* jvspec.c (jvgenmain_spec): Don't handle -fnew-verifier.
[gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
25
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
31
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
55
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
64
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
68
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
77
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "tm.h"
82 #include "rtl.h"
83 #include "tree.h"
84 #include "tm_p.h"
85 #include "flags.h"
86 #include "regs.h"
87 #include "hard-reg-set.h"
88 #include "basic-block.h"
89 #include "insn-config.h"
90 #include "function.h"
91 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
92 #include "expr.h"
93 #include "insn-attr.h"
94 #include "recog.h"
95 #include "diagnostic-core.h"
96 #include "toplev.h"
97 #include "target.h"
98 #include "optabs.h"
99 #include "insn-codes.h"
100 #include "rtlhooks-def.h"
101 /* Include output.h for dump_file. */
102 #include "output.h"
103 #include "params.h"
104 #include "timevar.h"
105 #include "tree-pass.h"
106 #include "df.h"
107 #include "cgraph.h"
108
109 /* Number of attempts to combine instructions in this function. */
110
111 static int combine_attempts;
112
113 /* Number of attempts that got as far as substitution in this function. */
114
115 static int combine_merges;
116
117 /* Number of instructions combined with added SETs in this function. */
118
119 static int combine_extras;
120
121 /* Number of instructions combined in this function. */
122
123 static int combine_successes;
124
125 /* Totals over entire compilation. */
126
127 static int total_attempts, total_merges, total_extras, total_successes;
128
129 /* combine_instructions may try to replace the right hand side of the
130 second instruction with the value of an associated REG_EQUAL note
131 before throwing it at try_combine. That is problematic when there
132 is a REG_DEAD note for a register used in the old right hand side
133 and can cause distribute_notes to do wrong things. This is the
134 second instruction if it has been so modified, null otherwise. */
135
136 static rtx i2mod;
137
138 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
139
140 static rtx i2mod_old_rhs;
141
142 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
143
144 static rtx i2mod_new_rhs;
145 \f
146 typedef struct reg_stat_struct {
147 /* Record last point of death of (hard or pseudo) register n. */
148 rtx last_death;
149
150 /* Record last point of modification of (hard or pseudo) register n. */
151 rtx last_set;
152
153 /* The next group of fields allows the recording of the last value assigned
154 to (hard or pseudo) register n. We use this information to see if an
155 operation being processed is redundant given a prior operation performed
156 on the register. For example, an `and' with a constant is redundant if
157 all the zero bits are already known to be turned off.
158
159 We use an approach similar to that used by cse, but change it in the
160 following ways:
161
162 (1) We do not want to reinitialize at each label.
163 (2) It is useful, but not critical, to know the actual value assigned
164 to a register. Often just its form is helpful.
165
166 Therefore, we maintain the following fields:
167
168 last_set_value the last value assigned
169 last_set_label records the value of label_tick when the
170 register was assigned
171 last_set_table_tick records the value of label_tick when a
172 value using the register is assigned
173 last_set_invalid set to nonzero when it is not valid
174 to use the value of this register in some
175 register's value
176
177 To understand the usage of these tables, it is important to understand
178 the distinction between the value in last_set_value being valid and
179 the register being validly contained in some other expression in the
180 table.
181
182 (The next two parameters are out of date).
183
184 reg_stat[i].last_set_value is valid if it is nonzero, and either
185 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
186
187 Register I may validly appear in any expression returned for the value
188 of another register if reg_n_sets[i] is 1. It may also appear in the
189 value for register J if reg_stat[j].last_set_invalid is zero, or
190 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
191
192 If an expression is found in the table containing a register which may
193 not validly appear in an expression, the register is replaced by
194 something that won't match, (clobber (const_int 0)). */
195
196 /* Record last value assigned to (hard or pseudo) register n. */
197
198 rtx last_set_value;
199
200 /* Record the value of label_tick when an expression involving register n
201 is placed in last_set_value. */
202
203 int last_set_table_tick;
204
205 /* Record the value of label_tick when the value for register n is placed in
206 last_set_value. */
207
208 int last_set_label;
209
210 /* These fields are maintained in parallel with last_set_value and are
211 used to store the mode in which the register was last set, the bits
212 that were known to be zero when it was last set, and the number of
213 sign bits copies it was known to have when it was last set. */
214
215 unsigned HOST_WIDE_INT last_set_nonzero_bits;
216 char last_set_sign_bit_copies;
217 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
218
219 /* Set nonzero if references to register n in expressions should not be
220 used. last_set_invalid is set nonzero when this register is being
221 assigned to and last_set_table_tick == label_tick. */
222
223 char last_set_invalid;
224
225 /* Some registers that are set more than once and used in more than one
226 basic block are nevertheless always set in similar ways. For example,
227 a QImode register may be loaded from memory in two places on a machine
228 where byte loads zero extend.
229
230 We record in the following fields if a register has some leading bits
231 that are always equal to the sign bit, and what we know about the
232 nonzero bits of a register, specifically which bits are known to be
233 zero.
234
235 If an entry is zero, it means that we don't know anything special. */
236
237 unsigned char sign_bit_copies;
238
239 unsigned HOST_WIDE_INT nonzero_bits;
240
241 /* Record the value of the label_tick when the last truncation
242 happened. The field truncated_to_mode is only valid if
243 truncation_label == label_tick. */
244
245 int truncation_label;
246
247 /* Record the last truncation seen for this register. If truncation
248 is not a nop to this mode we might be able to save an explicit
249 truncation if we know that value already contains a truncated
250 value. */
251
252 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
253 } reg_stat_type;
254
255 DEF_VEC_O(reg_stat_type);
256 DEF_VEC_ALLOC_O(reg_stat_type,heap);
257
258 static VEC(reg_stat_type,heap) *reg_stat;
259
260 /* Record the luid of the last insn that invalidated memory
261 (anything that writes memory, and subroutine calls, but not pushes). */
262
263 static int mem_last_set;
264
265 /* Record the luid of the last CALL_INSN
266 so we can tell whether a potential combination crosses any calls. */
267
268 static int last_call_luid;
269
270 /* When `subst' is called, this is the insn that is being modified
271 (by combining in a previous insn). The PATTERN of this insn
272 is still the old pattern partially modified and it should not be
273 looked at, but this may be used to examine the successors of the insn
274 to judge whether a simplification is valid. */
275
276 static rtx subst_insn;
277
278 /* This is the lowest LUID that `subst' is currently dealing with.
279 get_last_value will not return a value if the register was set at or
280 after this LUID. If not for this mechanism, we could get confused if
281 I2 or I1 in try_combine were an insn that used the old value of a register
282 to obtain a new value. In that case, we might erroneously get the
283 new value of the register when we wanted the old one. */
284
285 static int subst_low_luid;
286
287 /* This contains any hard registers that are used in newpat; reg_dead_at_p
288 must consider all these registers to be always live. */
289
290 static HARD_REG_SET newpat_used_regs;
291
292 /* This is an insn to which a LOG_LINKS entry has been added. If this
293 insn is the earlier than I2 or I3, combine should rescan starting at
294 that location. */
295
296 static rtx added_links_insn;
297
298 /* Basic block in which we are performing combines. */
299 static basic_block this_basic_block;
300 static bool optimize_this_for_speed_p;
301
302 \f
303 /* Length of the currently allocated uid_insn_cost array. */
304
305 static int max_uid_known;
306
307 /* The following array records the insn_rtx_cost for every insn
308 in the instruction stream. */
309
310 static int *uid_insn_cost;
311
312 /* The following array records the LOG_LINKS for every insn in the
313 instruction stream as an INSN_LIST rtx. */
314
315 static rtx *uid_log_links;
316
317 #define INSN_COST(INSN) (uid_insn_cost[INSN_UID (INSN)])
318 #define LOG_LINKS(INSN) (uid_log_links[INSN_UID (INSN)])
319
320 /* Incremented for each basic block. */
321
322 static int label_tick;
323
324 /* Reset to label_tick for each extended basic block in scanning order. */
325
326 static int label_tick_ebb_start;
327
328 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
329 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
330
331 static enum machine_mode nonzero_bits_mode;
332
333 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
334 be safely used. It is zero while computing them and after combine has
335 completed. This former test prevents propagating values based on
336 previously set values, which can be incorrect if a variable is modified
337 in a loop. */
338
339 static int nonzero_sign_valid;
340
341 \f
342 /* Record one modification to rtl structure
343 to be undone by storing old_contents into *where. */
344
345 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE };
346
347 struct undo
348 {
349 struct undo *next;
350 enum undo_kind kind;
351 union { rtx r; int i; enum machine_mode m; } old_contents;
352 union { rtx *r; int *i; } where;
353 };
354
355 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
356 num_undo says how many are currently recorded.
357
358 other_insn is nonzero if we have modified some other insn in the process
359 of working on subst_insn. It must be verified too. */
360
361 struct undobuf
362 {
363 struct undo *undos;
364 struct undo *frees;
365 rtx other_insn;
366 };
367
368 static struct undobuf undobuf;
369
370 /* Number of times the pseudo being substituted for
371 was found and replaced. */
372
373 static int n_occurrences;
374
375 static rtx reg_nonzero_bits_for_combine (const_rtx, enum machine_mode, const_rtx,
376 enum machine_mode,
377 unsigned HOST_WIDE_INT,
378 unsigned HOST_WIDE_INT *);
379 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, enum machine_mode, const_rtx,
380 enum machine_mode,
381 unsigned int, unsigned int *);
382 static void do_SUBST (rtx *, rtx);
383 static void do_SUBST_INT (int *, int);
384 static void init_reg_last (void);
385 static void setup_incoming_promotions (rtx);
386 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
387 static int cant_combine_insn_p (rtx);
388 static int can_combine_p (rtx, rtx, rtx, rtx, rtx, rtx, rtx *, rtx *);
389 static int combinable_i3pat (rtx, rtx *, rtx, rtx, rtx, int, int, rtx *);
390 static int contains_muldiv (rtx);
391 static rtx try_combine (rtx, rtx, rtx, rtx, int *);
392 static void undo_all (void);
393 static void undo_commit (void);
394 static rtx *find_split_point (rtx *, rtx, bool);
395 static rtx subst (rtx, rtx, rtx, int, int);
396 static rtx combine_simplify_rtx (rtx, enum machine_mode, int);
397 static rtx simplify_if_then_else (rtx);
398 static rtx simplify_set (rtx);
399 static rtx simplify_logical (rtx);
400 static rtx expand_compound_operation (rtx);
401 static const_rtx expand_field_assignment (const_rtx);
402 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
403 rtx, unsigned HOST_WIDE_INT, int, int, int);
404 static rtx extract_left_shift (rtx, int);
405 static rtx make_compound_operation (rtx, enum rtx_code);
406 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
407 unsigned HOST_WIDE_INT *);
408 static rtx canon_reg_for_combine (rtx, rtx);
409 static rtx force_to_mode (rtx, enum machine_mode,
410 unsigned HOST_WIDE_INT, int);
411 static rtx if_then_else_cond (rtx, rtx *, rtx *);
412 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
413 static int rtx_equal_for_field_assignment_p (rtx, rtx);
414 static rtx make_field_assignment (rtx);
415 static rtx apply_distributive_law (rtx);
416 static rtx distribute_and_simplify_rtx (rtx, int);
417 static rtx simplify_and_const_int_1 (enum machine_mode, rtx,
418 unsigned HOST_WIDE_INT);
419 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
420 unsigned HOST_WIDE_INT);
421 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
422 HOST_WIDE_INT, enum machine_mode, int *);
423 static rtx simplify_shift_const_1 (enum rtx_code, enum machine_mode, rtx, int);
424 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
425 int);
426 static int recog_for_combine (rtx *, rtx, rtx *);
427 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
428 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
429 static void update_table_tick (rtx);
430 static void record_value_for_reg (rtx, rtx, rtx);
431 static void check_promoted_subreg (rtx, rtx);
432 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
433 static void record_dead_and_set_regs (rtx);
434 static int get_last_value_validate (rtx *, rtx, int, int);
435 static rtx get_last_value (const_rtx);
436 static int use_crosses_set_p (const_rtx, int);
437 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
438 static int reg_dead_at_p (rtx, rtx);
439 static void move_deaths (rtx, rtx, int, rtx, rtx *);
440 static int reg_bitfield_target_p (rtx, rtx);
441 static void distribute_notes (rtx, rtx, rtx, rtx, rtx, rtx, rtx);
442 static void distribute_links (rtx);
443 static void mark_used_regs_combine (rtx);
444 static void record_promoted_value (rtx, rtx);
445 static int unmentioned_reg_p_1 (rtx *, void *);
446 static bool unmentioned_reg_p (rtx, rtx);
447 static int record_truncated_value (rtx *, void *);
448 static void record_truncated_values (rtx *, void *);
449 static bool reg_truncated_to_mode (enum machine_mode, const_rtx);
450 static rtx gen_lowpart_or_truncate (enum machine_mode, rtx);
451 \f
452
453 /* It is not safe to use ordinary gen_lowpart in combine.
454 See comments in gen_lowpart_for_combine. */
455 #undef RTL_HOOKS_GEN_LOWPART
456 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
457
458 /* Our implementation of gen_lowpart never emits a new pseudo. */
459 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
460 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
461
462 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
463 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
464
465 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
466 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
467
468 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
469 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
470
471 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
472
473 \f
474 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
475 PATTERN can not be split. Otherwise, it returns an insn sequence.
476 This is a wrapper around split_insns which ensures that the
477 reg_stat vector is made larger if the splitter creates a new
478 register. */
479
480 static rtx
481 combine_split_insns (rtx pattern, rtx insn)
482 {
483 rtx ret;
484 unsigned int nregs;
485
486 ret = split_insns (pattern, insn);
487 nregs = max_reg_num ();
488 if (nregs > VEC_length (reg_stat_type, reg_stat))
489 VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
490 return ret;
491 }
492
493 /* This is used by find_single_use to locate an rtx in LOC that
494 contains exactly one use of DEST, which is typically either a REG
495 or CC0. It returns a pointer to the innermost rtx expression
496 containing DEST. Appearances of DEST that are being used to
497 totally replace it are not counted. */
498
499 static rtx *
500 find_single_use_1 (rtx dest, rtx *loc)
501 {
502 rtx x = *loc;
503 enum rtx_code code = GET_CODE (x);
504 rtx *result = NULL;
505 rtx *this_result;
506 int i;
507 const char *fmt;
508
509 switch (code)
510 {
511 case CONST_INT:
512 case CONST:
513 case LABEL_REF:
514 case SYMBOL_REF:
515 case CONST_DOUBLE:
516 case CONST_VECTOR:
517 case CLOBBER:
518 return 0;
519
520 case SET:
521 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
522 of a REG that occupies all of the REG, the insn uses DEST if
523 it is mentioned in the destination or the source. Otherwise, we
524 need just check the source. */
525 if (GET_CODE (SET_DEST (x)) != CC0
526 && GET_CODE (SET_DEST (x)) != PC
527 && !REG_P (SET_DEST (x))
528 && ! (GET_CODE (SET_DEST (x)) == SUBREG
529 && REG_P (SUBREG_REG (SET_DEST (x)))
530 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
531 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
532 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
533 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
534 break;
535
536 return find_single_use_1 (dest, &SET_SRC (x));
537
538 case MEM:
539 case SUBREG:
540 return find_single_use_1 (dest, &XEXP (x, 0));
541
542 default:
543 break;
544 }
545
546 /* If it wasn't one of the common cases above, check each expression and
547 vector of this code. Look for a unique usage of DEST. */
548
549 fmt = GET_RTX_FORMAT (code);
550 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
551 {
552 if (fmt[i] == 'e')
553 {
554 if (dest == XEXP (x, i)
555 || (REG_P (dest) && REG_P (XEXP (x, i))
556 && REGNO (dest) == REGNO (XEXP (x, i))))
557 this_result = loc;
558 else
559 this_result = find_single_use_1 (dest, &XEXP (x, i));
560
561 if (result == NULL)
562 result = this_result;
563 else if (this_result)
564 /* Duplicate usage. */
565 return NULL;
566 }
567 else if (fmt[i] == 'E')
568 {
569 int j;
570
571 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
572 {
573 if (XVECEXP (x, i, j) == dest
574 || (REG_P (dest)
575 && REG_P (XVECEXP (x, i, j))
576 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
577 this_result = loc;
578 else
579 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
580
581 if (result == NULL)
582 result = this_result;
583 else if (this_result)
584 return NULL;
585 }
586 }
587 }
588
589 return result;
590 }
591
592
593 /* See if DEST, produced in INSN, is used only a single time in the
594 sequel. If so, return a pointer to the innermost rtx expression in which
595 it is used.
596
597 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
598
599 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
600 care about REG_DEAD notes or LOG_LINKS.
601
602 Otherwise, we find the single use by finding an insn that has a
603 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
604 only referenced once in that insn, we know that it must be the first
605 and last insn referencing DEST. */
606
607 static rtx *
608 find_single_use (rtx dest, rtx insn, rtx *ploc)
609 {
610 basic_block bb;
611 rtx next;
612 rtx *result;
613 rtx link;
614
615 #ifdef HAVE_cc0
616 if (dest == cc0_rtx)
617 {
618 next = NEXT_INSN (insn);
619 if (next == 0
620 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
621 return 0;
622
623 result = find_single_use_1 (dest, &PATTERN (next));
624 if (result && ploc)
625 *ploc = next;
626 return result;
627 }
628 #endif
629
630 if (!REG_P (dest))
631 return 0;
632
633 bb = BLOCK_FOR_INSN (insn);
634 for (next = NEXT_INSN (insn);
635 next && BLOCK_FOR_INSN (next) == bb;
636 next = NEXT_INSN (next))
637 if (INSN_P (next) && dead_or_set_p (next, dest))
638 {
639 for (link = LOG_LINKS (next); link; link = XEXP (link, 1))
640 if (XEXP (link, 0) == insn)
641 break;
642
643 if (link)
644 {
645 result = find_single_use_1 (dest, &PATTERN (next));
646 if (ploc)
647 *ploc = next;
648 return result;
649 }
650 }
651
652 return 0;
653 }
654 \f
655 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
656 insn. The substitution can be undone by undo_all. If INTO is already
657 set to NEWVAL, do not record this change. Because computing NEWVAL might
658 also call SUBST, we have to compute it before we put anything into
659 the undo table. */
660
661 static void
662 do_SUBST (rtx *into, rtx newval)
663 {
664 struct undo *buf;
665 rtx oldval = *into;
666
667 if (oldval == newval)
668 return;
669
670 /* We'd like to catch as many invalid transformations here as
671 possible. Unfortunately, there are way too many mode changes
672 that are perfectly valid, so we'd waste too much effort for
673 little gain doing the checks here. Focus on catching invalid
674 transformations involving integer constants. */
675 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
676 && CONST_INT_P (newval))
677 {
678 /* Sanity check that we're replacing oldval with a CONST_INT
679 that is a valid sign-extension for the original mode. */
680 gcc_assert (INTVAL (newval)
681 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
682
683 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
684 CONST_INT is not valid, because after the replacement, the
685 original mode would be gone. Unfortunately, we can't tell
686 when do_SUBST is called to replace the operand thereof, so we
687 perform this test on oldval instead, checking whether an
688 invalid replacement took place before we got here. */
689 gcc_assert (!(GET_CODE (oldval) == SUBREG
690 && CONST_INT_P (SUBREG_REG (oldval))));
691 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
692 && CONST_INT_P (XEXP (oldval, 0))));
693 }
694
695 if (undobuf.frees)
696 buf = undobuf.frees, undobuf.frees = buf->next;
697 else
698 buf = XNEW (struct undo);
699
700 buf->kind = UNDO_RTX;
701 buf->where.r = into;
702 buf->old_contents.r = oldval;
703 *into = newval;
704
705 buf->next = undobuf.undos, undobuf.undos = buf;
706 }
707
708 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
709
710 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
711 for the value of a HOST_WIDE_INT value (including CONST_INT) is
712 not safe. */
713
714 static void
715 do_SUBST_INT (int *into, int newval)
716 {
717 struct undo *buf;
718 int oldval = *into;
719
720 if (oldval == newval)
721 return;
722
723 if (undobuf.frees)
724 buf = undobuf.frees, undobuf.frees = buf->next;
725 else
726 buf = XNEW (struct undo);
727
728 buf->kind = UNDO_INT;
729 buf->where.i = into;
730 buf->old_contents.i = oldval;
731 *into = newval;
732
733 buf->next = undobuf.undos, undobuf.undos = buf;
734 }
735
736 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
737
738 /* Similar to SUBST, but just substitute the mode. This is used when
739 changing the mode of a pseudo-register, so that any other
740 references to the entry in the regno_reg_rtx array will change as
741 well. */
742
743 static void
744 do_SUBST_MODE (rtx *into, enum machine_mode newval)
745 {
746 struct undo *buf;
747 enum machine_mode oldval = GET_MODE (*into);
748
749 if (oldval == newval)
750 return;
751
752 if (undobuf.frees)
753 buf = undobuf.frees, undobuf.frees = buf->next;
754 else
755 buf = XNEW (struct undo);
756
757 buf->kind = UNDO_MODE;
758 buf->where.r = into;
759 buf->old_contents.m = oldval;
760 adjust_reg_mode (*into, newval);
761
762 buf->next = undobuf.undos, undobuf.undos = buf;
763 }
764
765 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE(&(INTO), (NEWVAL))
766 \f
767 /* Subroutine of try_combine. Determine whether the combine replacement
768 patterns NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to
769 insn_rtx_cost that the original instruction sequence I0, I1, I2, I3 and
770 undobuf.other_insn. Note that I1 and/or NEWI2PAT may be NULL_RTX.
771 NEWOTHERPAT and undobuf.other_insn may also both be NULL_RTX. This
772 function returns false, if the costs of all instructions can be
773 estimated, and the replacements are more expensive than the original
774 sequence. */
775
776 static bool
777 combine_validate_cost (rtx i0, rtx i1, rtx i2, rtx i3, rtx newpat,
778 rtx newi2pat, rtx newotherpat)
779 {
780 int i0_cost, i1_cost, i2_cost, i3_cost;
781 int new_i2_cost, new_i3_cost;
782 int old_cost, new_cost;
783
784 /* Lookup the original insn_rtx_costs. */
785 i2_cost = INSN_COST (i2);
786 i3_cost = INSN_COST (i3);
787
788 if (i1)
789 {
790 i1_cost = INSN_COST (i1);
791 if (i0)
792 {
793 i0_cost = INSN_COST (i0);
794 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
795 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
796 }
797 else
798 {
799 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
800 ? i1_cost + i2_cost + i3_cost : 0);
801 i0_cost = 0;
802 }
803 }
804 else
805 {
806 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
807 i1_cost = i0_cost = 0;
808 }
809
810 /* Calculate the replacement insn_rtx_costs. */
811 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
812 if (newi2pat)
813 {
814 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
815 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
816 ? new_i2_cost + new_i3_cost : 0;
817 }
818 else
819 {
820 new_cost = new_i3_cost;
821 new_i2_cost = 0;
822 }
823
824 if (undobuf.other_insn)
825 {
826 int old_other_cost, new_other_cost;
827
828 old_other_cost = INSN_COST (undobuf.other_insn);
829 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
830 if (old_other_cost > 0 && new_other_cost > 0)
831 {
832 old_cost += old_other_cost;
833 new_cost += new_other_cost;
834 }
835 else
836 old_cost = 0;
837 }
838
839 /* Disallow this recombination if both new_cost and old_cost are
840 greater than zero, and new_cost is greater than old cost. */
841 if (old_cost > 0
842 && new_cost > old_cost)
843 {
844 if (dump_file)
845 {
846 if (i0)
847 {
848 fprintf (dump_file,
849 "rejecting combination of insns %d, %d, %d and %d\n",
850 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2),
851 INSN_UID (i3));
852 fprintf (dump_file, "original costs %d + %d + %d + %d = %d\n",
853 i0_cost, i1_cost, i2_cost, i3_cost, old_cost);
854 }
855 else if (i1)
856 {
857 fprintf (dump_file,
858 "rejecting combination of insns %d, %d and %d\n",
859 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
860 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
861 i1_cost, i2_cost, i3_cost, old_cost);
862 }
863 else
864 {
865 fprintf (dump_file,
866 "rejecting combination of insns %d and %d\n",
867 INSN_UID (i2), INSN_UID (i3));
868 fprintf (dump_file, "original costs %d + %d = %d\n",
869 i2_cost, i3_cost, old_cost);
870 }
871
872 if (newi2pat)
873 {
874 fprintf (dump_file, "replacement costs %d + %d = %d\n",
875 new_i2_cost, new_i3_cost, new_cost);
876 }
877 else
878 fprintf (dump_file, "replacement cost %d\n", new_cost);
879 }
880
881 return false;
882 }
883
884 /* Update the uid_insn_cost array with the replacement costs. */
885 INSN_COST (i2) = new_i2_cost;
886 INSN_COST (i3) = new_i3_cost;
887 if (i1)
888 INSN_COST (i1) = 0;
889
890 return true;
891 }
892
893
894 /* Delete any insns that copy a register to itself. */
895
896 static void
897 delete_noop_moves (void)
898 {
899 rtx insn, next;
900 basic_block bb;
901
902 FOR_EACH_BB (bb)
903 {
904 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
905 {
906 next = NEXT_INSN (insn);
907 if (INSN_P (insn) && noop_move_p (insn))
908 {
909 if (dump_file)
910 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
911
912 delete_insn_and_edges (insn);
913 }
914 }
915 }
916 }
917
918 \f
919 /* Fill in log links field for all insns. */
920
921 static void
922 create_log_links (void)
923 {
924 basic_block bb;
925 rtx *next_use, insn;
926 df_ref *def_vec, *use_vec;
927
928 next_use = XCNEWVEC (rtx, max_reg_num ());
929
930 /* Pass through each block from the end, recording the uses of each
931 register and establishing log links when def is encountered.
932 Note that we do not clear next_use array in order to save time,
933 so we have to test whether the use is in the same basic block as def.
934
935 There are a few cases below when we do not consider the definition or
936 usage -- these are taken from original flow.c did. Don't ask me why it is
937 done this way; I don't know and if it works, I don't want to know. */
938
939 FOR_EACH_BB (bb)
940 {
941 FOR_BB_INSNS_REVERSE (bb, insn)
942 {
943 if (!NONDEBUG_INSN_P (insn))
944 continue;
945
946 /* Log links are created only once. */
947 gcc_assert (!LOG_LINKS (insn));
948
949 for (def_vec = DF_INSN_DEFS (insn); *def_vec; def_vec++)
950 {
951 df_ref def = *def_vec;
952 int regno = DF_REF_REGNO (def);
953 rtx use_insn;
954
955 if (!next_use[regno])
956 continue;
957
958 /* Do not consider if it is pre/post modification in MEM. */
959 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
960 continue;
961
962 /* Do not make the log link for frame pointer. */
963 if ((regno == FRAME_POINTER_REGNUM
964 && (! reload_completed || frame_pointer_needed))
965 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
966 || (regno == HARD_FRAME_POINTER_REGNUM
967 && (! reload_completed || frame_pointer_needed))
968 #endif
969 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
970 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
971 #endif
972 )
973 continue;
974
975 use_insn = next_use[regno];
976 if (BLOCK_FOR_INSN (use_insn) == bb)
977 {
978 /* flow.c claimed:
979
980 We don't build a LOG_LINK for hard registers contained
981 in ASM_OPERANDs. If these registers get replaced,
982 we might wind up changing the semantics of the insn,
983 even if reload can make what appear to be valid
984 assignments later. */
985 if (regno >= FIRST_PSEUDO_REGISTER
986 || asm_noperands (PATTERN (use_insn)) < 0)
987 {
988 /* Don't add duplicate links between instructions. */
989 rtx links;
990 for (links = LOG_LINKS (use_insn); links;
991 links = XEXP (links, 1))
992 if (insn == XEXP (links, 0))
993 break;
994
995 if (!links)
996 LOG_LINKS (use_insn) =
997 alloc_INSN_LIST (insn, LOG_LINKS (use_insn));
998 }
999 }
1000 next_use[regno] = NULL_RTX;
1001 }
1002
1003 for (use_vec = DF_INSN_USES (insn); *use_vec; use_vec++)
1004 {
1005 df_ref use = *use_vec;
1006 int regno = DF_REF_REGNO (use);
1007
1008 /* Do not consider the usage of the stack pointer
1009 by function call. */
1010 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1011 continue;
1012
1013 next_use[regno] = insn;
1014 }
1015 }
1016 }
1017
1018 free (next_use);
1019 }
1020
1021 /* Clear LOG_LINKS fields of insns. */
1022
1023 static void
1024 clear_log_links (void)
1025 {
1026 rtx insn;
1027
1028 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1029 if (INSN_P (insn))
1030 free_INSN_LIST_list (&LOG_LINKS (insn));
1031 }
1032
1033 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1034 true if we found a LOG_LINK that proves that A feeds B. This only works
1035 if there are no instructions between A and B which could have a link
1036 depending on A, since in that case we would not record a link for B. */
1037
1038 static bool
1039 insn_a_feeds_b (rtx a, rtx b)
1040 {
1041 rtx links;
1042 for (links = LOG_LINKS (b); links; links = XEXP (links, 1))
1043 if (XEXP (links, 0) == a)
1044 return true;
1045 return false;
1046 }
1047 \f
1048 /* Main entry point for combiner. F is the first insn of the function.
1049 NREGS is the first unused pseudo-reg number.
1050
1051 Return nonzero if the combiner has turned an indirect jump
1052 instruction into a direct jump. */
1053 static int
1054 combine_instructions (rtx f, unsigned int nregs)
1055 {
1056 rtx insn, next;
1057 #ifdef HAVE_cc0
1058 rtx prev;
1059 #endif
1060 rtx links, nextlinks;
1061 rtx first;
1062 basic_block last_bb;
1063
1064 int new_direct_jump_p = 0;
1065
1066 for (first = f; first && !INSN_P (first); )
1067 first = NEXT_INSN (first);
1068 if (!first)
1069 return 0;
1070
1071 combine_attempts = 0;
1072 combine_merges = 0;
1073 combine_extras = 0;
1074 combine_successes = 0;
1075
1076 rtl_hooks = combine_rtl_hooks;
1077
1078 VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
1079
1080 init_recog_no_volatile ();
1081
1082 /* Allocate array for insn info. */
1083 max_uid_known = get_max_uid ();
1084 uid_log_links = XCNEWVEC (rtx, max_uid_known + 1);
1085 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1086
1087 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1088
1089 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1090 problems when, for example, we have j <<= 1 in a loop. */
1091
1092 nonzero_sign_valid = 0;
1093 label_tick = label_tick_ebb_start = 1;
1094
1095 /* Scan all SETs and see if we can deduce anything about what
1096 bits are known to be zero for some registers and how many copies
1097 of the sign bit are known to exist for those registers.
1098
1099 Also set any known values so that we can use it while searching
1100 for what bits are known to be set. */
1101
1102 setup_incoming_promotions (first);
1103 /* Allow the entry block and the first block to fall into the same EBB.
1104 Conceptually the incoming promotions are assigned to the entry block. */
1105 last_bb = ENTRY_BLOCK_PTR;
1106
1107 create_log_links ();
1108 FOR_EACH_BB (this_basic_block)
1109 {
1110 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1111 last_call_luid = 0;
1112 mem_last_set = -1;
1113
1114 label_tick++;
1115 if (!single_pred_p (this_basic_block)
1116 || single_pred (this_basic_block) != last_bb)
1117 label_tick_ebb_start = label_tick;
1118 last_bb = this_basic_block;
1119
1120 FOR_BB_INSNS (this_basic_block, insn)
1121 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1122 {
1123 subst_low_luid = DF_INSN_LUID (insn);
1124 subst_insn = insn;
1125
1126 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1127 insn);
1128 record_dead_and_set_regs (insn);
1129
1130 #ifdef AUTO_INC_DEC
1131 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1132 if (REG_NOTE_KIND (links) == REG_INC)
1133 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1134 insn);
1135 #endif
1136
1137 /* Record the current insn_rtx_cost of this instruction. */
1138 if (NONJUMP_INSN_P (insn))
1139 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1140 optimize_this_for_speed_p);
1141 if (dump_file)
1142 fprintf(dump_file, "insn_cost %d: %d\n",
1143 INSN_UID (insn), INSN_COST (insn));
1144 }
1145 }
1146
1147 nonzero_sign_valid = 1;
1148
1149 /* Now scan all the insns in forward order. */
1150 label_tick = label_tick_ebb_start = 1;
1151 init_reg_last ();
1152 setup_incoming_promotions (first);
1153 last_bb = ENTRY_BLOCK_PTR;
1154
1155 FOR_EACH_BB (this_basic_block)
1156 {
1157 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1158 last_call_luid = 0;
1159 mem_last_set = -1;
1160
1161 label_tick++;
1162 if (!single_pred_p (this_basic_block)
1163 || single_pred (this_basic_block) != last_bb)
1164 label_tick_ebb_start = label_tick;
1165 last_bb = this_basic_block;
1166
1167 rtl_profile_for_bb (this_basic_block);
1168 for (insn = BB_HEAD (this_basic_block);
1169 insn != NEXT_INSN (BB_END (this_basic_block));
1170 insn = next ? next : NEXT_INSN (insn))
1171 {
1172 next = 0;
1173 if (NONDEBUG_INSN_P (insn))
1174 {
1175 /* See if we know about function return values before this
1176 insn based upon SUBREG flags. */
1177 check_promoted_subreg (insn, PATTERN (insn));
1178
1179 /* See if we can find hardregs and subreg of pseudos in
1180 narrower modes. This could help turning TRUNCATEs
1181 into SUBREGs. */
1182 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1183
1184 /* Try this insn with each insn it links back to. */
1185
1186 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1187 if ((next = try_combine (insn, XEXP (links, 0), NULL_RTX,
1188 NULL_RTX, &new_direct_jump_p)) != 0)
1189 goto retry;
1190
1191 /* Try each sequence of three linked insns ending with this one. */
1192
1193 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1194 {
1195 rtx link = XEXP (links, 0);
1196
1197 /* If the linked insn has been replaced by a note, then there
1198 is no point in pursuing this chain any further. */
1199 if (NOTE_P (link))
1200 continue;
1201
1202 for (nextlinks = LOG_LINKS (link);
1203 nextlinks;
1204 nextlinks = XEXP (nextlinks, 1))
1205 if ((next = try_combine (insn, link, XEXP (nextlinks, 0),
1206 NULL_RTX,
1207 &new_direct_jump_p)) != 0)
1208 goto retry;
1209 }
1210
1211 #ifdef HAVE_cc0
1212 /* Try to combine a jump insn that uses CC0
1213 with a preceding insn that sets CC0, and maybe with its
1214 logical predecessor as well.
