. If more than one
2159 such register is detected, we fail.
2160
2161 Return 1 if the combination is valid, zero otherwise. */
2162
2163 static int
2164 combinable_i3pat (rtx_insn *i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2165 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2166 {
2167 rtx x = *loc;
2168
2169 if (GET_CODE (x) == SET)
2170 {
2171 rtx set = x ;
2172 rtx dest = SET_DEST (set);
2173 rtx src = SET_SRC (set);
2174 rtx inner_dest = dest;
2175 rtx subdest;
2176
2177 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2178 || GET_CODE (inner_dest) == SUBREG
2179 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2180 inner_dest = XEXP (inner_dest, 0);
2181
2182 /* Check for the case where I3 modifies its output, as discussed
2183 above. We don't want to prevent pseudos from being combined
2184 into the address of a MEM, so only prevent the combination if
2185 i1 or i2 set the same MEM. */
2186 if ((inner_dest != dest &&
2187 (!MEM_P (inner_dest)
2188 || rtx_equal_p (i2dest, inner_dest)
2189 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2190 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2191 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2192 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2193 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2194
2195 /* This is the same test done in can_combine_p except we can't test
2196 all_adjacent; we don't have to, since this instruction will stay
2197 in place, thus we are not considering increasing the lifetime of
2198 INNER_DEST.
2199
2200 Also, if this insn sets a function argument, combining it with
2201 something that might need a spill could clobber a previous
2202 function argument; the all_adjacent test in can_combine_p also
2203 checks this; here, we do a more specific test for this case. */
2204
2205 || (REG_P (inner_dest)
2206 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2207 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
2208 GET_MODE (inner_dest))))
2209 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2210 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2211 return 0;
2212
2213 /* If DEST is used in I3, it is being killed in this insn, so
2214 record that for later. We have to consider paradoxical
2215 subregs here, since they kill the whole register, but we
2216 ignore partial subregs, STRICT_LOW_PART, etc.
2217 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2218 STACK_POINTER_REGNUM, since these are always considered to be
2219 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2220 subdest = dest;
2221 if (GET_CODE (subdest) == SUBREG
2222 && (GET_MODE_SIZE (GET_MODE (subdest))
2223 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
2224 subdest = SUBREG_REG (subdest);
2225 if (pi3dest_killed
2226 && REG_P (subdest)
2227 && reg_referenced_p (subdest, PATTERN (i3))
2228 && REGNO (subdest) != FRAME_POINTER_REGNUM
2229 && (HARD_FRAME_POINTER_IS_FRAME_POINTER
2230 || REGNO (subdest) != HARD_FRAME_POINTER_REGNUM)
2231 && (FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
2232 || (REGNO (subdest) != ARG_POINTER_REGNUM
2233 || ! fixed_regs [REGNO (subdest)]))
2234 && REGNO (subdest) != STACK_POINTER_REGNUM)
2235 {
2236 if (*pi3dest_killed)
2237 return 0;
2238
2239 *pi3dest_killed = subdest;
2240 }
2241 }
2242
2243 else if (GET_CODE (x) == PARALLEL)
2244 {
2245 int i;
2246
2247 for (i = 0; i < XVECLEN (x, 0); i++)
2248 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2249 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2250 return 0;
2251 }
2252
2253 return 1;
2254 }
2255 \f
2256 /* Return 1 if X is an arithmetic expression that contains a multiplication
2257 and division. We don't count multiplications by powers of two here. */
2258
2259 static int
2260 contains_muldiv (rtx x)
2261 {
2262 switch (GET_CODE (x))
2263 {
2264 case MOD: case DIV: case UMOD: case UDIV:
2265 return 1;
2266
2267 case MULT:
2268 return ! (CONST_INT_P (XEXP (x, 1))
2269 && pow2p_hwi (UINTVAL (XEXP (x, 1))));
2270 default:
2271 if (BINARY_P (x))
2272 return contains_muldiv (XEXP (x, 0))
2273 || contains_muldiv (XEXP (x, 1));
2274
2275 if (UNARY_P (x))
2276 return contains_muldiv (XEXP (x, 0));
2277
2278 return 0;
2279 }
2280 }
2281 \f
2282 /* Determine whether INSN can be used in a combination. Return nonzero if
2283 not. This is used in try_combine to detect early some cases where we
2284 can't perform combinations. */
2285
2286 static int
2287 cant_combine_insn_p (rtx_insn *insn)
2288 {
2289 rtx set;
2290 rtx src, dest;
2291
2292 /* If this isn't really an insn, we can't do anything.
2293 This can occur when flow deletes an insn that it has merged into an
2294 auto-increment address. */
2295 if (!NONDEBUG_INSN_P (insn))
2296 return 1;
2297
2298 /* Never combine loads and stores involving hard regs that are likely
2299 to be spilled. The register allocator can usually handle such
2300 reg-reg moves by tying. If we allow the combiner to make
2301 substitutions of likely-spilled regs, reload might die.
2302 As an exception, we allow combinations involving fixed regs; these are
2303 not available to the register allocator so there's no risk involved. */
2304
2305 set = single_set (insn);
2306 if (! set)
2307 return 0;
2308 src = SET_SRC (set);
2309 dest = SET_DEST (set);
2310 if (GET_CODE (src) == SUBREG)
2311 src = SUBREG_REG (src);
2312 if (GET_CODE (dest) == SUBREG)
2313 dest = SUBREG_REG (dest);
2314 if (REG_P (src) && REG_P (dest)
2315 && ((HARD_REGISTER_P (src)
2316 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2317 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src))))
2318 || (HARD_REGISTER_P (dest)
2319 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2320 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2321 return 1;
2322
2323 return 0;
2324 }
2325
2326 struct likely_spilled_retval_info
2327 {
2328 unsigned regno, nregs;
2329 unsigned mask;
2330 };
2331
2332 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2333 hard registers that are known to be written to / clobbered in full. */
2334 static void
2335 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2336 {
2337 struct likely_spilled_retval_info *const info =
2338 (struct likely_spilled_retval_info *) data;
2339 unsigned regno, nregs;
2340 unsigned new_mask;
2341
2342 if (!REG_P (XEXP (set, 0)))
2343 return;
2344 regno = REGNO (x);
2345 if (regno >= info->regno + info->nregs)
2346 return;
2347 nregs = REG_NREGS (x);
2348 if (regno + nregs <= info->regno)
2349 return;
2350 new_mask = (2U << (nregs - 1)) - 1;
2351 if (regno < info->regno)
2352 new_mask >>= info->regno - regno;
2353 else
2354 new_mask <<= regno - info->regno;
2355 info->mask &= ~new_mask;
2356 }
2357
2358 /* Return nonzero iff part of the return value is live during INSN, and
2359 it is likely spilled. This can happen when more than one insn is needed
2360 to copy the return value, e.g. when we consider to combine into the
2361 second copy insn for a complex value. */
2362
2363 static int
2364 likely_spilled_retval_p (rtx_insn *insn)
2365 {
2366 rtx_insn *use = BB_END (this_basic_block);
2367 rtx reg;
2368 rtx_insn *p;
2369 unsigned regno, nregs;
2370 /* We assume here that no machine mode needs more than
2371 32 hard registers when the value overlaps with a register
2372 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2373 unsigned mask;
2374 struct likely_spilled_retval_info info;
2375
2376 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2377 return 0;
2378 reg = XEXP (PATTERN (use), 0);
2379 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2380 return 0;
2381 regno = REGNO (reg);
2382 nregs = REG_NREGS (reg);
2383 if (nregs == 1)
2384 return 0;
2385 mask = (2U << (nregs - 1)) - 1;
2386
2387 /* Disregard parts of the return value that are set later. */
2388 info.regno = regno;
2389 info.nregs = nregs;
2390 info.mask = mask;
2391 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2392 if (INSN_P (p))
2393 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2394 mask = info.mask;
2395
2396 /* Check if any of the (probably) live return value registers is
2397 likely spilled. */
2398 nregs --;
2399 do
2400 {
2401 if ((mask & 1 << nregs)
2402 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2403 return 1;
2404 } while (nregs--);
2405 return 0;
2406 }
2407
2408 /* Adjust INSN after we made a change to its destination.
2409
2410 Changing the destination can invalidate notes that say something about
2411 the results of the insn and a LOG_LINK pointing to the insn. */
2412
2413 static void
2414 adjust_for_new_dest (rtx_insn *insn)
2415 {
2416 /* For notes, be conservative and simply remove them. */
2417 remove_reg_equal_equiv_notes (insn);
2418
2419 /* The new insn will have a destination that was previously the destination
2420 of an insn just above it. Call distribute_links to make a LOG_LINK from
2421 the next use of that destination. */
2422
2423 rtx set = single_set (insn);
2424 gcc_assert (set);
2425
2426 rtx reg = SET_DEST (set);
2427
2428 while (GET_CODE (reg) == ZERO_EXTRACT
2429 || GET_CODE (reg) == STRICT_LOW_PART
2430 || GET_CODE (reg) == SUBREG)
2431 reg = XEXP (reg, 0);
2432 gcc_assert (REG_P (reg));
2433
2434 distribute_links (alloc_insn_link (insn, REGNO (reg), NULL));
2435
2436 df_insn_rescan (insn);
2437 }
2438
2439 /* Return TRUE if combine can reuse reg X in mode MODE.
2440 ADDED_SETS is nonzero if the original set is still required. */
2441 static bool
2442 can_change_dest_mode (rtx x, int added_sets, machine_mode mode)
2443 {
2444 unsigned int regno;
2445
2446 if (!REG_P (x))
2447 return false;
2448
2449 regno = REGNO (x);
2450 /* Allow hard registers if the new mode is legal, and occupies no more
2451 registers than the old mode. */
2452 if (regno < FIRST_PSEUDO_REGISTER)
2453 return (HARD_REGNO_MODE_OK (regno, mode)
2454 && REG_NREGS (x) >= hard_regno_nregs[regno][mode]);
2455
2456 /* Or a pseudo that is only used once. */
2457 return (regno < reg_n_sets_max
2458 && REG_N_SETS (regno) == 1
2459 && !added_sets
2460 && !REG_USERVAR_P (x));
2461 }
2462
2463
2464 /* Check whether X, the destination of a set, refers to part of
2465 the register specified by REG. */
2466
2467 static bool
2468 reg_subword_p (rtx x, rtx reg)
2469 {
2470 /* Check that reg is an integer mode register. */
2471 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2472 return false;
2473
2474 if (GET_CODE (x) == STRICT_LOW_PART
2475 || GET_CODE (x) == ZERO_EXTRACT)
2476 x = XEXP (x, 0);
2477
2478 return GET_CODE (x) == SUBREG
2479 && SUBREG_REG (x) == reg
2480 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2481 }
2482
2483 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2484 Note that the INSN should be deleted *after* removing dead edges, so
2485 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2486 but not for a (set (pc) (label_ref FOO)). */
2487
2488 static void
2489 update_cfg_for_uncondjump (rtx_insn *insn)
2490 {
2491 basic_block bb = BLOCK_FOR_INSN (insn);
2492 gcc_assert (BB_END (bb) == insn);
2493
2494 purge_dead_edges (bb);
2495
2496 delete_insn (insn);
2497 if (EDGE_COUNT (bb->succs) == 1)
2498 {
2499 rtx_insn *insn;
2500
2501 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2502
2503 /* Remove barriers from the footer if there are any. */
2504 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2505 if (BARRIER_P (insn))
2506 {
2507 if (PREV_INSN (insn))
2508 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2509 else
2510 BB_FOOTER (bb) = NEXT_INSN (insn);
2511 if (NEXT_INSN (insn))
2512 SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2513 }
2514 else if (LABEL_P (insn))
2515 break;
2516 }
2517 }
2518
2519 /* Return whether PAT is a PARALLEL of exactly N register SETs followed
2520 by an arbitrary number of CLOBBERs. */
2521 static bool
2522 is_parallel_of_n_reg_sets (rtx pat, int n)
2523 {
2524 if (GET_CODE (pat) != PARALLEL)
2525 return false;
2526
2527 int len = XVECLEN (pat, 0);
2528 if (len < n)
2529 return false;
2530
2531 int i;
2532 for (i = 0; i < n; i++)
2533 if (GET_CODE (XVECEXP (pat, 0, i)) != SET
2534 || !REG_P (SET_DEST (XVECEXP (pat, 0, i))))
2535 return false;
2536 for ( ; i < len; i++)
2537 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER
2538 || XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
2539 return false;
2540
2541 return true;
2542 }
2543
2544 /* Return whether INSN, a PARALLEL of N register SETs (and maybe some
2545 CLOBBERs), can be split into individual SETs in that order, without
2546 changing semantics. */
2547 static bool
2548 can_split_parallel_of_n_reg_sets (rtx_insn *insn, int n)
2549 {
2550 if (!insn_nothrow_p (insn))
2551 return false;
2552
2553 rtx pat = PATTERN (insn);
2554
2555 int i, j;
2556 for (i = 0; i < n; i++)
2557 {
2558 if (side_effects_p (SET_SRC (XVECEXP (pat, 0, i))))
2559 return false;
2560
2561 rtx reg = SET_DEST (XVECEXP (pat, 0, i));
2562
2563 for (j = i + 1; j < n; j++)
2564 if (reg_referenced_p (reg, XVECEXP (pat, 0, j)))
2565 return false;
2566 }
2567
2568 return true;
2569 }
2570
2571 /* Try to combine the insns I0, I1 and I2 into I3.
2572 Here I0, I1 and I2 appear earlier than I3.
2573 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2574 I3.
2575
2576 If we are combining more than two insns and the resulting insn is not
2577 recognized, try splitting it into two insns. If that happens, I2 and I3
2578 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2579 Otherwise, I0, I1 and I2 are pseudo-deleted.
2580
2581 Return 0 if the combination does not work. Then nothing is changed.
2582 If we did the combination, return the insn at which combine should
2583 resume scanning.
2584
2585 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2586 new direct jump instruction.
2587
2588 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2589 been I3 passed to an earlier try_combine within the same basic
2590 block. */
2591
2592 static rtx_insn *
2593 try_combine (rtx_insn *i3, rtx_insn *i2, rtx_insn *i1, rtx_insn *i0,
2594 int *new_direct_jump_p, rtx_insn *last_combined_insn)
2595 {
2596 /* New patterns for I3 and I2, respectively. */
2597 rtx newpat, newi2pat = 0;
2598 rtvec newpat_vec_with_clobbers = 0;
2599 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2600 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2601 dead. */
2602 int added_sets_0, added_sets_1, added_sets_2;
2603 /* Total number of SETs to put into I3. */
2604 int total_sets;
2605 /* Nonzero if I2's or I1's body now appears in I3. */
2606 int i2_is_used = 0, i1_is_used = 0;
2607 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2608 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2609 /* Contains I3 if the destination of I3 is used in its source, which means
2610 that the old life of I3 is being killed. If that usage is placed into
2611 I2 and not in I3, a REG_DEAD note must be made. */
2612 rtx i3dest_killed = 0;
2613 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2614 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2615 /* Copy of SET_SRC of I1 and I0, if needed. */
2616 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2617 /* Set if I2DEST was reused as a scratch register. */
2618 bool i2scratch = false;
2619 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2620 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2621 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2622 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2623 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2624 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2625 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2626 /* Notes that must be added to REG_NOTES in I3 and I2. */
2627 rtx new_i3_notes, new_i2_notes;
2628 /* Notes that we substituted I3 into I2 instead of the normal case. */
2629 int i3_subst_into_i2 = 0;
2630 /* Notes that I1, I2 or I3 is a MULT operation. */
2631 int have_mult = 0;
2632 int swap_i2i3 = 0;
2633 int changed_i3_dest = 0;
2634
2635 int maxreg;
2636 rtx_insn *temp_insn;
2637 rtx temp_expr;
2638 struct insn_link *link;
2639 rtx other_pat = 0;
2640 rtx new_other_notes;
2641 int i;
2642
2643 /* Immediately return if any of I0,I1,I2 are the same insn (I3 can
2644 never be). */
2645 if (i1 == i2 || i0 == i2 || (i0 && i0 == i1))
2646 return 0;
2647
2648 /* Only try four-insn combinations when there's high likelihood of
2649 success. Look for simple insns, such as loads of constants or
2650 binary operations involving a constant. */
2651 if (i0)
2652 {
2653 int i;
2654 int ngood = 0;
2655 int nshift = 0;
2656 rtx set0, set3;
2657
2658 if (!flag_expensive_optimizations)
2659 return 0;
2660
2661 for (i = 0; i < 4; i++)
2662 {
2663 rtx_insn *insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2664 rtx set = single_set (insn);
2665 rtx src;
2666 if (!set)
2667 continue;
2668 src = SET_SRC (set);
2669 if (CONSTANT_P (src))
2670 {
2671 ngood += 2;
2672 break;
2673 }
2674 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2675 ngood++;
2676 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2677 || GET_CODE (src) == LSHIFTRT)
2678 nshift++;
2679 }
2680
2681 /* If I0 loads a memory and I3 sets the same memory, then I1 and I2
2682 are likely manipulating its value. Ideally we'll be able to combine
2683 all four insns into a bitfield insertion of some kind.
2684
2685 Note the source in I0 might be inside a sign/zero extension and the
2686 memory modes in I0 and I3 might be different. So extract the address
2687 from the destination of I3 and search for it in the source of I0.
2688
2689 In the event that there's a match but the source/dest do not actually
2690 refer to the same memory, the worst that happens is we try some
2691 combinations that we wouldn't have otherwise. */
2692 if ((set0 = single_set (i0))
2693 /* Ensure the source of SET0 is a MEM, possibly buried inside
2694 an extension. */
2695 && (GET_CODE (SET_SRC (set0)) == MEM
2696 || ((GET_CODE (SET_SRC (set0)) == ZERO_EXTEND
2697 || GET_CODE (SET_SRC (set0)) == SIGN_EXTEND)
2698 && GET_CODE (XEXP (SET_SRC (set0), 0)) == MEM))
2699 && (set3 = single_set (i3))
2700 /* Ensure the destination of SET3 is a MEM. */
2701 && GET_CODE (SET_DEST (set3)) == MEM
2702 /* Would it be better to extract the base address for the MEM
2703 in SET3 and look for that? I don't have cases where it matters
2704 but I could envision such cases. */
2705 && rtx_referenced_p (XEXP (SET_DEST (set3), 0), SET_SRC (set0)))
2706 ngood += 2;
2707
2708 if (ngood < 2 && nshift < 2)
2709 return 0;
2710 }
2711
2712 /* Exit early if one of the insns involved can't be used for
2713 combinations. */
2714 if (CALL_P (i2)
2715 || (i1 && CALL_P (i1))
2716 || (i0 && CALL_P (i0))
2717 || cant_combine_insn_p (i3)
2718 || cant_combine_insn_p (i2)
2719 || (i1 && cant_combine_insn_p (i1))
2720 || (i0 && cant_combine_insn_p (i0))
2721 || likely_spilled_retval_p (i3))
2722 return 0;
2723
2724 combine_attempts++;
2725 undobuf.other_insn = 0;
2726
2727 /* Reset the hard register usage information. */
2728 CLEAR_HARD_REG_SET (newpat_used_regs);
2729
2730 if (dump_file && (dump_flags & TDF_DETAILS))
2731 {
2732 if (i0)
2733 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2734 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2735 else if (i1)
2736 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2737 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2738 else
2739 fprintf (dump_file, "\nTrying %d -> %d:\n",
2740 INSN_UID (i2), INSN_UID (i3));
2741 }
2742
2743 /* If multiple insns feed into one of I2 or I3, they can be in any
2744 order. To simplify the code below, reorder them in sequence. */
2745 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2746 std::swap (i0, i2);
2747 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2748 std::swap (i0, i1);
2749 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2750 std::swap (i1, i2);
2751
2752 added_links_insn = 0;
2753
2754 /* First check for one important special case that the code below will
2755 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2756 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2757 we may be able to replace that destination with the destination of I3.
2758 This occurs in the common code where we compute both a quotient and
2759 remainder into a structure, in which case we want to do the computation
2760 directly into the structure to avoid register-register copies.
2761
2762 Note that this case handles both multiple sets in I2 and also cases
2763 where I2 has a number of CLOBBERs inside the PARALLEL.
2764
2765 We make very conservative checks below and only try to handle the
2766 most common cases of this. For example, we only handle the case
2767 where I2 and I3 are adjacent to avoid making difficult register
2768 usage tests. */
2769
2770 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2771 && REG_P (SET_SRC (PATTERN (i3)))
2772 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2773 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2774 && GET_CODE (PATTERN (i2)) == PARALLEL
2775 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2776 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2777 below would need to check what is inside (and reg_overlap_mentioned_p
2778 doesn't support those codes anyway). Don't allow those destinations;
2779 the resulting insn isn't likely to be recognized anyway. */
2780 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2781 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2782 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2783 SET_DEST (PATTERN (i3)))
2784 && next_active_insn (i2) == i3)
2785 {
2786 rtx p2 = PATTERN (i2);
2787
2788 /* Make sure that the destination of I3,
2789 which we are going to substitute into one output of I2,
2790 is not used within another output of I2. We must avoid making this:
2791 (parallel [(set (mem (reg 69)) ...)
2792 (set (reg 69) ...)])
2793 which is not well-defined as to order of actions.
2794 (Besides, reload can't handle output reloads for this.)
2795
2796 The problem can also happen if the dest of I3 is a memory ref,
2797 if another dest in I2 is an indirect memory ref.
2798
2799 Neither can this PARALLEL be an asm. We do not allow combining
2800 that usually (see can_combine_p), so do not here either. */
2801 bool ok = true;
2802 for (i = 0; ok && i < XVECLEN (p2, 0); i++)
2803 {
2804 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2805 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2806 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2807 SET_DEST (XVECEXP (p2, 0, i))))
2808 ok = false;
2809 else if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2810 && GET_CODE (SET_SRC (XVECEXP (p2, 0, i))) == ASM_OPERANDS)
2811 ok = false;
2812 }
2813
2814 if (ok)
2815 for (i = 0; i < XVECLEN (p2, 0); i++)
2816 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2817 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2818 {
2819 combine_merges++;
2820
2821 subst_insn = i3;
2822 subst_low_luid = DF_INSN_LUID (i2);
2823
2824 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2825 i2src = SET_SRC (XVECEXP (p2, 0, i));
2826 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2827 i2dest_killed = dead_or_set_p (i2, i2dest);
2828
2829 /* Replace the dest in I2 with our dest and make the resulting
2830 insn the new pattern for I3. Then skip to where we validate
2831 the pattern. Everything was set up above. */
2832 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2833 newpat = p2;
2834 i3_subst_into_i2 = 1;
2835 goto validate_replacement;
2836 }
2837 }
2838
2839 /* If I2 is setting a pseudo to a constant and I3 is setting some
2840 sub-part of it to another constant, merge them by making a new
2841 constant. */
2842 if (i1 == 0
2843 && (temp_expr = single_set (i2)) != 0
2844 && CONST_SCALAR_INT_P (SET_SRC (temp_expr))
2845 && GET_CODE (PATTERN (i3)) == SET
2846 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2847 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp_expr)))
2848 {
2849 rtx dest = SET_DEST (PATTERN (i3));
2850 int offset = -1;
2851 int width = 0;
2852
2853 if (GET_CODE (dest) == ZERO_EXTRACT)
2854 {
2855 if (CONST_INT_P (XEXP (dest, 1))
2856 && CONST_INT_P (XEXP (dest, 2)))
2857 {
2858 width = INTVAL (XEXP (dest, 1));
2859 offset = INTVAL (XEXP (dest, 2));
2860 dest = XEXP (dest, 0);
2861 if (BITS_BIG_ENDIAN)
2862 offset = GET_MODE_PRECISION (GET_MODE (dest)) - width - offset;
2863 }
2864 }
2865 else
2866 {
2867 if (GET_CODE (dest) == STRICT_LOW_PART)
2868 dest = XEXP (dest, 0);
2869 width = GET_MODE_PRECISION (GET_MODE (dest));
2870 offset = 0;
2871 }
2872
2873 if (offset >= 0)
2874 {
2875 /* If this is the low part, we're done. */
2876 if (subreg_lowpart_p (dest))
2877 ;
2878 /* Handle the case where inner is twice the size of outer. */
2879 else if (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp_expr)))
2880 == 2 * GET_MODE_PRECISION (GET_MODE (dest)))
2881 offset += GET_MODE_PRECISION (GET_MODE (dest));
2882 /* Otherwise give up for now. */
2883 else
2884 offset = -1;
2885 }
2886
2887 if (offset >= 0)
2888 {
2889 rtx inner = SET_SRC (PATTERN (i3));
2890 rtx outer = SET_SRC (temp_expr);
2891
2892 wide_int o
2893 = wi::insert (rtx_mode_t (outer, GET_MODE (SET_DEST (temp_expr))),
2894 rtx_mode_t (inner, GET_MODE (dest)),
2895 offset, width);
2896
2897 combine_merges++;
2898 subst_insn = i3;
2899 subst_low_luid = DF_INSN_LUID (i2);
2900 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2901 i2dest = SET_DEST (temp_expr);
2902 i2dest_killed = dead_or_set_p (i2, i2dest);
2903
2904 /* Replace the source in I2 with the new constant and make the
2905 resulting insn the new pattern for I3. Then skip to where we
2906 validate the pattern. Everything was set up above. */
2907 SUBST (SET_SRC (temp_expr),
2908 immed_wide_int_const (o, GET_MODE (SET_DEST (temp_expr))));
2909
2910 newpat = PATTERN (i2);
2911
2912 /* The dest of I3 has been replaced with the dest of I2. */
2913 changed_i3_dest = 1;
2914 goto validate_replacement;
2915 }
2916 }
2917
2918 /* If we have no I1 and I2 looks like:
2919 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2920 (set Y OP)])
2921 make up a dummy I1 that is
2922 (set Y OP)
2923 and change I2 to be
2924 (set (reg:CC X) (compare:CC Y (const_int 0)))
2925
2926 (We can ignore any trailing CLOBBERs.)
2927
2928 This undoes a previous combination and allows us to match a branch-and-
2929 decrement insn. */
2930
2931 if (!HAVE_cc0 && i1 == 0
2932 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2933 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2934 == MODE_CC)
2935 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2936 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2937 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2938 SET_SRC (XVECEXP (PATTERN (i2), 0, 1)))
2939 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2940 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2941 {
2942 /* We make I1 with the same INSN_UID as I2. This gives it
2943 the same DF_INSN_LUID for value tracking. Our fake I1 will
2944 never appear in the insn stream so giving it the same INSN_UID
2945 as I2 will not cause a problem. */
2946
2947 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2948 XVECEXP (PATTERN (i2), 0, 1), INSN_LOCATION (i2),
2949 -1, NULL_RTX);
2950 INSN_UID (i1) = INSN_UID (i2);
2951
2952 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2953 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2954 SET_DEST (PATTERN (i1)));
2955 unsigned int regno = REGNO (SET_DEST (PATTERN (i1)));
2956 SUBST_LINK (LOG_LINKS (i2),
2957 alloc_insn_link (i1, regno, LOG_LINKS (i2)));
2958 }
2959
2960 /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
2961 make those two SETs separate I1 and I2 insns, and make an I0 that is
2962 the original I1. */
2963 if (!HAVE_cc0 && i0 == 0
2964 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2965 && can_split_parallel_of_n_reg_sets (i2, 2)
2966 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2967 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2968 {
2969 /* If there is no I1, there is no I0 either. */
2970 i0 = i1;
2971
2972 /* We make I1 with the same INSN_UID as I2. This gives it
2973 the same DF_INSN_LUID for value tracking. Our fake I1 will
2974 never appear in the insn stream so giving it the same INSN_UID
2975 as I2 will not cause a problem. */
2976
2977 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2978 XVECEXP (PATTERN (i2), 0, 0), INSN_LOCATION (i2),
2979 -1, NULL_RTX);
2980 INSN_UID (i1) = INSN_UID (i2);
2981
2982 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 1));
2983 }
2984
2985 /* Verify that I2 and I1 are valid for combining. */
2986 if (! can_combine_p (i2, i3, i0, i1, NULL, NULL, &i2dest, &i2src)
2987 || (i1 && ! can_combine_p (i1, i3, i0, NULL, i2, NULL,
2988 &i1dest, &i1src))
2989 || (i0 && ! can_combine_p (i0, i3, NULL, NULL, i1, i2,
2990 &i0dest, &i0src)))
2991 {
2992 undo_all ();
2993 return 0;
2994 }
2995
2996 /* Record whether I2DEST is used in I2SRC and similarly for the other
2997 cases. Knowing this will help in register status updating below. */
2998 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2999 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
3000 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
3001 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
3002 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
3003 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
3004 i2dest_killed = dead_or_set_p (i2, i2dest);
3005 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
3006 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
3007
3008 /* For the earlier insns, determine which of the subsequent ones they
3009 feed. */
3010 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
3011 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
3012 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
3013 : (!reg_overlap_mentioned_p (i1dest, i0dest)
3014 && reg_overlap_mentioned_p (i0dest, i2src))));
3015
3016 /* Ensure that I3's pattern can be the destination of combines. */
3017 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
3018 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
3019 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
3020 || (i1dest_in_i0src && !i0_feeds_i1_n)),
3021 &i3dest_killed))
3022 {
3023 undo_all ();
3024 return 0;
3025 }
3026
3027 /* See if any of the insns is a MULT operation. Unless one is, we will
3028 reject a combination that is, since it must be slower. Be conservative
3029 here. */
3030 if (GET_CODE (i2src) == MULT
3031 || (i1 != 0 && GET_CODE (i1src) == MULT)
3032 || (i0 != 0 && GET_CODE (i0src) == MULT)
3033 || (GET_CODE (PATTERN (i3)) == SET
3034 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
3035 have_mult = 1;
3036
3037 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
3038 We used to do this EXCEPT in one case: I3 has a post-inc in an
3039 output operand. However, that exception can give rise to insns like
3040 mov r3,(r3)+
3041 which is a famous insn on the PDP-11 where the value of r3 used as the
3042 source was model-dependent. Avoid this sort of thing. */
3043
3044 #if 0
3045 if (!(GET_CODE (PATTERN (i3)) == SET
3046 && REG_P (SET_SRC (PATTERN (i3)))
3047 && MEM_P (SET_DEST (PATTERN (i3)))
3048 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
3049 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
3050 /* It's not the exception. */
3051 #endif
3052 if (AUTO_INC_DEC)
3053 {
3054 rtx link;
3055 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
3056 if (REG_NOTE_KIND (link) == REG_INC
3057 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
3058 || (i1 != 0
3059 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
3060 {
3061 undo_all ();
3062 return 0;
3063 }
3064 }
3065
3066 /* See if the SETs in I1 or I2 need to be kept around in the merged
3067 instruction: whenever the value set there is still needed past I3.
3068 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
3069
3070 For the SET in I1, we have two cases: if I1 and I2 independently feed
3071 into I3, the set in I1 needs to be kept around unless I1DEST dies
3072 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
3073 in I1 needs to be kept around unless I1DEST dies or is set in either
3074 I2 or I3. The same considerations apply to I0. */
3075
3076 added_sets_2 = !dead_or_set_p (i3, i2dest);
3077
3078 if (i1)
3079 added_sets_1 = !(dead_or_set_p (i3, i1dest)
3080 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
3081 else
3082 added_sets_1 = 0;
3083
3084 if (i0)
3085 added_sets_0 = !(dead_or_set_p (i3, i0dest)
3086 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
3087 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3088 && dead_or_set_p (i2, i0dest)));
3089 else
3090 added_sets_0 = 0;
3091
3092 /* We are about to copy insns for the case where they need to be kept
3093 around. Check that they can be copied in the merged instruction. */
3094
3095 if (targetm.cannot_copy_insn_p
3096 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
3097 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
3098 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
3099 {
3100 undo_all ();
3101 return 0;
3102 }
3103
3104 /* If the set in I2 needs to be kept around, we must make a copy of
3105 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3106 PATTERN (I2), we are only substituting for the original I1DEST, not into
3107 an already-substituted copy. This also prevents making self-referential
3108 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3109 I2DEST. */
3110
3111 if (added_sets_2)
3112 {
3113 if (GET_CODE (PATTERN (i2)) == PARALLEL)
3114 i2pat = gen_rtx_SET (i2dest, copy_rtx (i2src));
3115 else
3116 i2pat = copy_rtx (PATTERN (i2));
3117 }
3118
3119 if (added_sets_1)
3120 {
3121 if (GET_CODE (PATTERN (i1)) == PARALLEL)
3122 i1pat = gen_rtx_SET (i1dest, copy_rtx (i1src));
3123 else
3124 i1pat = copy_rtx (PATTERN (i1));
3125 }
3126
3127 if (added_sets_0)
3128 {
3129 if (GET_CODE (PATTERN (i0)) == PARALLEL)
3130 i0pat = gen_rtx_SET (i0dest, copy_rtx (i0src));
3131 else
3132 i0pat = copy_rtx (PATTERN (i0));
3133 }
3134
3135 combine_merges++;
3136
3137 /* Substitute in the latest insn for the regs set by the earlier ones. */
3138
3139 maxreg = max_reg_num ();
3140
3141 subst_insn = i3;
3142
3143 /* Many machines that don't use CC0 have insns that can both perform an
3144 arithmetic operation and set the condition code. These operations will
3145 be represented as a PARALLEL with the first element of the vector
3146 being a COMPARE of an arithmetic operation with the constant zero.
3147 The second element of the vector will set some pseudo to the result
3148 of the same arithmetic operation. If we simplify the COMPARE, we won't
3149 match such a pattern and so will generate an extra insn. Here we test
3150 for this case, where both the comparison and the operation result are
3151 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3152 I2SRC. Later we will make the PARALLEL that contains I2. */
3153
3154 if (!HAVE_cc0 && i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3155 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3156 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3157 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3158 {
3159 rtx newpat_dest;
3160 rtx *cc_use_loc = NULL;
3161 rtx_insn *cc_use_insn = NULL;
3162 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3163 machine_mode compare_mode, orig_compare_mode;
3164 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3165
3166 newpat = PATTERN (i3);
3167 newpat_dest = SET_DEST (newpat);
3168 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3169
3170 if (undobuf.other_insn == 0
3171 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
3172 &cc_use_insn)))
3173 {
3174 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3175 compare_code = simplify_compare_const (compare_code,
3176 GET_MODE (i2dest), op0, &op1);
3177 target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
3178 }
3179
3180 /* Do the rest only if op1 is const0_rtx, which may be the
3181 result of simplification. */
3182 if (op1 == const0_rtx)
3183 {
3184 /* If a single use of the CC is found, prepare to modify it
3185 when SELECT_CC_MODE returns a new CC-class mode, or when
3186 the above simplify_compare_const() returned a new comparison
3187 operator. undobuf.other_insn is assigned the CC use insn
3188 when modifying it. */
3189 if (cc_use_loc)
3190 {
3191 #ifdef SELECT_CC_MODE
3192 machine_mode new_mode
3193 = SELECT_CC_MODE (compare_code, op0, op1);
3194 if (new_mode != orig_compare_mode
3195 && can_change_dest_mode (SET_DEST (newpat),
3196 added_sets_2, new_mode))
3197 {
3198 unsigned int regno = REGNO (newpat_dest);
3199 compare_mode = new_mode;
3200 if (regno < FIRST_PSEUDO_REGISTER)
3201 newpat_dest = gen_rtx_REG (compare_mode, regno);
3202 else
3203 {
3204 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3205 newpat_dest = regno_reg_rtx[regno];
3206 }
3207 }
3208 #endif
3209 /* Cases for modifying the CC-using comparison. */
3210 if (compare_code != orig_compare_code
3211 /* ??? Do we need to verify the zero rtx? */
3212 && XEXP (*cc_use_loc, 1) == const0_rtx)
3213 {
3214 /* Replace cc_use_loc with entire new RTX. */
3215 SUBST (*cc_use_loc,
3216 gen_rtx_fmt_ee (compare_code, compare_mode,
3217 newpat_dest, const0_rtx));
3218 undobuf.other_insn = cc_use_insn;
3219 }
3220 else if (compare_mode != orig_compare_mode)
3221 {
3222 /* Just replace the CC reg with a new mode. */
3223 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3224 undobuf.other_insn = cc_use_insn;
3225 }
3226 }
3227
3228 /* Now we modify the current newpat:
3229 First, SET_DEST(newpat) is updated if the CC mode has been
3230 altered. For targets without SELECT_CC_MODE, this should be
3231 optimized away. */
3232 if (compare_mode != orig_compare_mode)
3233 SUBST (SET_DEST (newpat), newpat_dest);
3234 /* This is always done to propagate i2src into newpat. */
3235 SUBST (SET_SRC (newpat),
3236 gen_rtx_COMPARE (compare_mode, op0, op1));
3237 /* Create new version of i2pat if needed; the below PARALLEL
3238 creation needs this to work correctly. */
3239 if (! rtx_equal_p (i2src, op0))
3240 i2pat = gen_rtx_SET (i2dest, op0);
3241 i2_is_used = 1;
3242 }
3243 }
3244
3245 if (i2_is_used == 0)
3246 {
3247 /* It is possible that the source of I2 or I1 may be performing
3248 an unneeded operation, such as a ZERO_EXTEND of something
3249 that is known to have the high part zero. Handle that case
3250 by letting subst look at the inner insns.
3251
3252 Another way to do this would be to have a function that tries
3253 to simplify a single insn instead of merging two or more
3254 insns. We don't do this because of the potential of infinite
3255 loops and because of the potential extra memory required.
3256 However, doing it the way we are is a bit of a kludge and
3257 doesn't catch all cases.
3258
3259 But only do this if -fexpensive-optimizations since it slows
3260 things down and doesn't usually win.
3261
3262 This is not done in the COMPARE case above because the
3263 unmodified I2PAT is used in the PARALLEL and so a pattern
3264 with a modified I2SRC would not match. */
3265
3266 if (flag_expensive_optimizations)
3267 {
3268 /* Pass pc_rtx so no substitutions are done, just
3269 simplifications. */
3270 if (i1)
3271 {
3272 subst_low_luid = DF_INSN_LUID (i1);
3273 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3274 }
3275
3276 subst_low_luid = DF_INSN_LUID (i2);
3277 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3278 }
3279
3280 n_occurrences = 0; /* `subst' counts here */
3281 subst_low_luid = DF_INSN_LUID (i2);
3282
3283 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3284 copy of I2SRC each time we substitute it, in order to avoid creating
3285 self-referential RTL when we will be substituting I1SRC for I1DEST
3286 later. Likewise if I0 feeds into I2, either directly or indirectly
3287 through I1, and I0DEST is in I0SRC. */
3288 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3289 (i1_feeds_i2_n && i1dest_in_i1src)
3290 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3291 && i0dest_in_i0src));
3292 substed_i2 = 1;
3293
3294 /* Record whether I2's body now appears within I3's body. */
3295 i2_is_used = n_occurrences;
3296 }
3297
3298 /* If we already got a failure, don't try to do more. Otherwise, try to
3299 substitute I1 if we have it. */
3300
3301 if (i1 && GET_CODE (newpat) != CLOBBER)
3302 {
3303 /* Check that an autoincrement side-effect on I1 has not been lost.
3304 This happens if I1DEST is mentioned in I2 and dies there, and
3305 has disappeared from the new pattern. */
3306 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3307 && i1_feeds_i2_n
3308 && dead_or_set_p (i2, i1dest)
3309 && !reg_overlap_mentioned_p (i1dest, newpat))
3310 /* Before we can do this substitution, we must redo the test done
3311 above (see detailed comments there) that ensures I1DEST isn't
3312 mentioned in any SETs in NEWPAT that are field assignments. */
3313 || !combinable_i3pat (NULL, &newpat, i1dest, NULL_RTX, NULL_RTX,
3314 0, 0, 0))
3315 {
3316 undo_all ();
3317 return 0;
3318 }
3319
3320 n_occurrences = 0;
3321 subst_low_luid = DF_INSN_LUID (i1);
3322
3323 /* If the following substitution will modify I1SRC, make a copy of it
3324 for the case where it is substituted for I1DEST in I2PAT later. */
3325 if (added_sets_2 && i1_feeds_i2_n)
3326 i1src_copy = copy_rtx (i1src);
3327
3328 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3329 copy of I1SRC each time we substitute it, in order to avoid creating
3330 self-referential RTL when we will be substituting I0SRC for I0DEST
3331 later. */
3332 newpat = subst (newpat, i1dest, i1src, 0, 0,
3333 i0_feeds_i1_n && i0dest_in_i0src);
3334 substed_i1 = 1;
3335
3336 /* Record whether I1's body now appears within I3's body. */
3337 i1_is_used = n_occurrences;
3338 }
3339
3340 /* Likewise for I0 if we have it. */
3341
3342 if (i0 && GET_CODE (newpat) != CLOBBER)
3343 {
3344 if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3345 && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3346 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3347 && !reg_overlap_mentioned_p (i0dest, newpat))
3348 || !combinable_i3pat (NULL, &newpat, i0dest, NULL_RTX, NULL_RTX,
3349 0, 0, 0))
3350 {
3351 undo_all ();
3352 return 0;
3353 }
3354
3355 /* If the following substitution will modify I0SRC, make a copy of it
3356 for the case where it is substituted for I0DEST in I1PAT later. */
3357 if (added_sets_1 && i0_feeds_i1_n)
3358 i0src_copy = copy_rtx (i0src);
3359 /* And a copy for I0DEST in I2PAT substitution. */
3360 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3361 || (i0_feeds_i2_n)))
3362 i0src_copy2 = copy_rtx (i0src);
3363
3364 n_occurrences = 0;
3365 subst_low_luid = DF_INSN_LUID (i0);
3366 newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3367 substed_i0 = 1;
3368 }
3369
3370 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3371 to count all the ways that I2SRC and I1SRC can be used. */
3372 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3373 && i2_is_used + added_sets_2 > 1)
3374 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3375 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3376 > 1))
3377 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3378 && (n_occurrences + added_sets_0
3379 + (added_sets_1 && i0_feeds_i1_n)
3380 + (added_sets_2 && i0_feeds_i2_n)
3381 > 1))
3382 /* Fail if we tried to make a new register. */
3383 || max_reg_num () != maxreg
3384 /* Fail if we couldn't do something and have a CLOBBER. */
3385 || GET_CODE (newpat) == CLOBBER
3386 /* Fail if this new pattern is a MULT and we didn't have one before
3387 at the outer level. */
3388 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3389 && ! have_mult))
3390 {
3391 undo_all ();
3392 return 0;
3393 }
3394
3395 /* If the actions of the earlier insns must be kept
3396 in addition to substituting them into the latest one,
3397 we must make a new PARALLEL for the latest insn
3398 to hold additional the SETs. */
3399
3400 if (added_sets_0 || added_sets_1 || added_sets_2)
3401 {
3402 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3403 combine_extras++;
3404
3405 if (GET_CODE (newpat) == PARALLEL)
3406 {
3407 rtvec old = XVEC (newpat, 0);
3408 total_sets = XVECLEN (newpat, 0) + extra_sets;
3409 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3410 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3411 sizeof (old->elem[0]) * old->num_elem);
3412 }
3413 else
3414 {
3415 rtx old = newpat;
3416 total_sets = 1 + extra_sets;
3417 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3418 XVECEXP (newpat, 0, 0) = old;
3419 }
3420
3421 if (added_sets_0)
3422 XVECEXP (newpat, 0, --total_sets) = i0pat;
3423
3424 if (added_sets_1)
3425 {
3426 rtx t = i1pat;
3427 if (i0_feeds_i1_n)
3428 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3429
3430 XVECEXP (newpat, 0, --total_sets) = t;
3431 }
3432 if (added_sets_2)
3433 {
3434 rtx t = i2pat;
3435 if (i1_feeds_i2_n)
3436 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3437 i0_feeds_i1_n && i0dest_in_i0src);
3438 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3439 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3440
3441 XVECEXP (newpat, 0, --total_sets) = t;
3442 }
3443 }
3444
3445 validate_replacement:
3446
3447 /* Note which hard regs this insn has as inputs. */
3448 mark_used_regs_combine (newpat);
3449
3450 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3451 consider splitting this pattern, we might need these clobbers. */
3452 if (i1 && GET_CODE (newpat) == PARALLEL
3453 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3454 {
3455 int len = XVECLEN (newpat, 0);
3456
3457 newpat_vec_with_clobbers = rtvec_alloc (len);
3458 for (i = 0; i < len; i++)
3459 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3460 }
3461
3462 /* We have recognized nothing yet. */
3463 insn_code_number = -1;
3464
3465 /* See if this is a PARALLEL of two SETs where one SET's destination is
3466 a register that is unused and this isn't marked as an instruction that
3467 might trap in an EH region. In that case, we just need the other SET.
3468 We prefer this over the PARALLEL.
3469
3470 This can occur when simplifying a divmod insn. We *must* test for this
3471 case here because the code below that splits two independent SETs doesn't
3472 handle this case correctly when it updates the register status.
3473
3474 It's pointless doing this if we originally had two sets, one from
3475 i3, and one from i2. Combining then splitting the parallel results
3476 in the original i2 again plus an invalid insn (which we delete).
3477 The net effect is only to move instructions around, which makes
3478 debug info less accurate. */
3479
3480 if (!(added_sets_2 && i1 == 0)
3481 && is_parallel_of_n_reg_sets (newpat, 2)
3482 && asm_noperands (newpat) < 0)
3483 {
3484 rtx set0 = XVECEXP (newpat, 0, 0);
3485 rtx set1 = XVECEXP (newpat, 0, 1);
3486 rtx oldpat = newpat;
3487
3488 if (((REG_P (SET_DEST (set1))
3489 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3490 || (GET_CODE (SET_DEST (set1)) == SUBREG
3491 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3492 && insn_nothrow_p (i3)
3493 && !side_effects_p (SET_SRC (set1)))
3494 {
3495 newpat = set0;
3496 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3497 }
3498
3499 else if (((REG_P (SET_DEST (set0))
3500 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3501 || (GET_CODE (SET_DEST (set0)) == SUBREG
3502 && find_reg_note (i3, REG_UNUSED,
3503 SUBREG_REG (SET_DEST (set0)))))
3504 && insn_nothrow_p (i3)
3505 && !side_effects_p (SET_SRC (set0)))
3506 {
3507 newpat = set1;
3508 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3509
3510 if (insn_code_number >= 0)
3511 changed_i3_dest = 1;
3512 }
3513
3514 if (insn_code_number < 0)
3515 newpat = oldpat;
3516 }
3517
3518 /* Is the result of combination a valid instruction? */
3519 if (insn_code_number < 0)
3520 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3521
3522 /* If we were combining three insns and the result is a simple SET
3523 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3524 insns. There are two ways to do this. It can be split using a
3525 machine-specific method (like when you have an addition of a large
3526 constant) or by combine in the function find_split_point. */
3527
3528 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3529 && asm_noperands (newpat) < 0)
3530 {
3531 rtx parallel, *split;
3532 rtx_insn *m_split_insn;
3533
3534 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3535 use I2DEST as a scratch register will help. In the latter case,
3536 convert I2DEST to the mode of the source of NEWPAT if we can. */
3537
3538 m_split_insn = combine_split_insns (newpat, i3);
3539
3540 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3541 inputs of NEWPAT. */
3542
3543 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3544 possible to try that as a scratch reg. This would require adding
3545 more code to make it work though. */
3546
3547 if (m_split_insn == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3548 {
3549 machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3550
3551 /* ??? Reusing i2dest without resetting the reg_stat entry for it
3552 (temporarily, until we are committed to this instruction
3553 combination) does not work: for example, any call to nonzero_bits
3554 on the register (from a splitter in the MD file, for example)
3555 will get the old information, which is invalid.
3556
3557 Since nowadays we can create registers during combine just fine,
3558 we should just create a new one here, not reuse i2dest. */
3559
3560 /* First try to split using the original register as a
3561 scratch register. */
3562 parallel = gen_rtx_PARALLEL (VOIDmode,
3563 gen_rtvec (2, newpat,
3564 gen_rtx_CLOBBER (VOIDmode,
3565 i2dest)));
3566 m_split_insn = combine_split_insns (parallel, i3);
3567
3568 /* If that didn't work, try changing the mode of I2DEST if
3569 we can. */
3570 if (m_split_insn == 0
3571 && new_mode != GET_MODE (i2dest)
3572 && new_mode != VOIDmode
3573 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3574 {
3575 machine_mode old_mode = GET_MODE (i2dest);
3576 rtx ni2dest;
3577
3578 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3579 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3580 else
3581 {
3582 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3583 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3584 }
3585
3586 parallel = (gen_rtx_PARALLEL
3587 (VOIDmode,
3588 gen_rtvec (2, newpat,
3589 gen_rtx_CLOBBER (VOIDmode,
3590 ni2dest))));
3591 m_split_insn = combine_split_insns (parallel, i3);
3592
3593 if (m_split_insn == 0
3594 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3595 {
3596 struct undo *buf;
3597
3598 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3599 buf = undobuf.undos;
3600 undobuf.undos = buf->next;
3601 buf->next = undobuf.frees;
3602 undobuf.frees = buf;
3603 }
3604 }
3605
3606 i2scratch = m_split_insn != 0;
3607 }
3608
3609 /* If recog_for_combine has discarded clobbers, try to use them
3610 again for the split. */
3611 if (m_split_insn == 0 && newpat_vec_with_clobbers)
3612 {
3613 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3614 m_split_insn = combine_split_insns (parallel, i3);
3615 }
3616
3617 if (m_split_insn && NEXT_INSN (m_split_insn) == NULL_RTX)
3618 {
3619 rtx m_split_pat = PATTERN (m_split_insn);
3620 insn_code_number = recog_for_combine (&m_split_pat, i3, &new_i3_notes);
3621 if (insn_code_number >= 0)
3622 newpat = m_split_pat;
3623 }
3624 else if (m_split_insn && NEXT_INSN (NEXT_INSN (m_split_insn)) == NULL_RTX
3625 && (next_nonnote_nondebug_insn (i2) == i3
3626 || ! use_crosses_set_p (PATTERN (m_split_insn), DF_INSN_LUID (i2))))
3627 {
3628 rtx i2set, i3set;
3629 rtx newi3pat = PATTERN (NEXT_INSN (m_split_insn));
3630 newi2pat = PATTERN (m_split_insn);
3631
3632 i3set = single_set (NEXT_INSN (m_split_insn));
3633 i2set = single_set (m_split_insn);
3634
3635 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3636
3637 /* If I2 or I3 has multiple SETs, we won't know how to track
3638 register status, so don't use these insns. If I2's destination
3639 is used between I2 and I3, we also can't use these insns. */
3640
3641 if (i2_code_number >= 0 && i2set && i3set
3642 && (next_nonnote_nondebug_insn (i2) == i3
3643 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3644 insn_code_number = recog_for_combine (&newi3pat, i3,
3645 &new_i3_notes);
3646 if (insn_code_number >= 0)
3647 newpat = newi3pat;
3648
3649 /* It is possible that both insns now set the destination of I3.
3650 If so, we must show an extra use of it. */
3651
3652 if (insn_code_number >= 0)
3653 {
3654 rtx new_i3_dest = SET_DEST (i3set);
3655 rtx new_i2_dest = SET_DEST (i2set);
3656
3657 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3658 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3659 || GET_CODE (new_i3_dest) == SUBREG)
3660 new_i3_dest = XEXP (new_i3_dest, 0);
3661
3662 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3663 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3664 || GET_CODE (new_i2_dest) == SUBREG)
3665 new_i2_dest = XEXP (new_i2_dest, 0);
3666
3667 if (REG_P (new_i3_dest)
3668 && REG_P (new_i2_dest)
3669 && REGNO (new_i3_dest) == REGNO (new_i2_dest)
3670 && REGNO (new_i2_dest) < reg_n_sets_max)
3671 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3672 }
3673 }
3674
3675 /* If we can split it and use I2DEST, go ahead and see if that
3676 helps things be recognized. Verify that none of the registers
3677 are set between I2 and I3. */
3678 if (insn_code_number < 0
3679 && (split = find_split_point (&newpat, i3, false)) != 0
3680 && (!HAVE_cc0 || REG_P (i2dest))
3681 /* We need I2DEST in the proper mode. If it is a hard register
3682 or the only use of a pseudo, we can change its mode.