1215 This is how we make decrement-and-branch insns.
1216 We need this special code because data flow connections
1217 via CC0 do not get entered in LOG_LINKS. */
1218
1219 if (JUMP_P (insn)
1220 && (prev = prev_nonnote_insn (insn)) != 0
1221 && NONJUMP_INSN_P (prev)
1222 && sets_cc0_p (PATTERN (prev)))
1223 {
1224 if ((next = try_combine (insn, prev, NULL_RTX, NULL_RTX,
1225 &new_direct_jump_p)) != 0)
1226 goto retry;
1227
1228 for (nextlinks = LOG_LINKS (prev); nextlinks;
1229 nextlinks = XEXP (nextlinks, 1))
1230 if ((next = try_combine (insn, prev, XEXP (nextlinks, 0),
1231 NULL_RTX,
1232 &new_direct_jump_p)) != 0)
1233 goto retry;
1234 }
1235
1236 /* Do the same for an insn that explicitly references CC0. */
1237 if (NONJUMP_INSN_P (insn)
1238 && (prev = prev_nonnote_insn (insn)) != 0
1239 && NONJUMP_INSN_P (prev)
1240 && sets_cc0_p (PATTERN (prev))
1241 && GET_CODE (PATTERN (insn)) == SET
1242 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1243 {
1244 if ((next = try_combine (insn, prev, NULL_RTX, NULL_RTX,
1245 &new_direct_jump_p)) != 0)
1246 goto retry;
1247
1248 for (nextlinks = LOG_LINKS (prev); nextlinks;
1249 nextlinks = XEXP (nextlinks, 1))
1250 if ((next = try_combine (insn, prev, XEXP (nextlinks, 0),
1251 NULL_RTX,
1252 &new_direct_jump_p)) != 0)
1253 goto retry;
1254 }
1255
1256 /* Finally, see if any of the insns that this insn links to
1257 explicitly references CC0. If so, try this insn, that insn,
1258 and its predecessor if it sets CC0. */
1259 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1260 if (NONJUMP_INSN_P (XEXP (links, 0))
1261 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
1262 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
1263 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
1264 && NONJUMP_INSN_P (prev)
1265 && sets_cc0_p (PATTERN (prev))
1266 && (next = try_combine (insn, XEXP (links, 0),
1267 prev, NULL_RTX,
1268 &new_direct_jump_p)) != 0)
1269 goto retry;
1270 #endif
1271
1272 /* Try combining an insn with two different insns whose results it
1273 uses. */
1274 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1275 for (nextlinks = XEXP (links, 1); nextlinks;
1276 nextlinks = XEXP (nextlinks, 1))
1277 if ((next = try_combine (insn, XEXP (links, 0),
1278 XEXP (nextlinks, 0), NULL_RTX,
1279 &new_direct_jump_p)) != 0)
1280 goto retry;
1281
1282 /* Try four-instruction combinations. */
1283 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1284 {
1285 rtx next1;
1286 rtx link = XEXP (links, 0);
1287
1288 /* If the linked insn has been replaced by a note, then there
1289 is no point in pursuing this chain any further. */
1290 if (NOTE_P (link))
1291 continue;
1292
1293 for (next1 = LOG_LINKS (link); next1; next1 = XEXP (next1, 1))
1294 {
1295 rtx link1 = XEXP (next1, 0);
1296 if (NOTE_P (link1))
1297 continue;
1298 /* I0 -> I1 -> I2 -> I3. */
1299 for (nextlinks = LOG_LINKS (link1); nextlinks;
1300 nextlinks = XEXP (nextlinks, 1))
1301 if ((next = try_combine (insn, link, link1,
1302 XEXP (nextlinks, 0),
1303 &new_direct_jump_p)) != 0)
1304 goto retry;
1305 /* I0, I1 -> I2, I2 -> I3. */
1306 for (nextlinks = XEXP (next1, 1); nextlinks;
1307 nextlinks = XEXP (nextlinks, 1))
1308 if ((next = try_combine (insn, link, link1,
1309 XEXP (nextlinks, 0),
1310 &new_direct_jump_p)) != 0)
1311 goto retry;
1312 }
1313
1314 for (next1 = XEXP (links, 1); next1; next1 = XEXP (next1, 1))
1315 {
1316 rtx link1 = XEXP (next1, 0);
1317 if (NOTE_P (link1))
1318 continue;
1319 /* I0 -> I2; I1, I2 -> I3. */
1320 for (nextlinks = LOG_LINKS (link); nextlinks;
1321 nextlinks = XEXP (nextlinks, 1))
1322 if ((next = try_combine (insn, link, link1,
1323 XEXP (nextlinks, 0),
1324 &new_direct_jump_p)) != 0)
1325 goto retry;
1326 /* I0 -> I1; I1, I2 -> I3. */
1327 for (nextlinks = LOG_LINKS (link1); nextlinks;
1328 nextlinks = XEXP (nextlinks, 1))
1329 if ((next = try_combine (insn, link, link1,
1330 XEXP (nextlinks, 0),
1331 &new_direct_jump_p)) != 0)
1332 goto retry;
1333 }
1334 }
1335
1336 /* Try this insn with each REG_EQUAL note it links back to. */
1337 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1338 {
1339 rtx set, note;
1340 rtx temp = XEXP (links, 0);
1341 if ((set = single_set (temp)) != 0
1342 && (note = find_reg_equal_equiv_note (temp)) != 0
1343 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1344 /* Avoid using a register that may already been marked
1345 dead by an earlier instruction. */
1346 && ! unmentioned_reg_p (note, SET_SRC (set))
1347 && (GET_MODE (note) == VOIDmode
1348 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1349 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
1350 {
1351 /* Temporarily replace the set's source with the
1352 contents of the REG_EQUAL note. The insn will
1353 be deleted or recognized by try_combine. */
1354 rtx orig = SET_SRC (set);
1355 SET_SRC (set) = note;
1356 i2mod = temp;
1357 i2mod_old_rhs = copy_rtx (orig);
1358 i2mod_new_rhs = copy_rtx (note);
1359 next = try_combine (insn, i2mod, NULL_RTX, NULL_RTX,
1360 &new_direct_jump_p);
1361 i2mod = NULL_RTX;
1362 if (next)
1363 goto retry;
1364 SET_SRC (set) = orig;
1365 }
1366 }
1367
1368 if (!NOTE_P (insn))
1369 record_dead_and_set_regs (insn);
1370
1371 retry:
1372 ;
1373 }
1374 }
1375 }
1376
1377 default_rtl_profile ();
1378 clear_log_links ();
1379 clear_bb_flags ();
1380 new_direct_jump_p |= purge_all_dead_edges ();
1381 delete_noop_moves ();
1382
1383 /* Clean up. */
1384 free (uid_log_links);
1385 free (uid_insn_cost);
1386 VEC_free (reg_stat_type, heap, reg_stat);
1387
1388 {
1389 struct undo *undo, *next;
1390 for (undo = undobuf.frees; undo; undo = next)
1391 {
1392 next = undo->next;
1393 free (undo);
1394 }
1395 undobuf.frees = 0;
1396 }
1397
1398 total_attempts += combine_attempts;
1399 total_merges += combine_merges;
1400 total_extras += combine_extras;
1401 total_successes += combine_successes;
1402
1403 nonzero_sign_valid = 0;
1404 rtl_hooks = general_rtl_hooks;
1405
1406 /* Make recognizer allow volatile MEMs again. */
1407 init_recog ();
1408
1409 return new_direct_jump_p;
1410 }
1411
1412 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1413
1414 static void
1415 init_reg_last (void)
1416 {
1417 unsigned int i;
1418 reg_stat_type *p;
1419
1420 FOR_EACH_VEC_ELT (reg_stat_type, reg_stat, i, p)
1421 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1422 }
1423 \f
1424 /* Set up any promoted values for incoming argument registers. */
1425
1426 static void
1427 setup_incoming_promotions (rtx first)
1428 {
1429 tree arg;
1430 bool strictly_local = false;
1431
1432 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1433 arg = DECL_CHAIN (arg))
1434 {
1435 rtx x, reg = DECL_INCOMING_RTL (arg);
1436 int uns1, uns3;
1437 enum machine_mode mode1, mode2, mode3, mode4;
1438
1439 /* Only continue if the incoming argument is in a register. */
1440 if (!REG_P (reg))
1441 continue;
1442
1443 /* Determine, if possible, whether all call sites of the current
1444 function lie within the current compilation unit. (This does
1445 take into account the exporting of a function via taking its
1446 address, and so forth.) */
1447 strictly_local = cgraph_local_info (current_function_decl)->local;
1448
1449 /* The mode and signedness of the argument before any promotions happen
1450 (equal to the mode of the pseudo holding it at that stage). */
1451 mode1 = TYPE_MODE (TREE_TYPE (arg));
1452 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1453
1454 /* The mode and signedness of the argument after any source language and
1455 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1456 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1457 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1458
1459 /* The mode and signedness of the argument as it is actually passed,
1460 after any TARGET_PROMOTE_FUNCTION_ARGS-driven ABI promotions. */
1461 mode3 = promote_function_mode (DECL_ARG_TYPE (arg), mode2, &uns3,
1462 TREE_TYPE (cfun->decl), 0);
1463
1464 /* The mode of the register in which the argument is being passed. */
1465 mode4 = GET_MODE (reg);
1466
1467 /* Eliminate sign extensions in the callee when:
1468 (a) A mode promotion has occurred; */
1469 if (mode1 == mode3)
1470 continue;
1471 /* (b) The mode of the register is the same as the mode of
1472 the argument as it is passed; */
1473 if (mode3 != mode4)
1474 continue;
1475 /* (c) There's no language level extension; */
1476 if (mode1 == mode2)
1477 ;
1478 /* (c.1) All callers are from the current compilation unit. If that's
1479 the case we don't have to rely on an ABI, we only have to know
1480 what we're generating right now, and we know that we will do the
1481 mode1 to mode2 promotion with the given sign. */
1482 else if (!strictly_local)
1483 continue;
1484 /* (c.2) The combination of the two promotions is useful. This is
1485 true when the signs match, or if the first promotion is unsigned.
1486 In the later case, (sign_extend (zero_extend x)) is the same as
1487 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1488 else if (uns1)
1489 uns3 = true;
1490 else if (uns3)
1491 continue;
1492
1493 /* Record that the value was promoted from mode1 to mode3,
1494 so that any sign extension at the head of the current
1495 function may be eliminated. */
1496 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1497 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1498 record_value_for_reg (reg, first, x);
1499 }
1500 }
1501
1502 /* Called via note_stores. If X is a pseudo that is narrower than
1503 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1504
1505 If we are setting only a portion of X and we can't figure out what
1506 portion, assume all bits will be used since we don't know what will
1507 be happening.
1508
1509 Similarly, set how many bits of X are known to be copies of the sign bit
1510 at all locations in the function. This is the smallest number implied
1511 by any set of X. */
1512
1513 static void
1514 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1515 {
1516 rtx insn = (rtx) data;
1517 unsigned int num;
1518
1519 if (REG_P (x)
1520 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1521 /* If this register is undefined at the start of the file, we can't
1522 say what its contents were. */
1523 && ! REGNO_REG_SET_P
1524 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x))
1525 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
1526 {
1527 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
1528
1529 if (set == 0 || GET_CODE (set) == CLOBBER)
1530 {
1531 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1532 rsp->sign_bit_copies = 1;
1533 return;
1534 }
1535
1536 /* If this register is being initialized using itself, and the
1537 register is uninitialized in this basic block, and there are
1538 no LOG_LINKS which set the register, then part of the
1539 register is uninitialized. In that case we can't assume
1540 anything about the number of nonzero bits.
1541
1542 ??? We could do better if we checked this in
1543 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1544 could avoid making assumptions about the insn which initially
1545 sets the register, while still using the information in other
1546 insns. We would have to be careful to check every insn
1547 involved in the combination. */
1548
1549 if (insn
1550 && reg_referenced_p (x, PATTERN (insn))
1551 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1552 REGNO (x)))
1553 {
1554 rtx link;
1555
1556 for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
1557 {
1558 if (dead_or_set_p (XEXP (link, 0), x))
1559 break;
1560 }
1561 if (!link)
1562 {
1563 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1564 rsp->sign_bit_copies = 1;
1565 return;
1566 }
1567 }
1568
1569 /* If this is a complex assignment, see if we can convert it into a
1570 simple assignment. */
1571 set = expand_field_assignment (set);
1572
1573 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1574 set what we know about X. */
1575
1576 if (SET_DEST (set) == x
1577 || (GET_CODE (SET_DEST (set)) == SUBREG
1578 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
1579 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
1580 && SUBREG_REG (SET_DEST (set)) == x))
1581 {
1582 rtx src = SET_SRC (set);
1583
1584 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1585 /* If X is narrower than a word and SRC is a non-negative
1586 constant that would appear negative in the mode of X,
1587 sign-extend it for use in reg_stat[].nonzero_bits because some
1588 machines (maybe most) will actually do the sign-extension
1589 and this is the conservative approach.
1590
1591 ??? For 2.5, try to tighten up the MD files in this regard
1592 instead of this kludge. */
1593
1594 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
1595 && CONST_INT_P (src)
1596 && INTVAL (src) > 0
1597 && 0 != (INTVAL (src)
1598 & ((HOST_WIDE_INT) 1
1599 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
1600 src = GEN_INT (INTVAL (src)
1601 | ((HOST_WIDE_INT) (-1)
1602 << GET_MODE_BITSIZE (GET_MODE (x))));
1603 #endif
1604
1605 /* Don't call nonzero_bits if it cannot change anything. */
1606 if (rsp->nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1607 rsp->nonzero_bits |= nonzero_bits (src, nonzero_bits_mode);
1608 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1609 if (rsp->sign_bit_copies == 0
1610 || rsp->sign_bit_copies > num)
1611 rsp->sign_bit_copies = num;
1612 }
1613 else
1614 {
1615 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1616 rsp->sign_bit_copies = 1;
1617 }
1618 }
1619 }
1620 \f
1621 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1622 optionally insns that were previously combined into I3 or that will be
1623 combined into the merger of INSN and I3. The order is PRED, PRED2,
1624 INSN, SUCC, SUCC2, I3.
1625
1626 Return 0 if the combination is not allowed for any reason.
1627
1628 If the combination is allowed, *PDEST will be set to the single
1629 destination of INSN and *PSRC to the single source, and this function
1630 will return 1. */
1631
1632 static int
1633 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED,
1634 rtx pred2 ATTRIBUTE_UNUSED, rtx succ, rtx succ2,
1635 rtx *pdest, rtx *psrc)
1636 {
1637 int i;
1638 const_rtx set = 0;
1639 rtx src, dest;
1640 rtx p;
1641 #ifdef AUTO_INC_DEC
1642 rtx link;
1643 #endif
1644 bool all_adjacent = true;
1645
1646 if (succ)
1647 {
1648 if (succ2)
1649 {
1650 if (next_active_insn (succ2) != i3)
1651 all_adjacent = false;
1652 if (next_active_insn (succ) != succ2)
1653 all_adjacent = false;
1654 }
1655 else if (next_active_insn (succ) != i3)
1656 all_adjacent = false;
1657 if (next_active_insn (insn) != succ)
1658 all_adjacent = false;
1659 }
1660 else if (next_active_insn (insn) != i3)
1661 all_adjacent = false;
1662
1663 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1664 or a PARALLEL consisting of such a SET and CLOBBERs.
1665
1666 If INSN has CLOBBER parallel parts, ignore them for our processing.
1667 By definition, these happen during the execution of the insn. When it
1668 is merged with another insn, all bets are off. If they are, in fact,
1669 needed and aren't also supplied in I3, they may be added by
1670 recog_for_combine. Otherwise, it won't match.
1671
1672 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1673 note.
1674
1675 Get the source and destination of INSN. If more than one, can't
1676 combine. */
1677
1678 if (GET_CODE (PATTERN (insn)) == SET)
1679 set = PATTERN (insn);
1680 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1681 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1682 {
1683 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1684 {
1685 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1686
1687 switch (GET_CODE (elt))
1688 {
1689 /* This is important to combine floating point insns
1690 for the SH4 port. */
1691 case USE:
1692 /* Combining an isolated USE doesn't make sense.
1693 We depend here on combinable_i3pat to reject them. */
1694 /* The code below this loop only verifies that the inputs of
1695 the SET in INSN do not change. We call reg_set_between_p
1696 to verify that the REG in the USE does not change between
1697 I3 and INSN.
1698 If the USE in INSN was for a pseudo register, the matching
1699 insn pattern will likely match any register; combining this
1700 with any other USE would only be safe if we knew that the
1701 used registers have identical values, or if there was
1702 something to tell them apart, e.g. different modes. For
1703 now, we forgo such complicated tests and simply disallow
1704 combining of USES of pseudo registers with any other USE. */
1705 if (REG_P (XEXP (elt, 0))
1706 && GET_CODE (PATTERN (i3)) == PARALLEL)
1707 {
1708 rtx i3pat = PATTERN (i3);
1709 int i = XVECLEN (i3pat, 0) - 1;
1710 unsigned int regno = REGNO (XEXP (elt, 0));
1711
1712 do
1713 {
1714 rtx i3elt = XVECEXP (i3pat, 0, i);
1715
1716 if (GET_CODE (i3elt) == USE
1717 && REG_P (XEXP (i3elt, 0))
1718 && (REGNO (XEXP (i3elt, 0)) == regno
1719 ? reg_set_between_p (XEXP (elt, 0),
1720 PREV_INSN (insn), i3)
1721 : regno >= FIRST_PSEUDO_REGISTER))
1722 return 0;
1723 }
1724 while (--i >= 0);
1725 }
1726 break;
1727
1728 /* We can ignore CLOBBERs. */
1729 case CLOBBER:
1730 break;
1731
1732 case SET:
1733 /* Ignore SETs whose result isn't used but not those that
1734 have side-effects. */
1735 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1736 && insn_nothrow_p (insn)
1737 && !side_effects_p (elt))
1738 break;
1739
1740 /* If we have already found a SET, this is a second one and
1741 so we cannot combine with this insn. */
1742 if (set)
1743 return 0;
1744
1745 set = elt;
1746 break;
1747
1748 default:
1749 /* Anything else means we can't combine. */
1750 return 0;
1751 }
1752 }
1753
1754 if (set == 0
1755 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1756 so don't do anything with it. */
1757 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1758 return 0;
1759 }
1760 else
1761 return 0;
1762
1763 if (set == 0)
1764 return 0;
1765
1766 set = expand_field_assignment (set);
1767 src = SET_SRC (set), dest = SET_DEST (set);
1768
1769 /* Don't eliminate a store in the stack pointer. */
1770 if (dest == stack_pointer_rtx
1771 /* Don't combine with an insn that sets a register to itself if it has
1772 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1773 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1774 /* Can't merge an ASM_OPERANDS. */
1775 || GET_CODE (src) == ASM_OPERANDS
1776 /* Can't merge a function call. */
1777 || GET_CODE (src) == CALL
1778 /* Don't eliminate a function call argument. */
1779 || (CALL_P (i3)
1780 && (find_reg_fusage (i3, USE, dest)
1781 || (REG_P (dest)
1782 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1783 && global_regs[REGNO (dest)])))
1784 /* Don't substitute into an incremented register. */
1785 || FIND_REG_INC_NOTE (i3, dest)
1786 || (succ && FIND_REG_INC_NOTE (succ, dest))
1787 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1788 /* Don't substitute into a non-local goto, this confuses CFG. */
1789 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1790 /* Make sure that DEST is not used after SUCC but before I3. */
1791 || (!all_adjacent
1792 && ((succ2
1793 && (reg_used_between_p (dest, succ2, i3)
1794 || reg_used_between_p (dest, succ, succ2)))
1795 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))))
1796 /* Make sure that the value that is to be substituted for the register
1797 does not use any registers whose values alter in between. However,
1798 If the insns are adjacent, a use can't cross a set even though we
1799 think it might (this can happen for a sequence of insns each setting
1800 the same destination; last_set of that register might point to
1801 a NOTE). If INSN has a REG_EQUIV note, the register is always
1802 equivalent to the memory so the substitution is valid even if there
1803 are intervening stores. Also, don't move a volatile asm or
1804 UNSPEC_VOLATILE across any other insns. */
1805 || (! all_adjacent
1806 && (((!MEM_P (src)
1807 || ! find_reg_note (insn, REG_EQUIV, src))
1808 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1809 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1810 || GET_CODE (src) == UNSPEC_VOLATILE))
1811 /* Don't combine across a CALL_INSN, because that would possibly
1812 change whether the life span of some REGs crosses calls or not,
1813 and it is a pain to update that information.
1814 Exception: if source is a constant, moving it later can't hurt.
1815 Accept that as a special case. */
1816 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1817 return 0;
1818
1819 /* DEST must either be a REG or CC0. */
1820 if (REG_P (dest))
1821 {
1822 /* If register alignment is being enforced for multi-word items in all
1823 cases except for parameters, it is possible to have a register copy
1824 insn referencing a hard register that is not allowed to contain the
1825 mode being copied and which would not be valid as an operand of most
1826 insns. Eliminate this problem by not combining with such an insn.
1827
1828 Also, on some machines we don't want to extend the life of a hard
1829 register. */
1830
1831 if (REG_P (src)
1832 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1833 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1834 /* Don't extend the life of a hard register unless it is
1835 user variable (if we have few registers) or it can't
1836 fit into the desired register (meaning something special
1837 is going on).
1838 Also avoid substituting a return register into I3, because
1839 reload can't handle a conflict with constraints of other
1840 inputs. */
1841 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1842 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1843 return 0;
1844 }
1845 else if (GET_CODE (dest) != CC0)
1846 return 0;
1847
1848
1849 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1850 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1851 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1852 {
1853 /* Don't substitute for a register intended as a clobberable
1854 operand. */
1855 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1856 if (rtx_equal_p (reg, dest))
1857 return 0;
1858
1859 /* If the clobber represents an earlyclobber operand, we must not
1860 substitute an expression containing the clobbered register.
1861 As we do not analyze the constraint strings here, we have to
1862 make the conservative assumption. However, if the register is
1863 a fixed hard reg, the clobber cannot represent any operand;
1864 we leave it up to the machine description to either accept or
1865 reject use-and-clobber patterns. */
1866 if (!REG_P (reg)
1867 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1868 || !fixed_regs[REGNO (reg)])
1869 if (reg_overlap_mentioned_p (reg, src))
1870 return 0;
1871 }
1872
1873 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1874 or not), reject, unless nothing volatile comes between it and I3 */
1875
1876 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1877 {
1878 /* Make sure neither succ nor succ2 contains a volatile reference. */
1879 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
1880 return 0;
1881 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1882 return 0;
1883 /* We'll check insns between INSN and I3 below. */
1884 }
1885
1886 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1887 to be an explicit register variable, and was chosen for a reason. */
1888
1889 if (GET_CODE (src) == ASM_OPERANDS
1890 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1891 return 0;
1892
1893 /* If there are any volatile insns between INSN and I3, reject, because
1894 they might affect machine state. */
1895
1896 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1897 if (INSN_P (p) && p != succ && p != succ2 && volatile_insn_p (PATTERN (p)))
1898 return 0;
1899
1900 /* If INSN contains an autoincrement or autodecrement, make sure that
1901 register is not used between there and I3, and not already used in
1902 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1903 Also insist that I3 not be a jump; if it were one
1904 and the incremented register were spilled, we would lose. */
1905
1906 #ifdef AUTO_INC_DEC
1907 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1908 if (REG_NOTE_KIND (link) == REG_INC
1909 && (JUMP_P (i3)
1910 || reg_used_between_p (XEXP (link, 0), insn, i3)
1911 || (pred != NULL_RTX
1912 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1913 || (pred2 != NULL_RTX
1914 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
1915 || (succ != NULL_RTX
1916 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1917 || (succ2 != NULL_RTX
1918 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
1919 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1920 return 0;
1921 #endif
1922
1923 #ifdef HAVE_cc0
1924 /* Don't combine an insn that follows a CC0-setting insn.
1925 An insn that uses CC0 must not be separated from the one that sets it.
1926 We do, however, allow I2 to follow a CC0-setting insn if that insn
1927 is passed as I1; in that case it will be deleted also.
1928 We also allow combining in this case if all the insns are adjacent
1929 because that would leave the two CC0 insns adjacent as well.
1930 It would be more logical to test whether CC0 occurs inside I1 or I2,
1931 but that would be much slower, and this ought to be equivalent. */
1932
1933 p = prev_nonnote_insn (insn);
1934 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
1935 && ! all_adjacent)
1936 return 0;
1937 #endif
1938
1939 /* If we get here, we have passed all the tests and the combination is
1940 to be allowed. */
1941
1942 *pdest = dest;
1943 *psrc = src;
1944
1945 return 1;
1946 }
1947 \f
1948 /* LOC is the location within I3 that contains its pattern or the component
1949 of a PARALLEL of the pattern. We validate that it is valid for combining.
1950
1951 One problem is if I3 modifies its output, as opposed to replacing it
1952 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
1953 doing so would produce an insn that is not equivalent to the original insns.
1954
1955 Consider:
1956
1957 (set (reg:DI 101) (reg:DI 100))
1958 (set (subreg:SI (reg:DI 101) 0) <foo>)
1959
1960 This is NOT equivalent to:
1961
1962 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1963 (set (reg:DI 101) (reg:DI 100))])
1964
1965 Not only does this modify 100 (in which case it might still be valid
1966 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1967
1968 We can also run into a problem if I2 sets a register that I1
1969 uses and I1 gets directly substituted into I3 (not via I2). In that
1970 case, we would be getting the wrong value of I2DEST into I3, so we
1971 must reject the combination. This case occurs when I2 and I1 both
1972 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1973 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1974 of a SET must prevent combination from occurring. The same situation
1975 can occur for I0, in which case I0_NOT_IN_SRC is set.
1976
1977 Before doing the above check, we first try to expand a field assignment
1978 into a set of logical operations.
1979
1980 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1981 we place a register that is both set and used within I3. If more than one
1982 such register is detected, we fail.
1983
1984 Return 1 if the combination is valid, zero otherwise. */
1985
1986 static int
1987 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
1988 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
1989 {
1990 rtx x = *loc;
1991
1992 if (GET_CODE (x) == SET)
1993 {
1994 rtx set = x ;
1995 rtx dest = SET_DEST (set);
1996 rtx src = SET_SRC (set);
1997 rtx inner_dest = dest;
1998 rtx subdest;
1999
2000 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2001 || GET_CODE (inner_dest) == SUBREG
2002 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2003 inner_dest = XEXP (inner_dest, 0);
2004
2005 /* Check for the case where I3 modifies its output, as discussed
2006 above. We don't want to prevent pseudos from being combined
2007 into the address of a MEM, so only prevent the combination if
2008 i1 or i2 set the same MEM. */
2009 if ((inner_dest != dest &&
2010 (!MEM_P (inner_dest)
2011 || rtx_equal_p (i2dest, inner_dest)
2012 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2013 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2014 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2015 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2016 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2017
2018 /* This is the same test done in can_combine_p except we can't test
2019 all_adjacent; we don't have to, since this instruction will stay
2020 in place, thus we are not considering increasing the lifetime of
2021 INNER_DEST.
2022
2023 Also, if this insn sets a function argument, combining it with
2024 something that might need a spill could clobber a previous
2025 function argument; the all_adjacent test in can_combine_p also
2026 checks this; here, we do a more specific test for this case. */
2027
2028 || (REG_P (inner_dest)
2029 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2030 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
2031 GET_MODE (inner_dest))))
2032 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2033 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2034 return 0;
2035
2036 /* If DEST is used in I3, it is being killed in this insn, so
2037 record that for later. We have to consider paradoxical
2038 subregs here, since they kill the whole register, but we
2039 ignore partial subregs, STRICT_LOW_PART, etc.
2040 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2041 STACK_POINTER_REGNUM, since these are always considered to be
2042 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2043 subdest = dest;
2044 if (GET_CODE (subdest) == SUBREG
2045 && (GET_MODE_SIZE (GET_MODE (subdest))
2046 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
2047 subdest = SUBREG_REG (subdest);
2048 if (pi3dest_killed
2049 && REG_P (subdest)
2050 && reg_referenced_p (subdest, PATTERN (i3))
2051 && REGNO (subdest) != FRAME_POINTER_REGNUM
2052 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2053 && REGNO (subdest) != HARD_FRAME_POINTER_REGNUM
2054 #endif
2055 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
2056 && (REGNO (subdest) != ARG_POINTER_REGNUM
2057 || ! fixed_regs [REGNO (subdest)])
2058 #endif
2059 && REGNO (subdest) != STACK_POINTER_REGNUM)
2060 {
2061 if (*pi3dest_killed)
2062 return 0;
2063
2064 *pi3dest_killed = subdest;
2065 }
2066 }
2067
2068 else if (GET_CODE (x) == PARALLEL)
2069 {
2070 int i;
2071
2072 for (i = 0; i < XVECLEN (x, 0); i++)
2073 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2074 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2075 return 0;
2076 }
2077
2078 return 1;
2079 }
2080 \f
2081 /* Return 1 if X is an arithmetic expression that contains a multiplication
2082 and division. We don't count multiplications by powers of two here. */
2083
2084 static int
2085 contains_muldiv (rtx x)
2086 {
2087 switch (GET_CODE (x))
2088 {
2089 case MOD: case DIV: case UMOD: case UDIV:
2090 return 1;
2091
2092 case MULT:
2093 return ! (CONST_INT_P (XEXP (x, 1))
2094 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
2095 default:
2096 if (BINARY_P (x))
2097 return contains_muldiv (XEXP (x, 0))
2098 || contains_muldiv (XEXP (x, 1));
2099
2100 if (UNARY_P (x))
2101 return contains_muldiv (XEXP (x, 0));
2102
2103 return 0;
2104 }
2105 }
2106 \f
2107 /* Determine whether INSN can be used in a combination. Return nonzero if
2108 not. This is used in try_combine to detect early some cases where we
2109 can't perform combinations. */
2110
2111 static int
2112 cant_combine_insn_p (rtx insn)
2113 {
2114 rtx set;
2115 rtx src, dest;
2116
2117 /* If this isn't really an insn, we can't do anything.
2118 This can occur when flow deletes an insn that it has merged into an
2119 auto-increment address. */
2120 if (! INSN_P (insn))
2121 return 1;
2122
2123 /* Never combine loads and stores involving hard regs that are likely
2124 to be spilled. The register allocator can usually handle such
2125 reg-reg moves by tying. If we allow the combiner to make
2126 substitutions of likely-spilled regs, reload might die.
2127 As an exception, we allow combinations involving fixed regs; these are
2128 not available to the register allocator so there's no risk involved. */
2129
2130 set = single_set (insn);
2131 if (! set)
2132 return 0;
2133 src = SET_SRC (set);
2134 dest = SET_DEST (set);
2135 if (GET_CODE (src) == SUBREG)
2136 src = SUBREG_REG (src);
2137 if (GET_CODE (dest) == SUBREG)
2138 dest = SUBREG_REG (dest);
2139 if (REG_P (src) && REG_P (dest)
2140 && ((HARD_REGISTER_P (src)
2141 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2142 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src))))
2143 || (HARD_REGISTER_P (dest)
2144 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2145 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2146 return 1;
2147
2148 return 0;
2149 }
2150
2151 struct likely_spilled_retval_info
2152 {
2153 unsigned regno, nregs;
2154 unsigned mask;
2155 };
2156
2157 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2158 hard registers that are known to be written to / clobbered in full. */
2159 static void
2160 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2161 {
2162 struct likely_spilled_retval_info *const info =
2163 (struct likely_spilled_retval_info *) data;
2164 unsigned regno, nregs;
2165 unsigned new_mask;
2166
2167 if (!REG_P (XEXP (set, 0)))
2168 return;
2169 regno = REGNO (x);
2170 if (regno >= info->regno + info->nregs)
2171 return;
2172 nregs = hard_regno_nregs[regno][GET_MODE (x)];
2173 if (regno + nregs <= info->regno)
2174 return;
2175 new_mask = (2U << (nregs - 1)) - 1;
2176 if (regno < info->regno)
2177 new_mask >>= info->regno - regno;
2178 else
2179 new_mask <<= regno - info->regno;
2180 info->mask &= ~new_mask;
2181 }
2182
2183 /* Return nonzero iff part of the return value is live during INSN, and
2184 it is likely spilled. This can happen when more than one insn is needed
2185 to copy the return value, e.g. when we consider to combine into the
2186 second copy insn for a complex value. */
2187
2188 static int
2189 likely_spilled_retval_p (rtx insn)
2190 {
2191 rtx use = BB_END (this_basic_block);
2192 rtx reg, p;
2193 unsigned regno, nregs;
2194 /* We assume here that no machine mode needs more than
2195 32 hard registers when the value overlaps with a register
2196 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2197 unsigned mask;
2198 struct likely_spilled_retval_info info;
2199
2200 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2201 return 0;
2202 reg = XEXP (PATTERN (use), 0);
2203 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2204 return 0;
2205 regno = REGNO (reg);
2206 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
2207 if (nregs == 1)
2208 return 0;
2209 mask = (2U << (nregs - 1)) - 1;
2210
2211 /* Disregard parts of the return value that are set later. */
2212 info.regno = regno;
2213 info.nregs = nregs;
2214 info.mask = mask;
2215 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2216 if (INSN_P (p))
2217 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2218 mask = info.mask;
2219
2220 /* Check if any of the (probably) live return value registers is
2221 likely spilled. */
2222 nregs --;
2223 do
2224 {
2225 if ((mask & 1 << nregs)
2226 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2227 return 1;
2228 } while (nregs--);
2229 return 0;
2230 }
2231
2232 /* Adjust INSN after we made a change to its destination.
2233
2234 Changing the destination can invalidate notes that say something about
2235 the results of the insn and a LOG_LINK pointing to the insn. */
2236
2237 static void
2238 adjust_for_new_dest (rtx insn)
2239 {
2240 /* For notes, be conservative and simply remove them. */
2241 remove_reg_equal_equiv_notes (insn);
2242
2243 /* The new insn will have a destination that was previously the destination
2244 of an insn just above it. Call distribute_links to make a LOG_LINK from
2245 the next use of that destination. */
2246 distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
2247
2248 df_insn_rescan (insn);
2249 }
2250
2251 /* Return TRUE if combine can reuse reg X in mode MODE.
2252 ADDED_SETS is nonzero if the original set is still required. */
2253 static bool
2254 can_change_dest_mode (rtx x, int added_sets, enum machine_mode mode)
2255 {
2256 unsigned int regno;
2257
2258 if (!REG_P(x))
2259 return false;
2260
2261 regno = REGNO (x);
2262 /* Allow hard registers if the new mode is legal, and occupies no more
2263 registers than the old mode. */
2264 if (regno < FIRST_PSEUDO_REGISTER)
2265 return (HARD_REGNO_MODE_OK (regno, mode)
2266 && (hard_regno_nregs[regno][GET_MODE (x)]
2267 >= hard_regno_nregs[regno][mode]));
2268
2269 /* Or a pseudo that is only used once. */
2270 return (REG_N_SETS (regno) == 1 && !added_sets
2271 && !REG_USERVAR_P (x));
2272 }
2273
2274
2275 /* Check whether X, the destination of a set, refers to part of
2276 the register specified by REG. */
2277
2278 static bool
2279 reg_subword_p (rtx x, rtx reg)
2280 {
2281 /* Check that reg is an integer mode register. */
2282 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2283 return false;
2284
2285 if (GET_CODE (x) == STRICT_LOW_PART
2286 || GET_CODE (x) == ZERO_EXTRACT)
2287 x = XEXP (x, 0);
2288
2289 return GET_CODE (x) == SUBREG
2290 && SUBREG_REG (x) == reg
2291 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2292 }
2293
2294 #ifdef AUTO_INC_DEC
2295 /* Replace auto-increment addressing modes with explicit operations to
2296 access the same addresses without modifying the corresponding
2297 registers. If AFTER holds, SRC is meant to be reused after the
2298 side effect, otherwise it is to be reused before that. */
2299
2300 static rtx
2301 cleanup_auto_inc_dec (rtx src, bool after, enum machine_mode mem_mode)
2302 {
2303 rtx x = src;
2304 const RTX_CODE code = GET_CODE (x);
2305 int i;
2306 const char *fmt;
2307
2308 switch (code)
2309 {
2310 case REG:
2311 case CONST_INT:
2312 case CONST_DOUBLE:
2313 case CONST_FIXED:
2314 case CONST_VECTOR:
2315 case SYMBOL_REF:
2316 case CODE_LABEL:
2317 case PC:
2318 case CC0:
2319 case SCRATCH:
2320 /* SCRATCH must be shared because they represent distinct values. */
2321 return x;
2322 case CLOBBER:
2323 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2324 return x;
2325 break;
2326
2327 case CONST:
2328 if (shared_const_p (x))
2329 return x;
2330 break;
2331
2332 case MEM:
2333 mem_mode = GET_MODE (x);
2334 break;
2335
2336 case PRE_INC:
2337 case PRE_DEC:
2338 case POST_INC:
2339 case POST_DEC:
2340 gcc_assert (mem_mode != VOIDmode && mem_mode != BLKmode);
2341 if (after == (code == PRE_INC || code == PRE_DEC))
2342 x = cleanup_auto_inc_dec (XEXP (x, 0), after, mem_mode);
2343 else
2344 x = gen_rtx_PLUS (GET_MODE (x),
2345 cleanup_auto_inc_dec (XEXP (x, 0), after, mem_mode),
2346 GEN_INT ((code == PRE_INC || code == POST_INC)
2347 ? GET_MODE_SIZE (mem_mode)
2348 : -GET_MODE_SIZE (mem_mode)));
2349 return x;
2350
2351 case PRE_MODIFY:
2352 case POST_MODIFY:
2353 if (after == (code == PRE_MODIFY))
2354 x = XEXP (x, 0);
2355 else
2356 x = XEXP (x, 1);
2357 return cleanup_auto_inc_dec (x, after, mem_mode);
2358
2359 default:
2360 break;
2361 }
2362
2363 /* Copy the various flags, fields, and other information. We assume
2364 that all fields need copying, and then clear the fields that should
2365 not be copied. That is the sensible default behavior, and forces
2366 us to explicitly document why we are *not* copying a flag. */
2367 x = shallow_copy_rtx (x);
2368
2369 /* We do not copy the USED flag, which is used as a mark bit during
2370 walks over the RTL. */
2371 RTX_FLAG (x, used) = 0;
2372
2373 /* We do not copy FRAME_RELATED for INSNs. */
2374 if (INSN_P (x))
2375 RTX_FLAG (x, frame_related) = 0;
2376
2377 fmt = GET_RTX_FORMAT (code);
2378 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2379 if (fmt[i] == 'e')
2380 XEXP (x, i) = cleanup_auto_inc_dec (XEXP (x, i), after, mem_mode);
2381 else if (fmt[i] == 'E' || fmt[i] == 'V')
2382 {
2383 int j;
2384 XVEC (x, i) = rtvec_alloc (XVECLEN (x, i));
2385 for (j = 0; j < XVECLEN (x, i); j++)
2386 XVECEXP (x, i, j)
2387 = cleanup_auto_inc_dec (XVECEXP (src, i, j), after, mem_mode);
2388 }
2389
2390 return x;
2391 }
2392 #endif
2393
2394 /* Auxiliary data structure for propagate_for_debug_stmt. */
2395
2396 struct rtx_subst_pair
2397 {
2398 rtx to;
2399 bool adjusted;
2400 bool after;
2401 };
2402
2403 /* DATA points to an rtx_subst_pair. Return the value that should be
2404 substituted. */
2405
2406 static rtx
2407 propagate_for_debug_subst (rtx from, const_rtx old_rtx, void *data)
2408 {
2409 struct rtx_subst_pair *pair = (struct rtx_subst_pair *)data;
2410
2411 if (!rtx_equal_p (from, old_rtx))
2412 return NULL_RTX;
2413 if (!pair->adjusted)
2414 {
2415 pair->adjusted = true;
2416 #ifdef AUTO_INC_DEC
2417 pair->to = cleanup_auto_inc_dec (pair->to, pair->after, VOIDmode);
2418 #else
2419 pair->to = copy_rtx (pair->to);
2420 #endif
2421 pair->to = make_compound_operation (pair->to, SET);
2422 return pair->to;
2423 }
2424 return copy_rtx (pair->to);
2425 }
2426
2427 /* Replace occurrences of DEST with SRC in DEBUG_INSNs between INSN
2428 and LAST. If MOVE holds, debug insns must also be moved past
2429 LAST. */
2430
2431 static void
2432 propagate_for_debug (rtx insn, rtx last, rtx dest, rtx src, bool move)
2433 {
2434 rtx next, move_pos = move ? last : NULL_RTX, loc;
2435
2436 struct rtx_subst_pair p;
2437 p.to = src;
2438 p.adjusted = false;
2439 p.after = move;
2440
2441 next = NEXT_INSN (insn);
2442 while (next != last)
2443 {
2444 insn = next;
2445 next = NEXT_INSN (insn);
2446 if (DEBUG_INSN_P (insn))
2447 {
2448 loc = simplify_replace_fn_rtx (INSN_VAR_LOCATION_LOC (insn),
2449 dest, propagate_for_debug_subst, &p);
2450 if (loc == INSN_VAR_LOCATION_LOC (insn))
2451 continue;
2452 INSN_VAR_LOCATION_LOC (insn) = loc;
2453 if (move_pos)
2454 {
2455 remove_insn (insn);
2456 PREV_INSN (insn) = NEXT_INSN (insn) = NULL_RTX;
2457 move_pos = emit_debug_insn_after (insn, move_pos);
2458 }
2459 else
2460 df_insn_rescan (insn);
2461 }
2462 }
2463 }
2464
2465 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2466 Note that the INSN should be deleted *after* removing dead edges, so
2467 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2468 but not for a (set (pc) (label_ref FOO)). */
2469
2470 static void
2471 update_cfg_for_uncondjump (rtx insn)
2472 {
2473 basic_block bb = BLOCK_FOR_INSN (insn);
2474 bool at_end = (BB_END (bb) == insn);
2475
2476 if (at_end)
2477 purge_dead_edges (bb);
2478
2479 delete_insn (insn);
2480 if (at_end && EDGE_COUNT (bb->succs) == 1)
2481 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2482 }
2483
2484 /* Try to combine the insns I0, I1 and I2 into I3.
2485 Here I0, I1 and I2 appear earlier than I3.
2486 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2487 I3.
2488
2489 If we are combining more than two insns and the resulting insn is not
2490 recognized, try splitting it into two insns. If that happens, I2 and I3
2491 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2492 Otherwise, I0, I1 and I2 are pseudo-deleted.
2493
2494 Return 0 if the combination does not work. Then nothing is changed.
2495 If we did the combination, return the insn at which combine should
2496 resume scanning.
2497
2498 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2499 new direct jump instruction. */
2500
2501 static rtx
2502 try_combine (rtx i3, rtx i2, rtx i1, rtx i0, int *new_direct_jump_p)
2503 {
2504 /* New patterns for I3 and I2, respectively. */
2505 rtx newpat, newi2pat = 0;
2506 rtvec newpat_vec_with_clobbers = 0;
2507 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2508 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2509 dead. */
2510 int added_sets_0, added_sets_1, added_sets_2;
2511 /* Total number of SETs to put into I3. */
2512 int total_sets;
2513 /* Nonzero if I2's or I1's body now appears in I3. */
2514 int i2_is_used = 0, i1_is_used = 0;
2515 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2516 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2517 /* Contains I3 if the destination of I3 is used in its source, which means
2518 that the old life of I3 is being killed. If that usage is placed into
2519 I2 and not in I3, a REG_DEAD note must be made. */
2520 rtx i3dest_killed = 0;
2521 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2522 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2523 /* Set if I2DEST was reused as a scratch register. */
2524 bool i2scratch = false;
2525 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2526 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2527 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2528 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2529 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2530 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2531 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2532 /* Notes that must be added to REG_NOTES in I3 and I2. */
2533 rtx new_i3_notes, new_i2_notes;
2534 /* Notes that we substituted I3 into I2 instead of the normal case. */
2535 int i3_subst_into_i2 = 0;
2536 /* Notes that I1, I2 or I3 is a MULT operation. */
2537 int have_mult = 0;
2538 int swap_i2i3 = 0;
2539 int changed_i3_dest = 0;
2540
2541 int maxreg;
2542 rtx temp;
2543 rtx link;
2544 rtx other_pat = 0;
2545 rtx new_other_notes;
2546 int i;
2547
2548 /* Only try four-insn combinations when there's high likelihood of
2549 success. Look for simple insns, such as loads of constants or
2550 binary operations involving a constant. */
2551 if (i0)
2552 {
2553 int i;
2554 int ngood = 0;
2555 int nshift = 0;
2556
2557 if (!flag_expensive_optimizations)
2558 return 0;
2559
2560 for (i = 0; i < 4; i++)
2561 {
2562 rtx insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2563 rtx set = single_set (insn);
2564 rtx src;
2565 if (!set)
2566 continue;
2567 src = SET_SRC (set);
2568 if (CONSTANT_P (src))
2569 {
2570 ngood += 2;
2571 break;
2572 }
2573 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2574 ngood++;
2575 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2576 || GET_CODE (src) == LSHIFTRT)
2577 nshift++;
2578 }
2579 if (ngood < 2 && nshift < 2)
2580 return 0;
2581 }
2582
2583 /* Exit early if one of the insns involved can't be used for
2584 combinations. */
2585 if (cant_combine_insn_p (i3)
2586 || cant_combine_insn_p (i2)
2587 || (i1 && cant_combine_insn_p (i1))
2588 || (i0 && cant_combine_insn_p (i0))
2589 || likely_spilled_retval_p (i3))
2590 return 0;
2591
2592 combine_attempts++;
2593 undobuf.other_insn = 0;
2594
2595 /* Reset the hard register usage information. */
2596 CLEAR_HARD_REG_SET (newpat_used_regs);
2597
2598 if (dump_file && (dump_flags & TDF_DETAILS))
2599 {
2600 if (i0)
2601 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2602 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2603 else if (i1)
2604 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2605 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2606 else
2607 fprintf (dump_file, "\nTrying %d -> %d:\n",
2608 INSN_UID (i2), INSN_UID (i3));
2609 }
2610
2611 /* If multiple insns feed into one of I2 or I3, they can be in any
2612 order. To simplify the code below, reorder them in sequence. */
2613 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2614 temp = i2, i2 = i0, i0 = temp;
2615 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2616 temp = i1, i1 = i0, i0 = temp;
2617 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2618 temp = i1, i1 = i2, i2 = temp;
2619
2620 added_links_insn = 0;
2621
2622 /* First check for one important special-case that the code below will
2623 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2624 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2625 we may be able to replace that destination with the destination of I3.
2626 This occurs in the common code where we compute both a quotient and
2627 remainder into a structure, in which case we want to do the computation
2628 directly into the structure to avoid register-register copies.
2629
2630 Note that this case handles both multiple sets in I2 and also
2631 cases where I2 has a number of CLOBBER or PARALLELs.
2632
2633 We make very conservative checks below and only try to handle the
2634 most common cases of this. For example, we only handle the case
2635 where I2 and I3 are adjacent to avoid making difficult register
2636 usage tests. */
2637
2638 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2639 && REG_P (SET_SRC (PATTERN (i3)))
2640 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2641 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2642 && GET_CODE (PATTERN (i2)) == PARALLEL
2643 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2644 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2645 below would need to check what is inside (and reg_overlap_mentioned_p
2646 doesn't support those codes anyway). Don't allow those destinations;
2647 the resulting insn isn't likely to be recognized anyway. */
2648 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2649 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2650 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2651 SET_DEST (PATTERN (i3)))
2652 && next_active_insn (i2) == i3)
2653 {
2654 rtx p2 = PATTERN (i2);
2655
2656 /* Make sure that the destination of I3,
2657 which we are going to substitute into one output of I2,
2658 is not used within another output of I2. We must avoid making this:
2659 (parallel [(set (mem (reg 69)) ...)
2660 (set (reg 69) ...)])
2661 which is not well-defined as to order of actions.
2662 (Besides, reload can't handle output reloads for this.)
2663
2664 The problem can also happen if the dest of I3 is a memory ref,
2665 if another dest in I2 is an indirect memory ref. */
2666 for (i = 0; i < XVECLEN (p2, 0); i++)
2667 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2668 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2669 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2670 SET_DEST (XVECEXP (p2, 0, i))))
2671 break;
2672
2673 if (i == XVECLEN (p2, 0))
2674 for (i = 0; i < XVECLEN (p2, 0); i++)
2675 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2676 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2677 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2678 {
2679 combine_merges++;
2680
2681 subst_insn = i3;
2682 subst_low_luid = DF_INSN_LUID (i2);
2683
2684 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2685 i2src = SET_DEST (PATTERN (i3));
2686 i2dest = SET_SRC (PATTERN (i3));
2687 i2dest_killed = dead_or_set_p (i2, i2dest);
2688
2689 /* Replace the dest in I2 with our dest and make the resulting
2690 insn the new pattern for I3. Then skip to where we
2691 validate the pattern. Everything was set up above. */
2692 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
2693 SET_DEST (PATTERN (i3)));
2694
2695 newpat = p2;
2696 i3_subst_into_i2 = 1;
2697 goto validate_replacement;
2698 }
2699 }
2700
2701 /* If I2 is setting a pseudo to a constant and I3 is setting some
2702 sub-part of it to another constant, merge them by making a new
2703 constant. */
2704 if (i1 == 0
2705 && (temp = single_set (i2)) != 0
2706 && (CONST_INT_P (SET_SRC (temp))
2707 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
2708 && GET_CODE (PATTERN (i3)) == SET
2709 && (CONST_INT_P (SET_SRC (PATTERN (i3)))
2710 || GET_CODE (SET_SRC (PATTERN (i3))) == CONST_DOUBLE)
2711 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp)))
2712 {
2713 rtx dest = SET_DEST (PATTERN (i3));
2714 int offset = -1;
2715 int width = 0;
2716
2717 if (GET_CODE (dest) == ZERO_EXTRACT)
2718 {
2719 if (CONST_INT_P (XEXP (dest, 1))
2720 && CONST_INT_P (XEXP (dest, 2)))
2721 {
2722 width = INTVAL (XEXP (dest, 1));
2723 offset = INTVAL (XEXP (dest, 2));
2724 dest = XEXP (dest, 0);
2725 if (BITS_BIG_ENDIAN)
2726 offset = GET_MODE_BITSIZE (GET_MODE (dest)) - width - offset;
2727 }
2728 }
2729 else
2730 {
2731 if (GET_CODE (dest) == STRICT_LOW_PART)
2732 dest = XEXP (dest, 0);
2733 width = GET_MODE_BITSIZE (GET_MODE (dest));
2734 offset = 0;
2735 }
2736
2737 if (offset >= 0)
2738 {
2739 /* If this is the low part, we're done. */
2740 if (subreg_lowpart_p (dest))
2741 ;
2742 /* Handle the case where inner is twice the size of outer. */
2743 else if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (temp)))
2744 == 2 * GET_MODE_BITSIZE (GET_MODE (dest)))
2745 offset += GET_MODE_BITSIZE (GET_MODE (dest));
2746 /* Otherwise give up for now. */
2747 else
2748 offset = -1;
2749 }
2750
2751 if (offset >= 0
2752 && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (temp)))
2753 <= HOST_BITS_PER_DOUBLE_INT))
2754 {
2755 double_int m, o, i;
2756 rtx inner = SET_SRC (PATTERN (i3));
2757 rtx outer = SET_SRC (temp);
2758
2759 o = rtx_to_double_int (outer);
2760 i = rtx_to_double_int (inner);
2761
2762 m = double_int_mask (width);
2763 i = double_int_and (i, m);
2764 m = double_int_lshift (m, offset, HOST_BITS_PER_DOUBLE_INT, false);
2765 i = double_int_lshift (i, offset, HOST_BITS_PER_DOUBLE_INT, false);
2766 o = double_int_ior (double_int_and_not (o, m), i);
2767
2768 combine_merges++;
2769 subst_insn = i3;
2770 subst_low_luid = DF_INSN_LUID (i2);
2771 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2772 i2dest = SET_DEST (temp);
2773 i2dest_killed = dead_or_set_p (i2, i2dest);
2774
2775 /* Replace the source in I2 with the new constant and make the
2776 resulting insn the new pattern for I3. Then skip to where we
2777 validate the pattern. Everything was set up above. */
2778 SUBST (SET_SRC (temp),
2779 immed_double_int_const (o, GET_MODE (SET_DEST (temp))));
2780
2781 newpat = PATTERN (i2);
2782
2783 /* The dest of I3 has been replaced with the dest of I2. */
2784 changed_i3_dest = 1;
2785 goto validate_replacement;
2786 }
2787 }
2788
2789 #ifndef HAVE_cc0
2790 /* If we have no I1 and I2 looks like:
2791 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2792 (set Y OP)])
2793 make up a dummy I1 that is
2794 (set Y OP)
2795 and change I2 to be
2796 (set (reg:CC X) (compare:CC Y (const_int 0)))
2797
2798 (We can ignore any trailing CLOBBERs.)
2799
2800 This undoes a previous combination and allows us to match a branch-and-
2801 decrement insn. */
2802
2803 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
2804 && XVECLEN (PATTERN (i2), 0) >= 2
2805 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
2806 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2807 == MODE_CC)
2808 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2809 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2810 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
2811 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
2812 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2813 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
2814 {
2815 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
2816 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
2817 break;
2818
2819 if (i == 1)
2820 {
2821 /* We make I1 with the same INSN_UID as I2. This gives it
2822 the same DF_INSN_LUID for value tracking. Our fake I1 will
2823 never appear in the insn stream so giving it the same INSN_UID
2824 as I2 will not cause a problem. */
2825
2826 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
2827 BLOCK_FOR_INSN (i2), XVECEXP (PATTERN (i2), 0, 1),
2828 INSN_LOCATOR (i2), -1, NULL_RTX);
2829
2830 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2831 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2832 SET_DEST (PATTERN (i1)));
2833 }
2834 }
2835 #endif
2836
2837 /* Verify that I2 and I1 are valid for combining. */
2838 if (! can_combine_p (i2, i3, i0, i1, NULL_RTX, NULL_RTX, &i2dest, &i2src)
2839 || (i1 && ! can_combine_p (i1, i3, i0, NULL_RTX, i2, NULL_RTX,
2840 &i1dest, &i1src))
2841 || (i0 && ! can_combine_p (i0, i3, NULL_RTX, NULL_RTX, i1, i2,
2842 &i0dest, &i0src)))
2843 {
2844 undo_all ();
2845 return 0;
2846 }
2847
2848 /* Record whether I2DEST is used in I2SRC and similarly for the other
2849 cases. Knowing this will help in register status updating below. */
2850 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2851 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2852 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2853 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
2854 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
2855 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
2856 i2dest_killed = dead_or_set_p (i2, i2dest);
2857 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2858 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
2859
2860 /* For the earlier insns, determine which of the subsequent ones they
2861 feed. */
2862 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
2863 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
2864 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
2865 : (!reg_overlap_mentioned_p (i1dest, i0dest)
2866 && reg_overlap_mentioned_p (i0dest, i2src))));
2867
2868 /* Ensure that I3's pattern can be the destination of combines. */
2869 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
2870 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
2871 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
2872 || (i1dest_in_i0src && !i0_feeds_i1_n)),
2873 &i3dest_killed))
2874 {
2875 undo_all ();
2876 return 0;
2877 }
2878
2879 /* See if any of the insns is a MULT operation. Unless one is, we will
2880 reject a combination that is, since it must be slower. Be conservative
2881 here. */
2882 if (GET_CODE (i2src) == MULT
2883 || (i1 != 0 && GET_CODE (i1src) == MULT)
2884 || (i0 != 0 && GET_CODE (i0src) == MULT)
2885 || (GET_CODE (PATTERN (i3)) == SET
2886 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
2887 have_mult = 1;
2888
2889 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
2890 We used to do this EXCEPT in one case: I3 has a post-inc in an
2891 output operand. However, that exception can give rise to insns like
2892 mov r3,(r3)+
2893 which is a famous insn on the PDP-11 where the value of r3 used as the
2894 source was model-dependent. Avoid this sort of thing. */
2895
2896 #if 0
2897 if (!(GET_CODE (PATTERN (i3)) == SET
2898 && REG_P (SET_SRC (PATTERN (i3)))
2899 && MEM_P (SET_DEST (PATTERN (i3)))
2900 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
2901 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
2902 /* It's not the exception. */
2903 #endif
2904 #ifdef AUTO_INC_DEC
2905 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
2906 if (REG_NOTE_KIND (link) == REG_INC
2907 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
2908 || (i1 != 0
2909 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
2910 {
2911 undo_all ();
2912 return 0;
2913 }
2914 #endif
2915
2916 /* See if the SETs in I1 or I2 need to be kept around in the merged
2917 instruction: whenever the value set there is still needed past I3.
2918 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
2919
2920 For the SET in I1, we have two cases: If I1 and I2 independently
2921 feed into I3, the set in I1 needs to be kept around if I1DEST dies
2922 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
2923 in I1 needs to be kept around unless I1DEST dies or is set in either
2924 I2 or I3. The same consideration applies to I0. */
2925
2926 added_sets_2 = !dead_or_set_p (i3, i2dest);
2927
2928 if (i1)
2929 added_sets_1 = !(dead_or_set_p (i3, i1dest)
2930 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
2931 else
2932 added_sets_1 = 0;
2933
2934 if (i0)
2935 added_sets_0 = !(dead_or_set_p (i3, i0dest)
2936 || (i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
2937 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)));
2938 else
2939 added_sets_0 = 0;
2940
2941 /* If the set in I2 needs to be kept around, we must make a copy of
2942 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
2943 PATTERN (I2), we are only substituting for the original I1DEST, not into
2944 an already-substituted copy. This also prevents making self-referential
2945 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
2946 I2DEST. */
2947
2948 if (added_sets_2)
2949 {
2950 if (GET_CODE (PATTERN (i2)) == PARALLEL)
2951 i2pat = gen_rtx_SET (VOIDmode, i2dest, copy_rtx (i2src));
2952 else
2953 i2pat = copy_rtx (PATTERN (i2));
2954 }
2955
2956 if (added_sets_1)
2957 {
2958 if (GET_CODE (PATTERN (i1)) == PARALLEL)
2959 i1pat = gen_rtx_SET (VOIDmode, i1dest, copy_rtx (i1src));
2960 else
2961 i1pat = copy_rtx (PATTERN (i1));
2962 }
2963
2964 if (added_sets_0)
2965 {
2966 if (GET_CODE (PATTERN (i0)) == PARALLEL)
2967 i0pat = gen_rtx_SET (VOIDmode, i0dest, copy_rtx (i0src));
2968 else
2969 i0pat = copy_rtx (PATTERN (i0));
2970 }
2971
2972 combine_merges++;
2973
2974 /* Substitute in the latest insn for the regs set by the earlier ones. */
2975
2976 maxreg = max_reg_num ();
2977
2978 subst_insn = i3;
2979
2980 #ifndef HAVE_cc0
2981 /* Many machines that don't use CC0 have insns that can both perform an
2982 arithmetic operation and set the condition code. These operations will
2983 be represented as a PARALLEL with the first element of the vector
2984 being a COMPARE of an arithmetic operation with the constant zero.
2985 The second element of the vector will set some pseudo to the result
2986 of the same arithmetic operation. If we simplify the COMPARE, we won't
2987 match such a pattern and so will generate an extra insn. Here we test
2988 for this case, where both the comparison and the operation result are
2989 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
2990 I2SRC. Later we will make the PARALLEL that contains I2. */
2991
2992 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
2993 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
2994 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
2995 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
2996 {
2997 #ifdef SELECT_CC_MODE
2998 rtx *cc_use;
2999 enum machine_mode compare_mode;
3000 #endif
3001
3002 newpat = PATTERN (i3);
3003 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
3004
3005 i2_is_used = 1;
3006
3007 #ifdef SELECT_CC_MODE
3008 /* See if a COMPARE with the operand we substituted in should be done
3009 with the mode that is currently being used. If not, do the same
3010 processing we do in `subst' for a SET; namely, if the destination
3011 is used only once, try to replace it with a register of the proper
3012 mode and also replace the COMPARE. */
3013 if (undobuf.other_insn == 0
3014 && (cc_use = find_single_use (SET_DEST (newpat), i3,
3015 &undobuf.other_insn))
3016 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
3017 i2src, const0_rtx))
3018 != GET_MODE (SET_DEST (newpat))))
3019 {
3020 if (can_change_dest_mode (SET_DEST (newpat), added_sets_2,
3021 compare_mode))
3022 {
3023 unsigned int regno = REGNO (SET_DEST (newpat));
3024 rtx new_dest;
3025
3026 if (regno < FIRST_PSEUDO_REGISTER)
3027 new_dest = gen_rtx_REG (compare_mode, regno);
3028 else
3029 {
3030 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3031 new_dest = regno_reg_rtx[regno];
3032 }
3033
3034 SUBST (SET_DEST (newpat), new_dest);
3035 SUBST (XEXP (*cc_use, 0), new_dest);
3036 SUBST (SET_SRC (newpat),
3037 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
3038 }
3039 else
3040 undobuf.other_insn = 0;
3041 }
3042 #endif
3043 }
3044 else
3045 #endif
3046 {
3047 /* It is possible that the source of I2 or I1 may be performing
3048 an unneeded operation, such as a ZERO_EXTEND of something
3049 that is known to have the high part zero. Handle that case
3050 by letting subst look at the innermost one of them.
3051
3052 Another way to do this would be to have a function that tries
3053 to simplify a single insn instead of merging two or more
3054 insns. We don't do this because of the potential of infinite
3055 loops and because of the potential extra memory required.
3056 However, doing it the way we are is a bit of a kludge and
3057 doesn't catch all cases.
3058
3059 But only do this if -fexpensive-optimizations since it slows
3060 things down and doesn't usually win.
3061
3062 This is not done in the COMPARE case above because the
3063 unmodified I2PAT is used in the PARALLEL and so a pattern
3064 with a modified I2SRC would not match. */
3065
3066 if (flag_expensive_optimizations)
3067 {
3068 /* Pass pc_rtx so no substitutions are done, just
3069 simplifications. */
3070 if (i1)
3071 {
3072 subst_low_luid = DF_INSN_LUID (i1);
3073 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
3074 }
3075 else
3076 {
3077 subst_low_luid = DF_INSN_LUID (i2);
3078 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
3079 }
3080 }
3081
3082 n_occurrences = 0; /* `subst' counts here */
3083
3084 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a
3085 unique copy of I2SRC each time we substitute it to avoid
3086 self-referential rtl. */
3087
3088 subst_low_luid = DF_INSN_LUID (i2);
3089 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
3090 ((i1_feeds_i2_n && i1dest_in_i1src)
3091 || (i0_feeds_i2_n && i0dest_in_i0src)));
3092 substed_i2 = 1;
3093
3094 /* Record whether i2's body now appears within i3's body. */
3095 i2_is_used = n_occurrences;
3096 }
3097
3098 /* If we already got a failure, don't try to do more. Otherwise,
3099 try to substitute in I1 if we have it. */
3100
3101 if (i1 && GET_CODE (newpat) != CLOBBER)
3102 {
3103 /* Check that an autoincrement side-effect on I1 has not been lost.
3104 This happens if I1DEST is mentioned in I2 and dies there, and
3105 has disappeared from the new pattern. */
3106 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3107 && i1_feeds_i2_n
3108 && dead_or_set_p (i2, i1dest)
3109 && !reg_overlap_mentioned_p (i1dest, newpat))
3110 /* Before we can do this substitution, we must redo the test done
3111 above (see detailed comments there) that ensures that I1DEST
3112 isn't mentioned in any SETs in NEWPAT that are field assignments. */
3113 || !combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX, NULL_RTX,
3114 0, 0, 0))
3115 {
3116 undo_all ();
3117 return 0;
3118 }
3119
3120 n_occurrences = 0;
3121 subst_low_luid = DF_INSN_LUID (i1);
3122 newpat = subst (newpat, i1dest, i1src, 0,
3123 i0_feeds_i1_n && i0dest_in_i0src);
3124 substed_i1 = 1;
3125 i1_is_used = n_occurrences;
3126 }
3127 if (i0 && GET_CODE (newpat) != CLOBBER)
3128 {
3129 if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3130 && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3131 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3132 && !reg_overlap_mentioned_p (i0dest, newpat))
3133 || !combinable_i3pat (NULL_RTX, &newpat, i0dest, NULL_RTX, NULL_RTX,
3134 0, 0, 0))
3135 {
3136 undo_all ();
3137 return 0;
3138 }
3139
3140 n_occurrences = 0;
3141 subst_low_luid = DF_INSN_LUID (i1);
3142 newpat = subst (newpat, i0dest, i0src, 0,
3143 i0_feeds_i1_n && i0dest_in_i0src);
3144 substed_i0 = 1;
3145 }
3146
3147 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3148 to count all the ways that I2SRC and I1SRC can be used. */
3149 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3150 && i2_is_used + added_sets_2 > 1)
3151 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3152 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3153 > 1))
3154 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3155 && (n_occurrences + added_sets_0
3156 + (added_sets_1 && i0_feeds_i1_n)
3157 + (added_sets_2 && i0_feeds_i2_n)
3158 > 1))
3159 /* Fail if we tried to make a new register. */
3160 || max_reg_num () != maxreg
3161 /* Fail if we couldn't do something and have a CLOBBER. */
3162 || GET_CODE (newpat) == CLOBBER
3163 /* Fail if this new pattern is a MULT and we didn't have one before
3164 at the outer level. */
3165 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3166 && ! have_mult))
3167 {
3168 undo_all ();
3169 return 0;
3170 }
3171
3172 /* If the actions of the earlier insns must be kept
3173 in addition to substituting them into the latest one,
3174 we must make a new PARALLEL for the latest insn
3175 to hold additional the SETs. */
3176
3177 if (added_sets_0 || added_sets_1 || added_sets_2)
3178 {
3179 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3180 combine_extras++;
3181
3182 if (GET_CODE (newpat) == PARALLEL)
3183 {
3184 rtvec old = XVEC (newpat, 0);
3185 total_sets = XVECLEN (newpat, 0) + extra_sets;
3186 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3187 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3188 sizeof (old->elem[0]) * old->num_elem);
3189 }
3190 else
3191 {
3192 rtx old = newpat;
3193 total_sets = 1 + extra_sets;
3194 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3195 XVECEXP (newpat, 0, 0) = old;
3196 }
3197
3198 if (added_sets_0)
3199 XVECEXP (newpat, 0, --total_sets) = i0pat;
3200
3201 if (added_sets_1)
3202 {
3203 rtx t = i1pat;
3204 if (i0_feeds_i1_n)
3205 t = subst (t, i0dest, i0src, 0, 0);
3206
3207 XVECEXP (newpat, 0, --total_sets) = t;
3208 }
3209 if (added_sets_2)
3210 {
3211 rtx t = i2pat;
3212 if (i0_feeds_i2_n)
3213 t = subst (t, i0dest, i0src, 0, 0);
3214 if (i1_feeds_i2_n)
3215 t = subst (t, i1dest, i1src, 0, 0);
3216
3217 XVECEXP (newpat, 0, --total_sets) = t;
3218 }
3219 }
3220
3221 validate_replacement:
3222
3223 /* Note which hard regs this insn has as inputs. */
3224 mark_used_regs_combine (newpat);
3225
3226 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3227 consider splitting this pattern, we might need these clobbers. */
3228 if (i1 && GET_CODE (newpat) == PARALLEL
3229 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3230 {
3231 int len = XVECLEN (newpat, 0);
3232
3233 newpat_vec_with_clobbers = rtvec_alloc (len);
3234 for (i = 0; i < len; i++)
3235 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3236 }
3237
3238 /* Is the result of combination a valid instruction? */
3239 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3240
3241 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
3242 the second SET's destination is a register that is unused and isn't
3243 marked as an instruction that might trap in an EH region. In that case,
3244 we just need the first SET. This can occur when simplifying a divmod
3245 insn. We *must* test for this case here because the code below that
3246 splits two independent SETs doesn't handle this case correctly when it
3247 updates the register status.
3248
3249 It's pointless doing this if we originally had two sets, one from
3250 i3, and one from i2. Combining then splitting the parallel results
3251 in the original i2 again plus an invalid insn (which we delete).
3252 The net effect is only to move instructions around, which makes
3253 debug info less accurate.
3254
3255 Also check the case where the first SET's destination is unused.
3256 That would not cause incorrect code, but does cause an unneeded
3257 insn to remain. */
3258
3259 if (insn_code_number < 0
3260 && !(added_sets_2 && i1 == 0)
3261 && GET_CODE (newpat) == PARALLEL
3262 && XVECLEN (newpat, 0) == 2
3263 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3264 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3265 && asm_noperands (newpat) < 0)
3266 {
3267 rtx set0 = XVECEXP (newpat, 0, 0);
3268 rtx set1 = XVECEXP (newpat, 0, 1);
3269
3270 if (((REG_P (SET_DEST (set1))
3271 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3272 || (GET_CODE (SET_DEST (set1)) == SUBREG
3273 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3274 && insn_nothrow_p (i3)
3275 && !side_effects_p (SET_SRC (set1)))
3276 {
3277 newpat = set0;
3278 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3279 }
3280
3281 else if (((REG_P (SET_DEST (set0))
3282 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3283 || (GET_CODE (SET_DEST (set0)) == SUBREG
3284 && find_reg_note (i3, REG_UNUSED,
3285 SUBREG_REG (SET_DEST (set0)))))
3286 && insn_nothrow_p (i3)
3287 && !side_effects_p (SET_SRC (set0)))
3288 {
3289 newpat = set1;
3290 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3291
3292 if (insn_code_number >= 0)
3293 changed_i3_dest = 1;
3294 }
3295 }
3296
3297 /* If we were combining three insns and the result is a simple SET
3298 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3299 insns. There are two ways to do this. It can be split using a
3300 machine-specific method (like when you have an addition of a large
3301 constant) or by combine in the function find_split_point. */
3302
3303 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3304 && asm_noperands (newpat) < 0)
3305 {
3306 rtx parallel, m_split, *split;
3307
3308 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3309 use I2DEST as a scratch register will help. In the latter case,
3310 convert I2DEST to the mode of the source of NEWPAT if we can. */
3311
3312 m_split = combine_split_insns (newpat, i3);
3313
3314 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3315 inputs of NEWPAT. */
3316
3317 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3318 possible to try that as a scratch reg. This would require adding
3319 more code to make it work though. */
3320
3321 if (m_split == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3322 {
3323 enum machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3324
3325 /* First try to split using the original register as a
3326 scratch register. */
3327 parallel = gen_rtx_PARALLEL (VOIDmode,
3328 gen_rtvec (2, newpat,
3329 gen_rtx_CLOBBER (VOIDmode,
3330 i2dest)));
3331 m_split = combine_split_insns (parallel, i3);
3332
3333 /* If that didn't work, try changing the mode of I2DEST if
3334 we can. */
3335 if (m_split == 0
3336 && new_mode != GET_MODE (i2dest)
3337 && new_mode != VOIDmode
3338 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3339 {
3340 enum machine_mode old_mode = GET_MODE (i2dest);
3341 rtx ni2dest;
3342
3343 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3344 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3345 else
3346 {
3347 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3348 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3349 }
3350
3351 parallel = (gen_rtx_PARALLEL
3352 (VOIDmode,
3353 gen_rtvec (2, newpat,
3354 gen_rtx_CLOBBER (VOIDmode,
3355 ni2dest))));
3356 m_split = combine_split_insns (parallel, i3);
3357
3358 if (m_split == 0
3359 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3360 {
3361 struct undo *buf;
3362
3363 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3364 buf = undobuf.undos;
3365 undobuf.undos = buf->next;
3366 buf->next = undobuf.frees;
3367 undobuf.frees = buf;
3368 }
3369 }
3370
3371 i2scratch = m_split != 0;
3372 }
3373
3374 /* If recog_for_combine has discarded clobbers, try to use them
3375 again for the split. */
3376 if (m_split == 0 && newpat_vec_with_clobbers)
3377 {
3378 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3379 m_split = combine_split_insns (parallel, i3);
3380 }
3381
3382 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
3383 {
3384 m_split = PATTERN (m_split);
3385 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
3386 if (insn_code_number >= 0)
3387 newpat = m_split;
3388 }
3389 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
3390 && (next_real_insn (i2) == i3
3391 || ! use_crosses_set_p (PATTERN (m_split), DF_INSN_LUID (i2))))
3392 {
3393 rtx i2set, i3set;
3394 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
3395 newi2pat = PATTERN (m_split);
3396
3397 i3set = single_set (NEXT_INSN (m_split));
3398 i2set = single_set (m_split);
3399
3400 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3401
3402 /* If I2 or I3 has multiple SETs, we won't know how to track
3403 register status, so don't use these insns. If I2's destination
3404 is used between I2 and I3, we also can't use these insns. */
3405
3406 if (i2_code_number >= 0 && i2set && i3set
3407 && (next_real_insn (i2) == i3
3408 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3409 insn_code_number = recog_for_combine (&newi3pat, i3,
3410 &new_i3_notes);
3411 if (insn_code_number >= 0)
3412 newpat = newi3pat;
3413
3414 /* It is possible that both insns now set the destination of I3.
3415 If so, we must show an extra use of it. */
3416
3417 if (insn_code_number >= 0)
3418 {
3419 rtx new_i3_dest = SET_DEST (i3set);
3420 rtx new_i2_dest = SET_DEST (i2set);
3421
3422 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3423 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3424 || GET_CODE (new_i3_dest) == SUBREG)
3425 new_i3_dest = XEXP (new_i3_dest, 0);
3426
3427 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3428 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3429 || GET_CODE (new_i2_dest) == SUBREG)
3430 new_i2_dest = XEXP (new_i2_dest, 0);
3431
3432 if (REG_P (new_i3_dest)
3433 && REG_P (new_i2_dest)
3434 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
3435 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3436 }
3437 }
3438
3439 /* If we can split it and use I2DEST, go ahead and see if that
3440 helps things be recognized. Verify that none of the registers
3441 are set between I2 and I3. */
3442 if (insn_code_number < 0
3443 && (split = find_split_point (&newpat, i3, false)) != 0
3444 #ifdef HAVE_cc0
3445 && REG_P (i2dest)
3446 #endif
3447 /* We need I2DEST in the proper mode. If it is a hard register
3448 or the only use of a pseudo, we can change its mode.
3449 Make sure we don't change a hard register to have a mode that
3450 isn't valid for it, or change the number of registers. */
3451 && (GET_MODE (*split) == GET_MODE (i2dest)
3452 || GET_MODE (*split) == VOIDmode
3453 || can_change_dest_mode (i2dest, added_sets_2,
3454 GET_MODE (*split)))
3455 && (next_real_insn (i2) == i3
3456 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3457 /* We can't overwrite I2DEST if its value is still used by
3458 NEWPAT. */
3459 && ! reg_referenced_p (i2dest, newpat))
3460 {
3461 rtx newdest = i2dest;
3462 enum rtx_code split_code = GET_CODE (*split);
3463 enum machine_mode split_mode = GET_MODE (*split);
3464 bool subst_done = false;
3465 newi2pat = NULL_RTX;
3466
3467 i2scratch = true;
3468
3469 /* *SPLIT may be part of I2SRC, so make sure we have the
3470 original expression around for later debug processing.