3683 Make sure we don't change a hard register to have a mode that
3684 isn't valid for it, or change the number of registers. */
3685 && (GET_MODE (*split) == GET_MODE (i2dest)
3686 || GET_MODE (*split) == VOIDmode
3687 || can_change_dest_mode (i2dest, added_sets_2,
3688 GET_MODE (*split)))
3689 && (next_nonnote_nondebug_insn (i2) == i3
3690 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3691 /* We can't overwrite I2DEST if its value is still used by
3692 NEWPAT. */
3693 && ! reg_referenced_p (i2dest, newpat))
3694 {
3695 rtx newdest = i2dest;
3696 enum rtx_code split_code = GET_CODE (*split);
3697 machine_mode split_mode = GET_MODE (*split);
3698 bool subst_done = false;
3699 newi2pat = NULL_RTX;
3700
3701 i2scratch = true;
3702
3703 /* *SPLIT may be part of I2SRC, so make sure we have the
3704 original expression around for later debug processing.
3705 We should not need I2SRC any more in other cases. */
3706 if (MAY_HAVE_DEBUG_INSNS)
3707 i2src = copy_rtx (i2src);
3708 else
3709 i2src = NULL;
3710
3711 /* Get NEWDEST as a register in the proper mode. We have already
3712 validated that we can do this. */
3713 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3714 {
3715 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3716 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3717 else
3718 {
3719 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3720 newdest = regno_reg_rtx[REGNO (i2dest)];
3721 }
3722 }
3723
3724 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3725 an ASHIFT. This can occur if it was inside a PLUS and hence
3726 appeared to be a memory address. This is a kludge. */
3727 if (split_code == MULT
3728 && CONST_INT_P (XEXP (*split, 1))
3729 && INTVAL (XEXP (*split, 1)) > 0
3730 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3731 {
3732 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3733 XEXP (*split, 0), GEN_INT (i)));
3734 /* Update split_code because we may not have a multiply
3735 anymore. */
3736 split_code = GET_CODE (*split);
3737 }
3738
3739 /* Similarly for (plus (mult FOO (const_int pow2))). */
3740 if (split_code == PLUS
3741 && GET_CODE (XEXP (*split, 0)) == MULT
3742 && CONST_INT_P (XEXP (XEXP (*split, 0), 1))
3743 && INTVAL (XEXP (XEXP (*split, 0), 1)) > 0
3744 && (i = exact_log2 (UINTVAL (XEXP (XEXP (*split, 0), 1)))) >= 0)
3745 {
3746 rtx nsplit = XEXP (*split, 0);
3747 SUBST (XEXP (*split, 0), gen_rtx_ASHIFT (GET_MODE (nsplit),
3748 XEXP (nsplit, 0), GEN_INT (i)));
3749 /* Update split_code because we may not have a multiply
3750 anymore. */
3751 split_code = GET_CODE (*split);
3752 }
3753
3754 #ifdef INSN_SCHEDULING
3755 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3756 be written as a ZERO_EXTEND. */
3757 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3758 {
3759 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3760 what it really is. */
3761 if (load_extend_op (GET_MODE (SUBREG_REG (*split)))
3762 == SIGN_EXTEND)
3763 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3764 SUBREG_REG (*split)));
3765 else
3766 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3767 SUBREG_REG (*split)));
3768 }
3769 #endif
3770
3771 /* Attempt to split binary operators using arithmetic identities. */
3772 if (BINARY_P (SET_SRC (newpat))
3773 && split_mode == GET_MODE (SET_SRC (newpat))
3774 && ! side_effects_p (SET_SRC (newpat)))
3775 {
3776 rtx setsrc = SET_SRC (newpat);
3777 machine_mode mode = GET_MODE (setsrc);
3778 enum rtx_code code = GET_CODE (setsrc);
3779 rtx src_op0 = XEXP (setsrc, 0);
3780 rtx src_op1 = XEXP (setsrc, 1);
3781
3782 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3783 if (rtx_equal_p (src_op0, src_op1))
3784 {
3785 newi2pat = gen_rtx_SET (newdest, src_op0);
3786 SUBST (XEXP (setsrc, 0), newdest);
3787 SUBST (XEXP (setsrc, 1), newdest);
3788 subst_done = true;
3789 }
3790 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3791 else if ((code == PLUS || code == MULT)
3792 && GET_CODE (src_op0) == code
3793 && GET_CODE (XEXP (src_op0, 0)) == code
3794 && (INTEGRAL_MODE_P (mode)
3795 || (FLOAT_MODE_P (mode)
3796 && flag_unsafe_math_optimizations)))
3797 {
3798 rtx p = XEXP (XEXP (src_op0, 0), 0);
3799 rtx q = XEXP (XEXP (src_op0, 0), 1);
3800 rtx r = XEXP (src_op0, 1);
3801 rtx s = src_op1;
3802
3803 /* Split both "((X op Y) op X) op Y" and
3804 "((X op Y) op Y) op X" as "T op T" where T is
3805 "X op Y". */
3806 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3807 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3808 {
3809 newi2pat = gen_rtx_SET (newdest, XEXP (src_op0, 0));
3810 SUBST (XEXP (setsrc, 0), newdest);
3811 SUBST (XEXP (setsrc, 1), newdest);
3812 subst_done = true;
3813 }
3814 /* Split "((X op X) op Y) op Y)" as "T op T" where
3815 T is "X op Y". */
3816 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3817 {
3818 rtx tmp = simplify_gen_binary (code, mode, p, r);
3819 newi2pat = gen_rtx_SET (newdest, tmp);
3820 SUBST (XEXP (setsrc, 0), newdest);
3821 SUBST (XEXP (setsrc, 1), newdest);
3822 subst_done = true;
3823 }
3824 }
3825 }
3826
3827 if (!subst_done)
3828 {
3829 newi2pat = gen_rtx_SET (newdest, *split);
3830 SUBST (*split, newdest);
3831 }
3832
3833 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3834
3835 /* recog_for_combine might have added CLOBBERs to newi2pat.
3836 Make sure NEWPAT does not depend on the clobbered regs. */
3837 if (GET_CODE (newi2pat) == PARALLEL)
3838 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3839 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3840 {
3841 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3842 if (reg_overlap_mentioned_p (reg, newpat))
3843 {
3844 undo_all ();
3845 return 0;
3846 }
3847 }
3848
3849 /* If the split point was a MULT and we didn't have one before,
3850 don't use one now. */
3851 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3852 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3853 }
3854 }
3855
3856 /* Check for a case where we loaded from memory in a narrow mode and
3857 then sign extended it, but we need both registers. In that case,
3858 we have a PARALLEL with both loads from the same memory location.
3859 We can split this into a load from memory followed by a register-register
3860 copy. This saves at least one insn, more if register allocation can
3861 eliminate the copy.
3862
3863 We cannot do this if the destination of the first assignment is a
3864 condition code register or cc0. We eliminate this case by making sure
3865 the SET_DEST and SET_SRC have the same mode.
3866
3867 We cannot do this if the destination of the second assignment is
3868 a register that we have already assumed is zero-extended. Similarly
3869 for a SUBREG of such a register. */
3870
3871 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3872 && GET_CODE (newpat) == PARALLEL
3873 && XVECLEN (newpat, 0) == 2
3874 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3875 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3876 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3877 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3878 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3879 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3880 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3881 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3882 DF_INSN_LUID (i2))
3883 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3884 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3885 && ! (temp_expr = SET_DEST (XVECEXP (newpat, 0, 1)),
3886 (REG_P (temp_expr)
3887 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3888 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3889 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3890 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3891 != GET_MODE_MASK (word_mode))))
3892 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3893 && (temp_expr = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3894 (REG_P (temp_expr)
3895 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3896 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3897 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3898 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3899 != GET_MODE_MASK (word_mode)))))
3900 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3901 SET_SRC (XVECEXP (newpat, 0, 1)))
3902 && ! find_reg_note (i3, REG_UNUSED,
3903 SET_DEST (XVECEXP (newpat, 0, 0))))
3904 {
3905 rtx ni2dest;
3906
3907 newi2pat = XVECEXP (newpat, 0, 0);
3908 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3909 newpat = XVECEXP (newpat, 0, 1);
3910 SUBST (SET_SRC (newpat),
3911 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3912 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3913
3914 if (i2_code_number >= 0)
3915 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3916
3917 if (insn_code_number >= 0)
3918 swap_i2i3 = 1;
3919 }
3920
3921 /* Similarly, check for a case where we have a PARALLEL of two independent
3922 SETs but we started with three insns. In this case, we can do the sets
3923 as two separate insns. This case occurs when some SET allows two
3924 other insns to combine, but the destination of that SET is still live.
3925
3926 Also do this if we started with two insns and (at least) one of the
3927 resulting sets is a noop; this noop will be deleted later. */
3928
3929 else if (insn_code_number < 0 && asm_noperands (newpat) < 0
3930 && GET_CODE (newpat) == PARALLEL
3931 && XVECLEN (newpat, 0) == 2
3932 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3933 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3934 && (i1 || set_noop_p (XVECEXP (newpat, 0, 0))
3935 || set_noop_p (XVECEXP (newpat, 0, 1)))
3936 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3937 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3938 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3939 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3940 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3941 XVECEXP (newpat, 0, 0))
3942 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3943 XVECEXP (newpat, 0, 1))
3944 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3945 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
3946 {
3947 rtx set0 = XVECEXP (newpat, 0, 0);
3948 rtx set1 = XVECEXP (newpat, 0, 1);
3949
3950 /* Normally, it doesn't matter which of the two is done first,
3951 but the one that references cc0 can't be the second, and
3952 one which uses any regs/memory set in between i2 and i3 can't
3953 be first. The PARALLEL might also have been pre-existing in i3,
3954 so we need to make sure that we won't wrongly hoist a SET to i2
3955 that would conflict with a death note present in there. */
3956 if (!use_crosses_set_p (SET_SRC (set1), DF_INSN_LUID (i2))
3957 && !(REG_P (SET_DEST (set1))
3958 && find_reg_note (i2, REG_DEAD, SET_DEST (set1)))
3959 && !(GET_CODE (SET_DEST (set1)) == SUBREG
3960 && find_reg_note (i2, REG_DEAD,
3961 SUBREG_REG (SET_DEST (set1))))
3962 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set0))
3963 /* If I3 is a jump, ensure that set0 is a jump so that
3964 we do not create invalid RTL. */
3965 && (!JUMP_P (i3) || SET_DEST (set0) == pc_rtx)
3966 )
3967 {
3968 newi2pat = set1;
3969 newpat = set0;
3970 }
3971 else if (!use_crosses_set_p (SET_SRC (set0), DF_INSN_LUID (i2))
3972 && !(REG_P (SET_DEST (set0))
3973 && find_reg_note (i2, REG_DEAD, SET_DEST (set0)))
3974 && !(GET_CODE (SET_DEST (set0)) == SUBREG
3975 && find_reg_note (i2, REG_DEAD,
3976 SUBREG_REG (SET_DEST (set0))))
3977 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set1))
3978 /* If I3 is a jump, ensure that set1 is a jump so that
3979 we do not create invalid RTL. */
3980 && (!JUMP_P (i3) || SET_DEST (set1) == pc_rtx)
3981 )
3982 {
3983 newi2pat = set0;
3984 newpat = set1;
3985 }
3986 else
3987 {
3988 undo_all ();
3989 return 0;
3990 }
3991
3992 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3993
3994 if (i2_code_number >= 0)
3995 {
3996 /* recog_for_combine might have added CLOBBERs to newi2pat.
3997 Make sure NEWPAT does not depend on the clobbered regs. */
3998 if (GET_CODE (newi2pat) == PARALLEL)
3999 {
4000 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
4001 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
4002 {
4003 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
4004 if (reg_overlap_mentioned_p (reg, newpat))
4005 {
4006 undo_all ();
4007 return 0;
4008 }
4009 }
4010 }
4011
4012 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
4013 }
4014 }
4015
4016 /* If it still isn't recognized, fail and change things back the way they
4017 were. */
4018 if ((insn_code_number < 0
4019 /* Is the result a reasonable ASM_OPERANDS? */
4020 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
4021 {
4022 undo_all ();
4023 return 0;
4024 }
4025
4026 /* If we had to change another insn, make sure it is valid also. */
4027 if (undobuf.other_insn)
4028 {
4029 CLEAR_HARD_REG_SET (newpat_used_regs);
4030
4031 other_pat = PATTERN (undobuf.other_insn);
4032 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
4033 &new_other_notes);
4034
4035 if (other_code_number < 0 && ! check_asm_operands (other_pat))
4036 {
4037 undo_all ();
4038 return 0;
4039 }
4040 }
4041
4042 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
4043 they are adjacent to each other or not. */
4044 if (HAVE_cc0)
4045 {
4046 rtx_insn *p = prev_nonnote_insn (i3);
4047 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
4048 && sets_cc0_p (newi2pat))
4049 {
4050 undo_all ();
4051 return 0;
4052 }
4053 }
4054
4055 /* Only allow this combination if insn_rtx_costs reports that the
4056 replacement instructions are cheaper than the originals. */
4057 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
4058 {
4059 undo_all ();
4060 return 0;
4061 }
4062
4063 if (MAY_HAVE_DEBUG_INSNS)
4064 {
4065 struct undo *undo;
4066
4067 for (undo = undobuf.undos; undo; undo = undo->next)
4068 if (undo->kind == UNDO_MODE)
4069 {
4070 rtx reg = *undo->where.r;
4071 machine_mode new_mode = GET_MODE (reg);
4072 machine_mode old_mode = undo->old_contents.m;
4073
4074 /* Temporarily revert mode back. */
4075 adjust_reg_mode (reg, old_mode);
4076
4077 if (reg == i2dest && i2scratch)
4078 {
4079 /* If we used i2dest as a scratch register with a
4080 different mode, substitute it for the original
4081 i2src while its original mode is temporarily
4082 restored, and then clear i2scratch so that we don't
4083 do it again later. */
4084 propagate_for_debug (i2, last_combined_insn, reg, i2src,
4085 this_basic_block);
4086 i2scratch = false;
4087 /* Put back the new mode. */
4088 adjust_reg_mode (reg, new_mode);
4089 }
4090 else
4091 {
4092 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
4093 rtx_insn *first, *last;
4094
4095 if (reg == i2dest)
4096 {
4097 first = i2;
4098 last = last_combined_insn;
4099 }
4100 else
4101 {
4102 first = i3;
4103 last = undobuf.other_insn;
4104 gcc_assert (last);
4105 if (DF_INSN_LUID (last)
4106 < DF_INSN_LUID (last_combined_insn))
4107 last = last_combined_insn;
4108 }
4109
4110 /* We're dealing with a reg that changed mode but not
4111 meaning, so we want to turn it into a subreg for
4112 the new mode. However, because of REG sharing and
4113 because its mode had already changed, we have to do
4114 it in two steps. First, replace any debug uses of
4115 reg, with its original mode temporarily restored,
4116 with this copy we have created; then, replace the
4117 copy with the SUBREG of the original shared reg,
4118 once again changed to the new mode. */
4119 propagate_for_debug (first, last, reg, tempreg,
4120 this_basic_block);
4121 adjust_reg_mode (reg, new_mode);
4122 propagate_for_debug (first, last, tempreg,
4123 lowpart_subreg (old_mode, reg, new_mode),
4124 this_basic_block);
4125 }
4126 }
4127 }
4128
4129 /* If we will be able to accept this, we have made a
4130 change to the destination of I3. This requires us to
4131 do a few adjustments. */
4132
4133 if (changed_i3_dest)
4134 {
4135 PATTERN (i3) = newpat;
4136 adjust_for_new_dest (i3);
4137 }
4138
4139 /* We now know that we can do this combination. Merge the insns and
4140 update the status of registers and LOG_LINKS. */
4141
4142 if (undobuf.other_insn)
4143 {
4144 rtx note, next;
4145
4146 PATTERN (undobuf.other_insn) = other_pat;
4147
4148 /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
4149 ensure that they are still valid. Then add any non-duplicate
4150 notes added by recog_for_combine. */
4151 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
4152 {
4153 next = XEXP (note, 1);
4154
4155 if ((REG_NOTE_KIND (note) == REG_DEAD
4156 && !reg_referenced_p (XEXP (note, 0),
4157 PATTERN (undobuf.other_insn)))
4158 ||(REG_NOTE_KIND (note) == REG_UNUSED
4159 && !reg_set_p (XEXP (note, 0),
4160 PATTERN (undobuf.other_insn)))
4161 /* Simply drop equal note since it may be no longer valid
4162 for other_insn. It may be possible to record that CC
4163 register is changed and only discard those notes, but
4164 in practice it's unnecessary complication and doesn't
4165 give any meaningful improvement.
4166
4167 See PR78559. */
4168 || REG_NOTE_KIND (note) == REG_EQUAL
4169 || REG_NOTE_KIND (note) == REG_EQUIV)
4170 remove_note (undobuf.other_insn, note);
4171 }
4172
4173 distribute_notes (new_other_notes, undobuf.other_insn,
4174 undobuf.other_insn, NULL, NULL_RTX, NULL_RTX,
4175 NULL_RTX);
4176 }
4177
4178 if (swap_i2i3)
4179 {
4180 rtx_insn *insn;
4181 struct insn_link *link;
4182 rtx ni2dest;
4183
4184 /* I3 now uses what used to be its destination and which is now
4185 I2's destination. This requires us to do a few adjustments. */
4186 PATTERN (i3) = newpat;
4187 adjust_for_new_dest (i3);
4188
4189 /* We need a LOG_LINK from I3 to I2. But we used to have one,
4190 so we still will.
4191
4192 However, some later insn might be using I2's dest and have
4193 a LOG_LINK pointing at I3. We must remove this link.
4194 The simplest way to remove the link is to point it at I1,
4195 which we know will be a NOTE. */
4196
4197 /* newi2pat is usually a SET here; however, recog_for_combine might
4198 have added some clobbers. */
4199 if (GET_CODE (newi2pat) == PARALLEL)
4200 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
4201 else
4202 ni2dest = SET_DEST (newi2pat);
4203
4204 for (insn = NEXT_INSN (i3);
4205 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4206 || insn != BB_HEAD (this_basic_block->next_bb));
4207 insn = NEXT_INSN (insn))
4208 {
4209 if (NONDEBUG_INSN_P (insn)
4210 && reg_referenced_p (ni2dest, PATTERN (insn)))
4211 {
4212 FOR_EACH_LOG_LINK (link, insn)
4213 if (link->insn == i3)
4214 link->insn = i1;
4215
4216 break;
4217 }
4218 }
4219 }
4220
4221 {
4222 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4223 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4224 rtx midnotes = 0;
4225 int from_luid;
4226 /* Compute which registers we expect to eliminate. newi2pat may be setting
4227 either i3dest or i2dest, so we must check it. */
4228 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4229 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4230 || !i2dest_killed
4231 ? 0 : i2dest);
4232 /* For i1, we need to compute both local elimination and global
4233 elimination information with respect to newi2pat because i1dest
4234 may be the same as i3dest, in which case newi2pat may be setting
4235 i1dest. Global information is used when distributing REG_DEAD
4236 note for i2 and i3, in which case it does matter if newi2pat sets
4237 i1dest or not.
4238
4239 Local information is used when distributing REG_DEAD note for i1,
4240 in which case it doesn't matter if newi2pat sets i1dest or not.
4241 See PR62151, if we have four insns combination:
4242 i0: r0 <- i0src
4243 i1: r1 <- i1src (using r0)
4244 REG_DEAD (r0)
4245 i2: r0 <- i2src (using r1)
4246 i3: r3 <- i3src (using r0)
4247 ix: using r0
4248 From i1's point of view, r0 is eliminated, no matter if it is set
4249 by newi2pat or not. In other words, REG_DEAD info for r0 in i1
4250 should be discarded.
4251
4252 Note local information only affects cases in forms like "I1->I2->I3",
4253 "I0->I1->I2->I3" or "I0&I1->I2, I2->I3". For other cases like
4254 "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
4255 i0dest anyway. */
4256 rtx local_elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4257 || !i1dest_killed
4258 ? 0 : i1dest);
4259 rtx elim_i1 = (local_elim_i1 == 0
4260 || (newi2pat && reg_set_p (i1dest, newi2pat))
4261 ? 0 : i1dest);
4262 /* Same case as i1. */
4263 rtx local_elim_i0 = (i0 == 0 || i0dest_in_i0src || !i0dest_killed
4264 ? 0 : i0dest);
4265 rtx elim_i0 = (local_elim_i0 == 0
4266 || (newi2pat && reg_set_p (i0dest, newi2pat))
4267 ? 0 : i0dest);
4268
4269 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4270 clear them. */
4271 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4272 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4273 if (i1)
4274 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4275 if (i0)
4276 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4277
4278 /* Ensure that we do not have something that should not be shared but
4279 occurs multiple times in the new insns. Check this by first
4280 resetting all the `used' flags and then copying anything is shared. */
4281
4282 reset_used_flags (i3notes);
4283 reset_used_flags (i2notes);
4284 reset_used_flags (i1notes);
4285 reset_used_flags (i0notes);
4286 reset_used_flags (newpat);
4287 reset_used_flags (newi2pat);
4288 if (undobuf.other_insn)
4289 reset_used_flags (PATTERN (undobuf.other_insn));
4290
4291 i3notes = copy_rtx_if_shared (i3notes);
4292 i2notes = copy_rtx_if_shared (i2notes);
4293 i1notes = copy_rtx_if_shared (i1notes);
4294 i0notes = copy_rtx_if_shared (i0notes);
4295 newpat = copy_rtx_if_shared (newpat);
4296 newi2pat = copy_rtx_if_shared (newi2pat);
4297 if (undobuf.other_insn)
4298 reset_used_flags (PATTERN (undobuf.other_insn));
4299
4300 INSN_CODE (i3) = insn_code_number;
4301 PATTERN (i3) = newpat;
4302
4303 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4304 {
4305 for (rtx link = CALL_INSN_FUNCTION_USAGE (i3); link;
4306 link = XEXP (link, 1))
4307 {
4308 if (substed_i2)
4309 {
4310 /* I2SRC must still be meaningful at this point. Some
4311 splitting operations can invalidate I2SRC, but those
4312 operations do not apply to calls. */
4313 gcc_assert (i2src);
4314 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4315 i2dest, i2src);
4316 }
4317 if (substed_i1)
4318 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4319 i1dest, i1src);
4320 if (substed_i0)
4321 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4322 i0dest, i0src);
4323 }
4324 }
4325
4326 if (undobuf.other_insn)
4327 INSN_CODE (undobuf.other_insn) = other_code_number;
4328
4329 /* We had one special case above where I2 had more than one set and
4330 we replaced a destination of one of those sets with the destination
4331 of I3. In that case, we have to update LOG_LINKS of insns later
4332 in this basic block. Note that this (expensive) case is rare.
4333
4334 Also, in this case, we must pretend that all REG_NOTEs for I2
4335 actually came from I3, so that REG_UNUSED notes from I2 will be
4336 properly handled. */
4337
4338 if (i3_subst_into_i2)
4339 {
4340 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4341 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4342 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4343 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4344 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4345 && ! find_reg_note (i2, REG_UNUSED,
4346 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4347 for (temp_insn = NEXT_INSN (i2);
4348 temp_insn
4349 && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4350 || BB_HEAD (this_basic_block) != temp_insn);
4351 temp_insn = NEXT_INSN (temp_insn))
4352 if (temp_insn != i3 && NONDEBUG_INSN_P (temp_insn))
4353 FOR_EACH_LOG_LINK (link, temp_insn)
4354 if (link->insn == i2)
4355 link->insn = i3;
4356
4357 if (i3notes)
4358 {
4359 rtx link = i3notes;
4360 while (XEXP (link, 1))
4361 link = XEXP (link, 1);
4362 XEXP (link, 1) = i2notes;
4363 }
4364 else
4365 i3notes = i2notes;
4366 i2notes = 0;
4367 }
4368
4369 LOG_LINKS (i3) = NULL;
4370 REG_NOTES (i3) = 0;
4371 LOG_LINKS (i2) = NULL;
4372 REG_NOTES (i2) = 0;
4373
4374 if (newi2pat)
4375 {
4376 if (MAY_HAVE_DEBUG_INSNS && i2scratch)
4377 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4378 this_basic_block);
4379 INSN_CODE (i2) = i2_code_number;
4380 PATTERN (i2) = newi2pat;
4381 }
4382 else
4383 {
4384 if (MAY_HAVE_DEBUG_INSNS && i2src)
4385 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4386 this_basic_block);
4387 SET_INSN_DELETED (i2);
4388 }
4389
4390 if (i1)
4391 {
4392 LOG_LINKS (i1) = NULL;
4393 REG_NOTES (i1) = 0;
4394 if (MAY_HAVE_DEBUG_INSNS)
4395 propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4396 this_basic_block);
4397 SET_INSN_DELETED (i1);
4398 }
4399
4400 if (i0)
4401 {
4402 LOG_LINKS (i0) = NULL;
4403 REG_NOTES (i0) = 0;
4404 if (MAY_HAVE_DEBUG_INSNS)
4405 propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4406 this_basic_block);
4407 SET_INSN_DELETED (i0);
4408 }
4409
4410 /* Get death notes for everything that is now used in either I3 or
4411 I2 and used to die in a previous insn. If we built two new
4412 patterns, move from I1 to I2 then I2 to I3 so that we get the
4413 proper movement on registers that I2 modifies. */
4414
4415 if (i0)
4416 from_luid = DF_INSN_LUID (i0);
4417 else if (i1)
4418 from_luid = DF_INSN_LUID (i1);
4419 else
4420 from_luid = DF_INSN_LUID (i2);
4421 if (newi2pat)
4422 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4423 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4424
4425 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4426 if (i3notes)
4427 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL,
4428 elim_i2, elim_i1, elim_i0);
4429 if (i2notes)
4430 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL,
4431 elim_i2, elim_i1, elim_i0);
4432 if (i1notes)
4433 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL,
4434 elim_i2, local_elim_i1, local_elim_i0);
4435 if (i0notes)
4436 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL,
4437 elim_i2, elim_i1, local_elim_i0);
4438 if (midnotes)
4439 distribute_notes (midnotes, NULL, i3, newi2pat ? i2 : NULL,
4440 elim_i2, elim_i1, elim_i0);
4441
4442 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4443 know these are REG_UNUSED and want them to go to the desired insn,
4444 so we always pass it as i3. */
4445
4446 if (newi2pat && new_i2_notes)
4447 distribute_notes (new_i2_notes, i2, i2, NULL, NULL_RTX, NULL_RTX,
4448 NULL_RTX);
4449
4450 if (new_i3_notes)
4451 distribute_notes (new_i3_notes, i3, i3, NULL, NULL_RTX, NULL_RTX,
4452 NULL_RTX);
4453
4454 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4455 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4456 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4457 in that case, it might delete I2. Similarly for I2 and I1.
4458 Show an additional death due to the REG_DEAD note we make here. If
4459 we discard it in distribute_notes, we will decrement it again. */
4460
4461 if (i3dest_killed)
4462 {
4463 rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
4464 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4465 distribute_notes (new_note, NULL, i2, NULL, elim_i2,
4466 elim_i1, elim_i0);
4467 else
4468 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4469 elim_i2, elim_i1, elim_i0);
4470 }
4471
4472 if (i2dest_in_i2src)
4473 {
4474 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4475 if (newi2pat && reg_set_p (i2dest, newi2pat))
4476 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4477 NULL_RTX, NULL_RTX);
4478 else
4479 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4480 NULL_RTX, NULL_RTX, NULL_RTX);
4481 }
4482
4483 if (i1dest_in_i1src)
4484 {
4485 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4486 if (newi2pat && reg_set_p (i1dest, newi2pat))
4487 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4488 NULL_RTX, NULL_RTX);
4489 else
4490 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4491 NULL_RTX, NULL_RTX, NULL_RTX);
4492 }
4493
4494 if (i0dest_in_i0src)
4495 {
4496 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4497 if (newi2pat && reg_set_p (i0dest, newi2pat))
4498 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4499 NULL_RTX, NULL_RTX);
4500 else
4501 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4502 NULL_RTX, NULL_RTX, NULL_RTX);
4503 }
4504
4505 distribute_links (i3links);
4506 distribute_links (i2links);
4507 distribute_links (i1links);
4508 distribute_links (i0links);
4509
4510 if (REG_P (i2dest))
4511 {
4512 struct insn_link *link;
4513 rtx_insn *i2_insn = 0;
4514 rtx i2_val = 0, set;
4515
4516 /* The insn that used to set this register doesn't exist, and
4517 this life of the register may not exist either. See if one of
4518 I3's links points to an insn that sets I2DEST. If it does,
4519 that is now the last known value for I2DEST. If we don't update
4520 this and I2 set the register to a value that depended on its old
4521 contents, we will get confused. If this insn is used, thing
4522 will be set correctly in combine_instructions. */
4523 FOR_EACH_LOG_LINK (link, i3)
4524 if ((set = single_set (link->insn)) != 0
4525 && rtx_equal_p (i2dest, SET_DEST (set)))
4526 i2_insn = link->insn, i2_val = SET_SRC (set);
4527
4528 record_value_for_reg (i2dest, i2_insn, i2_val);
4529
4530 /* If the reg formerly set in I2 died only once and that was in I3,
4531 zero its use count so it won't make `reload' do any work. */
4532 if (! added_sets_2
4533 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4534 && ! i2dest_in_i2src
4535 && REGNO (i2dest) < reg_n_sets_max)
4536 INC_REG_N_SETS (REGNO (i2dest), -1);
4537 }
4538
4539 if (i1 && REG_P (i1dest))
4540 {
4541 struct insn_link *link;
4542 rtx_insn *i1_insn = 0;
4543 rtx i1_val = 0, set;
4544
4545 FOR_EACH_LOG_LINK (link, i3)
4546 if ((set = single_set (link->insn)) != 0
4547 && rtx_equal_p (i1dest, SET_DEST (set)))
4548 i1_insn = link->insn, i1_val = SET_SRC (set);
4549
4550 record_value_for_reg (i1dest, i1_insn, i1_val);
4551
4552 if (! added_sets_1
4553 && ! i1dest_in_i1src
4554 && REGNO (i1dest) < reg_n_sets_max)
4555 INC_REG_N_SETS (REGNO (i1dest), -1);
4556 }
4557
4558 if (i0 && REG_P (i0dest))
4559 {
4560 struct insn_link *link;
4561 rtx_insn *i0_insn = 0;
4562 rtx i0_val = 0, set;
4563
4564 FOR_EACH_LOG_LINK (link, i3)
4565 if ((set = single_set (link->insn)) != 0
4566 && rtx_equal_p (i0dest, SET_DEST (set)))
4567 i0_insn = link->insn, i0_val = SET_SRC (set);
4568
4569 record_value_for_reg (i0dest, i0_insn, i0_val);
4570
4571 if (! added_sets_0
4572 && ! i0dest_in_i0src
4573 && REGNO (i0dest) < reg_n_sets_max)
4574 INC_REG_N_SETS (REGNO (i0dest), -1);
4575 }
4576
4577 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4578 been made to this insn. The order is important, because newi2pat
4579 can affect nonzero_bits of newpat. */
4580 if (newi2pat)
4581 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4582 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4583 }
4584
4585 if (undobuf.other_insn != NULL_RTX)
4586 {
4587 if (dump_file)
4588 {
4589 fprintf (dump_file, "modifying other_insn ");
4590 dump_insn_slim (dump_file, undobuf.other_insn);
4591 }
4592 df_insn_rescan (undobuf.other_insn);
4593 }
4594
4595 if (i0 && !(NOTE_P (i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4596 {
4597 if (dump_file)
4598 {
4599 fprintf (dump_file, "modifying insn i0 ");
4600 dump_insn_slim (dump_file, i0);
4601 }
4602 df_insn_rescan (i0);
4603 }
4604
4605 if (i1 && !(NOTE_P (i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4606 {
4607 if (dump_file)
4608 {
4609 fprintf (dump_file, "modifying insn i1 ");
4610 dump_insn_slim (dump_file, i1);
4611 }
4612 df_insn_rescan (i1);
4613 }
4614
4615 if (i2 && !(NOTE_P (i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4616 {
4617 if (dump_file)
4618 {
4619 fprintf (dump_file, "modifying insn i2 ");
4620 dump_insn_slim (dump_file, i2);
4621 }
4622 df_insn_rescan (i2);
4623 }
4624
4625 if (i3 && !(NOTE_P (i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4626 {
4627 if (dump_file)
4628 {
4629 fprintf (dump_file, "modifying insn i3 ");
4630 dump_insn_slim (dump_file, i3);
4631 }
4632 df_insn_rescan (i3);
4633 }
4634
4635 /* Set new_direct_jump_p if a new return or simple jump instruction
4636 has been created. Adjust the CFG accordingly. */
4637 if (returnjump_p (i3) || any_uncondjump_p (i3))
4638 {
4639 *new_direct_jump_p = 1;
4640 mark_jump_label (PATTERN (i3), i3, 0);
4641 update_cfg_for_uncondjump (i3);
4642 }
4643
4644 if (undobuf.other_insn != NULL_RTX
4645 && (returnjump_p (undobuf.other_insn)
4646 || any_uncondjump_p (undobuf.other_insn)))
4647 {
4648 *new_direct_jump_p = 1;
4649 update_cfg_for_uncondjump (undobuf.other_insn);
4650 }
4651
4652 if (GET_CODE (PATTERN (i3)) == TRAP_IF
4653 && XEXP (PATTERN (i3), 0) == const1_rtx)
4654 {
4655 basic_block bb = BLOCK_FOR_INSN (i3);
4656 gcc_assert (bb);
4657 remove_edge (split_block (bb, i3));
4658 emit_barrier_after_bb (bb);
4659 *new_direct_jump_p = 1;
4660 }
4661
4662 if (undobuf.other_insn
4663 && GET_CODE (PATTERN (undobuf.other_insn)) == TRAP_IF
4664 && XEXP (PATTERN (undobuf.other_insn), 0) == const1_rtx)
4665 {
4666 basic_block bb = BLOCK_FOR_INSN (undobuf.other_insn);
4667 gcc_assert (bb);
4668 remove_edge (split_block (bb, undobuf.other_insn));
4669 emit_barrier_after_bb (bb);
4670 *new_direct_jump_p = 1;
4671 }
4672
4673 /* A noop might also need cleaning up of CFG, if it comes from the
4674 simplification of a jump. */
4675 if (JUMP_P (i3)
4676 && GET_CODE (newpat) == SET
4677 && SET_SRC (newpat) == pc_rtx
4678 && SET_DEST (newpat) == pc_rtx)
4679 {
4680 *new_direct_jump_p = 1;
4681 update_cfg_for_uncondjump (i3);
4682 }
4683
4684 if (undobuf.other_insn != NULL_RTX
4685 && JUMP_P (undobuf.other_insn)
4686 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4687 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4688 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4689 {
4690 *new_direct_jump_p = 1;
4691 update_cfg_for_uncondjump (undobuf.other_insn);
4692 }
4693
4694 combine_successes++;
4695 undo_commit ();
4696
4697 if (added_links_insn
4698 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
4699 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
4700 return added_links_insn;
4701 else
4702 return newi2pat ? i2 : i3;
4703 }
4704 \f
4705 /* Get a marker for undoing to the current state. */
4706
4707 static void *
4708 get_undo_marker (void)
4709 {
4710 return undobuf.undos;
4711 }
4712
4713 /* Undo the modifications up to the marker. */
4714
4715 static void
4716 undo_to_marker (void *marker)
4717 {
4718 struct undo *undo, *next;
4719
4720 for (undo = undobuf.undos; undo != marker; undo = next)
4721 {
4722 gcc_assert (undo);
4723
4724 next = undo->next;
4725 switch (undo->kind)
4726 {
4727 case UNDO_RTX:
4728 *undo->where.r = undo->old_contents.r;
4729 break;
4730 case UNDO_INT:
4731 *undo->where.i = undo->old_contents.i;
4732 break;
4733 case UNDO_MODE:
4734 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4735 break;
4736 case UNDO_LINKS:
4737 *undo->where.l = undo->old_contents.l;
4738 break;
4739 default:
4740 gcc_unreachable ();
4741 }
4742
4743 undo->next = undobuf.frees;
4744 undobuf.frees = undo;
4745 }
4746
4747 undobuf.undos = (struct undo *) marker;
4748 }
4749
4750 /* Undo all the modifications recorded in undobuf. */
4751
4752 static void
4753 undo_all (void)
4754 {
4755 undo_to_marker (0);
4756 }
4757
4758 /* We've committed to accepting the changes we made. Move all
4759 of the undos to the free list. */
4760
4761 static void
4762 undo_commit (void)
4763 {
4764 struct undo *undo, *next;
4765
4766 for (undo = undobuf.undos; undo; undo = next)
4767 {
4768 next = undo->next;
4769 undo->next = undobuf.frees;
4770 undobuf.frees = undo;
4771 }
4772 undobuf.undos = 0;
4773 }
4774 \f
4775 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4776 where we have an arithmetic expression and return that point. LOC will
4777 be inside INSN.
4778
4779 try_combine will call this function to see if an insn can be split into
4780 two insns. */
4781
4782 static rtx *
4783 find_split_point (rtx *loc, rtx_insn *insn, bool set_src)
4784 {
4785 rtx x = *loc;
4786 enum rtx_code code = GET_CODE (x);
4787 rtx *split;
4788 unsigned HOST_WIDE_INT len = 0;
4789 HOST_WIDE_INT pos = 0;
4790 int unsignedp = 0;
4791 rtx inner = NULL_RTX;
4792
4793 /* First special-case some codes. */
4794 switch (code)
4795 {
4796 case SUBREG:
4797 #ifdef INSN_SCHEDULING
4798 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4799 point. */
4800 if (MEM_P (SUBREG_REG (x)))
4801 return loc;
4802 #endif
4803 return find_split_point (&SUBREG_REG (x), insn, false);
4804
4805 case MEM:
4806 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4807 using LO_SUM and HIGH. */
4808 if (HAVE_lo_sum && (GET_CODE (XEXP (x, 0)) == CONST
4809 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF))
4810 {
4811 machine_mode address_mode = get_address_mode (x);
4812
4813 SUBST (XEXP (x, 0),
4814 gen_rtx_LO_SUM (address_mode,
4815 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4816 XEXP (x, 0)));
4817 return &XEXP (XEXP (x, 0), 0);
4818 }
4819
4820 /* If we have a PLUS whose second operand is a constant and the
4821 address is not valid, perhaps will can split it up using
4822 the machine-specific way to split large constants. We use
4823 the first pseudo-reg (one of the virtual regs) as a placeholder;
4824 it will not remain in the result. */
4825 if (GET_CODE (XEXP (x, 0)) == PLUS
4826 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4827 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4828 MEM_ADDR_SPACE (x)))
4829 {
4830 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4831 rtx_insn *seq = combine_split_insns (gen_rtx_SET (reg, XEXP (x, 0)),
4832 subst_insn);
4833
4834 /* This should have produced two insns, each of which sets our
4835 placeholder. If the source of the second is a valid address,
4836 we can make put both sources together and make a split point
4837 in the middle. */
4838
4839 if (seq
4840 && NEXT_INSN (seq) != NULL_RTX
4841 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4842 && NONJUMP_INSN_P (seq)
4843 && GET_CODE (PATTERN (seq)) == SET
4844 && SET_DEST (PATTERN (seq)) == reg
4845 && ! reg_mentioned_p (reg,
4846 SET_SRC (PATTERN (seq)))
4847 && NONJUMP_INSN_P (NEXT_INSN (seq))
4848 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4849 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4850 && memory_address_addr_space_p
4851 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4852 MEM_ADDR_SPACE (x)))
4853 {
4854 rtx src1 = SET_SRC (PATTERN (seq));
4855 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4856
4857 /* Replace the placeholder in SRC2 with SRC1. If we can
4858 find where in SRC2 it was placed, that can become our
4859 split point and we can replace this address with SRC2.
4860 Just try two obvious places. */
4861
4862 src2 = replace_rtx (src2, reg, src1);
4863 split = 0;
4864 if (XEXP (src2, 0) == src1)
4865 split = &XEXP (src2, 0);
4866 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4867 && XEXP (XEXP (src2, 0), 0) == src1)
4868 split = &XEXP (XEXP (src2, 0), 0);
4869
4870 if (split)
4871 {
4872 SUBST (XEXP (x, 0), src2);
4873 return split;
4874 }
4875 }
4876
4877 /* If that didn't work, perhaps the first operand is complex and
4878 needs to be computed separately, so make a split point there.
4879 This will occur on machines that just support REG + CONST
4880 and have a constant moved through some previous computation. */
4881
4882 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4883 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4884 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4885 return &XEXP (XEXP (x, 0), 0);
4886 }
4887
4888 /* If we have a PLUS whose first operand is complex, try computing it
4889 separately by making a split there. */
4890 if (GET_CODE (XEXP (x, 0)) == PLUS
4891 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4892 MEM_ADDR_SPACE (x))
4893 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4894 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4895 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4896 return &XEXP (XEXP (x, 0), 0);
4897 break;
4898
4899 case SET:
4900 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4901 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4902 we need to put the operand into a register. So split at that
4903 point. */
4904
4905 if (SET_DEST (x) == cc0_rtx
4906 && GET_CODE (SET_SRC (x)) != COMPARE
4907 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4908 && !OBJECT_P (SET_SRC (x))
4909 && ! (GET_CODE (SET_SRC (x)) == SUBREG
4910 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4911 return &SET_SRC (x);
4912
4913 /* See if we can split SET_SRC as it stands. */
4914 split = find_split_point (&SET_SRC (x), insn, true);
4915 if (split && split != &SET_SRC (x))
4916 return split;
4917
4918 /* See if we can split SET_DEST as it stands. */
4919 split = find_split_point (&SET_DEST (x), insn, false);
4920 if (split && split != &SET_DEST (x))
4921 return split;
4922
4923 /* See if this is a bitfield assignment with everything constant. If
4924 so, this is an IOR of an AND, so split it into that. */
4925 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4926 && HWI_COMPUTABLE_MODE_P (GET_MODE (XEXP (SET_DEST (x), 0)))
4927 && CONST_INT_P (XEXP (SET_DEST (x), 1))
4928 && CONST_INT_P (XEXP (SET_DEST (x), 2))
4929 && CONST_INT_P (SET_SRC (x))
4930 && ((INTVAL (XEXP (SET_DEST (x), 1))
4931 + INTVAL (XEXP (SET_DEST (x), 2)))
4932 <= GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0))))
4933 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4934 {
4935 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4936 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4937 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4938 rtx dest = XEXP (SET_DEST (x), 0);
4939 machine_mode mode = GET_MODE (dest);
4940 unsigned HOST_WIDE_INT mask
4941 = (HOST_WIDE_INT_1U << len) - 1;
4942 rtx or_mask;
4943
4944 if (BITS_BIG_ENDIAN)
4945 pos = GET_MODE_PRECISION (mode) - len - pos;
4946
4947 or_mask = gen_int_mode (src << pos, mode);
4948 if (src == mask)
4949 SUBST (SET_SRC (x),
4950 simplify_gen_binary (IOR, mode, dest, or_mask));
4951 else
4952 {
4953 rtx negmask = gen_int_mode (~(mask << pos), mode);
4954 SUBST (SET_SRC (x),
4955 simplify_gen_binary (IOR, mode,
4956 simplify_gen_binary (AND, mode,
4957 dest, negmask),
4958 or_mask));
4959 }
4960
4961 SUBST (SET_DEST (x), dest);
4962
4963 split = find_split_point (&SET_SRC (x), insn, true);
4964 if (split && split != &SET_SRC (x))
4965 return split;
4966 }
4967
4968 /* Otherwise, see if this is an operation that we can split into two.
4969 If so, try to split that. */
4970 code = GET_CODE (SET_SRC (x));
4971
4972 switch (code)
4973 {
4974 case AND:
4975 /* If we are AND'ing with a large constant that is only a single
4976 bit and the result is only being used in a context where we
4977 need to know if it is zero or nonzero, replace it with a bit
4978 extraction. This will avoid the large constant, which might
4979 have taken more than one insn to make. If the constant were
4980 not a valid argument to the AND but took only one insn to make,
4981 this is no worse, but if it took more than one insn, it will
4982 be better. */
4983
4984 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4985 && REG_P (XEXP (SET_SRC (x), 0))
4986 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4987 && REG_P (SET_DEST (x))
4988 && (split = find_single_use (SET_DEST (x), insn, NULL)) != 0
4989 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4990 && XEXP (*split, 0) == SET_DEST (x)
4991 && XEXP (*split, 1) == const0_rtx)
4992 {
4993 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4994 XEXP (SET_SRC (x), 0),
4995 pos, NULL_RTX, 1, 1, 0, 0);
4996 if (extraction != 0)
4997 {
4998 SUBST (SET_SRC (x), extraction);
4999 return find_split_point (loc, insn, false);
5000 }
5001 }
5002 break;
5003
5004 case NE:
5005 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
5006 is known to be on, this can be converted into a NEG of a shift. */
5007 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
5008 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
5009 && 1 <= (pos = exact_log2
5010 (nonzero_bits (XEXP (SET_SRC (x), 0),
5011 GET_MODE (XEXP (SET_SRC (x), 0))))))
5012 {
5013 machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
5014
5015 SUBST (SET_SRC (x),
5016 gen_rtx_NEG (mode,
5017 gen_rtx_LSHIFTRT (mode,
5018 XEXP (SET_SRC (x), 0),
5019 GEN_INT (pos))));
5020
5021 split = find_split_point (&SET_SRC (x), insn, true);
5022 if (split && split != &SET_SRC (x))
5023 return split;
5024 }
5025 break;
5026
5027 case SIGN_EXTEND:
5028 inner = XEXP (SET_SRC (x), 0);
5029
5030 /* We can't optimize if either mode is a partial integer
5031 mode as we don't know how many bits are significant
5032 in those modes. */
5033 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
5034 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
5035 break;
5036
5037 pos = 0;
5038 len = GET_MODE_PRECISION (GET_MODE (inner));
5039 unsignedp = 0;
5040 break;
5041
5042 case SIGN_EXTRACT:
5043 case ZERO_EXTRACT:
5044 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
5045 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
5046 {
5047 inner = XEXP (SET_SRC (x), 0);
5048 len = INTVAL (XEXP (SET_SRC (x), 1));
5049 pos = INTVAL (XEXP (SET_SRC (x), 2));
5050
5051 if (BITS_BIG_ENDIAN)
5052 pos = GET_MODE_PRECISION (GET_MODE (inner)) - len - pos;
5053 unsignedp = (code == ZERO_EXTRACT);
5054 }
5055 break;
5056
5057 default:
5058 break;
5059 }
5060
5061 if (len && pos >= 0
5062 && pos + len <= GET_MODE_PRECISION (GET_MODE (inner)))
5063 {
5064 machine_mode mode = GET_MODE (SET_SRC (x));
5065
5066 /* For unsigned, we have a choice of a shift followed by an
5067 AND or two shifts. Use two shifts for field sizes where the
5068 constant might be too large. We assume here that we can
5069 always at least get 8-bit constants in an AND insn, which is
5070 true for every current RISC. */
5071
5072 if (unsignedp && len <= 8)
5073 {
5074 unsigned HOST_WIDE_INT mask
5075 = (HOST_WIDE_INT_1U << len) - 1;
5076 SUBST (SET_SRC (x),
5077 gen_rtx_AND (mode,
5078 gen_rtx_LSHIFTRT
5079 (mode, gen_lowpart (mode, inner),
5080 GEN_INT (pos)),
5081 gen_int_mode (mask, mode)));
5082
5083 split = find_split_point (&SET_SRC (x), insn, true);
5084 if (split && split != &SET_SRC (x))
5085 return split;
5086 }
5087 else
5088 {
5089 SUBST (SET_SRC (x),
5090 gen_rtx_fmt_ee
5091 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
5092 gen_rtx_ASHIFT (mode,
5093 gen_lowpart (mode, inner),
5094 GEN_INT (GET_MODE_PRECISION (mode)
5095 - len - pos)),
5096 GEN_INT (GET_MODE_PRECISION (mode) - len)));
5097
5098 split = find_split_point (&SET_SRC (x), insn, true);
5099 if (split && split != &SET_SRC (x))
5100 return split;
5101 }
5102 }
5103
5104 /* See if this is a simple operation with a constant as the second
5105 operand. It might be that this constant is out of range and hence
5106 could be used as a split point. */
5107 if (BINARY_P (SET_SRC (x))
5108 && CONSTANT_P (XEXP (SET_SRC (x), 1))
5109 && (OBJECT_P (XEXP (SET_SRC (x), 0))
5110 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
5111 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
5112 return &XEXP (SET_SRC (x), 1);
5113
5114 /* Finally, see if this is a simple operation with its first operand
5115 not in a register. The operation might require this operand in a
5116 register, so return it as a split point. We can always do this
5117 because if the first operand were another operation, we would have
5118 already found it as a split point. */
5119 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
5120 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
5121 return &XEXP (SET_SRC (x), 0);
5122
5123 return 0;
5124
5125 case AND:
5126 case IOR:
5127 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
5128 it is better to write this as (not (ior A B)) so we can split it.
5129 Similarly for IOR. */
5130 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
5131 {
5132 SUBST (*loc,
5133 gen_rtx_NOT (GET_MODE (x),
5134 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
5135 GET_MODE (x),
5136 XEXP (XEXP (x, 0), 0),
5137 XEXP (XEXP (x, 1), 0))));
5138 return find_split_point (loc, insn, set_src);
5139 }
5140
5141 /* Many RISC machines have a large set of logical insns. If the
5142 second operand is a NOT, put it first so we will try to split the
5143 other operand first. */
5144 if (GET_CODE (XEXP (x, 1)) == NOT)
5145 {
5146 rtx tem = XEXP (x, 0);
5147 SUBST (XEXP (x, 0), XEXP (x, 1));
5148 SUBST (XEXP (x, 1), tem);
5149 }
5150 break;
5151
5152 case PLUS:
5153 case MINUS:
5154 /* Canonicalization can produce (minus A (mult B C)), where C is a
5155 constant. It may be better to try splitting (plus (mult B -C) A)
5156 instead if this isn't a multiply by a power of two. */
5157 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
5158 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
5159 && !pow2p_hwi (INTVAL (XEXP (XEXP (x, 1), 1))))
5160 {
5161 machine_mode mode = GET_MODE (x);
5162 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
5163 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
5164 SUBST (*loc, gen_rtx_PLUS (mode,
5165 gen_rtx_MULT (mode,
5166 XEXP (XEXP (x, 1), 0),
5167 gen_int_mode (other_int,
5168 mode)),
5169 XEXP (x, 0)));
5170 return find_split_point (loc, insn, set_src);
5171 }
5172
5173 /* Split at a multiply-accumulate instruction. However if this is
5174 the SET_SRC, we likely do not have such an instruction and it's
5175 worthless to try this split. */
5176 if (!set_src
5177 && (GET_CODE (XEXP (x, 0)) == MULT
5178 || (GET_CODE (XEXP (x, 0)) == ASHIFT
5179 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
5180 return loc;
5181
5182 default:
5183 break;
5184 }
5185
5186 /* Otherwise, select our actions depending on our rtx class. */
5187 switch (GET_RTX_CLASS (code))
5188 {
5189 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
5190 case RTX_TERNARY:
5191 split = find_split_point (&XEXP (x, 2), insn, false);
5192 if (split)
5193 return split;
5194 /* fall through */
5195 case RTX_BIN_ARITH:
5196 case RTX_COMM_ARITH:
5197 case RTX_COMPARE:
5198 case RTX_COMM_COMPARE:
5199 split = find_split_point (&XEXP (x, 1), insn, false);
5200 if (split)
5201 return split;
5202 /* fall through */
5203 case RTX_UNARY:
5204 /* Some machines have (and (shift ...) ...) insns. If X is not
5205 an AND, but XEXP (X, 0) is, use it as our split point. */
5206 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
5207 return &XEXP (x, 0);
5208
5209 split = find_split_point (&XEXP (x, 0), insn, false);
5210 if (split)
5211 return split;
5212 return loc;
5213
5214 default:
5215 /* Otherwise, we don't have a split point. */
5216 return 0;
5217 }
5218 }
5219 \f
5220 /* Throughout X, replace FROM with TO, and return the result.
5221 The result is TO if X is FROM;
5222 otherwise the result is X, but its contents may have been modified.