3471 We should not need I2SRC any more in other cases. */
3472 if (MAY_HAVE_DEBUG_INSNS)
3473 i2src = copy_rtx (i2src);
3474 else
3475 i2src = NULL;
3476
3477 /* Get NEWDEST as a register in the proper mode. We have already
3478 validated that we can do this. */
3479 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3480 {
3481 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3482 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3483 else
3484 {
3485 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3486 newdest = regno_reg_rtx[REGNO (i2dest)];
3487 }
3488 }
3489
3490 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3491 an ASHIFT. This can occur if it was inside a PLUS and hence
3492 appeared to be a memory address. This is a kludge. */
3493 if (split_code == MULT
3494 && CONST_INT_P (XEXP (*split, 1))
3495 && INTVAL (XEXP (*split, 1)) > 0
3496 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
3497 {
3498 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3499 XEXP (*split, 0), GEN_INT (i)));
3500 /* Update split_code because we may not have a multiply
3501 anymore. */
3502 split_code = GET_CODE (*split);
3503 }
3504
3505 #ifdef INSN_SCHEDULING
3506 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3507 be written as a ZERO_EXTEND. */
3508 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3509 {
3510 #ifdef LOAD_EXTEND_OP
3511 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3512 what it really is. */
3513 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
3514 == SIGN_EXTEND)
3515 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3516 SUBREG_REG (*split)));
3517 else
3518 #endif
3519 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3520 SUBREG_REG (*split)));
3521 }
3522 #endif
3523
3524 /* Attempt to split binary operators using arithmetic identities. */
3525 if (BINARY_P (SET_SRC (newpat))
3526 && split_mode == GET_MODE (SET_SRC (newpat))
3527 && ! side_effects_p (SET_SRC (newpat)))
3528 {
3529 rtx setsrc = SET_SRC (newpat);
3530 enum machine_mode mode = GET_MODE (setsrc);
3531 enum rtx_code code = GET_CODE (setsrc);
3532 rtx src_op0 = XEXP (setsrc, 0);
3533 rtx src_op1 = XEXP (setsrc, 1);
3534
3535 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3536 if (rtx_equal_p (src_op0, src_op1))
3537 {
3538 newi2pat = gen_rtx_SET (VOIDmode, newdest, src_op0);
3539 SUBST (XEXP (setsrc, 0), newdest);
3540 SUBST (XEXP (setsrc, 1), newdest);
3541 subst_done = true;
3542 }
3543 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3544 else if ((code == PLUS || code == MULT)
3545 && GET_CODE (src_op0) == code
3546 && GET_CODE (XEXP (src_op0, 0)) == code
3547 && (INTEGRAL_MODE_P (mode)
3548 || (FLOAT_MODE_P (mode)
3549 && flag_unsafe_math_optimizations)))
3550 {
3551 rtx p = XEXP (XEXP (src_op0, 0), 0);
3552 rtx q = XEXP (XEXP (src_op0, 0), 1);
3553 rtx r = XEXP (src_op0, 1);
3554 rtx s = src_op1;
3555
3556 /* Split both "((X op Y) op X) op Y" and
3557 "((X op Y) op Y) op X" as "T op T" where T is
3558 "X op Y". */
3559 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3560 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3561 {
3562 newi2pat = gen_rtx_SET (VOIDmode, newdest,
3563 XEXP (src_op0, 0));
3564 SUBST (XEXP (setsrc, 0), newdest);
3565 SUBST (XEXP (setsrc, 1), newdest);
3566 subst_done = true;
3567 }
3568 /* Split "((X op X) op Y) op Y)" as "T op T" where
3569 T is "X op Y". */
3570 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3571 {
3572 rtx tmp = simplify_gen_binary (code, mode, p, r);
3573 newi2pat = gen_rtx_SET (VOIDmode, newdest, tmp);
3574 SUBST (XEXP (setsrc, 0), newdest);
3575 SUBST (XEXP (setsrc, 1), newdest);
3576 subst_done = true;
3577 }
3578 }
3579 }
3580
3581 if (!subst_done)
3582 {
3583 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
3584 SUBST (*split, newdest);
3585 }
3586
3587 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3588
3589 /* recog_for_combine might have added CLOBBERs to newi2pat.
3590 Make sure NEWPAT does not depend on the clobbered regs. */
3591 if (GET_CODE (newi2pat) == PARALLEL)
3592 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3593 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3594 {
3595 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3596 if (reg_overlap_mentioned_p (reg, newpat))
3597 {
3598 undo_all ();
3599 return 0;
3600 }
3601 }
3602
3603 /* If the split point was a MULT and we didn't have one before,
3604 don't use one now. */
3605 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3606 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3607 }
3608 }
3609
3610 /* Check for a case where we loaded from memory in a narrow mode and
3611 then sign extended it, but we need both registers. In that case,
3612 we have a PARALLEL with both loads from the same memory location.
3613 We can split this into a load from memory followed by a register-register
3614 copy. This saves at least one insn, more if register allocation can
3615 eliminate the copy.
3616
3617 We cannot do this if the destination of the first assignment is a
3618 condition code register or cc0. We eliminate this case by making sure
3619 the SET_DEST and SET_SRC have the same mode.
3620
3621 We cannot do this if the destination of the second assignment is
3622 a register that we have already assumed is zero-extended. Similarly
3623 for a SUBREG of such a register. */
3624
3625 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3626 && GET_CODE (newpat) == PARALLEL
3627 && XVECLEN (newpat, 0) == 2
3628 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3629 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3630 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3631 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3632 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3633 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3634 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3635 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3636 DF_INSN_LUID (i2))
3637 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3638 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3639 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
3640 (REG_P (temp)
3641 && VEC_index (reg_stat_type, reg_stat,
3642 REGNO (temp))->nonzero_bits != 0
3643 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
3644 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
3645 && (VEC_index (reg_stat_type, reg_stat,
3646 REGNO (temp))->nonzero_bits
3647 != GET_MODE_MASK (word_mode))))
3648 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3649 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3650 (REG_P (temp)
3651 && VEC_index (reg_stat_type, reg_stat,
3652 REGNO (temp))->nonzero_bits != 0
3653 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
3654 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
3655 && (VEC_index (reg_stat_type, reg_stat,
3656 REGNO (temp))->nonzero_bits
3657 != GET_MODE_MASK (word_mode)))))
3658 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3659 SET_SRC (XVECEXP (newpat, 0, 1)))
3660 && ! find_reg_note (i3, REG_UNUSED,
3661 SET_DEST (XVECEXP (newpat, 0, 0))))
3662 {
3663 rtx ni2dest;
3664
3665 newi2pat = XVECEXP (newpat, 0, 0);
3666 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3667 newpat = XVECEXP (newpat, 0, 1);
3668 SUBST (SET_SRC (newpat),
3669 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3670 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3671
3672 if (i2_code_number >= 0)
3673 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3674
3675 if (insn_code_number >= 0)
3676 swap_i2i3 = 1;
3677 }
3678
3679 /* Similarly, check for a case where we have a PARALLEL of two independent
3680 SETs but we started with three insns. In this case, we can do the sets
3681 as two separate insns. This case occurs when some SET allows two
3682 other insns to combine, but the destination of that SET is still live. */
3683
3684 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3685 && GET_CODE (newpat) == PARALLEL
3686 && XVECLEN (newpat, 0) == 2
3687 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3688 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3689 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3690 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3691 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3692 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3693 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3694 DF_INSN_LUID (i2))
3695 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3696 XVECEXP (newpat, 0, 0))
3697 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3698 XVECEXP (newpat, 0, 1))
3699 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3700 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1))))
3701 #ifdef HAVE_cc0
3702 /* We cannot split the parallel into two sets if both sets
3703 reference cc0. */
3704 && ! (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0))
3705 && reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 1)))
3706 #endif
3707 )
3708 {
3709 /* Normally, it doesn't matter which of the two is done first,
3710 but it does if one references cc0. In that case, it has to
3711 be first. */
3712 #ifdef HAVE_cc0
3713 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
3714 {
3715 newi2pat = XVECEXP (newpat, 0, 0);
3716 newpat = XVECEXP (newpat, 0, 1);
3717 }
3718 else
3719 #endif
3720 {
3721 newi2pat = XVECEXP (newpat, 0, 1);
3722 newpat = XVECEXP (newpat, 0, 0);
3723 }
3724
3725 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3726
3727 if (i2_code_number >= 0)
3728 {
3729 /* recog_for_combine might have added CLOBBERs to newi2pat.
3730 Make sure NEWPAT does not depend on the clobbered regs. */
3731 if (GET_CODE (newi2pat) == PARALLEL)
3732 {
3733 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3734 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3735 {
3736 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3737 if (reg_overlap_mentioned_p (reg, newpat))
3738 break;
3739 }
3740
3741 if (i >= 0)
3742 {
3743 /* CLOBBERs on newi2pat prevent it going first.
3744 Try the other order of the insns if possible. */
3745 temp = newpat;
3746 newpat = XVECEXP (newi2pat, 0, 0);
3747 newi2pat = temp;
3748 #ifdef HAVE_cc0
3749 if (reg_referenced_p (cc0_rtx, newpat))
3750 {
3751 undo_all ();
3752 return 0;
3753 }
3754 #endif
3755
3756 i2_code_number = recog_for_combine (&newi2pat, i2,
3757 &new_i2_notes);
3758 if (i2_code_number < 0)
3759 {
3760 undo_all ();
3761 return 0;
3762 }
3763
3764 if (GET_CODE (newi2pat) == PARALLEL)
3765 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3766 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3767 {
3768 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3769 if (reg_overlap_mentioned_p (reg, newpat))
3770 {
3771 undo_all ();
3772 return 0;
3773 }
3774 }
3775 }
3776 }
3777
3778 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3779 }
3780 }
3781
3782 /* If it still isn't recognized, fail and change things back the way they
3783 were. */
3784 if ((insn_code_number < 0
3785 /* Is the result a reasonable ASM_OPERANDS? */
3786 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
3787 {
3788 undo_all ();
3789 return 0;
3790 }
3791
3792 /* If we had to change another insn, make sure it is valid also. */
3793 if (undobuf.other_insn)
3794 {
3795 CLEAR_HARD_REG_SET (newpat_used_regs);
3796
3797 other_pat = PATTERN (undobuf.other_insn);
3798 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
3799 &new_other_notes);
3800
3801 if (other_code_number < 0 && ! check_asm_operands (other_pat))
3802 {
3803 undo_all ();
3804 return 0;
3805 }
3806 }
3807
3808 #ifdef HAVE_cc0
3809 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
3810 they are adjacent to each other or not. */
3811 {
3812 rtx p = prev_nonnote_insn (i3);
3813 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
3814 && sets_cc0_p (newi2pat))
3815 {
3816 undo_all ();
3817 return 0;
3818 }
3819 }
3820 #endif
3821
3822 /* Only allow this combination if insn_rtx_costs reports that the
3823 replacement instructions are cheaper than the originals. */
3824 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
3825 {
3826 undo_all ();
3827 return 0;
3828 }
3829
3830 if (MAY_HAVE_DEBUG_INSNS)
3831 {
3832 struct undo *undo;
3833
3834 for (undo = undobuf.undos; undo; undo = undo->next)
3835 if (undo->kind == UNDO_MODE)
3836 {
3837 rtx reg = *undo->where.r;
3838 enum machine_mode new_mode = GET_MODE (reg);
3839 enum machine_mode old_mode = undo->old_contents.m;
3840
3841 /* Temporarily revert mode back. */
3842 adjust_reg_mode (reg, old_mode);
3843
3844 if (reg == i2dest && i2scratch)
3845 {
3846 /* If we used i2dest as a scratch register with a
3847 different mode, substitute it for the original
3848 i2src while its original mode is temporarily
3849 restored, and then clear i2scratch so that we don't
3850 do it again later. */
3851 propagate_for_debug (i2, i3, reg, i2src, false);
3852 i2scratch = false;
3853 /* Put back the new mode. */
3854 adjust_reg_mode (reg, new_mode);
3855 }
3856 else
3857 {
3858 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
3859 rtx first, last;
3860
3861 if (reg == i2dest)
3862 {
3863 first = i2;
3864 last = i3;
3865 }
3866 else
3867 {
3868 first = i3;
3869 last = undobuf.other_insn;
3870 gcc_assert (last);
3871 }
3872
3873 /* We're dealing with a reg that changed mode but not
3874 meaning, so we want to turn it into a subreg for
3875 the new mode. However, because of REG sharing and
3876 because its mode had already changed, we have to do
3877 it in two steps. First, replace any debug uses of
3878 reg, with its original mode temporarily restored,
3879 with this copy we have created; then, replace the
3880 copy with the SUBREG of the original shared reg,
3881 once again changed to the new mode. */
3882 propagate_for_debug (first, last, reg, tempreg, false);
3883 adjust_reg_mode (reg, new_mode);
3884 propagate_for_debug (first, last, tempreg,
3885 lowpart_subreg (old_mode, reg, new_mode),
3886 false);
3887 }
3888 }
3889 }
3890
3891 /* If we will be able to accept this, we have made a
3892 change to the destination of I3. This requires us to
3893 do a few adjustments. */
3894
3895 if (changed_i3_dest)
3896 {
3897 PATTERN (i3) = newpat;
3898 adjust_for_new_dest (i3);
3899 }
3900
3901 /* We now know that we can do this combination. Merge the insns and
3902 update the status of registers and LOG_LINKS. */
3903
3904 if (undobuf.other_insn)
3905 {
3906 rtx note, next;
3907
3908 PATTERN (undobuf.other_insn) = other_pat;
3909
3910 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
3911 are still valid. Then add any non-duplicate notes added by
3912 recog_for_combine. */
3913 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
3914 {
3915 next = XEXP (note, 1);
3916
3917 if (REG_NOTE_KIND (note) == REG_UNUSED
3918 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
3919 remove_note (undobuf.other_insn, note);
3920 }
3921
3922 distribute_notes (new_other_notes, undobuf.other_insn,
3923 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX,
3924 NULL_RTX);
3925 }
3926
3927 if (swap_i2i3)
3928 {
3929 rtx insn;
3930 rtx link;
3931 rtx ni2dest;
3932
3933 /* I3 now uses what used to be its destination and which is now
3934 I2's destination. This requires us to do a few adjustments. */
3935 PATTERN (i3) = newpat;
3936 adjust_for_new_dest (i3);
3937
3938 /* We need a LOG_LINK from I3 to I2. But we used to have one,
3939 so we still will.
3940
3941 However, some later insn might be using I2's dest and have
3942 a LOG_LINK pointing at I3. We must remove this link.
3943 The simplest way to remove the link is to point it at I1,
3944 which we know will be a NOTE. */
3945
3946 /* newi2pat is usually a SET here; however, recog_for_combine might
3947 have added some clobbers. */
3948 if (GET_CODE (newi2pat) == PARALLEL)
3949 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
3950 else
3951 ni2dest = SET_DEST (newi2pat);
3952
3953 for (insn = NEXT_INSN (i3);
3954 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3955 || insn != BB_HEAD (this_basic_block->next_bb));
3956 insn = NEXT_INSN (insn))
3957 {
3958 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
3959 {
3960 for (link = LOG_LINKS (insn); link;
3961 link = XEXP (link, 1))
3962 if (XEXP (link, 0) == i3)
3963 XEXP (link, 0) = i1;
3964
3965 break;
3966 }
3967 }
3968 }
3969
3970 {
3971 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
3972 rtx i3links, i2links, i1links = 0, i0links = 0;
3973 rtx midnotes = 0;
3974 int from_luid;
3975 unsigned int regno;
3976 /* Compute which registers we expect to eliminate. newi2pat may be setting
3977 either i3dest or i2dest, so we must check it. Also, i1dest may be the
3978 same as i3dest, in which case newi2pat may be setting i1dest. */
3979 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
3980 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
3981 || !i2dest_killed
3982 ? 0 : i2dest);
3983 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
3984 || (newi2pat && reg_set_p (i1dest, newi2pat))
3985 || !i1dest_killed
3986 ? 0 : i1dest);
3987 rtx elim_i0 = (i0 == 0 || i0dest_in_i0src
3988 || (newi2pat && reg_set_p (i0dest, newi2pat))
3989 || !i0dest_killed
3990 ? 0 : i0dest);
3991
3992 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
3993 clear them. */
3994 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
3995 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
3996 if (i1)
3997 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
3998 if (i0)
3999 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4000
4001 /* Ensure that we do not have something that should not be shared but
4002 occurs multiple times in the new insns. Check this by first
4003 resetting all the `used' flags and then copying anything is shared. */
4004
4005 reset_used_flags (i3notes);
4006 reset_used_flags (i2notes);
4007 reset_used_flags (i1notes);
4008 reset_used_flags (i0notes);
4009 reset_used_flags (newpat);
4010 reset_used_flags (newi2pat);
4011 if (undobuf.other_insn)
4012 reset_used_flags (PATTERN (undobuf.other_insn));
4013
4014 i3notes = copy_rtx_if_shared (i3notes);
4015 i2notes = copy_rtx_if_shared (i2notes);
4016 i1notes = copy_rtx_if_shared (i1notes);
4017 i0notes = copy_rtx_if_shared (i0notes);
4018 newpat = copy_rtx_if_shared (newpat);
4019 newi2pat = copy_rtx_if_shared (newi2pat);
4020 if (undobuf.other_insn)
4021 reset_used_flags (PATTERN (undobuf.other_insn));
4022
4023 INSN_CODE (i3) = insn_code_number;
4024 PATTERN (i3) = newpat;
4025
4026 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4027 {
4028 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
4029
4030 reset_used_flags (call_usage);
4031 call_usage = copy_rtx (call_usage);
4032
4033 if (substed_i2)
4034 {
4035 /* I2SRC must still be meaningful at this point. Some splitting
4036 operations can invalidate I2SRC, but those operations do not
4037 apply to calls. */
4038 gcc_assert (i2src);
4039 replace_rtx (call_usage, i2dest, i2src);
4040 }
4041
4042 if (substed_i1)
4043 replace_rtx (call_usage, i1dest, i1src);
4044 if (substed_i0)
4045 replace_rtx (call_usage, i0dest, i0src);
4046
4047 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
4048 }
4049
4050 if (undobuf.other_insn)
4051 INSN_CODE (undobuf.other_insn) = other_code_number;
4052
4053 /* We had one special case above where I2 had more than one set and
4054 we replaced a destination of one of those sets with the destination
4055 of I3. In that case, we have to update LOG_LINKS of insns later
4056 in this basic block. Note that this (expensive) case is rare.
4057
4058 Also, in this case, we must pretend that all REG_NOTEs for I2
4059 actually came from I3, so that REG_UNUSED notes from I2 will be
4060 properly handled. */
4061
4062 if (i3_subst_into_i2)
4063 {
4064 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4065 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4066 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4067 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4068 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4069 && ! find_reg_note (i2, REG_UNUSED,
4070 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4071 for (temp = NEXT_INSN (i2);
4072 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
4073 || BB_HEAD (this_basic_block) != temp);
4074 temp = NEXT_INSN (temp))
4075 if (temp != i3 && INSN_P (temp))
4076 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
4077 if (XEXP (link, 0) == i2)
4078 XEXP (link, 0) = i3;
4079
4080 if (i3notes)
4081 {
4082 rtx link = i3notes;
4083 while (XEXP (link, 1))
4084 link = XEXP (link, 1);
4085 XEXP (link, 1) = i2notes;
4086 }
4087 else
4088 i3notes = i2notes;
4089 i2notes = 0;
4090 }
4091
4092 LOG_LINKS (i3) = 0;
4093 REG_NOTES (i3) = 0;
4094 LOG_LINKS (i2) = 0;
4095 REG_NOTES (i2) = 0;
4096
4097 if (newi2pat)
4098 {
4099 if (MAY_HAVE_DEBUG_INSNS && i2scratch)
4100 propagate_for_debug (i2, i3, i2dest, i2src, false);
4101 INSN_CODE (i2) = i2_code_number;
4102 PATTERN (i2) = newi2pat;
4103 }
4104 else
4105 {
4106 if (MAY_HAVE_DEBUG_INSNS && i2src)
4107 propagate_for_debug (i2, i3, i2dest, i2src, i3_subst_into_i2);
4108 SET_INSN_DELETED (i2);
4109 }
4110
4111 if (i1)
4112 {
4113 LOG_LINKS (i1) = 0;
4114 REG_NOTES (i1) = 0;
4115 if (MAY_HAVE_DEBUG_INSNS)
4116 propagate_for_debug (i1, i3, i1dest, i1src, false);
4117 SET_INSN_DELETED (i1);
4118 }
4119
4120 if (i0)
4121 {
4122 LOG_LINKS (i0) = 0;
4123 REG_NOTES (i0) = 0;
4124 if (MAY_HAVE_DEBUG_INSNS)
4125 propagate_for_debug (i0, i3, i0dest, i0src, false);
4126 SET_INSN_DELETED (i0);
4127 }
4128
4129 /* Get death notes for everything that is now used in either I3 or
4130 I2 and used to die in a previous insn. If we built two new
4131 patterns, move from I1 to I2 then I2 to I3 so that we get the
4132 proper movement on registers that I2 modifies. */
4133
4134 if (i0)
4135 from_luid = DF_INSN_LUID (i0);
4136 else if (i1)
4137 from_luid = DF_INSN_LUID (i1);
4138 else
4139 from_luid = DF_INSN_LUID (i2);
4140 if (newi2pat)
4141 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4142 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4143
4144 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4145 if (i3notes)
4146 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
4147 elim_i2, elim_i1, elim_i0);
4148 if (i2notes)
4149 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
4150 elim_i2, elim_i1, elim_i0);
4151 if (i1notes)
4152 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
4153 elim_i2, elim_i1, elim_i0);
4154 if (i0notes)
4155 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL_RTX,
4156 elim_i2, elim_i1, elim_i0);
4157 if (midnotes)
4158 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4159 elim_i2, elim_i1, elim_i0);
4160
4161 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4162 know these are REG_UNUSED and want them to go to the desired insn,
4163 so we always pass it as i3. */
4164
4165 if (newi2pat && new_i2_notes)
4166 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX,
4167 NULL_RTX);
4168
4169 if (new_i3_notes)
4170 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX,
4171 NULL_RTX);
4172
4173 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4174 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4175 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4176 in that case, it might delete I2. Similarly for I2 and I1.
4177 Show an additional death due to the REG_DEAD note we make here. If
4178 we discard it in distribute_notes, we will decrement it again. */
4179
4180 if (i3dest_killed)
4181 {
4182 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4183 distribute_notes (alloc_reg_note (REG_DEAD, i3dest_killed,
4184 NULL_RTX),
4185 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1, elim_i0);
4186 else
4187 distribute_notes (alloc_reg_note (REG_DEAD, i3dest_killed,
4188 NULL_RTX),
4189 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4190 elim_i2, elim_i1, elim_i0);
4191 }
4192
4193 if (i2dest_in_i2src)
4194 {
4195 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4196 if (newi2pat && reg_set_p (i2dest, newi2pat))
4197 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4198 NULL_RTX, NULL_RTX);
4199 else
4200 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4201 NULL_RTX, NULL_RTX, NULL_RTX);
4202 }
4203
4204 if (i1dest_in_i1src)
4205 {
4206 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4207 if (newi2pat && reg_set_p (i1dest, newi2pat))
4208 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4209 NULL_RTX, NULL_RTX);
4210 else
4211 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4212 NULL_RTX, NULL_RTX, NULL_RTX);
4213 }
4214
4215 if (i0dest_in_i0src)
4216 {
4217 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4218 if (newi2pat && reg_set_p (i0dest, newi2pat))
4219 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4220 NULL_RTX, NULL_RTX);
4221 else
4222 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4223 NULL_RTX, NULL_RTX, NULL_RTX);
4224 }
4225
4226 distribute_links (i3links);
4227 distribute_links (i2links);
4228 distribute_links (i1links);
4229 distribute_links (i0links);
4230
4231 if (REG_P (i2dest))
4232 {
4233 rtx link;
4234 rtx i2_insn = 0, i2_val = 0, set;
4235
4236 /* The insn that used to set this register doesn't exist, and
4237 this life of the register may not exist either. See if one of
4238 I3's links points to an insn that sets I2DEST. If it does,
4239 that is now the last known value for I2DEST. If we don't update
4240 this and I2 set the register to a value that depended on its old
4241 contents, we will get confused. If this insn is used, thing
4242 will be set correctly in combine_instructions. */
4243
4244 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
4245 if ((set = single_set (XEXP (link, 0))) != 0
4246 && rtx_equal_p (i2dest, SET_DEST (set)))
4247 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
4248
4249 record_value_for_reg (i2dest, i2_insn, i2_val);
4250
4251 /* If the reg formerly set in I2 died only once and that was in I3,
4252 zero its use count so it won't make `reload' do any work. */
4253 if (! added_sets_2
4254 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4255 && ! i2dest_in_i2src)
4256 {
4257 regno = REGNO (i2dest);
4258 INC_REG_N_SETS (regno, -1);
4259 }
4260 }
4261
4262 if (i1 && REG_P (i1dest))
4263 {
4264 rtx link;
4265 rtx i1_insn = 0, i1_val = 0, set;
4266
4267 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
4268 if ((set = single_set (XEXP (link, 0))) != 0
4269 && rtx_equal_p (i1dest, SET_DEST (set)))
4270 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
4271
4272 record_value_for_reg (i1dest, i1_insn, i1_val);
4273
4274 regno = REGNO (i1dest);
4275 if (! added_sets_1 && ! i1dest_in_i1src)
4276 INC_REG_N_SETS (regno, -1);
4277 }
4278
4279 if (i0 && REG_P (i0dest))
4280 {
4281 rtx link;
4282 rtx i0_insn = 0, i0_val = 0, set;
4283
4284 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
4285 if ((set = single_set (XEXP (link, 0))) != 0
4286 && rtx_equal_p (i0dest, SET_DEST (set)))
4287 i0_insn = XEXP (link, 0), i0_val = SET_SRC (set);
4288
4289 record_value_for_reg (i0dest, i0_insn, i0_val);
4290
4291 regno = REGNO (i0dest);
4292 if (! added_sets_0 && ! i0dest_in_i0src)
4293 INC_REG_N_SETS (regno, -1);
4294 }
4295
4296 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4297 been made to this insn. The order of
4298 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
4299 can affect nonzero_bits of newpat */
4300 if (newi2pat)
4301 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4302 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4303 }
4304
4305 if (undobuf.other_insn != NULL_RTX)
4306 {
4307 if (dump_file)
4308 {
4309 fprintf (dump_file, "modifying other_insn ");
4310 dump_insn_slim (dump_file, undobuf.other_insn);
4311 }
4312 df_insn_rescan (undobuf.other_insn);
4313 }
4314
4315 if (i0 && !(NOTE_P(i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4316 {
4317 if (dump_file)
4318 {
4319 fprintf (dump_file, "modifying insn i1 ");
4320 dump_insn_slim (dump_file, i0);
4321 }
4322 df_insn_rescan (i0);
4323 }
4324
4325 if (i1 && !(NOTE_P(i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4326 {
4327 if (dump_file)
4328 {
4329 fprintf (dump_file, "modifying insn i1 ");
4330 dump_insn_slim (dump_file, i1);
4331 }
4332 df_insn_rescan (i1);
4333 }
4334
4335 if (i2 && !(NOTE_P(i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4336 {
4337 if (dump_file)
4338 {
4339 fprintf (dump_file, "modifying insn i2 ");
4340 dump_insn_slim (dump_file, i2);
4341 }
4342 df_insn_rescan (i2);
4343 }
4344
4345 if (i3 && !(NOTE_P(i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4346 {
4347 if (dump_file)
4348 {
4349 fprintf (dump_file, "modifying insn i3 ");
4350 dump_insn_slim (dump_file, i3);
4351 }
4352 df_insn_rescan (i3);
4353 }
4354
4355 /* Set new_direct_jump_p if a new return or simple jump instruction
4356 has been created. Adjust the CFG accordingly. */
4357
4358 if (returnjump_p (i3) || any_uncondjump_p (i3))
4359 {
4360 *new_direct_jump_p = 1;
4361 mark_jump_label (PATTERN (i3), i3, 0);
4362 update_cfg_for_uncondjump (i3);
4363 }
4364
4365 if (undobuf.other_insn != NULL_RTX
4366 && (returnjump_p (undobuf.other_insn)
4367 || any_uncondjump_p (undobuf.other_insn)))
4368 {
4369 *new_direct_jump_p = 1;
4370 update_cfg_for_uncondjump (undobuf.other_insn);
4371 }
4372
4373 /* A noop might also need cleaning up of CFG, if it comes from the
4374 simplification of a jump. */
4375 if (GET_CODE (newpat) == SET
4376 && SET_SRC (newpat) == pc_rtx
4377 && SET_DEST (newpat) == pc_rtx)
4378 {
4379 *new_direct_jump_p = 1;
4380 update_cfg_for_uncondjump (i3);
4381 }
4382
4383 combine_successes++;
4384 undo_commit ();
4385
4386 if (added_links_insn
4387 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
4388 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
4389 return added_links_insn;
4390 else
4391 return newi2pat ? i2 : i3;
4392 }
4393 \f
4394 /* Undo all the modifications recorded in undobuf. */
4395
4396 static void
4397 undo_all (void)
4398 {
4399 struct undo *undo, *next;
4400
4401 for (undo = undobuf.undos; undo; undo = next)
4402 {
4403 next = undo->next;
4404 switch (undo->kind)
4405 {
4406 case UNDO_RTX:
4407 *undo->where.r = undo->old_contents.r;
4408 break;
4409 case UNDO_INT:
4410 *undo->where.i = undo->old_contents.i;
4411 break;
4412 case UNDO_MODE:
4413 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4414 break;
4415 default:
4416 gcc_unreachable ();
4417 }
4418
4419 undo->next = undobuf.frees;
4420 undobuf.frees = undo;
4421 }
4422
4423 undobuf.undos = 0;
4424 }
4425
4426 /* We've committed to accepting the changes we made. Move all
4427 of the undos to the free list. */
4428
4429 static void
4430 undo_commit (void)
4431 {
4432 struct undo *undo, *next;
4433
4434 for (undo = undobuf.undos; undo; undo = next)
4435 {
4436 next = undo->next;
4437 undo->next = undobuf.frees;
4438 undobuf.frees = undo;
4439 }
4440 undobuf.undos = 0;
4441 }
4442 \f
4443 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4444 where we have an arithmetic expression and return that point. LOC will
4445 be inside INSN.
4446
4447 try_combine will call this function to see if an insn can be split into
4448 two insns. */
4449
4450 static rtx *
4451 find_split_point (rtx *loc, rtx insn, bool set_src)
4452 {
4453 rtx x = *loc;
4454 enum rtx_code code = GET_CODE (x);
4455 rtx *split;
4456 unsigned HOST_WIDE_INT len = 0;
4457 HOST_WIDE_INT pos = 0;
4458 int unsignedp = 0;
4459 rtx inner = NULL_RTX;
4460
4461 /* First special-case some codes. */
4462 switch (code)
4463 {
4464 case SUBREG:
4465 #ifdef INSN_SCHEDULING
4466 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4467 point. */
4468 if (MEM_P (SUBREG_REG (x)))
4469 return loc;
4470 #endif
4471 return find_split_point (&SUBREG_REG (x), insn, false);
4472
4473 case MEM:
4474 #ifdef HAVE_lo_sum
4475 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4476 using LO_SUM and HIGH. */
4477 if (GET_CODE (XEXP (x, 0)) == CONST
4478 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
4479 {
4480 enum machine_mode address_mode
4481 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (x));
4482
4483 SUBST (XEXP (x, 0),
4484 gen_rtx_LO_SUM (address_mode,
4485 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4486 XEXP (x, 0)));
4487 return &XEXP (XEXP (x, 0), 0);
4488 }
4489 #endif
4490
4491 /* If we have a PLUS whose second operand is a constant and the
4492 address is not valid, perhaps will can split it up using
4493 the machine-specific way to split large constants. We use
4494 the first pseudo-reg (one of the virtual regs) as a placeholder;
4495 it will not remain in the result. */
4496 if (GET_CODE (XEXP (x, 0)) == PLUS
4497 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4498 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4499 MEM_ADDR_SPACE (x)))
4500 {
4501 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4502 rtx seq = combine_split_insns (gen_rtx_SET (VOIDmode, reg,
4503 XEXP (x, 0)),
4504 subst_insn);
4505
4506 /* This should have produced two insns, each of which sets our
4507 placeholder. If the source of the second is a valid address,
4508 we can make put both sources together and make a split point
4509 in the middle. */
4510
4511 if (seq
4512 && NEXT_INSN (seq) != NULL_RTX
4513 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4514 && NONJUMP_INSN_P (seq)
4515 && GET_CODE (PATTERN (seq)) == SET
4516 && SET_DEST (PATTERN (seq)) == reg
4517 && ! reg_mentioned_p (reg,
4518 SET_SRC (PATTERN (seq)))
4519 && NONJUMP_INSN_P (NEXT_INSN (seq))
4520 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4521 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4522 && memory_address_addr_space_p
4523 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4524 MEM_ADDR_SPACE (x)))
4525 {
4526 rtx src1 = SET_SRC (PATTERN (seq));
4527 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4528
4529 /* Replace the placeholder in SRC2 with SRC1. If we can
4530 find where in SRC2 it was placed, that can become our
4531 split point and we can replace this address with SRC2.
4532 Just try two obvious places. */
4533
4534 src2 = replace_rtx (src2, reg, src1);
4535 split = 0;
4536 if (XEXP (src2, 0) == src1)
4537 split = &XEXP (src2, 0);
4538 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4539 && XEXP (XEXP (src2, 0), 0) == src1)
4540 split = &XEXP (XEXP (src2, 0), 0);
4541
4542 if (split)
4543 {
4544 SUBST (XEXP (x, 0), src2);
4545 return split;
4546 }
4547 }
4548
4549 /* If that didn't work, perhaps the first operand is complex and
4550 needs to be computed separately, so make a split point there.
4551 This will occur on machines that just support REG + CONST
4552 and have a constant moved through some previous computation. */
4553
4554 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4555 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4556 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4557 return &XEXP (XEXP (x, 0), 0);
4558 }
4559
4560 /* If we have a PLUS whose first operand is complex, try computing it
4561 separately by making a split there. */
4562 if (GET_CODE (XEXP (x, 0)) == PLUS
4563 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4564 MEM_ADDR_SPACE (x))
4565 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4566 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4567 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4568 return &XEXP (XEXP (x, 0), 0);
4569 break;
4570
4571 case SET:
4572 #ifdef HAVE_cc0
4573 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4574 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4575 we need to put the operand into a register. So split at that
4576 point. */
4577
4578 if (SET_DEST (x) == cc0_rtx
4579 && GET_CODE (SET_SRC (x)) != COMPARE
4580 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4581 && !OBJECT_P (SET_SRC (x))
4582 && ! (GET_CODE (SET_SRC (x)) == SUBREG
4583 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4584 return &SET_SRC (x);
4585 #endif
4586
4587 /* See if we can split SET_SRC as it stands. */
4588 split = find_split_point (&SET_SRC (x), insn, true);
4589 if (split && split != &SET_SRC (x))
4590 return split;
4591
4592 /* See if we can split SET_DEST as it stands. */
4593 split = find_split_point (&SET_DEST (x), insn, false);
4594 if (split && split != &SET_DEST (x))
4595 return split;
4596
4597 /* See if this is a bitfield assignment with everything constant. If
4598 so, this is an IOR of an AND, so split it into that. */
4599 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4600 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
4601 <= HOST_BITS_PER_WIDE_INT)
4602 && CONST_INT_P (XEXP (SET_DEST (x), 1))
4603 && CONST_INT_P (XEXP (SET_DEST (x), 2))
4604 && CONST_INT_P (SET_SRC (x))
4605 && ((INTVAL (XEXP (SET_DEST (x), 1))
4606 + INTVAL (XEXP (SET_DEST (x), 2)))
4607 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
4608 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4609 {
4610 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4611 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4612 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4613 rtx dest = XEXP (SET_DEST (x), 0);
4614 enum machine_mode mode = GET_MODE (dest);
4615 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
4616 rtx or_mask;
4617
4618 if (BITS_BIG_ENDIAN)
4619 pos = GET_MODE_BITSIZE (mode) - len - pos;
4620
4621 or_mask = gen_int_mode (src << pos, mode);
4622 if (src == mask)
4623 SUBST (SET_SRC (x),
4624 simplify_gen_binary (IOR, mode, dest, or_mask));
4625 else
4626 {
4627 rtx negmask = gen_int_mode (~(mask << pos), mode);
4628 SUBST (SET_SRC (x),
4629 simplify_gen_binary (IOR, mode,
4630 simplify_gen_binary (AND, mode,
4631 dest, negmask),
4632 or_mask));
4633 }
4634
4635 SUBST (SET_DEST (x), dest);
4636
4637 split = find_split_point (&SET_SRC (x), insn, true);
4638 if (split && split != &SET_SRC (x))
4639 return split;
4640 }
4641
4642 /* Otherwise, see if this is an operation that we can split into two.