5223 If they were modified, a record was made in undobuf so that
5224 undo_all will (among other things) return X to its original state.
5225
5226 If the number of changes necessary is too much to record to undo,
5227 the excess changes are not made, so the result is invalid.
5228 The changes already made can still be undone.
5229 undobuf.num_undo is incremented for such changes, so by testing that
5230 the caller can tell whether the result is valid.
5231
5232 `n_occurrences' is incremented each time FROM is replaced.
5233
5234 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
5235
5236 IN_COND is nonzero if we are at the top level of a condition.
5237
5238 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
5239 by copying if `n_occurrences' is nonzero. */
5240
5241 static rtx
5242 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
5243 {
5244 enum rtx_code code = GET_CODE (x);
5245 machine_mode op0_mode = VOIDmode;
5246 const char *fmt;
5247 int len, i;
5248 rtx new_rtx;
5249
5250 /* Two expressions are equal if they are identical copies of a shared
5251 RTX or if they are both registers with the same register number
5252 and mode. */
5253
5254 #define COMBINE_RTX_EQUAL_P(X,Y) \
5255 ((X) == (Y) \
5256 || (REG_P (X) && REG_P (Y) \
5257 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5258
5259 /* Do not substitute into clobbers of regs -- this will never result in
5260 valid RTL. */
5261 if (GET_CODE (x) == CLOBBER && REG_P (XEXP (x, 0)))
5262 return x;
5263
5264 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5265 {
5266 n_occurrences++;
5267 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5268 }
5269
5270 /* If X and FROM are the same register but different modes, they
5271 will not have been seen as equal above. However, the log links code
5272 will make a LOG_LINKS entry for that case. If we do nothing, we
5273 will try to rerecognize our original insn and, when it succeeds,
5274 we will delete the feeding insn, which is incorrect.
5275
5276 So force this insn not to match in this (rare) case. */
5277 if (! in_dest && code == REG && REG_P (from)
5278 && reg_overlap_mentioned_p (x, from))
5279 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5280
5281 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5282 of which may contain things that can be combined. */
5283 if (code != MEM && code != LO_SUM && OBJECT_P (x))
5284 return x;
5285
5286 /* It is possible to have a subexpression appear twice in the insn.
5287 Suppose that FROM is a register that appears within TO.
5288 Then, after that subexpression has been scanned once by `subst',
5289 the second time it is scanned, TO may be found. If we were
5290 to scan TO here, we would find FROM within it and create a
5291 self-referent rtl structure which is completely wrong. */
5292 if (COMBINE_RTX_EQUAL_P (x, to))
5293 return to;
5294
5295 /* Parallel asm_operands need special attention because all of the
5296 inputs are shared across the arms. Furthermore, unsharing the
5297 rtl results in recognition failures. Failure to handle this case
5298 specially can result in circular rtl.
5299
5300 Solve this by doing a normal pass across the first entry of the
5301 parallel, and only processing the SET_DESTs of the subsequent
5302 entries. Ug. */
5303
5304 if (code == PARALLEL
5305 && GET_CODE (XVECEXP (x, 0, 0)) == SET
5306 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5307 {
5308 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
5309
5310 /* If this substitution failed, this whole thing fails. */
5311 if (GET_CODE (new_rtx) == CLOBBER
5312 && XEXP (new_rtx, 0) == const0_rtx)
5313 return new_rtx;
5314
5315 SUBST (XVECEXP (x, 0, 0), new_rtx);
5316
5317 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5318 {
5319 rtx dest = SET_DEST (XVECEXP (x, 0, i));
5320
5321 if (!REG_P (dest)
5322 && GET_CODE (dest) != CC0
5323 && GET_CODE (dest) != PC)
5324 {
5325 new_rtx = subst (dest, from, to, 0, 0, unique_copy);
5326
5327 /* If this substitution failed, this whole thing fails. */
5328 if (GET_CODE (new_rtx) == CLOBBER
5329 && XEXP (new_rtx, 0) == const0_rtx)
5330 return new_rtx;
5331
5332 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5333 }
5334 }
5335 }
5336 else
5337 {
5338 len = GET_RTX_LENGTH (code);
5339 fmt = GET_RTX_FORMAT (code);
5340
5341 /* We don't need to process a SET_DEST that is a register, CC0,
5342 or PC, so set up to skip this common case. All other cases
5343 where we want to suppress replacing something inside a
5344 SET_SRC are handled via the IN_DEST operand. */
5345 if (code == SET
5346 && (REG_P (SET_DEST (x))
5347 || GET_CODE (SET_DEST (x)) == CC0
5348 || GET_CODE (SET_DEST (x)) == PC))
5349 fmt = "ie";
5350
5351 /* Trying to simplify the operands of a widening MULT is not likely
5352 to create RTL matching a machine insn. */
5353 if (code == MULT
5354 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
5355 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
5356 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
5357 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
5358 && REG_P (XEXP (XEXP (x, 0), 0))
5359 && REG_P (XEXP (XEXP (x, 1), 0))
5360 && from == to)
5361 return x;
5362
5363
5364 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5365 constant. */
5366 if (fmt[0] == 'e')
5367 op0_mode = GET_MODE (XEXP (x, 0));
5368
5369 for (i = 0; i < len; i++)
5370 {
5371 if (fmt[i] == 'E')
5372 {
5373 int j;
5374 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5375 {
5376 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5377 {
5378 new_rtx = (unique_copy && n_occurrences
5379 ? copy_rtx (to) : to);
5380 n_occurrences++;
5381 }
5382 else
5383 {
5384 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5385 unique_copy);
5386
5387 /* If this substitution failed, this whole thing
5388 fails. */
5389 if (GET_CODE (new_rtx) == CLOBBER
5390 && XEXP (new_rtx, 0) == const0_rtx)
5391 return new_rtx;
5392 }
5393
5394 SUBST (XVECEXP (x, i, j), new_rtx);
5395 }
5396 }
5397 else if (fmt[i] == 'e')
5398 {
5399 /* If this is a register being set, ignore it. */
5400 new_rtx = XEXP (x, i);
5401 if (in_dest
5402 && i == 0
5403 && (((code == SUBREG || code == ZERO_EXTRACT)
5404 && REG_P (new_rtx))
5405 || code == STRICT_LOW_PART))
5406 ;
5407
5408 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5409 {
5410 /* In general, don't install a subreg involving two
5411 modes not tieable. It can worsen register
5412 allocation, and can even make invalid reload
5413 insns, since the reg inside may need to be copied
5414 from in the outside mode, and that may be invalid
5415 if it is an fp reg copied in integer mode.
5416
5417 We allow two exceptions to this: It is valid if
5418 it is inside another SUBREG and the mode of that
5419 SUBREG and the mode of the inside of TO is
5420 tieable and it is valid if X is a SET that copies
5421 FROM to CC0. */
5422
5423 if (GET_CODE (to) == SUBREG
5424 && ! MODES_TIEABLE_P (GET_MODE (to),
5425 GET_MODE (SUBREG_REG (to)))
5426 && ! (code == SUBREG
5427 && MODES_TIEABLE_P (GET_MODE (x),
5428 GET_MODE (SUBREG_REG (to))))
5429 && (!HAVE_cc0
5430 || (! (code == SET
5431 && i == 1
5432 && XEXP (x, 0) == cc0_rtx))))
5433 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5434
5435 if (code == SUBREG
5436 && REG_P (to)
5437 && REGNO (to) < FIRST_PSEUDO_REGISTER
5438 && simplify_subreg_regno (REGNO (to), GET_MODE (to),
5439 SUBREG_BYTE (x),
5440 GET_MODE (x)) < 0)
5441 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5442
5443 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5444 n_occurrences++;
5445 }
5446 else
5447 /* If we are in a SET_DEST, suppress most cases unless we
5448 have gone inside a MEM, in which case we want to
5449 simplify the address. We assume here that things that
5450 are actually part of the destination have their inner
5451 parts in the first expression. This is true for SUBREG,
5452 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5453 things aside from REG and MEM that should appear in a
5454 SET_DEST. */
5455 new_rtx = subst (XEXP (x, i), from, to,
5456 (((in_dest
5457 && (code == SUBREG || code == STRICT_LOW_PART
5458 || code == ZERO_EXTRACT))
5459 || code == SET)
5460 && i == 0),
5461 code == IF_THEN_ELSE && i == 0,
5462 unique_copy);
5463
5464 /* If we found that we will have to reject this combination,
5465 indicate that by returning the CLOBBER ourselves, rather than
5466 an expression containing it. This will speed things up as
5467 well as prevent accidents where two CLOBBERs are considered
5468 to be equal, thus producing an incorrect simplification. */
5469
5470 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5471 return new_rtx;
5472
5473 if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5474 {
5475 machine_mode mode = GET_MODE (x);
5476
5477 x = simplify_subreg (GET_MODE (x), new_rtx,
5478 GET_MODE (SUBREG_REG (x)),
5479 SUBREG_BYTE (x));
5480 if (! x)
5481 x = gen_rtx_CLOBBER (mode, const0_rtx);
5482 }
5483 else if (CONST_SCALAR_INT_P (new_rtx)
5484 && GET_CODE (x) == ZERO_EXTEND)
5485 {
5486 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
5487 new_rtx, GET_MODE (XEXP (x, 0)));
5488 gcc_assert (x);
5489 }
5490 else
5491 SUBST (XEXP (x, i), new_rtx);
5492 }
5493 }
5494 }
5495
5496 /* Check if we are loading something from the constant pool via float
5497 extension; in this case we would undo compress_float_constant
5498 optimization and degenerate constant load to an immediate value. */
5499 if (GET_CODE (x) == FLOAT_EXTEND
5500 && MEM_P (XEXP (x, 0))
5501 && MEM_READONLY_P (XEXP (x, 0)))
5502 {
5503 rtx tmp = avoid_constant_pool_reference (x);
5504 if (x != tmp)
5505 return x;
5506 }
5507
5508 /* Try to simplify X. If the simplification changed the code, it is likely
5509 that further simplification will help, so loop, but limit the number
5510 of repetitions that will be performed. */
5511
5512 for (i = 0; i < 4; i++)
5513 {
5514 /* If X is sufficiently simple, don't bother trying to do anything
5515 with it. */
5516 if (code != CONST_INT && code != REG && code != CLOBBER)
5517 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5518
5519 if (GET_CODE (x) == code)
5520 break;
5521
5522 code = GET_CODE (x);
5523
5524 /* We no longer know the original mode of operand 0 since we
5525 have changed the form of X) */
5526 op0_mode = VOIDmode;
5527 }
5528
5529 return x;
5530 }
5531 \f
5532 /* If X is a commutative operation whose operands are not in the canonical
5533 order, use substitutions to swap them. */
5534
5535 static void
5536 maybe_swap_commutative_operands (rtx x)
5537 {
5538 if (COMMUTATIVE_ARITH_P (x)
5539 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5540 {
5541 rtx temp = XEXP (x, 0);
5542 SUBST (XEXP (x, 0), XEXP (x, 1));
5543 SUBST (XEXP (x, 1), temp);
5544 }
5545 }
5546
5547 /* Simplify X, a piece of RTL. We just operate on the expression at the
5548 outer level; call `subst' to simplify recursively. Return the new
5549 expression.
5550
5551 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5552 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5553 of a condition. */
5554
5555 static rtx
5556 combine_simplify_rtx (rtx x, machine_mode op0_mode, int in_dest,
5557 int in_cond)
5558 {
5559 enum rtx_code code = GET_CODE (x);
5560 machine_mode mode = GET_MODE (x);
5561 rtx temp;
5562 int i;
5563
5564 /* If this is a commutative operation, put a constant last and a complex
5565 expression first. We don't need to do this for comparisons here. */
5566 maybe_swap_commutative_operands (x);
5567
5568 /* Try to fold this expression in case we have constants that weren't
5569 present before. */
5570 temp = 0;
5571 switch (GET_RTX_CLASS (code))
5572 {
5573 case RTX_UNARY:
5574 if (op0_mode == VOIDmode)
5575 op0_mode = GET_MODE (XEXP (x, 0));
5576 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5577 break;
5578 case RTX_COMPARE:
5579 case RTX_COMM_COMPARE:
5580 {
5581 machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5582 if (cmp_mode == VOIDmode)
5583 {
5584 cmp_mode = GET_MODE (XEXP (x, 1));
5585 if (cmp_mode == VOIDmode)
5586 cmp_mode = op0_mode;
5587 }
5588 temp = simplify_relational_operation (code, mode, cmp_mode,
5589 XEXP (x, 0), XEXP (x, 1));
5590 }
5591 break;
5592 case RTX_COMM_ARITH:
5593 case RTX_BIN_ARITH:
5594 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5595 break;
5596 case RTX_BITFIELD_OPS:
5597 case RTX_TERNARY:
5598 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5599 XEXP (x, 1), XEXP (x, 2));
5600 break;
5601 default:
5602 break;
5603 }
5604
5605 if (temp)
5606 {
5607 x = temp;
5608 code = GET_CODE (temp);
5609 op0_mode = VOIDmode;
5610 mode = GET_MODE (temp);
5611 }
5612
5613 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5614 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5615 things. Check for cases where both arms are testing the same
5616 condition.
5617
5618 Don't do anything if all operands are very simple. */
5619
5620 if ((BINARY_P (x)
5621 && ((!OBJECT_P (XEXP (x, 0))
5622 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5623 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5624 || (!OBJECT_P (XEXP (x, 1))
5625 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5626 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5627 || (UNARY_P (x)
5628 && (!OBJECT_P (XEXP (x, 0))
5629 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5630 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5631 {
5632 rtx cond, true_rtx, false_rtx;
5633
5634 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5635 if (cond != 0
5636 /* If everything is a comparison, what we have is highly unlikely
5637 to be simpler, so don't use it. */
5638 && ! (COMPARISON_P (x)
5639 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
5640 {
5641 rtx cop1 = const0_rtx;
5642 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5643
5644 if (cond_code == NE && COMPARISON_P (cond))
5645 return x;
5646
5647 /* Simplify the alternative arms; this may collapse the true and
5648 false arms to store-flag values. Be careful to use copy_rtx
5649 here since true_rtx or false_rtx might share RTL with x as a
5650 result of the if_then_else_cond call above. */
5651 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5652 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5653
5654 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5655 is unlikely to be simpler. */
5656 if (general_operand (true_rtx, VOIDmode)
5657 && general_operand (false_rtx, VOIDmode))
5658 {
5659 enum rtx_code reversed;
5660
5661 /* Restarting if we generate a store-flag expression will cause
5662 us to loop. Just drop through in this case. */
5663
5664 /* If the result values are STORE_FLAG_VALUE and zero, we can
5665 just make the comparison operation. */
5666 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5667 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5668 cond, cop1);
5669 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5670 && ((reversed = reversed_comparison_code_parts
5671 (cond_code, cond, cop1, NULL))
5672 != UNKNOWN))
5673 x = simplify_gen_relational (reversed, mode, VOIDmode,
5674 cond, cop1);
5675
5676 /* Likewise, we can make the negate of a comparison operation
5677 if the result values are - STORE_FLAG_VALUE and zero. */
5678 else if (CONST_INT_P (true_rtx)
5679 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5680 && false_rtx == const0_rtx)
5681 x = simplify_gen_unary (NEG, mode,
5682 simplify_gen_relational (cond_code,
5683 mode, VOIDmode,
5684 cond, cop1),
5685 mode);
5686 else if (CONST_INT_P (false_rtx)
5687 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5688 && true_rtx == const0_rtx
5689 && ((reversed = reversed_comparison_code_parts
5690 (cond_code, cond, cop1, NULL))
5691 != UNKNOWN))
5692 x = simplify_gen_unary (NEG, mode,
5693 simplify_gen_relational (reversed,
5694 mode, VOIDmode,
5695 cond, cop1),
5696 mode);
5697 else
5698 return gen_rtx_IF_THEN_ELSE (mode,
5699 simplify_gen_relational (cond_code,
5700 mode,
5701 VOIDmode,
5702 cond,
5703 cop1),
5704 true_rtx, false_rtx);
5705
5706 code = GET_CODE (x);
5707 op0_mode = VOIDmode;
5708 }
5709 }
5710 }
5711
5712 /* First see if we can apply the inverse distributive law. */
5713 if (code == PLUS || code == MINUS
5714 || code == AND || code == IOR || code == XOR)
5715 {
5716 x = apply_distributive_law (x);
5717 code = GET_CODE (x);
5718 op0_mode = VOIDmode;
5719 }
5720
5721 /* If CODE is an associative operation not otherwise handled, see if we
5722 can associate some operands. This can win if they are constants or
5723 if they are logically related (i.e. (a & b) & a). */
5724 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5725 || code == AND || code == IOR || code == XOR
5726 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5727 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5728 || (flag_associative_math && FLOAT_MODE_P (mode))))
5729 {
5730 if (GET_CODE (XEXP (x, 0)) == code)
5731 {
5732 rtx other = XEXP (XEXP (x, 0), 0);
5733 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5734 rtx inner_op1 = XEXP (x, 1);
5735 rtx inner;
5736
5737 /* Make sure we pass the constant operand if any as the second
5738 one if this is a commutative operation. */
5739 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5740 std::swap (inner_op0, inner_op1);
5741 inner = simplify_binary_operation (code == MINUS ? PLUS
5742 : code == DIV ? MULT
5743 : code,
5744 mode, inner_op0, inner_op1);
5745
5746 /* For commutative operations, try the other pair if that one
5747 didn't simplify. */
5748 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5749 {
5750 other = XEXP (XEXP (x, 0), 1);
5751 inner = simplify_binary_operation (code, mode,
5752 XEXP (XEXP (x, 0), 0),
5753 XEXP (x, 1));
5754 }
5755
5756 if (inner)
5757 return simplify_gen_binary (code, mode, other, inner);
5758 }
5759 }
5760
5761 /* A little bit of algebraic simplification here. */
5762 switch (code)
5763 {
5764 case MEM:
5765 /* Ensure that our address has any ASHIFTs converted to MULT in case
5766 address-recognizing predicates are called later. */
5767 temp = make_compound_operation (XEXP (x, 0), MEM);
5768 SUBST (XEXP (x, 0), temp);
5769 break;
5770
5771 case SUBREG:
5772 if (op0_mode == VOIDmode)
5773 op0_mode = GET_MODE (SUBREG_REG (x));
5774
5775 /* See if this can be moved to simplify_subreg. */
5776 if (CONSTANT_P (SUBREG_REG (x))
5777 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5778 /* Don't call gen_lowpart if the inner mode
5779 is VOIDmode and we cannot simplify it, as SUBREG without
5780 inner mode is invalid. */
5781 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5782 || gen_lowpart_common (mode, SUBREG_REG (x))))
5783 return gen_lowpart (mode, SUBREG_REG (x));
5784
5785 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5786 break;
5787 {
5788 rtx temp;
5789 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5790 SUBREG_BYTE (x));
5791 if (temp)
5792 return temp;
5793
5794 /* If op is known to have all lower bits zero, the result is zero. */
5795 if (!in_dest
5796 && SCALAR_INT_MODE_P (mode)
5797 && SCALAR_INT_MODE_P (op0_mode)
5798 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (op0_mode)
5799 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5800 && HWI_COMPUTABLE_MODE_P (op0_mode)
5801 && (nonzero_bits (SUBREG_REG (x), op0_mode)
5802 & GET_MODE_MASK (mode)) == 0)
5803 return CONST0_RTX (mode);
5804 }
5805
5806 /* Don't change the mode of the MEM if that would change the meaning
5807 of the address. */
5808 if (MEM_P (SUBREG_REG (x))
5809 && (MEM_VOLATILE_P (SUBREG_REG (x))
5810 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
5811 MEM_ADDR_SPACE (SUBREG_REG (x)))))
5812 return gen_rtx_CLOBBER (mode, const0_rtx);
5813
5814 /* Note that we cannot do any narrowing for non-constants since
5815 we might have been counting on using the fact that some bits were
5816 zero. We now do this in the SET. */
5817
5818 break;
5819
5820 case NEG:
5821 temp = expand_compound_operation (XEXP (x, 0));
5822
5823 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5824 replaced by (lshiftrt X C). This will convert
5825 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5826
5827 if (GET_CODE (temp) == ASHIFTRT
5828 && CONST_INT_P (XEXP (temp, 1))
5829 && INTVAL (XEXP (temp, 1)) == GET_MODE_PRECISION (mode) - 1)
5830 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5831 INTVAL (XEXP (temp, 1)));
5832
5833 /* If X has only a single bit that might be nonzero, say, bit I, convert
5834 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5835 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5836 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5837 or a SUBREG of one since we'd be making the expression more
5838 complex if it was just a register. */
5839
5840 if (!REG_P (temp)
5841 && ! (GET_CODE (temp) == SUBREG
5842 && REG_P (SUBREG_REG (temp)))
5843 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
5844 {
5845 rtx temp1 = simplify_shift_const
5846 (NULL_RTX, ASHIFTRT, mode,
5847 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
5848 GET_MODE_PRECISION (mode) - 1 - i),
5849 GET_MODE_PRECISION (mode) - 1 - i);
5850
5851 /* If all we did was surround TEMP with the two shifts, we
5852 haven't improved anything, so don't use it. Otherwise,
5853 we are better off with TEMP1. */
5854 if (GET_CODE (temp1) != ASHIFTRT
5855 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5856 || XEXP (XEXP (temp1, 0), 0) != temp)
5857 return temp1;
5858 }
5859 break;
5860
5861 case TRUNCATE:
5862 /* We can't handle truncation to a partial integer mode here
5863 because we don't know the real bitsize of the partial
5864 integer mode. */
5865 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5866 break;
5867
5868 if (HWI_COMPUTABLE_MODE_P (mode))
5869 SUBST (XEXP (x, 0),
5870 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5871 GET_MODE_MASK (mode), 0));
5872
5873 /* We can truncate a constant value and return it. */
5874 if (CONST_INT_P (XEXP (x, 0)))
5875 return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5876
5877 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5878 whose value is a comparison can be replaced with a subreg if
5879 STORE_FLAG_VALUE permits. */
5880 if (HWI_COMPUTABLE_MODE_P (mode)
5881 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5882 && (temp = get_last_value (XEXP (x, 0)))
5883 && COMPARISON_P (temp))
5884 return gen_lowpart (mode, XEXP (x, 0));
5885 break;
5886
5887 case CONST:
5888 /* (const (const X)) can become (const X). Do it this way rather than
5889 returning the inner CONST since CONST can be shared with a
5890 REG_EQUAL note. */
5891 if (GET_CODE (XEXP (x, 0)) == CONST)
5892 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
5893 break;
5894
5895 case LO_SUM:
5896 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5897 can add in an offset. find_split_point will split this address up
5898 again if it doesn't match. */
5899 if (HAVE_lo_sum && GET_CODE (XEXP (x, 0)) == HIGH
5900 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5901 return XEXP (x, 1);
5902 break;
5903
5904 case PLUS:
5905 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5906 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5907 bit-field and can be replaced by either a sign_extend or a
5908 sign_extract. The `and' may be a zero_extend and the two
5909 <c>, -<c> constants may be reversed. */
5910 if (GET_CODE (XEXP (x, 0)) == XOR
5911 && CONST_INT_P (XEXP (x, 1))
5912 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
5913 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
5914 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
5915 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
5916 && HWI_COMPUTABLE_MODE_P (mode)
5917 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
5918 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5919 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
5920 == (HOST_WIDE_INT_1U << (i + 1)) - 1))
5921 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
5922 && (GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
5923 == (unsigned int) i + 1))))
5924 return simplify_shift_const
5925 (NULL_RTX, ASHIFTRT, mode,
5926 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5927 XEXP (XEXP (XEXP (x, 0), 0), 0),
5928 GET_MODE_PRECISION (mode) - (i + 1)),
5929 GET_MODE_PRECISION (mode) - (i + 1));
5930
5931 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5932 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5933 the bitsize of the mode - 1. This allows simplification of
5934 "a = (b & 8) == 0;" */
5935 if (XEXP (x, 1) == constm1_rtx
5936 && !REG_P (XEXP (x, 0))
5937 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5938 && REG_P (SUBREG_REG (XEXP (x, 0))))
5939 && nonzero_bits (XEXP (x, 0), mode) == 1)
5940 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
5941 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5942 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
5943 GET_MODE_PRECISION (mode) - 1),
5944 GET_MODE_PRECISION (mode) - 1);
5945
5946 /* If we are adding two things that have no bits in common, convert
5947 the addition into an IOR. This will often be further simplified,
5948 for example in cases like ((a & 1) + (a & 2)), which can
5949 become a & 3. */
5950
5951 if (HWI_COMPUTABLE_MODE_P (mode)
5952 && (nonzero_bits (XEXP (x, 0), mode)
5953 & nonzero_bits (XEXP (x, 1), mode)) == 0)
5954 {
5955 /* Try to simplify the expression further. */
5956 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
5957 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
5958
5959 /* If we could, great. If not, do not go ahead with the IOR
5960 replacement, since PLUS appears in many special purpose
5961 address arithmetic instructions. */
5962 if (GET_CODE (temp) != CLOBBER
5963 && (GET_CODE (temp) != IOR
5964 || ((XEXP (temp, 0) != XEXP (x, 0)
5965 || XEXP (temp, 1) != XEXP (x, 1))
5966 && (XEXP (temp, 0) != XEXP (x, 1)
5967 || XEXP (temp, 1) != XEXP (x, 0)))))
5968 return temp;
5969 }
5970
5971 /* Canonicalize x + x into x << 1. */
5972 if (GET_MODE_CLASS (mode) == MODE_INT
5973 && rtx_equal_p (XEXP (x, 0), XEXP (x, 1))
5974 && !side_effects_p (XEXP (x, 0)))
5975 return simplify_gen_binary (ASHIFT, mode, XEXP (x, 0), const1_rtx);
5976
5977 break;
5978
5979 case MINUS:
5980 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
5981 (and <foo> (const_int pow2-1)) */
5982 if (GET_CODE (XEXP (x, 1)) == AND
5983 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
5984 && pow2p_hwi (-UINTVAL (XEXP (XEXP (x, 1), 1)))
5985 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
5986 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
5987 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
5988 break;
5989
5990 case MULT:
5991 /* If we have (mult (plus A B) C), apply the distributive law and then
5992 the inverse distributive law to see if things simplify. This
5993 occurs mostly in addresses, often when unrolling loops. */
5994
5995 if (GET_CODE (XEXP (x, 0)) == PLUS)
5996 {
5997 rtx result = distribute_and_simplify_rtx (x, 0);
5998 if (result)
5999 return result;
6000 }
6001
6002 /* Try simplify a*(b/c) as (a*b)/c. */
6003 if (FLOAT_MODE_P (mode) && flag_associative_math
6004 && GET_CODE (XEXP (x, 0)) == DIV)
6005 {
6006 rtx tem = simplify_binary_operation (MULT, mode,
6007 XEXP (XEXP (x, 0), 0),
6008 XEXP (x, 1));
6009 if (tem)
6010 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
6011 }
6012 break;
6013
6014 case UDIV:
6015 /* If this is a divide by a power of two, treat it as a shift if
6016 its first operand is a shift. */
6017 if (CONST_INT_P (XEXP (x, 1))
6018 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
6019 && (GET_CODE (XEXP (x, 0)) == ASHIFT
6020 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
6021 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
6022 || GET_CODE (XEXP (x, 0)) == ROTATE
6023 || GET_CODE (XEXP (x, 0)) == ROTATERT))
6024 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
6025 break;
6026
6027 case EQ: case NE:
6028 case GT: case GTU: case GE: case GEU:
6029 case LT: case LTU: case LE: case LEU:
6030 case UNEQ: case LTGT:
6031 case UNGT: case UNGE:
6032 case UNLT: case UNLE:
6033 case UNORDERED: case ORDERED:
6034 /* If the first operand is a condition code, we can't do anything
6035 with it. */
6036 if (GET_CODE (XEXP (x, 0)) == COMPARE
6037 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
6038 && ! CC0_P (XEXP (x, 0))))
6039 {
6040 rtx op0 = XEXP (x, 0);
6041 rtx op1 = XEXP (x, 1);
6042 enum rtx_code new_code;
6043
6044 if (GET_CODE (op0) == COMPARE)
6045 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
6046
6047 /* Simplify our comparison, if possible. */
6048 new_code = simplify_comparison (code, &op0, &op1);
6049
6050 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
6051 if only the low-order bit is possibly nonzero in X (such as when
6052 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
6053 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
6054 known to be either 0 or -1, NE becomes a NEG and EQ becomes
6055 (plus X 1).
6056
6057 Remove any ZERO_EXTRACT we made when thinking this was a
6058 comparison. It may now be simpler to use, e.g., an AND. If a
6059 ZERO_EXTRACT is indeed appropriate, it will be placed back by
6060 the call to make_compound_operation in the SET case.
6061
6062 Don't apply these optimizations if the caller would
6063 prefer a comparison rather than a value.
6064 E.g., for the condition in an IF_THEN_ELSE most targets need
6065 an explicit comparison. */
6066
6067 if (in_cond)
6068 ;
6069
6070 else if (STORE_FLAG_VALUE == 1
6071 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6072 && op1 == const0_rtx
6073 && mode == GET_MODE (op0)
6074 && nonzero_bits (op0, mode) == 1)
6075 return gen_lowpart (mode,
6076 expand_compound_operation (op0));
6077
6078 else if (STORE_FLAG_VALUE == 1
6079 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6080 && op1 == const0_rtx
6081 && mode == GET_MODE (op0)
6082 && (num_sign_bit_copies (op0, mode)
6083 == GET_MODE_PRECISION (mode)))
6084 {
6085 op0 = expand_compound_operation (op0);
6086 return simplify_gen_unary (NEG, mode,
6087 gen_lowpart (mode, op0),
6088 mode);
6089 }
6090
6091 else if (STORE_FLAG_VALUE == 1
6092 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6093 && op1 == const0_rtx
6094 && mode == GET_MODE (op0)
6095 && nonzero_bits (op0, mode) == 1)
6096 {
6097 op0 = expand_compound_operation (op0);
6098 return simplify_gen_binary (XOR, mode,
6099 gen_lowpart (mode, op0),
6100 const1_rtx);
6101 }
6102
6103 else if (STORE_FLAG_VALUE == 1
6104 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6105 && op1 == const0_rtx
6106 && mode == GET_MODE (op0)
6107 && (num_sign_bit_copies (op0, mode)
6108 == GET_MODE_PRECISION (mode)))
6109 {
6110 op0 = expand_compound_operation (op0);
6111 return plus_constant (mode, gen_lowpart (mode, op0), 1);
6112 }
6113
6114 /* If STORE_FLAG_VALUE is -1, we have cases similar to
6115 those above. */
6116 if (in_cond)
6117 ;
6118
6119 else if (STORE_FLAG_VALUE == -1
6120 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6121 && op1 == const0_rtx
6122 && mode == GET_MODE (op0)
6123 && (num_sign_bit_copies (op0, mode)
6124 == GET_MODE_PRECISION (mode)))
6125 return gen_lowpart (mode,
6126 expand_compound_operation (op0));
6127
6128 else if (STORE_FLAG_VALUE == -1
6129 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6130 && op1 == const0_rtx
6131 && mode == GET_MODE (op0)
6132 && nonzero_bits (op0, mode) == 1)
6133 {
6134 op0 = expand_compound_operation (op0);
6135 return simplify_gen_unary (NEG, mode,
6136 gen_lowpart (mode, op0),
6137 mode);
6138 }
6139
6140 else if (STORE_FLAG_VALUE == -1
6141 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6142 && op1 == const0_rtx
6143 && mode == GET_MODE (op0)
6144 && (num_sign_bit_copies (op0, mode)
6145 == GET_MODE_PRECISION (mode)))
6146 {
6147 op0 = expand_compound_operation (op0);
6148 return simplify_gen_unary (NOT, mode,
6149 gen_lowpart (mode, op0),
6150 mode);
6151 }
6152
6153 /* If X is 0/1, (eq X 0) is X-1. */
6154 else if (STORE_FLAG_VALUE == -1
6155 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6156 && op1 == const0_rtx
6157 && mode == GET_MODE (op0)
6158 && nonzero_bits (op0, mode) == 1)
6159 {
6160 op0 = expand_compound_operation (op0);
6161 return plus_constant (mode, gen_lowpart (mode, op0), -1);
6162 }
6163
6164 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
6165 one bit that might be nonzero, we can convert (ne x 0) to
6166 (ashift x c) where C puts the bit in the sign bit. Remove any
6167 AND with STORE_FLAG_VALUE when we are done, since we are only
6168 going to test the sign bit. */
6169 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6170 && HWI_COMPUTABLE_MODE_P (mode)
6171 && val_signbit_p (mode, STORE_FLAG_VALUE)
6172 && op1 == const0_rtx
6173 && mode == GET_MODE (op0)
6174 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
6175 {
6176 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6177 expand_compound_operation (op0),
6178 GET_MODE_PRECISION (mode) - 1 - i);
6179 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
6180 return XEXP (x, 0);
6181 else
6182 return x;
6183 }
6184
6185 /* If the code changed, return a whole new comparison.
6186 We also need to avoid using SUBST in cases where
6187 simplify_comparison has widened a comparison with a CONST_INT,
6188 since in that case the wider CONST_INT may fail the sanity
6189 checks in do_SUBST. */
6190 if (new_code != code
6191 || (CONST_INT_P (op1)
6192 && GET_MODE (op0) != GET_MODE (XEXP (x, 0))
6193 && GET_MODE (op0) != GET_MODE (XEXP (x, 1))))
6194 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
6195
6196 /* Otherwise, keep this operation, but maybe change its operands.
6197 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
6198 SUBST (XEXP (x, 0), op0);
6199 SUBST (XEXP (x, 1), op1);
6200 }
6201 break;
6202
6203 case IF_THEN_ELSE:
6204 return simplify_if_then_else (x);
6205
6206 case ZERO_EXTRACT:
6207 case SIGN_EXTRACT:
6208 case ZERO_EXTEND:
6209 case SIGN_EXTEND:
6210 /* If we are processing SET_DEST, we are done. */
6211 if (in_dest)
6212 return x;
6213
6214 return expand_compound_operation (x);
6215
6216 case SET:
6217 return simplify_set (x);
6218
6219 case AND:
6220 case IOR:
6221 return simplify_logical (x);
6222
6223 case ASHIFT:
6224 case LSHIFTRT:
6225 case ASHIFTRT:
6226 case ROTATE:
6227 case ROTATERT:
6228 /* If this is a shift by a constant amount, simplify it. */
6229 if (CONST_INT_P (XEXP (x, 1)))
6230 return simplify_shift_const (x, code, mode, XEXP (x, 0),
6231 INTVAL (XEXP (x, 1)));
6232
6233 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
6234 SUBST (XEXP (x, 1),
6235 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
6236 (HOST_WIDE_INT_1U
6237 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
6238 - 1,
6239 0));
6240 break;
6241
6242 default:
6243 break;
6244 }
6245
6246 return x;
6247 }
6248 \f
6249 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
6250
6251 static rtx
6252 simplify_if_then_else (rtx x)
6253 {
6254 machine_mode mode = GET_MODE (x);
6255 rtx cond = XEXP (x, 0);
6256 rtx true_rtx = XEXP (x, 1);
6257 rtx false_rtx = XEXP (x, 2);
6258 enum rtx_code true_code = GET_CODE (cond);
6259 int comparison_p = COMPARISON_P (cond);
6260 rtx temp;
6261 int i;
6262 enum rtx_code false_code;
6263 rtx reversed;
6264
6265 /* Simplify storing of the truth value. */
6266 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
6267 return simplify_gen_relational (true_code, mode, VOIDmode,
6268 XEXP (cond, 0), XEXP (cond, 1));
6269
6270 /* Also when the truth value has to be reversed. */
6271 if (comparison_p
6272 && true_rtx == const0_rtx && false_rtx == const_true_rtx
6273 && (reversed = reversed_comparison (cond, mode)))
6274 return reversed;
6275
6276 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6277 in it is being compared against certain values. Get the true and false
6278 comparisons and see if that says anything about the value of each arm. */
6279
6280 if (comparison_p
6281 && ((false_code = reversed_comparison_code (cond, NULL))
6282 != UNKNOWN)
6283 && REG_P (XEXP (cond, 0)))
6284 {
6285 HOST_WIDE_INT nzb;
6286 rtx from = XEXP (cond, 0);
6287 rtx true_val = XEXP (cond, 1);
6288 rtx false_val = true_val;
6289 int swapped = 0;
6290
6291 /* If FALSE_CODE is EQ, swap the codes and arms. */
6292
6293 if (false_code == EQ)
6294 {
6295 swapped = 1, true_code = EQ, false_code = NE;
6296 std::swap (true_rtx, false_rtx);
6297 }
6298
6299 /* If we are comparing against zero and the expression being tested has
6300 only a single bit that might be nonzero, that is its value when it is
6301 not equal to zero. Similarly if it is known to be -1 or 0. */
6302
6303 if (true_code == EQ && true_val == const0_rtx
6304 && pow2p_hwi (nzb = nonzero_bits (from, GET_MODE (from))))
6305 {
6306 false_code = EQ;
6307 false_val = gen_int_mode (nzb, GET_MODE (from));
6308 }
6309 else if (true_code == EQ && true_val == const0_rtx
6310 && (num_sign_bit_copies (from, GET_MODE (from))
6311 == GET_MODE_PRECISION (GET_MODE (from))))
6312 {
6313 false_code = EQ;
6314 false_val = constm1_rtx;
6315 }
6316
6317 /* Now simplify an arm if we know the value of the register in the
6318 branch and it is used in the arm. Be careful due to the potential
6319 of locally-shared RTL. */
6320
6321 if (reg_mentioned_p (from, true_rtx))
6322 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
6323 from, true_val),
6324 pc_rtx, pc_rtx, 0, 0, 0);
6325 if (reg_mentioned_p (from, false_rtx))
6326 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
6327 from, false_val),
6328 pc_rtx, pc_rtx, 0, 0, 0);
6329
6330 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6331 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6332
6333 true_rtx = XEXP (x, 1);
6334 false_rtx = XEXP (x, 2);
6335 true_code = GET_CODE (cond);
6336 }
6337
6338 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6339 reversed, do so to avoid needing two sets of patterns for
6340 subtract-and-branch insns. Similarly if we have a constant in the true
6341 arm, the false arm is the same as the first operand of the comparison, or
6342 the false arm is more complicated than the true arm. */
6343
6344 if (comparison_p
6345 && reversed_comparison_code (cond, NULL) != UNKNOWN
6346 && (true_rtx == pc_rtx
6347 || (CONSTANT_P (true_rtx)
6348 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6349 || true_rtx == const0_rtx
6350 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6351 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6352 && !OBJECT_P (false_rtx))
6353 || reg_mentioned_p (true_rtx, false_rtx)
6354 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6355 {
6356 true_code = reversed_comparison_code (cond, NULL);
6357 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6358 SUBST (XEXP (x, 1), false_rtx);
6359 SUBST (XEXP (x, 2), true_rtx);
6360
6361 std::swap (true_rtx, false_rtx);
6362 cond = XEXP (x, 0);
6363
6364 /* It is possible that the conditional has been simplified out. */
6365 true_code = GET_CODE (cond);
6366 comparison_p = COMPARISON_P (cond);
6367 }
6368
6369 /* If the two arms are identical, we don't need the comparison. */
6370
6371 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6372 return true_rtx;
6373
6374 /* Convert a == b ? b : a to "a". */
6375 if (true_code == EQ && ! side_effects_p (cond)
6376 && !HONOR_NANS (mode)
6377 && rtx_equal_p (XEXP (cond, 0), false_rtx)
6378 && rtx_equal_p (XEXP (cond, 1), true_rtx))
6379 return false_rtx;
6380 else if (true_code == NE && ! side_effects_p (cond)
6381 && !HONOR_NANS (mode)
6382 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6383 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6384 return true_rtx;
6385
6386 /* Look for cases where we have (abs x) or (neg (abs X)). */
6387
6388 if (GET_MODE_CLASS (mode) == MODE_INT
6389 && comparison_p
6390 && XEXP (cond, 1) == const0_rtx
6391 && GET_CODE (false_rtx) == NEG
6392 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6393 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6394 && ! side_effects_p (true_rtx))
6395 switch (true_code)
6396 {
6397 case GT:
6398 case GE:
6399 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6400 case LT:
6401 case LE:
6402 return
6403 simplify_gen_unary (NEG, mode,
6404 simplify_gen_unary (ABS, mode, true_rtx, mode),
6405 mode);
6406 default:
6407 break;
6408 }
6409
6410 /* Look for MIN or MAX. */
6411
6412 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6413 && comparison_p
6414 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6415 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6416 && ! side_effects_p (cond))
6417 switch (true_code)
6418 {
6419 case GE:
6420 case GT:
6421 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6422 case LE:
6423 case LT:
6424 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6425 case GEU:
6426 case GTU:
6427 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6428 case LEU:
6429 case LTU:
6430 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6431 default:
6432 break;
6433 }
6434
6435 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6436 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6437 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6438 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6439 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6440 neither 1 or -1, but it isn't worth checking for. */
6441
6442 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6443 && comparison_p
6444 && GET_MODE_CLASS (mode) == MODE_INT
6445 && ! side_effects_p (x))
6446 {
6447 rtx t = make_compound_operation (true_rtx, SET);
6448 rtx f = make_compound_operation (false_rtx, SET);
6449 rtx cond_op0 = XEXP (cond, 0);
6450 rtx cond_op1 = XEXP (cond, 1);
6451 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6452 machine_mode m = mode;
6453 rtx z = 0, c1 = NULL_RTX;
6454
6455 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6456 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6457 || GET_CODE (t) == ASHIFT
6458 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6459 && rtx_equal_p (XEXP (t, 0), f))
6460 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6461
6462 /* If an identity-zero op is commutative, check whether there
6463 would be a match if we swapped the operands. */
6464 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6465 || GET_CODE (t) == XOR)
6466 && rtx_equal_p (XEXP (t, 1), f))
6467 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6468 else if (GET_CODE (t) == SIGN_EXTEND
6469 && (GET_CODE (XEXP (t, 0)) == PLUS
6470 || GET_CODE (XEXP (t, 0)) == MINUS
6471 || GET_CODE (XEXP (t, 0)) == IOR
6472 || GET_CODE (XEXP (t, 0)) == XOR
6473 || GET_CODE (XEXP (t, 0)) == ASHIFT
6474 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6475 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6476 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6477 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6478 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6479 && (num_sign_bit_copies (f, GET_MODE (f))
6480 > (unsigned int)
6481 (GET_MODE_PRECISION (mode)
6482 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 0))))))
6483 {
6484 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6485 extend_op = SIGN_EXTEND;
6486 m = GET_MODE (XEXP (t, 0));
6487 }
6488 else if (GET_CODE (t) == SIGN_EXTEND
6489 && (GET_CODE (XEXP (t, 0)) == PLUS
6490 || GET_CODE (XEXP (t, 0)) == IOR
6491 || GET_CODE (XEXP (t, 0)) == XOR)
6492 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6493 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6494 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6495 && (num_sign_bit_copies (f, GET_MODE (f))
6496 > (unsigned int)
6497 (GET_MODE_PRECISION (mode)
6498 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 1))))))
6499 {
6500 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6501 extend_op = SIGN_EXTEND;
6502 m = GET_MODE (XEXP (t, 0));
6503 }
6504 else if (GET_CODE (t) == ZERO_EXTEND
6505 && (GET_CODE (XEXP (t, 0)) == PLUS
6506 || GET_CODE (XEXP (t, 0)) == MINUS
6507 || GET_CODE (XEXP (t, 0)) == IOR
6508 || GET_CODE (XEXP (t, 0)) == XOR
6509 || GET_CODE (XEXP (t, 0)) == ASHIFT
6510 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6511 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6512 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6513 && HWI_COMPUTABLE_MODE_P (mode)
6514 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6515 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6516 && ((nonzero_bits (f, GET_MODE (f))
6517 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
6518 == 0))
6519 {
6520 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6521 extend_op = ZERO_EXTEND;
6522 m = GET_MODE (XEXP (t, 0));
6523 }
6524 else if (GET_CODE (t) == ZERO_EXTEND
6525 && (GET_CODE (XEXP (t, 0)) == PLUS
6526 || GET_CODE (XEXP (t, 0)) == IOR
6527 || GET_CODE (XEXP (t, 0)) == XOR)
6528 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6529 && HWI_COMPUTABLE_MODE_P (mode)
6530 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6531 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6532 && ((nonzero_bits (f, GET_MODE (f))
6533 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
6534 == 0))
6535 {
6536 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6537 extend_op = ZERO_EXTEND;
6538 m = GET_MODE (XEXP (t, 0));
6539 }
6540
6541 if (z)
6542 {
6543 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
6544 cond_op0, cond_op1),
6545 pc_rtx, pc_rtx, 0, 0, 0);
6546 temp = simplify_gen_binary (MULT, m, temp,
6547 simplify_gen_binary (MULT, m, c1,
6548 const_true_rtx));
6549 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6550 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6551
6552 if (extend_op != UNKNOWN)
6553 temp = simplify_gen_unary (extend_op, mode, temp, m);
6554
6555 return temp;
6556 }
6557 }
6558
6559 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6560 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6561 negation of a single bit, we can convert this operation to a shift. We
6562 can actually do this more generally, but it doesn't seem worth it. */
6563
6564 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6565 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6566 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
6567 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6568 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
6569 == GET_MODE_PRECISION (mode))
6570 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6571 return
6572 simplify_shift_const (NULL_RTX, ASHIFT, mode,
6573 gen_lowpart (mode, XEXP (cond, 0)), i);
6574
6575 /* (IF_THEN_ELSE (NE A 0) C1 0) is A or a zero-extend of A if the only
6576 non-zero bit in A is C1. */
6577 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6578 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6579 && INTEGRAL_MODE_P (GET_MODE (XEXP (cond, 0)))
6580 && (UINTVAL (true_rtx) & GET_MODE_MASK (mode))
6581 == nonzero_bits (XEXP (cond, 0), GET_MODE (XEXP (cond, 0)))
6582 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
6583 {
6584 rtx val = XEXP (cond, 0);
6585 enum machine_mode val_mode = GET_MODE (val);
6586 if (val_mode == mode)
6587 return val;
6588 else if (GET_MODE_PRECISION (val_mode) < GET_MODE_PRECISION (mode))
6589 return simplify_gen_unary (ZERO_EXTEND, mode, val, val_mode);
6590 }
6591
6592 return x;
6593 }
6594 \f
6595 /* Simplify X, a SET expression. Return the new expression. */
6596
6597 static rtx
6598 simplify_set (rtx x)
6599 {
6600 rtx src = SET_SRC (x);
6601 rtx dest = SET_DEST (x);
6602 machine_mode mode
6603 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6604 rtx_insn *other_insn;
6605 rtx *cc_use;
6606
6607 /* (set (pc) (return)) gets written as (return). */
6608 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6609 return src;
6610
6611 /* Now that we know for sure which bits of SRC we are using, see if we can
6612 simplify the expression for the object knowing that we only need the
6613 low-order bits. */
6614
6615 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6616 {
6617 src = force_to_mode (src, mode, HOST_WIDE_INT_M1U, 0);
6618 SUBST (SET_SRC (x), src);
6619 }
6620
6621 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6622 the comparison result and try to simplify it unless we already have used
6623 undobuf.other_insn. */
6624 if ((GET_MODE_CLASS (mode) == MODE_CC
6625 || GET_CODE (src) == COMPARE
6626 || CC0_P (dest))
6627 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6628 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6629 && COMPARISON_P (*cc_use)
6630 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6631 {
6632 enum rtx_code old_code = GET_CODE (*cc_use);
6633 enum rtx_code new_code;
6634 rtx op0, op1, tmp;
6635 int other_changed = 0;
6636 rtx inner_compare = NULL_RTX;
6637 machine_mode compare_mode = GET_MODE (dest);
6638
6639 if (GET_CODE (src) == COMPARE)
6640 {
6641 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6642 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6643 {
6644 inner_compare = op0;
6645 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6646 }
6647 }
6648 else
6649 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6650
6651 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6652 op0, op1);
6653 if (!tmp)
6654 new_code = old_code;
6655 else if (!CONSTANT_P (tmp))
6656 {
6657 new_code = GET_CODE (tmp);
6658 op0 = XEXP (tmp, 0);
6659 op1 = XEXP (tmp, 1);
6660 }
6661 else
6662 {
6663 rtx pat = PATTERN (other_insn);
6664 undobuf.other_insn = other_insn;
6665 SUBST (*cc_use, tmp);
6666
6667 /* Attempt to simplify CC user. */
6668 if (GET_CODE (pat) == SET)
6669 {
6670 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6671 if (new_rtx != NULL_RTX)
6672 SUBST (SET_SRC (pat), new_rtx);
6673 }
6674
6675 /* Convert X into a no-op move. */
6676 SUBST (SET_DEST (x), pc_rtx);
6677 SUBST (SET_SRC (x), pc_rtx);
6678 return x;
6679 }
6680
6681 /* Simplify our comparison, if possible. */
6682 new_code = simplify_comparison (new_code, &op0, &op1);
6683
6684 #ifdef SELECT_CC_MODE
6685 /* If this machine has CC modes other than CCmode, check to see if we
6686 need to use a different CC mode here. */
6687 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6688 compare_mode = GET_MODE (op0);
6689 else if (inner_compare
6690 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6691 && new_code == old_code
6692 && op0 == XEXP (inner_compare, 0)
6693 && op1 == XEXP (inner_compare, 1))
6694 compare_mode = GET_MODE (inner_compare);
6695 else
6696 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6697
6698 /* If the mode changed, we have to change SET_DEST, the mode in the
6699 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6700 a hard register, just build new versions with the proper mode. If it
6701 is a pseudo, we lose unless it is only time we set the pseudo, in
6702 which case we can safely change its mode. */
6703 if (!HAVE_cc0 && compare_mode != GET_MODE (dest))
6704 {
6705 if (can_change_dest_mode (dest, 0, compare_mode))
6706 {
6707 unsigned int regno = REGNO (dest);
6708 rtx new_dest;
6709
6710 if (regno < FIRST_PSEUDO_REGISTER)
6711 new_dest = gen_rtx_REG (compare_mode, regno);
6712 else
6713 {
6714 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6715 new_dest = regno_reg_rtx[regno];
6716 }
6717
6718 SUBST (SET_DEST (x), new_dest);
6719 SUBST (XEXP (*cc_use, 0), new_dest);
6720 other_changed = 1;
6721
6722 dest = new_dest;
6723 }
6724 }
6725 #endif /* SELECT_CC_MODE */
6726
6727 /* If the code changed, we have to build a new comparison in
6728 undobuf.other_insn. */
6729 if (new_code != old_code)
6730 {
6731 int other_changed_previously = other_changed;
6732 unsigned HOST_WIDE_INT mask;
6733 rtx old_cc_use = *cc_use;
6734
6735 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6736 dest, const0_rtx));
6737 other_changed = 1;
6738
6739 /* If the only change we made was to change an EQ into an NE or
6740 vice versa, OP0 has only one bit that might be nonzero, and OP1
6741 is zero, check if changing the user of the condition code will
6742 produce a valid insn. If it won't, we can keep the original code
6743 in that insn by surrounding our operation with an XOR. */
6744
6745 if (((old_code == NE && new_code == EQ)
6746 || (old_code == EQ && new_code == NE))
6747 && ! other_changed_previously && op1 == const0_rtx
6748 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6749 && pow2p_hwi (mask = nonzero_bits (op0, GET_MODE (op0))))
6750 {
6751 rtx pat = PATTERN (other_insn), note = 0;
6752
6753 if ((recog_for_combine (&pat, other_insn, &note) < 0
6754 && ! check_asm_operands (pat)))
6755 {
6756 *cc_use = old_cc_use;
6757 other_changed = 0;
6758
6759 op0 = simplify_gen_binary (XOR, GET_MODE (op0), op0,
6760 gen_int_mode (mask,
6761 GET_MODE (op0)));
6762 }
6763 }
6764 }
6765
6766 if (other_changed)
6767 undobuf.other_insn = other_insn;
6768
6769 /* Don't generate a compare of a CC with 0, just use that CC. */
6770 if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6771 {
6772 SUBST (SET_SRC (x), op0);
6773 src = SET_SRC (x);
6774 }
6775 /* Otherwise, if we didn't previously have the same COMPARE we
6776 want, create it from scratch. */
6777 else if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode
6778 || XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6779 {
6780 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6781 src = SET_SRC (x);
6782 }
6783 }
6784 else
6785 {
6786 /* Get SET_SRC in a form where we have placed back any
6787 compound expressions. Then do the checks below. */
6788 src = make_compound_operation (src, SET);
6789 SUBST (SET_SRC (x), src);
6790 }
6791
6792 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6793 and X being a REG or (subreg (reg)), we may be able to convert this to
6794 (set (subreg:m2 x) (op)).
6795
6796 We can always do this if M1 is narrower than M2 because that means that
6797 we only care about the low bits of the result.
6798
6799 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6800 perform a narrower operation than requested since the high-order bits will
6801 be undefined. On machine where it is defined, this transformation is safe
6802 as long as M1 and M2 have the same number of words. */
6803
6804 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6805 && !OBJECT_P (SUBREG_REG (src))
6806 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
6807 / UNITS_PER_WORD)
6808 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
6809 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
6810 && (WORD_REGISTER_OPERATIONS
6811 || (GET_MODE_SIZE (GET_MODE (src))
6812 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
6813 #ifdef CANNOT_CHANGE_MODE_CLASS
6814 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6815 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
6816 GET_MODE (SUBREG_REG (src)),
6817 GET_MODE (src)))
6818 #endif
6819 && (REG_P (dest)
6820 || (GET_CODE (dest) == SUBREG
6821 && REG_P (SUBREG_REG (dest)))))
6822 {
6823 SUBST (SET_DEST (x),
6824 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6825 dest));
6826 SUBST (SET_SRC (x), SUBREG_REG (src));
6827
6828 src = SET_SRC (x), dest = SET_DEST (x);
6829 }
6830
6831 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6832 in SRC. */
6833 if (dest == cc0_rtx
6834 && GET_CODE (src) == SUBREG
6835 && subreg_lowpart_p (src)
6836 && (GET_MODE_PRECISION (GET_MODE (src))
6837 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (src)))))
6838 {
6839 rtx inner = SUBREG_REG (src);
6840 machine_mode inner_mode = GET_MODE (inner);
6841
6842 /* Here we make sure that we don't have a sign bit on. */
6843 if (val_signbit_known_clear_p (GET_MODE (src),
6844 nonzero_bits (inner, inner_mode)))
6845 {
6846 SUBST (SET_SRC (x), inner);
6847 src = SET_SRC (x);
6848 }
6849 }
6850
6851 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6852 would require a paradoxical subreg. Replace the subreg with a
6853 zero_extend to avoid the reload that would otherwise be required. */
6854
6855 enum rtx_code extend_op;
6856 if (paradoxical_subreg_p (src)
6857 && MEM_P (SUBREG_REG (src))
6858 && (extend_op = load_extend_op (GET_MODE (SUBREG_REG (src)))) != UNKNOWN)
6859 {
6860 SUBST (SET_SRC (x),
6861 gen_rtx_fmt_e (extend_op, GET_MODE (src), SUBREG_REG (src)));
6862
6863 src = SET_SRC (x);
6864 }
6865
6866 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6867 are comparing an item known to be 0 or -1 against 0, use a logical
6868 operation instead. Check for one of the arms being an IOR of the other
6869 arm with some value. We compute three terms to be IOR'ed together. In
6870 practice, at most two will be nonzero. Then we do the IOR's. */
6871
6872 if (GET_CODE (dest) != PC
6873 && GET_CODE (src) == IF_THEN_ELSE
6874 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
6875 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
6876 && XEXP (XEXP (src, 0), 1) == const0_rtx
6877 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
6878 && (!HAVE_conditional_move
6879 || ! can_conditionally_move_p (GET_MODE (src)))
6880 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
6881 GET_MODE (XEXP (XEXP (src, 0), 0)))
6882 == GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (src, 0), 0))))
6883 && ! side_effects_p (src))
6884 {
6885 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
6886 ? XEXP (src, 1) : XEXP (src, 2));
6887 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
6888 ? XEXP (src, 2) : XEXP (src, 1));
6889 rtx term1 = const0_rtx, term2, term3;
6890
6891 if (GET_CODE (true_rtx) == IOR
6892 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
6893 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
6894 else if (GET_CODE (true_rtx) == IOR
6895 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
6896 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
6897 else if (GET_CODE (false_rtx) == IOR
6898 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
6899 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
6900 else if (GET_CODE (false_rtx) == IOR
6901 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
6902 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
6903
6904 term2 = simplify_gen_binary (AND, GET_MODE (src),
6905 XEXP (XEXP (src, 0), 0), true_rtx);
6906 term3 = simplify_gen_binary (AND, GET_MODE (src),
6907 simplify_gen_unary (NOT, GET_MODE (src),
6908 XEXP (XEXP (src, 0), 0),
6909 GET_MODE (src)),
6910 false_rtx);
6911
6912 SUBST (SET_SRC (x),
6913 simplify_gen_binary (IOR, GET_MODE (src),
6914 simplify_gen_binary (IOR, GET_MODE (src),
6915 term1, term2),
6916 term3));
6917
6918 src = SET_SRC (x);
6919 }
6920
6921 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6922 whole thing fail. */
6923 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
6924 return src;
6925 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
6926 return dest;
6927 else
6928 /* Convert this into a field assignment operation, if possible. */
6929 return make_field_assignment (x);
6930 }
6931 \f
6932 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6933 result. */
6934
6935 static rtx
6936 simplify_logical (rtx x)
6937 {
6938 machine_mode mode = GET_MODE (x);
6939 rtx op0 = XEXP (x, 0);
6940 rtx op1 = XEXP (x, 1);
6941
6942 switch (GET_CODE (x))
6943 {
6944 case AND:
6945 /* We can call simplify_and_const_int only if we don't lose
6946 any (sign) bits when converting INTVAL (op1) to
6947 "unsigned HOST_WIDE_INT". */
6948 if (CONST_INT_P (op1)
6949 && (HWI_COMPUTABLE_MODE_P (mode)
6950 || INTVAL (op1) > 0))
6951 {
6952 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
6953 if (GET_CODE (x) != AND)
6954 return x;
6955
6956 op0 = XEXP (x, 0);
6957 op1 = XEXP (x, 1);
6958 }
6959
6960 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
6961 apply the distributive law and then the inverse distributive
6962 law to see if things simplify. */
6963 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
6964 {
6965 rtx result = distribute_and_simplify_rtx (x, 0);
6966 if (result)
6967 return result;
6968 }
6969 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
6970 {
6971 rtx result = distribute_and_simplify_rtx (x, 1);
6972 if (result)
6973 return result;
6974 }
6975 break;
6976
6977 case IOR:
6978 /* If we have (ior (and A B) C), apply the distributive law and then
6979 the inverse distributive law to see if things simplify. */
6980
6981 if (GET_CODE (op0) == AND)
6982 {
6983 rtx result = distribute_and_simplify_rtx (x, 0);
6984 if (result)
6985 return result;
6986 }
6987
6988 if (GET_CODE (op1) == AND)
6989 {
6990 rtx result = distribute_and_simplify_rtx (x, 1);
6991 if (result)
6992 return result;
6993 }
6994 break;
6995
6996 default:
6997 gcc_unreachable ();
6998 }
6999
7000 return x;
7001 }
7002 \f
7003 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
7004 operations" because they can be replaced with two more basic operations.
7005 ZERO_EXTEND is also considered "compound" because it can be replaced with
7006 an AND operation, which is simpler, though only one operation.
7007
7008 The function expand_compound_operation is called with an rtx expression
7009 and will convert it to the appropriate shifts and AND operations,
7010 simplifying at each stage.
7011
7012 The function make_compound_operation is called to convert an expression
7013 consisting of shifts and ANDs into the equivalent compound expression.
7014 It is the inverse of this function, loosely speaking. */
7015
7016 static rtx
7017 expand_compound_operation (rtx x)
7018 {
7019 unsigned HOST_WIDE_INT pos = 0, len;
7020 int unsignedp = 0;
7021 unsigned int modewidth;
7022 rtx tem;
7023
7024 switch (GET_CODE (x))
7025 {
7026 case ZERO_EXTEND:
7027 unsignedp = 1;
7028 /* FALLTHRU */
7029 case SIGN_EXTEND:
7030 /* We can't necessarily use a const_int for a multiword mode;
7031 it depends on implicitly extending the value.
7032 Since we don't know the right way to extend it,
7033 we can't tell whether the implicit way is right.
7034
7035 Even for a mode that is no wider than a const_int,
7036 we can't win, because we need to sign extend one of its bits through
7037 the rest of it, and we don't know which bit. */
7038 if (CONST_INT_P (XEXP (x, 0)))
7039 return x;
7040
7041 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
7042 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
7043 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
7044 reloaded. If not for that, MEM's would very rarely be safe.
7045
7046 Reject MODEs bigger than a word, because we might not be able
7047 to reference a two-register group starting with an arbitrary register
7048 (and currently gen_lowpart might crash for a SUBREG). */
7049
7050 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
7051 return x;
7052
7053 /* Reject MODEs that aren't scalar integers because turning vector
7054 or complex modes into shifts causes problems. */
7055
7056 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
7057 return x;
7058
7059 len = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
7060 /* If the inner object has VOIDmode (the only way this can happen
7061 is if it is an ASM_OPERANDS), we can't do anything since we don't
7062 know how much masking to do. */
7063 if (len == 0)
7064 return x;
7065
7066 break;
7067
7068 case ZERO_EXTRACT:
7069 unsignedp = 1;
7070
7071 /* fall through */
7072
7073 case SIGN_EXTRACT:
7074 /* If the operand is a CLOBBER, just return it. */
7075 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
7076 return XEXP (x, 0);
7077
7078 if (!CONST_INT_P (XEXP (x, 1))
7079 || !CONST_INT_P (XEXP (x, 2))
7080 || GET_MODE (XEXP (x, 0)) == VOIDmode)
7081 return x;
7082
7083 /* Reject MODEs that aren't scalar integers because turning vector
7084 or complex modes into shifts causes problems. */
7085
7086 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
7087 return x;
7088
7089 len = INTVAL (XEXP (x, 1));
7090 pos = INTVAL (XEXP (x, 2));
7091
7092 /* This should stay within the object being extracted, fail otherwise. */
7093 if (len + pos > GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))))
7094 return x;
7095
7096 if (BITS_BIG_ENDIAN)
7097 pos = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))) - len - pos;
7098
7099 break;
7100
7101 default:
7102 return x;
7103 }
7104 /* Convert sign extension to zero extension, if we know that the high
7105 bit is not set, as this is easier to optimize. It will be converted
7106 back to cheaper alternative in make_extraction. */
7107 if (GET_CODE (x) == SIGN_EXTEND
7108 && (HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7109 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7110 & ~(((unsigned HOST_WIDE_INT)
7111 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
7112 >> 1))
7113 == 0)))
7114 {
7115 machine_mode mode = GET_MODE (x);
7116 rtx temp = gen_rtx_ZERO_EXTEND (mode, XEXP (x, 0));
7117 rtx temp2 = expand_compound_operation (temp);
7118
7119 /* Make sure this is a profitable operation. */
7120 if (set_src_cost (x, mode, optimize_this_for_speed_p)
7121 > set_src_cost (temp2, mode, optimize_this_for_speed_p))
7122 return temp2;
7123 else if (set_src_cost (x, mode, optimize_this_for_speed_p)
7124 > set_src_cost (temp, mode, optimize_this_for_speed_p))
7125 return temp;
7126 else
7127 return x;
7128 }
7129
7130 /* We can optimize some special cases of ZERO_EXTEND. */
7131 if (GET_CODE (x) == ZERO_EXTEND)
7132 {
7133 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
7134 know that the last value didn't have any inappropriate bits
7135 set. */
7136 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7137 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
7138 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7139 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
7140 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7141 return XEXP (XEXP (x, 0), 0);
7142
7143 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7144 if (GET_CODE (XEXP (x, 0)) == SUBREG
7145 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
7146 && subreg_lowpart_p (XEXP (x, 0))
7147 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7148 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
7149 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7150 return SUBREG_REG (XEXP (x, 0));
7151
7152 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
7153 is a comparison and STORE_FLAG_VALUE permits. This is like
7154 the first case, but it works even when GET_MODE (x) is larger
7155 than HOST_WIDE_INT. */
7156 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7157 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
7158 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
7159 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
7160 <= HOST_BITS_PER_WIDE_INT)
7161 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7162 return XEXP (XEXP (x, 0), 0);
7163
7164 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7165 if (GET_CODE (XEXP (x, 0)) == SUBREG
7166 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
7167 && subreg_lowpart_p (XEXP (x, 0))
7168 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
7169 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
7170 <= HOST_BITS_PER_WIDE_INT)
7171 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7172 return SUBREG_REG (XEXP (x, 0));
7173
7174 }
7175
7176 /* If we reach here, we want to return a pair of shifts. The inner
7177 shift is a left shift of BITSIZE - POS - LEN bits. The outer
7178 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
7179 logical depending on the value of UNSIGNEDP.
7180
7181 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
7182 converted into an AND of a shift.
7183
7184 We must check for the case where the left shift would have a negative
7185 count. This can happen in a case like (x >> 31) & 255 on machines
7186 that can't shift by a constant. On those machines, we would first
7187 combine the shift with the AND to produce a variable-position
7188 extraction. Then the constant of 31 would be substituted in
7189 to produce such a position. */
7190
7191 modewidth = GET_MODE_PRECISION (GET_MODE (x));
7192 if (modewidth >= pos + len)
7193 {
7194 machine_mode mode = GET_MODE (x);
7195 tem = gen_lowpart (mode, XEXP (x, 0));
7196 if (!tem || GET_CODE (tem) == CLOBBER)
7197 return x;
7198 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
7199 tem, modewidth - pos - len);
7200 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
7201 mode, tem, modewidth - len);
7202 }
7203 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
7204 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
7205 simplify_shift_const (NULL_RTX, LSHIFTRT,
7206 GET_MODE (x),
7207 XEXP (x, 0), pos),
7208 (HOST_WIDE_INT_1U << len) - 1);
7209 else
7210 /* Any other cases we can't handle. */
7211 return x;
7212
7213 /* If we couldn't do this for some reason, return the original
7214 expression. */
7215 if (GET_CODE (tem) == CLOBBER)
7216 return x;
7217
7218 return tem;
7219 }
7220 \f
7221 /* X is a SET which contains an assignment of one object into
7222 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
7223 or certain SUBREGS). If possible, convert it into a series of
7224 logical operations.
7225
7226 We half-heartedly support variable positions, but do not at all
7227 support variable lengths. */
7228
7229 static const_rtx
7230 expand_field_assignment (const_rtx x)
7231 {
7232 rtx inner;
7233 rtx pos; /* Always counts from low bit. */
7234 int len;
7235 rtx mask, cleared, masked;
7236 machine_mode compute_mode;
7237
7238 /* Loop until we find something we can't simplify. */
7239 while (1)
7240 {
7241 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
7242 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
7243 {
7244 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
7245 len = GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0)));
7246 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
7247 }
7248 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
7249 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
7250 {
7251 inner = XEXP (SET_DEST (x), 0);
7252 len = INTVAL (XEXP (SET_DEST (x), 1));
7253 pos = XEXP (SET_DEST (x), 2);
7254
7255 /* A constant position should stay within the width of INNER. */
7256 if (CONST_INT_P (pos)
7257 && INTVAL (pos) + len > GET_MODE_PRECISION (GET_MODE (inner)))
7258 break;
7259
7260 if (BITS_BIG_ENDIAN)
7261 {
7262 if (CONST_INT_P (pos))
7263 pos = GEN_INT (GET_MODE_PRECISION (GET_MODE (inner)) - len
7264 - INTVAL (pos));
7265 else if (GET_CODE (pos) == MINUS
7266 && CONST_INT_P (XEXP (pos, 1))
7267 && (INTVAL (XEXP (pos, 1))
7268 == GET_MODE_PRECISION (GET_MODE (inner)) - len))
7269 /* If position is ADJUST - X, new position is X. */
7270 pos = XEXP (pos, 0);
7271 else
7272 {
7273 HOST_WIDE_INT prec = GET_MODE_PRECISION (GET_MODE (inner));
7274 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
7275 gen_int_mode (prec - len,
7276 GET_MODE (pos)),
7277 pos);
7278 }
7279 }
7280 }
7281
7282 /* A SUBREG between two modes that occupy the same numbers of words
7283 can be done by moving the SUBREG to the source. */
7284 else if (GET_CODE (SET_DEST (x)) == SUBREG
7285 /* We need SUBREGs to compute nonzero_bits properly. */
7286 && nonzero_sign_valid
7287 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
7288 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
7289 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
7290 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
7291 {
7292 x = gen_rtx_SET (SUBREG_REG (SET_DEST (x)),
7293 gen_lowpart
7294 (GET_MODE (SUBREG_REG (SET_DEST (x))),
7295 SET_SRC (x)));
7296 continue;
7297 }
7298 else
7299 break;
7300
7301 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7302 inner = SUBREG_REG (inner);
7303
7304 compute_mode = GET_MODE (inner);
7305
7306 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7307 if (! SCALAR_INT_MODE_P (compute_mode))
7308 {
7309 machine_mode imode;
7310
7311 /* Don't do anything for vector or complex integral types. */
7312 if (! FLOAT_MODE_P (compute_mode))
7313 break;
7314
7315 /* Try to find an integral mode to pun with. */
7316 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
7317 if (imode == BLKmode)
7318 break;
7319
7320 compute_mode = imode;
7321 inner = gen_lowpart (imode, inner);
7322 }
7323
7324 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7325 if (len >= HOST_BITS_PER_WIDE_INT)
7326 break;
7327
7328 /* Don't try to compute in too wide unsupported modes. */
7329 if (!targetm.scalar_mode_supported_p (compute_mode))
7330 break;
7331
7332 /* Now compute the equivalent expression. Make a copy of INNER
7333 for the SET_DEST in case it is a MEM into which we will substitute;
7334 we don't want shared RTL in that case. */
7335 mask = gen_int_mode ((HOST_WIDE_INT_1U << len) - 1,
7336 compute_mode);
7337 cleared = simplify_gen_binary (AND, compute_mode,
7338 simplify_gen_unary (NOT, compute_mode,
7339 simplify_gen_binary (ASHIFT,
7340 compute_mode,
7341 mask, pos),
7342 compute_mode),
7343 inner);
7344 masked = simplify_gen_binary (ASHIFT, compute_mode,
7345 simplify_gen_binary (
7346 AND, compute_mode,
7347 gen_lowpart (compute_mode, SET_SRC (x)),
7348 mask),
7349 pos);
7350
7351 x = gen_rtx_SET (copy_rtx (inner),
7352 simplify_gen_binary (IOR, compute_mode,
7353 cleared, masked));
7354 }
7355
7356 return x;
7357 }
7358 \f
7359 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7360 it is an RTX that represents the (variable) starting position; otherwise,
7361 POS is the (constant) starting bit position. Both are counted from the LSB.
7362
7363 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7364
7365 IN_DEST is nonzero if this is a reference in the destination of a SET.
7366 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7367 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7368 be used.
7369
7370 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7371 ZERO_EXTRACT should be built even for bits starting at bit 0.
7372
7373 MODE is the desired mode of the result (if IN_DEST == 0).
7374
7375 The result is an RTX for the extraction or NULL_RTX if the target
7376 can't handle it. */
7377
7378 static rtx
7379 make_extraction (machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7380 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7381 int in_dest, int in_compare)
7382 {
7383 /* This mode describes the size of the storage area
7384 to fetch the overall value from. Within that, we
7385 ignore the POS lowest bits, etc. */
7386 machine_mode is_mode = GET_MODE (inner);
7387 machine_mode inner_mode;
7388 machine_mode wanted_inner_mode;
7389 machine_mode wanted_inner_reg_mode = word_mode;
7390 machine_mode pos_mode = word_mode;
7391 machine_mode extraction_mode = word_mode;
7392 machine_mode tmode = mode_for_size (len, MODE_INT, 1);
7393 rtx new_rtx = 0;
7394 rtx orig_pos_rtx = pos_rtx;
7395 HOST_WIDE_INT orig_pos;
7396
7397 if (pos_rtx && CONST_INT_P (pos_rtx))
7398 pos = INTVAL (pos_rtx), pos_rtx = 0;
7399
7400 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7401 {
7402 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7403 consider just the QI as the memory to extract from.
7404 The subreg adds or removes high bits; its mode is
7405 irrelevant to the meaning of this extraction,
7406 since POS and LEN count from the lsb. */
7407 if (MEM_P (SUBREG_REG (inner)))
7408 is_mode = GET_MODE (SUBREG_REG (inner));
7409 inner = SUBREG_REG (inner);
7410 }
7411 else if (GET_CODE (inner) == ASHIFT
7412 && CONST_INT_P (XEXP (inner, 1))
7413 && pos_rtx == 0 && pos == 0
7414 && len > UINTVAL (XEXP (inner, 1)))
7415 {
7416 /* We're extracting the least significant bits of an rtx
7417 (ashift X (const_int C)), where LEN > C. Extract the
7418 least significant (LEN - C) bits of X, giving an rtx
7419 whose mode is MODE, then shift it left C times. */
7420 new_rtx = make_extraction (mode, XEXP (inner, 0),
7421 0, 0, len - INTVAL (XEXP (inner, 1)),
7422 unsignedp, in_dest, in_compare);
7423 if (new_rtx != 0)
7424 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7425 }
7426 else if (GET_CODE (inner) == TRUNCATE)
7427 inner = XEXP (inner, 0);
7428
7429 inner_mode = GET_MODE (inner);
7430
7431 /* See if this can be done without an extraction. We never can if the
7432 width of the field is not the same as that of some integer mode. For
7433 registers, we can only avoid the extraction if the position is at the
7434 low-order bit and this is either not in the destination or we have the
7435 appropriate STRICT_LOW_PART operation available.
7436
7437 For MEM, we can avoid an extract if the field starts on an appropriate
7438 boundary and we can change the mode of the memory reference. */
7439
7440 if (tmode != BLKmode
7441 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7442 && !MEM_P (inner)
7443 && (pos == 0 || REG_P (inner))
7444 && (inner_mode == tmode
7445 || !REG_P (inner)
7446 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7447 || reg_truncated_to_mode (tmode, inner))
7448 && (! in_dest
7449 || (REG_P (inner)
7450 && have_insn_for (STRICT_LOW_PART, tmode))))
7451 || (MEM_P (inner) && pos_rtx == 0
7452 && (pos
7453 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7454 : BITS_PER_UNIT)) == 0
7455 /* We can't do this if we are widening INNER_MODE (it
7456 may not be aligned, for one thing). */
7457 && GET_MODE_PRECISION (inner_mode) >= GET_MODE_PRECISION (tmode)
7458 && (inner_mode == tmode
7459 || (! mode_dependent_address_p (XEXP (inner, 0),
7460 MEM_ADDR_SPACE (inner))
7461 && ! MEM_VOLATILE_P (inner))))))
7462 {
7463 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7464 field. If the original and current mode are the same, we need not
7465 adjust the offset. Otherwise, we do if bytes big endian.
7466
7467 If INNER is not a MEM, get a piece consisting of just the field
7468 of interest (in this case POS % BITS_PER_WORD must be 0). */
7469
7470 if (MEM_P (inner))
7471 {
7472 HOST_WIDE_INT offset;
7473
7474 /* POS counts from lsb, but make OFFSET count in memory order. */
7475 if (BYTES_BIG_ENDIAN)
7476 offset = (GET_MODE_PRECISION (is_mode) - len - pos) / BITS_PER_UNIT;
7477 else
7478 offset = pos / BITS_PER_UNIT;
7479
7480 new_rtx = adjust_address_nv (inner, tmode, offset);
7481 }
7482 else if (REG_P (inner))
7483 {
7484 if (tmode != inner_mode)
7485 {
7486 /* We can't call gen_lowpart in a DEST since we
7487 always want a SUBREG (see below) and it would sometimes
7488 return a new hard register. */
7489 if (pos || in_dest)
7490 {
7491 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
7492
7493 if (WORDS_BIG_ENDIAN
7494 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7495 final_word = ((GET_MODE_SIZE (inner_mode)
7496 - GET_MODE_SIZE (tmode))
7497 / UNITS_PER_WORD) - final_word;
7498
7499 final_word *= UNITS_PER_WORD;
7500 if (BYTES_BIG_ENDIAN &&
7501 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
7502 final_word += (GET_MODE_SIZE (inner_mode)
7503 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
7504
7505 /* Avoid creating invalid subregs, for example when
7506 simplifying (x>>32)&255. */
7507 if (!validate_subreg (tmode, inner_mode, inner, final_word))
7508 return NULL_RTX;
7509
7510 new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
7511 }
7512 else
7513 new_rtx = gen_lowpart (tmode, inner);
7514 }
7515 else
7516 new_rtx = inner;
7517 }
7518 else
7519 new_rtx = force_to_mode (inner, tmode,
7520 len >= HOST_BITS_PER_WIDE_INT
7521 ? HOST_WIDE_INT_M1U
7522 : (HOST_WIDE_INT_1U << len) - 1, 0);
7523
7524 /* If this extraction is going into the destination of a SET,
7525 make a STRICT_LOW_PART unless we made a MEM. */
7526
7527 if (in_dest)
7528 return (MEM_P (new_rtx) ? new_rtx
7529 : (GET_CODE (new_rtx) != SUBREG
7530 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7531 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7532
7533 if (mode == tmode)
7534 return new_rtx;
7535
7536 if (CONST_SCALAR_INT_P (new_rtx))
7537 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7538 mode, new_rtx, tmode);
7539
7540 /* If we know that no extraneous bits are set, and that the high
7541 bit is not set, convert the extraction to the cheaper of
7542 sign and zero extension, that are equivalent in these cases. */
7543 if (flag_expensive_optimizations
7544 && (HWI_COMPUTABLE_MODE_P (tmode)
7545 && ((nonzero_bits (new_rtx, tmode)
7546 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7547 == 0)))
7548 {
7549 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7550 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7551
7552 /* Prefer ZERO_EXTENSION, since it gives more information to
7553 backends. */
7554 if (set_src_cost (temp, mode, optimize_this_for_speed_p)
7555 <= set_src_cost (temp1, mode, optimize_this_for_speed_p))
7556 return temp;
7557 return temp1;
7558 }
7559
7560 /* Otherwise, sign- or zero-extend unless we already are in the
7561 proper mode. */
7562
7563 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7564 mode, new_rtx));
7565 }
7566
7567 /* Unless this is a COMPARE or we have a funny memory reference,
7568 don't do anything with zero-extending field extracts starting at
7569 the low-order bit since they are simple AND operations. */
7570 if (pos_rtx == 0 && pos == 0 && ! in_dest
7571 && ! in_compare && unsignedp)
7572 return 0;
7573
7574 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7575 if the position is not a constant and the length is not 1. In all
7576 other cases, we would only be going outside our object in cases when
7577 an original shift would have been undefined. */
7578 if (MEM_P (inner)
7579 && ((pos_rtx == 0 && pos + len > GET_MODE_PRECISION (is_mode))
7580 || (pos_rtx != 0 && len != 1)))
7581 return 0;
7582
7583 enum extraction_pattern pattern = (in_dest ? EP_insv
7584 : unsignedp ? EP_extzv : EP_extv);
7585
7586 /* If INNER is not from memory, we want it to have the mode of a register
7587 extraction pattern's structure operand, or word_mode if there is no
7588 such pattern. The same applies to extraction_mode and pos_mode
7589 and their respective operands.
7590
7591 For memory, assume that the desired extraction_mode and pos_mode
7592 are the same as for a register operation, since at present we don't
7593 have named patterns for aligned memory structures. */
7594 struct extraction_insn insn;
7595 if (get_best_reg_extraction_insn (&insn, pattern,
7596 GET_MODE_BITSIZE (inner_mode), mode))
7597 {
7598 wanted_inner_reg_mode = insn.struct_mode;
7599 pos_mode = insn.pos_mode;
7600 extraction_mode = insn.field_mode;
7601 }
7602
7603 /* Never narrow an object, since that might not be safe. */
7604
7605 if (mode != VOIDmode
7606 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
7607 extraction_mode = mode;
7608
7609 if (!MEM_P (inner))
7610 wanted_inner_mode = wanted_inner_reg_mode;
7611 else
7612 {
7613 /* Be careful not to go beyond the extracted object and maintain the
7614 natural alignment of the memory. */
7615 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
7616 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7617 > GET_MODE_BITSIZE (wanted_inner_mode))
7618 {
7619 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
7620 gcc_assert (wanted_inner_mode != VOIDmode);
7621 }
7622 }
7623
7624 orig_pos = pos;
7625
7626 if (BITS_BIG_ENDIAN)
7627 {
7628 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7629 BITS_BIG_ENDIAN style. If position is constant, compute new
7630 position. Otherwise, build subtraction.
7631 Note that POS is relative to the mode of the original argument.
7632 If it's a MEM we need to recompute POS relative to that.
7633 However, if we're extracting from (or inserting into) a register,
7634 we want to recompute POS relative to wanted_inner_mode. */
7635 int width = (MEM_P (inner)
7636 ? GET_MODE_BITSIZE (is_mode)
7637 : GET_MODE_BITSIZE (wanted_inner_mode));
7638
7639 if (pos_rtx == 0)
7640 pos = width - len - pos;
7641 else
7642 pos_rtx
7643 = gen_rtx_MINUS (GET_MODE (pos_rtx),
7644 gen_int_mode (width - len, GET_MODE (pos_rtx)),
7645 pos_rtx);
7646 /* POS may be less than 0 now, but we check for that below.
7647 Note that it can only be less than 0 if !MEM_P (inner). */
7648 }
7649
7650 /* If INNER has a wider mode, and this is a constant extraction, try to
7651 make it smaller and adjust the byte to point to the byte containing
7652 the value. */
7653 if (wanted_inner_mode != VOIDmode
7654 && inner_mode != wanted_inner_mode
7655 && ! pos_rtx
7656 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
7657 && MEM_P (inner)
7658 && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7659 && ! MEM_VOLATILE_P (inner))
7660 {
7661 int offset = 0;
7662
7663 /* The computations below will be correct if the machine is big
7664 endian in both bits and bytes or little endian in bits and bytes.
7665 If it is mixed, we must adjust. */
7666
7667 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7668 adjust OFFSET to compensate. */
7669 if (BYTES_BIG_ENDIAN
7670 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
7671 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7672
7673 /* We can now move to the desired byte. */
7674 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7675 * GET_MODE_SIZE (wanted_inner_mode);
7676 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7677
7678 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7679 && is_mode != wanted_inner_mode)
7680 offset = (GET_MODE_SIZE (is_mode)
7681 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7682
7683 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7684 }
7685
7686 /* If INNER is not memory, get it into the proper mode. If we are changing
7687 its mode, POS must be a constant and smaller than the size of the new
7688 mode. */
7689 else if (!MEM_P (inner))
7690 {
7691 /* On the LHS, don't create paradoxical subregs implicitely truncating
7692 the register unless TRULY_NOOP_TRUNCATION. */
7693 if (in_dest
7694 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7695 wanted_inner_mode))
7696 return NULL_RTX;
7697
7698 if (GET_MODE (inner) != wanted_inner_mode
7699 && (pos_rtx != 0
7700 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7701 return NULL_RTX;
7702
7703 if (orig_pos < 0)
7704 return NULL_RTX;
7705
7706 inner = force_to_mode (inner, wanted_inner_mode,
7707 pos_rtx
7708 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7709 ? HOST_WIDE_INT_M1U
7710 : (((HOST_WIDE_INT_1U << len) - 1)
7711 << orig_pos),
7712 0);
7713 }
7714
7715 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7716 have to zero extend. Otherwise, we can just use a SUBREG. */
7717 if (pos_rtx != 0
7718 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
7719 {
7720 rtx temp = simplify_gen_unary (ZERO_EXTEND, pos_mode, pos_rtx,
7721 GET_MODE (pos_rtx));
7722
7723 /* If we know that no extraneous bits are set, and that the high
7724 bit is not set, convert extraction to cheaper one - either
7725 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7726 cases. */
7727 if (flag_expensive_optimizations
7728 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7729 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7730 & ~(((unsigned HOST_WIDE_INT)
7731 GET_MODE_MASK (GET_MODE (pos_rtx)))
7732 >> 1))
7733 == 0)))
7734 {
7735 rtx temp1 = simplify_gen_unary (SIGN_EXTEND, pos_mode, pos_rtx,
7736 GET_MODE (pos_rtx));
7737
7738 /* Prefer ZERO_EXTENSION, since it gives more information to
7739 backends. */
7740 if (set_src_cost (temp1, pos_mode, optimize_this_for_speed_p)
7741 < set_src_cost (temp, pos_mode, optimize_this_for_speed_p))
7742 temp = temp1;
7743 }
7744 pos_rtx = temp;
7745 }
7746
7747 /* Make POS_RTX unless we already have it and it is correct. If we don't
7748 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7749 be a CONST_INT. */
7750 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7751 pos_rtx = orig_pos_rtx;
7752
7753 else if (pos_rtx == 0)
7754 pos_rtx = GEN_INT (pos);
7755
7756 /* Make the required operation. See if we can use existing rtx. */
7757 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7758 extraction_mode, inner, GEN_INT (len), pos_rtx);
7759 if (! in_dest)
7760 new_rtx = gen_lowpart (mode, new_rtx);
7761
7762 return new_rtx;
7763 }
7764 \f
7765 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
7766 with any other operations in X. Return X without that shift if so. */
7767
7768 static rtx
7769 extract_left_shift (rtx x, int count)
7770 {
7771 enum rtx_code code = GET_CODE (x);
7772 machine_mode mode = GET_MODE (x);
7773 rtx tem;
7774
7775 switch (code)
7776 {
7777 case ASHIFT:
7778 /* This is the shift itself. If it is wide enough, we will return
7779 either the value being shifted if the shift count is equal to
7780 COUNT or a shift for the difference. */
7781 if (CONST_INT_P (XEXP (x, 1))
7782 && INTVAL (XEXP (x, 1)) >= count)
7783 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7784 INTVAL (XEXP (x, 1)) - count);
7785 break;
7786
7787 case NEG: case NOT:
7788 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7789 return simplify_gen_unary (code, mode, tem, mode);
7790
7791 break;
7792
7793 case PLUS: case IOR: case XOR: case AND:
7794 /* If we can safely shift this constant and we find the inner shift,
7795 make a new operation. */
7796 if (CONST_INT_P (XEXP (x, 1))
7797 && (UINTVAL (XEXP (x, 1))
7798 & (((HOST_WIDE_INT_1U << count)) - 1)) == 0
7799 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7800 {
7801 HOST_WIDE_INT val = INTVAL (XEXP (x, 1)) >> count;
7802 return simplify_gen_binary (code, mode, tem,
7803 gen_int_mode (val, mode));
7804 }
7805 break;
7806
7807 default:
7808 break;
7809 }
7810
7811 return 0;
7812 }
7813 \f
7814 /* Subroutine of make_compound_operation. *X_PTR is the rtx at the current
7815 level of the expression and MODE is its mode. IN_CODE is as for
7816 make_compound_operation. *NEXT_CODE_PTR is the value of IN_CODE
7817 that should be used when recursing on operands of *X_PTR.
7818
7819 There are two possible actions:
7820
7821 - Return null. This tells the caller to recurse on *X_PTR with IN_CODE
7822 equal to *NEXT_CODE_PTR, after which *X_PTR holds the final value.
7823
7824 - Return a new rtx, which the caller returns directly. */
7825
7826 static rtx
7827 make_compound_operation_int (machine_mode mode, rtx *x_ptr,
7828 enum rtx_code in_code,
7829 enum rtx_code *next_code_ptr)
7830 {
7831 rtx x = *x_ptr;
7832 enum rtx_code next_code = *next_code_ptr;
7833 enum rtx_code code = GET_CODE (x);
7834 int mode_width = GET_MODE_PRECISION (mode);
7835 rtx rhs, lhs;
7836 rtx new_rtx = 0;
7837 int i;
7838 rtx tem;
7839 bool equality_comparison = false;
7840
7841 if (in_code == EQ)
7842 {
7843 equality_comparison = true;
7844 in_code = COMPARE;
7845 }
7846
7847 /* Process depending on the code of this operation. If NEW is set
7848 nonzero, it will be returned. */
7849
7850 switch (code)
7851 {
7852 case ASHIFT:
7853 /* Convert shifts by constants into multiplications if inside
7854 an address. */
7855 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7856 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7857 && INTVAL (XEXP (x, 1)) >= 0)
7858 {
7859 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
7860 HOST_WIDE_INT multval = HOST_WIDE_INT_1 << count;
7861
7862 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7863 if (GET_CODE (new_rtx) == NEG)
7864 {
7865 new_rtx = XEXP (new_rtx, 0);
7866 multval = -multval;
7867 }
7868 multval = trunc_int_for_mode (multval, mode);
7869 new_rtx = gen_rtx_MULT (mode, new_rtx, gen_int_mode (multval, mode));
7870 }
7871 break;
7872
7873 case PLUS:
7874 lhs = XEXP (x, 0);
7875 rhs = XEXP (x, 1);
7876 lhs = make_compound_operation (lhs, next_code);
7877 rhs = make_compound_operation (rhs, next_code);
7878 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG)
7879 {
7880 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
7881 XEXP (lhs, 1));
7882 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7883 }
7884 else if (GET_CODE (lhs) == MULT
7885 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
7886 {
7887 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
7888 simplify_gen_unary (NEG, mode,
7889 XEXP (lhs, 1),
7890 mode));
7891 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7892 }
7893 else
7894 {
7895 SUBST (XEXP (x, 0), lhs);
7896 SUBST (XEXP (x, 1), rhs);
7897 }
7898 maybe_swap_commutative_operands (x);
7899 return x;
7900
7901 case MINUS:
7902 lhs = XEXP (x, 0);
7903 rhs = XEXP (x, 1);
7904 lhs = make_compound_operation (lhs, next_code);
7905 rhs = make_compound_operation (rhs, next_code);
7906 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG)
7907 {
7908 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
7909 XEXP (rhs, 1));
7910 return simplify_gen_binary (PLUS, mode, tem, lhs);
7911 }
7912 else if (GET_CODE (rhs) == MULT
7913 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
7914 {
7915 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
7916 simplify_gen_unary (NEG, mode,
7917 XEXP (rhs, 1),
7918 mode));
7919 return simplify_gen_binary (PLUS, mode, tem, lhs);
7920 }
7921 else
7922 {
7923 SUBST (XEXP (x, 0), lhs);
7924 SUBST (XEXP (x, 1), rhs);
7925 return x;
7926 }
7927
7928 case AND:
7929 /* If the second operand is not a constant, we can't do anything
7930 with it. */
7931 if (!CONST_INT_P (XEXP (x, 1)))
7932 break;
7933
7934 /* If the constant is a power of two minus one and the first operand
7935 is a logical right shift, make an extraction. */
7936 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7937 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7938 {
7939 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7940 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
7941 0, in_code == COMPARE);
7942 }
7943
7944 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
7945 else if (GET_CODE (XEXP (x, 0)) == SUBREG
7946 && subreg_lowpart_p (XEXP (x, 0))
7947 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
7948 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7949 {
7950 rtx inner_x0 = SUBREG_REG (XEXP (x, 0));
7951 machine_mode inner_mode = GET_MODE (inner_x0);
7952 new_rtx = make_compound_operation (XEXP (inner_x0, 0), next_code);
7953 new_rtx = make_extraction (inner_mode, new_rtx, 0,
7954 XEXP (inner_x0, 1),
7955 i, 1, 0, in_code == COMPARE);
7956
7957 if (new_rtx)
7958 {
7959 /* If we narrowed the mode when dropping the subreg, then
7960 we must zero-extend to keep the semantics of the AND. */
7961 if (GET_MODE_SIZE (inner_mode) >= GET_MODE_SIZE (mode))
7962 ;
7963 else if (SCALAR_INT_MODE_P (inner_mode))
7964 new_rtx = simplify_gen_unary (ZERO_EXTEND, mode,
7965 new_rtx, inner_mode);
7966 else
7967 new_rtx = NULL;
7968 }
7969
7970 /* If that didn't give anything, see if the AND simplifies on
7971 its own. */
7972 if (!new_rtx && i >= 0)
7973 {
7974 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7975 new_rtx = make_extraction (mode, new_rtx, 0, NULL_RTX, i, 1,
7976 0, in_code == COMPARE);
7977 }
7978 }
7979 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
7980 else if ((GET_CODE (XEXP (x, 0)) == XOR
7981 || GET_CODE (XEXP (x, 0)) == IOR)
7982 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
7983 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
7984 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7985 {
7986 /* Apply the distributive law, and then try to make extractions. */
7987 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
7988 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
7989 XEXP (x, 1)),
7990 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
7991 XEXP (x, 1)));
7992 new_rtx = make_compound_operation (new_rtx, in_code);
7993 }
7994
7995 /* If we are have (and (rotate X C) M) and C is larger than the number
7996 of bits in M, this is an extraction. */
7997
7998 else if (GET_CODE (XEXP (x, 0)) == ROTATE
7999 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8000 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
8001 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
8002 {
8003 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
8004 new_rtx = make_extraction (mode, new_rtx,
8005 (GET_MODE_PRECISION (mode)
8006 - INTVAL (XEXP (XEXP (x, 0), 1))),
8007 NULL_RTX, i, 1, 0, in_code == COMPARE);
8008 }
8009
8010 /* On machines without logical shifts, if the operand of the AND is
8011 a logical shift and our mask turns off all the propagated sign
8012 bits, we can replace the logical shift with an arithmetic shift. */
8013 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8014 && !have_insn_for (LSHIFTRT, mode)
8015 && have_insn_for (ASHIFTRT, mode)
8016 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8017 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8018 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8019 && mode_width <= HOST_BITS_PER_WIDE_INT)
8020 {
8021 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
8022
8023 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
8024 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
8025 SUBST (XEXP (x, 0),
8026 gen_rtx_ASHIFTRT (mode,
8027 make_compound_operation
8028 (XEXP (XEXP (x, 0), 0), next_code),
8029 XEXP (XEXP (x, 0), 1)));
8030 }
8031
8032 /* If the constant is one less than a power of two, this might be
8033 representable by an extraction even if no shift is present.
8034 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
8035 we are in a COMPARE. */
8036 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8037 new_rtx = make_extraction (mode,
8038 make_compound_operation (XEXP (x, 0),
8039 next_code),
8040 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
8041
8042 /* If we are in a comparison and this is an AND with a power of two,
8043 convert this into the appropriate bit extract. */
8044 else if (in_code == COMPARE
8045 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
8046 && (equality_comparison || i < GET_MODE_PRECISION (mode) - 1))
8047 new_rtx = make_extraction (mode,
8048 make_compound_operation (XEXP (x, 0),
8049 next_code),
8050 i, NULL_RTX, 1, 1, 0, 1);
8051
8052 /* If the one operand is a paradoxical subreg of a register or memory and
8053 the constant (limited to the smaller mode) has only zero bits where
8054 the sub expression has known zero bits, this can be expressed as
8055 a zero_extend. */
8056 else if (GET_CODE (XEXP (x, 0)) == SUBREG)
8057 {
8058 rtx sub;
8059
8060 sub = XEXP (XEXP (x, 0), 0);
8061 machine_mode sub_mode = GET_MODE (sub);
8062 if ((REG_P (sub) || MEM_P (sub))
8063 && GET_MODE_PRECISION (sub_mode) < mode_width)
8064 {
8065 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (sub_mode);
8066 unsigned HOST_WIDE_INT mask;
8067
8068 /* original AND constant with all the known zero bits set */
8069 mask = UINTVAL (XEXP (x, 1)) | (~nonzero_bits (sub, sub_mode));
8070 if ((mask & mode_mask) == mode_mask)
8071 {
8072 new_rtx = make_compound_operation (sub, next_code);
8073 new_rtx = make_extraction (mode, new_rtx, 0, 0,
8074 GET_MODE_PRECISION (sub_mode),
8075 1, 0, in_code == COMPARE);
8076 }
8077 }
8078 }
8079
8080 break;
8081
8082 case LSHIFTRT:
8083 /* If the sign bit is known to be zero, replace this with an
8084 arithmetic shift. */
8085 if (have_insn_for (ASHIFTRT, mode)
8086 && ! have_insn_for (LSHIFTRT, mode)
8087 && mode_width <= HOST_BITS_PER_WIDE_INT
8088 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
8089 {
8090 new_rtx = gen_rtx_ASHIFTRT (mode,
8091 make_compound_operation (XEXP (x, 0),
8092 next_code),
8093 XEXP (x, 1));
8094 break;
8095 }
8096
8097 /* fall through */
8098
8099 case ASHIFTRT:
8100 lhs = XEXP (x, 0);
8101 rhs = XEXP (x, 1);
8102
8103 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
8104 this is a SIGN_EXTRACT. */
8105 if (CONST_INT_P (rhs)
8106 && GET_CODE (lhs) == ASHIFT
8107 && CONST_INT_P (XEXP (lhs, 1))
8108 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
8109 && INTVAL (XEXP (lhs, 1)) >= 0
8110 && INTVAL (rhs) < mode_width)
8111 {
8112 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
8113 new_rtx = make_extraction (mode, new_rtx,
8114 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
8115 NULL_RTX, mode_width - INTVAL (rhs),
8116 code == LSHIFTRT, 0, in_code == COMPARE);
8117 break;
8118 }
8119
8120 /* See if we have operations between an ASHIFTRT and an ASHIFT.
8121 If so, try to merge the shifts into a SIGN_EXTEND. We could
8122 also do this for some cases of SIGN_EXTRACT, but it doesn't
8123 seem worth the effort; the case checked for occurs on Alpha. */
8124
8125 if (!OBJECT_P (lhs)
8126 && ! (GET_CODE (lhs) == SUBREG
8127 && (OBJECT_P (SUBREG_REG (lhs))))
8128 && CONST_INT_P (rhs)
8129 && INTVAL (rhs) >= 0
8130 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
8131 && INTVAL (rhs) < mode_width
8132 && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
8133 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
8134 0, NULL_RTX, mode_width - INTVAL (rhs),
8135 code == LSHIFTRT, 0, in_code == COMPARE);
8136
8137 break;
8138
8139 case SUBREG:
8140 /* Call ourselves recursively on the inner expression. If we are
8141 narrowing the object and it has a different RTL code from
8142 what it originally did, do this SUBREG as a force_to_mode. */
8143 {
8144 rtx inner = SUBREG_REG (x), simplified;
8145 enum rtx_code subreg_code = in_code;
8146
8147 /* If the SUBREG is masking of a logical right shift,
8148 make an extraction. */
8149 if (GET_CODE (inner) == LSHIFTRT
8150 && CONST_INT_P (XEXP (inner, 1))
8151 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8152 && (UINTVAL (XEXP (inner, 1))
8153 < GET_MODE_PRECISION (GET_MODE (inner)))
8154 && subreg_lowpart_p (x))
8155 {
8156 new_rtx = make_compound_operation (XEXP (inner, 0), next_code);
8157 int width = GET_MODE_PRECISION (GET_MODE (inner))
8158 - INTVAL (XEXP (inner, 1));
8159 if (width > mode_width)
8160 width = mode_width;
8161 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (inner, 1),
8162 width, 1, 0, in_code == COMPARE);
8163 break;
8164 }
8165
8166 /* If in_code is COMPARE, it isn't always safe to pass it through
8167 to the recursive make_compound_operation call. */
8168 if (subreg_code == COMPARE
8169 && (!subreg_lowpart_p (x)
8170 || GET_CODE (inner) == SUBREG
8171 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
8172 is (const_int 0), rather than
8173 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0).
8174 Similarly (subreg:QI (and:SI (reg:SI) (const_int 0x80)) 0)
8175 for non-equality comparisons against 0 is not equivalent
8176 to (subreg:QI (lshiftrt:SI (reg:SI) (const_int 7)) 0). */
8177 || (GET_CODE (inner) == AND
8178 && CONST_INT_P (XEXP (inner, 1))
8179 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8180 && exact_log2 (UINTVAL (XEXP (inner, 1)))
8181 >= GET_MODE_BITSIZE (mode) - 1)))
8182 subreg_code = SET;
8183
8184 tem = make_compound_operation (inner, subreg_code);
8185
8186 simplified
8187 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
8188 if (simplified)
8189 tem = simplified;
8190
8191 if (GET_CODE (tem) != GET_CODE (inner)
8192 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8193 && subreg_lowpart_p (x))
8194 {
8195 rtx newer
8196 = force_to_mode (tem, mode, HOST_WIDE_INT_M1U, 0);
8197
8198 /* If we have something other than a SUBREG, we might have
8199 done an expansion, so rerun ourselves. */
8200 if (GET_CODE (newer) != SUBREG)
8201 newer = make_compound_operation (newer, in_code);
8202
8203 /* force_to_mode can expand compounds. If it just re-expanded the
8204 compound, use gen_lowpart to convert to the desired mode. */
8205 if (rtx_equal_p (newer, x)
8206 /* Likewise if it re-expanded the compound only partially.
8207 This happens for SUBREG of ZERO_EXTRACT if they extract
8208 the same number of bits. */
8209 || (GET_CODE (newer) == SUBREG
8210 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
8211 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
8212 && GET_CODE (inner) == AND
8213 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
8214 return gen_lowpart (GET_MODE (x), tem);
8215
8216 return newer;
8217 }
8218
8219 if (simplified)
8220 return tem;
8221 }
8222 break;
8223
8224 default:
8225 break;
8226 }
8227
8228 if (new_rtx)
8229 *x_ptr = gen_lowpart (mode, new_rtx);
8230 *next_code_ptr = next_code;
8231 return NULL_RTX;
8232 }
8233
8234 /* Look at the expression rooted at X. Look for expressions
8235 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
8236 Form these expressions.
8237
8238 Return the new rtx, usually just X.
8239
8240 Also, for machines like the VAX that don't have logical shift insns,
8241 try to convert logical to arithmetic shift operations in cases where
8242 they are equivalent. This undoes the canonicalizations to logical
8243 shifts done elsewhere.
8244
8245 We try, as much as possible, to re-use rtl expressions to save memory.
8246
8247 IN_CODE says what kind of expression we are processing. Normally, it is
8248 SET. In a memory address it is MEM. When processing the arguments of
8249 a comparison or a COMPARE against zero, it is COMPARE, or EQ if more
8250 precisely it is an equality comparison against zero. */
8251
8252 rtx
8253 make_compound_operation (rtx x, enum rtx_code in_code)
8254 {
8255 enum rtx_code code = GET_CODE (x);
8256 const char *fmt;
8257 int i, j;
8258 enum rtx_code next_code;
8259 rtx new_rtx, tem;
8260
8261 /* Select the code to be used in recursive calls. Once we are inside an
8262 address, we stay there. If we have a comparison, set to COMPARE,
8263 but once inside, go back to our default of SET. */
8264
8265 next_code = (code == MEM ? MEM
8266 : ((code == COMPARE || COMPARISON_P (x))
8267 && XEXP (x, 1) == const0_rtx) ? COMPARE
8268 : in_code == COMPARE || in_code == EQ ? SET : in_code);
8269
8270 if (SCALAR_INT_MODE_P (GET_MODE (x)))
8271 {
8272 rtx new_rtx = make_compound_operation_int (GET_MODE (x), &x,
8273 in_code, &next_code);
8274 if (new_rtx)
8275 return new_rtx;
8276 code = GET_CODE (x);
8277 }
8278
8279 /* Now recursively process each operand of this operation. We need to
8280 handle ZERO_EXTEND specially so that we don't lose track of the
8281 inner mode. */
8282 if (code == ZERO_EXTEND)
8283 {
8284 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8285 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
8286 new_rtx, GET_MODE (XEXP (x, 0)));
8287 if (tem)
8288 return tem;
8289 SUBST (XEXP (x, 0), new_rtx);
8290 return x;
8291 }
8292
8293 fmt = GET_RTX_FORMAT (code);
8294 for (i = 0; i < GET_RTX_LENGTH (code); i++)
8295 if (fmt[i] == 'e')
8296 {
8297 new_rtx = make_compound_operation (XEXP (x, i), next_code);
8298 SUBST (XEXP (x, i), new_rtx);
8299 }
8300 else if (fmt[i] == 'E')
8301 for (j = 0; j < XVECLEN (x, i); j++)
8302 {
8303 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
8304 SUBST (XVECEXP (x, i, j), new_rtx);
8305 }
8306
8307 maybe_swap_commutative_operands (x);
8308 return x;
8309 }
8310 \f
8311 /* Given M see if it is a value that would select a field of bits
8312 within an item, but not the entire word. Return -1 if not.