4643 If so, try to split that. */
4644 code = GET_CODE (SET_SRC (x));
4645
4646 switch (code)
4647 {
4648 case AND:
4649 /* If we are AND'ing with a large constant that is only a single
4650 bit and the result is only being used in a context where we
4651 need to know if it is zero or nonzero, replace it with a bit
4652 extraction. This will avoid the large constant, which might
4653 have taken more than one insn to make. If the constant were
4654 not a valid argument to the AND but took only one insn to make,
4655 this is no worse, but if it took more than one insn, it will
4656 be better. */
4657
4658 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4659 && REG_P (XEXP (SET_SRC (x), 0))
4660 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4661 && REG_P (SET_DEST (x))
4662 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
4663 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4664 && XEXP (*split, 0) == SET_DEST (x)
4665 && XEXP (*split, 1) == const0_rtx)
4666 {
4667 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4668 XEXP (SET_SRC (x), 0),
4669 pos, NULL_RTX, 1, 1, 0, 0);
4670 if (extraction != 0)
4671 {
4672 SUBST (SET_SRC (x), extraction);
4673 return find_split_point (loc, insn, false);
4674 }
4675 }
4676 break;
4677
4678 case NE:
4679 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4680 is known to be on, this can be converted into a NEG of a shift. */
4681 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
4682 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
4683 && 1 <= (pos = exact_log2
4684 (nonzero_bits (XEXP (SET_SRC (x), 0),
4685 GET_MODE (XEXP (SET_SRC (x), 0))))))
4686 {
4687 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
4688
4689 SUBST (SET_SRC (x),
4690 gen_rtx_NEG (mode,
4691 gen_rtx_LSHIFTRT (mode,
4692 XEXP (SET_SRC (x), 0),
4693 GEN_INT (pos))));
4694
4695 split = find_split_point (&SET_SRC (x), insn, true);
4696 if (split && split != &SET_SRC (x))
4697 return split;
4698 }
4699 break;
4700
4701 case SIGN_EXTEND:
4702 inner = XEXP (SET_SRC (x), 0);
4703
4704 /* We can't optimize if either mode is a partial integer
4705 mode as we don't know how many bits are significant
4706 in those modes. */
4707 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
4708 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
4709 break;
4710
4711 pos = 0;
4712 len = GET_MODE_BITSIZE (GET_MODE (inner));
4713 unsignedp = 0;
4714 break;
4715
4716 case SIGN_EXTRACT:
4717 case ZERO_EXTRACT:
4718 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4719 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
4720 {
4721 inner = XEXP (SET_SRC (x), 0);
4722 len = INTVAL (XEXP (SET_SRC (x), 1));
4723 pos = INTVAL (XEXP (SET_SRC (x), 2));
4724
4725 if (BITS_BIG_ENDIAN)
4726 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
4727 unsignedp = (code == ZERO_EXTRACT);
4728 }
4729 break;
4730
4731 default:
4732 break;
4733 }
4734
4735 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
4736 {
4737 enum machine_mode mode = GET_MODE (SET_SRC (x));
4738
4739 /* For unsigned, we have a choice of a shift followed by an
4740 AND or two shifts. Use two shifts for field sizes where the
4741 constant might be too large. We assume here that we can
4742 always at least get 8-bit constants in an AND insn, which is
4743 true for every current RISC. */
4744
4745 if (unsignedp && len <= 8)
4746 {
4747 SUBST (SET_SRC (x),
4748 gen_rtx_AND (mode,
4749 gen_rtx_LSHIFTRT
4750 (mode, gen_lowpart (mode, inner),
4751 GEN_INT (pos)),
4752 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
4753
4754 split = find_split_point (&SET_SRC (x), insn, true);
4755 if (split && split != &SET_SRC (x))
4756 return split;
4757 }
4758 else
4759 {
4760 SUBST (SET_SRC (x),
4761 gen_rtx_fmt_ee
4762 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
4763 gen_rtx_ASHIFT (mode,
4764 gen_lowpart (mode, inner),
4765 GEN_INT (GET_MODE_BITSIZE (mode)
4766 - len - pos)),
4767 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
4768
4769 split = find_split_point (&SET_SRC (x), insn, true);
4770 if (split && split != &SET_SRC (x))
4771 return split;
4772 }
4773 }
4774
4775 /* See if this is a simple operation with a constant as the second
4776 operand. It might be that this constant is out of range and hence
4777 could be used as a split point. */
4778 if (BINARY_P (SET_SRC (x))
4779 && CONSTANT_P (XEXP (SET_SRC (x), 1))
4780 && (OBJECT_P (XEXP (SET_SRC (x), 0))
4781 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
4782 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
4783 return &XEXP (SET_SRC (x), 1);
4784
4785 /* Finally, see if this is a simple operation with its first operand
4786 not in a register. The operation might require this operand in a
4787 register, so return it as a split point. We can always do this
4788 because if the first operand were another operation, we would have
4789 already found it as a split point. */
4790 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
4791 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
4792 return &XEXP (SET_SRC (x), 0);
4793
4794 return 0;
4795
4796 case AND:
4797 case IOR:
4798 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
4799 it is better to write this as (not (ior A B)) so we can split it.
4800 Similarly for IOR. */
4801 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
4802 {
4803 SUBST (*loc,
4804 gen_rtx_NOT (GET_MODE (x),
4805 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
4806 GET_MODE (x),
4807 XEXP (XEXP (x, 0), 0),
4808 XEXP (XEXP (x, 1), 0))));
4809 return find_split_point (loc, insn, set_src);
4810 }
4811
4812 /* Many RISC machines have a large set of logical insns. If the
4813 second operand is a NOT, put it first so we will try to split the
4814 other operand first. */
4815 if (GET_CODE (XEXP (x, 1)) == NOT)
4816 {
4817 rtx tem = XEXP (x, 0);
4818 SUBST (XEXP (x, 0), XEXP (x, 1));
4819 SUBST (XEXP (x, 1), tem);
4820 }
4821 break;
4822
4823 case PLUS:
4824 case MINUS:
4825 /* Canonicalization can produce (minus A (mult B C)), where C is a
4826 constant. It may be better to try splitting (plus (mult B -C) A)
4827 instead if this isn't a multiply by a power of two. */
4828 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
4829 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4830 && exact_log2 (INTVAL (XEXP (XEXP (x, 1), 1))) < 0)
4831 {
4832 enum machine_mode mode = GET_MODE (x);
4833 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
4834 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
4835 SUBST (*loc, gen_rtx_PLUS (mode, gen_rtx_MULT (mode,
4836 XEXP (XEXP (x, 1), 0),
4837 GEN_INT (other_int)),
4838 XEXP (x, 0)));
4839 return find_split_point (loc, insn, set_src);
4840 }
4841
4842 /* Split at a multiply-accumulate instruction. However if this is
4843 the SET_SRC, we likely do not have such an instruction and it's
4844 worthless to try this split. */
4845 if (!set_src && GET_CODE (XEXP (x, 0)) == MULT)
4846 return loc;
4847
4848 default:
4849 break;
4850 }
4851
4852 /* Otherwise, select our actions depending on our rtx class. */
4853 switch (GET_RTX_CLASS (code))
4854 {
4855 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
4856 case RTX_TERNARY:
4857 split = find_split_point (&XEXP (x, 2), insn, false);
4858 if (split)
4859 return split;
4860 /* ... fall through ... */
4861 case RTX_BIN_ARITH:
4862 case RTX_COMM_ARITH:
4863 case RTX_COMPARE:
4864 case RTX_COMM_COMPARE:
4865 split = find_split_point (&XEXP (x, 1), insn, false);
4866 if (split)
4867 return split;
4868 /* ... fall through ... */
4869 case RTX_UNARY:
4870 /* Some machines have (and (shift ...) ...) insns. If X is not
4871 an AND, but XEXP (X, 0) is, use it as our split point. */
4872 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
4873 return &XEXP (x, 0);
4874
4875 split = find_split_point (&XEXP (x, 0), insn, false);
4876 if (split)
4877 return split;
4878 return loc;
4879
4880 default:
4881 /* Otherwise, we don't have a split point. */
4882 return 0;
4883 }
4884 }
4885 \f
4886 /* Throughout X, replace FROM with TO, and return the result.
4887 The result is TO if X is FROM;
4888 otherwise the result is X, but its contents may have been modified.
4889 If they were modified, a record was made in undobuf so that
4890 undo_all will (among other things) return X to its original state.
4891
4892 If the number of changes necessary is too much to record to undo,
4893 the excess changes are not made, so the result is invalid.
4894 The changes already made can still be undone.
4895 undobuf.num_undo is incremented for such changes, so by testing that
4896 the caller can tell whether the result is valid.
4897
4898 `n_occurrences' is incremented each time FROM is replaced.
4899
4900 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
4901
4902 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
4903 by copying if `n_occurrences' is nonzero. */
4904
4905 static rtx
4906 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
4907 {
4908 enum rtx_code code = GET_CODE (x);
4909 enum machine_mode op0_mode = VOIDmode;
4910 const char *fmt;
4911 int len, i;
4912 rtx new_rtx;
4913
4914 /* Two expressions are equal if they are identical copies of a shared
4915 RTX or if they are both registers with the same register number
4916 and mode. */
4917
4918 #define COMBINE_RTX_EQUAL_P(X,Y) \
4919 ((X) == (Y) \
4920 || (REG_P (X) && REG_P (Y) \
4921 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
4922
4923 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
4924 {
4925 n_occurrences++;
4926 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
4927 }
4928
4929 /* If X and FROM are the same register but different modes, they
4930 will not have been seen as equal above. However, the log links code
4931 will make a LOG_LINKS entry for that case. If we do nothing, we
4932 will try to rerecognize our original insn and, when it succeeds,
4933 we will delete the feeding insn, which is incorrect.
4934
4935 So force this insn not to match in this (rare) case. */
4936 if (! in_dest && code == REG && REG_P (from)
4937 && reg_overlap_mentioned_p (x, from))
4938 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
4939
4940 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
4941 of which may contain things that can be combined. */
4942 if (code != MEM && code != LO_SUM && OBJECT_P (x))
4943 return x;
4944
4945 /* It is possible to have a subexpression appear twice in the insn.
4946 Suppose that FROM is a register that appears within TO.
4947 Then, after that subexpression has been scanned once by `subst',
4948 the second time it is scanned, TO may be found. If we were
4949 to scan TO here, we would find FROM within it and create a
4950 self-referent rtl structure which is completely wrong. */
4951 if (COMBINE_RTX_EQUAL_P (x, to))
4952 return to;
4953
4954 /* Parallel asm_operands need special attention because all of the
4955 inputs are shared across the arms. Furthermore, unsharing the
4956 rtl results in recognition failures. Failure to handle this case
4957 specially can result in circular rtl.
4958
4959 Solve this by doing a normal pass across the first entry of the
4960 parallel, and only processing the SET_DESTs of the subsequent
4961 entries. Ug. */
4962
4963 if (code == PARALLEL
4964 && GET_CODE (XVECEXP (x, 0, 0)) == SET
4965 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
4966 {
4967 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
4968
4969 /* If this substitution failed, this whole thing fails. */
4970 if (GET_CODE (new_rtx) == CLOBBER
4971 && XEXP (new_rtx, 0) == const0_rtx)
4972 return new_rtx;
4973
4974 SUBST (XVECEXP (x, 0, 0), new_rtx);
4975
4976 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
4977 {
4978 rtx dest = SET_DEST (XVECEXP (x, 0, i));
4979
4980 if (!REG_P (dest)
4981 && GET_CODE (dest) != CC0
4982 && GET_CODE (dest) != PC)
4983 {
4984 new_rtx = subst (dest, from, to, 0, unique_copy);
4985
4986 /* If this substitution failed, this whole thing fails. */
4987 if (GET_CODE (new_rtx) == CLOBBER
4988 && XEXP (new_rtx, 0) == const0_rtx)
4989 return new_rtx;
4990
4991 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
4992 }
4993 }
4994 }
4995 else
4996 {
4997 len = GET_RTX_LENGTH (code);
4998 fmt = GET_RTX_FORMAT (code);
4999
5000 /* We don't need to process a SET_DEST that is a register, CC0,
5001 or PC, so set up to skip this common case. All other cases
5002 where we want to suppress replacing something inside a
5003 SET_SRC are handled via the IN_DEST operand. */
5004 if (code == SET
5005 && (REG_P (SET_DEST (x))
5006 || GET_CODE (SET_DEST (x)) == CC0
5007 || GET_CODE (SET_DEST (x)) == PC))
5008 fmt = "ie";
5009
5010 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5011 constant. */
5012 if (fmt[0] == 'e')
5013 op0_mode = GET_MODE (XEXP (x, 0));
5014
5015 for (i = 0; i < len; i++)
5016 {
5017 if (fmt[i] == 'E')
5018 {
5019 int j;
5020 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5021 {
5022 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5023 {
5024 new_rtx = (unique_copy && n_occurrences
5025 ? copy_rtx (to) : to);
5026 n_occurrences++;
5027 }
5028 else
5029 {
5030 new_rtx = subst (XVECEXP (x, i, j), from, to, 0,
5031 unique_copy);
5032
5033 /* If this substitution failed, this whole thing
5034 fails. */
5035 if (GET_CODE (new_rtx) == CLOBBER
5036 && XEXP (new_rtx, 0) == const0_rtx)
5037 return new_rtx;
5038 }
5039
5040 SUBST (XVECEXP (x, i, j), new_rtx);
5041 }
5042 }
5043 else if (fmt[i] == 'e')
5044 {
5045 /* If this is a register being set, ignore it. */
5046 new_rtx = XEXP (x, i);
5047 if (in_dest
5048 && i == 0
5049 && (((code == SUBREG || code == ZERO_EXTRACT)
5050 && REG_P (new_rtx))
5051 || code == STRICT_LOW_PART))
5052 ;
5053
5054 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5055 {
5056 /* In general, don't install a subreg involving two
5057 modes not tieable. It can worsen register
5058 allocation, and can even make invalid reload
5059 insns, since the reg inside may need to be copied
5060 from in the outside mode, and that may be invalid
5061 if it is an fp reg copied in integer mode.
5062
5063 We allow two exceptions to this: It is valid if
5064 it is inside another SUBREG and the mode of that
5065 SUBREG and the mode of the inside of TO is
5066 tieable and it is valid if X is a SET that copies
5067 FROM to CC0. */
5068
5069 if (GET_CODE (to) == SUBREG
5070 && ! MODES_TIEABLE_P (GET_MODE (to),
5071 GET_MODE (SUBREG_REG (to)))
5072 && ! (code == SUBREG
5073 && MODES_TIEABLE_P (GET_MODE (x),
5074 GET_MODE (SUBREG_REG (to))))
5075 #ifdef HAVE_cc0
5076 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
5077 #endif
5078 )
5079 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5080
5081 #ifdef CANNOT_CHANGE_MODE_CLASS
5082 if (code == SUBREG
5083 && REG_P (to)
5084 && REGNO (to) < FIRST_PSEUDO_REGISTER
5085 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
5086 GET_MODE (to),
5087 GET_MODE (x)))
5088 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5089 #endif
5090
5091 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5092 n_occurrences++;
5093 }
5094 else
5095 /* If we are in a SET_DEST, suppress most cases unless we
5096 have gone inside a MEM, in which case we want to
5097 simplify the address. We assume here that things that
5098 are actually part of the destination have their inner
5099 parts in the first expression. This is true for SUBREG,
5100 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5101 things aside from REG and MEM that should appear in a
5102 SET_DEST. */
5103 new_rtx = subst (XEXP (x, i), from, to,
5104 (((in_dest
5105 && (code == SUBREG || code == STRICT_LOW_PART
5106 || code == ZERO_EXTRACT))
5107 || code == SET)
5108 && i == 0), unique_copy);
5109
5110 /* If we found that we will have to reject this combination,
5111 indicate that by returning the CLOBBER ourselves, rather than
5112 an expression containing it. This will speed things up as
5113 well as prevent accidents where two CLOBBERs are considered
5114 to be equal, thus producing an incorrect simplification. */
5115
5116 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5117 return new_rtx;
5118
5119 if (GET_CODE (x) == SUBREG
5120 && (CONST_INT_P (new_rtx)
5121 || GET_CODE (new_rtx) == CONST_DOUBLE))
5122 {
5123 enum machine_mode mode = GET_MODE (x);
5124
5125 x = simplify_subreg (GET_MODE (x), new_rtx,
5126 GET_MODE (SUBREG_REG (x)),
5127 SUBREG_BYTE (x));
5128 if (! x)
5129 x = gen_rtx_CLOBBER (mode, const0_rtx);
5130 }
5131 else if (CONST_INT_P (new_rtx)
5132 && GET_CODE (x) == ZERO_EXTEND)
5133 {
5134 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
5135 new_rtx, GET_MODE (XEXP (x, 0)));
5136 gcc_assert (x);
5137 }
5138 else
5139 SUBST (XEXP (x, i), new_rtx);
5140 }
5141 }
5142 }
5143
5144 /* Check if we are loading something from the constant pool via float
5145 extension; in this case we would undo compress_float_constant
5146 optimization and degenerate constant load to an immediate value. */
5147 if (GET_CODE (x) == FLOAT_EXTEND
5148 && MEM_P (XEXP (x, 0))
5149 && MEM_READONLY_P (XEXP (x, 0)))
5150 {
5151 rtx tmp = avoid_constant_pool_reference (x);
5152 if (x != tmp)
5153 return x;
5154 }
5155
5156 /* Try to simplify X. If the simplification changed the code, it is likely
5157 that further simplification will help, so loop, but limit the number
5158 of repetitions that will be performed. */
5159
5160 for (i = 0; i < 4; i++)
5161 {
5162 /* If X is sufficiently simple, don't bother trying to do anything
5163 with it. */
5164 if (code != CONST_INT && code != REG && code != CLOBBER)
5165 x = combine_simplify_rtx (x, op0_mode, in_dest);
5166
5167 if (GET_CODE (x) == code)
5168 break;
5169
5170 code = GET_CODE (x);
5171
5172 /* We no longer know the original mode of operand 0 since we
5173 have changed the form of X) */
5174 op0_mode = VOIDmode;
5175 }
5176
5177 return x;
5178 }
5179 \f
5180 /* Simplify X, a piece of RTL. We just operate on the expression at the
5181 outer level; call `subst' to simplify recursively. Return the new
5182 expression.
5183
5184 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5185 if we are inside a SET_DEST. */
5186
5187 static rtx
5188 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest)
5189 {
5190 enum rtx_code code = GET_CODE (x);
5191 enum machine_mode mode = GET_MODE (x);
5192 rtx temp;
5193 int i;
5194
5195 /* If this is a commutative operation, put a constant last and a complex
5196 expression first. We don't need to do this for comparisons here. */
5197 if (COMMUTATIVE_ARITH_P (x)
5198 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5199 {
5200 temp = XEXP (x, 0);
5201 SUBST (XEXP (x, 0), XEXP (x, 1));
5202 SUBST (XEXP (x, 1), temp);
5203 }
5204
5205 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5206 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5207 things. Check for cases where both arms are testing the same
5208 condition.
5209
5210 Don't do anything if all operands are very simple. */
5211
5212 if ((BINARY_P (x)
5213 && ((!OBJECT_P (XEXP (x, 0))
5214 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5215 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5216 || (!OBJECT_P (XEXP (x, 1))
5217 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5218 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5219 || (UNARY_P (x)
5220 && (!OBJECT_P (XEXP (x, 0))
5221 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5222 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5223 {
5224 rtx cond, true_rtx, false_rtx;
5225
5226 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5227 if (cond != 0
5228 /* If everything is a comparison, what we have is highly unlikely
5229 to be simpler, so don't use it. */
5230 && ! (COMPARISON_P (x)
5231 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
5232 {
5233 rtx cop1 = const0_rtx;
5234 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5235
5236 if (cond_code == NE && COMPARISON_P (cond))
5237 return x;
5238
5239 /* Simplify the alternative arms; this may collapse the true and
5240 false arms to store-flag values. Be careful to use copy_rtx
5241 here since true_rtx or false_rtx might share RTL with x as a
5242 result of the if_then_else_cond call above. */
5243 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
5244 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
5245
5246 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5247 is unlikely to be simpler. */
5248 if (general_operand (true_rtx, VOIDmode)
5249 && general_operand (false_rtx, VOIDmode))
5250 {
5251 enum rtx_code reversed;
5252
5253 /* Restarting if we generate a store-flag expression will cause
5254 us to loop. Just drop through in this case. */
5255
5256 /* If the result values are STORE_FLAG_VALUE and zero, we can
5257 just make the comparison operation. */
5258 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5259 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5260 cond, cop1);
5261 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5262 && ((reversed = reversed_comparison_code_parts
5263 (cond_code, cond, cop1, NULL))
5264 != UNKNOWN))
5265 x = simplify_gen_relational (reversed, mode, VOIDmode,
5266 cond, cop1);
5267
5268 /* Likewise, we can make the negate of a comparison operation
5269 if the result values are - STORE_FLAG_VALUE and zero. */
5270 else if (CONST_INT_P (true_rtx)
5271 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5272 && false_rtx == const0_rtx)
5273 x = simplify_gen_unary (NEG, mode,
5274 simplify_gen_relational (cond_code,
5275 mode, VOIDmode,
5276 cond, cop1),
5277 mode);
5278 else if (CONST_INT_P (false_rtx)
5279 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5280 && true_rtx == const0_rtx
5281 && ((reversed = reversed_comparison_code_parts
5282 (cond_code, cond, cop1, NULL))
5283 != UNKNOWN))
5284 x = simplify_gen_unary (NEG, mode,
5285 simplify_gen_relational (reversed,
5286 mode, VOIDmode,
5287 cond, cop1),
5288 mode);
5289 else
5290 return gen_rtx_IF_THEN_ELSE (mode,
5291 simplify_gen_relational (cond_code,
5292 mode,
5293 VOIDmode,
5294 cond,
5295 cop1),
5296 true_rtx, false_rtx);
5297
5298 code = GET_CODE (x);
5299 op0_mode = VOIDmode;
5300 }
5301 }
5302 }
5303
5304 /* Try to fold this expression in case we have constants that weren't
5305 present before. */
5306 temp = 0;
5307 switch (GET_RTX_CLASS (code))
5308 {
5309 case RTX_UNARY:
5310 if (op0_mode == VOIDmode)
5311 op0_mode = GET_MODE (XEXP (x, 0));
5312 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5313 break;
5314 case RTX_COMPARE:
5315 case RTX_COMM_COMPARE:
5316 {
5317 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5318 if (cmp_mode == VOIDmode)
5319 {
5320 cmp_mode = GET_MODE (XEXP (x, 1));
5321 if (cmp_mode == VOIDmode)
5322 cmp_mode = op0_mode;
5323 }
5324 temp = simplify_relational_operation (code, mode, cmp_mode,
5325 XEXP (x, 0), XEXP (x, 1));
5326 }
5327 break;
5328 case RTX_COMM_ARITH:
5329 case RTX_BIN_ARITH:
5330 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5331 break;
5332 case RTX_BITFIELD_OPS:
5333 case RTX_TERNARY:
5334 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5335 XEXP (x, 1), XEXP (x, 2));
5336 break;
5337 default:
5338 break;
5339 }
5340
5341 if (temp)
5342 {
5343 x = temp;
5344 code = GET_CODE (temp);
5345 op0_mode = VOIDmode;
5346 mode = GET_MODE (temp);
5347 }
5348
5349 /* First see if we can apply the inverse distributive law. */
5350 if (code == PLUS || code == MINUS
5351 || code == AND || code == IOR || code == XOR)
5352 {
5353 x = apply_distributive_law (x);
5354 code = GET_CODE (x);
5355 op0_mode = VOIDmode;
5356 }
5357
5358 /* If CODE is an associative operation not otherwise handled, see if we
5359 can associate some operands. This can win if they are constants or
5360 if they are logically related (i.e. (a & b) & a). */
5361 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5362 || code == AND || code == IOR || code == XOR
5363 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5364 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5365 || (flag_associative_math && FLOAT_MODE_P (mode))))
5366 {
5367 if (GET_CODE (XEXP (x, 0)) == code)
5368 {
5369 rtx other = XEXP (XEXP (x, 0), 0);
5370 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5371 rtx inner_op1 = XEXP (x, 1);
5372 rtx inner;
5373
5374 /* Make sure we pass the constant operand if any as the second
5375 one if this is a commutative operation. */
5376 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5377 {
5378 rtx tem = inner_op0;
5379 inner_op0 = inner_op1;
5380 inner_op1 = tem;
5381 }
5382 inner = simplify_binary_operation (code == MINUS ? PLUS
5383 : code == DIV ? MULT
5384 : code,
5385 mode, inner_op0, inner_op1);
5386
5387 /* For commutative operations, try the other pair if that one
5388 didn't simplify. */
5389 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5390 {
5391 other = XEXP (XEXP (x, 0), 1);
5392 inner = simplify_binary_operation (code, mode,
5393 XEXP (XEXP (x, 0), 0),
5394 XEXP (x, 1));
5395 }
5396
5397 if (inner)
5398 return simplify_gen_binary (code, mode, other, inner);
5399 }
5400 }
5401
5402 /* A little bit of algebraic simplification here. */
5403 switch (code)
5404 {
5405 case MEM:
5406 /* Ensure that our address has any ASHIFTs converted to MULT in case
5407 address-recognizing predicates are called later. */
5408 temp = make_compound_operation (XEXP (x, 0), MEM);
5409 SUBST (XEXP (x, 0), temp);
5410 break;
5411
5412 case SUBREG:
5413 if (op0_mode == VOIDmode)
5414 op0_mode = GET_MODE (SUBREG_REG (x));
5415
5416 /* See if this can be moved to simplify_subreg. */
5417 if (CONSTANT_P (SUBREG_REG (x))
5418 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5419 /* Don't call gen_lowpart if the inner mode
5420 is VOIDmode and we cannot simplify it, as SUBREG without
5421 inner mode is invalid. */
5422 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5423 || gen_lowpart_common (mode, SUBREG_REG (x))))
5424 return gen_lowpart (mode, SUBREG_REG (x));
5425
5426 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5427 break;
5428 {
5429 rtx temp;
5430 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5431 SUBREG_BYTE (x));
5432 if (temp)
5433 return temp;
5434 }
5435
5436 /* Don't change the mode of the MEM if that would change the meaning
5437 of the address. */
5438 if (MEM_P (SUBREG_REG (x))
5439 && (MEM_VOLATILE_P (SUBREG_REG (x))
5440 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
5441 return gen_rtx_CLOBBER (mode, const0_rtx);
5442
5443 /* Note that we cannot do any narrowing for non-constants since
5444 we might have been counting on using the fact that some bits were
5445 zero. We now do this in the SET. */
5446
5447 break;
5448
5449 case NEG:
5450 temp = expand_compound_operation (XEXP (x, 0));
5451
5452 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5453 replaced by (lshiftrt X C). This will convert
5454 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5455
5456 if (GET_CODE (temp) == ASHIFTRT
5457 && CONST_INT_P (XEXP (temp, 1))
5458 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
5459 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5460 INTVAL (XEXP (temp, 1)));
5461
5462 /* If X has only a single bit that might be nonzero, say, bit I, convert
5463 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5464 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5465 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5466 or a SUBREG of one since we'd be making the expression more
5467 complex if it was just a register. */
5468
5469 if (!REG_P (temp)
5470 && ! (GET_CODE (temp) == SUBREG
5471 && REG_P (SUBREG_REG (temp)))
5472 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
5473 {
5474 rtx temp1 = simplify_shift_const
5475 (NULL_RTX, ASHIFTRT, mode,
5476 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
5477 GET_MODE_BITSIZE (mode) - 1 - i),
5478 GET_MODE_BITSIZE (mode) - 1 - i);
5479
5480 /* If all we did was surround TEMP with the two shifts, we
5481 haven't improved anything, so don't use it. Otherwise,
5482 we are better off with TEMP1. */
5483 if (GET_CODE (temp1) != ASHIFTRT
5484 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5485 || XEXP (XEXP (temp1, 0), 0) != temp)
5486 return temp1;
5487 }
5488 break;
5489
5490 case TRUNCATE:
5491 /* We can't handle truncation to a partial integer mode here
5492 because we don't know the real bitsize of the partial
5493 integer mode. */
5494 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5495 break;
5496
5497 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5498 SUBST (XEXP (x, 0),
5499 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5500 GET_MODE_MASK (mode), 0));
5501
5502 /* We can truncate a constant value and return it. */
5503 if (CONST_INT_P (XEXP (x, 0)))
5504 return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5505
5506 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5507 whose value is a comparison can be replaced with a subreg if
5508 STORE_FLAG_VALUE permits. */
5509 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5510 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5511 && (temp = get_last_value (XEXP (x, 0)))
5512 && COMPARISON_P (temp))
5513 return gen_lowpart (mode, XEXP (x, 0));
5514 break;
5515
5516 case CONST:
5517 /* (const (const X)) can become (const X). Do it this way rather than
5518 returning the inner CONST since CONST can be shared with a
5519 REG_EQUAL note. */
5520 if (GET_CODE (XEXP (x, 0)) == CONST)
5521 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
5522 break;
5523
5524 #ifdef HAVE_lo_sum
5525 case LO_SUM:
5526 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5527 can add in an offset. find_split_point will split this address up
5528 again if it doesn't match. */
5529 if (GET_CODE (XEXP (x, 0)) == HIGH
5530 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5531 return XEXP (x, 1);
5532 break;
5533 #endif
5534
5535 case PLUS:
5536 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5537 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5538 bit-field and can be replaced by either a sign_extend or a
5539 sign_extract. The `and' may be a zero_extend and the two
5540 <c>, -<c> constants may be reversed. */
5541 if (GET_CODE (XEXP (x, 0)) == XOR
5542 && CONST_INT_P (XEXP (x, 1))
5543 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
5544 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
5545 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
5546 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
5547 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5548 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
5549 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5550 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
5551 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
5552 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
5553 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
5554 == (unsigned int) i + 1))))
5555 return simplify_shift_const
5556 (NULL_RTX, ASHIFTRT, mode,
5557 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5558 XEXP (XEXP (XEXP (x, 0), 0), 0),
5559 GET_MODE_BITSIZE (mode) - (i + 1)),
5560 GET_MODE_BITSIZE (mode) - (i + 1));
5561
5562 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5563 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5564 the bitsize of the mode - 1. This allows simplification of
5565 "a = (b & 8) == 0;" */
5566 if (XEXP (x, 1) == constm1_rtx
5567 && !REG_P (XEXP (x, 0))
5568 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5569 && REG_P (SUBREG_REG (XEXP (x, 0))))
5570 && nonzero_bits (XEXP (x, 0), mode) == 1)
5571 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
5572 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5573 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
5574 GET_MODE_BITSIZE (mode) - 1),
5575 GET_MODE_BITSIZE (mode) - 1);
5576
5577 /* If we are adding two things that have no bits in common, convert
5578 the addition into an IOR. This will often be further simplified,
5579 for example in cases like ((a & 1) + (a & 2)), which can
5580 become a & 3. */
5581
5582 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5583 && (nonzero_bits (XEXP (x, 0), mode)
5584 & nonzero_bits (XEXP (x, 1), mode)) == 0)
5585 {
5586 /* Try to simplify the expression further. */
5587 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
5588 temp = combine_simplify_rtx (tor, mode, in_dest);
5589
5590 /* If we could, great. If not, do not go ahead with the IOR
5591 replacement, since PLUS appears in many special purpose
5592 address arithmetic instructions. */
5593 if (GET_CODE (temp) != CLOBBER && temp != tor)
5594 return temp;
5595 }
5596 break;
5597
5598 case MINUS:
5599 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
5600 (and <foo> (const_int pow2-1)) */
5601 if (GET_CODE (XEXP (x, 1)) == AND
5602 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
5603 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
5604 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
5605 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
5606 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
5607 break;
5608
5609 case MULT:
5610 /* If we have (mult (plus A B) C), apply the distributive law and then
5611 the inverse distributive law to see if things simplify. This
5612 occurs mostly in addresses, often when unrolling loops. */
5613
5614 if (GET_CODE (XEXP (x, 0)) == PLUS)
5615 {
5616 rtx result = distribute_and_simplify_rtx (x, 0);
5617 if (result)
5618 return result;
5619 }
5620
5621 /* Try simplify a*(b/c) as (a*b)/c. */
5622 if (FLOAT_MODE_P (mode) && flag_associative_math
5623 && GET_CODE (XEXP (x, 0)) == DIV)
5624 {
5625 rtx tem = simplify_binary_operation (MULT, mode,
5626 XEXP (XEXP (x, 0), 0),
5627 XEXP (x, 1));
5628 if (tem)
5629 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
5630 }
5631 break;
5632
5633 case UDIV:
5634 /* If this is a divide by a power of two, treat it as a shift if
5635 its first operand is a shift. */
5636 if (CONST_INT_P (XEXP (x, 1))
5637 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
5638 && (GET_CODE (XEXP (x, 0)) == ASHIFT
5639 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
5640 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
5641 || GET_CODE (XEXP (x, 0)) == ROTATE
5642 || GET_CODE (XEXP (x, 0)) == ROTATERT))
5643 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
5644 break;
5645
5646 case EQ: case NE:
5647 case GT: case GTU: case GE: case GEU:
5648 case LT: case LTU: case LE: case LEU:
5649 case UNEQ: case LTGT:
5650 case UNGT: case UNGE:
5651 case UNLT: case UNLE:
5652 case UNORDERED: case ORDERED:
5653 /* If the first operand is a condition code, we can't do anything
5654 with it. */
5655 if (GET_CODE (XEXP (x, 0)) == COMPARE
5656 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
5657 && ! CC0_P (XEXP (x, 0))))
5658 {
5659 rtx op0 = XEXP (x, 0);
5660 rtx op1 = XEXP (x, 1);
5661 enum rtx_code new_code;
5662
5663 if (GET_CODE (op0) == COMPARE)
5664 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5665
5666 /* Simplify our comparison, if possible. */
5667 new_code = simplify_comparison (code, &op0, &op1);
5668
5669 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
5670 if only the low-order bit is possibly nonzero in X (such as when
5671 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
5672 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
5673 known to be either 0 or -1, NE becomes a NEG and EQ becomes
5674 (plus X 1).
5675
5676 Remove any ZERO_EXTRACT we made when thinking this was a
5677 comparison. It may now be simpler to use, e.g., an AND. If a
5678 ZERO_EXTRACT is indeed appropriate, it will be placed back by
5679 the call to make_compound_operation in the SET case. */
5680
5681 if (STORE_FLAG_VALUE == 1
5682 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5683 && op1 == const0_rtx
5684 && mode == GET_MODE (op0)
5685 && nonzero_bits (op0, mode) == 1)
5686 return gen_lowpart (mode,
5687 expand_compound_operation (op0));
5688
5689 else if (STORE_FLAG_VALUE == 1
5690 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5691 && op1 == const0_rtx
5692 && mode == GET_MODE (op0)
5693 && (num_sign_bit_copies (op0, mode)
5694 == GET_MODE_BITSIZE (mode)))
5695 {
5696 op0 = expand_compound_operation (op0);
5697 return simplify_gen_unary (NEG, mode,
5698 gen_lowpart (mode, op0),
5699 mode);
5700 }
5701
5702 else if (STORE_FLAG_VALUE == 1
5703 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5704 && op1 == const0_rtx
5705 && mode == GET_MODE (op0)
5706 && nonzero_bits (op0, mode) == 1)
5707 {
5708 op0 = expand_compound_operation (op0);
5709 return simplify_gen_binary (XOR, mode,
5710 gen_lowpart (mode, op0),
5711 const1_rtx);
5712 }
5713
5714 else if (STORE_FLAG_VALUE == 1
5715 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5716 && op1 == const0_rtx
5717 && mode == GET_MODE (op0)
5718 && (num_sign_bit_copies (op0, mode)
5719 == GET_MODE_BITSIZE (mode)))
5720 {
5721 op0 = expand_compound_operation (op0);
5722 return plus_constant (gen_lowpart (mode, op0), 1);
5723 }
5724
5725 /* If STORE_FLAG_VALUE is -1, we have cases similar to
5726 those above. */
5727 if (STORE_FLAG_VALUE == -1
5728 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5729 && op1 == const0_rtx
5730 && (num_sign_bit_copies (op0, mode)
5731 == GET_MODE_BITSIZE (mode)))
5732 return gen_lowpart (mode,
5733 expand_compound_operation (op0));
5734
5735 else if (STORE_FLAG_VALUE == -1
5736 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5737 && op1 == const0_rtx
5738 && mode == GET_MODE (op0)
5739 && nonzero_bits (op0, mode) == 1)
5740 {
5741 op0 = expand_compound_operation (op0);
5742 return simplify_gen_unary (NEG, mode,
5743 gen_lowpart (mode, op0),
5744 mode);
5745 }
5746
5747 else if (STORE_FLAG_VALUE == -1
5748 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5749 && op1 == const0_rtx
5750 && mode == GET_MODE (op0)
5751 && (num_sign_bit_copies (op0, mode)
5752 == GET_MODE_BITSIZE (mode)))
5753 {
5754 op0 = expand_compound_operation (op0);
5755 return simplify_gen_unary (NOT, mode,
5756 gen_lowpart (mode, op0),
5757 mode);
5758 }
5759
5760 /* If X is 0/1, (eq X 0) is X-1. */
5761 else if (STORE_FLAG_VALUE == -1
5762 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5763 && op1 == const0_rtx
5764 && mode == GET_MODE (op0)
5765 && nonzero_bits (op0, mode) == 1)
5766 {
5767 op0 = expand_compound_operation (op0);
5768 return plus_constant (gen_lowpart (mode, op0), -1);
5769 }
5770
5771 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
5772 one bit that might be nonzero, we can convert (ne x 0) to
5773 (ashift x c) where C puts the bit in the sign bit. Remove any
5774 AND with STORE_FLAG_VALUE when we are done, since we are only
5775 going to test the sign bit. */
5776 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5777 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5778 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5779 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5780 && op1 == const0_rtx
5781 && mode == GET_MODE (op0)
5782 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
5783 {
5784 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
5785 expand_compound_operation (op0),
5786 GET_MODE_BITSIZE (mode) - 1 - i);
5787 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
5788 return XEXP (x, 0);
5789 else
5790 return x;
5791 }
5792
5793 /* If the code changed, return a whole new comparison. */
5794 if (new_code != code)
5795 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
5796
5797 /* Otherwise, keep this operation, but maybe change its operands.