8313 Otherwise, return the starting position of the field, where 0 is the
8314 low-order bit.
8315
8316 *PLEN is set to the length of the field. */
8317
8318 static int
8319 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
8320 {
8321 /* Get the bit number of the first 1 bit from the right, -1 if none. */
8322 int pos = m ? ctz_hwi (m) : -1;
8323 int len = 0;
8324
8325 if (pos >= 0)
8326 /* Now shift off the low-order zero bits and see if we have a
8327 power of two minus 1. */
8328 len = exact_log2 ((m >> pos) + 1);
8329
8330 if (len <= 0)
8331 pos = -1;
8332
8333 *plen = len;
8334 return pos;
8335 }
8336 \f
8337 /* If X refers to a register that equals REG in value, replace these
8338 references with REG. */
8339 static rtx
8340 canon_reg_for_combine (rtx x, rtx reg)
8341 {
8342 rtx op0, op1, op2;
8343 const char *fmt;
8344 int i;
8345 bool copied;
8346
8347 enum rtx_code code = GET_CODE (x);
8348 switch (GET_RTX_CLASS (code))
8349 {
8350 case RTX_UNARY:
8351 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8352 if (op0 != XEXP (x, 0))
8353 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
8354 GET_MODE (reg));
8355 break;
8356
8357 case RTX_BIN_ARITH:
8358 case RTX_COMM_ARITH:
8359 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8360 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8361 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8362 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
8363 break;
8364
8365 case RTX_COMPARE:
8366 case RTX_COMM_COMPARE:
8367 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8368 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8369 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8370 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
8371 GET_MODE (op0), op0, op1);
8372 break;
8373
8374 case RTX_TERNARY:
8375 case RTX_BITFIELD_OPS:
8376 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8377 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8378 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
8379 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
8380 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
8381 GET_MODE (op0), op0, op1, op2);
8382 /* FALLTHRU */
8383
8384 case RTX_OBJ:
8385 if (REG_P (x))
8386 {
8387 if (rtx_equal_p (get_last_value (reg), x)
8388 || rtx_equal_p (reg, get_last_value (x)))
8389 return reg;
8390 else
8391 break;
8392 }
8393
8394 /* fall through */
8395
8396 default:
8397 fmt = GET_RTX_FORMAT (code);
8398 copied = false;
8399 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8400 if (fmt[i] == 'e')
8401 {
8402 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8403 if (op != XEXP (x, i))
8404 {
8405 if (!copied)
8406 {
8407 copied = true;
8408 x = copy_rtx (x);
8409 }
8410 XEXP (x, i) = op;
8411 }
8412 }
8413 else if (fmt[i] == 'E')
8414 {
8415 int j;
8416 for (j = 0; j < XVECLEN (x, i); j++)
8417 {
8418 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8419 if (op != XVECEXP (x, i, j))
8420 {
8421 if (!copied)
8422 {
8423 copied = true;
8424 x = copy_rtx (x);
8425 }
8426 XVECEXP (x, i, j) = op;
8427 }
8428 }
8429 }
8430
8431 break;
8432 }
8433
8434 return x;
8435 }
8436
8437 /* Return X converted to MODE. If the value is already truncated to
8438 MODE we can just return a subreg even though in the general case we
8439 would need an explicit truncation. */
8440
8441 static rtx
8442 gen_lowpart_or_truncate (machine_mode mode, rtx x)
8443 {
8444 if (!CONST_INT_P (x)
8445 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
8446 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
8447 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8448 {
8449 /* Bit-cast X into an integer mode. */
8450 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8451 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)), x);
8452 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode),
8453 x, GET_MODE (x));
8454 }
8455
8456 return gen_lowpart (mode, x);
8457 }
8458
8459 /* See if X can be simplified knowing that we will only refer to it in
8460 MODE and will only refer to those bits that are nonzero in MASK.
8461 If other bits are being computed or if masking operations are done
8462 that select a superset of the bits in MASK, they can sometimes be
8463 ignored.
8464
8465 Return a possibly simplified expression, but always convert X to
8466 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8467
8468 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8469 are all off in X. This is used when X will be complemented, by either
8470 NOT, NEG, or XOR. */
8471
8472 static rtx
8473 force_to_mode (rtx x, machine_mode mode, unsigned HOST_WIDE_INT mask,
8474 int just_select)
8475 {
8476 enum rtx_code code = GET_CODE (x);
8477 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8478 machine_mode op_mode;
8479 unsigned HOST_WIDE_INT fuller_mask, nonzero;
8480 rtx op0, op1, temp;
8481
8482 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8483 code below will do the wrong thing since the mode of such an
8484 expression is VOIDmode.
8485
8486 Also do nothing if X is a CLOBBER; this can happen if X was
8487 the return value from a call to gen_lowpart. */
8488 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8489 return x;
8490
8491 /* We want to perform the operation in its present mode unless we know
8492 that the operation is valid in MODE, in which case we do the operation
8493 in MODE. */
8494 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8495 && have_insn_for (code, mode))
8496 ? mode : GET_MODE (x));
8497
8498 /* It is not valid to do a right-shift in a narrower mode
8499 than the one it came in with. */
8500 if ((code == LSHIFTRT || code == ASHIFTRT)
8501 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (GET_MODE (x)))
8502 op_mode = GET_MODE (x);
8503
8504 /* Truncate MASK to fit OP_MODE. */
8505 if (op_mode)
8506 mask &= GET_MODE_MASK (op_mode);
8507
8508 /* When we have an arithmetic operation, or a shift whose count we
8509 do not know, we need to assume that all bits up to the highest-order
8510 bit in MASK will be needed. This is how we form such a mask. */
8511 if (mask & (HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1)))
8512 fuller_mask = HOST_WIDE_INT_M1U;
8513 else
8514 fuller_mask = ((HOST_WIDE_INT_1U << (floor_log2 (mask) + 1))
8515 - 1);
8516
8517 /* Determine what bits of X are guaranteed to be (non)zero. */
8518 nonzero = nonzero_bits (x, mode);
8519
8520 /* If none of the bits in X are needed, return a zero. */
8521 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8522 x = const0_rtx;
8523
8524 /* If X is a CONST_INT, return a new one. Do this here since the
8525 test below will fail. */
8526 if (CONST_INT_P (x))
8527 {
8528 if (SCALAR_INT_MODE_P (mode))
8529 return gen_int_mode (INTVAL (x) & mask, mode);
8530 else
8531 {
8532 x = GEN_INT (INTVAL (x) & mask);
8533 return gen_lowpart_common (mode, x);
8534 }
8535 }
8536
8537 /* If X is narrower than MODE and we want all the bits in X's mode, just
8538 get X in the proper mode. */
8539 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
8540 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8541 return gen_lowpart (mode, x);
8542
8543 /* We can ignore the effect of a SUBREG if it narrows the mode or
8544 if the constant masks to zero all the bits the mode doesn't have. */
8545 if (GET_CODE (x) == SUBREG
8546 && subreg_lowpart_p (x)
8547 && ((GET_MODE_SIZE (GET_MODE (x))
8548 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8549 || (0 == (mask
8550 & GET_MODE_MASK (GET_MODE (x))
8551 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
8552 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8553
8554 /* The arithmetic simplifications here only work for scalar integer modes. */
8555 if (!SCALAR_INT_MODE_P (mode) || !SCALAR_INT_MODE_P (GET_MODE (x)))
8556 return gen_lowpart_or_truncate (mode, x);
8557
8558 switch (code)
8559 {
8560 case CLOBBER:
8561 /* If X is a (clobber (const_int)), return it since we know we are
8562 generating something that won't match. */
8563 return x;
8564
8565 case SIGN_EXTEND:
8566 case ZERO_EXTEND:
8567 case ZERO_EXTRACT:
8568 case SIGN_EXTRACT:
8569 x = expand_compound_operation (x);
8570 if (GET_CODE (x) != code)
8571 return force_to_mode (x, mode, mask, next_select);
8572 break;
8573
8574 case TRUNCATE:
8575 /* Similarly for a truncate. */
8576 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8577
8578 case AND:
8579 /* If this is an AND with a constant, convert it into an AND
8580 whose constant is the AND of that constant with MASK. If it
8581 remains an AND of MASK, delete it since it is redundant. */
8582
8583 if (CONST_INT_P (XEXP (x, 1)))
8584 {
8585 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8586 mask & INTVAL (XEXP (x, 1)));
8587
8588 /* If X is still an AND, see if it is an AND with a mask that
8589 is just some low-order bits. If so, and it is MASK, we don't
8590 need it. */
8591
8592 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8593 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
8594 == mask))
8595 x = XEXP (x, 0);
8596
8597 /* If it remains an AND, try making another AND with the bits
8598 in the mode mask that aren't in MASK turned on. If the
8599 constant in the AND is wide enough, this might make a
8600 cheaper constant. */
8601
8602 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8603 && GET_MODE_MASK (GET_MODE (x)) != mask
8604 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
8605 {
8606 unsigned HOST_WIDE_INT cval
8607 = UINTVAL (XEXP (x, 1))
8608 | (GET_MODE_MASK (GET_MODE (x)) & ~mask);
8609 rtx y;
8610
8611 y = simplify_gen_binary (AND, GET_MODE (x), XEXP (x, 0),
8612 gen_int_mode (cval, GET_MODE (x)));
8613 if (set_src_cost (y, GET_MODE (x), optimize_this_for_speed_p)
8614 < set_src_cost (x, GET_MODE (x), optimize_this_for_speed_p))
8615 x = y;
8616 }
8617
8618 break;
8619 }
8620
8621 goto binop;
8622
8623 case PLUS:
8624 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8625 low-order bits (as in an alignment operation) and FOO is already
8626 aligned to that boundary, mask C1 to that boundary as well.
8627 This may eliminate that PLUS and, later, the AND. */
8628
8629 {
8630 unsigned int width = GET_MODE_PRECISION (mode);
8631 unsigned HOST_WIDE_INT smask = mask;
8632
8633 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8634 number, sign extend it. */
8635
8636 if (width < HOST_BITS_PER_WIDE_INT
8637 && (smask & (HOST_WIDE_INT_1U << (width - 1))) != 0)
8638 smask |= HOST_WIDE_INT_M1U << width;
8639
8640 if (CONST_INT_P (XEXP (x, 1))
8641 && pow2p_hwi (- smask)
8642 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8643 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8644 return force_to_mode (plus_constant (GET_MODE (x), XEXP (x, 0),
8645 (INTVAL (XEXP (x, 1)) & smask)),
8646 mode, smask, next_select);
8647 }
8648
8649 /* fall through */
8650
8651 case MULT:
8652 /* Substituting into the operands of a widening MULT is not likely to
8653 create RTL matching a machine insn. */
8654 if (code == MULT
8655 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
8656 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
8657 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
8658 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
8659 && REG_P (XEXP (XEXP (x, 0), 0))
8660 && REG_P (XEXP (XEXP (x, 1), 0)))
8661 return gen_lowpart_or_truncate (mode, x);
8662
8663 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8664 most significant bit in MASK since carries from those bits will
8665 affect the bits we are interested in. */
8666 mask = fuller_mask;
8667 goto binop;
8668
8669 case MINUS:
8670 /* If X is (minus C Y) where C's least set bit is larger than any bit
8671 in the mask, then we may replace with (neg Y). */
8672 if (CONST_INT_P (XEXP (x, 0))
8673 && least_bit_hwi (UINTVAL (XEXP (x, 0))) > mask)
8674 {
8675 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
8676 GET_MODE (x));
8677 return force_to_mode (x, mode, mask, next_select);
8678 }
8679
8680 /* Similarly, if C contains every bit in the fuller_mask, then we may
8681 replace with (not Y). */
8682 if (CONST_INT_P (XEXP (x, 0))
8683 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8684 {
8685 x = simplify_gen_unary (NOT, GET_MODE (x),
8686 XEXP (x, 1), GET_MODE (x));
8687 return force_to_mode (x, mode, mask, next_select);
8688 }
8689
8690 mask = fuller_mask;
8691 goto binop;
8692
8693 case IOR:
8694 case XOR:
8695 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8696 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8697 operation which may be a bitfield extraction. Ensure that the
8698 constant we form is not wider than the mode of X. */
8699
8700 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8701 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8702 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8703 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8704 && CONST_INT_P (XEXP (x, 1))
8705 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8706 + floor_log2 (INTVAL (XEXP (x, 1))))
8707 < GET_MODE_PRECISION (GET_MODE (x)))
8708 && (UINTVAL (XEXP (x, 1))
8709 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
8710 {
8711 temp = gen_int_mode ((INTVAL (XEXP (x, 1)) & mask)
8712 << INTVAL (XEXP (XEXP (x, 0), 1)),
8713 GET_MODE (x));
8714 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
8715 XEXP (XEXP (x, 0), 0), temp);
8716 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
8717 XEXP (XEXP (x, 0), 1));
8718 return force_to_mode (x, mode, mask, next_select);
8719 }
8720
8721 binop:
8722 /* For most binary operations, just propagate into the operation and
8723 change the mode if we have an operation of that mode. */
8724
8725 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8726 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8727
8728 /* If we ended up truncating both operands, truncate the result of the
8729 operation instead. */
8730 if (GET_CODE (op0) == TRUNCATE
8731 && GET_CODE (op1) == TRUNCATE)
8732 {
8733 op0 = XEXP (op0, 0);
8734 op1 = XEXP (op1, 0);
8735 }
8736
8737 op0 = gen_lowpart_or_truncate (op_mode, op0);
8738 op1 = gen_lowpart_or_truncate (op_mode, op1);
8739
8740 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8741 x = simplify_gen_binary (code, op_mode, op0, op1);
8742 break;
8743
8744 case ASHIFT:
8745 /* For left shifts, do the same, but just for the first operand.
8746 However, we cannot do anything with shifts where we cannot
8747 guarantee that the counts are smaller than the size of the mode
8748 because such a count will have a different meaning in a
8749 wider mode. */
8750
8751 if (! (CONST_INT_P (XEXP (x, 1))
8752 && INTVAL (XEXP (x, 1)) >= 0
8753 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
8754 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8755 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8756 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
8757 break;
8758
8759 /* If the shift count is a constant and we can do arithmetic in
8760 the mode of the shift, refine which bits we need. Otherwise, use the
8761 conservative form of the mask. */
8762 if (CONST_INT_P (XEXP (x, 1))
8763 && INTVAL (XEXP (x, 1)) >= 0
8764 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
8765 && HWI_COMPUTABLE_MODE_P (op_mode))
8766 mask >>= INTVAL (XEXP (x, 1));
8767 else
8768 mask = fuller_mask;
8769
8770 op0 = gen_lowpart_or_truncate (op_mode,
8771 force_to_mode (XEXP (x, 0), op_mode,
8772 mask, next_select));
8773
8774 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8775 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8776 break;
8777
8778 case LSHIFTRT:
8779 /* Here we can only do something if the shift count is a constant,
8780 this shift constant is valid for the host, and we can do arithmetic
8781 in OP_MODE. */
8782
8783 if (CONST_INT_P (XEXP (x, 1))
8784 && INTVAL (XEXP (x, 1)) >= 0
8785 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8786 && HWI_COMPUTABLE_MODE_P (op_mode))
8787 {
8788 rtx inner = XEXP (x, 0);
8789 unsigned HOST_WIDE_INT inner_mask;
8790
8791 /* Select the mask of the bits we need for the shift operand. */
8792 inner_mask = mask << INTVAL (XEXP (x, 1));
8793
8794 /* We can only change the mode of the shift if we can do arithmetic
8795 in the mode of the shift and INNER_MASK is no wider than the
8796 width of X's mode. */
8797 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
8798 op_mode = GET_MODE (x);
8799
8800 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8801
8802 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
8803 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8804 }
8805
8806 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8807 shift and AND produces only copies of the sign bit (C2 is one less
8808 than a power of two), we can do this with just a shift. */
8809
8810 if (GET_CODE (x) == LSHIFTRT
8811 && CONST_INT_P (XEXP (x, 1))
8812 /* The shift puts one of the sign bit copies in the least significant
8813 bit. */
8814 && ((INTVAL (XEXP (x, 1))
8815 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8816 >= GET_MODE_PRECISION (GET_MODE (x)))
8817 && pow2p_hwi (mask + 1)
8818 /* Number of bits left after the shift must be more than the mask
8819 needs. */
8820 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
8821 <= GET_MODE_PRECISION (GET_MODE (x)))
8822 /* Must be more sign bit copies than the mask needs. */
8823 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
8824 >= exact_log2 (mask + 1)))
8825 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8826 GEN_INT (GET_MODE_PRECISION (GET_MODE (x))
8827 - exact_log2 (mask + 1)));
8828
8829 goto shiftrt;
8830
8831 case ASHIFTRT:
8832 /* If we are just looking for the sign bit, we don't need this shift at
8833 all, even if it has a variable count. */
8834 if (val_signbit_p (GET_MODE (x), mask))
8835 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8836
8837 /* If this is a shift by a constant, get a mask that contains those bits
8838 that are not copies of the sign bit. We then have two cases: If
8839 MASK only includes those bits, this can be a logical shift, which may
8840 allow simplifications. If MASK is a single-bit field not within
8841 those bits, we are requesting a copy of the sign bit and hence can
8842 shift the sign bit to the appropriate location. */
8843
8844 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
8845 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8846 {
8847 int i;
8848
8849 /* If the considered data is wider than HOST_WIDE_INT, we can't
8850 represent a mask for all its bits in a single scalar.
8851 But we only care about the lower bits, so calculate these. */
8852
8853 if (GET_MODE_PRECISION (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
8854 {
8855 nonzero = HOST_WIDE_INT_M1U;
8856
8857 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8858 is the number of bits a full-width mask would have set.
8859 We need only shift if these are fewer than nonzero can
8860 hold. If not, we must keep all bits set in nonzero. */
8861
8862 if (GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8863 < HOST_BITS_PER_WIDE_INT)
8864 nonzero >>= INTVAL (XEXP (x, 1))
8865 + HOST_BITS_PER_WIDE_INT
8866 - GET_MODE_PRECISION (GET_MODE (x)) ;
8867 }
8868 else
8869 {
8870 nonzero = GET_MODE_MASK (GET_MODE (x));
8871 nonzero >>= INTVAL (XEXP (x, 1));
8872 }
8873
8874 if ((mask & ~nonzero) == 0)
8875 {
8876 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
8877 XEXP (x, 0), INTVAL (XEXP (x, 1)));
8878 if (GET_CODE (x) != ASHIFTRT)
8879 return force_to_mode (x, mode, mask, next_select);
8880 }
8881
8882 else if ((i = exact_log2 (mask)) >= 0)
8883 {
8884 x = simplify_shift_const
8885 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8886 GET_MODE_PRECISION (GET_MODE (x)) - 1 - i);
8887
8888 if (GET_CODE (x) != ASHIFTRT)
8889 return force_to_mode (x, mode, mask, next_select);
8890 }
8891 }
8892
8893 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
8894 even if the shift count isn't a constant. */
8895 if (mask == 1)
8896 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8897 XEXP (x, 0), XEXP (x, 1));
8898
8899 shiftrt:
8900
8901 /* If this is a zero- or sign-extension operation that just affects bits
8902 we don't care about, remove it. Be sure the call above returned
8903 something that is still a shift. */
8904
8905 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
8906 && CONST_INT_P (XEXP (x, 1))
8907 && INTVAL (XEXP (x, 1)) >= 0
8908 && (INTVAL (XEXP (x, 1))
8909 <= GET_MODE_PRECISION (GET_MODE (x)) - (floor_log2 (mask) + 1))
8910 && GET_CODE (XEXP (x, 0)) == ASHIFT
8911 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
8912 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
8913 next_select);
8914
8915 break;
8916
8917 case ROTATE:
8918 case ROTATERT:
8919 /* If the shift count is constant and we can do computations
8920 in the mode of X, compute where the bits we care about are.
8921 Otherwise, we can't do anything. Don't change the mode of
8922 the shift or propagate MODE into the shift, though. */
8923 if (CONST_INT_P (XEXP (x, 1))
8924 && INTVAL (XEXP (x, 1)) >= 0)
8925 {
8926 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
8927 GET_MODE (x),
8928 gen_int_mode (mask, GET_MODE (x)),
8929 XEXP (x, 1));
8930 if (temp && CONST_INT_P (temp))
8931 x = simplify_gen_binary (code, GET_MODE (x),
8932 force_to_mode (XEXP (x, 0), GET_MODE (x),
8933 INTVAL (temp), next_select),
8934 XEXP (x, 1));
8935 }
8936 break;
8937
8938 case NEG:
8939 /* If we just want the low-order bit, the NEG isn't needed since it
8940 won't change the low-order bit. */
8941 if (mask == 1)
8942 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
8943
8944 /* We need any bits less significant than the most significant bit in
8945 MASK since carries from those bits will affect the bits we are
8946 interested in. */
8947 mask = fuller_mask;
8948 goto unop;
8949
8950 case NOT:
8951 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
8952 same as the XOR case above. Ensure that the constant we form is not
8953 wider than the mode of X. */
8954
8955 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8956 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8957 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8958 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
8959 < GET_MODE_PRECISION (GET_MODE (x)))
8960 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
8961 {
8962 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
8963 GET_MODE (x));
8964 temp = simplify_gen_binary (XOR, GET_MODE (x),
8965 XEXP (XEXP (x, 0), 0), temp);
8966 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8967 temp, XEXP (XEXP (x, 0), 1));
8968
8969 return force_to_mode (x, mode, mask, next_select);
8970 }
8971
8972 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
8973 use the full mask inside the NOT. */
8974 mask = fuller_mask;
8975
8976 unop:
8977 op0 = gen_lowpart_or_truncate (op_mode,
8978 force_to_mode (XEXP (x, 0), mode, mask,
8979 next_select));
8980 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8981 x = simplify_gen_unary (code, op_mode, op0, op_mode);
8982 break;
8983
8984 case NE:
8985 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
8986 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
8987 which is equal to STORE_FLAG_VALUE. */
8988 if ((mask & ~STORE_FLAG_VALUE) == 0
8989 && XEXP (x, 1) == const0_rtx
8990 && GET_MODE (XEXP (x, 0)) == mode
8991 && pow2p_hwi (nonzero_bits (XEXP (x, 0), mode))
8992 && (nonzero_bits (XEXP (x, 0), mode)
8993 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
8994 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8995
8996 break;
8997
8998 case IF_THEN_ELSE:
8999 /* We have no way of knowing if the IF_THEN_ELSE can itself be
9000 written in a narrower mode. We play it safe and do not do so. */
9001
9002 op0 = gen_lowpart_or_truncate (GET_MODE (x),
9003 force_to_mode (XEXP (x, 1), mode,
9004 mask, next_select));
9005 op1 = gen_lowpart_or_truncate (GET_MODE (x),
9006 force_to_mode (XEXP (x, 2), mode,
9007 mask, next_select));
9008 if (op0 != XEXP (x, 1) || op1 != XEXP (x, 2))
9009 x = simplify_gen_ternary (IF_THEN_ELSE, GET_MODE (x),
9010 GET_MODE (XEXP (x, 0)), XEXP (x, 0),
9011 op0, op1);
9012 break;
9013
9014 default:
9015 break;
9016 }
9017
9018 /* Ensure we return a value of the proper mode. */
9019 return gen_lowpart_or_truncate (mode, x);
9020 }
9021 \f
9022 /* Return nonzero if X is an expression that has one of two values depending on
9023 whether some other value is zero or nonzero. In that case, we return the
9024 value that is being tested, *PTRUE is set to the value if the rtx being
9025 returned has a nonzero value, and *PFALSE is set to the other alternative.
9026
9027 If we return zero, we set *PTRUE and *PFALSE to X. */
9028
9029 static rtx
9030 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
9031 {
9032 machine_mode mode = GET_MODE (x);
9033 enum rtx_code code = GET_CODE (x);
9034 rtx cond0, cond1, true0, true1, false0, false1;
9035 unsigned HOST_WIDE_INT nz;
9036
9037 /* If we are comparing a value against zero, we are done. */
9038 if ((code == NE || code == EQ)
9039 && XEXP (x, 1) == const0_rtx)
9040 {
9041 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
9042 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
9043 return XEXP (x, 0);
9044 }
9045
9046 /* If this is a unary operation whose operand has one of two values, apply
9047 our opcode to compute those values. */
9048 else if (UNARY_P (x)
9049 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
9050 {
9051 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
9052 *pfalse = simplify_gen_unary (code, mode, false0,
9053 GET_MODE (XEXP (x, 0)));
9054 return cond0;
9055 }
9056
9057 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
9058 make can't possibly match and would suppress other optimizations. */
9059 else if (code == COMPARE)
9060 ;
9061
9062 /* If this is a binary operation, see if either side has only one of two
9063 values. If either one does or if both do and they are conditional on
9064 the same value, compute the new true and false values. */
9065 else if (BINARY_P (x))
9066 {
9067 rtx op0 = XEXP (x, 0);
9068 rtx op1 = XEXP (x, 1);
9069 cond0 = if_then_else_cond (op0, &true0, &false0);
9070 cond1 = if_then_else_cond (op1, &true1, &false1);
9071
9072 if ((cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1))
9073 && (REG_P (op0) || REG_P (op1)))
9074 {
9075 /* Try to enable a simplification by undoing work done by
9076 if_then_else_cond if it converted a REG into something more
9077 complex. */
9078 if (REG_P (op0))
9079 {
9080 cond0 = 0;
9081 true0 = false0 = op0;
9082 }
9083 else
9084 {
9085 cond1 = 0;
9086 true1 = false1 = op1;
9087 }
9088 }
9089
9090 if ((cond0 != 0 || cond1 != 0)
9091 && ! (cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1)))
9092 {
9093 /* If if_then_else_cond returned zero, then true/false are the
9094 same rtl. We must copy one of them to prevent invalid rtl
9095 sharing. */
9096 if (cond0 == 0)
9097 true0 = copy_rtx (true0);
9098 else if (cond1 == 0)
9099 true1 = copy_rtx (true1);
9100
9101 if (COMPARISON_P (x))
9102 {
9103 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
9104 true0, true1);
9105 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
9106 false0, false1);
9107 }
9108 else
9109 {
9110 *ptrue = simplify_gen_binary (code, mode, true0, true1);
9111 *pfalse = simplify_gen_binary (code, mode, false0, false1);
9112 }
9113
9114 return cond0 ? cond0 : cond1;
9115 }
9116
9117 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
9118 operands is zero when the other is nonzero, and vice-versa,
9119 and STORE_FLAG_VALUE is 1 or -1. */
9120
9121 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9122 && (code == PLUS || code == IOR || code == XOR || code == MINUS
9123 || code == UMAX)
9124 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9125 {
9126 rtx op0 = XEXP (XEXP (x, 0), 1);
9127 rtx op1 = XEXP (XEXP (x, 1), 1);
9128
9129 cond0 = XEXP (XEXP (x, 0), 0);
9130 cond1 = XEXP (XEXP (x, 1), 0);
9131
9132 if (COMPARISON_P (cond0)
9133 && COMPARISON_P (cond1)
9134 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9135 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9136 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9137 || ((swap_condition (GET_CODE (cond0))
9138 == reversed_comparison_code (cond1, NULL))
9139 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9140 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9141 && ! side_effects_p (x))
9142 {
9143 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
9144 *pfalse = simplify_gen_binary (MULT, mode,
9145 (code == MINUS
9146 ? simplify_gen_unary (NEG, mode,
9147 op1, mode)
9148 : op1),
9149 const_true_rtx);
9150 return cond0;
9151 }
9152 }
9153
9154 /* Similarly for MULT, AND and UMIN, except that for these the result
9155 is always zero. */
9156 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9157 && (code == MULT || code == AND || code == UMIN)
9158 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9159 {
9160 cond0 = XEXP (XEXP (x, 0), 0);
9161 cond1 = XEXP (XEXP (x, 1), 0);
9162
9163 if (COMPARISON_P (cond0)
9164 && COMPARISON_P (cond1)
9165 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9166 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9167 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9168 || ((swap_condition (GET_CODE (cond0))
9169 == reversed_comparison_code (cond1, NULL))
9170 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9171 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9172 && ! side_effects_p (x))
9173 {
9174 *ptrue = *pfalse = const0_rtx;
9175 return cond0;
9176 }
9177 }
9178 }
9179
9180 else if (code == IF_THEN_ELSE)
9181 {
9182 /* If we have IF_THEN_ELSE already, extract the condition and
9183 canonicalize it if it is NE or EQ. */
9184 cond0 = XEXP (x, 0);
9185 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
9186 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
9187 return XEXP (cond0, 0);
9188 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
9189 {
9190 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
9191 return XEXP (cond0, 0);
9192 }
9193 else
9194 return cond0;
9195 }
9196
9197 /* If X is a SUBREG, we can narrow both the true and false values
9198 if the inner expression, if there is a condition. */
9199 else if (code == SUBREG
9200 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
9201 &true0, &false0)))
9202 {
9203 true0 = simplify_gen_subreg (mode, true0,
9204 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9205 false0 = simplify_gen_subreg (mode, false0,
9206 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9207 if (true0 && false0)
9208 {
9209 *ptrue = true0;
9210 *pfalse = false0;
9211 return cond0;
9212 }
9213 }
9214
9215 /* If X is a constant, this isn't special and will cause confusions
9216 if we treat it as such. Likewise if it is equivalent to a constant. */
9217 else if (CONSTANT_P (x)
9218 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
9219 ;
9220
9221 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
9222 will be least confusing to the rest of the compiler. */
9223 else if (mode == BImode)
9224 {
9225 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
9226 return x;
9227 }
9228
9229 /* If X is known to be either 0 or -1, those are the true and
9230 false values when testing X. */
9231 else if (x == constm1_rtx || x == const0_rtx
9232 || (mode != VOIDmode && mode != BLKmode
9233 && num_sign_bit_copies (x, mode) == GET_MODE_PRECISION (mode)))
9234 {
9235 *ptrue = constm1_rtx, *pfalse = const0_rtx;
9236 return x;
9237 }
9238
9239 /* Likewise for 0 or a single bit. */
9240 else if (HWI_COMPUTABLE_MODE_P (mode)
9241 && pow2p_hwi (nz = nonzero_bits (x, mode)))
9242 {
9243 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
9244 return x;
9245 }
9246
9247 /* Otherwise fail; show no condition with true and false values the same. */
9248 *ptrue = *pfalse = x;
9249 return 0;
9250 }
9251 \f
9252 /* Return the value of expression X given the fact that condition COND
9253 is known to be true when applied to REG as its first operand and VAL
9254 as its second. X is known to not be shared and so can be modified in
9255 place.
9256
9257 We only handle the simplest cases, and specifically those cases that
9258 arise with IF_THEN_ELSE expressions. */
9259
9260 static rtx
9261 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
9262 {
9263 enum rtx_code code = GET_CODE (x);
9264 const char *fmt;
9265 int i, j;
9266
9267 if (side_effects_p (x))
9268 return x;
9269
9270 /* If either operand of the condition is a floating point value,
9271 then we have to avoid collapsing an EQ comparison. */
9272 if (cond == EQ
9273 && rtx_equal_p (x, reg)
9274 && ! FLOAT_MODE_P (GET_MODE (x))
9275 && ! FLOAT_MODE_P (GET_MODE (val)))
9276 return val;
9277
9278 if (cond == UNEQ && rtx_equal_p (x, reg))
9279 return val;
9280
9281 /* If X is (abs REG) and we know something about REG's relationship
9282 with zero, we may be able to simplify this. */
9283
9284 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
9285 switch (cond)
9286 {
9287 case GE: case GT: case EQ:
9288 return XEXP (x, 0);
9289 case LT: case LE:
9290 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
9291 XEXP (x, 0),
9292 GET_MODE (XEXP (x, 0)));
9293 default:
9294 break;
9295 }
9296
9297 /* The only other cases we handle are MIN, MAX, and comparisons if the
9298 operands are the same as REG and VAL. */
9299
9300 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
9301 {
9302 if (rtx_equal_p (XEXP (x, 0), val))
9303 {
9304 std::swap (val, reg);
9305 cond = swap_condition (cond);
9306 }
9307
9308 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
9309 {
9310 if (COMPARISON_P (x))
9311 {
9312 if (comparison_dominates_p (cond, code))
9313 return const_true_rtx;
9314
9315 code = reversed_comparison_code (x, NULL);
9316 if (code != UNKNOWN
9317 && comparison_dominates_p (cond, code))
9318 return const0_rtx;
9319 else
9320 return x;
9321 }
9322 else if (code == SMAX || code == SMIN
9323 || code == UMIN || code == UMAX)
9324 {
9325 int unsignedp = (code == UMIN || code == UMAX);
9326
9327 /* Do not reverse the condition when it is NE or EQ.
9328 This is because we cannot conclude anything about
9329 the value of 'SMAX (x, y)' when x is not equal to y,
9330 but we can when x equals y. */
9331 if ((code == SMAX || code == UMAX)
9332 && ! (cond == EQ || cond == NE))
9333 cond = reverse_condition (cond);
9334
9335 switch (cond)
9336 {
9337 case GE: case GT:
9338 return unsignedp ? x : XEXP (x, 1);
9339 case LE: case LT:
9340 return unsignedp ? x : XEXP (x, 0);
9341 case GEU: case GTU:
9342 return unsignedp ? XEXP (x, 1) : x;
9343 case LEU: case LTU:
9344 return unsignedp ? XEXP (x, 0) : x;
9345 default:
9346 break;
9347 }
9348 }
9349 }
9350 }
9351 else if (code == SUBREG)
9352 {
9353 machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
9354 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
9355
9356 if (SUBREG_REG (x) != r)
9357 {
9358 /* We must simplify subreg here, before we lose track of the
9359 original inner_mode. */
9360 new_rtx = simplify_subreg (GET_MODE (x), r,
9361 inner_mode, SUBREG_BYTE (x));
9362 if (new_rtx)
9363 return new_rtx;
9364 else
9365 SUBST (SUBREG_REG (x), r);
9366 }
9367
9368 return x;
9369 }
9370 /* We don't have to handle SIGN_EXTEND here, because even in the
9371 case of replacing something with a modeless CONST_INT, a
9372 CONST_INT is already (supposed to be) a valid sign extension for
9373 its narrower mode, which implies it's already properly
9374 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
9375 story is different. */
9376 else if (code == ZERO_EXTEND)
9377 {
9378 machine_mode inner_mode = GET_MODE (XEXP (x, 0));
9379 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
9380
9381 if (XEXP (x, 0) != r)
9382 {
9383 /* We must simplify the zero_extend here, before we lose
9384 track of the original inner_mode. */
9385 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
9386 r, inner_mode);
9387 if (new_rtx)
9388 return new_rtx;
9389 else
9390 SUBST (XEXP (x, 0), r);
9391 }
9392
9393 return x;
9394 }
9395
9396 fmt = GET_RTX_FORMAT (code);
9397 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9398 {
9399 if (fmt[i] == 'e')
9400 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
9401 else if (fmt[i] == 'E')
9402 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9403 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
9404 cond, reg, val));
9405 }
9406
9407 return x;
9408 }
9409 \f
9410 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9411 assignment as a field assignment. */
9412
9413 static int
9414 rtx_equal_for_field_assignment_p (rtx x, rtx y, bool widen_x)
9415 {
9416 if (widen_x && GET_MODE (x) != GET_MODE (y))
9417 {
9418 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (y)))
9419 return 0;
9420 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
9421 return 0;
9422 /* For big endian, adjust the memory offset. */
9423 if (BYTES_BIG_ENDIAN)
9424 x = adjust_address_nv (x, GET_MODE (y),
9425 -subreg_lowpart_offset (GET_MODE (x),
9426 GET_MODE (y)));
9427 else
9428 x = adjust_address_nv (x, GET_MODE (y), 0);
9429 }
9430
9431 if (x == y || rtx_equal_p (x, y))
9432 return 1;
9433
9434 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
9435 return 0;
9436
9437 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9438 Note that all SUBREGs of MEM are paradoxical; otherwise they
9439 would have been rewritten. */
9440 if (MEM_P (x) && GET_CODE (y) == SUBREG
9441 && MEM_P (SUBREG_REG (y))
9442 && rtx_equal_p (SUBREG_REG (y),
9443 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9444 return 1;
9445
9446 if (MEM_P (y) && GET_CODE (x) == SUBREG
9447 && MEM_P (SUBREG_REG (x))
9448 && rtx_equal_p (SUBREG_REG (x),
9449 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9450 return 1;
9451
9452 /* We used to see if get_last_value of X and Y were the same but that's
9453 not correct. In one direction, we'll cause the assignment to have
9454 the wrong destination and in the case, we'll import a register into this
9455 insn that might have already have been dead. So fail if none of the
9456 above cases are true. */
9457 return 0;
9458 }
9459 \f
9460 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9461 Return that assignment if so.
9462
9463 We only handle the most common cases. */
9464
9465 static rtx
9466 make_field_assignment (rtx x)
9467 {
9468 rtx dest = SET_DEST (x);
9469 rtx src = SET_SRC (x);
9470 rtx assign;
9471 rtx rhs, lhs;
9472 HOST_WIDE_INT c1;
9473 HOST_WIDE_INT pos;
9474 unsigned HOST_WIDE_INT len;
9475 rtx other;
9476 machine_mode mode;
9477
9478 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9479 a clear of a one-bit field. We will have changed it to
9480 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9481 for a SUBREG. */
9482
9483 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9484 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9485 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9486 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9487 {
9488 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9489 1, 1, 1, 0);
9490 if (assign != 0)
9491 return gen_rtx_SET (assign, const0_rtx);
9492 return x;
9493 }
9494
9495 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9496 && subreg_lowpart_p (XEXP (src, 0))
9497 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
9498 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
9499 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9500 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9501 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9502 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9503 {
9504 assign = make_extraction (VOIDmode, dest, 0,
9505 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9506 1, 1, 1, 0);
9507 if (assign != 0)
9508 return gen_rtx_SET (assign, const0_rtx);
9509 return x;
9510 }
9511
9512 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9513 one-bit field. */
9514 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9515 && XEXP (XEXP (src, 0), 0) == const1_rtx
9516 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9517 {
9518 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9519 1, 1, 1, 0);
9520 if (assign != 0)
9521 return gen_rtx_SET (assign, const1_rtx);
9522 return x;
9523 }
9524
9525 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9526 SRC is an AND with all bits of that field set, then we can discard
9527 the AND. */
9528 if (GET_CODE (dest) == ZERO_EXTRACT
9529 && CONST_INT_P (XEXP (dest, 1))
9530 && GET_CODE (src) == AND
9531 && CONST_INT_P (XEXP (src, 1)))
9532 {
9533 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9534 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9535 unsigned HOST_WIDE_INT ze_mask;
9536
9537 if (width >= HOST_BITS_PER_WIDE_INT)
9538 ze_mask = -1;
9539 else
9540 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9541
9542 /* Complete overlap. We can remove the source AND. */
9543 if ((and_mask & ze_mask) == ze_mask)
9544 return gen_rtx_SET (dest, XEXP (src, 0));
9545
9546 /* Partial overlap. We can reduce the source AND. */
9547 if ((and_mask & ze_mask) != and_mask)
9548 {
9549 mode = GET_MODE (src);
9550 src = gen_rtx_AND (mode, XEXP (src, 0),
9551 gen_int_mode (and_mask & ze_mask, mode));
9552 return gen_rtx_SET (dest, src);
9553 }
9554 }
9555
9556 /* The other case we handle is assignments into a constant-position
9557 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9558 a mask that has all one bits except for a group of zero bits and
9559 OTHER is known to have zeros where C1 has ones, this is such an
9560 assignment. Compute the position and length from C1. Shift OTHER
9561 to the appropriate position, force it to the required mode, and
9562 make the extraction. Check for the AND in both operands. */
9563
9564 /* One or more SUBREGs might obscure the constant-position field
9565 assignment. The first one we are likely to encounter is an outer
9566 narrowing SUBREG, which we can just strip for the purposes of
9567 identifying the constant-field assignment. */
9568 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src))
9569 src = SUBREG_REG (src);
9570
9571 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9572 return x;
9573
9574 rhs = expand_compound_operation (XEXP (src, 0));
9575 lhs = expand_compound_operation (XEXP (src, 1));
9576
9577 if (GET_CODE (rhs) == AND
9578 && CONST_INT_P (XEXP (rhs, 1))
9579 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9580 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9581 /* The second SUBREG that might get in the way is a paradoxical
9582 SUBREG around the first operand of the AND. We want to
9583 pretend the operand is as wide as the destination here. We
9584 do this by adjusting the MEM to wider mode for the sole
9585 purpose of the call to rtx_equal_for_field_assignment_p. Also
9586 note this trick only works for MEMs. */
9587 else if (GET_CODE (rhs) == AND
9588 && paradoxical_subreg_p (XEXP (rhs, 0))
9589 && MEM_P (SUBREG_REG (XEXP (rhs, 0)))
9590 && CONST_INT_P (XEXP (rhs, 1))
9591 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs, 0)),
9592 dest, true))
9593 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9594 else if (GET_CODE (lhs) == AND
9595 && CONST_INT_P (XEXP (lhs, 1))
9596 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9597 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9598 /* The second SUBREG that might get in the way is a paradoxical
9599 SUBREG around the first operand of the AND. We want to
9600 pretend the operand is as wide as the destination here. We
9601 do this by adjusting the MEM to wider mode for the sole
9602 purpose of the call to rtx_equal_for_field_assignment_p. Also
9603 note this trick only works for MEMs. */
9604 else if (GET_CODE (lhs) == AND
9605 && paradoxical_subreg_p (XEXP (lhs, 0))
9606 && MEM_P (SUBREG_REG (XEXP (lhs, 0)))
9607 && CONST_INT_P (XEXP (lhs, 1))
9608 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs, 0)),
9609 dest, true))
9610 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9611 else
9612 return x;
9613
9614 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
9615 if (pos < 0 || pos + len > GET_MODE_PRECISION (GET_MODE (dest))
9616 || GET_MODE_PRECISION (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
9617 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
9618 return x;
9619
9620 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9621 if (assign == 0)
9622 return x;
9623
9624 /* The mode to use for the source is the mode of the assignment, or of
9625 what is inside a possible STRICT_LOW_PART. */
9626 mode = (GET_CODE (assign) == STRICT_LOW_PART
9627 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9628
9629 /* Shift OTHER right POS places and make it the source, restricting it
9630 to the proper length and mode. */
9631
9632 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9633 GET_MODE (src),
9634 other, pos),
9635 dest);
9636 src = force_to_mode (src, mode,
9637 GET_MODE_PRECISION (mode) >= HOST_BITS_PER_WIDE_INT
9638 ? HOST_WIDE_INT_M1U
9639 : (HOST_WIDE_INT_1U << len) - 1,
9640 0);
9641
9642 /* If SRC is masked by an AND that does not make a difference in
9643 the value being stored, strip it. */
9644 if (GET_CODE (assign) == ZERO_EXTRACT
9645 && CONST_INT_P (XEXP (assign, 1))
9646 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9647 && GET_CODE (src) == AND
9648 && CONST_INT_P (XEXP (src, 1))
9649 && UINTVAL (XEXP (src, 1))
9650 == (HOST_WIDE_INT_1U << INTVAL (XEXP (assign, 1))) - 1)
9651 src = XEXP (src, 0);
9652
9653 return gen_rtx_SET (assign, src);
9654 }
9655 \f
9656 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9657 if so. */
9658
9659 static rtx
9660 apply_distributive_law (rtx x)
9661 {
9662 enum rtx_code code = GET_CODE (x);
9663 enum rtx_code inner_code;
9664 rtx lhs, rhs, other;
9665 rtx tem;
9666
9667 /* Distributivity is not true for floating point as it can change the
9668 value. So we don't do it unless -funsafe-math-optimizations. */
9669 if (FLOAT_MODE_P (GET_MODE (x))
9670 && ! flag_unsafe_math_optimizations)
9671 return x;
9672
9673 /* The outer operation can only be one of the following: */
9674 if (code != IOR && code != AND && code != XOR
9675 && code != PLUS && code != MINUS)
9676 return x;
9677
9678 lhs = XEXP (x, 0);
9679 rhs = XEXP (x, 1);
9680
9681 /* If either operand is a primitive we can't do anything, so get out
9682 fast. */
9683 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9684 return x;
9685
9686 lhs = expand_compound_operation (lhs);
9687 rhs = expand_compound_operation (rhs);
9688 inner_code = GET_CODE (lhs);
9689 if (inner_code != GET_CODE (rhs))
9690 return x;
9691
9692 /* See if the inner and outer operations distribute. */
9693 switch (inner_code)
9694 {
9695 case LSHIFTRT:
9696 case ASHIFTRT:
9697 case AND:
9698 case IOR:
9699 /* These all distribute except over PLUS. */
9700 if (code == PLUS || code == MINUS)
9701 return x;
9702 break;
9703
9704 case MULT:
9705 if (code != PLUS && code != MINUS)
9706 return x;
9707 break;
9708
9709 case ASHIFT:
9710 /* This is also a multiply, so it distributes over everything. */
9711 break;
9712
9713 /* This used to handle SUBREG, but this turned out to be counter-
9714 productive, since (subreg (op ...)) usually is not handled by
9715 insn patterns, and this "optimization" therefore transformed
9716 recognizable patterns into unrecognizable ones. Therefore the
9717 SUBREG case was removed from here.
9718
9719 It is possible that distributing SUBREG over arithmetic operations
9720 leads to an intermediate result than can then be optimized further,
9721 e.g. by moving the outer SUBREG to the other side of a SET as done
9722 in simplify_set. This seems to have been the original intent of
9723 handling SUBREGs here.
9724
9725 However, with current GCC this does not appear to actually happen,
9726 at least on major platforms. If some case is found where removing
9727 the SUBREG case here prevents follow-on optimizations, distributing
9728 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9729
9730 default:
9731 return x;
9732 }
9733
9734 /* Set LHS and RHS to the inner operands (A and B in the example
9735 above) and set OTHER to the common operand (C in the example).
9736 There is only one way to do this unless the inner operation is
9737 commutative. */
9738 if (COMMUTATIVE_ARITH_P (lhs)
9739 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9740 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9741 else if (COMMUTATIVE_ARITH_P (lhs)
9742 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9743 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9744 else if (COMMUTATIVE_ARITH_P (lhs)
9745 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9746 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9747 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9748 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9749 else
9750 return x;
9751
9752 /* Form the new inner operation, seeing if it simplifies first. */
9753 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9754
9755 /* There is one exception to the general way of distributing:
9756 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9757 if (code == XOR && inner_code == IOR)
9758 {
9759 inner_code = AND;
9760 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9761 }
9762
9763 /* We may be able to continuing distributing the result, so call
9764 ourselves recursively on the inner operation before forming the
9765 outer operation, which we return. */
9766 return simplify_gen_binary (inner_code, GET_MODE (x),
9767 apply_distributive_law (tem), other);
9768 }
9769
9770 /* See if X is of the form (* (+ A B) C), and if so convert to
9771 (+ (* A C) (* B C)) and try to simplify.
9772
9773 Most of the time, this results in no change. However, if some of
9774 the operands are the same or inverses of each other, simplifications
9775 will result.
9776
9777 For example, (and (ior A B) (not B)) can occur as the result of
9778 expanding a bit field assignment. When we apply the distributive
9779 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9780 which then simplifies to (and (A (not B))).
9781
9782 Note that no checks happen on the validity of applying the inverse
9783 distributive law. This is pointless since we can do it in the
9784 few places where this routine is called.
9785
9786 N is the index of the term that is decomposed (the arithmetic operation,
9787 i.e. (+ A B) in the first example above). !N is the index of the term that
9788 is distributed, i.e. of C in the first example above. */
9789 static rtx
9790 distribute_and_simplify_rtx (rtx x, int n)
9791 {
9792 machine_mode mode;
9793 enum rtx_code outer_code, inner_code;
9794 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9795
9796 /* Distributivity is not true for floating point as it can change the
9797 value. So we don't do it unless -funsafe-math-optimizations. */
9798 if (FLOAT_MODE_P (GET_MODE (x))
9799 && ! flag_unsafe_math_optimizations)
9800 return NULL_RTX;
9801
9802 decomposed = XEXP (x, n);
9803 if (!ARITHMETIC_P (decomposed))
9804 return NULL_RTX;
9805
9806 mode = GET_MODE (x);
9807 outer_code = GET_CODE (x);
9808 distributed = XEXP (x, !n);
9809
9810 inner_code = GET_CODE (decomposed);
9811 inner_op0 = XEXP (decomposed, 0);
9812 inner_op1 = XEXP (decomposed, 1);
9813
9814 /* Special case (and (xor B C) (not A)), which is equivalent to
9815 (xor (ior A B) (ior A C)) */
9816 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
9817 {
9818 distributed = XEXP (distributed, 0);
9819 outer_code = IOR;
9820 }
9821
9822 if (n == 0)
9823 {
9824 /* Distribute the second term. */
9825 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
9826 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
9827 }
9828 else
9829 {
9830 /* Distribute the first term. */
9831 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
9832 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
9833 }
9834
9835 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
9836 new_op0, new_op1));
9837 if (GET_CODE (tmp) != outer_code
9838 && (set_src_cost (tmp, mode, optimize_this_for_speed_p)
9839 < set_src_cost (x, mode, optimize_this_for_speed_p)))
9840 return tmp;
9841
9842 return NULL_RTX;
9843 }
9844 \f
9845 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9846 in MODE. Return an equivalent form, if different from (and VAROP
9847 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
9848
9849 static rtx
9850 simplify_and_const_int_1 (machine_mode mode, rtx varop,
9851 unsigned HOST_WIDE_INT constop)
9852 {
9853 unsigned HOST_WIDE_INT nonzero;
9854 unsigned HOST_WIDE_INT orig_constop;
9855 rtx orig_varop;
9856 int i;
9857
9858 orig_varop = varop;
9859 orig_constop = constop;
9860 if (GET_CODE (varop) == CLOBBER)
9861 return NULL_RTX;
9862
9863 /* Simplify VAROP knowing that we will be only looking at some of the
9864 bits in it.
9865
9866 Note by passing in CONSTOP, we guarantee that the bits not set in
9867 CONSTOP are not significant and will never be examined. We must
9868 ensure that is the case by explicitly masking out those bits
9869 before returning. */
9870 varop = force_to_mode (varop, mode, constop, 0);
9871
9872 /* If VAROP is a CLOBBER, we will fail so return it. */
9873 if (GET_CODE (varop) == CLOBBER)
9874 return varop;
9875
9876 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
9877 to VAROP and return the new constant. */
9878 if (CONST_INT_P (varop))
9879 return gen_int_mode (INTVAL (varop) & constop, mode);
9880
9881 /* See what bits may be nonzero in VAROP. Unlike the general case of
9882 a call to nonzero_bits, here we don't care about bits outside
9883 MODE. */
9884
9885 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
9886
9887 /* Turn off all bits in the constant that are known to already be zero.
9888 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
9889 which is tested below. */
9890
9891 constop &= nonzero;
9892
9893 /* If we don't have any bits left, return zero. */
9894 if (constop == 0)
9895 return const0_rtx;
9896
9897 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
9898 a power of two, we can replace this with an ASHIFT. */
9899 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
9900 && (i = exact_log2 (constop)) >= 0)
9901 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
9902
9903 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
9904 or XOR, then try to apply the distributive law. This may eliminate
9905 operations if either branch can be simplified because of the AND.
9906 It may also make some cases more complex, but those cases probably
9907 won't match a pattern either with or without this. */
9908
9909 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
9910 return
9911 gen_lowpart
9912 (mode,
9913 apply_distributive_law
9914 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
9915 simplify_and_const_int (NULL_RTX,
9916 GET_MODE (varop),
9917 XEXP (varop, 0),
9918 constop),
9919 simplify_and_const_int (NULL_RTX,
9920 GET_MODE (varop),
9921 XEXP (varop, 1),
9922 constop))));
9923
9924 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
9925 the AND and see if one of the operands simplifies to zero. If so, we
9926 may eliminate it. */
9927
9928 if (GET_CODE (varop) == PLUS
9929 && pow2p_hwi (constop + 1))
9930 {
9931 rtx o0, o1;
9932
9933 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
9934 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
9935 if (o0 == const0_rtx)
9936 return o1;
9937 if (o1 == const0_rtx)
9938 return o0;
9939 }
9940
9941 /* Make a SUBREG if necessary. If we can't make it, fail. */
9942 varop = gen_lowpart (mode, varop);
9943 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9944 return NULL_RTX;
9945
9946 /* If we are only masking insignificant bits, return VAROP. */
9947 if (constop == nonzero)
9948 return varop;
9949
9950 if (varop == orig_varop && constop == orig_constop)
9951 return NULL_RTX;
9952
9953 /* Otherwise, return an AND. */
9954 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
9955 }
9956
9957
9958 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
9959 in MODE.
9960
9961 Return an equivalent form, if different from X. Otherwise, return X. If
9962 X is zero, we are to always construct the equivalent form. */
9963
9964 static rtx
9965 simplify_and_const_int (rtx x, machine_mode mode, rtx varop,
9966 unsigned HOST_WIDE_INT constop)
9967 {
9968 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
9969 if (tem)
9970 return tem;
9971
9972 if (!x)
9973 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
9974 gen_int_mode (constop, mode));
9975 if (GET_MODE (x) != mode)
9976 x = gen_lowpart (mode, x);
9977 return x;
9978 }
9979 \f
9980 /* Given a REG, X, compute which bits in X can be nonzero.
9981 We don't care about bits outside of those defined in MODE.
9982
9983 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
9984 a shift, AND, or zero_extract, we can do better. */
9985
9986 static rtx
9987 reg_nonzero_bits_for_combine (const_rtx x, machine_mode mode,
9988 const_rtx known_x ATTRIBUTE_UNUSED,
9989 machine_mode known_mode ATTRIBUTE_UNUSED,
9990 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
9991 unsigned HOST_WIDE_INT *nonzero)
9992 {
9993 rtx tem;
9994 reg_stat_type *rsp;
9995
9996 /* If X is a register whose nonzero bits value is current, use it.
9997 Otherwise, if X is a register whose value we can find, use that
9998 value. Otherwise, use the previously-computed global nonzero bits
9999 for this register. */
10000
10001 rsp = &reg_stat[REGNO (x)];
10002 if (rsp->last_set_value != 0
10003 && (rsp->last_set_mode == mode
10004 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
10005 && GET_MODE_CLASS (mode) == MODE_INT))
10006 && ((rsp->last_set_label >= label_tick_ebb_start
10007 && rsp->last_set_label < label_tick)
10008 || (rsp->last_set_label == label_tick
10009 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10010 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10011 && REGNO (x) < reg_n_sets_max
10012 && REG_N_SETS (REGNO (x)) == 1
10013 && !REGNO_REG_SET_P
10014 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10015 REGNO (x)))))
10016 {
10017 /* Note that, even if the precision of last_set_mode is lower than that
10018 of mode, record_value_for_reg invoked nonzero_bits on the register
10019 with nonzero_bits_mode (because last_set_mode is necessarily integral
10020 and HWI_COMPUTABLE_MODE_P in this case) so bits in nonzero_bits_mode
10021 are all valid, hence in mode too since nonzero_bits_mode is defined
10022 to the largest HWI_COMPUTABLE_MODE_P mode. */
10023 *nonzero &= rsp->last_set_nonzero_bits;
10024 return NULL;
10025 }
10026
10027 tem = get_last_value (x);
10028 if (tem)
10029 {
10030 if (SHORT_IMMEDIATES_SIGN_EXTEND)
10031 tem = sign_extend_short_imm (tem, GET_MODE (x),
10032 GET_MODE_PRECISION (mode));
10033
10034 return tem;
10035 }
10036
10037 if (nonzero_sign_valid && rsp->nonzero_bits)
10038 {
10039 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
10040
10041 if (GET_MODE_PRECISION (GET_MODE (x)) < GET_MODE_PRECISION (mode))
10042 /* We don't know anything about the upper bits. */
10043 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
10044
10045 *nonzero &= mask;
10046 }
10047
10048 return NULL;
10049 }
10050
10051 /* Return the number of bits at the high-order end of X that are known to
10052 be equal to the sign bit. X will be used in mode MODE; if MODE is
10053 VOIDmode, X will be used in its own mode. The returned value will always
10054 be between 1 and the number of bits in MODE. */
10055
10056 static rtx
10057 reg_num_sign_bit_copies_for_combine (const_rtx x, machine_mode mode,
10058 const_rtx known_x ATTRIBUTE_UNUSED,
10059 machine_mode known_mode
10060 ATTRIBUTE_UNUSED,
10061 unsigned int known_ret ATTRIBUTE_UNUSED,
10062 unsigned int *result)
10063 {
10064 rtx tem;
10065 reg_stat_type *rsp;
10066
10067 rsp = &reg_stat[REGNO (x)];
10068 if (rsp->last_set_value != 0
10069 && rsp->last_set_mode == mode
10070 && ((rsp->last_set_label >= label_tick_ebb_start
10071 && rsp->last_set_label < label_tick)
10072 || (rsp->last_set_label == label_tick
10073 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10074 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10075 && REGNO (x) < reg_n_sets_max
10076 && REG_N_SETS (REGNO (x)) == 1
10077 && !REGNO_REG_SET_P
10078 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10079 REGNO (x)))))
10080 {
10081 *result = rsp->last_set_sign_bit_copies;
10082 return NULL;
10083 }
10084
10085 tem = get_last_value (x);
10086 if (tem != 0)
10087 return tem;
10088
10089 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
10090 && GET_MODE_PRECISION (GET_MODE (x)) == GET_MODE_PRECISION (mode))
10091 *result = rsp->sign_bit_copies;
10092
10093 return NULL;
10094 }
10095 \f
10096 /* Return the number of "extended" bits there are in X, when interpreted
10097 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
10098 unsigned quantities, this is the number of high-order zero bits.
10099 For signed quantities, this is the number of copies of the sign bit
10100 minus 1. In both case, this function returns the number of "spare"
10101 bits. For example, if two quantities for which this function returns
10102 at least 1 are added, the addition is known not to overflow.
10103
10104 This function will always return 0 unless called during combine, which
10105 implies that it must be called from a define_split. */
10106
10107 unsigned int
10108 extended_count (const_rtx x, machine_mode mode, int unsignedp)
10109 {
10110 if (nonzero_sign_valid == 0)
10111 return 0;
10112
10113 return (unsignedp
10114 ? (HWI_COMPUTABLE_MODE_P (mode)
10115 ? (unsigned int) (GET_MODE_PRECISION (mode) - 1
10116 - floor_log2 (nonzero_bits (x, mode)))
10117 : 0)
10118 : num_sign_bit_copies (x, mode) - 1);
10119 }
10120
10121 /* This function is called from `simplify_shift_const' to merge two
10122 outer operations. Specifically, we have already found that we need
10123 to perform operation *POP0 with constant *PCONST0 at the outermost
10124 position. We would now like to also perform OP1 with constant CONST1
10125 (with *POP0 being done last).
10126
10127 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
10128 the resulting operation. *PCOMP_P is set to 1 if we would need to
10129 complement the innermost operand, otherwise it is unchanged.
10130
10131 MODE is the mode in which the operation will be done. No bits outside
10132 the width of this mode matter. It is assumed that the width of this mode
10133 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
10134
10135 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
10136 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
10137 result is simply *PCONST0.
10138
10139 If the resulting operation cannot be expressed as one operation, we
10140 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
10141
10142 static int
10143 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, machine_mode mode, int *pcomp_p)
10144 {
10145 enum rtx_code op0 = *pop0;
10146 HOST_WIDE_INT const0 = *pconst0;
10147
10148 const0 &= GET_MODE_MASK (mode);
10149 const1 &= GET_MODE_MASK (mode);
10150
10151 /* If OP0 is an AND, clear unimportant bits in CONST1. */
10152 if (op0 == AND)
10153 const1 &= const0;
10154
10155 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
10156 if OP0 is SET. */
10157
10158 if (op1 == UNKNOWN || op0 == SET)
10159 return 1;
10160
10161 else if (op0 == UNKNOWN)
10162 op0 = op1, const0 = const1;
10163
10164 else if (op0 == op1)
10165 {
10166 switch (op0)
10167 {
10168 case AND:
10169 const0 &= const1;
10170 break;
10171 case IOR:
10172 const0 |= const1;
10173 break;
10174 case XOR:
10175 const0 ^= const1;
10176 break;
10177 case PLUS:
10178 const0 += const1;
10179 break;
10180 case NEG:
10181 op0 = UNKNOWN;
10182 break;
10183 default:
10184 break;
10185 }
10186 }
10187
10188 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
10189 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
10190 return 0;
10191
10192 /* If the two constants aren't the same, we can't do anything. The
10193 remaining six cases can all be done. */
10194 else if (const0 != const1)
10195 return 0;
10196
10197 else
10198 switch (op0)
10199 {
10200 case IOR:
10201 if (op1 == AND)
10202 /* (a & b) | b == b */
10203 op0 = SET;
10204 else /* op1 == XOR */
10205 /* (a ^ b) | b == a | b */
10206 {;}
10207 break;
10208
10209 case XOR:
10210 if (op1 == AND)
10211 /* (a & b) ^ b == (~a) & b */
10212 op0 = AND, *pcomp_p = 1;
10213 else /* op1 == IOR */
10214 /* (a | b) ^ b == a & ~b */
10215 op0 = AND, const0 = ~const0;
10216 break;
10217
10218 case AND:
10219 if (op1 == IOR)
10220 /* (a | b) & b == b */
10221 op0 = SET;
10222 else /* op1 == XOR */
10223 /* (a ^ b) & b) == (~a) & b */
10224 *pcomp_p = 1;
10225 break;
10226 default:
10227 break;
10228 }
10229
10230 /* Check for NO-OP cases. */
10231 const0 &= GET_MODE_MASK (mode);
10232 if (const0 == 0
10233 && (op0 == IOR || op0 == XOR || op0 == PLUS))
10234 op0 = UNKNOWN;
10235 else if (const0 == 0 && op0 == AND)
10236 op0 = SET;
10237 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
10238 && op0 == AND)
10239 op0 = UNKNOWN;
10240
10241 *pop0 = op0;
10242
10243 /* ??? Slightly redundant with the above mask, but not entirely.
10244 Moving this above means we'd have to sign-extend the mode mask
10245 for the final test. */
10246 if (op0 != UNKNOWN && op0 != NEG)
10247 *pconst0 = trunc_int_for_mode (const0, mode);
10248
10249 return 1;
10250 }
10251 \f
10252 /* A helper to simplify_shift_const_1 to determine the mode we can perform
10253 the shift in. The original shift operation CODE is performed on OP in
10254 ORIG_MODE. Return the wider mode MODE if we can perform the operation
10255 in that mode. Return ORIG_MODE otherwise. We can also assume that the
10256 result of the shift is subject to operation OUTER_CODE with operand
10257 OUTER_CONST. */
10258
10259 static machine_mode
10260 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
10261 machine_mode orig_mode, machine_mode mode,
10262 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
10263 {
10264 if (orig_mode == mode)
10265 return mode;
10266 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
10267
10268 /* In general we can't perform in wider mode for right shift and rotate. */
10269 switch (code)
10270 {
10271 case ASHIFTRT:
10272 /* We can still widen if the bits brought in from the left are identical
10273 to the sign bit of ORIG_MODE. */
10274 if (num_sign_bit_copies (op, mode)
10275 > (unsigned) (GET_MODE_PRECISION (mode)
10276 - GET_MODE_PRECISION (orig_mode)))
10277 return mode;
10278 return orig_mode;
10279
10280 case LSHIFTRT:
10281 /* Similarly here but with zero bits. */
10282 if (HWI_COMPUTABLE_MODE_P (mode)
10283 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
10284 return mode;
10285
10286 /* We can also widen if the bits brought in will be masked off. This
10287 operation is performed in ORIG_MODE. */
10288 if (outer_code == AND)
10289 {
10290 int care_bits = low_bitmask_len (orig_mode, outer_const);
10291
10292 if (care_bits >= 0
10293 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
10294 return mode;
10295 }
10296 /* fall through */
10297
10298 case ROTATE:
10299 return orig_mode;
10300
10301 case ROTATERT:
10302 gcc_unreachable ();
10303
10304 default:
10305 return mode;
10306 }
10307 }
10308
10309 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
10310 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
10311 if we cannot simplify it. Otherwise, return a simplified value.
10312
10313 The shift is normally computed in the widest mode we find in VAROP, as
10314 long as it isn't a different number of words than RESULT_MODE. Exceptions
10315 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10316
10317 static rtx
10318 simplify_shift_const_1 (enum rtx_code code, machine_mode result_mode,
10319 rtx varop, int orig_count)
10320 {
10321 enum rtx_code orig_code = code;
10322 rtx orig_varop = varop;
10323 int count;
10324 machine_mode mode = result_mode;
10325 machine_mode shift_mode, tmode;
10326 unsigned int mode_words
10327 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
10328 /* We form (outer_op (code varop count) (outer_const)). */
10329 enum rtx_code outer_op = UNKNOWN;
10330 HOST_WIDE_INT outer_const = 0;
10331 int complement_p = 0;
10332 rtx new_rtx, x;
10333
10334 /* Make sure and truncate the "natural" shift on the way in. We don't
10335 want to do this inside the loop as it makes it more difficult to
10336 combine shifts. */
10337 if (SHIFT_COUNT_TRUNCATED)
10338 orig_count &= GET_MODE_UNIT_BITSIZE (mode) - 1;
10339
10340 /* If we were given an invalid count, don't do anything except exactly
10341 what was requested. */
10342
10343 if (orig_count < 0 || orig_count >= (int) GET_MODE_UNIT_PRECISION (mode))
10344 return NULL_RTX;
10345
10346 count = orig_count;
10347
10348 /* Unless one of the branches of the `if' in this loop does a `continue',
10349 we will `break' the loop after the `if'. */
10350
10351 while (count != 0)
10352 {
10353 /* If we have an operand of (clobber (const_int 0)), fail. */
10354 if (GET_CODE (varop) == CLOBBER)
10355 return NULL_RTX;
10356
10357 /* Convert ROTATERT to ROTATE. */
10358 if (code == ROTATERT)
10359 {
10360 unsigned int bitsize = GET_MODE_UNIT_PRECISION (result_mode);
10361 code = ROTATE;
10362 count = bitsize - count;
10363 }
10364
10365 shift_mode = try_widen_shift_mode (code, varop, count, result_mode,
10366 mode, outer_op, outer_const);
10367 machine_mode shift_unit_mode = GET_MODE_INNER (shift_mode);
10368
10369 /* Handle cases where the count is greater than the size of the mode
10370 minus 1. For ASHIFT, use the size minus one as the count (this can
10371 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
10372 take the count modulo the size. For other shifts, the result is
10373 zero.
10374
10375 Since these shifts are being produced by the compiler by combining
10376 multiple operations, each of which are defined, we know what the
10377 result is supposed to be. */
10378
10379 if (count > (GET_MODE_PRECISION (shift_unit_mode) - 1))
10380 {
10381 if (code == ASHIFTRT)
10382 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10383 else if (code == ROTATE || code == ROTATERT)
10384 count %= GET_MODE_PRECISION (shift_unit_mode);
10385 else
10386 {
10387 /* We can't simply return zero because there may be an
10388 outer op. */
10389 varop = const0_rtx;
10390 count = 0;
10391 break;
10392 }
10393 }
10394
10395 /* If we discovered we had to complement VAROP, leave. Making a NOT
10396 here would cause an infinite loop. */
10397 if (complement_p)
10398 break;
10399
10400 if (shift_mode == shift_unit_mode)
10401 {
10402 /* An arithmetic right shift of a quantity known to be -1 or 0
10403 is a no-op. */
10404 if (code == ASHIFTRT
10405 && (num_sign_bit_copies (varop, shift_unit_mode)
10406 == GET_MODE_PRECISION (shift_unit_mode)))
10407 {
10408 count = 0;
10409 break;
10410 }
10411
10412 /* If we are doing an arithmetic right shift and discarding all but
10413 the sign bit copies, this is equivalent to doing a shift by the
10414 bitsize minus one. Convert it into that shift because it will
10415 often allow other simplifications. */
10416
10417 if (code == ASHIFTRT
10418 && (count + num_sign_bit_copies (varop, shift_unit_mode)
10419 >= GET_MODE_PRECISION (shift_unit_mode)))
10420 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10421
10422 /* We simplify the tests below and elsewhere by converting
10423 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10424 `make_compound_operation' will convert it to an ASHIFTRT for
10425 those machines (such as VAX) that don't have an LSHIFTRT. */
10426 if (code == ASHIFTRT
10427 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10428 && val_signbit_known_clear_p (shift_unit_mode,
10429 nonzero_bits (varop,
10430 shift_unit_mode)))
10431 code = LSHIFTRT;
10432
10433 if (((code == LSHIFTRT
10434 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10435 && !(nonzero_bits (varop, shift_unit_mode) >> count))
10436 || (code == ASHIFT
10437 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10438 && !((nonzero_bits (varop, shift_unit_mode) << count)
10439 & GET_MODE_MASK (shift_unit_mode))))
10440 && !side_effects_p (varop))
10441 varop = const0_rtx;
10442 }
10443
10444 switch (GET_CODE (varop))
10445 {
10446 case SIGN_EXTEND:
10447 case ZERO_EXTEND:
10448 case SIGN_EXTRACT:
10449 case ZERO_EXTRACT:
10450 new_rtx = expand_compound_operation (varop);
10451 if (new_rtx != varop)
10452 {
10453 varop = new_rtx;
10454 continue;
10455 }
10456 break;
10457
10458 case MEM:
10459 /* The following rules apply only to scalars. */
10460 if (shift_mode != shift_unit_mode)
10461 break;
10462
10463 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10464 minus the width of a smaller mode, we can do this with a
10465 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10466 if ((code == ASHIFTRT || code == LSHIFTRT)
10467 && ! mode_dependent_address_p (XEXP (varop, 0),
10468 MEM_ADDR_SPACE (varop))
10469 && ! MEM_VOLATILE_P (varop)
10470 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
10471 MODE_INT, 1)) != BLKmode)
10472 {
10473 new_rtx = adjust_address_nv (varop, tmode,
10474 BYTES_BIG_ENDIAN ? 0
10475 : count / BITS_PER_UNIT);
10476
10477 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10478 : ZERO_EXTEND, mode, new_rtx);
10479 count = 0;
10480 continue;
10481 }
10482 break;
10483
10484 case SUBREG:
10485 /* The following rules apply only to scalars. */
10486 if (shift_mode != shift_unit_mode)
10487 break;
10488
10489 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10490 the same number of words as what we've seen so far. Then store
10491 the widest mode in MODE. */
10492 if (subreg_lowpart_p (varop)
10493 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10494 > GET_MODE_SIZE (GET_MODE (varop)))
10495 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10496 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
10497 == mode_words
10498 && GET_MODE_CLASS (GET_MODE (varop)) == MODE_INT
10499 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (varop))) == MODE_INT)
10500 {
10501 varop = SUBREG_REG (varop);
10502 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
10503 mode = GET_MODE (varop);
10504 continue;
10505 }
10506 break;
10507
10508 case MULT:
10509 /* Some machines use MULT instead of ASHIFT because MULT
10510 is cheaper. But it is still better on those machines to
10511 merge two shifts into one. */
10512 if (CONST_INT_P (XEXP (varop, 1))
10513 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10514 {
10515 varop
10516 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
10517 XEXP (varop, 0),
10518 GEN_INT (exact_log2 (
10519 UINTVAL (XEXP (varop, 1)))));
10520 continue;
10521 }
10522 break;
10523
10524 case UDIV:
10525 /* Similar, for when divides are cheaper. */
10526 if (CONST_INT_P (XEXP (varop, 1))
10527 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10528 {
10529 varop
10530 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
10531 XEXP (varop, 0),
10532 GEN_INT (exact_log2 (
10533 UINTVAL (XEXP (varop, 1)))));
10534 continue;
10535 }
10536 break;
10537
10538 case ASHIFTRT:
10539 /* If we are extracting just the sign bit of an arithmetic
10540 right shift, that shift is not needed. However, the sign
10541 bit of a wider mode may be different from what would be
10542 interpreted as the sign bit in a narrower mode, so, if
10543 the result is narrower, don't discard the shift. */
10544 if (code == LSHIFTRT
10545 && count == (GET_MODE_UNIT_BITSIZE (result_mode) - 1)
10546 && (GET_MODE_UNIT_BITSIZE (result_mode)
10547 >= GET_MODE_UNIT_BITSIZE (GET_MODE (varop))))
10548 {
10549 varop = XEXP (varop, 0);
10550 continue;
10551 }
10552
10553 /* fall through */
10554
10555 case LSHIFTRT:
10556 case ASHIFT:
10557 case ROTATE:
10558 /* The following rules apply only to scalars. */
10559 if (shift_mode != shift_unit_mode)
10560 break;
10561
10562 /* Here we have two nested shifts. The result is usually the
10563 AND of a new shift with a mask. We compute the result below. */
10564 if (CONST_INT_P (XEXP (varop, 1))
10565 && INTVAL (XEXP (varop, 1)) >= 0
10566 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (GET_MODE (varop))
10567 && HWI_COMPUTABLE_MODE_P (result_mode)
10568 && HWI_COMPUTABLE_MODE_P (mode))
10569 {
10570 enum rtx_code first_code = GET_CODE (varop);
10571 unsigned int first_count = INTVAL (XEXP (varop, 1));
10572 unsigned HOST_WIDE_INT mask;
10573 rtx mask_rtx;
10574
10575 /* We have one common special case. We can't do any merging if
10576 the inner code is an ASHIFTRT of a smaller mode. However, if
10577 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10578 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10579 we can convert it to
10580 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10581 This simplifies certain SIGN_EXTEND operations. */
10582 if (code == ASHIFT && first_code == ASHIFTRT
10583 && count == (GET_MODE_PRECISION (result_mode)
10584 - GET_MODE_PRECISION (GET_MODE (varop))))
10585 {
10586 /* C3 has the low-order C1 bits zero. */
10587
10588 mask = GET_MODE_MASK (mode)
10589 & ~((HOST_WIDE_INT_1U << first_count) - 1);
10590
10591 varop = simplify_and_const_int (NULL_RTX, result_mode,
10592 XEXP (varop, 0), mask);
10593 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
10594 varop, count);
10595 count = first_count;
10596 code = ASHIFTRT;
10597 continue;
10598 }
10599
10600 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10601 than C1 high-order bits equal to the sign bit, we can convert
10602 this to either an ASHIFT or an ASHIFTRT depending on the
10603 two counts.
10604
10605 We cannot do this if VAROP's mode is not SHIFT_MODE. */
10606
10607 if (code == ASHIFTRT && first_code == ASHIFT
10608 && GET_MODE (varop) == shift_mode
10609 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
10610 > first_count))
10611 {
10612 varop = XEXP (varop, 0);
10613 count -= first_count;
10614 if (count < 0)
10615 {
10616 count = -count;
10617 code = ASHIFT;
10618 }
10619
10620 continue;
10621 }
10622
10623 /* There are some cases we can't do. If CODE is ASHIFTRT,
10624 we can only do this if FIRST_CODE is also ASHIFTRT.
10625
10626 We can't do the case when CODE is ROTATE and FIRST_CODE is
10627 ASHIFTRT.
10628
10629 If the mode of this shift is not the mode of the outer shift,
10630 we can't do this if either shift is a right shift or ROTATE.
10631
10632 Finally, we can't do any of these if the mode is too wide
10633 unless the codes are the same.
10634
10635 Handle the case where the shift codes are the same
10636 first. */
10637
10638 if (code == first_code)
10639 {
10640 if (GET_MODE (varop) != result_mode
10641 && (code == ASHIFTRT || code == LSHIFTRT
10642 || code == ROTATE))
10643 break;
10644
10645 count += first_count;
10646 varop = XEXP (varop, 0);
10647 continue;
10648 }
10649
10650 if (code == ASHIFTRT
10651 || (code == ROTATE && first_code == ASHIFTRT)
10652 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
10653 || (GET_MODE (varop) != result_mode
10654 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10655 || first_code == ROTATE
10656 || code == ROTATE)))
10657 break;
10658
10659 /* To compute the mask to apply after the shift, shift the
10660 nonzero bits of the inner shift the same way the
10661 outer shift will. */
10662
10663 mask_rtx = gen_int_mode (nonzero_bits (varop, GET_MODE (varop)),
10664 result_mode);
10665
10666 mask_rtx
10667 = simplify_const_binary_operation (code, result_mode, mask_rtx,
10668 GEN_INT (count));
10669
10670 /* Give up if we can't compute an outer operation to use. */
10671 if (mask_rtx == 0
10672 || !CONST_INT_P (mask_rtx)
10673 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10674 INTVAL (mask_rtx),
10675 result_mode, &complement_p))
10676 break;
10677
10678 /* If the shifts are in the same direction, we add the
10679 counts. Otherwise, we subtract them. */
10680 if ((code == ASHIFTRT || code == LSHIFTRT)
10681 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10682 count += first_count;
10683 else
10684 count -= first_count;
10685
10686 /* If COUNT is positive, the new shift is usually CODE,
10687 except for the two exceptions below, in which case it is
10688 FIRST_CODE. If the count is negative, FIRST_CODE should
10689 always be used */
10690 if (count > 0
10691 && ((first_code == ROTATE && code == ASHIFT)
10692 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10693 code = first_code;
10694 else if (count < 0)
10695 code = first_code, count = -count;
10696
10697 varop = XEXP (varop, 0);
10698 continue;
10699 }
10700
10701 /* If we have (A << B << C) for any shift, we can convert this to
10702 (A << C << B). This wins if A is a constant. Only try this if
10703 B is not a constant. */
10704
10705 else if (GET_CODE (varop) == code
10706 && CONST_INT_P (XEXP (varop, 0))
10707 && !CONST_INT_P (XEXP (varop, 1)))
10708 {
10709 /* For ((unsigned) (cstULL >> count)) >> cst2 we have to make
10710 sure the result will be masked. See PR70222. */
10711 if (code == LSHIFTRT
10712 && mode != result_mode
10713 && !merge_outer_ops (&outer_op, &outer_const, AND,
10714 GET_MODE_MASK (result_mode)
10715 >> orig_count, result_mode,
10716 &complement_p))
10717 break;
10718 /* For ((int) (cstLL >> count)) >> cst2 just give up. Queuing
10719 up outer sign extension (often left and right shift) is
10720 hardly more efficient than the original. See PR70429. */
10721 if (code == ASHIFTRT && mode != result_mode)
10722 break;
10723
10724 rtx new_rtx = simplify_const_binary_operation (code, mode,
10725 XEXP (varop, 0),
10726 GEN_INT (count));
10727 varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
10728 count = 0;
10729 continue;
10730 }
10731 break;
10732
10733 case NOT:
10734 /* The following rules apply only to scalars. */
10735 if (shift_mode != shift_unit_mode)
10736 break;
10737
10738 /* Make this fit the case below. */
10739 varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
10740 continue;
10741
10742 case IOR:
10743 case AND:
10744 case XOR:
10745 /* The following rules apply only to scalars. */
10746 if (shift_mode != shift_unit_mode)
10747 break;
10748
10749 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10750 with C the size of VAROP - 1 and the shift is logical if
10751 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10752 we have an (le X 0) operation. If we have an arithmetic shift
10753 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10754 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10755
10756 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10757 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10758 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10759 && (code == LSHIFTRT || code == ASHIFTRT)
10760 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10761 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10762 {
10763 count = 0;
10764 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
10765 const0_rtx);
10766
10767 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10768 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10769
10770 continue;
10771 }
10772
10773 /* If we have (shift (logical)), move the logical to the outside
10774 to allow it to possibly combine with another logical and the
10775 shift to combine with another shift. This also canonicalizes to
10776 what a ZERO_EXTRACT looks like. Also, some machines have
10777 (and (shift)) insns. */
10778
10779 if (CONST_INT_P (XEXP (varop, 1))
10780 /* We can't do this if we have (ashiftrt (xor)) and the
10781 constant has its sign bit set in shift_mode with shift_mode
10782 wider than result_mode. */
10783 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10784 && result_mode != shift_mode
10785 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10786 shift_mode))
10787 && (new_rtx = simplify_const_binary_operation
10788 (code, result_mode,
10789 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10790 GEN_INT (count))) != 0
10791 && CONST_INT_P (new_rtx)
10792 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10793 INTVAL (new_rtx), result_mode, &complement_p))
10794 {
10795 varop = XEXP (varop, 0);
10796 continue;
10797 }
10798
10799 /* If we can't do that, try to simplify the shift in each arm of the
10800 logical expression, make a new logical expression, and apply
10801 the inverse distributive law. This also can't be done for
10802 (ashiftrt (xor)) where we've widened the shift and the constant
10803 changes the sign bit. */
10804 if (CONST_INT_P (XEXP (varop, 1))
10805 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10806 && result_mode != shift_mode
10807 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10808 shift_mode)))
10809 {
10810 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10811 XEXP (varop, 0), count);
10812 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10813 XEXP (varop, 1), count);
10814
10815 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
10816 lhs, rhs);
10817 varop = apply_distributive_law (varop);
10818
10819 count = 0;
10820 continue;
10821 }
10822 break;
10823
10824 case EQ:
10825 /* The following rules apply only to scalars. */
10826 if (shift_mode != shift_unit_mode)
10827 break;
10828
10829 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10830 says that the sign bit can be tested, FOO has mode MODE, C is
10831 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
10832 that may be nonzero. */
10833 if (code == LSHIFTRT
10834 && XEXP (varop, 1) == const0_rtx
10835 && GET_MODE (XEXP (varop, 0)) == result_mode
10836 && count == (GET_MODE_PRECISION (result_mode) - 1)
10837 && HWI_COMPUTABLE_MODE_P (result_mode)
10838 && STORE_FLAG_VALUE == -1
10839 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10840 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10841 &complement_p))
10842 {
10843 varop = XEXP (varop, 0);
10844 count = 0;
10845 continue;
10846 }
10847 break;
10848
10849 case NEG:
10850 /* The following rules apply only to scalars. */
10851 if (shift_mode != shift_unit_mode)
10852 break;
10853
10854 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
10855 than the number of bits in the mode is equivalent to A. */
10856 if (code == LSHIFTRT
10857 && count == (GET_MODE_PRECISION (result_mode) - 1)
10858 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
10859 {
10860 varop = XEXP (varop, 0);
10861 count = 0;
10862 continue;
10863 }
10864
10865 /* NEG commutes with ASHIFT since it is multiplication. Move the
10866 NEG outside to allow shifts to combine. */
10867 if (code == ASHIFT
10868 && merge_outer_ops (&outer_op, &outer_const, NEG, 0, result_mode,
10869 &complement_p))
10870 {
10871 varop = XEXP (varop, 0);
10872 continue;
10873 }
10874 break;
10875
10876 case PLUS:
10877 /* The following rules apply only to scalars. */
10878 if (shift_mode != shift_unit_mode)
10879 break;
10880
10881 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
10882 is one less than the number of bits in the mode is
10883 equivalent to (xor A 1). */
10884 if (code == LSHIFTRT
10885 && count == (GET_MODE_PRECISION (result_mode) - 1)
10886 && XEXP (varop, 1) == constm1_rtx
10887 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10888 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10889 &complement_p))
10890 {
10891 count = 0;
10892 varop = XEXP (varop, 0);
10893 continue;
10894 }
10895
10896 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
10897 that might be nonzero in BAR are those being shifted out and those
10898 bits are known zero in FOO, we can replace the PLUS with FOO.
10899 Similarly in the other operand order. This code occurs when
10900 we are computing the size of a variable-size array. */
10901
10902 if ((code == ASHIFTRT || code == LSHIFTRT)
10903 && count < HOST_BITS_PER_WIDE_INT
10904 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
10905 && (nonzero_bits (XEXP (varop, 1), result_mode)
10906 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
10907 {
10908 varop = XEXP (varop, 0);
10909 continue;
10910 }
10911 else if ((code == ASHIFTRT || code == LSHIFTRT)
10912 && count < HOST_BITS_PER_WIDE_INT
10913 && HWI_COMPUTABLE_MODE_P (result_mode)
10914 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10915 >> count)
10916 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10917 & nonzero_bits (XEXP (varop, 1),
10918 result_mode)))
10919 {
10920 varop = XEXP (varop, 1);
10921 continue;
10922 }
10923
10924 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
10925 if (code == ASHIFT
10926 && CONST_INT_P (XEXP (varop, 1))
10927 && (new_rtx = simplify_const_binary_operation
10928 (ASHIFT, result_mode,
10929 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10930 GEN_INT (count))) != 0
10931 && CONST_INT_P (new_rtx)
10932 && merge_outer_ops (&outer_op, &outer_const, PLUS,
10933 INTVAL (new_rtx), result_mode, &complement_p))
10934 {
10935 varop = XEXP (varop, 0);
10936 continue;
10937 }
10938
10939 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
10940 signbit', and attempt to change the PLUS to an XOR and move it to
10941 the outer operation as is done above in the AND/IOR/XOR case
10942 leg for shift(logical). See details in logical handling above
10943 for reasoning in doing so. */
10944 if (code == LSHIFTRT
10945 && CONST_INT_P (XEXP (varop, 1))
10946 && mode_signbit_p (result_mode, XEXP (varop, 1))
10947 && (new_rtx = simplify_const_binary_operation
10948 (code, result_mode,
10949 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10950 GEN_INT (count))) != 0
10951 && CONST_INT_P (new_rtx)
10952 && merge_outer_ops (&outer_op, &outer_const, XOR,
10953 INTVAL (new_rtx), result_mode, &complement_p))
10954 {
10955 varop = XEXP (varop, 0);
10956 continue;
10957 }
10958
10959 break;
10960
10961 case MINUS:
10962 /* The following rules apply only to scalars. */
10963 if (shift_mode != shift_unit_mode)
10964 break;
10965
10966 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
10967 with C the size of VAROP - 1 and the shift is logical if
10968 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10969 we have a (gt X 0) operation. If the shift is arithmetic with
10970 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
10971 we have a (neg (gt X 0)) operation. */
10972
10973 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10974 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
10975 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10976 && (code == LSHIFTRT || code == ASHIFTRT)
10977 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10978 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
10979 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10980 {
10981 count = 0;
10982 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
10983 const0_rtx);
10984
10985 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10986 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10987
10988 continue;
10989 }
10990 break;
10991
10992 case TRUNCATE:
10993 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
10994 if the truncate does not affect the value. */
10995 if (code == LSHIFTRT
10996 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
10997 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10998 && (INTVAL (XEXP (XEXP (varop, 0), 1))
10999 >= (GET_MODE_UNIT_PRECISION (GET_MODE (XEXP (varop, 0)))
11000 - GET_MODE_UNIT_PRECISION (GET_MODE (varop)))))
11001 {
11002 rtx varop_inner = XEXP (varop, 0);
11003
11004 varop_inner
11005 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
11006 XEXP (varop_inner, 0),
11007 GEN_INT
11008 (count + INTVAL (XEXP (varop_inner, 1))));
11009 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
11010 count = 0;
11011 continue;
11012 }
11013 break;
11014
11015 default:
11016 break;
11017 }
11018
11019 break;
11020 }
11021
11022 shift_mode = try_widen_shift_mode (code, varop, count, result_mode, mode,
11023 outer_op, outer_const);
11024
11025 /* We have now finished analyzing the shift. The result should be
11026 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
11027 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
11028 to the result of the shift. OUTER_CONST is the relevant constant,
11029 but we must turn off all bits turned off in the shift. */
11030
11031 if (outer_op == UNKNOWN
11032 && orig_code == code && orig_count == count
11033 && varop == orig_varop
11034 && shift_mode == GET_MODE (varop))
11035 return NULL_RTX;
11036
11037 /* Make a SUBREG if necessary. If we can't make it, fail. */
11038 varop = gen_lowpart (shift_mode, varop);
11039 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
11040 return NULL_RTX;
11041
11042 /* If we have an outer operation and we just made a shift, it is
11043 possible that we could have simplified the shift were it not
11044 for the outer operation. So try to do the simplification
11045 recursively. */
11046
11047 if (outer_op != UNKNOWN)
11048 x = simplify_shift_const_1 (code, shift_mode, varop, count);
11049 else
11050 x = NULL_RTX;
11051
11052 if (x == NULL_RTX)
11053 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
11054
11055 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
11056 turn off all the bits that the shift would have turned off. */
11057 if (orig_code == LSHIFTRT && result_mode != shift_mode)
11058 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
11059 GET_MODE_MASK (result_mode) >> orig_count);
11060
11061 /* Do the remainder of the processing in RESULT_MODE. */
11062 x = gen_lowpart_or_truncate (result_mode, x);
11063
11064 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
11065 operation. */
11066 if (complement_p)
11067 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
11068
11069 if (outer_op != UNKNOWN)
11070 {
11071 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
11072 && GET_MODE_PRECISION (result_mode) < HOST_BITS_PER_WIDE_INT)
11073 outer_const = trunc_int_for_mode (outer_const, result_mode);
11074
11075 if (outer_op == AND)
11076 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
11077 else if (outer_op == SET)
11078 {
11079 /* This means that we have determined that the result is
11080 equivalent to a constant. This should be rare. */
11081 if (!side_effects_p (x))
11082 x = GEN_INT (outer_const);
11083 }
11084 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
11085 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
11086 else
11087 x = simplify_gen_binary (outer_op, result_mode, x,
11088 GEN_INT (outer_const));
11089 }
11090
11091 return x;
11092 }
11093
11094 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
11095 The result of the shift is RESULT_MODE. If we cannot simplify it,
11096 return X or, if it is NULL, synthesize the expression with
11097 simplify_gen_binary. Otherwise, return a simplified value.
11098
11099 The shift is normally computed in the widest mode we find in VAROP, as
11100 long as it isn't a different number of words than RESULT_MODE. Exceptions
11101 are ASHIFTRT and ROTATE, which are always done in their original mode. */
11102
11103 static rtx
11104 simplify_shift_const (rtx x, enum rtx_code code, machine_mode result_mode,
11105 rtx varop, int count)
11106 {
11107 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
11108 if (tem)
11109 return tem;
11110
11111 if (!x)
11112 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
11113 if (GET_MODE (x) != result_mode)
11114 x = gen_lowpart (result_mode, x);
11115 return x;
11116 }
11117
11118 \f
11119 /* A subroutine of recog_for_combine. See there for arguments and
11120 return value. */
11121
11122 static int
11123 recog_for_combine_1 (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11124 {
11125 rtx pat = *pnewpat;
11126 rtx pat_without_clobbers;
11127 int insn_code_number;
11128 int num_clobbers_to_add = 0;
11129 int i;
11130 rtx notes = NULL_RTX;
11131 rtx old_notes, old_pat;
11132 int old_icode;
11133
11134 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
11135 we use to indicate that something didn't match. If we find such a
11136 thing, force rejection. */
11137 if (GET_CODE (pat) == PARALLEL)
11138 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
11139 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
11140 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
11141 return -1;
11142
11143 old_pat = PATTERN (insn);
11144 old_notes = REG_NOTES (insn);
11145 PATTERN (insn) = pat;
11146 REG_NOTES (insn) = NULL_RTX;
11147
11148 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11149 if (dump_file && (dump_flags & TDF_DETAILS))
11150 {
11151 if (insn_code_number < 0)
11152 fputs ("Failed to match this instruction:\n", dump_file);
11153 else
11154 fputs ("Successfully matched this instruction:\n", dump_file);
11155 print_rtl_single (dump_file, pat);
11156 }
11157
11158 /* If it isn't, there is the possibility that we previously had an insn
11159 that clobbered some register as a side effect, but the combined
11160 insn doesn't need to do that. So try once more without the clobbers
11161 unless this represents an ASM insn. */
11162
11163 if (insn_code_number < 0 && ! check_asm_operands (pat)
11164 && GET_CODE (pat) == PARALLEL)
11165 {
11166 int pos;
11167
11168 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
11169 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
11170 {
11171 if (i != pos)
11172 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
11173 pos++;
11174 }
11175
11176 SUBST_INT (XVECLEN (pat, 0), pos);
11177
11178 if (pos == 1)
11179 pat = XVECEXP (pat, 0, 0);
11180
11181 PATTERN (insn) = pat;
11182 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11183 if (dump_file && (dump_flags & TDF_DETAILS))
11184 {
11185 if (insn_code_number < 0)
11186 fputs ("Failed to match this instruction:\n", dump_file);
11187 else
11188 fputs ("Successfully matched this instruction:\n", dump_file);
11189 print_rtl_single (dump_file, pat);
11190 }
11191 }
11192
11193 pat_without_clobbers = pat;
11194
11195 PATTERN (insn) = old_pat;
11196 REG_NOTES (insn) = old_notes;
11197
11198 /* Recognize all noop sets, these will be killed by followup pass. */
11199 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
11200 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
11201
11202 /* If we had any clobbers to add, make a new pattern than contains
11203 them. Then check to make sure that all of them are dead. */
11204 if (num_clobbers_to_add)
11205 {
11206 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
11207 rtvec_alloc (GET_CODE (pat) == PARALLEL
11208 ? (XVECLEN (pat, 0)
11209 + num_clobbers_to_add)
11210 : num_clobbers_to_add + 1));
11211
11212 if (GET_CODE (pat) == PARALLEL)
11213 for (i = 0; i < XVECLEN (pat, 0); i++)
11214 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
11215 else
11216 XVECEXP (newpat, 0, 0) = pat;
11217
11218 add_clobbers (newpat, insn_code_number);
11219
11220 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
11221 i < XVECLEN (newpat, 0); i++)
11222 {
11223 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
11224 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
11225 return -1;
11226 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
11227 {
11228 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
11229 notes = alloc_reg_note (REG_UNUSED,
11230 XEXP (XVECEXP (newpat, 0, i), 0), notes);
11231 }
11232 }
11233 pat = newpat;
11234 }
11235
11236 if (insn_code_number >= 0
11237 && insn_code_number != NOOP_MOVE_INSN_CODE)
11238 {
11239 old_pat = PATTERN (insn);
11240 old_notes = REG_NOTES (insn);
11241 old_icode = INSN_CODE (insn);
11242 PATTERN (insn) = pat;
11243 REG_NOTES (insn) = notes;
11244 INSN_CODE (insn) = insn_code_number;
11245
11246 /* Allow targets to reject combined insn. */
11247 if (!targetm.legitimate_combined_insn (insn))
11248 {
11249 if (dump_file && (dump_flags & TDF_DETAILS))
11250 fputs ("Instruction not appropriate for target.",
11251 dump_file);
11252
11253 /* Callers expect recog_for_combine to strip
11254 clobbers from the pattern on failure. */
11255 pat = pat_without_clobbers;
11256 notes = NULL_RTX;
11257
11258 insn_code_number = -1;
11259 }
11260
11261 PATTERN (insn) = old_pat;
11262 REG_NOTES (insn) = old_notes;
11263 INSN_CODE (insn) = old_icode;
11264 }
11265
11266 *pnewpat = pat;
11267 *pnotes = notes;
11268
11269 return insn_code_number;
11270 }
11271
11272 /* Change every ZERO_EXTRACT and ZERO_EXTEND of a SUBREG that can be
11273 expressed as an AND and maybe an LSHIFTRT, to that formulation.
11274 Return whether anything was so changed. */
11275
11276 static bool
11277 change_zero_ext (rtx pat)
11278 {
11279 bool changed = false;
11280 rtx *src = &SET_SRC (pat);
11281
11282 subrtx_ptr_iterator::array_type array;
11283 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11284 {
11285 rtx x = **iter;
11286 machine_mode mode = GET_MODE (x);
11287 int size;
11288
11289 if (GET_CODE (x) == ZERO_EXTRACT
11290 && CONST_INT_P (XEXP (x, 1))
11291 && CONST_INT_P (XEXP (x, 2))
11292 && GET_MODE (XEXP (x, 0)) != VOIDmode
11293 && GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
11294 <= GET_MODE_PRECISION (mode))
11295 {
11296 machine_mode inner_mode = GET_MODE (XEXP (x, 0));
11297
11298 size = INTVAL (XEXP (x, 1));
11299
11300 int start = INTVAL (XEXP (x, 2));
11301 if (BITS_BIG_ENDIAN)
11302 start = GET_MODE_PRECISION (inner_mode) - size - start;
11303
11304 if (start)
11305 x = gen_rtx_LSHIFTRT (inner_mode, XEXP (x, 0), GEN_INT (start));
11306 else
11307 x = XEXP (x, 0);
11308 if (mode != inner_mode)
11309 x = gen_lowpart_SUBREG (mode, x);
11310 }
11311 else if (GET_CODE (x) == ZERO_EXTEND
11312 && SCALAR_INT_MODE_P (mode)
11313 && GET_CODE (XEXP (x, 0)) == SUBREG
11314 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (XEXP (x, 0))))
11315 && !paradoxical_subreg_p (XEXP (x, 0))
11316 && subreg_lowpart_p (XEXP (x, 0)))
11317 {
11318 size = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
11319 x = SUBREG_REG (XEXP (x, 0));
11320 if (GET_MODE (x) != mode)
11321 x = gen_lowpart_SUBREG (mode, x);
11322 }
11323 else if (GET_CODE (x) == ZERO_EXTEND
11324 && SCALAR_INT_MODE_P (mode)
11325 && REG_P (XEXP (x, 0))
11326 && HARD_REGISTER_P (XEXP (x, 0))
11327 && can_change_dest_mode (XEXP (x, 0), 0, mode))
11328 {
11329 size = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
11330 x = gen_rtx_REG (mode, REGNO (XEXP (x, 0)));
11331 }
11332 else
11333 continue;
11334
11335 if (!(GET_CODE (x) == LSHIFTRT
11336 && CONST_INT_P (XEXP (x, 1))
11337 && size + INTVAL (XEXP (x, 1)) == GET_MODE_PRECISION (mode)))
11338 {
11339 wide_int mask = wi::mask (size, false, GET_MODE_PRECISION (mode));
11340 x = gen_rtx_AND (mode, x, immed_wide_int_const (mask, mode));
11341 }
11342
11343 SUBST (**iter, x);
11344 changed = true;
11345 }
11346
11347 if (changed)
11348 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11349 maybe_swap_commutative_operands (**iter);
11350
11351 rtx *dst = &SET_DEST (pat);
11352 if (GET_CODE (*dst) == ZERO_EXTRACT
11353 && REG_P (XEXP (*dst, 0))
11354 && CONST_INT_P (XEXP (*dst, 1))
11355 && CONST_INT_P (XEXP (*dst, 2)))
11356 {
11357 rtx reg = XEXP (*dst, 0);
11358 int width = INTVAL (XEXP (*dst, 1));
11359 int offset = INTVAL (XEXP (*dst, 2));
11360 machine_mode mode = GET_MODE (reg);
11361 int reg_width = GET_MODE_PRECISION (mode);
11362 if (BITS_BIG_ENDIAN)
11363 offset = reg_width - width - offset;
11364
11365 rtx x, y, z, w;
11366 wide_int mask = wi::shifted_mask (offset, width, true, reg_width);
11367 wide_int mask2 = wi::shifted_mask (offset, width, false, reg_width);
11368 x = gen_rtx_AND (mode, reg, immed_wide_int_const (mask, mode));
11369 if (offset)
11370 y = gen_rtx_ASHIFT (mode, SET_SRC (pat), GEN_INT (offset));
11371 else
11372 y = SET_SRC (pat);
11373 z = gen_rtx_AND (mode, y, immed_wide_int_const (mask2, mode));
11374 w = gen_rtx_IOR (mode, x, z);
11375 SUBST (SET_DEST (pat), reg);
11376 SUBST (SET_SRC (pat), w);
11377
11378 changed = true;
11379 }
11380
11381 return changed;
11382 }
11383
11384 /* Like recog, but we receive the address of a pointer to a new pattern.
11385 We try to match the rtx that the pointer points to.
11386 If that fails, we may try to modify or replace the pattern,
11387 storing the replacement into the same pointer object.
11388
11389 Modifications include deletion or addition of CLOBBERs. If the
11390 instruction will still not match, we change ZERO_EXTEND and ZERO_EXTRACT
11391 to the equivalent AND and perhaps LSHIFTRT patterns, and try with that
11392 (and undo if that fails).
11393
11394 PNOTES is a pointer to a location where any REG_UNUSED notes added for
11395 the CLOBBERs are placed.
11396
11397 The value is the final insn code from the pattern ultimately matched,
11398 or -1. */
11399
11400 static int
11401 recog_for_combine (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11402 {
11403 rtx pat = *pnewpat;
11404 int insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11405 if (insn_code_number >= 0 || check_asm_operands (pat))
11406 return insn_code_number;
11407
11408 void *marker = get_undo_marker ();
11409 bool changed = false;
11410
11411 if (GET_CODE (pat) == SET)
11412 changed = change_zero_ext (pat);
11413 else if (GET_CODE (pat) == PARALLEL)
11414 {
11415 int i;
11416 for (i = 0; i < XVECLEN (pat, 0); i++)
11417 {
11418 rtx set = XVECEXP (pat, 0, i);
11419 if (GET_CODE (set) == SET)
11420 changed |= change_zero_ext (set);
11421 }
11422 }
11423
11424 if (changed)
11425 {
11426 insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11427
11428 if (insn_code_number < 0)
11429 undo_to_marker (marker);
11430 }
11431
11432 return insn_code_number;
11433 }
11434 \f
11435 /* Like gen_lowpart_general but for use by combine. In combine it
11436 is not possible to create any new pseudoregs. However, it is
11437 safe to create invalid memory addresses, because combine will
11438 try to recognize them and all they will do is make the combine
11439 attempt fail.
11440
11441 If for some reason this cannot do its job, an rtx
11442 (clobber (const_int 0)) is returned.
11443 An insn containing that will not be recognized. */
11444
11445 static rtx
11446 gen_lowpart_for_combine (machine_mode omode, rtx x)
11447 {
11448 machine_mode imode = GET_MODE (x);
11449 unsigned int osize = GET_MODE_SIZE (omode);
11450 unsigned int isize = GET_MODE_SIZE (imode);
11451 rtx result;
11452
11453 if (omode == imode)
11454 return x;
11455
11456 /* We can only support MODE being wider than a word if X is a
11457 constant integer or has a mode the same size. */
11458 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
11459 && ! (CONST_SCALAR_INT_P (x) || isize == osize))
11460 goto fail;
11461
11462 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
11463 won't know what to do. So we will strip off the SUBREG here and
11464 process normally. */
11465 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
11466 {
11467 x = SUBREG_REG (x);
11468
11469 /* For use in case we fall down into the address adjustments
11470 further below, we need to adjust the known mode and size of
11471 x; imode and isize, since we just adjusted x. */
11472 imode = GET_MODE (x);
11473
11474 if (imode == omode)
11475 return x;
11476
11477 isize = GET_MODE_SIZE (imode);
11478 }
11479
11480 result = gen_lowpart_common (omode, x);
11481
11482 if (result)
11483 return result;
11484
11485 if (MEM_P (x))
11486 {
11487 int offset = 0;
11488
11489 /* Refuse to work on a volatile memory ref or one with a mode-dependent
11490 address. */
11491 if (MEM_VOLATILE_P (x)
11492 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
11493 goto fail;
11494
11495 /* If we want to refer to something bigger than the original memref,
11496 generate a paradoxical subreg instead. That will force a reload
11497 of the original memref X. */
11498 if (isize < osize)
11499 return gen_rtx_SUBREG (omode, x, 0);
11500
11501 if (WORDS_BIG_ENDIAN)
11502 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
11503
11504 /* Adjust the address so that the address-after-the-data is
11505 unchanged. */
11506 if (BYTES_BIG_ENDIAN)
11507 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
11508
11509 return adjust_address_nv (x, omode, offset);
11510 }
11511
11512 /* If X is a comparison operator, rewrite it in a new mode. This
11513 probably won't match, but may allow further simplifications. */
11514 else if (COMPARISON_P (x))
11515 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
11516
11517 /* If we couldn't simplify X any other way, just enclose it in a
11518 SUBREG. Normally, this SUBREG won't match, but some patterns may
11519 include an explicit SUBREG or we may simplify it further in combine. */
11520 else
11521 {
11522 rtx res;
11523
11524 if (imode == VOIDmode)
11525 {
11526 imode = int_mode_for_mode (omode);
11527 x = gen_lowpart_common (imode, x);
11528 if (x == NULL)
11529 goto fail;
11530 }
11531 res = lowpart_subreg (omode, x, imode);
11532 if (res)
11533 return res;
11534 }
11535
11536 fail:
11537 return gen_rtx_CLOBBER (omode, const0_rtx);
11538 }
11539 \f
11540 /* Try to simplify a comparison between OP0 and a constant OP1,
11541 where CODE is the comparison code that will be tested, into a
11542 (CODE OP0 const0_rtx) form.