5798 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
5799 SUBST (XEXP (x, 0), op0);
5800 SUBST (XEXP (x, 1), op1);
5801 }
5802 break;
5803
5804 case IF_THEN_ELSE:
5805 return simplify_if_then_else (x);
5806
5807 case ZERO_EXTRACT:
5808 case SIGN_EXTRACT:
5809 case ZERO_EXTEND:
5810 case SIGN_EXTEND:
5811 /* If we are processing SET_DEST, we are done. */
5812 if (in_dest)
5813 return x;
5814
5815 return expand_compound_operation (x);
5816
5817 case SET:
5818 return simplify_set (x);
5819
5820 case AND:
5821 case IOR:
5822 return simplify_logical (x);
5823
5824 case ASHIFT:
5825 case LSHIFTRT:
5826 case ASHIFTRT:
5827 case ROTATE:
5828 case ROTATERT:
5829 /* If this is a shift by a constant amount, simplify it. */
5830 if (CONST_INT_P (XEXP (x, 1)))
5831 return simplify_shift_const (x, code, mode, XEXP (x, 0),
5832 INTVAL (XEXP (x, 1)));
5833
5834 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
5835 SUBST (XEXP (x, 1),
5836 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
5837 ((HOST_WIDE_INT) 1
5838 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
5839 - 1,
5840 0));
5841 break;
5842
5843 default:
5844 break;
5845 }
5846
5847 return x;
5848 }
5849 \f
5850 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
5851
5852 static rtx
5853 simplify_if_then_else (rtx x)
5854 {
5855 enum machine_mode mode = GET_MODE (x);
5856 rtx cond = XEXP (x, 0);
5857 rtx true_rtx = XEXP (x, 1);
5858 rtx false_rtx = XEXP (x, 2);
5859 enum rtx_code true_code = GET_CODE (cond);
5860 int comparison_p = COMPARISON_P (cond);
5861 rtx temp;
5862 int i;
5863 enum rtx_code false_code;
5864 rtx reversed;
5865
5866 /* Simplify storing of the truth value. */
5867 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
5868 return simplify_gen_relational (true_code, mode, VOIDmode,
5869 XEXP (cond, 0), XEXP (cond, 1));
5870
5871 /* Also when the truth value has to be reversed. */
5872 if (comparison_p
5873 && true_rtx == const0_rtx && false_rtx == const_true_rtx
5874 && (reversed = reversed_comparison (cond, mode)))
5875 return reversed;
5876
5877 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
5878 in it is being compared against certain values. Get the true and false
5879 comparisons and see if that says anything about the value of each arm. */
5880
5881 if (comparison_p
5882 && ((false_code = reversed_comparison_code (cond, NULL))
5883 != UNKNOWN)
5884 && REG_P (XEXP (cond, 0)))
5885 {
5886 HOST_WIDE_INT nzb;
5887 rtx from = XEXP (cond, 0);
5888 rtx true_val = XEXP (cond, 1);
5889 rtx false_val = true_val;
5890 int swapped = 0;
5891
5892 /* If FALSE_CODE is EQ, swap the codes and arms. */
5893
5894 if (false_code == EQ)
5895 {
5896 swapped = 1, true_code = EQ, false_code = NE;
5897 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5898 }
5899
5900 /* If we are comparing against zero and the expression being tested has
5901 only a single bit that might be nonzero, that is its value when it is
5902 not equal to zero. Similarly if it is known to be -1 or 0. */
5903
5904 if (true_code == EQ && true_val == const0_rtx
5905 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
5906 {
5907 false_code = EQ;
5908 false_val = GEN_INT (trunc_int_for_mode (nzb, GET_MODE (from)));
5909 }
5910 else if (true_code == EQ && true_val == const0_rtx
5911 && (num_sign_bit_copies (from, GET_MODE (from))
5912 == GET_MODE_BITSIZE (GET_MODE (from))))
5913 {
5914 false_code = EQ;
5915 false_val = constm1_rtx;
5916 }
5917
5918 /* Now simplify an arm if we know the value of the register in the
5919 branch and it is used in the arm. Be careful due to the potential
5920 of locally-shared RTL. */
5921
5922 if (reg_mentioned_p (from, true_rtx))
5923 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
5924 from, true_val),
5925 pc_rtx, pc_rtx, 0, 0);
5926 if (reg_mentioned_p (from, false_rtx))
5927 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
5928 from, false_val),
5929 pc_rtx, pc_rtx, 0, 0);
5930
5931 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
5932 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
5933
5934 true_rtx = XEXP (x, 1);
5935 false_rtx = XEXP (x, 2);
5936 true_code = GET_CODE (cond);
5937 }
5938
5939 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
5940 reversed, do so to avoid needing two sets of patterns for
5941 subtract-and-branch insns. Similarly if we have a constant in the true
5942 arm, the false arm is the same as the first operand of the comparison, or
5943 the false arm is more complicated than the true arm. */
5944
5945 if (comparison_p
5946 && reversed_comparison_code (cond, NULL) != UNKNOWN
5947 && (true_rtx == pc_rtx
5948 || (CONSTANT_P (true_rtx)
5949 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
5950 || true_rtx == const0_rtx
5951 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
5952 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
5953 && !OBJECT_P (false_rtx))
5954 || reg_mentioned_p (true_rtx, false_rtx)
5955 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
5956 {
5957 true_code = reversed_comparison_code (cond, NULL);
5958 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
5959 SUBST (XEXP (x, 1), false_rtx);
5960 SUBST (XEXP (x, 2), true_rtx);
5961
5962 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5963 cond = XEXP (x, 0);
5964
5965 /* It is possible that the conditional has been simplified out. */
5966 true_code = GET_CODE (cond);
5967 comparison_p = COMPARISON_P (cond);
5968 }
5969
5970 /* If the two arms are identical, we don't need the comparison. */
5971
5972 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
5973 return true_rtx;
5974
5975 /* Convert a == b ? b : a to "a". */
5976 if (true_code == EQ && ! side_effects_p (cond)
5977 && !HONOR_NANS (mode)
5978 && rtx_equal_p (XEXP (cond, 0), false_rtx)
5979 && rtx_equal_p (XEXP (cond, 1), true_rtx))
5980 return false_rtx;
5981 else if (true_code == NE && ! side_effects_p (cond)
5982 && !HONOR_NANS (mode)
5983 && rtx_equal_p (XEXP (cond, 0), true_rtx)
5984 && rtx_equal_p (XEXP (cond, 1), false_rtx))
5985 return true_rtx;
5986
5987 /* Look for cases where we have (abs x) or (neg (abs X)). */
5988
5989 if (GET_MODE_CLASS (mode) == MODE_INT
5990 && comparison_p
5991 && XEXP (cond, 1) == const0_rtx
5992 && GET_CODE (false_rtx) == NEG
5993 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
5994 && rtx_equal_p (true_rtx, XEXP (cond, 0))
5995 && ! side_effects_p (true_rtx))
5996 switch (true_code)
5997 {
5998 case GT:
5999 case GE:
6000 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6001 case LT:
6002 case LE:
6003 return
6004 simplify_gen_unary (NEG, mode,
6005 simplify_gen_unary (ABS, mode, true_rtx, mode),
6006 mode);
6007 default:
6008 break;
6009 }
6010
6011 /* Look for MIN or MAX. */
6012
6013 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6014 && comparison_p
6015 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6016 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6017 && ! side_effects_p (cond))
6018 switch (true_code)
6019 {
6020 case GE:
6021 case GT:
6022 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6023 case LE:
6024 case LT:
6025 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6026 case GEU:
6027 case GTU:
6028 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6029 case LEU:
6030 case LTU:
6031 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6032 default:
6033 break;
6034 }
6035
6036 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6037 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6038 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6039 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6040 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6041 neither 1 or -1, but it isn't worth checking for. */
6042
6043 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6044 && comparison_p
6045 && GET_MODE_CLASS (mode) == MODE_INT
6046 && ! side_effects_p (x))
6047 {
6048 rtx t = make_compound_operation (true_rtx, SET);
6049 rtx f = make_compound_operation (false_rtx, SET);
6050 rtx cond_op0 = XEXP (cond, 0);
6051 rtx cond_op1 = XEXP (cond, 1);
6052 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6053 enum machine_mode m = mode;
6054 rtx z = 0, c1 = NULL_RTX;
6055
6056 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6057 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6058 || GET_CODE (t) == ASHIFT
6059 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6060 && rtx_equal_p (XEXP (t, 0), f))
6061 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6062
6063 /* If an identity-zero op is commutative, check whether there
6064 would be a match if we swapped the operands. */
6065 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6066 || GET_CODE (t) == XOR)
6067 && rtx_equal_p (XEXP (t, 1), f))
6068 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6069 else if (GET_CODE (t) == SIGN_EXTEND
6070 && (GET_CODE (XEXP (t, 0)) == PLUS
6071 || GET_CODE (XEXP (t, 0)) == MINUS
6072 || GET_CODE (XEXP (t, 0)) == IOR
6073 || GET_CODE (XEXP (t, 0)) == XOR
6074 || GET_CODE (XEXP (t, 0)) == ASHIFT
6075 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6076 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6077 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6078 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6079 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6080 && (num_sign_bit_copies (f, GET_MODE (f))
6081 > (unsigned int)
6082 (GET_MODE_BITSIZE (mode)
6083 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
6084 {
6085 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6086 extend_op = SIGN_EXTEND;
6087 m = GET_MODE (XEXP (t, 0));
6088 }
6089 else if (GET_CODE (t) == SIGN_EXTEND
6090 && (GET_CODE (XEXP (t, 0)) == PLUS
6091 || GET_CODE (XEXP (t, 0)) == IOR
6092 || GET_CODE (XEXP (t, 0)) == XOR)
6093 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6094 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6095 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6096 && (num_sign_bit_copies (f, GET_MODE (f))
6097 > (unsigned int)
6098 (GET_MODE_BITSIZE (mode)
6099 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
6100 {
6101 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6102 extend_op = SIGN_EXTEND;
6103 m = GET_MODE (XEXP (t, 0));
6104 }
6105 else if (GET_CODE (t) == ZERO_EXTEND
6106 && (GET_CODE (XEXP (t, 0)) == PLUS
6107 || GET_CODE (XEXP (t, 0)) == MINUS
6108 || GET_CODE (XEXP (t, 0)) == IOR
6109 || GET_CODE (XEXP (t, 0)) == XOR
6110 || GET_CODE (XEXP (t, 0)) == ASHIFT
6111 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6112 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6113 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6114 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
6115 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6116 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6117 && ((nonzero_bits (f, GET_MODE (f))
6118 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
6119 == 0))
6120 {
6121 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6122 extend_op = ZERO_EXTEND;
6123 m = GET_MODE (XEXP (t, 0));
6124 }
6125 else if (GET_CODE (t) == ZERO_EXTEND
6126 && (GET_CODE (XEXP (t, 0)) == PLUS
6127 || GET_CODE (XEXP (t, 0)) == IOR
6128 || GET_CODE (XEXP (t, 0)) == XOR)
6129 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6130 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
6131 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6132 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6133 && ((nonzero_bits (f, GET_MODE (f))
6134 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
6135 == 0))
6136 {
6137 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6138 extend_op = ZERO_EXTEND;
6139 m = GET_MODE (XEXP (t, 0));
6140 }
6141
6142 if (z)
6143 {
6144 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
6145 cond_op0, cond_op1),
6146 pc_rtx, pc_rtx, 0, 0);
6147 temp = simplify_gen_binary (MULT, m, temp,
6148 simplify_gen_binary (MULT, m, c1,
6149 const_true_rtx));
6150 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
6151 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6152
6153 if (extend_op != UNKNOWN)
6154 temp = simplify_gen_unary (extend_op, mode, temp, m);
6155
6156 return temp;
6157 }
6158 }
6159
6160 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6161 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6162 negation of a single bit, we can convert this operation to a shift. We
6163 can actually do this more generally, but it doesn't seem worth it. */
6164
6165 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6166 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6167 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
6168 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
6169 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
6170 == GET_MODE_BITSIZE (mode))
6171 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
6172 return
6173 simplify_shift_const (NULL_RTX, ASHIFT, mode,
6174 gen_lowpart (mode, XEXP (cond, 0)), i);
6175
6176 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
6177 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6178 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6179 && GET_MODE (XEXP (cond, 0)) == mode
6180 && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
6181 == nonzero_bits (XEXP (cond, 0), mode)
6182 && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
6183 return XEXP (cond, 0);
6184
6185 return x;
6186 }
6187 \f
6188 /* Simplify X, a SET expression. Return the new expression. */
6189
6190 static rtx
6191 simplify_set (rtx x)
6192 {
6193 rtx src = SET_SRC (x);
6194 rtx dest = SET_DEST (x);
6195 enum machine_mode mode
6196 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6197 rtx other_insn;
6198 rtx *cc_use;
6199
6200 /* (set (pc) (return)) gets written as (return). */
6201 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
6202 return src;
6203
6204 /* Now that we know for sure which bits of SRC we are using, see if we can
6205 simplify the expression for the object knowing that we only need the
6206 low-order bits. */
6207
6208 if (GET_MODE_CLASS (mode) == MODE_INT
6209 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
6210 {
6211 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, 0);
6212 SUBST (SET_SRC (x), src);
6213 }
6214
6215 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6216 the comparison result and try to simplify it unless we already have used
6217 undobuf.other_insn. */
6218 if ((GET_MODE_CLASS (mode) == MODE_CC
6219 || GET_CODE (src) == COMPARE
6220 || CC0_P (dest))
6221 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6222 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6223 && COMPARISON_P (*cc_use)
6224 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6225 {
6226 enum rtx_code old_code = GET_CODE (*cc_use);
6227 enum rtx_code new_code;
6228 rtx op0, op1, tmp;
6229 int other_changed = 0;
6230 enum machine_mode compare_mode = GET_MODE (dest);
6231
6232 if (GET_CODE (src) == COMPARE)
6233 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6234 else
6235 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6236
6237 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6238 op0, op1);
6239 if (!tmp)
6240 new_code = old_code;
6241 else if (!CONSTANT_P (tmp))
6242 {
6243 new_code = GET_CODE (tmp);
6244 op0 = XEXP (tmp, 0);
6245 op1 = XEXP (tmp, 1);
6246 }
6247 else
6248 {
6249 rtx pat = PATTERN (other_insn);
6250 undobuf.other_insn = other_insn;
6251 SUBST (*cc_use, tmp);
6252
6253 /* Attempt to simplify CC user. */
6254 if (GET_CODE (pat) == SET)
6255 {
6256 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6257 if (new_rtx != NULL_RTX)
6258 SUBST (SET_SRC (pat), new_rtx);
6259 }
6260
6261 /* Convert X into a no-op move. */
6262 SUBST (SET_DEST (x), pc_rtx);
6263 SUBST (SET_SRC (x), pc_rtx);
6264 return x;
6265 }
6266
6267 /* Simplify our comparison, if possible. */
6268 new_code = simplify_comparison (new_code, &op0, &op1);
6269
6270 #ifdef SELECT_CC_MODE
6271 /* If this machine has CC modes other than CCmode, check to see if we
6272 need to use a different CC mode here. */
6273 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6274 compare_mode = GET_MODE (op0);
6275 else
6276 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6277
6278 #ifndef HAVE_cc0
6279 /* If the mode changed, we have to change SET_DEST, the mode in the
6280 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6281 a hard register, just build new versions with the proper mode. If it
6282 is a pseudo, we lose unless it is only time we set the pseudo, in
6283 which case we can safely change its mode. */
6284 if (compare_mode != GET_MODE (dest))
6285 {
6286 if (can_change_dest_mode (dest, 0, compare_mode))
6287 {
6288 unsigned int regno = REGNO (dest);
6289 rtx new_dest;
6290
6291 if (regno < FIRST_PSEUDO_REGISTER)
6292 new_dest = gen_rtx_REG (compare_mode, regno);
6293 else
6294 {
6295 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6296 new_dest = regno_reg_rtx[regno];
6297 }
6298
6299 SUBST (SET_DEST (x), new_dest);
6300 SUBST (XEXP (*cc_use, 0), new_dest);
6301 other_changed = 1;
6302
6303 dest = new_dest;
6304 }
6305 }
6306 #endif /* cc0 */
6307 #endif /* SELECT_CC_MODE */
6308
6309 /* If the code changed, we have to build a new comparison in
6310 undobuf.other_insn. */
6311 if (new_code != old_code)
6312 {
6313 int other_changed_previously = other_changed;
6314 unsigned HOST_WIDE_INT mask;
6315 rtx old_cc_use = *cc_use;
6316
6317 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6318 dest, const0_rtx));
6319 other_changed = 1;
6320
6321 /* If the only change we made was to change an EQ into an NE or
6322 vice versa, OP0 has only one bit that might be nonzero, and OP1
6323 is zero, check if changing the user of the condition code will
6324 produce a valid insn. If it won't, we can keep the original code
6325 in that insn by surrounding our operation with an XOR. */
6326
6327 if (((old_code == NE && new_code == EQ)
6328 || (old_code == EQ && new_code == NE))
6329 && ! other_changed_previously && op1 == const0_rtx
6330 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
6331 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
6332 {
6333 rtx pat = PATTERN (other_insn), note = 0;
6334
6335 if ((recog_for_combine (&pat, other_insn, &note) < 0
6336 && ! check_asm_operands (pat)))
6337 {
6338 *cc_use = old_cc_use;
6339 other_changed = 0;
6340
6341 op0 = simplify_gen_binary (XOR, GET_MODE (op0),
6342 op0, GEN_INT (mask));
6343 }
6344 }
6345 }
6346
6347 if (other_changed)
6348 undobuf.other_insn = other_insn;
6349
6350 /* Otherwise, if we didn't previously have a COMPARE in the
6351 correct mode, we need one. */
6352 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
6353 {
6354 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6355 src = SET_SRC (x);
6356 }
6357 else if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6358 {
6359 SUBST (SET_SRC (x), op0);
6360 src = SET_SRC (x);
6361 }
6362 /* Otherwise, update the COMPARE if needed. */
6363 else if (XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6364 {
6365 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6366 src = SET_SRC (x);
6367 }
6368 }
6369 else
6370 {
6371 /* Get SET_SRC in a form where we have placed back any
6372 compound expressions. Then do the checks below. */
6373 src = make_compound_operation (src, SET);
6374 SUBST (SET_SRC (x), src);
6375 }
6376
6377 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6378 and X being a REG or (subreg (reg)), we may be able to convert this to
6379 (set (subreg:m2 x) (op)).
6380
6381 We can always do this if M1 is narrower than M2 because that means that
6382 we only care about the low bits of the result.
6383
6384 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6385 perform a narrower operation than requested since the high-order bits will
6386 be undefined. On machine where it is defined, this transformation is safe
6387 as long as M1 and M2 have the same number of words. */
6388
6389 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6390 && !OBJECT_P (SUBREG_REG (src))
6391 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
6392 / UNITS_PER_WORD)
6393 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
6394 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
6395 #ifndef WORD_REGISTER_OPERATIONS
6396 && (GET_MODE_SIZE (GET_MODE (src))
6397 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
6398 #endif
6399 #ifdef CANNOT_CHANGE_MODE_CLASS
6400 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6401 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
6402 GET_MODE (SUBREG_REG (src)),
6403 GET_MODE (src)))
6404 #endif
6405 && (REG_P (dest)
6406 || (GET_CODE (dest) == SUBREG
6407 && REG_P (SUBREG_REG (dest)))))
6408 {
6409 SUBST (SET_DEST (x),
6410 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6411 dest));
6412 SUBST (SET_SRC (x), SUBREG_REG (src));
6413
6414 src = SET_SRC (x), dest = SET_DEST (x);
6415 }
6416
6417 #ifdef HAVE_cc0
6418 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6419 in SRC. */
6420 if (dest == cc0_rtx
6421 && GET_CODE (src) == SUBREG
6422 && subreg_lowpart_p (src)
6423 && (GET_MODE_BITSIZE (GET_MODE (src))
6424 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
6425 {
6426 rtx inner = SUBREG_REG (src);
6427 enum machine_mode inner_mode = GET_MODE (inner);
6428
6429 /* Here we make sure that we don't have a sign bit on. */
6430 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
6431 && (nonzero_bits (inner, inner_mode)
6432 < ((unsigned HOST_WIDE_INT) 1
6433 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
6434 {
6435 SUBST (SET_SRC (x), inner);
6436 src = SET_SRC (x);
6437 }
6438 }
6439 #endif
6440
6441 #ifdef LOAD_EXTEND_OP
6442 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6443 would require a paradoxical subreg. Replace the subreg with a
6444 zero_extend to avoid the reload that would otherwise be required. */
6445
6446 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6447 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (src)))
6448 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
6449 && SUBREG_BYTE (src) == 0
6450 && (GET_MODE_SIZE (GET_MODE (src))
6451 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
6452 && MEM_P (SUBREG_REG (src)))
6453 {
6454 SUBST (SET_SRC (x),
6455 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
6456 GET_MODE (src), SUBREG_REG (src)));
6457
6458 src = SET_SRC (x);
6459 }
6460 #endif
6461
6462 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6463 are comparing an item known to be 0 or -1 against 0, use a logical
6464 operation instead. Check for one of the arms being an IOR of the other
6465 arm with some value. We compute three terms to be IOR'ed together. In
6466 practice, at most two will be nonzero. Then we do the IOR's. */
6467
6468 if (GET_CODE (dest) != PC
6469 && GET_CODE (src) == IF_THEN_ELSE
6470 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
6471 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
6472 && XEXP (XEXP (src, 0), 1) == const0_rtx
6473 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
6474 #ifdef HAVE_conditional_move
6475 && ! can_conditionally_move_p (GET_MODE (src))
6476 #endif
6477 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
6478 GET_MODE (XEXP (XEXP (src, 0), 0)))
6479 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
6480 && ! side_effects_p (src))
6481 {
6482 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
6483 ? XEXP (src, 1) : XEXP (src, 2));
6484 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
6485 ? XEXP (src, 2) : XEXP (src, 1));
6486 rtx term1 = const0_rtx, term2, term3;
6487
6488 if (GET_CODE (true_rtx) == IOR
6489 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
6490 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
6491 else if (GET_CODE (true_rtx) == IOR
6492 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
6493 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
6494 else if (GET_CODE (false_rtx) == IOR
6495 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
6496 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
6497 else if (GET_CODE (false_rtx) == IOR
6498 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
6499 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
6500
6501 term2 = simplify_gen_binary (AND, GET_MODE (src),
6502 XEXP (XEXP (src, 0), 0), true_rtx);
6503 term3 = simplify_gen_binary (AND, GET_MODE (src),
6504 simplify_gen_unary (NOT, GET_MODE (src),
6505 XEXP (XEXP (src, 0), 0),
6506 GET_MODE (src)),
6507 false_rtx);
6508
6509 SUBST (SET_SRC (x),
6510 simplify_gen_binary (IOR, GET_MODE (src),
6511 simplify_gen_binary (IOR, GET_MODE (src),
6512 term1, term2),
6513 term3));
6514
6515 src = SET_SRC (x);
6516 }
6517
6518 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6519 whole thing fail. */
6520 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
6521 return src;
6522 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
6523 return dest;
6524 else
6525 /* Convert this into a field assignment operation, if possible. */
6526 return make_field_assignment (x);
6527 }
6528 \f
6529 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6530 result. */
6531
6532 static rtx
6533 simplify_logical (rtx x)
6534 {
6535 enum machine_mode mode = GET_MODE (x);
6536 rtx op0 = XEXP (x, 0);
6537 rtx op1 = XEXP (x, 1);
6538
6539 switch (GET_CODE (x))
6540 {
6541 case AND:
6542 /* We can call simplify_and_const_int only if we don't lose
6543 any (sign) bits when converting INTVAL (op1) to
6544 "unsigned HOST_WIDE_INT". */
6545 if (CONST_INT_P (op1)
6546 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
6547 || INTVAL (op1) > 0))
6548 {
6549 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
6550 if (GET_CODE (x) != AND)
6551 return x;
6552
6553 op0 = XEXP (x, 0);
6554 op1 = XEXP (x, 1);
6555 }
6556
6557 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
6558 apply the distributive law and then the inverse distributive
6559 law to see if things simplify. */
6560 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
6561 {
6562 rtx result = distribute_and_simplify_rtx (x, 0);
6563 if (result)
6564 return result;
6565 }
6566 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
6567 {
6568 rtx result = distribute_and_simplify_rtx (x, 1);
6569 if (result)
6570 return result;
6571 }
6572 break;
6573
6574 case IOR:
6575 /* If we have (ior (and A B) C), apply the distributive law and then
6576 the inverse distributive law to see if things simplify. */
6577
6578 if (GET_CODE (op0) == AND)
6579 {
6580 rtx result = distribute_and_simplify_rtx (x, 0);
6581 if (result)
6582 return result;
6583 }
6584
6585 if (GET_CODE (op1) == AND)
6586 {
6587 rtx result = distribute_and_simplify_rtx (x, 1);
6588 if (result)
6589 return result;
6590 }
6591 break;
6592
6593 default:
6594 gcc_unreachable ();
6595 }
6596
6597 return x;
6598 }
6599 \f
6600 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6601 operations" because they can be replaced with two more basic operations.
6602 ZERO_EXTEND is also considered "compound" because it can be replaced with
6603 an AND operation, which is simpler, though only one operation.
6604
6605 The function expand_compound_operation is called with an rtx expression
6606 and will convert it to the appropriate shifts and AND operations,
6607 simplifying at each stage.
6608
6609 The function make_compound_operation is called to convert an expression
6610 consisting of shifts and ANDs into the equivalent compound expression.
6611 It is the inverse of this function, loosely speaking. */
6612
6613 static rtx
6614 expand_compound_operation (rtx x)
6615 {
6616 unsigned HOST_WIDE_INT pos = 0, len;
6617 int unsignedp = 0;
6618 unsigned int modewidth;
6619 rtx tem;
6620
6621 switch (GET_CODE (x))
6622 {
6623 case ZERO_EXTEND:
6624 unsignedp = 1;
6625 case SIGN_EXTEND:
6626 /* We can't necessarily use a const_int for a multiword mode;
6627 it depends on implicitly extending the value.
6628 Since we don't know the right way to extend it,
6629 we can't tell whether the implicit way is right.
6630
6631 Even for a mode that is no wider than a const_int,
6632 we can't win, because we need to sign extend one of its bits through
6633 the rest of it, and we don't know which bit. */
6634 if (CONST_INT_P (XEXP (x, 0)))
6635 return x;
6636
6637 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
6638 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
6639 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
6640 reloaded. If not for that, MEM's would very rarely be safe.
6641
6642 Reject MODEs bigger than a word, because we might not be able
6643 to reference a two-register group starting with an arbitrary register
6644 (and currently gen_lowpart might crash for a SUBREG). */
6645
6646 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
6647 return x;
6648
6649 /* Reject MODEs that aren't scalar integers because turning vector
6650 or complex modes into shifts causes problems. */
6651
6652 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6653 return x;
6654
6655 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
6656 /* If the inner object has VOIDmode (the only way this can happen
6657 is if it is an ASM_OPERANDS), we can't do anything since we don't
6658 know how much masking to do. */
6659 if (len == 0)
6660 return x;
6661
6662 break;
6663
6664 case ZERO_EXTRACT:
6665 unsignedp = 1;
6666
6667 /* ... fall through ... */
6668
6669 case SIGN_EXTRACT:
6670 /* If the operand is a CLOBBER, just return it. */
6671 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
6672 return XEXP (x, 0);
6673
6674 if (!CONST_INT_P (XEXP (x, 1))
6675 || !CONST_INT_P (XEXP (x, 2))
6676 || GET_MODE (XEXP (x, 0)) == VOIDmode)
6677 return x;
6678
6679 /* Reject MODEs that aren't scalar integers because turning vector
6680 or complex modes into shifts causes problems. */
6681
6682 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6683 return x;
6684
6685 len = INTVAL (XEXP (x, 1));
6686 pos = INTVAL (XEXP (x, 2));
6687
6688 /* This should stay within the object being extracted, fail otherwise. */
6689 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
6690 return x;
6691
6692 if (BITS_BIG_ENDIAN)
6693 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
6694
6695 break;
6696
6697 default:
6698 return x;
6699 }
6700 /* Convert sign extension to zero extension, if we know that the high
6701 bit is not set, as this is easier to optimize. It will be converted
6702 back to cheaper alternative in make_extraction. */
6703 if (GET_CODE (x) == SIGN_EXTEND
6704 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6705 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
6706 & ~(((unsigned HOST_WIDE_INT)
6707 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
6708 >> 1))
6709 == 0)))
6710 {
6711 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
6712 rtx temp2 = expand_compound_operation (temp);
6713
6714 /* Make sure this is a profitable operation. */
6715 if (rtx_cost (x, SET, optimize_this_for_speed_p)
6716 > rtx_cost (temp2, SET, optimize_this_for_speed_p))
6717 return temp2;
6718 else if (rtx_cost (x, SET, optimize_this_for_speed_p)
6719 > rtx_cost (temp, SET, optimize_this_for_speed_p))
6720 return temp;
6721 else
6722 return x;
6723 }
6724
6725 /* We can optimize some special cases of ZERO_EXTEND. */
6726 if (GET_CODE (x) == ZERO_EXTEND)
6727 {
6728 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
6729 know that the last value didn't have any inappropriate bits
6730 set. */
6731 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6732 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6733 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6734 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
6735 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6736 return XEXP (XEXP (x, 0), 0);
6737
6738 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6739 if (GET_CODE (XEXP (x, 0)) == SUBREG
6740 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6741 && subreg_lowpart_p (XEXP (x, 0))
6742 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6743 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
6744 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6745 return SUBREG_REG (XEXP (x, 0));
6746
6747 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
6748 is a comparison and STORE_FLAG_VALUE permits. This is like
6749 the first case, but it works even when GET_MODE (x) is larger
6750 than HOST_WIDE_INT. */
6751 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6752 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6753 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
6754 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
6755 <= HOST_BITS_PER_WIDE_INT)
6756 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
6757 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6758 return XEXP (XEXP (x, 0), 0);
6759
6760 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6761 if (GET_CODE (XEXP (x, 0)) == SUBREG
6762 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6763 && subreg_lowpart_p (XEXP (x, 0))
6764 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
6765 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
6766 <= HOST_BITS_PER_WIDE_INT)
6767 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
6768 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6769 return SUBREG_REG (XEXP (x, 0));
6770
6771 }
6772
6773 /* If we reach here, we want to return a pair of shifts. The inner
6774 shift is a left shift of BITSIZE - POS - LEN bits. The outer
6775 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
6776 logical depending on the value of UNSIGNEDP.
6777
6778 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
6779 converted into an AND of a shift.
6780
6781 We must check for the case where the left shift would have a negative
6782 count. This can happen in a case like (x >> 31) & 255 on machines
6783 that can't shift by a constant. On those machines, we would first
6784 combine the shift with the AND to produce a variable-position
6785 extraction. Then the constant of 31 would be substituted in to produce
6786 a such a position. */
6787
6788 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
6789 if (modewidth + len >= pos)
6790 {
6791 enum machine_mode mode = GET_MODE (x);
6792 tem = gen_lowpart (mode, XEXP (x, 0));
6793 if (!tem || GET_CODE (tem) == CLOBBER)
6794 return x;
6795 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6796 tem, modewidth - pos - len);
6797 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
6798 mode, tem, modewidth - len);
6799 }
6800 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
6801 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
6802 simplify_shift_const (NULL_RTX, LSHIFTRT,
6803 GET_MODE (x),
6804 XEXP (x, 0), pos),
6805 ((HOST_WIDE_INT) 1 << len) - 1);
6806 else
6807 /* Any other cases we can't handle. */
6808 return x;
6809
6810 /* If we couldn't do this for some reason, return the original
6811 expression. */
6812 if (GET_CODE (tem) == CLOBBER)
6813 return x;
6814
6815 return tem;
6816 }
6817 \f
6818 /* X is a SET which contains an assignment of one object into
6819 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
6820 or certain SUBREGS). If possible, convert it into a series of
6821 logical operations.
6822
6823 We half-heartedly support variable positions, but do not at all
6824 support variable lengths. */
6825
6826 static const_rtx
6827 expand_field_assignment (const_rtx x)
6828 {
6829 rtx inner;
6830 rtx pos; /* Always counts from low bit. */
6831 int len;
6832 rtx mask, cleared, masked;
6833 enum machine_mode compute_mode;
6834
6835 /* Loop until we find something we can't simplify. */
6836 while (1)
6837 {
6838 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
6839 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
6840 {
6841 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
6842 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
6843 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
6844 }
6845 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
6846 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
6847 {
6848 inner = XEXP (SET_DEST (x), 0);
6849 len = INTVAL (XEXP (SET_DEST (x), 1));
6850 pos = XEXP (SET_DEST (x), 2);
6851
6852 /* A constant position should stay within the width of INNER. */
6853 if (CONST_INT_P (pos)
6854 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
6855 break;
6856
6857 if (BITS_BIG_ENDIAN)
6858 {
6859 if (CONST_INT_P (pos))
6860 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
6861 - INTVAL (pos));
6862 else if (GET_CODE (pos) == MINUS
6863 && CONST_INT_P (XEXP (pos, 1))
6864 && (INTVAL (XEXP (pos, 1))
6865 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
6866 /* If position is ADJUST - X, new position is X. */
6867 pos = XEXP (pos, 0);
6868 else
6869 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
6870 GEN_INT (GET_MODE_BITSIZE (
6871 GET_MODE (inner))
6872 - len),
6873 pos);
6874 }
6875 }
6876
6877 /* A SUBREG between two modes that occupy the same numbers of words
6878 can be done by moving the SUBREG to the source. */
6879 else if (GET_CODE (SET_DEST (x)) == SUBREG
6880 /* We need SUBREGs to compute nonzero_bits properly. */
6881 && nonzero_sign_valid
6882 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
6883 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
6884 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
6885 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
6886 {
6887 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
6888 gen_lowpart
6889 (GET_MODE (SUBREG_REG (SET_DEST (x))),
6890 SET_SRC (x)));
6891 continue;
6892 }
6893 else
6894 break;
6895
6896 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6897 inner = SUBREG_REG (inner);
6898
6899 compute_mode = GET_MODE (inner);
6900
6901 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6902 if (! SCALAR_INT_MODE_P (compute_mode))
6903 {
6904 enum machine_mode imode;
6905
6906 /* Don't do anything for vector or complex integral types. */
6907 if (! FLOAT_MODE_P (compute_mode))
6908 break;
6909
6910 /* Try to find an integral mode to pun with. */
6911 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
6912 if (imode == BLKmode)
6913 break;
6914
6915 compute_mode = imode;
6916 inner = gen_lowpart (imode, inner);
6917 }
6918
6919 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6920 if (len >= HOST_BITS_PER_WIDE_INT)
6921 break;
6922
6923 /* Now compute the equivalent expression. Make a copy of INNER
6924 for the SET_DEST in case it is a MEM into which we will substitute;
6925 we don't want shared RTL in that case. */
6926 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
6927 cleared = simplify_gen_binary (AND, compute_mode,
6928 simplify_gen_unary (NOT, compute_mode,
6929 simplify_gen_binary (ASHIFT,
6930 compute_mode,
6931 mask, pos),
6932 compute_mode),
6933 inner);
6934 masked = simplify_gen_binary (ASHIFT, compute_mode,
6935 simplify_gen_binary (
6936 AND, compute_mode,
6937 gen_lowpart (compute_mode, SET_SRC (x)),
6938 mask),
6939 pos);
6940
6941 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
6942 simplify_gen_binary (IOR, compute_mode,
6943 cleared, masked));
6944 }
6945
6946 return x;
6947 }
6948 \f
6949 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6950 it is an RTX that represents a variable starting position; otherwise,
6951 POS is the (constant) starting bit position (counted from the LSB).
6952
6953 UNSIGNEDP is nonzero for an unsigned reference and zero for a
6954 signed reference.
6955
6956 IN_DEST is nonzero if this is a reference in the destination of a
6957 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6958 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6959 be used.
6960
6961 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6962 ZERO_EXTRACT should be built even for bits starting at bit 0.
6963
6964 MODE is the desired mode of the result (if IN_DEST == 0).
6965
6966 The result is an RTX for the extraction or NULL_RTX if the target
6967 can't handle it. */
6968
6969 static rtx
6970 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
6971 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
6972 int in_dest, int in_compare)
6973 {
6974 /* This mode describes the size of the storage area
6975 to fetch the overall value from. Within that, we
6976 ignore the POS lowest bits, etc. */
6977 enum machine_mode is_mode = GET_MODE (inner);
6978 enum machine_mode inner_mode;
6979 enum machine_mode wanted_inner_mode;
6980 enum machine_mode wanted_inner_reg_mode = word_mode;
6981 enum machine_mode pos_mode = word_mode;
6982 enum machine_mode extraction_mode = word_mode;
6983 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6984 rtx new_rtx = 0;
6985 rtx orig_pos_rtx = pos_rtx;
6986 HOST_WIDE_INT orig_pos;
6987
6988 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6989 {
6990 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
6991 consider just the QI as the memory to extract from.
6992 The subreg adds or removes high bits; its mode is
6993 irrelevant to the meaning of this extraction,
6994 since POS and LEN count from the lsb. */
6995 if (MEM_P (SUBREG_REG (inner)))
6996 is_mode = GET_MODE (SUBREG_REG (inner));
6997 inner = SUBREG_REG (inner);
6998 }
6999 else if (GET_CODE (inner) == ASHIFT
7000 && CONST_INT_P (XEXP (inner, 1))
7001 && pos_rtx == 0 && pos == 0
7002 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
7003 {
7004 /* We're extracting the least significant bits of an rtx
7005 (ashift X (const_int C)), where LEN > C. Extract the
7006 least significant (LEN - C) bits of X, giving an rtx
7007 whose mode is MODE, then shift it left C times. */
7008 new_rtx = make_extraction (mode, XEXP (inner, 0),
7009 0, 0, len - INTVAL (XEXP (inner, 1)),
7010 unsignedp, in_dest, in_compare);
7011 if (new_rtx != 0)
7012 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7013 }
7014
7015 inner_mode = GET_MODE (inner);
7016
7017 if (pos_rtx && CONST_INT_P (pos_rtx))
7018 pos = INTVAL (pos_rtx), pos_rtx = 0;
7019
7020 /* See if this can be done without an extraction. We never can if the
7021 width of the field is not the same as that of some integer mode. For
7022 registers, we can only avoid the extraction if the position is at the
7023 low-order bit and this is either not in the destination or we have the
7024 appropriate STRICT_LOW_PART operation available.
7025
7026 For MEM, we can avoid an extract if the field starts on an appropriate
7027 boundary and we can change the mode of the memory reference. */
7028
7029 if (tmode != BLKmode
7030 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7031 && !MEM_P (inner)
7032 && (inner_mode == tmode
7033 || !REG_P (inner)
7034 || TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
7035 GET_MODE_BITSIZE (inner_mode))
7036 || reg_truncated_to_mode (tmode, inner))
7037 && (! in_dest
7038 || (REG_P (inner)
7039 && have_insn_for (STRICT_LOW_PART, tmode))))
7040 || (MEM_P (inner) && pos_rtx == 0
7041 && (pos
7042 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7043 : BITS_PER_UNIT)) == 0
7044 /* We can't do this if we are widening INNER_MODE (it
7045 may not be aligned, for one thing). */
7046 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
7047 && (inner_mode == tmode
7048 || (! mode_dependent_address_p (XEXP (inner, 0))
7049 && ! MEM_VOLATILE_P (inner))))))
7050 {
7051 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7052 field. If the original and current mode are the same, we need not
7053 adjust the offset. Otherwise, we do if bytes big endian.
7054
7055 If INNER is not a MEM, get a piece consisting of just the field
7056 of interest (in this case POS % BITS_PER_WORD must be 0). */
7057
7058 if (MEM_P (inner))
7059 {
7060 HOST_WIDE_INT offset;
7061
7062 /* POS counts from lsb, but make OFFSET count in memory order. */
7063 if (BYTES_BIG_ENDIAN)
7064 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
7065 else
7066 offset = pos / BITS_PER_UNIT;
7067
7068 new_rtx = adjust_address_nv (inner, tmode, offset);
7069 }
7070 else if (REG_P (inner))
7071 {
7072 if (tmode != inner_mode)
7073 {
7074 /* We can't call gen_lowpart in a DEST since we
7075 always want a SUBREG (see below) and it would sometimes
7076 return a new hard register. */
7077 if (pos || in_dest)
7078 {
7079 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
7080
7081 if (WORDS_BIG_ENDIAN
7082 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7083 final_word = ((GET_MODE_SIZE (inner_mode)
7084 - GET_MODE_SIZE (tmode))
7085 / UNITS_PER_WORD) - final_word;
7086
7087 final_word *= UNITS_PER_WORD;
7088 if (BYTES_BIG_ENDIAN &&
7089 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
7090 final_word += (GET_MODE_SIZE (inner_mode)
7091 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
7092
7093 /* Avoid creating invalid subregs, for example when
7094 simplifying (x>>32)&255. */
7095 if (!validate_subreg (tmode, inner_mode, inner, final_word))
7096 return NULL_RTX;
7097
7098 new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
7099 }
7100 else
7101 new_rtx = gen_lowpart (tmode, inner);
7102 }
7103 else
7104 new_rtx = inner;
7105 }
7106 else
7107 new_rtx = force_to_mode (inner, tmode,
7108 len >= HOST_BITS_PER_WIDE_INT
7109 ? ~(unsigned HOST_WIDE_INT) 0
7110 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7111 0);
7112
7113 /* If this extraction is going into the destination of a SET,
7114 make a STRICT_LOW_PART unless we made a MEM. */
7115
7116 if (in_dest)
7117 return (MEM_P (new_rtx) ? new_rtx
7118 : (GET_CODE (new_rtx) != SUBREG
7119 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7120 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7121
7122 if (mode == tmode)
7123 return new_rtx;
7124
7125 if (CONST_INT_P (new_rtx)
7126 || GET_CODE (new_rtx) == CONST_DOUBLE)
7127 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7128 mode, new_rtx, tmode);
7129
7130 /* If we know that no extraneous bits are set, and that the high
7131 bit is not set, convert the extraction to the cheaper of
7132 sign and zero extension, that are equivalent in these cases. */
7133 if (flag_expensive_optimizations
7134 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
7135 && ((nonzero_bits (new_rtx, tmode)
7136 & ~(((unsigned HOST_WIDE_INT)
7137 GET_MODE_MASK (tmode))
7138 >> 1))
7139 == 0)))
7140 {
7141 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7142 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7143
7144 /* Prefer ZERO_EXTENSION, since it gives more information to
7145 backends. */
7146 if (rtx_cost (temp, SET, optimize_this_for_speed_p)
7147 <= rtx_cost (temp1, SET, optimize_this_for_speed_p))
7148 return temp;
7149 return temp1;
7150 }
7151
7152 /* Otherwise, sign- or zero-extend unless we already are in the
7153 proper mode. */
7154
7155 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7156 mode, new_rtx));
7157 }
7158
7159 /* Unless this is a COMPARE or we have a funny memory reference,
7160 don't do anything with zero-extending field extracts starting at
7161 the low-order bit since they are simple AND operations. */
7162 if (pos_rtx == 0 && pos == 0 && ! in_dest
7163 && ! in_compare && unsignedp)
7164 return 0;
7165
7166 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7167 if the position is not a constant and the length is not 1. In all
7168 other cases, we would only be going outside our object in cases when
7169 an original shift would have been undefined. */
7170 if (MEM_P (inner)
7171 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
7172 || (pos_rtx != 0 && len != 1)))
7173 return 0;
7174
7175 /* Get the mode to use should INNER not be a MEM, the mode for the position,
7176 and the mode for the result. */
7177 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
7178 {
7179 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
7180 pos_mode = mode_for_extraction (EP_insv, 2);
7181 extraction_mode = mode_for_extraction (EP_insv, 3);
7182 }
7183
7184 if (! in_dest && unsignedp
7185 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
7186 {
7187 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
7188 pos_mode = mode_for_extraction (EP_extzv, 3);
7189 extraction_mode = mode_for_extraction (EP_extzv, 0);
7190 }
7191
7192 if (! in_dest && ! unsignedp
7193 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
7194 {
7195 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
7196 pos_mode = mode_for_extraction (EP_extv, 3);
7197 extraction_mode = mode_for_extraction (EP_extv, 0);
7198 }
7199
7200 /* Never narrow an object, since that might not be safe. */
7201
7202 if (mode != VOIDmode
7203 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
7204 extraction_mode = mode;
7205
7206 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
7207 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
7208 pos_mode = GET_MODE (pos_rtx);
7209
7210 /* If this is not from memory, the desired mode is the preferred mode
7211 for an extraction pattern's first input operand, or word_mode if there
7212 is none. */
7213 if (!MEM_P (inner))
7214 wanted_inner_mode = wanted_inner_reg_mode;
7215 else
7216 {
7217 /* Be careful not to go beyond the extracted object and maintain the
7218 natural alignment of the memory. */
7219 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
7220 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7221 > GET_MODE_BITSIZE (wanted_inner_mode))
7222 {
7223 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
7224 gcc_assert (wanted_inner_mode != VOIDmode);
7225 }
7226
7227 /* If we have to change the mode of memory and cannot, the desired mode
7228 is EXTRACTION_MODE. */
7229 if (inner_mode != wanted_inner_mode
7230 && (mode_dependent_address_p (XEXP (inner, 0))
7231 || MEM_VOLATILE_P (inner)
7232 || pos_rtx))
7233 wanted_inner_mode = extraction_mode;
7234 }
7235
7236 orig_pos = pos;
7237
7238 if (BITS_BIG_ENDIAN)
7239 {
7240 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7241 BITS_BIG_ENDIAN style. If position is constant, compute new
7242 position. Otherwise, build subtraction.
7243 Note that POS is relative to the mode of the original argument.
7244 If it's a MEM we need to recompute POS relative to that.
7245 However, if we're extracting from (or inserting into) a register,
7246 we want to recompute POS relative to wanted_inner_mode. */
7247 int width = (MEM_P (inner)
7248 ? GET_MODE_BITSIZE (is_mode)
7249 : GET_MODE_BITSIZE (wanted_inner_mode));
7250
7251 if (pos_rtx == 0)
7252 pos = width - len - pos;
7253 else
7254 pos_rtx
7255 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
7256 /* POS may be less than 0 now, but we check for that below.
7257 Note that it can only be less than 0 if !MEM_P (inner). */
7258 }
7259
7260 /* If INNER has a wider mode, and this is a constant extraction, try to
7261 make it smaller and adjust the byte to point to the byte containing
7262 the value. */
7263 if (wanted_inner_mode != VOIDmode
7264 && inner_mode != wanted_inner_mode
7265 && ! pos_rtx
7266 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
7267 && MEM_P (inner)
7268 && ! mode_dependent_address_p (XEXP (inner, 0))
7269 && ! MEM_VOLATILE_P (inner))
7270 {
7271 int offset = 0;
7272
7273 /* The computations below will be correct if the machine is big
7274 endian in both bits and bytes or little endian in bits and bytes.
7275 If it is mixed, we must adjust. */
7276
7277 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7278 adjust OFFSET to compensate. */
7279 if (BYTES_BIG_ENDIAN
7280 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
7281 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7282
7283 /* We can now move to the desired byte. */
7284 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7285 * GET_MODE_SIZE (wanted_inner_mode);
7286 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7287
7288 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7289 && is_mode != wanted_inner_mode)
7290 offset = (GET_MODE_SIZE (is_mode)
7291 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7292
7293 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7294 }
7295
7296 /* If INNER is not memory, get it into the proper mode. If we are changing
7297 its mode, POS must be a constant and smaller than the size of the new
7298 mode. */
7299 else if (!MEM_P (inner))
7300 {
7301 /* On the LHS, don't create paradoxical subregs implicitely truncating
7302 the register unless TRULY_NOOP_TRUNCATION. */
7303 if (in_dest
7304 && !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (inner)),
7305 GET_MODE_BITSIZE (wanted_inner_mode)))
7306 return NULL_RTX;
7307
7308 if (GET_MODE (inner) != wanted_inner_mode
7309 && (pos_rtx != 0
7310 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7311 return NULL_RTX;
7312
7313 if (orig_pos < 0)
7314 return NULL_RTX;
7315
7316 inner = force_to_mode (inner, wanted_inner_mode,
7317 pos_rtx
7318 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7319 ? ~(unsigned HOST_WIDE_INT) 0
7320 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
7321 << orig_pos),
7322 0);
7323 }
7324
7325 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7326 have to zero extend. Otherwise, we can just use a SUBREG. */
7327 if (pos_rtx != 0
7328 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
7329 {
7330 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
7331
7332 /* If we know that no extraneous bits are set, and that the high
7333 bit is not set, convert extraction to cheaper one - either
7334 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7335 cases. */
7336 if (flag_expensive_optimizations
7337 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
7338 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7339 & ~(((unsigned HOST_WIDE_INT)
7340 GET_MODE_MASK (GET_MODE (pos_rtx)))
7341 >> 1))
7342 == 0)))
7343 {
7344 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
7345
7346 /* Prefer ZERO_EXTENSION, since it gives more information to
7347 backends. */
7348 if (rtx_cost (temp1, SET, optimize_this_for_speed_p)
7349 < rtx_cost (temp, SET, optimize_this_for_speed_p))
7350 temp = temp1;
7351 }
7352 pos_rtx = temp;
7353 }
7354 else if (pos_rtx != 0
7355 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
7356 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
7357
7358 /* Make POS_RTX unless we already have it and it is correct. If we don't
7359 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7360 be a CONST_INT. */
7361 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7362 pos_rtx = orig_pos_rtx;
7363
7364 else if (pos_rtx == 0)
7365 pos_rtx = GEN_INT (pos);
7366
7367 /* Make the required operation. See if we can use existing rtx. */
7368 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7369 extraction_mode, inner, GEN_INT (len), pos_rtx);
7370 if (! in_dest)
7371 new_rtx = gen_lowpart (mode, new_rtx);
7372
7373 return new_rtx;
7374 }
7375 \f
7376 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
7377 with any other operations in X. Return X without that shift if so. */
7378
7379 static rtx
7380 extract_left_shift (rtx x, int count)
7381 {
7382 enum rtx_code code = GET_CODE (x);
7383 enum machine_mode mode = GET_MODE (x);
7384 rtx tem;
7385
7386 switch (code)
7387 {
7388 case ASHIFT:
7389 /* This is the shift itself. If it is wide enough, we will return
7390 either the value being shifted if the shift count is equal to
7391 COUNT or a shift for the difference. */
7392 if (CONST_INT_P (XEXP (x, 1))
7393 && INTVAL (XEXP (x, 1)) >= count)
7394 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7395 INTVAL (XEXP (x, 1)) - count);
7396 break;
7397
7398 case NEG: case NOT:
7399 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7400 return simplify_gen_unary (code, mode, tem, mode);
7401
7402 break;
7403
7404 case PLUS: case IOR: case XOR: case AND:
7405 /* If we can safely shift this constant and we find the inner shift,
7406 make a new operation. */
7407 if (CONST_INT_P (XEXP (x, 1))
7408 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
7409 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7410 return simplify_gen_binary (code, mode, tem,
7411 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
7412
7413 break;
7414
7415 default:
7416 break;
7417 }
7418
7419 return 0;
7420 }
7421 \f
7422 /* Look at the expression rooted at X. Look for expressions
7423 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
7424 Form these expressions.
7425
7426 Return the new rtx, usually just X.
7427
7428 Also, for machines like the VAX that don't have logical shift insns,
7429 try to convert logical to arithmetic shift operations in cases where
7430 they are equivalent. This undoes the canonicalizations to logical
7431 shifts done elsewhere.
7432
7433 We try, as much as possible, to re-use rtl expressions to save memory.
7434
7435 IN_CODE says what kind of expression we are processing. Normally, it is
7436 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
7437 being kludges), it is MEM. When processing the arguments of a comparison
7438 or a COMPARE against zero, it is COMPARE. */
7439
7440 static rtx
7441 make_compound_operation (rtx x, enum rtx_code in_code)
7442 {
7443 enum rtx_code code = GET_CODE (x);
7444 enum machine_mode mode = GET_MODE (x);
7445 int mode_width = GET_MODE_BITSIZE (mode);
7446 rtx rhs, lhs;
7447 enum rtx_code next_code;
7448 int i, j;
7449 rtx new_rtx = 0;
7450 rtx tem;
7451 const char *fmt;
7452
7453 /* Select the code to be used in recursive calls. Once we are inside an
7454 address, we stay there. If we have a comparison, set to COMPARE,
7455 but once inside, go back to our default of SET. */
7456
7457 next_code = (code == MEM ? MEM
7458 : ((code == PLUS || code == MINUS)
7459 && SCALAR_INT_MODE_P (mode)) ? MEM
7460 : ((code == COMPARE || COMPARISON_P (x))
7461 && XEXP (x, 1) == const0_rtx) ? COMPARE
7462 : in_code == COMPARE ? SET : in_code);
7463
7464 /* Process depending on the code of this operation. If NEW is set
7465 nonzero, it will be returned. */
7466
7467 switch (code)
7468 {
7469 case ASHIFT:
7470 /* Convert shifts by constants into multiplications if inside
7471 an address. */
7472 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7473 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7474 && INTVAL (XEXP (x, 1)) >= 0)
7475 {
7476 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
7477 HOST_WIDE_INT multval = (HOST_WIDE_INT) 1 << count;
7478
7479 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7480 if (GET_CODE (new_rtx) == NEG)
7481 {
7482 new_rtx = XEXP (new_rtx, 0);
7483 multval = -multval;
7484 }
7485 multval = trunc_int_for_mode (multval, mode);
7486 new_rtx = gen_rtx_MULT (mode, new_rtx, GEN_INT (multval));
7487 }
7488 break;
7489
7490 case PLUS:
7491 lhs = XEXP (x, 0);
7492 rhs = XEXP (x, 1);
7493 lhs = make_compound_operation (lhs, next_code);
7494 rhs = make_compound_operation (rhs, next_code);
7495 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG
7496 && SCALAR_INT_MODE_P (mode))
7497 {
7498 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
7499 XEXP (lhs, 1));
7500 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7501 }
7502 else if (GET_CODE (lhs) == MULT
7503 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
7504 {
7505 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
7506 simplify_gen_unary (NEG, mode,
7507 XEXP (lhs, 1),
7508 mode));
7509 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7510 }
7511 else
7512 {
7513 SUBST (XEXP (x, 0), lhs);
7514 SUBST (XEXP (x, 1), rhs);
7515 goto maybe_swap;
7516 }
7517 x = gen_lowpart (mode, new_rtx);
7518 goto maybe_swap;
7519
7520 case MINUS:
7521 lhs = XEXP (x, 0);
7522 rhs = XEXP (x, 1);
7523 lhs = make_compound_operation (lhs, next_code);
7524 rhs = make_compound_operation (rhs, next_code);
7525 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG
7526 && SCALAR_INT_MODE_P (mode))
7527 {
7528 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
7529 XEXP (rhs, 1));
7530 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7531 }
7532 else if (GET_CODE (rhs) == MULT
7533 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
7534 {
7535 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
7536 simplify_gen_unary (NEG, mode,
7537 XEXP (rhs, 1),
7538 mode));
7539 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7540 }
7541 else
7542 {
7543 SUBST (XEXP (x, 0), lhs);
7544 SUBST (XEXP (x, 1), rhs);
7545 return x;
7546 }
7547 return gen_lowpart (mode, new_rtx);
7548
7549 case AND:
7550 /* If the second operand is not a constant, we can't do anything
7551 with it. */
7552 if (!CONST_INT_P (XEXP (x, 1)))
7553 break;
7554
7555 /* If the constant is a power of two minus one and the first operand
7556 is a logical right shift, make an extraction. */
7557 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7558 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
7559 {
7560 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7561 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
7562 0, in_code == COMPARE);
7563 }
7564
7565 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
7566 else if (GET_CODE (XEXP (x, 0)) == SUBREG
7567 && subreg_lowpart_p (XEXP (x, 0))
7568 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
7569 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
7570 {
7571 new_rtx = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
7572 next_code);
7573 new_rtx = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new_rtx, 0,
7574 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
7575 0, in_code == COMPARE);
7576 }
7577 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
7578 else if ((GET_CODE (XEXP (x, 0)) == XOR
7579 || GET_CODE (XEXP (x, 0)) == IOR)
7580 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
7581 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
7582 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
7583 {
7584 /* Apply the distributive law, and then try to make extractions. */
7585 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
7586 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
7587 XEXP (x, 1)),
7588 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
7589 XEXP (x, 1)));
7590 new_rtx = make_compound_operation (new_rtx, in_code);
7591 }
7592
7593 /* If we are have (and (rotate X C) M) and C is larger than the number
7594 of bits in M, this is an extraction. */
7595
7596 else if (GET_CODE (XEXP (x, 0)) == ROTATE
7597 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7598 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
7599 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
7600 {
7601 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7602 new_rtx = make_extraction (mode, new_rtx,
7603 (GET_MODE_BITSIZE (mode)
7604 - INTVAL (XEXP (XEXP (x, 0), 1))),
7605 NULL_RTX, i, 1, 0, in_code == COMPARE);
7606 }
7607
7608 /* On machines without logical shifts, if the operand of the AND is
7609 a logical shift and our mask turns off all the propagated sign
7610 bits, we can replace the logical shift with an arithmetic shift. */
7611 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7612 && !have_insn_for (LSHIFTRT, mode)
7613 && have_insn_for (ASHIFTRT, mode)
7614 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7615 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7616 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7617 && mode_width <= HOST_BITS_PER_WIDE_INT)
7618 {
7619 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
7620
7621 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
7622 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
7623 SUBST (XEXP (x, 0),
7624 gen_rtx_ASHIFTRT (mode,
7625 make_compound_operation
7626 (XEXP (XEXP (x, 0), 0), next_code),
7627 XEXP (XEXP (x, 0), 1)));
7628 }
7629
7630 /* If the constant is one less than a power of two, this might be
7631 representable by an extraction even if no shift is present.
7632 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
7633 we are in a COMPARE. */
7634 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
7635 new_rtx = make_extraction (mode,
7636 make_compound_operation (XEXP (x, 0),
7637 next_code),
7638 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
7639
7640 /* If we are in a comparison and this is an AND with a power of two,
7641 convert this into the appropriate bit extract. */
7642 else if (in_code == COMPARE
7643 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
7644 new_rtx = make_extraction (mode,
7645 make_compound_operation (XEXP (x, 0),
7646 next_code),
7647 i, NULL_RTX, 1, 1, 0, 1);
7648
7649 break;
7650
7651 case LSHIFTRT:
7652 /* If the sign bit is known to be zero, replace this with an
7653 arithmetic shift. */
7654 if (have_insn_for (ASHIFTRT, mode)
7655 && ! have_insn_for (LSHIFTRT, mode)
7656 && mode_width <= HOST_BITS_PER_WIDE_INT
7657 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
7658 {
7659 new_rtx = gen_rtx_ASHIFTRT (mode,
7660 make_compound_operation (XEXP (x, 0),
7661 next_code),
7662 XEXP (x, 1));
7663 break;
7664 }
7665
7666 /* ... fall through ... */
7667
7668 case ASHIFTRT:
7669 lhs = XEXP (x, 0);
7670 rhs = XEXP (x, 1);
7671
7672 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
7673 this is a SIGN_EXTRACT. */
7674 if (CONST_INT_P (rhs)
7675 && GET_CODE (lhs) == ASHIFT
7676 && CONST_INT_P (XEXP (lhs, 1))
7677 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
7678 && INTVAL (rhs) < mode_width)
7679 {
7680 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
7681 new_rtx = make_extraction (mode, new_rtx,
7682 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
7683 NULL_RTX, mode_width - INTVAL (rhs),
7684 code == LSHIFTRT, 0, in_code == COMPARE);
7685 break;
7686 }
7687
7688 /* See if we have operations between an ASHIFTRT and an ASHIFT.
7689 If so, try to merge the shifts into a SIGN_EXTEND. We could
7690 also do this for some cases of SIGN_EXTRACT, but it doesn't
7691 seem worth the effort; the case checked for occurs on Alpha. */
7692
7693 if (!OBJECT_P (lhs)
7694 && ! (GET_CODE (lhs) == SUBREG
7695 && (OBJECT_P (SUBREG_REG (lhs))))
7696 && CONST_INT_P (rhs)
7697 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
7698 && INTVAL (rhs) < mode_width
7699 && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
7700 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
7701 0, NULL_RTX, mode_width - INTVAL (rhs),
7702 code == LSHIFTRT, 0, in_code == COMPARE);
7703
7704 break;
7705
7706 case SUBREG:
7707 /* Call ourselves recursively on the inner expression. If we are
7708 narrowing the object and it has a different RTL code from
7709 what it originally did, do this SUBREG as a force_to_mode. */
7710 {
7711 rtx inner = SUBREG_REG (x), simplified;
7712
7713 tem = make_compound_operation (inner, in_code);
7714
7715 simplified
7716 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
7717 if (simplified)
7718 tem = simplified;
7719
7720 if (GET_CODE (tem) != GET_CODE (inner)
7721 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
7722 && subreg_lowpart_p (x))
7723 {
7724 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0, 0);
7725
7726 /* If we have something other than a SUBREG, we might have
7727 done an expansion, so rerun ourselves. */
7728 if (GET_CODE (newer) != SUBREG)
7729 newer = make_compound_operation (newer, in_code);
7730
7731 /* force_to_mode can expand compounds. If it just re-expanded the
7732 compound, use gen_lowpart to convert to the desired mode. */
7733 if (rtx_equal_p (newer, x)
7734 /* Likewise if it re-expanded the compound only partially.
7735 This happens for SUBREG of ZERO_EXTRACT if they extract
7736 the same number of bits. */
7737 || (GET_CODE (newer) == SUBREG
7738 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
7739 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
7740 && GET_CODE (inner) == AND
7741 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
7742 return gen_lowpart (GET_MODE (x), tem);
7743
7744 return newer;
7745 }
7746
7747 if (simplified)
7748 return tem;
7749 }
7750 break;
7751
7752 default:
7753 break;
7754 }
7755
7756 if (new_rtx)
7757 {
7758 x = gen_lowpart (mode, new_rtx);
7759 code = GET_CODE (x);
7760 }
7761
7762 /* Now recursively process each operand of this operation. */
7763 fmt = GET_RTX_FORMAT (code);
7764 for (i = 0; i < GET_RTX_LENGTH (code); i++)
7765 if (fmt[i] == 'e')
7766 {
7767 new_rtx = make_compound_operation (XEXP (x, i), next_code);
7768 SUBST (XEXP (x, i), new_rtx);
7769 }
7770 else if (fmt[i] == 'E')
7771 for (j = 0; j < XVECLEN (x, i); j++)
7772 {
7773 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
7774 SUBST (XVECEXP (x, i, j), new_rtx);
7775 }
7776
7777 maybe_swap:
7778 /* If this is a commutative operation, the changes to the operands
7779 may have made it noncanonical. */
7780 if (COMMUTATIVE_ARITH_P (x)
7781 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
7782 {
7783 tem = XEXP (x, 0);
7784 SUBST (XEXP (x, 0), XEXP (x, 1));
7785 SUBST (XEXP (x, 1), tem);
7786 }
7787
7788 return x;
7789 }
7790 \f
7791 /* Given M see if it is a value that would select a field of bits
7792 within an item, but not the entire word. Return -1 if not.
7793 Otherwise, return the starting position of the field, where 0 is the
7794 low-order bit.
7795
7796 *PLEN is set to the length of the field. */
7797
7798 static int
7799 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
7800 {
7801 /* Get the bit number of the first 1 bit from the right, -1 if none. */
7802 int pos = m ? ctz_hwi (m) : -1;
7803 int len = 0;
7804
7805 if (pos >= 0)
7806 /* Now shift off the low-order zero bits and see if we have a
7807 power of two minus 1. */
7808 len = exact_log2 ((m >> pos) + 1);
7809
7810 if (len <= 0)
7811 pos = -1;
7812
7813 *plen = len;
7814 return pos;
7815 }
7816 \f
7817 /* If X refers to a register that equals REG in value, replace these
7818 references with REG. */
7819 static rtx
7820 canon_reg_for_combine (rtx x, rtx reg)
7821 {
7822 rtx op0, op1, op2;
7823 const char *fmt;
7824 int i;
7825 bool copied;
7826
7827 enum rtx_code code = GET_CODE (x);
7828 switch (GET_RTX_CLASS (code))
7829 {
7830 case RTX_UNARY:
7831 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7832 if (op0 != XEXP (x, 0))
7833 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
7834 GET_MODE (reg));
7835 break;
7836
7837 case RTX_BIN_ARITH:
7838 case RTX_COMM_ARITH:
7839 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7840 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7841 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7842 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
7843 break;
7844
7845 case RTX_COMPARE:
7846 case RTX_COMM_COMPARE:
7847 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7848 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7849 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7850 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
7851 GET_MODE (op0), op0, op1);
7852 break;
7853
7854 case RTX_TERNARY:
7855 case RTX_BITFIELD_OPS:
7856 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7857 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7858 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
7859 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
7860 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
7861 GET_MODE (op0), op0, op1, op2);
7862
7863 case RTX_OBJ:
7864 if (REG_P (x))
7865 {
7866 if (rtx_equal_p (get_last_value (reg), x)
7867 || rtx_equal_p (reg, get_last_value (x)))
7868 return reg;
7869 else
7870 break;
7871 }
7872
7873 /* fall through */
7874
7875 default:
7876 fmt = GET_RTX_FORMAT (code);
7877 copied = false;
7878 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7879 if (fmt[i] == 'e')
7880 {
7881 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
7882 if (op != XEXP (x, i))
7883 {
7884 if (!copied)
7885 {
7886 copied = true;
7887 x = copy_rtx (x);
7888 }
7889 XEXP (x, i) = op;
7890 }
7891 }
7892 else if (fmt[i] == 'E')
7893 {
7894 int j;
7895 for (j = 0; j < XVECLEN (x, i); j++)
7896 {
7897 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
7898 if (op != XVECEXP (x, i, j))
7899 {
7900 if (!copied)
7901 {
7902 copied = true;
7903 x = copy_rtx (x);
7904 }
7905 XVECEXP (x, i, j) = op;
7906 }
7907 }
7908 }
7909
7910 break;
7911 }
7912
7913 return x;
7914 }
7915
7916 /* Return X converted to MODE. If the value is already truncated to
7917 MODE we can just return a subreg even though in the general case we
7918 would need an explicit truncation. */
7919
7920 static rtx
7921 gen_lowpart_or_truncate (enum machine_mode mode, rtx x)
7922 {
7923 if (!CONST_INT_P (x)
7924 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
7925 && !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
7926 GET_MODE_BITSIZE (GET_MODE (x)))
7927 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
7928 {
7929 /* Bit-cast X into an integer mode. */
7930 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
7931 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)), x);
7932 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode),
7933 x, GET_MODE (x));
7934 }
7935
7936 return gen_lowpart (mode, x);
7937 }
7938
7939 /* See if X can be simplified knowing that we will only refer to it in
7940 MODE and will only refer to those bits that are nonzero in MASK.
7941 If other bits are being computed or if masking operations are done
7942 that select a superset of the bits in MASK, they can sometimes be
7943 ignored.
7944
7945 Return a possibly simplified expression, but always convert X to
7946 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
7947
7948 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
7949 are all off in X. This is used when X will be complemented, by either
7950 NOT, NEG, or XOR. */
7951
7952 static rtx
7953 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
7954 int just_select)
7955 {
7956 enum rtx_code code = GET_CODE (x);
7957 int next_select = just_select || code == XOR || code == NOT || code == NEG;
7958 enum machine_mode op_mode;
7959 unsigned HOST_WIDE_INT fuller_mask, nonzero;
7960 rtx op0, op1, temp;
7961
7962 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
7963 code below will do the wrong thing since the mode of such an
7964 expression is VOIDmode.
7965
7966 Also do nothing if X is a CLOBBER; this can happen if X was
7967 the return value from a call to gen_lowpart. */
7968 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
7969 return x;
7970
7971 /* We want to perform the operation is its present mode unless we know
7972 that the operation is valid in MODE, in which case we do the operation
7973 in MODE. */
7974 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
7975 && have_insn_for (code, mode))
7976 ? mode : GET_MODE (x));
7977
7978 /* It is not valid to do a right-shift in a narrower mode
7979 than the one it came in with. */
7980 if ((code == LSHIFTRT || code == ASHIFTRT)
7981 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
7982 op_mode = GET_MODE (x);
7983
7984 /* Truncate MASK to fit OP_MODE. */
7985 if (op_mode)
7986 mask &= GET_MODE_MASK (op_mode);
7987
7988 /* When we have an arithmetic operation, or a shift whose count we
7989 do not know, we need to assume that all bits up to the highest-order
7990 bit in MASK will be needed. This is how we form such a mask. */
7991 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
7992 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
7993 else
7994 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
7995 - 1);
7996
7997 /* Determine what bits of X are guaranteed to be (non)zero. */
7998 nonzero = nonzero_bits (x, mode);
7999
8000 /* If none of the bits in X are needed, return a zero. */
8001 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8002 x = const0_rtx;
8003
8004 /* If X is a CONST_INT, return a new one. Do this here since the
8005 test below will fail. */
8006 if (CONST_INT_P (x))
8007 {
8008 if (SCALAR_INT_MODE_P (mode))
8009 return gen_int_mode (INTVAL (x) & mask, mode);
8010 else
8011 {
8012 x = GEN_INT (INTVAL (x) & mask);
8013 return gen_lowpart_common (mode, x);
8014 }
8015 }
8016
8017 /* If X is narrower than MODE and we want all the bits in X's mode, just
8018 get X in the proper mode. */
8019 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
8020 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8021 return gen_lowpart (mode, x);
8022
8023 /* We can ignore the effect of a SUBREG if it narrows the mode or
8024 if the constant masks to zero all the bits the mode doesn't have. */
8025 if (GET_CODE (x) == SUBREG
8026 && subreg_lowpart_p (x)
8027 && ((GET_MODE_SIZE (GET_MODE (x))
8028 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8029 || (0 == (mask
8030 & GET_MODE_MASK (GET_MODE (x))
8031 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
8032 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8033
8034 /* The arithmetic simplifications here only work for scalar integer modes. */
8035 if (!SCALAR_INT_MODE_P (mode) || !SCALAR_INT_MODE_P (GET_MODE (x)))
8036 return gen_lowpart_or_truncate (mode, x);
8037
8038 switch (code)
8039 {
8040 case CLOBBER:
8041 /* If X is a (clobber (const_int)), return it since we know we are
8042 generating something that won't match. */
8043 return x;
8044
8045 case SIGN_EXTEND:
8046 case ZERO_EXTEND:
8047 case ZERO_EXTRACT:
8048 case SIGN_EXTRACT:
8049 x = expand_compound_operation (x);
8050 if (GET_CODE (x) != code)
8051 return force_to_mode (x, mode, mask, next_select);
8052 break;
8053
8054 case TRUNCATE:
8055 /* Similarly for a truncate. */
8056 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8057
8058 case AND:
8059 /* If this is an AND with a constant, convert it into an AND
8060 whose constant is the AND of that constant with MASK. If it
8061 remains an AND of MASK, delete it since it is redundant. */
8062
8063 if (CONST_INT_P (XEXP (x, 1)))
8064 {
8065 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8066 mask & INTVAL (XEXP (x, 1)));
8067
8068 /* If X is still an AND, see if it is an AND with a mask that
8069 is just some low-order bits. If so, and it is MASK, we don't
8070 need it. */
8071
8072 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8073 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
8074 == mask))
8075 x = XEXP (x, 0);
8076
8077 /* If it remains an AND, try making another AND with the bits
8078 in the mode mask that aren't in MASK turned on. If the
8079 constant in the AND is wide enough, this might make a
8080 cheaper constant. */
8081
8082 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8083 && GET_MODE_MASK (GET_MODE (x)) != mask
8084 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
8085 {
8086 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
8087 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
8088 int width = GET_MODE_BITSIZE (GET_MODE (x));
8089 rtx y;
8090
8091 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
8092 number, sign extend it. */
8093 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
8094 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
8095 cval |= (HOST_WIDE_INT) -1 << width;
8096
8097 y = simplify_gen_binary (AND, GET_MODE (x),
8098 XEXP (x, 0), GEN_INT (cval));
8099 if (rtx_cost (y, SET, optimize_this_for_speed_p)
8100 < rtx_cost (x, SET, optimize_this_for_speed_p))
8101 x = y;
8102 }
8103
8104 break;
8105 }
8106
8107 goto binop;
8108
8109 case PLUS:
8110 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8111 low-order bits (as in an alignment operation) and FOO is already
8112 aligned to that boundary, mask C1 to that boundary as well.