11543
11544 The result is a possibly different comparison code to use.
11545 *POP1 may be updated. */
11546
11547 static enum rtx_code
11548 simplify_compare_const (enum rtx_code code, machine_mode mode,
11549 rtx op0, rtx *pop1)
11550 {
11551 unsigned int mode_width = GET_MODE_PRECISION (mode);
11552 HOST_WIDE_INT const_op = INTVAL (*pop1);
11553
11554 /* Get the constant we are comparing against and turn off all bits
11555 not on in our mode. */
11556 if (mode != VOIDmode)
11557 const_op = trunc_int_for_mode (const_op, mode);
11558
11559 /* If we are comparing against a constant power of two and the value
11560 being compared can only have that single bit nonzero (e.g., it was
11561 `and'ed with that bit), we can replace this with a comparison
11562 with zero. */
11563 if (const_op
11564 && (code == EQ || code == NE || code == GE || code == GEU
11565 || code == LT || code == LTU)
11566 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11567 && pow2p_hwi (const_op & GET_MODE_MASK (mode))
11568 && (nonzero_bits (op0, mode)
11569 == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (mode))))
11570 {
11571 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
11572 const_op = 0;
11573 }
11574
11575 /* Similarly, if we are comparing a value known to be either -1 or
11576 0 with -1, change it to the opposite comparison against zero. */
11577 if (const_op == -1
11578 && (code == EQ || code == NE || code == GT || code == LE
11579 || code == GEU || code == LTU)
11580 && num_sign_bit_copies (op0, mode) == mode_width)
11581 {
11582 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
11583 const_op = 0;
11584 }
11585
11586 /* Do some canonicalizations based on the comparison code. We prefer
11587 comparisons against zero and then prefer equality comparisons.
11588 If we can reduce the size of a constant, we will do that too. */
11589 switch (code)
11590 {
11591 case LT:
11592 /* < C is equivalent to <= (C - 1) */
11593 if (const_op > 0)
11594 {
11595 const_op -= 1;
11596 code = LE;
11597 /* ... fall through to LE case below. */
11598 gcc_fallthrough ();
11599 }
11600 else
11601 break;
11602
11603 case LE:
11604 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
11605 if (const_op < 0)
11606 {
11607 const_op += 1;
11608 code = LT;
11609 }
11610
11611 /* If we are doing a <= 0 comparison on a value known to have
11612 a zero sign bit, we can replace this with == 0. */
11613 else if (const_op == 0
11614 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11615 && (nonzero_bits (op0, mode)
11616 & (HOST_WIDE_INT_1U << (mode_width - 1)))
11617 == 0)
11618 code = EQ;
11619 break;
11620
11621 case GE:
11622 /* >= C is equivalent to > (C - 1). */
11623 if (const_op > 0)
11624 {
11625 const_op -= 1;
11626 code = GT;
11627 /* ... fall through to GT below. */
11628 gcc_fallthrough ();
11629 }
11630 else
11631 break;
11632
11633 case GT:
11634 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
11635 if (const_op < 0)
11636 {
11637 const_op += 1;
11638 code = GE;
11639 }
11640
11641 /* If we are doing a > 0 comparison on a value known to have
11642 a zero sign bit, we can replace this with != 0. */
11643 else if (const_op == 0
11644 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11645 && (nonzero_bits (op0, mode)
11646 & (HOST_WIDE_INT_1U << (mode_width - 1)))
11647 == 0)
11648 code = NE;
11649 break;
11650
11651 case LTU:
11652 /* < C is equivalent to <= (C - 1). */
11653 if (const_op > 0)
11654 {
11655 const_op -= 1;
11656 code = LEU;
11657 /* ... fall through ... */
11658 }
11659 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11660 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11661 && (unsigned HOST_WIDE_INT) const_op
11662 == HOST_WIDE_INT_1U << (mode_width - 1))
11663 {
11664 const_op = 0;
11665 code = GE;
11666 break;
11667 }
11668 else
11669 break;
11670
11671 case LEU:
11672 /* unsigned <= 0 is equivalent to == 0 */
11673 if (const_op == 0)
11674 code = EQ;
11675 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11676 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11677 && (unsigned HOST_WIDE_INT) const_op
11678 == (HOST_WIDE_INT_1U << (mode_width - 1)) - 1)
11679 {
11680 const_op = 0;
11681 code = GE;
11682 }
11683 break;
11684
11685 case GEU:
11686 /* >= C is equivalent to > (C - 1). */
11687 if (const_op > 1)
11688 {
11689 const_op -= 1;
11690 code = GTU;
11691 /* ... fall through ... */
11692 }
11693
11694 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
11695 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11696 && (unsigned HOST_WIDE_INT) const_op
11697 == HOST_WIDE_INT_1U << (mode_width - 1))
11698 {
11699 const_op = 0;
11700 code = LT;
11701 break;
11702 }
11703 else
11704 break;
11705
11706 case GTU:
11707 /* unsigned > 0 is equivalent to != 0 */
11708 if (const_op == 0)
11709 code = NE;
11710 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
11711 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11712 && (unsigned HOST_WIDE_INT) const_op
11713 == (HOST_WIDE_INT_1U << (mode_width - 1)) - 1)
11714 {
11715 const_op = 0;
11716 code = LT;
11717 }
11718 break;
11719
11720 default:
11721 break;
11722 }
11723
11724 *pop1 = GEN_INT (const_op);
11725 return code;
11726 }
11727 \f
11728 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
11729 comparison code that will be tested.
11730
11731 The result is a possibly different comparison code to use. *POP0 and
11732 *POP1 may be updated.
11733
11734 It is possible that we might detect that a comparison is either always
11735 true or always false. However, we do not perform general constant
11736 folding in combine, so this knowledge isn't useful. Such tautologies
11737 should have been detected earlier. Hence we ignore all such cases. */
11738
11739 static enum rtx_code
11740 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
11741 {
11742 rtx op0 = *pop0;
11743 rtx op1 = *pop1;
11744 rtx tem, tem1;
11745 int i;
11746 machine_mode mode, tmode;
11747
11748 /* Try a few ways of applying the same transformation to both operands. */
11749 while (1)
11750 {
11751 /* The test below this one won't handle SIGN_EXTENDs on these machines,
11752 so check specially. */
11753 if (!WORD_REGISTER_OPERATIONS
11754 && code != GTU && code != GEU && code != LTU && code != LEU
11755 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
11756 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11757 && GET_CODE (XEXP (op1, 0)) == ASHIFT
11758 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
11759 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
11760 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
11761 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
11762 && CONST_INT_P (XEXP (op0, 1))
11763 && XEXP (op0, 1) == XEXP (op1, 1)
11764 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11765 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
11766 && (INTVAL (XEXP (op0, 1))
11767 == (GET_MODE_PRECISION (GET_MODE (op0))
11768 - (GET_MODE_PRECISION
11769 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
11770 {
11771 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
11772 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
11773 }
11774
11775 /* If both operands are the same constant shift, see if we can ignore the
11776 shift. We can if the shift is a rotate or if the bits shifted out of
11777 this shift are known to be zero for both inputs and if the type of
11778 comparison is compatible with the shift. */
11779 if (GET_CODE (op0) == GET_CODE (op1)
11780 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
11781 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
11782 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
11783 && (code != GT && code != LT && code != GE && code != LE))
11784 || (GET_CODE (op0) == ASHIFTRT
11785 && (code != GTU && code != LTU
11786 && code != GEU && code != LEU)))
11787 && CONST_INT_P (XEXP (op0, 1))
11788 && INTVAL (XEXP (op0, 1)) >= 0
11789 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11790 && XEXP (op0, 1) == XEXP (op1, 1))
11791 {
11792 machine_mode mode = GET_MODE (op0);
11793 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11794 int shift_count = INTVAL (XEXP (op0, 1));
11795
11796 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
11797 mask &= (mask >> shift_count) << shift_count;
11798 else if (GET_CODE (op0) == ASHIFT)
11799 mask = (mask & (mask << shift_count)) >> shift_count;
11800
11801 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
11802 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
11803 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
11804 else
11805 break;
11806 }
11807
11808 /* If both operands are AND's of a paradoxical SUBREG by constant, the
11809 SUBREGs are of the same mode, and, in both cases, the AND would
11810 be redundant if the comparison was done in the narrower mode,
11811 do the comparison in the narrower mode (e.g., we are AND'ing with 1
11812 and the operand's possibly nonzero bits are 0xffffff01; in that case
11813 if we only care about QImode, we don't need the AND). This case
11814 occurs if the output mode of an scc insn is not SImode and
11815 STORE_FLAG_VALUE == 1 (e.g., the 386).
11816
11817 Similarly, check for a case where the AND's are ZERO_EXTEND
11818 operations from some narrower mode even though a SUBREG is not
11819 present. */
11820
11821 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
11822 && CONST_INT_P (XEXP (op0, 1))
11823 && CONST_INT_P (XEXP (op1, 1)))
11824 {
11825 rtx inner_op0 = XEXP (op0, 0);
11826 rtx inner_op1 = XEXP (op1, 0);
11827 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
11828 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
11829 int changed = 0;
11830
11831 if (paradoxical_subreg_p (inner_op0)
11832 && GET_CODE (inner_op1) == SUBREG
11833 && (GET_MODE (SUBREG_REG (inner_op0))
11834 == GET_MODE (SUBREG_REG (inner_op1)))
11835 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (inner_op0)))
11836 <= HOST_BITS_PER_WIDE_INT)
11837 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
11838 GET_MODE (SUBREG_REG (inner_op0)))))
11839 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
11840 GET_MODE (SUBREG_REG (inner_op1))))))
11841 {
11842 op0 = SUBREG_REG (inner_op0);
11843 op1 = SUBREG_REG (inner_op1);
11844
11845 /* The resulting comparison is always unsigned since we masked
11846 off the original sign bit. */
11847 code = unsigned_condition (code);
11848
11849 changed = 1;
11850 }
11851
11852 else if (c0 == c1)
11853 for (tmode = GET_CLASS_NARROWEST_MODE
11854 (GET_MODE_CLASS (GET_MODE (op0)));
11855 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
11856 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
11857 {
11858 op0 = gen_lowpart_or_truncate (tmode, inner_op0);
11859 op1 = gen_lowpart_or_truncate (tmode, inner_op1);
11860 code = unsigned_condition (code);
11861 changed = 1;
11862 break;
11863 }
11864
11865 if (! changed)
11866 break;
11867 }
11868
11869 /* If both operands are NOT, we can strip off the outer operation
11870 and adjust the comparison code for swapped operands; similarly for
11871 NEG, except that this must be an equality comparison. */
11872 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
11873 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
11874 && (code == EQ || code == NE)))
11875 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
11876
11877 else
11878 break;
11879 }
11880
11881 /* If the first operand is a constant, swap the operands and adjust the
11882 comparison code appropriately, but don't do this if the second operand
11883 is already a constant integer. */
11884 if (swap_commutative_operands_p (op0, op1))
11885 {
11886 std::swap (op0, op1);
11887 code = swap_condition (code);
11888 }
11889
11890 /* We now enter a loop during which we will try to simplify the comparison.
11891 For the most part, we only are concerned with comparisons with zero,
11892 but some things may really be comparisons with zero but not start
11893 out looking that way. */
11894
11895 while (CONST_INT_P (op1))
11896 {
11897 machine_mode mode = GET_MODE (op0);
11898 unsigned int mode_width = GET_MODE_PRECISION (mode);
11899 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11900 int equality_comparison_p;
11901 int sign_bit_comparison_p;
11902 int unsigned_comparison_p;
11903 HOST_WIDE_INT const_op;
11904
11905 /* We only want to handle integral modes. This catches VOIDmode,
11906 CCmode, and the floating-point modes. An exception is that we
11907 can handle VOIDmode if OP0 is a COMPARE or a comparison
11908 operation. */
11909
11910 if (GET_MODE_CLASS (mode) != MODE_INT
11911 && ! (mode == VOIDmode
11912 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
11913 break;
11914
11915 /* Try to simplify the compare to constant, possibly changing the
11916 comparison op, and/or changing op1 to zero. */
11917 code = simplify_compare_const (code, mode, op0, &op1);
11918 const_op = INTVAL (op1);
11919
11920 /* Compute some predicates to simplify code below. */
11921
11922 equality_comparison_p = (code == EQ || code == NE);
11923 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
11924 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
11925 || code == GEU);
11926
11927 /* If this is a sign bit comparison and we can do arithmetic in
11928 MODE, say that we will only be needing the sign bit of OP0. */
11929 if (sign_bit_comparison_p && HWI_COMPUTABLE_MODE_P (mode))
11930 op0 = force_to_mode (op0, mode,
11931 HOST_WIDE_INT_1U
11932 << (GET_MODE_PRECISION (mode) - 1),
11933 0);
11934
11935 /* Now try cases based on the opcode of OP0. If none of the cases
11936 does a "continue", we exit this loop immediately after the
11937 switch. */
11938
11939 switch (GET_CODE (op0))
11940 {
11941 case ZERO_EXTRACT:
11942 /* If we are extracting a single bit from a variable position in
11943 a constant that has only a single bit set and are comparing it
11944 with zero, we can convert this into an equality comparison
11945 between the position and the location of the single bit. */
11946 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
11947 have already reduced the shift count modulo the word size. */
11948 if (!SHIFT_COUNT_TRUNCATED
11949 && CONST_INT_P (XEXP (op0, 0))
11950 && XEXP (op0, 1) == const1_rtx
11951 && equality_comparison_p && const_op == 0
11952 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
11953 {
11954 if (BITS_BIG_ENDIAN)
11955 i = BITS_PER_WORD - 1 - i;
11956
11957 op0 = XEXP (op0, 2);
11958 op1 = GEN_INT (i);
11959 const_op = i;
11960
11961 /* Result is nonzero iff shift count is equal to I. */
11962 code = reverse_condition (code);
11963 continue;
11964 }
11965
11966 /* fall through */
11967
11968 case SIGN_EXTRACT:
11969 tem = expand_compound_operation (op0);
11970 if (tem != op0)
11971 {
11972 op0 = tem;
11973 continue;
11974 }
11975 break;
11976
11977 case NOT:
11978 /* If testing for equality, we can take the NOT of the constant. */
11979 if (equality_comparison_p
11980 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
11981 {
11982 op0 = XEXP (op0, 0);
11983 op1 = tem;
11984 continue;
11985 }
11986
11987 /* If just looking at the sign bit, reverse the sense of the
11988 comparison. */
11989 if (sign_bit_comparison_p)
11990 {
11991 op0 = XEXP (op0, 0);
11992 code = (code == GE ? LT : GE);
11993 continue;
11994 }
11995 break;
11996
11997 case NEG:
11998 /* If testing for equality, we can take the NEG of the constant. */
11999 if (equality_comparison_p
12000 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
12001 {
12002 op0 = XEXP (op0, 0);
12003 op1 = tem;
12004 continue;
12005 }
12006
12007 /* The remaining cases only apply to comparisons with zero. */
12008 if (const_op != 0)
12009 break;
12010
12011 /* When X is ABS or is known positive,
12012 (neg X) is < 0 if and only if X != 0. */
12013
12014 if (sign_bit_comparison_p
12015 && (GET_CODE (XEXP (op0, 0)) == ABS
12016 || (mode_width <= HOST_BITS_PER_WIDE_INT
12017 && (nonzero_bits (XEXP (op0, 0), mode)
12018 & (HOST_WIDE_INT_1U << (mode_width - 1)))
12019 == 0)))
12020 {
12021 op0 = XEXP (op0, 0);
12022 code = (code == LT ? NE : EQ);
12023 continue;
12024 }
12025
12026 /* If we have NEG of something whose two high-order bits are the
12027 same, we know that "(-a) < 0" is equivalent to "a > 0". */
12028 if (num_sign_bit_copies (op0, mode) >= 2)
12029 {
12030 op0 = XEXP (op0, 0);
12031 code = swap_condition (code);
12032 continue;
12033 }
12034 break;
12035
12036 case ROTATE:
12037 /* If we are testing equality and our count is a constant, we
12038 can perform the inverse operation on our RHS. */
12039 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
12040 && (tem = simplify_binary_operation (ROTATERT, mode,
12041 op1, XEXP (op0, 1))) != 0)
12042 {
12043 op0 = XEXP (op0, 0);
12044 op1 = tem;
12045 continue;
12046 }
12047
12048 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
12049 a particular bit. Convert it to an AND of a constant of that
12050 bit. This will be converted into a ZERO_EXTRACT. */
12051 if (const_op == 0 && sign_bit_comparison_p
12052 && CONST_INT_P (XEXP (op0, 1))
12053 && mode_width <= HOST_BITS_PER_WIDE_INT)
12054 {
12055 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12056 (HOST_WIDE_INT_1U
12057 << (mode_width - 1
12058 - INTVAL (XEXP (op0, 1)))));
12059 code = (code == LT ? NE : EQ);
12060 continue;
12061 }
12062
12063 /* Fall through. */
12064
12065 case ABS:
12066 /* ABS is ignorable inside an equality comparison with zero. */
12067 if (const_op == 0 && equality_comparison_p)
12068 {
12069 op0 = XEXP (op0, 0);
12070 continue;
12071 }
12072 break;
12073
12074 case SIGN_EXTEND:
12075 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
12076 (compare FOO CONST) if CONST fits in FOO's mode and we
12077 are either testing inequality or have an unsigned
12078 comparison with ZERO_EXTEND or a signed comparison with
12079 SIGN_EXTEND. But don't do it if we don't have a compare
12080 insn of the given mode, since we'd have to revert it
12081 later on, and then we wouldn't know whether to sign- or
12082 zero-extend. */
12083 mode = GET_MODE (XEXP (op0, 0));
12084 if (GET_MODE_CLASS (mode) == MODE_INT
12085 && ! unsigned_comparison_p
12086 && HWI_COMPUTABLE_MODE_P (mode)
12087 && trunc_int_for_mode (const_op, mode) == const_op
12088 && have_insn_for (COMPARE, mode))
12089 {
12090 op0 = XEXP (op0, 0);
12091 continue;
12092 }
12093 break;
12094
12095 case SUBREG:
12096 /* Check for the case where we are comparing A - C1 with C2, that is
12097
12098 (subreg:MODE (plus (A) (-C1))) op (C2)
12099
12100 with C1 a constant, and try to lift the SUBREG, i.e. to do the
12101 comparison in the wider mode. One of the following two conditions
12102 must be true in order for this to be valid:
12103
12104 1. The mode extension results in the same bit pattern being added
12105 on both sides and the comparison is equality or unsigned. As
12106 C2 has been truncated to fit in MODE, the pattern can only be
12107 all 0s or all 1s.
12108
12109 2. The mode extension results in the sign bit being copied on
12110 each side.
12111
12112 The difficulty here is that we have predicates for A but not for
12113 (A - C1) so we need to check that C1 is within proper bounds so
12114 as to perturbate A as little as possible. */
12115
12116 if (mode_width <= HOST_BITS_PER_WIDE_INT
12117 && subreg_lowpart_p (op0)
12118 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) > mode_width
12119 && GET_CODE (SUBREG_REG (op0)) == PLUS
12120 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
12121 {
12122 machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
12123 rtx a = XEXP (SUBREG_REG (op0), 0);
12124 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
12125
12126 if ((c1 > 0
12127 && (unsigned HOST_WIDE_INT) c1
12128 < HOST_WIDE_INT_1U << (mode_width - 1)
12129 && (equality_comparison_p || unsigned_comparison_p)
12130 /* (A - C1) zero-extends if it is positive and sign-extends
12131 if it is negative, C2 both zero- and sign-extends. */
12132 && ((0 == (nonzero_bits (a, inner_mode)
12133 & ~GET_MODE_MASK (mode))
12134 && const_op >= 0)
12135 /* (A - C1) sign-extends if it is positive and 1-extends
12136 if it is negative, C2 both sign- and 1-extends. */
12137 || (num_sign_bit_copies (a, inner_mode)
12138 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12139 - mode_width)
12140 && const_op < 0)))
12141 || ((unsigned HOST_WIDE_INT) c1
12142 < HOST_WIDE_INT_1U << (mode_width - 2)
12143 /* (A - C1) always sign-extends, like C2. */
12144 && num_sign_bit_copies (a, inner_mode)
12145 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12146 - (mode_width - 1))))
12147 {
12148 op0 = SUBREG_REG (op0);
12149 continue;
12150 }
12151 }
12152
12153 /* If the inner mode is narrower and we are extracting the low part,
12154 we can treat the SUBREG as if it were a ZERO_EXTEND. */
12155 if (subreg_lowpart_p (op0)
12156 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) < mode_width)
12157 ;
12158 else if (subreg_lowpart_p (op0)
12159 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
12160 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
12161 && (code == NE || code == EQ)
12162 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0)))
12163 <= HOST_BITS_PER_WIDE_INT)
12164 && !paradoxical_subreg_p (op0)
12165 && (nonzero_bits (SUBREG_REG (op0),
12166 GET_MODE (SUBREG_REG (op0)))
12167 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12168 {
12169 /* Remove outer subregs that don't do anything. */
12170 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
12171
12172 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
12173 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12174 {
12175 op0 = SUBREG_REG (op0);
12176 op1 = tem;
12177 continue;
12178 }
12179 break;
12180 }
12181 else
12182 break;
12183
12184 /* FALLTHROUGH */
12185
12186 case ZERO_EXTEND:
12187 mode = GET_MODE (XEXP (op0, 0));
12188 if (GET_MODE_CLASS (mode) == MODE_INT
12189 && (unsigned_comparison_p || equality_comparison_p)
12190 && HWI_COMPUTABLE_MODE_P (mode)
12191 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
12192 && const_op >= 0
12193 && have_insn_for (COMPARE, mode))
12194 {
12195 op0 = XEXP (op0, 0);
12196 continue;
12197 }
12198 break;
12199
12200 case PLUS:
12201 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
12202 this for equality comparisons due to pathological cases involving
12203 overflows. */
12204 if (equality_comparison_p
12205 && 0 != (tem = simplify_binary_operation (MINUS, mode,
12206 op1, XEXP (op0, 1))))
12207 {
12208 op0 = XEXP (op0, 0);
12209 op1 = tem;
12210 continue;
12211 }
12212
12213 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
12214 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
12215 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
12216 {
12217 op0 = XEXP (XEXP (op0, 0), 0);
12218 code = (code == LT ? EQ : NE);
12219 continue;
12220 }
12221 break;
12222
12223 case MINUS:
12224 /* We used to optimize signed comparisons against zero, but that
12225 was incorrect. Unsigned comparisons against zero (GTU, LEU)
12226 arrive here as equality comparisons, or (GEU, LTU) are
12227 optimized away. No need to special-case them. */
12228
12229 /* (eq (minus A B) C) -> (eq A (plus B C)) or
12230 (eq B (minus A C)), whichever simplifies. We can only do
12231 this for equality comparisons due to pathological cases involving
12232 overflows. */
12233 if (equality_comparison_p
12234 && 0 != (tem = simplify_binary_operation (PLUS, mode,
12235 XEXP (op0, 1), op1)))
12236 {
12237 op0 = XEXP (op0, 0);
12238 op1 = tem;
12239 continue;
12240 }
12241
12242 if (equality_comparison_p
12243 && 0 != (tem = simplify_binary_operation (MINUS, mode,
12244 XEXP (op0, 0), op1)))
12245 {
12246 op0 = XEXP (op0, 1);
12247 op1 = tem;
12248 continue;
12249 }
12250
12251 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
12252 of bits in X minus 1, is one iff X > 0. */
12253 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
12254 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12255 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
12256 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12257 {
12258 op0 = XEXP (op0, 1);
12259 code = (code == GE ? LE : GT);
12260 continue;
12261 }
12262 break;
12263
12264 case XOR:
12265 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
12266 if C is zero or B is a constant. */
12267 if (equality_comparison_p
12268 && 0 != (tem = simplify_binary_operation (XOR, mode,
12269 XEXP (op0, 1), op1)))
12270 {
12271 op0 = XEXP (op0, 0);
12272 op1 = tem;
12273 continue;
12274 }
12275 break;
12276
12277 case EQ: case NE:
12278 case UNEQ: case LTGT:
12279 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
12280 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
12281 case UNORDERED: case ORDERED:
12282 /* We can't do anything if OP0 is a condition code value, rather
12283 than an actual data value. */
12284 if (const_op != 0
12285 || CC0_P (XEXP (op0, 0))
12286 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
12287 break;
12288
12289 /* Get the two operands being compared. */
12290 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
12291 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
12292 else
12293 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
12294
12295 /* Check for the cases where we simply want the result of the
12296 earlier test or the opposite of that result. */
12297 if (code == NE || code == EQ
12298 || (val_signbit_known_set_p (GET_MODE (op0), STORE_FLAG_VALUE)
12299 && (code == LT || code == GE)))
12300 {
12301 enum rtx_code new_code;
12302 if (code == LT || code == NE)
12303 new_code = GET_CODE (op0);
12304 else
12305 new_code = reversed_comparison_code (op0, NULL);
12306
12307 if (new_code != UNKNOWN)
12308 {
12309 code = new_code;
12310 op0 = tem;
12311 op1 = tem1;
12312 continue;
12313 }
12314 }
12315 break;
12316
12317 case IOR:
12318 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
12319 iff X <= 0. */
12320 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
12321 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
12322 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12323 {
12324 op0 = XEXP (op0, 1);
12325 code = (code == GE ? GT : LE);
12326 continue;
12327 }
12328 break;
12329
12330 case AND:
12331 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
12332 will be converted to a ZERO_EXTRACT later. */
12333 if (const_op == 0 && equality_comparison_p
12334 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12335 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
12336 {
12337 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
12338 XEXP (XEXP (op0, 0), 1));
12339 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12340 continue;
12341 }
12342
12343 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
12344 zero and X is a comparison and C1 and C2 describe only bits set
12345 in STORE_FLAG_VALUE, we can compare with X. */
12346 if (const_op == 0 && equality_comparison_p
12347 && mode_width <= HOST_BITS_PER_WIDE_INT
12348 && CONST_INT_P (XEXP (op0, 1))
12349 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
12350 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12351 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
12352 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
12353 {
12354 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12355 << INTVAL (XEXP (XEXP (op0, 0), 1)));
12356 if ((~STORE_FLAG_VALUE & mask) == 0
12357 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
12358 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
12359 && COMPARISON_P (tem))))
12360 {
12361 op0 = XEXP (XEXP (op0, 0), 0);
12362 continue;
12363 }
12364 }
12365
12366 /* If we are doing an equality comparison of an AND of a bit equal
12367 to the sign bit, replace this with a LT or GE comparison of
12368 the underlying value. */
12369 if (equality_comparison_p
12370 && const_op == 0
12371 && CONST_INT_P (XEXP (op0, 1))
12372 && mode_width <= HOST_BITS_PER_WIDE_INT
12373 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12374 == HOST_WIDE_INT_1U << (mode_width - 1)))
12375 {
12376 op0 = XEXP (op0, 0);
12377 code = (code == EQ ? GE : LT);
12378 continue;
12379 }
12380
12381 /* If this AND operation is really a ZERO_EXTEND from a narrower
12382 mode, the constant fits within that mode, and this is either an
12383 equality or unsigned comparison, try to do this comparison in
12384 the narrower mode.
12385
12386 Note that in:
12387
12388 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
12389 -> (ne:DI (reg:SI 4) (const_int 0))
12390
12391 unless TRULY_NOOP_TRUNCATION allows it or the register is
12392 known to hold a value of the required mode the
12393 transformation is invalid. */
12394 if ((equality_comparison_p || unsigned_comparison_p)
12395 && CONST_INT_P (XEXP (op0, 1))
12396 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
12397 & GET_MODE_MASK (mode))
12398 + 1)) >= 0
12399 && const_op >> i == 0
12400 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
12401 {
12402 op0 = gen_lowpart_or_truncate (tmode, XEXP (op0, 0));
12403 continue;
12404 }
12405
12406 /* If this is (and:M1 (subreg:M1 X:M2 0) (const_int C1)) where C1
12407 fits in both M1 and M2 and the SUBREG is either paradoxical
12408 or represents the low part, permute the SUBREG and the AND
12409 and try again. */
12410 if (GET_CODE (XEXP (op0, 0)) == SUBREG
12411 && CONST_INT_P (XEXP (op0, 1)))
12412 {
12413 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
12414 unsigned HOST_WIDE_INT c1 = INTVAL (XEXP (op0, 1));
12415 /* Require an integral mode, to avoid creating something like
12416 (AND:SF ...). */
12417 if (SCALAR_INT_MODE_P (tmode)
12418 /* It is unsafe to commute the AND into the SUBREG if the
12419 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
12420 not defined. As originally written the upper bits
12421 have a defined value due to the AND operation.
12422 However, if we commute the AND inside the SUBREG then
12423 they no longer have defined values and the meaning of
12424 the code has been changed.
12425 Also C1 should not change value in the smaller mode,
12426 see PR67028 (a positive C1 can become negative in the
12427 smaller mode, so that the AND does no longer mask the
12428 upper bits). */
12429 && ((WORD_REGISTER_OPERATIONS
12430 && mode_width > GET_MODE_PRECISION (tmode)
12431 && mode_width <= BITS_PER_WORD
12432 && trunc_int_for_mode (c1, tmode) == (HOST_WIDE_INT) c1)
12433 || (mode_width <= GET_MODE_PRECISION (tmode)
12434 && subreg_lowpart_p (XEXP (op0, 0))))
12435 && mode_width <= HOST_BITS_PER_WIDE_INT
12436 && HWI_COMPUTABLE_MODE_P (tmode)
12437 && (c1 & ~mask) == 0
12438 && (c1 & ~GET_MODE_MASK (tmode)) == 0
12439 && c1 != mask
12440 && c1 != GET_MODE_MASK (tmode))
12441 {
12442 op0 = simplify_gen_binary (AND, tmode,
12443 SUBREG_REG (XEXP (op0, 0)),
12444 gen_int_mode (c1, tmode));
12445 op0 = gen_lowpart (mode, op0);
12446 continue;
12447 }
12448 }
12449
12450 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
12451 if (const_op == 0 && equality_comparison_p
12452 && XEXP (op0, 1) == const1_rtx
12453 && GET_CODE (XEXP (op0, 0)) == NOT)
12454 {
12455 op0 = simplify_and_const_int (NULL_RTX, mode,
12456 XEXP (XEXP (op0, 0), 0), 1);
12457 code = (code == NE ? EQ : NE);
12458 continue;
12459 }
12460
12461 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
12462 (eq (and (lshiftrt X) 1) 0).
12463 Also handle the case where (not X) is expressed using xor. */
12464 if (const_op == 0 && equality_comparison_p
12465 && XEXP (op0, 1) == const1_rtx
12466 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
12467 {
12468 rtx shift_op = XEXP (XEXP (op0, 0), 0);
12469 rtx shift_count = XEXP (XEXP (op0, 0), 1);
12470
12471 if (GET_CODE (shift_op) == NOT
12472 || (GET_CODE (shift_op) == XOR
12473 && CONST_INT_P (XEXP (shift_op, 1))
12474 && CONST_INT_P (shift_count)
12475 && HWI_COMPUTABLE_MODE_P (mode)
12476 && (UINTVAL (XEXP (shift_op, 1))
12477 == HOST_WIDE_INT_1U
12478 << INTVAL (shift_count))))
12479 {
12480 op0
12481 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
12482 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12483 code = (code == NE ? EQ : NE);
12484 continue;
12485 }
12486 }
12487 break;
12488
12489 case ASHIFT:
12490 /* If we have (compare (ashift FOO N) (const_int C)) and
12491 the high order N bits of FOO (N+1 if an inequality comparison)
12492 are known to be zero, we can do this by comparing FOO with C
12493 shifted right N bits so long as the low-order N bits of C are
12494 zero. */
12495 if (CONST_INT_P (XEXP (op0, 1))
12496 && INTVAL (XEXP (op0, 1)) >= 0
12497 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
12498 < HOST_BITS_PER_WIDE_INT)
12499 && (((unsigned HOST_WIDE_INT) const_op
12500 & ((HOST_WIDE_INT_1U << INTVAL (XEXP (op0, 1)))
12501 - 1)) == 0)
12502 && mode_width <= HOST_BITS_PER_WIDE_INT
12503 && (nonzero_bits (XEXP (op0, 0), mode)
12504 & ~(mask >> (INTVAL (XEXP (op0, 1))
12505 + ! equality_comparison_p))) == 0)
12506 {
12507 /* We must perform a logical shift, not an arithmetic one,
12508 as we want the top N bits of C to be zero. */
12509 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
12510
12511 temp >>= INTVAL (XEXP (op0, 1));
12512 op1 = gen_int_mode (temp, mode);
12513 op0 = XEXP (op0, 0);
12514 continue;
12515 }
12516
12517 /* If we are doing a sign bit comparison, it means we are testing
12518 a particular bit. Convert it to the appropriate AND. */
12519 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
12520 && mode_width <= HOST_BITS_PER_WIDE_INT)
12521 {
12522 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12523 (HOST_WIDE_INT_1U
12524 << (mode_width - 1
12525 - INTVAL (XEXP (op0, 1)))));
12526 code = (code == LT ? NE : EQ);
12527 continue;
12528 }
12529
12530 /* If this an equality comparison with zero and we are shifting
12531 the low bit to the sign bit, we can convert this to an AND of the
12532 low-order bit. */
12533 if (const_op == 0 && equality_comparison_p
12534 && CONST_INT_P (XEXP (op0, 1))
12535 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12536 {
12537 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
12538 continue;
12539 }
12540 break;
12541
12542 case ASHIFTRT:
12543 /* If this is an equality comparison with zero, we can do this
12544 as a logical shift, which might be much simpler. */
12545 if (equality_comparison_p && const_op == 0
12546 && CONST_INT_P (XEXP (op0, 1)))
12547 {
12548 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
12549 XEXP (op0, 0),
12550 INTVAL (XEXP (op0, 1)));
12551 continue;
12552 }
12553
12554 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
12555 do the comparison in a narrower mode. */
12556 if (! unsigned_comparison_p
12557 && CONST_INT_P (XEXP (op0, 1))
12558 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12559 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12560 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
12561 MODE_INT, 1)) != BLKmode
12562 && (((unsigned HOST_WIDE_INT) const_op
12563 + (GET_MODE_MASK (tmode) >> 1) + 1)
12564 <= GET_MODE_MASK (tmode)))
12565 {
12566 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
12567 continue;
12568 }
12569
12570 /* Likewise if OP0 is a PLUS of a sign extension with a
12571 constant, which is usually represented with the PLUS
12572 between the shifts. */
12573 if (! unsigned_comparison_p
12574 && CONST_INT_P (XEXP (op0, 1))
12575 && GET_CODE (XEXP (op0, 0)) == PLUS
12576 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12577 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
12578 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
12579 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
12580 MODE_INT, 1)) != BLKmode
12581 && (((unsigned HOST_WIDE_INT) const_op
12582 + (GET_MODE_MASK (tmode) >> 1) + 1)
12583 <= GET_MODE_MASK (tmode)))
12584 {
12585 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
12586 rtx add_const = XEXP (XEXP (op0, 0), 1);
12587 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
12588 add_const, XEXP (op0, 1));
12589
12590 op0 = simplify_gen_binary (PLUS, tmode,
12591 gen_lowpart (tmode, inner),
12592 new_const);
12593 continue;
12594 }
12595
12596 /* FALLTHROUGH */
12597 case LSHIFTRT:
12598 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
12599 the low order N bits of FOO are known to be zero, we can do this
12600 by comparing FOO with C shifted left N bits so long as no
12601 overflow occurs. Even if the low order N bits of FOO aren't known
12602 to be zero, if the comparison is >= or < we can use the same
12603 optimization and for > or <= by setting all the low
12604 order N bits in the comparison constant. */
12605 if (CONST_INT_P (XEXP (op0, 1))
12606 && INTVAL (XEXP (op0, 1)) > 0
12607 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12608 && mode_width <= HOST_BITS_PER_WIDE_INT
12609 && (((unsigned HOST_WIDE_INT) const_op
12610 + (GET_CODE (op0) != LSHIFTRT
12611 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
12612 + 1)
12613 : 0))
12614 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
12615 {
12616 unsigned HOST_WIDE_INT low_bits
12617 = (nonzero_bits (XEXP (op0, 0), mode)
12618 & ((HOST_WIDE_INT_1U
12619 << INTVAL (XEXP (op0, 1))) - 1));
12620 if (low_bits == 0 || !equality_comparison_p)
12621 {
12622 /* If the shift was logical, then we must make the condition
12623 unsigned. */
12624 if (GET_CODE (op0) == LSHIFTRT)
12625 code = unsigned_condition (code);
12626
12627 const_op = (unsigned HOST_WIDE_INT) const_op
12628 << INTVAL (XEXP (op0, 1));
12629 if (low_bits != 0
12630 && (code == GT || code == GTU
12631 || code == LE || code == LEU))
12632 const_op
12633 |= ((HOST_WIDE_INT_1 << INTVAL (XEXP (op0, 1))) - 1);
12634 op1 = GEN_INT (const_op);
12635 op0 = XEXP (op0, 0);
12636 continue;
12637 }
12638 }
12639
12640 /* If we are using this shift to extract just the sign bit, we
12641 can replace this with an LT or GE comparison. */
12642 if (const_op == 0
12643 && (equality_comparison_p || sign_bit_comparison_p)
12644 && CONST_INT_P (XEXP (op0, 1))
12645 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12646 {
12647 op0 = XEXP (op0, 0);
12648 code = (code == NE || code == GT ? LT : GE);
12649 continue;
12650 }
12651 break;
12652
12653 default:
12654 break;
12655 }
12656
12657 break;
12658 }
12659
12660 /* Now make any compound operations involved in this comparison. Then,
12661 check for an outmost SUBREG on OP0 that is not doing anything or is
12662 paradoxical. The latter transformation must only be performed when
12663 it is known that the "extra" bits will be the same in op0 and op1 or
12664 that they don't matter. There are three cases to consider:
12665
12666 1. SUBREG_REG (op0) is a register. In this case the bits are don't
12667 care bits and we can assume they have any convenient value. So
12668 making the transformation is safe.
12669
12670 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is UNKNOWN.
12671 In this case the upper bits of op0 are undefined. We should not make
12672 the simplification in that case as we do not know the contents of
12673 those bits.
12674
12675 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not UNKNOWN.
12676 In that case we know those bits are zeros or ones. We must also be
12677 sure that they are the same as the upper bits of op1.
12678
12679 We can never remove a SUBREG for a non-equality comparison because
12680 the sign bit is in a different place in the underlying object. */
12681
12682 rtx_code op0_mco_code = SET;
12683 if (op1 == const0_rtx)
12684 op0_mco_code = code == NE || code == EQ ? EQ : COMPARE;
12685
12686 op0 = make_compound_operation (op0, op0_mco_code);
12687 op1 = make_compound_operation (op1, SET);
12688
12689 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
12690 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
12691 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
12692 && (code == NE || code == EQ))
12693 {
12694 if (paradoxical_subreg_p (op0))
12695 {
12696 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
12697 implemented. */
12698 if (REG_P (SUBREG_REG (op0)))
12699 {
12700 op0 = SUBREG_REG (op0);
12701 op1 = gen_lowpart (GET_MODE (op0), op1);
12702 }
12703 }
12704 else if ((GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0)))
12705 <= HOST_BITS_PER_WIDE_INT)
12706 && (nonzero_bits (SUBREG_REG (op0),
12707 GET_MODE (SUBREG_REG (op0)))
12708 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12709 {
12710 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
12711
12712 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
12713 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12714 op0 = SUBREG_REG (op0), op1 = tem;
12715 }
12716 }
12717
12718 /* We now do the opposite procedure: Some machines don't have compare
12719 insns in all modes. If OP0's mode is an integer mode smaller than a
12720 word and we can't do a compare in that mode, see if there is a larger
12721 mode for which we can do the compare. There are a number of cases in
12722 which we can use the wider mode. */
12723
12724 mode = GET_MODE (op0);
12725 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
12726 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
12727 && ! have_insn_for (COMPARE, mode))
12728 for (tmode = GET_MODE_WIDER_MODE (mode);
12729 (tmode != VOIDmode && HWI_COMPUTABLE_MODE_P (tmode));
12730 tmode = GET_MODE_WIDER_MODE (tmode))
12731 if (have_insn_for (COMPARE, tmode))
12732 {
12733 int zero_extended;
12734
12735 /* If this is a test for negative, we can make an explicit
12736 test of the sign bit. Test this first so we can use
12737 a paradoxical subreg to extend OP0. */
12738
12739 if (op1 == const0_rtx && (code == LT || code == GE)
12740 && HWI_COMPUTABLE_MODE_P (mode))
12741 {
12742 unsigned HOST_WIDE_INT sign
12743 = HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (mode) - 1);
12744 op0 = simplify_gen_binary (AND, tmode,
12745 gen_lowpart (tmode, op0),
12746 gen_int_mode (sign, tmode));
12747 code = (code == LT) ? NE : EQ;
12748 break;
12749 }
12750
12751 /* If the only nonzero bits in OP0 and OP1 are those in the
12752 narrower mode and this is an equality or unsigned comparison,
12753 we can use the wider mode. Similarly for sign-extended
12754 values, in which case it is true for all comparisons. */
12755 zero_extended = ((code == EQ || code == NE
12756 || code == GEU || code == GTU
12757 || code == LEU || code == LTU)
12758 && (nonzero_bits (op0, tmode)
12759 & ~GET_MODE_MASK (mode)) == 0
12760 && ((CONST_INT_P (op1)
12761 || (nonzero_bits (op1, tmode)
12762 & ~GET_MODE_MASK (mode)) == 0)));
12763
12764 if (zero_extended
12765 || ((num_sign_bit_copies (op0, tmode)
12766 > (unsigned int) (GET_MODE_PRECISION (tmode)
12767 - GET_MODE_PRECISION (mode)))
12768 && (num_sign_bit_copies (op1, tmode)
12769 > (unsigned int) (GET_MODE_PRECISION (tmode)
12770 - GET_MODE_PRECISION (mode)))))
12771 {
12772 /* If OP0 is an AND and we don't have an AND in MODE either,
12773 make a new AND in the proper mode. */
12774 if (GET_CODE (op0) == AND
12775 && !have_insn_for (AND, mode))
12776 op0 = simplify_gen_binary (AND, tmode,
12777 gen_lowpart (tmode,
12778 XEXP (op0, 0)),
12779 gen_lowpart (tmode,
12780 XEXP (op0, 1)));
12781 else
12782 {
12783 if (zero_extended)
12784 {
12785 op0 = simplify_gen_unary (ZERO_EXTEND, tmode, op0, mode);
12786 op1 = simplify_gen_unary (ZERO_EXTEND, tmode, op1, mode);
12787 }
12788 else
12789 {
12790 op0 = simplify_gen_unary (SIGN_EXTEND, tmode, op0, mode);
12791 op1 = simplify_gen_unary (SIGN_EXTEND, tmode, op1, mode);
12792 }
12793 break;
12794 }
12795 }
12796 }
12797
12798 /* We may have changed the comparison operands. Re-canonicalize. */
12799 if (swap_commutative_operands_p (op0, op1))
12800 {
12801 std::swap (op0, op1);
12802 code = swap_condition (code);
12803 }
12804
12805 /* If this machine only supports a subset of valid comparisons, see if we
12806 can convert an unsupported one into a supported one. */
12807 target_canonicalize_comparison (&code, &op0, &op1, 0);
12808
12809 *pop0 = op0;
12810 *pop1 = op1;
12811
12812 return code;
12813 }
12814 \f
12815 /* Utility function for record_value_for_reg. Count number of
12816 rtxs in X. */
12817 static int
12818 count_rtxs (rtx x)
12819 {
12820 enum rtx_code code = GET_CODE (x);
12821 const char *fmt;
12822 int i, j, ret = 1;
12823
12824 if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
12825 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
12826 {
12827 rtx x0 = XEXP (x, 0);
12828 rtx x1 = XEXP (x, 1);
12829
12830 if (x0 == x1)
12831 return 1 + 2 * count_rtxs (x0);
12832
12833 if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
12834 || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
12835 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12836 return 2 + 2 * count_rtxs (x0)
12837 + count_rtxs (x == XEXP (x1, 0)
12838 ? XEXP (x1, 1) : XEXP (x1, 0));
12839
12840 if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
12841 || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
12842 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12843 return 2 + 2 * count_rtxs (x1)
12844 + count_rtxs (x == XEXP (x0, 0)
12845 ? XEXP (x0, 1) : XEXP (x0, 0));
12846 }
12847
12848 fmt = GET_RTX_FORMAT (code);
12849 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12850 if (fmt[i] == 'e')
12851 ret += count_rtxs (XEXP (x, i));
12852 else if (fmt[i] == 'E')
12853 for (j = 0; j < XVECLEN (x, i); j++)
12854 ret += count_rtxs (XVECEXP (x, i, j));
12855
12856 return ret;
12857 }
12858 \f
12859 /* Utility function for following routine. Called when X is part of a value
12860 being stored into last_set_value. Sets last_set_table_tick
12861 for each register mentioned. Similar to mention_regs in cse.c */
12862
12863 static void
12864 update_table_tick (rtx x)
12865 {
12866 enum rtx_code code = GET_CODE (x);
12867 const char *fmt = GET_RTX_FORMAT (code);
12868 int i, j;
12869
12870 if (code == REG)
12871 {
12872 unsigned int regno = REGNO (x);
12873 unsigned int endregno = END_REGNO (x);
12874 unsigned int r;
12875
12876 for (r = regno; r < endregno; r++)
12877 {
12878 reg_stat_type *rsp = &reg_stat[r];
12879 rsp->last_set_table_tick = label_tick;
12880 }
12881
12882 return;
12883 }
12884
12885 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12886 if (fmt[i] == 'e')
12887 {
12888 /* Check for identical subexpressions. If x contains
12889 identical subexpression we only have to traverse one of
12890 them. */
12891 if (i == 0 && ARITHMETIC_P (x))
12892 {
12893 /* Note that at this point x1 has already been
12894 processed. */
12895 rtx x0 = XEXP (x, 0);
12896 rtx x1 = XEXP (x, 1);
12897
12898 /* If x0 and x1 are identical then there is no need to
12899 process x0. */
12900 if (x0 == x1)
12901 break;
12902
12903 /* If x0 is identical to a subexpression of x1 then while
12904 processing x1, x0 has already been processed. Thus we
12905 are done with x. */
12906 if (ARITHMETIC_P (x1)
12907 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12908 break;
12909
12910 /* If x1 is identical to a subexpression of x0 then we
12911 still have to process the rest of x0. */
12912 if (ARITHMETIC_P (x0)
12913 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12914 {
12915 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
12916 break;
12917 }
12918 }
12919
12920 update_table_tick (XEXP (x, i));
12921 }
12922 else if (fmt[i] == 'E')
12923 for (j = 0; j < XVECLEN (x, i); j++)
12924 update_table_tick (XVECEXP (x, i, j));
12925 }
12926
12927 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
12928 are saying that the register is clobbered and we no longer know its
12929 value. If INSN is zero, don't update reg_stat[].last_set; this is
12930 only permitted with VALUE also zero and is used to invalidate the
12931 register. */
12932
12933 static void
12934 record_value_for_reg (rtx reg, rtx_insn *insn, rtx value)
12935 {
12936 unsigned int regno = REGNO (reg);
12937 unsigned int endregno = END_REGNO (reg);
12938 unsigned int i;
12939 reg_stat_type *rsp;
12940
12941 /* If VALUE contains REG and we have a previous value for REG, substitute
12942 the previous value. */
12943 if (value && insn && reg_overlap_mentioned_p (reg, value))
12944 {
12945 rtx tem;
12946
12947 /* Set things up so get_last_value is allowed to see anything set up to
12948 our insn. */
12949 subst_low_luid = DF_INSN_LUID (insn);
12950 tem = get_last_value (reg);
12951
12952 /* If TEM is simply a binary operation with two CLOBBERs as operands,
12953 it isn't going to be useful and will take a lot of time to process,
12954 so just use the CLOBBER. */
12955
12956 if (tem)
12957 {
12958 if (ARITHMETIC_P (tem)
12959 && GET_CODE (XEXP (tem, 0)) == CLOBBER
12960 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
12961 tem = XEXP (tem, 0);
12962 else if (count_occurrences (value, reg, 1) >= 2)
12963 {
12964 /* If there are two or more occurrences of REG in VALUE,
12965 prevent the value from growing too much. */
12966 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
12967 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
12968 }
12969
12970 value = replace_rtx (copy_rtx (value), reg, tem);
12971 }
12972 }
12973
12974 /* For each register modified, show we don't know its value, that
12975 we don't know about its bitwise content, that its value has been
12976 updated, and that we don't know the location of the death of the
12977 register. */
12978 for (i = regno; i < endregno; i++)
12979 {
12980 rsp = &reg_stat[i];
12981
12982 if (insn)
12983 rsp->last_set = insn;
12984
12985 rsp->last_set_value = 0;
12986 rsp->last_set_mode = VOIDmode;
12987 rsp->last_set_nonzero_bits = 0;
12988 rsp->last_set_sign_bit_copies = 0;
12989 rsp->last_death = 0;
12990 rsp->truncated_to_mode = VOIDmode;
12991 }
12992
12993 /* Mark registers that are being referenced in this value. */
12994 if (value)
12995 update_table_tick (value);
12996
12997 /* Now update the status of each register being set.
12998 If someone is using this register in this block, set this register
12999 to invalid since we will get confused between the two lives in this
13000 basic block. This makes using this register always invalid. In cse, we
13001 scan the table to invalidate all entries using this register, but this
13002 is too much work for us. */
13003
13004 for (i = regno; i < endregno; i++)
13005 {
13006 rsp = &reg_stat[i];
13007 rsp->last_set_label = label_tick;
13008 if (!insn
13009 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
13010 rsp->last_set_invalid = 1;
13011 else
13012 rsp->last_set_invalid = 0;
13013 }
13014
13015 /* The value being assigned might refer to X (like in "x++;"). In that
13016 case, we must replace it with (clobber (const_int 0)) to prevent
13017 infinite loops. */
13018 rsp = &reg_stat[regno];
13019 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
13020 {
13021 value = copy_rtx (value);
13022 if (!get_last_value_validate (&value, insn, label_tick, 1))
13023 value = 0;
13024 }
13025
13026 /* For the main register being modified, update the value, the mode, the
13027 nonzero bits, and the number of sign bit copies. */
13028
13029 rsp->last_set_value = value;
13030
13031 if (value)
13032 {
13033 machine_mode mode = GET_MODE (reg);
13034 subst_low_luid = DF_INSN_LUID (insn);
13035 rsp->last_set_mode = mode;
13036 if (GET_MODE_CLASS (mode) == MODE_INT
13037 && HWI_COMPUTABLE_MODE_P (mode))
13038 mode = nonzero_bits_mode;
13039 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
13040 rsp->last_set_sign_bit_copies
13041 = num_sign_bit_copies (value, GET_MODE (reg));
13042 }
13043 }
13044
13045 /* Called via note_stores from record_dead_and_set_regs to handle one
13046 SET or CLOBBER in an insn. DATA is the instruction in which the
13047 set is occurring. */
13048
13049 static void
13050 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
13051 {
13052 rtx_insn *record_dead_insn = (rtx_insn *) data;
13053
13054 if (GET_CODE (dest) == SUBREG)
13055 dest = SUBREG_REG (dest);
13056
13057 if (!record_dead_insn)
13058 {
13059 if (REG_P (dest))
13060 record_value_for_reg (dest, NULL, NULL_RTX);
13061 return;
13062 }
13063
13064 if (REG_P (dest))
13065 {
13066 /* If we are setting the whole register, we know its value. Otherwise
13067 show that we don't know the value. We can handle SUBREG in
13068 some cases. */
13069 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
13070 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
13071 else if (GET_CODE (setter) == SET
13072 && GET_CODE (SET_DEST (setter)) == SUBREG
13073 && SUBREG_REG (SET_DEST (setter)) == dest
13074 && GET_MODE_PRECISION (GET_MODE (dest)) <= BITS_PER_WORD
13075 && subreg_lowpart_p (SET_DEST (setter)))
13076 record_value_for_reg (dest, record_dead_insn,
13077 gen_lowpart (GET_MODE (dest),
13078 SET_SRC (setter)));
13079 else
13080 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
13081 }
13082 else if (MEM_P (dest)
13083 /* Ignore pushes, they clobber nothing. */
13084 && ! push_operand (dest, GET_MODE (dest)))
13085 mem_last_set = DF_INSN_LUID (record_dead_insn);
13086 }
13087
13088 /* Update the records of when each REG was most recently set or killed
13089 for the things done by INSN. This is the last thing done in processing
13090 INSN in the combiner loop.
13091
13092 We update reg_stat[], in particular fields last_set, last_set_value,
13093 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
13094 last_death, and also the similar information mem_last_set (which insn
13095 most recently modified memory) and last_call_luid (which insn was the
13096 most recent subroutine call). */
13097
13098 static void
13099 record_dead_and_set_regs (rtx_insn *insn)
13100 {
13101 rtx link;
13102 unsigned int i;
13103
13104 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
13105 {
13106 if (REG_NOTE_KIND (link) == REG_DEAD
13107 && REG_P (XEXP (link, 0)))
13108 {
13109 unsigned int regno = REGNO (XEXP (link, 0));
13110 unsigned int endregno = END_REGNO (XEXP (link, 0));
13111
13112 for (i = regno; i < endregno; i++)
13113 {
13114 reg_stat_type *rsp;
13115
13116 rsp = &reg_stat[i];
13117 rsp->last_death = insn;
13118 }
13119 }
13120 else if (REG_NOTE_KIND (link) == REG_INC)
13121 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
13122 }
13123
13124 if (CALL_P (insn))
13125 {
13126 hard_reg_set_iterator hrsi;
13127 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, i, hrsi)
13128 {
13129 reg_stat_type *rsp;
13130
13131 rsp = &reg_stat[i];
13132 rsp->last_set_invalid = 1;
13133 rsp->last_set = insn;
13134 rsp->last_set_value = 0;
13135 rsp->last_set_mode = VOIDmode;
13136 rsp->last_set_nonzero_bits = 0;
13137 rsp->last_set_sign_bit_copies = 0;
13138 rsp->last_death = 0;
13139 rsp->truncated_to_mode = VOIDmode;
13140 }
13141
13142 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
13143
13144 /* We can't combine into a call pattern. Remember, though, that
13145 the return value register is set at this LUID. We could
13146 still replace a register with the return value from the
13147 wrong subroutine call! */
13148 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
13149 }
13150 else
13151 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
13152 }
13153
13154 /* If a SUBREG has the promoted bit set, it is in fact a property of the
13155 register present in the SUBREG, so for each such SUBREG go back and
13156 adjust nonzero and sign bit information of the registers that are
13157 known to have some zero/sign bits set.
13158
13159 This is needed because when combine blows the SUBREGs away, the
13160 information on zero/sign bits is lost and further combines can be
13161 missed because of that. */
13162
13163 static void
13164 record_promoted_value (rtx_insn *insn, rtx subreg)
13165 {
13166 struct insn_link *links;
13167 rtx set;
13168 unsigned int regno = REGNO (SUBREG_REG (subreg));
13169 machine_mode mode = GET_MODE (subreg);
13170
13171 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
13172 return;
13173
13174 for (links = LOG_LINKS (insn); links;)
13175 {
13176 reg_stat_type *rsp;
13177
13178 insn = links->insn;
13179 set = single_set (insn);
13180
13181 if (! set || !REG_P (SET_DEST (set))
13182 || REGNO (SET_DEST (set)) != regno
13183 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
13184 {
13185 links = links->next;
13186 continue;
13187 }
13188
13189 rsp = &reg_stat[regno];
13190 if (rsp->last_set == insn)
13191 {
13192 if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
13193 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
13194 }
13195
13196 if (REG_P (SET_SRC (set)))
13197 {
13198 regno = REGNO (SET_SRC (set));
13199 links = LOG_LINKS (insn);
13200 }
13201 else
13202 break;
13203 }
13204 }
13205
13206 /* Check if X, a register, is known to contain a value already
13207 truncated to MODE. In this case we can use a subreg to refer to
13208 the truncated value even though in the generic case we would need
13209 an explicit truncation. */
13210
13211 static bool
13212 reg_truncated_to_mode (machine_mode mode, const_rtx x)
13213 {
13214 reg_stat_type *rsp = &reg_stat[REGNO (x)];
13215 machine_mode truncated = rsp->truncated_to_mode;
13216
13217 if (truncated == 0
13218 || rsp->truncation_label < label_tick_ebb_start)
13219 return false;
13220 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
13221 return true;
13222 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
13223 return true;
13224 return false;
13225 }
13226
13227 /* If X is a hard reg or a subreg record the mode that the register is
13228 accessed in. For non-TRULY_NOOP_TRUNCATION targets we might be able
13229 to turn a truncate into a subreg using this information. Return true
13230 if traversing X is complete. */
13231
13232 static bool
13233 record_truncated_value (rtx x)
13234 {
13235 machine_mode truncated_mode;
13236 reg_stat_type *rsp;
13237
13238 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
13239 {
13240 machine_mode original_mode = GET_MODE (SUBREG_REG (x));
13241 truncated_mode = GET_MODE (x);
13242
13243 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
13244 return true;
13245
13246 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
13247 return true;
13248
13249 x = SUBREG_REG (x);
13250 }
13251 /* ??? For hard-regs we now record everything. We might be able to
13252 optimize this using last_set_mode. */
13253 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
13254 truncated_mode = GET_MODE (x);
13255 else
13256 return false;
13257
13258 rsp = &reg_stat[REGNO (x)];
13259 if (rsp->truncated_to_mode == 0
13260 || rsp->truncation_label < label_tick_ebb_start
13261 || (GET_MODE_SIZE (truncated_mode)
13262 < GET_MODE_SIZE (rsp->truncated_to_mode)))
13263 {
13264 rsp->truncated_to_mode = truncated_mode;
13265 rsp->truncation_label = label_tick;
13266 }
13267
13268 return true;
13269 }
13270
13271 /* Callback for note_uses. Find hardregs and subregs of pseudos and
13272 the modes they are used in. This can help truning TRUNCATEs into
13273 SUBREGs. */
13274
13275 static void
13276 record_truncated_values (rtx *loc, void *data ATTRIBUTE_UNUSED)
13277 {
13278 subrtx_var_iterator::array_type array;
13279 FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
13280 if (record_truncated_value (*iter))
13281 iter.skip_subrtxes ();
13282 }
13283
13284 /* Scan X for promoted SUBREGs. For each one found,
13285 note what it implies to the registers used in it. */
13286
13287 static void
13288 check_promoted_subreg (rtx_insn *insn, rtx x)
13289 {
13290 if (GET_CODE (x) == SUBREG
13291 && SUBREG_PROMOTED_VAR_P (x)
13292 && REG_P (SUBREG_REG (x)))
13293 record_promoted_value (insn, x);
13294 else
13295 {
13296 const char *format = GET_RTX_FORMAT (GET_CODE (x));
13297 int i, j;
13298
13299 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
13300 switch (format[i])
13301 {
13302 case 'e':
13303 check_promoted_subreg (insn, XEXP (x, i));
13304 break;
13305 case 'V':
13306 case 'E':
13307 if (XVEC (x, i) != 0)
13308 for (j = 0; j < XVECLEN (x, i); j++)
13309 check_promoted_subreg (insn, XVECEXP (x, i, j));
13310 break;
13311 }
13312 }
13313 }
13314 \f
13315 /* Verify that all the registers and memory references mentioned in *LOC are
13316 still valid. *LOC was part of a value set in INSN when label_tick was
13317 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
13318 the invalid references with (clobber (const_int 0)) and return 1. This
13319 replacement is useful because we often can get useful information about
13320 the form of a value (e.g., if it was produced by a shift that always
13321 produces -1 or 0) even though we don't know exactly what registers it
13322 was produced from. */
13323
13324 static int
13325 get_last_value_validate (rtx *loc, rtx_insn *insn, int tick, int replace)
13326 {
13327 rtx x = *loc;
13328 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
13329 int len = GET_RTX_LENGTH (GET_CODE (x));
13330 int i, j;
13331
13332 if (REG_P (x))
13333 {
13334 unsigned int regno = REGNO (x);
13335 unsigned int endregno = END_REGNO (x);
13336 unsigned int j;
13337
13338 for (j = regno; j < endregno; j++)
13339 {
13340 reg_stat_type *rsp = &reg_stat[j];
13341 if (rsp->last_set_invalid
13342 /* If this is a pseudo-register that was only set once and not
13343 live at the beginning of the function, it is always valid. */
13344 || (! (regno >= FIRST_PSEUDO_REGISTER
13345 && regno < reg_n_sets_max
13346 && REG_N_SETS (regno) == 1
13347 && (!REGNO_REG_SET_P
13348 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
13349 regno)))
13350 && rsp->last_set_label > tick))
13351 {
13352 if (replace)
13353 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13354 return replace;
13355 }
13356 }
13357
13358 return 1;
13359 }
13360 /* If this is a memory reference, make sure that there were no stores after
13361 it that might have clobbered the value. We don't have alias info, so we
13362 assume any store invalidates it. Moreover, we only have local UIDs, so
13363 we also assume that there were stores in the intervening basic blocks. */
13364 else if (MEM_P (x) && !MEM_READONLY_P (x)
13365 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
13366 {
13367 if (replace)
13368 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13369 return replace;
13370 }
13371
13372 for (i = 0; i < len; i++)
13373 {
13374 if (fmt[i] == 'e')
13375 {
13376 /* Check for identical subexpressions. If x contains
13377 identical subexpression we only have to traverse one of
13378 them. */
13379 if (i == 1 && ARITHMETIC_P (x))
13380 {
13381 /* Note that at this point x0 has already been checked
13382 and found valid. */
13383 rtx x0 = XEXP (x, 0);
13384 rtx x1 = XEXP (x, 1);
13385
13386 /* If x0 and x1 are identical then x is also valid. */
13387 if (x0 == x1)
13388 return 1;
13389
13390 /* If x1 is identical to a subexpression of x0 then
13391 while checking x0, x1 has already been checked. Thus
13392 it is valid and so as x. */
13393 if (ARITHMETIC_P (x0)
13394 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13395 return 1;
13396
13397 /* If x0 is identical to a subexpression of x1 then x is
13398 valid iff the rest of x1 is valid. */
13399 if (ARITHMETIC_P (x1)
13400 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13401 return
13402 get_last_value_validate (&XEXP (x1,
13403 x0 == XEXP (x1, 0) ? 1 : 0),
13404 insn, tick, replace);
13405 }
13406
13407 if (get_last_value_validate (&XEXP (x, i), insn, tick,
13408 replace) == 0)
13409 return 0;
13410 }
13411 else if (fmt[i] == 'E')
13412 for (j = 0; j < XVECLEN (x, i); j++)
13413 if (get_last_value_validate (&XVECEXP (x, i, j),
13414 insn, tick, replace) == 0)
13415 return 0;
13416 }
13417
13418 /* If we haven't found a reason for it to be invalid, it is valid. */
13419 return 1;
13420 }
13421
13422 /* Get the last value assigned to X, if known. Some registers
13423 in the value may be replaced with (clobber (const_int 0)) if their value
13424 is known longer known reliably. */
13425
13426 static rtx
13427 get_last_value (const_rtx x)
13428 {
13429 unsigned int regno;
13430 rtx value;
13431 reg_stat_type *rsp;
13432
13433 /* If this is a non-paradoxical SUBREG, get the value of its operand and
13434 then convert it to the desired mode. If this is a paradoxical SUBREG,
13435 we cannot predict what values the "extra" bits might have. */
13436 if (GET_CODE (x) == SUBREG
13437 && subreg_lowpart_p (x)
13438 && !paradoxical_subreg_p (x)
13439 && (value = get_last_value (SUBREG_REG (x))) != 0)
13440 return gen_lowpart (GET_MODE (x), value);
13441
13442 if (!REG_P (x))
13443 return 0;
13444
13445 regno = REGNO (x);
13446 rsp = &reg_stat[regno];
13447 value = rsp->last_set_value;
13448
13449 /* If we don't have a value, or if it isn't for this basic block and
13450 it's either a hard register, set more than once, or it's a live
13451 at the beginning of the function, return 0.
13452
13453 Because if it's not live at the beginning of the function then the reg
13454 is always set before being used (is never used without being set).
13455 And, if it's set only once, and it's always set before use, then all
13456 uses must have the same last value, even if it's not from this basic
13457 block. */
13458
13459 if (value == 0
13460 || (rsp->last_set_label < label_tick_ebb_start
13461 && (regno < FIRST_PSEUDO_REGISTER
13462 || regno >= reg_n_sets_max
13463 || REG_N_SETS (regno) != 1
13464 || REGNO_REG_SET_P
13465 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), regno))))
13466 return 0;
13467
13468 /* If the value was set in a later insn than the ones we are processing,
13469 we can't use it even if the register was only set once. */
13470 if (rsp->last_set_label == label_tick
13471 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
13472 return 0;
13473
13474 /* If fewer bits were set than what we are asked for now, we cannot use
13475 the value. */
13476 if (GET_MODE_PRECISION (rsp->last_set_mode)
13477 < GET_MODE_PRECISION (GET_MODE (x)))
13478 return 0;
13479
13480 /* If the value has all its registers valid, return it. */
13481 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
13482 return value;
13483
13484 /* Otherwise, make a copy and replace any invalid register with
13485 (clobber (const_int 0)). If that fails for some reason, return 0. */
13486
13487 value = copy_rtx (value);
13488 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
13489 return value;
13490
13491 return 0;
13492 }
13493 \f
13494 /* Return nonzero if expression X refers to a REG or to memory
13495 that is set in an instruction more recent than FROM_LUID. */
13496
13497 static int
13498 use_crosses_set_p (const_rtx x, int from_luid)
13499 {
13500 const char *fmt;
13501 int i;
13502 enum rtx_code code = GET_CODE (x);
13503
13504 if (code == REG)
13505 {
13506 unsigned int regno = REGNO (x);
13507 unsigned endreg = END_REGNO (x);
13508
13509 #ifdef PUSH_ROUNDING
13510 /* Don't allow uses of the stack pointer to be moved,
13511 because we don't know whether the move crosses a push insn. */
13512 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
13513 return 1;
13514 #endif
13515 for (; regno < endreg; regno++)
13516 {
13517 reg_stat_type *rsp = &reg_stat[regno];
13518 if (rsp->last_set
13519 && rsp->last_set_label == label_tick
13520 && DF_INSN_LUID (rsp->last_set) > from_luid)
13521 return 1;
13522 }
13523 return 0;
13524 }
13525
13526 if (code == MEM && mem_last_set > from_luid)
13527 return 1;
13528
13529 fmt = GET_RTX_FORMAT (code);
13530
13531 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13532 {
13533 if (fmt[i] == 'E')
13534 {
13535 int j;
13536 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13537 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
13538 return 1;
13539 }
13540 else if (fmt[i] == 'e'
13541 && use_crosses_set_p (XEXP (x, i), from_luid))
13542 return 1;
13543 }
13544 return 0;
13545 }
13546 \f
13547 /* Define three variables used for communication between the following
13548 routines. */
13549
13550 static unsigned int reg_dead_regno, reg_dead_endregno;
13551 static int reg_dead_flag;
13552
13553 /* Function called via note_stores from reg_dead_at_p.
13554
13555 If DEST is within [reg_dead_regno, reg_dead_endregno), set
13556 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
13557
13558 static void
13559 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
13560 {
13561 unsigned int regno, endregno;
13562
13563 if (!REG_P (dest))
13564 return;
13565
13566 regno = REGNO (dest);
13567 endregno = END_REGNO (dest);
13568 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
13569 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
13570 }
13571
13572 /* Return nonzero if REG is known to be dead at INSN.
13573
13574 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
13575 referencing REG, it is dead. If we hit a SET referencing REG, it is
13576 live. Otherwise, see if it is live or dead at the start of the basic
13577 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
13578 must be assumed to be always live. */
13579
13580 static int
13581 reg_dead_at_p (rtx reg, rtx_insn *insn)
13582 {
13583 basic_block block;
13584 unsigned int i;
13585
13586 /* Set variables for reg_dead_at_p_1. */
13587 reg_dead_regno = REGNO (reg);
13588 reg_dead_endregno = END_REGNO (reg);
13589
13590 reg_dead_flag = 0;
13591
13592 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
13593 we allow the machine description to decide whether use-and-clobber
13594 patterns are OK. */
13595 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
13596 {
13597 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13598 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
13599 return 0;
13600 }
13601
13602 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
13603 beginning of basic block. */
13604 block = BLOCK_FOR_INSN (insn);
13605 for (;;)
13606 {
13607 if (INSN_P (insn))
13608 {
13609 if (find_regno_note (insn, REG_UNUSED, reg_dead_regno))
13610 return 1;
13611
13612 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
13613 if (reg_dead_flag)
13614 return reg_dead_flag == 1 ? 1 : 0;
13615
13616 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
13617 return 1;
13618 }
13619
13620 if (insn == BB_HEAD (block))
13621 break;
13622
13623 insn = PREV_INSN (insn);
13624 }
13625
13626 /* Look at live-in sets for the basic block that we were in. */
13627 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13628 if (REGNO_REG_SET_P (df_get_live_in (block), i))
13629 return 0;
13630
13631 return 1;
13632 }
13633 \f
13634 /* Note hard registers in X that are used. */
13635
13636 static void
13637 mark_used_regs_combine (rtx x)
13638 {
13639 RTX_CODE code = GET_CODE (x);
13640 unsigned int regno;
13641 int i;
13642
13643 switch (code)
13644 {
13645 case LABEL_REF:
13646 case SYMBOL_REF:
13647 case CONST:
13648 CASE_CONST_ANY:
13649 case PC:
13650 case ADDR_VEC:
13651 case ADDR_DIFF_VEC:
13652 case ASM_INPUT:
13653 /* CC0 must die in the insn after it is set, so we don't need to take
13654 special note of it here. */
13655 case CC0:
13656 return;
13657
13658 case CLOBBER:
13659 /* If we are clobbering a MEM, mark any hard registers inside the
13660 address as used. */
13661 if (MEM_P (XEXP (x, 0)))
13662 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
13663 return;
13664
13665 case REG:
13666 regno = REGNO (x);
13667 /* A hard reg in a wide mode may really be multiple registers.
13668 If so, mark all of them just like the first. */
13669 if (regno < FIRST_PSEUDO_REGISTER)
13670 {
13671 /* None of this applies to the stack, frame or arg pointers. */
13672 if (regno == STACK_POINTER_REGNUM
13673 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
13674 && regno == HARD_FRAME_POINTER_REGNUM)
13675 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
13676 && regno == ARG_POINTER_REGNUM && fixed_regs[regno])
13677 || regno == FRAME_POINTER_REGNUM)
13678 return;
13679
13680 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
13681 }
13682 return;
13683
13684 case SET:
13685 {
13686 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
13687 the address. */
13688 rtx testreg = SET_DEST (x);
13689
13690 while (GET_CODE (testreg) == SUBREG
13691 || GET_CODE (testreg) == ZERO_EXTRACT
13692 || GET_CODE (testreg) == STRICT_LOW_PART)
13693 testreg = XEXP (testreg, 0);
13694
13695 if (MEM_P (testreg))
13696 mark_used_regs_combine (XEXP (testreg, 0));
13697
13698 mark_used_regs_combine (SET_SRC (x));
13699 }
13700 return;
13701
13702 default:
13703 break;
13704 }
13705
13706 /* Recursively scan the operands of this expression. */
13707
13708 {
13709 const char *fmt = GET_RTX_FORMAT (code);
13710
13711 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13712 {
13713 if (fmt[i] == 'e')
13714 mark_used_regs_combine (XEXP (x, i));
13715 else if (fmt[i] == 'E')
13716 {
13717 int j;
13718
13719 for (j = 0; j < XVECLEN (x, i); j++)
13720 mark_used_regs_combine (XVECEXP (x, i, j));
13721 }
13722 }
13723 }
13724 }
13725 \f
13726 /* Remove register number REGNO from the dead registers list of INSN.
13727
13728 Return the note used to record the death, if there was one. */
13729
13730 rtx
13731 remove_death (unsigned int regno, rtx_insn *insn)
13732 {
13733 rtx note = find_regno_note (insn, REG_DEAD, regno);
13734
13735 if (note)
13736 remove_note (insn, note);
13737
13738 return note;
13739 }
13740
13741 /* For each register (hardware or pseudo) used within expression X, if its
13742 death is in an instruction with luid between FROM_LUID (inclusive) and
13743 TO_INSN (exclusive), put a REG_DEAD note for that register in the
13744 list headed by PNOTES.
13745
13746 That said, don't move registers killed by maybe_kill_insn.
13747
13748 This is done when X is being merged by combination into TO_INSN. These
13749 notes will then be distributed as needed. */
13750
13751 static void
13752 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx_insn *to_insn,
13753 rtx *pnotes)
13754 {
13755 const char *fmt;
13756 int len, i;
13757 enum rtx_code code = GET_CODE (x);
13758
13759 if (code == REG)
13760 {
13761 unsigned int regno = REGNO (x);
13762 rtx_insn *where_dead = reg_stat[regno].last_death;
13763
13764 /* Don't move the register if it gets killed in between from and to. */
13765 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
13766 && ! reg_referenced_p (x, maybe_kill_insn))
13767 return;
13768
13769 if (where_dead
13770 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
13771 && DF_INSN_LUID (where_dead) >= from_luid
13772 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
13773 {
13774 rtx note = remove_death (regno, where_dead);
13775
13776 /* It is possible for the call above to return 0. This can occur
13777 when last_death points to I2 or I1 that we combined with.
13778 In that case make a new note.
13779
13780 We must also check for the case where X is a hard register
13781 and NOTE is a death note for a range of hard registers
13782 including X. In that case, we must put REG_DEAD notes for
13783 the remaining registers in place of NOTE. */
13784
13785 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
13786 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13787 > GET_MODE_SIZE (GET_MODE (x))))
13788 {
13789 unsigned int deadregno = REGNO (XEXP (note, 0));
13790 unsigned int deadend = END_REGNO (XEXP (note, 0));
13791 unsigned int ourend = END_REGNO (x);
13792 unsigned int i;
13793
13794 for (i = deadregno; i < deadend; i++)
13795 if (i < regno || i >= ourend)
13796 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
13797 }
13798
13799 /* If we didn't find any note, or if we found a REG_DEAD note that
13800 covers only part of the given reg, and we have a multi-reg hard
13801 register, then to be safe we must check for REG_DEAD notes
13802 for each register other than the first. They could have
13803 their own REG_DEAD notes lying around. */
13804 else if ((note == 0
13805 || (note != 0
13806 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13807 < GET_MODE_SIZE (GET_MODE (x)))))
13808 && regno < FIRST_PSEUDO_REGISTER
13809 && REG_NREGS (x) > 1)
13810 {
13811 unsigned int ourend = END_REGNO (x);
13812 unsigned int i, offset;
13813 rtx oldnotes = 0;
13814
13815 if (note)
13816 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
13817 else
13818 offset = 1;
13819
13820 for (i = regno + offset; i < ourend; i++)
13821 move_deaths (regno_reg_rtx[i],
13822 maybe_kill_insn, from_luid, to_insn, &oldnotes);
13823 }
13824
13825 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
13826 {
13827 XEXP (note, 1) = *pnotes;
13828 *pnotes = note;
13829 }
13830 else
13831 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
13832 }
13833
13834 return;
13835 }
13836
13837 else if (GET_CODE (x) == SET)
13838 {
13839 rtx dest = SET_DEST (x);
13840
13841 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
13842
13843 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
13844 that accesses one word of a multi-word item, some
13845 piece of everything register in the expression is used by
13846 this insn, so remove any old death. */
13847 /* ??? So why do we test for equality of the sizes? */
13848
13849 if (GET_CODE (dest) == ZERO_EXTRACT
13850 || GET_CODE (dest) == STRICT_LOW_PART
13851 || (GET_CODE (dest) == SUBREG
13852 && (((GET_MODE_SIZE (GET_MODE (dest))
13853 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
13854 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
13855 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
13856 {
13857 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
13858 return;
13859 }
13860
13861 /* If this is some other SUBREG, we know it replaces the entire
13862 value, so use that as the destination. */
13863 if (GET_CODE (dest) == SUBREG)
13864 dest = SUBREG_REG (dest);
13865
13866 /* If this is a MEM, adjust deaths of anything used in the address.
13867 For a REG (the only other possibility), the entire value is
13868 being replaced so the old value is not used in this insn. */
13869
13870 if (MEM_P (dest))
13871 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
13872 to_insn, pnotes);
13873 return;
13874 }
13875
13876 else if (GET_CODE (x) == CLOBBER)
13877 return;
13878
13879 len = GET_RTX_LENGTH (code);
13880 fmt = GET_RTX_FORMAT (code);
13881
13882 for (i = 0; i < len; i++)
13883 {
13884 if (fmt[i] == 'E')
13885 {
13886 int j;
13887 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13888 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
13889 to_insn, pnotes);
13890 }
13891 else if (fmt[i] == 'e')
13892 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
13893 }
13894 }
13895 \f
13896 /* Return 1 if X is the target of a bit-field assignment in BODY, the
13897 pattern of an insn. X must be a REG. */
13898
13899 static int
13900 reg_bitfield_target_p (rtx x, rtx body)
13901 {
13902 int i;
13903
13904 if (GET_CODE (body) == SET)
13905 {
13906 rtx dest = SET_DEST (body);
13907 rtx target;
13908 unsigned int regno, tregno, endregno, endtregno;
13909
13910 if (GET_CODE (dest) == ZERO_EXTRACT)
13911 target = XEXP (dest, 0);
13912 else if (GET_CODE (dest) == STRICT_LOW_PART)
13913 target = SUBREG_REG (XEXP (dest, 0));
13914 else
13915 return 0;
13916
13917 if (GET_CODE (target) == SUBREG)
13918 target = SUBREG_REG (target);
13919
13920 if (!REG_P (target))
13921 return 0;
13922
13923 tregno = REGNO (target), regno = REGNO (x);
13924 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
13925 return target == x;
13926
13927 endtregno = end_hard_regno (GET_MODE (target), tregno);
13928 endregno = end_hard_regno (GET_MODE (x), regno);
13929
13930 return endregno > tregno && regno < endtregno;
13931 }
13932
13933 else if (GET_CODE (body) == PARALLEL)
13934 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
13935 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
13936 return 1;
13937
13938 return 0;
13939 }
13940 \f
13941 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
13942 as appropriate. I3 and I2 are the insns resulting from the combination
13943 insns including FROM (I2 may be zero).
13944
13945 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
13946 not need REG_DEAD notes because they are being substituted for. This
13947 saves searching in the most common cases.
13948
13949 Each note in the list is either ignored or placed on some insns, depending
13950 on the type of note. */
13951
13952 static void
13953 distribute_notes (rtx notes, rtx_insn *from_insn, rtx_insn *i3, rtx_insn *i2,
13954 rtx elim_i2, rtx elim_i1, rtx elim_i0)
13955 {
13956 rtx note, next_note;
13957 rtx tem_note;
13958 rtx_insn *tem_insn;
13959
13960 for (note = notes; note; note = next_note)
13961 {
13962 rtx_insn *place = 0, *place2 = 0;
13963
13964 next_note = XEXP (note, 1);
13965 switch (REG_NOTE_KIND (note))
13966 {
13967 case REG_BR_PROB:
13968 case REG_BR_PRED:
13969 /* Doesn't matter much where we put this, as long as it's somewhere.
13970 It is preferable to keep these notes on branches, which is most
13971 likely to be i3. */
13972 place = i3;
13973 break;
13974
13975 case REG_NON_LOCAL_GOTO:
13976 if (JUMP_P (i3))
13977 place = i3;
13978 else
13979 {
13980 gcc_assert (i2 && JUMP_P (i2));
13981 place = i2;
13982 }
13983 break;
13984
13985 case REG_EH_REGION:
13986 /* These notes must remain with the call or trapping instruction. */
13987 if (CALL_P (i3))
13988 place = i3;
13989 else if (i2 && CALL_P (i2))
13990 place = i2;
13991 else
13992 {
13993 gcc_assert (cfun->can_throw_non_call_exceptions);
13994 if (may_trap_p (i3))
13995 place = i3;
13996 else if (i2 && may_trap_p (i2))
13997 place = i2;
13998 /* ??? Otherwise assume we've combined things such that we
13999 can now prove that the instructions can't trap. Drop the
14000 note in this case. */
14001 }
14002 break;
14003
14004 case REG_ARGS_SIZE:
14005 /* ??? How to distribute between i3-i1. Assume i3 contains the
14006 entire adjustment. Assert i3 contains at least some adjust. */
14007 if (!noop_move_p (i3))
14008 {
14009 int old_size, args_size = INTVAL (XEXP (note, 0));
14010 /* fixup_args_size_notes looks at REG_NORETURN note,
14011 so ensure the note is placed there first. */
14012 if (CALL_P (i3))
14013 {
14014 rtx *np;
14015 for (np = &next_note; *np; np = &XEXP (*np, 1))
14016 if (REG_NOTE_KIND (*np) == REG_NORETURN)
14017 {
14018 rtx n = *np;
14019 *np = XEXP (n, 1);
14020 XEXP (n, 1) = REG_NOTES (i3);
14021 REG_NOTES (i3) = n;
14022 break;
14023 }
14024 }
14025 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
14026 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
14027 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
14028 gcc_assert (old_size != args_size
14029 || (CALL_P (i3)
14030 && !ACCUMULATE_OUTGOING_ARGS
14031 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
14032 }
14033 break;
14034
14035 case REG_NORETURN:
14036 case REG_SETJMP:
14037 case REG_TM:
14038 case REG_CALL_DECL:
14039 /* These notes must remain with the call. It should not be
14040 possible for both I2 and I3 to be a call. */
14041 if (CALL_P (i3))
14042 place = i3;
14043 else
14044 {
14045 gcc_assert (i2 && CALL_P (i2));
14046 place = i2;
14047 }
14048 break;
14049
14050 case REG_UNUSED:
14051 /* Any clobbers for i3 may still exist, and so we must process
14052 REG_UNUSED notes from that insn.
14053
14054 Any clobbers from i2 or i1 can only exist if they were added by
14055 recog_for_combine. In that case, recog_for_combine created the
14056 necessary REG_UNUSED notes. Trying to keep any original
14057 REG_UNUSED notes from these insns can cause incorrect output
14058 if it is for the same register as the original i3 dest.
14059 In that case, we will notice that the register is set in i3,
14060 and then add a REG_UNUSED note for the destination of i3, which
14061 is wrong. However, it is possible to have REG_UNUSED notes from
14062 i2 or i1 for register which were both used and clobbered, so
14063 we keep notes from i2 or i1 if they will turn into REG_DEAD
14064 notes. */
14065
14066 /* If this register is set or clobbered in I3, put the note there
14067 unless there is one already. */
14068 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
14069 {
14070 if (from_insn != i3)
14071 break;
14072
14073 if (! (REG_P (XEXP (note, 0))
14074 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
14075 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
14076 place = i3;
14077 }
14078 /* Otherwise, if this register is used by I3, then this register
14079 now dies here, so we must put a REG_DEAD note here unless there
14080 is one already. */
14081 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
14082 && ! (REG_P (XEXP (note, 0))
14083 ? find_regno_note (i3, REG_DEAD,
14084 REGNO (XEXP (note, 0)))
14085 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
14086 {
14087 PUT_REG_NOTE_KIND (note, REG_DEAD);
14088 place = i3;
14089 }
14090 break;
14091
14092 case REG_EQUAL:
14093 case REG_EQUIV:
14094 case REG_NOALIAS:
14095 /* These notes say something about results of an insn. We can
14096 only support them if they used to be on I3 in which case they
14097 remain on I3. Otherwise they are ignored.
14098
14099 If the note refers to an expression that is not a constant, we
14100 must also ignore the note since we cannot tell whether the
14101 equivalence is still true. It might be possible to do
14102 slightly better than this (we only have a problem if I2DEST
14103 or I1DEST is present in the expression), but it doesn't
14104 seem worth the trouble. */
14105
14106 if (from_insn == i3
14107 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
14108 place = i3;
14109 break;
14110
14111 case REG_INC:
14112 /* These notes say something about how a register is used. They must
14113 be present on any use of the register in I2 or I3. */
14114 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
14115 place = i3;
14116
14117 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
14118 {
14119 if (place)
14120 place2 = i2;
14121 else
14122 place = i2;
14123 }
14124 break;
14125
14126 case REG_LABEL_TARGET:
14127 case REG_LABEL_OPERAND:
14128 /* This can show up in several ways -- either directly in the
14129 pattern, or hidden off in the constant pool with (or without?)
14130 a REG_EQUAL note. */
14131 /* ??? Ignore the without-reg_equal-note problem for now. */
14132 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
14133 || ((tem_note = find_reg_note (i3, REG_EQUAL, NULL_RTX))
14134 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14135 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0)))
14136 place = i3;
14137
14138 if (i2
14139 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
14140 || ((tem_note = find_reg_note (i2, REG_EQUAL, NULL_RTX))
14141 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14142 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0))))
14143 {
14144 if (place)
14145 place2 = i2;
14146 else
14147 place = i2;
14148 }
14149
14150 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
14151 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
14152 there. */
14153 if (place && JUMP_P (place)
14154 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14155 && (JUMP_LABEL (place) == NULL
14156 || JUMP_LABEL (place) == XEXP (note, 0)))
14157 {
14158 rtx label = JUMP_LABEL (place);
14159
14160 if (!label)
14161 JUMP_LABEL (place) = XEXP (note, 0);
14162 else if (LABEL_P (label))
14163 LABEL_NUSES (label)--;
14164 }
14165
14166 if (place2 && JUMP_P (place2)
14167 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14168 && (JUMP_LABEL (place2) == NULL
14169 || JUMP_LABEL (place2) == XEXP (note, 0)))
14170 {
14171 rtx label = JUMP_LABEL (place2);
14172
14173 if (!label)
14174 JUMP_LABEL (place2) = XEXP (note, 0);
14175 else if (LABEL_P (label))
14176 LABEL_NUSES (label)--;
14177 place2 = 0;
14178 }
14179 break;
14180
14181 case REG_NONNEG:
14182 /* This note says something about the value of a register prior
14183 to the execution of an insn. It is too much trouble to see
14184 if the note is still correct in all situations. It is better
14185 to simply delete it. */
14186 break;
14187
14188 case REG_DEAD:
14189 /* If we replaced the right hand side of FROM_INSN with a
14190 REG_EQUAL note, the original use of the dying register
14191 will not have been combined into I3 and I2. In such cases,
14192 FROM_INSN is guaranteed to be the first of the combined
14193 instructions, so we simply need to search back before
14194 FROM_INSN for the previous use or set of this register,
14195 then alter the notes there appropriately.
14196
14197 If the register is used as an input in I3, it dies there.
14198 Similarly for I2, if it is nonzero and adjacent to I3.
14199
14200 If the register is not used as an input in either I3 or I2
14201 and it is not one of the registers we were supposed to eliminate,
14202 there are two possibilities. We might have a non-adjacent I2
14203 or we might have somehow eliminated an additional register
14204 from a computation. For example, we might have had A & B where
14205 we discover that B will always be zero. In this case we will
14206 eliminate the reference to A.
14207
14208 In both cases, we must search to see if we can find a previous
14209 use of A and put the death note there. */
14210
14211 if (from_insn
14212 && from_insn == i2mod
14213 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
14214 tem_insn = from_insn;
14215 else
14216 {
14217 if (from_insn
14218 && CALL_P (from_insn)
14219 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
14220 place = from_insn;
14221 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
14222 place = i3;
14223 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
14224 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14225 place = i2;
14226 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
14227 && !(i2mod
14228 && reg_overlap_mentioned_p (XEXP (note, 0),
14229 i2mod_old_rhs)))
14230 || rtx_equal_p (XEXP (note, 0), elim_i1)
14231 || rtx_equal_p (XEXP (note, 0), elim_i0))
14232 break;
14233 tem_insn = i3;
14234 /* If the new I2 sets the same register that is marked dead
14235 in the note, we do not know where to put the note.
14236 Give up. */
14237 if (i2 != 0 && reg_set_p (XEXP (note, 0), PATTERN (i2)))
14238 break;
14239 }
14240
14241 if (place == 0)
14242 {
14243 basic_block bb = this_basic_block;
14244
14245 for (tem_insn = PREV_INSN (tem_insn); place == 0; tem_insn = PREV_INSN (tem_insn))
14246 {
14247 if (!NONDEBUG_INSN_P (tem_insn))
14248 {
14249 if (tem_insn == BB_HEAD (bb))
14250 break;
14251 continue;
14252 }
14253
14254 /* If the register is being set at TEM_INSN, see if that is all
14255 TEM_INSN is doing. If so, delete TEM_INSN. Otherwise, make this
14256 into a REG_UNUSED note instead. Don't delete sets to
14257 global register vars. */
14258 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
14259 || !global_regs[REGNO (XEXP (note, 0))])
14260 && reg_set_p (XEXP (note, 0), PATTERN (tem_insn)))
14261 {
14262 rtx set = single_set (tem_insn);
14263 rtx inner_dest = 0;
14264 rtx_insn *cc0_setter = NULL;
14265
14266 if (set != 0)
14267 for (inner_dest = SET_DEST (set);
14268 (GET_CODE (inner_dest) == STRICT_LOW_PART
14269 || GET_CODE (inner_dest) == SUBREG
14270 || GET_CODE (inner_dest) == ZERO_EXTRACT);
14271 inner_dest = XEXP (inner_dest, 0))
14272 ;
14273
14274 /* Verify that it was the set, and not a clobber that
14275 modified the register.
14276
14277 CC0 targets must be careful to maintain setter/user
14278 pairs. If we cannot delete the setter due to side
14279 effects, mark the user with an UNUSED note instead
14280 of deleting it. */
14281
14282 if (set != 0 && ! side_effects_p (SET_SRC (set))
14283 && rtx_equal_p (XEXP (note, 0), inner_dest)
14284 && (!HAVE_cc0
14285 || (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
14286 || ((cc0_setter = prev_cc0_setter (tem_insn)) != NULL
14287 && sets_cc0_p (PATTERN (cc0_setter)) > 0))))
14288 {
14289 /* Move the notes and links of TEM_INSN elsewhere.
14290 This might delete other dead insns recursively.
14291 First set the pattern to something that won't use
14292 any register. */
14293 rtx old_notes = REG_NOTES (tem_insn);
14294
14295 PATTERN (tem_insn) = pc_rtx;
14296 REG_NOTES (tem_insn) = NULL;
14297
14298 distribute_notes (old_notes, tem_insn, tem_insn, NULL,
14299 NULL_RTX, NULL_RTX, NULL_RTX);
14300 distribute_links (LOG_LINKS (tem_insn));
14301
14302 unsigned int regno = REGNO (XEXP (note, 0));
14303 reg_stat_type *rsp = &reg_stat[regno];
14304 if (rsp->last_set == tem_insn)
14305 record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
14306
14307 SET_INSN_DELETED (tem_insn);
14308 if (tem_insn == i2)
14309 i2 = NULL;
14310
14311 /* Delete the setter too. */
14312 if (cc0_setter)
14313 {
14314 PATTERN (cc0_setter) = pc_rtx;
14315 old_notes = REG_NOTES (cc0_setter);
14316 REG_NOTES (cc0_setter) = NULL;
14317
14318 distribute_notes (old_notes, cc0_setter,
14319 cc0_setter, NULL,
14320 NULL_RTX, NULL_RTX, NULL_RTX);
14321 distribute_links (LOG_LINKS (cc0_setter));
14322
14323 SET_INSN_DELETED (cc0_setter);
14324 if (cc0_setter == i2)
14325 i2 = NULL;
14326 }
14327 }
14328 else
14329 {
14330 PUT_REG_NOTE_KIND (note, REG_UNUSED);
14331
14332 /* If there isn't already a REG_UNUSED note, put one
14333 here. Do not place a REG_DEAD note, even if
14334 the register is also used here; that would not
14335 match the algorithm used in lifetime analysis
14336 and can cause the consistency check in the
14337 scheduler to fail. */
14338 if (! find_regno_note (tem_insn, REG_UNUSED,
14339 REGNO (XEXP (note, 0))))
14340 place = tem_insn;
14341 break;
14342 }
14343 }
14344 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem_insn))
14345 || (CALL_P (tem_insn)
14346 && find_reg_fusage (tem_insn, USE, XEXP (note, 0))))
14347 {
14348 place = tem_insn;
14349
14350 /* If we are doing a 3->2 combination, and we have a
14351 register which formerly died in i3 and was not used
14352 by i2, which now no longer dies in i3 and is used in
14353 i2 but does not die in i2, and place is between i2
14354 and i3, then we may need to move a link from place to
14355 i2. */
14356 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
14357 && from_insn
14358 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
14359 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14360 {
14361 struct insn_link *links = LOG_LINKS (place);
14362 LOG_LINKS (place) = NULL;
14363 distribute_links (links);
14364 }
14365 break;
14366 }
14367
14368 if (tem_insn == BB_HEAD (bb))
14369 break;
14370 }
14371
14372 }
14373
14374 /* If the register is set or already dead at PLACE, we needn't do
14375 anything with this note if it is still a REG_DEAD note.
14376 We check here if it is set at all, not if is it totally replaced,
14377 which is what `dead_or_set_p' checks, so also check for it being
14378 set partially. */
14379
14380 if (place && REG_NOTE_KIND (note) == REG_DEAD)
14381 {
14382 unsigned int regno = REGNO (XEXP (note, 0));
14383 reg_stat_type *rsp = &reg_stat[regno];
14384
14385 if (dead_or_set_p (place, XEXP (note, 0))
14386 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
14387 {
14388 /* Unless the register previously died in PLACE, clear
14389 last_death. [I no longer understand why this is
14390 being done.] */
14391 if (rsp->last_death != place)
14392 rsp->last_death = 0;
14393 place = 0;
14394 }
14395 else
14396 rsp->last_death = place;
14397
14398 /* If this is a death note for a hard reg that is occupying
14399 multiple registers, ensure that we are still using all
14400 parts of the object. If we find a piece of the object
14401 that is unused, we must arrange for an appropriate REG_DEAD
14402 note to be added for it. However, we can't just emit a USE
14403 and tag the note to it, since the register might actually
14404 be dead; so we recourse, and the recursive call then finds
14405 the previous insn that used this register. */
14406
14407 if (place && REG_NREGS (XEXP (note, 0)) > 1)
14408 {
14409 unsigned int endregno = END_REGNO (XEXP (note, 0));
14410 bool all_used = true;
14411 unsigned int i;
14412
14413 for (i = regno; i < endregno; i++)
14414 if ((! refers_to_regno_p (i, PATTERN (place))
14415 && ! find_regno_fusage (place, USE, i))
14416 || dead_or_set_regno_p (place, i))
14417 {
14418 all_used = false;
14419 break;
14420 }
14421
14422 if (! all_used)
14423 {
14424 /* Put only REG_DEAD notes for pieces that are
14425 not already dead or set. */
14426
14427 for (i = regno; i < endregno;
14428 i += hard_regno_nregs[i][reg_raw_mode[i]])
14429 {
14430 rtx piece = regno_reg_rtx[i];
14431 basic_block bb = this_basic_block;
14432
14433 if (! dead_or_set_p (place, piece)
14434 && ! reg_bitfield_target_p (piece,
14435 PATTERN (place)))
14436 {
14437 rtx new_note = alloc_reg_note (REG_DEAD, piece,
14438 NULL_RTX);
14439
14440 distribute_notes (new_note, place, place,
14441 NULL, NULL_RTX, NULL_RTX,
14442 NULL_RTX);
14443 }
14444 else if (! refers_to_regno_p (i, PATTERN (place))
14445 && ! find_regno_fusage (place, USE, i))
14446 for (tem_insn = PREV_INSN (place); ;
14447 tem_insn = PREV_INSN (tem_insn))
14448 {
14449 if (!NONDEBUG_INSN_P (tem_insn))
14450 {
14451 if (tem_insn == BB_HEAD (bb))
14452 break;
14453 continue;
14454 }
14455 if (dead_or_set_p (tem_insn, piece)
14456 || reg_bitfield_target_p (piece,
14457 PATTERN (tem_insn)))
14458 {
14459 add_reg_note (tem_insn, REG_UNUSED, piece);
14460 break;
14461 }
14462 }
14463 }
14464
14465 place = 0;
14466 }
14467 }
14468 }
14469 break;
14470
14471 default:
14472 /* Any other notes should not be present at this point in the
14473 compilation. */
14474 gcc_unreachable ();
14475 }
14476
14477 if (place)
14478 {
14479 XEXP (note, 1) = REG_NOTES (place);
14480 REG_NOTES (place) = note;
14481 }
14482
14483 if (place2)
14484 add_shallow_copy_of_reg_note (place2, note);
14485 }
14486 }
14487 \f
14488 /* Similarly to above, distribute the LOG_LINKS that used to be present on
14489 I3, I2, and I1 to new locations. This is also called to add a link
14490 pointing at I3 when I3's destination is changed. */
14491
14492 static void
14493 distribute_links (struct insn_link *links)
14494 {
14495 struct insn_link *link, *next_link;
14496
14497 for (link = links; link; link = next_link)
14498 {
14499 rtx_insn *place = 0;
14500 rtx_insn *insn;
14501 rtx set, reg;
14502
14503 next_link = link->next;
14504
14505 /* If the insn that this link points to is a NOTE, ignore it. */
14506 if (NOTE_P (link->insn))
14507 continue;
14508
14509 set = 0;
14510 rtx pat = PATTERN (link->insn);
14511 if (GET_CODE (pat) == SET)
14512 set = pat;
14513 else if (GET_CODE (pat) == PARALLEL)
14514 {
14515 int i;
14516 for (i = 0; i < XVECLEN (pat, 0); i++)
14517 {
14518 set = XVECEXP (pat, 0, i);
14519 if (GET_CODE (set) != SET)
14520 continue;
14521
14522 reg = SET_DEST (set);
14523 while (GET_CODE (reg) == ZERO_EXTRACT
14524 || GET_CODE (reg) == STRICT_LOW_PART
14525 || GET_CODE (reg) == SUBREG)
14526 reg = XEXP (reg, 0);
14527
14528 if (!REG_P (reg))
14529 continue;
14530
14531 if (REGNO (reg) == link->regno)
14532 break;
14533 }
14534 if (i == XVECLEN (pat, 0))
14535 continue;
14536 }
14537 else
14538 continue;
14539
14540 reg = SET_DEST (set);
14541
14542 while (GET_CODE (reg) == ZERO_EXTRACT
14543 || GET_CODE (reg) == STRICT_LOW_PART
14544 || GET_CODE (reg) == SUBREG)
14545 reg = XEXP (reg, 0);
14546
14547 /* A LOG_LINK is defined as being placed on the first insn that uses
14548 a register and points to the insn that sets the register. Start
14549 searching at the next insn after the target of the link and stop
14550 when we reach a set of the register or the end of the basic block.
14551
14552 Note that this correctly handles the link that used to point from
14553 I3 to I2. Also note that not much searching is typically done here
14554 since most links don't point very far away. */
14555
14556 for (insn = NEXT_INSN (link->insn);
14557 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
14558 || BB_HEAD (this_basic_block->next_bb) != insn));
14559 insn = NEXT_INSN (insn))
14560 if (DEBUG_INSN_P (insn))
14561 continue;
14562 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
14563 {
14564 if (reg_referenced_p (reg, PATTERN (insn)))
14565 place = insn;
14566 break;
14567 }
14568 else if (CALL_P (insn)
14569 && find_reg_fusage (insn, USE, reg))
14570 {
14571 place = insn;
14572 break;
14573 }
14574 else if (INSN_P (insn) && reg_set_p (reg, insn))
14575 break;
14576
14577 /* If we found a place to put the link, place it there unless there
14578 is already a link to the same insn as LINK at that point. */
14579
14580 if (place)
14581 {
14582 struct insn_link *link2;
14583
14584 FOR_EACH_LOG_LINK (link2, place)
14585 if (link2->insn == link->insn && link2->regno == link->regno)
14586 break;
14587
14588 if (link2 == NULL)
14589 {
14590 link->next = LOG_LINKS (place);
14591 LOG_LINKS (place) = link;
14592
14593 /* Set added_links_insn to the earliest insn we added a
14594 link to. */
14595 if (added_links_insn == 0
14596 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
14597 added_links_insn = place;
14598 }
14599 }
14600 }
14601 }
14602 \f
14603 /* Check for any register or memory mentioned in EQUIV that is not
14604 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
14605 of EXPR where some registers may have been replaced by constants. */
14606
14607 static bool
14608 unmentioned_reg_p (rtx equiv, rtx expr)
14609 {
14610 subrtx_iterator::array_type array;
14611 FOR_EACH_SUBRTX (iter, array, equiv, NONCONST)
14612 {
14613 const_rtx x = *iter;
14614 if ((REG_P (x) || MEM_P (x))
14615 && !reg_mentioned_p (x, expr))
14616 return true;
14617 }
14618 return false;
14619 }
14620 \f
14621 DEBUG_FUNCTION void
14622 dump_combine_stats (FILE *file)
14623 {
14624 fprintf
14625 (file,
14626 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
14627 combine_attempts, combine_merges, combine_extras, combine_successes);
14628 }
14629
14630 void
14631 dump_combine_total_stats (FILE *file)
14632 {
14633 fprintf
14634 (file,
14635 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
14636 total_attempts, total_merges, total_extras, total_successes);
14637 }
14638 \f
14639 /* Try combining insns through substitution. */
14640 static unsigned int
14641 rest_of_handle_combine (void)
14642 {
14643 int rebuild_jump_labels_after_combine;
14644
14645 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
14646 df_note_add_problem ();
14647 df_analyze ();
14648
14649 regstat_init_n_sets_and_refs ();
14650 reg_n_sets_max = max_reg_num ();
14651
14652 rebuild_jump_labels_after_combine
14653 = combine_instructions (get_insns (), max_reg_num ());
14654
14655 /* Combining insns may have turned an indirect jump into a
14656 direct jump. Rebuild the JUMP_LABEL fields of jumping
14657 instructions. */
14658 if (rebuild_jump_labels_after_combine)
14659 {
14660 if (dom_info_available_p (CDI_DOMINATORS))
14661 free_dominance_info (CDI_DOMINATORS);
14662 timevar_push (TV_JUMP);
14663 rebuild_jump_labels (get_insns ());
14664 cleanup_cfg (0);
14665 timevar_pop (TV_JUMP);
14666 }
14667
14668 regstat_free_n_sets_and_refs ();
14669 return 0;
14670 }
14671
14672 namespace {
14673
14674 const pass_data pass_data_combine =
14675 {
14676 RTL_PASS, /* type */
14677 "combine", /* name */
14678 OPTGROUP_NONE, /* optinfo_flags */
14679 TV_COMBINE, /* tv_id */
14680 PROP_cfglayout, /* properties_required */
14681 0, /* properties_provided */
14682 0, /* properties_destroyed */
14683 0, /* todo_flags_start */
14684 TODO_df_finish, /* todo_flags_finish */
14685 };
14686
14687 class pass_combine : public rtl_opt_pass
14688 {
14689 public:
14690 pass_combine (gcc::context *ctxt)
14691 : rtl_opt_pass (pass_data_combine, ctxt)
14692 {}
14693
14694 /* opt_pass methods: */
14695 virtual bool gate (function *) { return (optimize > 0); }
14696 virtual unsigned int execute (function *)
14697 {
14698 return rest_of_handle_combine ();
14699 }
14700
14701 }; // class pass_combine
14702
14703 } // anon namespace
14704
14705 rtl_opt_pass *
14706 make_pass_combine (gcc::context *ctxt)
14707 {
14708 return new pass_combine (ctxt);
14709 }