8113 This may eliminate that PLUS and, later, the AND. */
8114
8115 {
8116 unsigned int width = GET_MODE_BITSIZE (mode);
8117 unsigned HOST_WIDE_INT smask = mask;
8118
8119 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8120 number, sign extend it. */
8121
8122 if (width < HOST_BITS_PER_WIDE_INT
8123 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
8124 smask |= (HOST_WIDE_INT) -1 << width;
8125
8126 if (CONST_INT_P (XEXP (x, 1))
8127 && exact_log2 (- smask) >= 0
8128 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8129 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8130 return force_to_mode (plus_constant (XEXP (x, 0),
8131 (INTVAL (XEXP (x, 1)) & smask)),
8132 mode, smask, next_select);
8133 }
8134
8135 /* ... fall through ... */
8136
8137 case MULT:
8138 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8139 most significant bit in MASK since carries from those bits will
8140 affect the bits we are interested in. */
8141 mask = fuller_mask;
8142 goto binop;
8143
8144 case MINUS:
8145 /* If X is (minus C Y) where C's least set bit is larger than any bit
8146 in the mask, then we may replace with (neg Y). */
8147 if (CONST_INT_P (XEXP (x, 0))
8148 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
8149 & -INTVAL (XEXP (x, 0))))
8150 > mask))
8151 {
8152 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
8153 GET_MODE (x));
8154 return force_to_mode (x, mode, mask, next_select);
8155 }
8156
8157 /* Similarly, if C contains every bit in the fuller_mask, then we may
8158 replace with (not Y). */
8159 if (CONST_INT_P (XEXP (x, 0))
8160 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
8161 == INTVAL (XEXP (x, 0))))
8162 {
8163 x = simplify_gen_unary (NOT, GET_MODE (x),
8164 XEXP (x, 1), GET_MODE (x));
8165 return force_to_mode (x, mode, mask, next_select);
8166 }
8167
8168 mask = fuller_mask;
8169 goto binop;
8170
8171 case IOR:
8172 case XOR:
8173 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8174 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8175 operation which may be a bitfield extraction. Ensure that the
8176 constant we form is not wider than the mode of X. */
8177
8178 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8179 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8180 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8181 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8182 && CONST_INT_P (XEXP (x, 1))
8183 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8184 + floor_log2 (INTVAL (XEXP (x, 1))))
8185 < GET_MODE_BITSIZE (GET_MODE (x)))
8186 && (INTVAL (XEXP (x, 1))
8187 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
8188 {
8189 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
8190 << INTVAL (XEXP (XEXP (x, 0), 1)));
8191 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
8192 XEXP (XEXP (x, 0), 0), temp);
8193 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
8194 XEXP (XEXP (x, 0), 1));
8195 return force_to_mode (x, mode, mask, next_select);
8196 }
8197
8198 binop:
8199 /* For most binary operations, just propagate into the operation and
8200 change the mode if we have an operation of that mode. */
8201
8202 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8203 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8204
8205 /* If we ended up truncating both operands, truncate the result of the
8206 operation instead. */
8207 if (GET_CODE (op0) == TRUNCATE
8208 && GET_CODE (op1) == TRUNCATE)
8209 {
8210 op0 = XEXP (op0, 0);
8211 op1 = XEXP (op1, 0);
8212 }
8213
8214 op0 = gen_lowpart_or_truncate (op_mode, op0);
8215 op1 = gen_lowpart_or_truncate (op_mode, op1);
8216
8217 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8218 x = simplify_gen_binary (code, op_mode, op0, op1);
8219 break;
8220
8221 case ASHIFT:
8222 /* For left shifts, do the same, but just for the first operand.
8223 However, we cannot do anything with shifts where we cannot
8224 guarantee that the counts are smaller than the size of the mode
8225 because such a count will have a different meaning in a
8226 wider mode. */
8227
8228 if (! (CONST_INT_P (XEXP (x, 1))
8229 && INTVAL (XEXP (x, 1)) >= 0
8230 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
8231 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8232 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8233 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
8234 break;
8235
8236 /* If the shift count is a constant and we can do arithmetic in
8237 the mode of the shift, refine which bits we need. Otherwise, use the
8238 conservative form of the mask. */
8239 if (CONST_INT_P (XEXP (x, 1))
8240 && INTVAL (XEXP (x, 1)) >= 0
8241 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
8242 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
8243 mask >>= INTVAL (XEXP (x, 1));
8244 else
8245 mask = fuller_mask;
8246
8247 op0 = gen_lowpart_or_truncate (op_mode,
8248 force_to_mode (XEXP (x, 0), op_mode,
8249 mask, next_select));
8250
8251 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8252 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8253 break;
8254
8255 case LSHIFTRT:
8256 /* Here we can only do something if the shift count is a constant,
8257 this shift constant is valid for the host, and we can do arithmetic
8258 in OP_MODE. */
8259
8260 if (CONST_INT_P (XEXP (x, 1))
8261 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8262 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
8263 {
8264 rtx inner = XEXP (x, 0);
8265 unsigned HOST_WIDE_INT inner_mask;
8266
8267 /* Select the mask of the bits we need for the shift operand. */
8268 inner_mask = mask << INTVAL (XEXP (x, 1));
8269
8270 /* We can only change the mode of the shift if we can do arithmetic
8271 in the mode of the shift and INNER_MASK is no wider than the
8272 width of X's mode. */
8273 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
8274 op_mode = GET_MODE (x);
8275
8276 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8277
8278 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
8279 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8280 }
8281
8282 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8283 shift and AND produces only copies of the sign bit (C2 is one less
8284 than a power of two), we can do this with just a shift. */
8285
8286 if (GET_CODE (x) == LSHIFTRT
8287 && CONST_INT_P (XEXP (x, 1))
8288 /* The shift puts one of the sign bit copies in the least significant
8289 bit. */
8290 && ((INTVAL (XEXP (x, 1))
8291 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8292 >= GET_MODE_BITSIZE (GET_MODE (x)))
8293 && exact_log2 (mask + 1) >= 0
8294 /* Number of bits left after the shift must be more than the mask
8295 needs. */
8296 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
8297 <= GET_MODE_BITSIZE (GET_MODE (x)))
8298 /* Must be more sign bit copies than the mask needs. */
8299 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
8300 >= exact_log2 (mask + 1)))
8301 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8302 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
8303 - exact_log2 (mask + 1)));
8304
8305 goto shiftrt;
8306
8307 case ASHIFTRT:
8308 /* If we are just looking for the sign bit, we don't need this shift at
8309 all, even if it has a variable count. */
8310 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
8311 && (mask == ((unsigned HOST_WIDE_INT) 1
8312 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8313 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8314
8315 /* If this is a shift by a constant, get a mask that contains those bits
8316 that are not copies of the sign bit. We then have two cases: If
8317 MASK only includes those bits, this can be a logical shift, which may
8318 allow simplifications. If MASK is a single-bit field not within
8319 those bits, we are requesting a copy of the sign bit and hence can
8320 shift the sign bit to the appropriate location. */
8321
8322 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
8323 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8324 {
8325 int i;
8326
8327 /* If the considered data is wider than HOST_WIDE_INT, we can't
8328 represent a mask for all its bits in a single scalar.
8329 But we only care about the lower bits, so calculate these. */
8330
8331 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
8332 {
8333 nonzero = ~(HOST_WIDE_INT) 0;
8334
8335 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8336 is the number of bits a full-width mask would have set.
8337 We need only shift if these are fewer than nonzero can
8338 hold. If not, we must keep all bits set in nonzero. */
8339
8340 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8341 < HOST_BITS_PER_WIDE_INT)
8342 nonzero >>= INTVAL (XEXP (x, 1))
8343 + HOST_BITS_PER_WIDE_INT
8344 - GET_MODE_BITSIZE (GET_MODE (x)) ;
8345 }
8346 else
8347 {
8348 nonzero = GET_MODE_MASK (GET_MODE (x));
8349 nonzero >>= INTVAL (XEXP (x, 1));
8350 }
8351
8352 if ((mask & ~nonzero) == 0)
8353 {
8354 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
8355 XEXP (x, 0), INTVAL (XEXP (x, 1)));
8356 if (GET_CODE (x) != ASHIFTRT)
8357 return force_to_mode (x, mode, mask, next_select);
8358 }
8359
8360 else if ((i = exact_log2 (mask)) >= 0)
8361 {
8362 x = simplify_shift_const
8363 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8364 GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
8365
8366 if (GET_CODE (x) != ASHIFTRT)
8367 return force_to_mode (x, mode, mask, next_select);
8368 }
8369 }
8370
8371 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
8372 even if the shift count isn't a constant. */
8373 if (mask == 1)
8374 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8375 XEXP (x, 0), XEXP (x, 1));
8376
8377 shiftrt:
8378
8379 /* If this is a zero- or sign-extension operation that just affects bits
8380 we don't care about, remove it. Be sure the call above returned
8381 something that is still a shift. */
8382
8383 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
8384 && CONST_INT_P (XEXP (x, 1))
8385 && INTVAL (XEXP (x, 1)) >= 0
8386 && (INTVAL (XEXP (x, 1))
8387 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
8388 && GET_CODE (XEXP (x, 0)) == ASHIFT
8389 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
8390 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
8391 next_select);
8392
8393 break;
8394
8395 case ROTATE:
8396 case ROTATERT:
8397 /* If the shift count is constant and we can do computations
8398 in the mode of X, compute where the bits we care about are.
8399 Otherwise, we can't do anything. Don't change the mode of
8400 the shift or propagate MODE into the shift, though. */
8401 if (CONST_INT_P (XEXP (x, 1))
8402 && INTVAL (XEXP (x, 1)) >= 0)
8403 {
8404 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
8405 GET_MODE (x), GEN_INT (mask),
8406 XEXP (x, 1));
8407 if (temp && CONST_INT_P (temp))
8408 SUBST (XEXP (x, 0),
8409 force_to_mode (XEXP (x, 0), GET_MODE (x),
8410 INTVAL (temp), next_select));
8411 }
8412 break;
8413
8414 case NEG:
8415 /* If we just want the low-order bit, the NEG isn't needed since it
8416 won't change the low-order bit. */
8417 if (mask == 1)
8418 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
8419
8420 /* We need any bits less significant than the most significant bit in
8421 MASK since carries from those bits will affect the bits we are
8422 interested in. */
8423 mask = fuller_mask;
8424 goto unop;
8425
8426 case NOT:
8427 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
8428 same as the XOR case above. Ensure that the constant we form is not
8429 wider than the mode of X. */
8430
8431 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8432 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8433 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8434 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
8435 < GET_MODE_BITSIZE (GET_MODE (x)))
8436 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
8437 {
8438 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
8439 GET_MODE (x));
8440 temp = simplify_gen_binary (XOR, GET_MODE (x),
8441 XEXP (XEXP (x, 0), 0), temp);
8442 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8443 temp, XEXP (XEXP (x, 0), 1));
8444
8445 return force_to_mode (x, mode, mask, next_select);
8446 }
8447
8448 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
8449 use the full mask inside the NOT. */
8450 mask = fuller_mask;
8451
8452 unop:
8453 op0 = gen_lowpart_or_truncate (op_mode,
8454 force_to_mode (XEXP (x, 0), mode, mask,
8455 next_select));
8456 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8457 x = simplify_gen_unary (code, op_mode, op0, op_mode);
8458 break;
8459
8460 case NE:
8461 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
8462 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
8463 which is equal to STORE_FLAG_VALUE. */
8464 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
8465 && GET_MODE (XEXP (x, 0)) == mode
8466 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
8467 && (nonzero_bits (XEXP (x, 0), mode)
8468 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
8469 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8470
8471 break;
8472
8473 case IF_THEN_ELSE:
8474 /* We have no way of knowing if the IF_THEN_ELSE can itself be
8475 written in a narrower mode. We play it safe and do not do so. */
8476
8477 SUBST (XEXP (x, 1),
8478 gen_lowpart_or_truncate (GET_MODE (x),
8479 force_to_mode (XEXP (x, 1), mode,
8480 mask, next_select)));
8481 SUBST (XEXP (x, 2),
8482 gen_lowpart_or_truncate (GET_MODE (x),
8483 force_to_mode (XEXP (x, 2), mode,
8484 mask, next_select)));
8485 break;
8486
8487 default:
8488 break;
8489 }
8490
8491 /* Ensure we return a value of the proper mode. */
8492 return gen_lowpart_or_truncate (mode, x);
8493 }
8494 \f
8495 /* Return nonzero if X is an expression that has one of two values depending on
8496 whether some other value is zero or nonzero. In that case, we return the
8497 value that is being tested, *PTRUE is set to the value if the rtx being
8498 returned has a nonzero value, and *PFALSE is set to the other alternative.
8499
8500 If we return zero, we set *PTRUE and *PFALSE to X. */
8501
8502 static rtx
8503 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
8504 {
8505 enum machine_mode mode = GET_MODE (x);
8506 enum rtx_code code = GET_CODE (x);
8507 rtx cond0, cond1, true0, true1, false0, false1;
8508 unsigned HOST_WIDE_INT nz;
8509
8510 /* If we are comparing a value against zero, we are done. */
8511 if ((code == NE || code == EQ)
8512 && XEXP (x, 1) == const0_rtx)
8513 {
8514 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
8515 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
8516 return XEXP (x, 0);
8517 }
8518
8519 /* If this is a unary operation whose operand has one of two values, apply
8520 our opcode to compute those values. */
8521 else if (UNARY_P (x)
8522 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
8523 {
8524 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
8525 *pfalse = simplify_gen_unary (code, mode, false0,
8526 GET_MODE (XEXP (x, 0)));
8527 return cond0;
8528 }
8529
8530 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
8531 make can't possibly match and would suppress other optimizations. */
8532 else if (code == COMPARE)
8533 ;
8534
8535 /* If this is a binary operation, see if either side has only one of two
8536 values. If either one does or if both do and they are conditional on
8537 the same value, compute the new true and false values. */
8538 else if (BINARY_P (x))
8539 {
8540 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
8541 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
8542
8543 if ((cond0 != 0 || cond1 != 0)
8544 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
8545 {
8546 /* If if_then_else_cond returned zero, then true/false are the
8547 same rtl. We must copy one of them to prevent invalid rtl
8548 sharing. */
8549 if (cond0 == 0)
8550 true0 = copy_rtx (true0);
8551 else if (cond1 == 0)
8552 true1 = copy_rtx (true1);
8553
8554 if (COMPARISON_P (x))
8555 {
8556 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
8557 true0, true1);
8558 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
8559 false0, false1);
8560 }
8561 else
8562 {
8563 *ptrue = simplify_gen_binary (code, mode, true0, true1);
8564 *pfalse = simplify_gen_binary (code, mode, false0, false1);
8565 }
8566
8567 return cond0 ? cond0 : cond1;
8568 }
8569
8570 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
8571 operands is zero when the other is nonzero, and vice-versa,
8572 and STORE_FLAG_VALUE is 1 or -1. */
8573
8574 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8575 && (code == PLUS || code == IOR || code == XOR || code == MINUS
8576 || code == UMAX)
8577 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8578 {
8579 rtx op0 = XEXP (XEXP (x, 0), 1);
8580 rtx op1 = XEXP (XEXP (x, 1), 1);
8581
8582 cond0 = XEXP (XEXP (x, 0), 0);
8583 cond1 = XEXP (XEXP (x, 1), 0);
8584
8585 if (COMPARISON_P (cond0)
8586 && COMPARISON_P (cond1)
8587 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8588 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8589 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8590 || ((swap_condition (GET_CODE (cond0))
8591 == reversed_comparison_code (cond1, NULL))
8592 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8593 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8594 && ! side_effects_p (x))
8595 {
8596 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
8597 *pfalse = simplify_gen_binary (MULT, mode,
8598 (code == MINUS
8599 ? simplify_gen_unary (NEG, mode,
8600 op1, mode)
8601 : op1),
8602 const_true_rtx);
8603 return cond0;
8604 }
8605 }
8606
8607 /* Similarly for MULT, AND and UMIN, except that for these the result
8608 is always zero. */
8609 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8610 && (code == MULT || code == AND || code == UMIN)
8611 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8612 {
8613 cond0 = XEXP (XEXP (x, 0), 0);
8614 cond1 = XEXP (XEXP (x, 1), 0);
8615
8616 if (COMPARISON_P (cond0)
8617 && COMPARISON_P (cond1)
8618 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8619 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8620 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8621 || ((swap_condition (GET_CODE (cond0))
8622 == reversed_comparison_code (cond1, NULL))
8623 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8624 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8625 && ! side_effects_p (x))
8626 {
8627 *ptrue = *pfalse = const0_rtx;
8628 return cond0;
8629 }
8630 }
8631 }
8632
8633 else if (code == IF_THEN_ELSE)
8634 {
8635 /* If we have IF_THEN_ELSE already, extract the condition and
8636 canonicalize it if it is NE or EQ. */
8637 cond0 = XEXP (x, 0);
8638 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
8639 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
8640 return XEXP (cond0, 0);
8641 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
8642 {
8643 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
8644 return XEXP (cond0, 0);
8645 }
8646 else
8647 return cond0;
8648 }
8649
8650 /* If X is a SUBREG, we can narrow both the true and false values
8651 if the inner expression, if there is a condition. */
8652 else if (code == SUBREG
8653 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
8654 &true0, &false0)))
8655 {
8656 true0 = simplify_gen_subreg (mode, true0,
8657 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8658 false0 = simplify_gen_subreg (mode, false0,
8659 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8660 if (true0 && false0)
8661 {
8662 *ptrue = true0;
8663 *pfalse = false0;
8664 return cond0;
8665 }
8666 }
8667
8668 /* If X is a constant, this isn't special and will cause confusions
8669 if we treat it as such. Likewise if it is equivalent to a constant. */
8670 else if (CONSTANT_P (x)
8671 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
8672 ;
8673
8674 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
8675 will be least confusing to the rest of the compiler. */
8676 else if (mode == BImode)
8677 {
8678 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
8679 return x;
8680 }
8681
8682 /* If X is known to be either 0 or -1, those are the true and
8683 false values when testing X. */
8684 else if (x == constm1_rtx || x == const0_rtx
8685 || (mode != VOIDmode
8686 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
8687 {
8688 *ptrue = constm1_rtx, *pfalse = const0_rtx;
8689 return x;
8690 }
8691
8692 /* Likewise for 0 or a single bit. */
8693 else if (SCALAR_INT_MODE_P (mode)
8694 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8695 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
8696 {
8697 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
8698 return x;
8699 }
8700
8701 /* Otherwise fail; show no condition with true and false values the same. */
8702 *ptrue = *pfalse = x;
8703 return 0;
8704 }
8705 \f
8706 /* Return the value of expression X given the fact that condition COND
8707 is known to be true when applied to REG as its first operand and VAL
8708 as its second. X is known to not be shared and so can be modified in
8709 place.
8710
8711 We only handle the simplest cases, and specifically those cases that
8712 arise with IF_THEN_ELSE expressions. */
8713
8714 static rtx
8715 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
8716 {
8717 enum rtx_code code = GET_CODE (x);
8718 rtx temp;
8719 const char *fmt;
8720 int i, j;
8721
8722 if (side_effects_p (x))
8723 return x;
8724
8725 /* If either operand of the condition is a floating point value,
8726 then we have to avoid collapsing an EQ comparison. */
8727 if (cond == EQ
8728 && rtx_equal_p (x, reg)
8729 && ! FLOAT_MODE_P (GET_MODE (x))
8730 && ! FLOAT_MODE_P (GET_MODE (val)))
8731 return val;
8732
8733 if (cond == UNEQ && rtx_equal_p (x, reg))
8734 return val;
8735
8736 /* If X is (abs REG) and we know something about REG's relationship
8737 with zero, we may be able to simplify this. */
8738
8739 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
8740 switch (cond)
8741 {
8742 case GE: case GT: case EQ:
8743 return XEXP (x, 0);
8744 case LT: case LE:
8745 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
8746 XEXP (x, 0),
8747 GET_MODE (XEXP (x, 0)));
8748 default:
8749 break;
8750 }
8751
8752 /* The only other cases we handle are MIN, MAX, and comparisons if the
8753 operands are the same as REG and VAL. */
8754
8755 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
8756 {
8757 if (rtx_equal_p (XEXP (x, 0), val))
8758 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
8759
8760 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
8761 {
8762 if (COMPARISON_P (x))
8763 {
8764 if (comparison_dominates_p (cond, code))
8765 return const_true_rtx;
8766
8767 code = reversed_comparison_code (x, NULL);
8768 if (code != UNKNOWN
8769 && comparison_dominates_p (cond, code))
8770 return const0_rtx;
8771 else
8772 return x;
8773 }
8774 else if (code == SMAX || code == SMIN
8775 || code == UMIN || code == UMAX)
8776 {
8777 int unsignedp = (code == UMIN || code == UMAX);
8778
8779 /* Do not reverse the condition when it is NE or EQ.
8780 This is because we cannot conclude anything about
8781 the value of 'SMAX (x, y)' when x is not equal to y,
8782 but we can when x equals y. */
8783 if ((code == SMAX || code == UMAX)
8784 && ! (cond == EQ || cond == NE))
8785 cond = reverse_condition (cond);
8786
8787 switch (cond)
8788 {
8789 case GE: case GT:
8790 return unsignedp ? x : XEXP (x, 1);
8791 case LE: case LT:
8792 return unsignedp ? x : XEXP (x, 0);
8793 case GEU: case GTU:
8794 return unsignedp ? XEXP (x, 1) : x;
8795 case LEU: case LTU:
8796 return unsignedp ? XEXP (x, 0) : x;
8797 default:
8798 break;
8799 }
8800 }
8801 }
8802 }
8803 else if (code == SUBREG)
8804 {
8805 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
8806 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
8807
8808 if (SUBREG_REG (x) != r)
8809 {
8810 /* We must simplify subreg here, before we lose track of the
8811 original inner_mode. */
8812 new_rtx = simplify_subreg (GET_MODE (x), r,
8813 inner_mode, SUBREG_BYTE (x));
8814 if (new_rtx)
8815 return new_rtx;
8816 else
8817 SUBST (SUBREG_REG (x), r);
8818 }
8819
8820 return x;
8821 }
8822 /* We don't have to handle SIGN_EXTEND here, because even in the
8823 case of replacing something with a modeless CONST_INT, a
8824 CONST_INT is already (supposed to be) a valid sign extension for
8825 its narrower mode, which implies it's already properly
8826 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
8827 story is different. */
8828 else if (code == ZERO_EXTEND)
8829 {
8830 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
8831 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
8832
8833 if (XEXP (x, 0) != r)
8834 {
8835 /* We must simplify the zero_extend here, before we lose
8836 track of the original inner_mode. */
8837 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
8838 r, inner_mode);
8839 if (new_rtx)
8840 return new_rtx;
8841 else
8842 SUBST (XEXP (x, 0), r);
8843 }
8844
8845 return x;
8846 }
8847
8848 fmt = GET_RTX_FORMAT (code);
8849 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8850 {
8851 if (fmt[i] == 'e')
8852 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
8853 else if (fmt[i] == 'E')
8854 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8855 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
8856 cond, reg, val));
8857 }
8858
8859 return x;
8860 }
8861 \f
8862 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
8863 assignment as a field assignment. */
8864
8865 static int
8866 rtx_equal_for_field_assignment_p (rtx x, rtx y)
8867 {
8868 if (x == y || rtx_equal_p (x, y))
8869 return 1;
8870
8871 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
8872 return 0;
8873
8874 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
8875 Note that all SUBREGs of MEM are paradoxical; otherwise they
8876 would have been rewritten. */
8877 if (MEM_P (x) && GET_CODE (y) == SUBREG
8878 && MEM_P (SUBREG_REG (y))
8879 && rtx_equal_p (SUBREG_REG (y),
8880 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
8881 return 1;
8882
8883 if (MEM_P (y) && GET_CODE (x) == SUBREG
8884 && MEM_P (SUBREG_REG (x))
8885 && rtx_equal_p (SUBREG_REG (x),
8886 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
8887 return 1;
8888
8889 /* We used to see if get_last_value of X and Y were the same but that's
8890 not correct. In one direction, we'll cause the assignment to have
8891 the wrong destination and in the case, we'll import a register into this
8892 insn that might have already have been dead. So fail if none of the
8893 above cases are true. */
8894 return 0;
8895 }
8896 \f
8897 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
8898 Return that assignment if so.
8899
8900 We only handle the most common cases. */
8901
8902 static rtx
8903 make_field_assignment (rtx x)
8904 {
8905 rtx dest = SET_DEST (x);
8906 rtx src = SET_SRC (x);
8907 rtx assign;
8908 rtx rhs, lhs;
8909 HOST_WIDE_INT c1;
8910 HOST_WIDE_INT pos;
8911 unsigned HOST_WIDE_INT len;
8912 rtx other;
8913 enum machine_mode mode;
8914
8915 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
8916 a clear of a one-bit field. We will have changed it to
8917 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
8918 for a SUBREG. */
8919
8920 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
8921 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
8922 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
8923 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8924 {
8925 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8926 1, 1, 1, 0);
8927 if (assign != 0)
8928 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8929 return x;
8930 }
8931
8932 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
8933 && subreg_lowpart_p (XEXP (src, 0))
8934 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
8935 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
8936 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
8937 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
8938 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
8939 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8940 {
8941 assign = make_extraction (VOIDmode, dest, 0,
8942 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
8943 1, 1, 1, 0);
8944 if (assign != 0)
8945 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8946 return x;
8947 }
8948
8949 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
8950 one-bit field. */
8951 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
8952 && XEXP (XEXP (src, 0), 0) == const1_rtx
8953 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8954 {
8955 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8956 1, 1, 1, 0);
8957 if (assign != 0)
8958 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
8959 return x;
8960 }
8961
8962 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
8963 SRC is an AND with all bits of that field set, then we can discard
8964 the AND. */
8965 if (GET_CODE (dest) == ZERO_EXTRACT
8966 && CONST_INT_P (XEXP (dest, 1))
8967 && GET_CODE (src) == AND
8968 && CONST_INT_P (XEXP (src, 1)))
8969 {
8970 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
8971 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
8972 unsigned HOST_WIDE_INT ze_mask;
8973
8974 if (width >= HOST_BITS_PER_WIDE_INT)
8975 ze_mask = -1;
8976 else
8977 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
8978
8979 /* Complete overlap. We can remove the source AND. */
8980 if ((and_mask & ze_mask) == ze_mask)
8981 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
8982
8983 /* Partial overlap. We can reduce the source AND. */
8984 if ((and_mask & ze_mask) != and_mask)
8985 {
8986 mode = GET_MODE (src);
8987 src = gen_rtx_AND (mode, XEXP (src, 0),
8988 gen_int_mode (and_mask & ze_mask, mode));
8989 return gen_rtx_SET (VOIDmode, dest, src);
8990 }
8991 }
8992
8993 /* The other case we handle is assignments into a constant-position
8994 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
8995 a mask that has all one bits except for a group of zero bits and
8996 OTHER is known to have zeros where C1 has ones, this is such an
8997 assignment. Compute the position and length from C1. Shift OTHER
8998 to the appropriate position, force it to the required mode, and
8999 make the extraction. Check for the AND in both operands. */
9000
9001 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9002 return x;
9003
9004 rhs = expand_compound_operation (XEXP (src, 0));
9005 lhs = expand_compound_operation (XEXP (src, 1));
9006
9007 if (GET_CODE (rhs) == AND
9008 && CONST_INT_P (XEXP (rhs, 1))
9009 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9010 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9011 else if (GET_CODE (lhs) == AND
9012 && CONST_INT_P (XEXP (lhs, 1))
9013 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9014 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9015 else
9016 return x;
9017
9018 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
9019 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
9020 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
9021 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
9022 return x;
9023
9024 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9025 if (assign == 0)
9026 return x;
9027
9028 /* The mode to use for the source is the mode of the assignment, or of
9029 what is inside a possible STRICT_LOW_PART. */
9030 mode = (GET_CODE (assign) == STRICT_LOW_PART
9031 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9032
9033 /* Shift OTHER right POS places and make it the source, restricting it
9034 to the proper length and mode. */
9035
9036 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9037 GET_MODE (src),
9038 other, pos),
9039 dest);
9040 src = force_to_mode (src, mode,
9041 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
9042 ? ~(unsigned HOST_WIDE_INT) 0
9043 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
9044 0);
9045
9046 /* If SRC is masked by an AND that does not make a difference in
9047 the value being stored, strip it. */
9048 if (GET_CODE (assign) == ZERO_EXTRACT
9049 && CONST_INT_P (XEXP (assign, 1))
9050 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9051 && GET_CODE (src) == AND
9052 && CONST_INT_P (XEXP (src, 1))
9053 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
9054 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
9055 src = XEXP (src, 0);
9056
9057 return gen_rtx_SET (VOIDmode, assign, src);
9058 }
9059 \f
9060 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9061 if so. */
9062
9063 static rtx
9064 apply_distributive_law (rtx x)
9065 {
9066 enum rtx_code code = GET_CODE (x);
9067 enum rtx_code inner_code;
9068 rtx lhs, rhs, other;
9069 rtx tem;
9070
9071 /* Distributivity is not true for floating point as it can change the
9072 value. So we don't do it unless -funsafe-math-optimizations. */
9073 if (FLOAT_MODE_P (GET_MODE (x))
9074 && ! flag_unsafe_math_optimizations)
9075 return x;
9076
9077 /* The outer operation can only be one of the following: */
9078 if (code != IOR && code != AND && code != XOR
9079 && code != PLUS && code != MINUS)
9080 return x;
9081
9082 lhs = XEXP (x, 0);
9083 rhs = XEXP (x, 1);
9084
9085 /* If either operand is a primitive we can't do anything, so get out
9086 fast. */
9087 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9088 return x;
9089
9090 lhs = expand_compound_operation (lhs);
9091 rhs = expand_compound_operation (rhs);
9092 inner_code = GET_CODE (lhs);
9093 if (inner_code != GET_CODE (rhs))
9094 return x;
9095
9096 /* See if the inner and outer operations distribute. */
9097 switch (inner_code)
9098 {
9099 case LSHIFTRT:
9100 case ASHIFTRT:
9101 case AND:
9102 case IOR:
9103 /* These all distribute except over PLUS. */
9104 if (code == PLUS || code == MINUS)
9105 return x;
9106 break;
9107
9108 case MULT:
9109 if (code != PLUS && code != MINUS)
9110 return x;
9111 break;
9112
9113 case ASHIFT:
9114 /* This is also a multiply, so it distributes over everything. */
9115 break;
9116
9117 case SUBREG:
9118 /* Non-paradoxical SUBREGs distributes over all operations,
9119 provided the inner modes and byte offsets are the same, this
9120 is an extraction of a low-order part, we don't convert an fp
9121 operation to int or vice versa, this is not a vector mode,
9122 and we would not be converting a single-word operation into a
9123 multi-word operation. The latter test is not required, but
9124 it prevents generating unneeded multi-word operations. Some
9125 of the previous tests are redundant given the latter test,
9126 but are retained because they are required for correctness.
9127
9128 We produce the result slightly differently in this case. */
9129
9130 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
9131 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
9132 || ! subreg_lowpart_p (lhs)
9133 || (GET_MODE_CLASS (GET_MODE (lhs))
9134 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
9135 || (GET_MODE_SIZE (GET_MODE (lhs))
9136 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
9137 || VECTOR_MODE_P (GET_MODE (lhs))
9138 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD
9139 /* Result might need to be truncated. Don't change mode if
9140 explicit truncation is needed. */
9141 || !TRULY_NOOP_TRUNCATION
9142 (GET_MODE_BITSIZE (GET_MODE (x)),
9143 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (lhs)))))
9144 return x;
9145
9146 tem = simplify_gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
9147 SUBREG_REG (lhs), SUBREG_REG (rhs));
9148 return gen_lowpart (GET_MODE (x), tem);
9149
9150 default:
9151 return x;
9152 }
9153
9154 /* Set LHS and RHS to the inner operands (A and B in the example
9155 above) and set OTHER to the common operand (C in the example).
9156 There is only one way to do this unless the inner operation is
9157 commutative. */
9158 if (COMMUTATIVE_ARITH_P (lhs)
9159 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9160 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9161 else if (COMMUTATIVE_ARITH_P (lhs)
9162 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9163 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9164 else if (COMMUTATIVE_ARITH_P (lhs)
9165 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9166 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9167 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9168 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9169 else
9170 return x;
9171
9172 /* Form the new inner operation, seeing if it simplifies first. */
9173 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9174
9175 /* There is one exception to the general way of distributing:
9176 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9177 if (code == XOR && inner_code == IOR)
9178 {
9179 inner_code = AND;
9180 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9181 }
9182
9183 /* We may be able to continuing distributing the result, so call
9184 ourselves recursively on the inner operation before forming the
9185 outer operation, which we return. */
9186 return simplify_gen_binary (inner_code, GET_MODE (x),
9187 apply_distributive_law (tem), other);
9188 }
9189
9190 /* See if X is of the form (* (+ A B) C), and if so convert to
9191 (+ (* A C) (* B C)) and try to simplify.
9192
9193 Most of the time, this results in no change. However, if some of
9194 the operands are the same or inverses of each other, simplifications
9195 will result.
9196
9197 For example, (and (ior A B) (not B)) can occur as the result of
9198 expanding a bit field assignment. When we apply the distributive
9199 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9200 which then simplifies to (and (A (not B))).
9201
9202 Note that no checks happen on the validity of applying the inverse
9203 distributive law. This is pointless since we can do it in the
9204 few places where this routine is called.
9205
9206 N is the index of the term that is decomposed (the arithmetic operation,
9207 i.e. (+ A B) in the first example above). !N is the index of the term that
9208 is distributed, i.e. of C in the first example above. */
9209 static rtx
9210 distribute_and_simplify_rtx (rtx x, int n)
9211 {
9212 enum machine_mode mode;
9213 enum rtx_code outer_code, inner_code;
9214 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9215
9216 /* Distributivity is not true for floating point as it can change the
9217 value. So we don't do it unless -funsafe-math-optimizations. */
9218 if (FLOAT_MODE_P (GET_MODE (x))
9219 && ! flag_unsafe_math_optimizations)
9220 return NULL_RTX;
9221
9222 decomposed = XEXP (x, n);
9223 if (!ARITHMETIC_P (decomposed))
9224 return NULL_RTX;
9225
9226 mode = GET_MODE (x);
9227 outer_code = GET_CODE (x);
9228 distributed = XEXP (x, !n);
9229
9230 inner_code = GET_CODE (decomposed);
9231 inner_op0 = XEXP (decomposed, 0);
9232 inner_op1 = XEXP (decomposed, 1);
9233
9234 /* Special case (and (xor B C) (not A)), which is equivalent to
9235 (xor (ior A B) (ior A C)) */
9236 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
9237 {
9238 distributed = XEXP (distributed, 0);
9239 outer_code = IOR;
9240 }
9241
9242 if (n == 0)
9243 {
9244 /* Distribute the second term. */
9245 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
9246 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
9247 }
9248 else
9249 {
9250 /* Distribute the first term. */
9251 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
9252 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
9253 }
9254
9255 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
9256 new_op0, new_op1));
9257 if (GET_CODE (tmp) != outer_code
9258 && rtx_cost (tmp, SET, optimize_this_for_speed_p)
9259 < rtx_cost (x, SET, optimize_this_for_speed_p))
9260 return tmp;
9261
9262 return NULL_RTX;
9263 }
9264 \f
9265 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9266 in MODE. Return an equivalent form, if different from (and VAROP
9267 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
9268
9269 static rtx
9270 simplify_and_const_int_1 (enum machine_mode mode, rtx varop,
9271 unsigned HOST_WIDE_INT constop)
9272 {
9273 unsigned HOST_WIDE_INT nonzero;
9274 unsigned HOST_WIDE_INT orig_constop;
9275 rtx orig_varop;
9276 int i;
9277
9278 orig_varop = varop;
9279 orig_constop = constop;
9280 if (GET_CODE (varop) == CLOBBER)
9281 return NULL_RTX;
9282
9283 /* Simplify VAROP knowing that we will be only looking at some of the
9284 bits in it.
9285
9286 Note by passing in CONSTOP, we guarantee that the bits not set in
9287 CONSTOP are not significant and will never be examined. We must
9288 ensure that is the case by explicitly masking out those bits
9289 before returning. */
9290 varop = force_to_mode (varop, mode, constop, 0);
9291
9292 /* If VAROP is a CLOBBER, we will fail so return it. */
9293 if (GET_CODE (varop) == CLOBBER)
9294 return varop;
9295
9296 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
9297 to VAROP and return the new constant. */
9298 if (CONST_INT_P (varop))
9299 return gen_int_mode (INTVAL (varop) & constop, mode);
9300
9301 /* See what bits may be nonzero in VAROP. Unlike the general case of
9302 a call to nonzero_bits, here we don't care about bits outside
9303 MODE. */
9304
9305 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
9306
9307 /* Turn off all bits in the constant that are known to already be zero.
9308 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
9309 which is tested below. */
9310
9311 constop &= nonzero;
9312
9313 /* If we don't have any bits left, return zero. */
9314 if (constop == 0)
9315 return const0_rtx;
9316
9317 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
9318 a power of two, we can replace this with an ASHIFT. */
9319 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
9320 && (i = exact_log2 (constop)) >= 0)
9321 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
9322
9323 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
9324 or XOR, then try to apply the distributive law. This may eliminate
9325 operations if either branch can be simplified because of the AND.
9326 It may also make some cases more complex, but those cases probably
9327 won't match a pattern either with or without this. */
9328
9329 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
9330 return
9331 gen_lowpart
9332 (mode,
9333 apply_distributive_law
9334 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
9335 simplify_and_const_int (NULL_RTX,
9336 GET_MODE (varop),
9337 XEXP (varop, 0),
9338 constop),
9339 simplify_and_const_int (NULL_RTX,
9340 GET_MODE (varop),
9341 XEXP (varop, 1),
9342 constop))));
9343
9344 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
9345 the AND and see if one of the operands simplifies to zero. If so, we
9346 may eliminate it. */
9347
9348 if (GET_CODE (varop) == PLUS
9349 && exact_log2 (constop + 1) >= 0)
9350 {
9351 rtx o0, o1;
9352
9353 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
9354 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
9355 if (o0 == const0_rtx)
9356 return o1;
9357 if (o1 == const0_rtx)
9358 return o0;
9359 }
9360
9361 /* Make a SUBREG if necessary. If we can't make it, fail. */
9362 varop = gen_lowpart (mode, varop);
9363 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9364 return NULL_RTX;
9365
9366 /* If we are only masking insignificant bits, return VAROP. */
9367 if (constop == nonzero)
9368 return varop;
9369
9370 if (varop == orig_varop && constop == orig_constop)
9371 return NULL_RTX;
9372
9373 /* Otherwise, return an AND. */
9374 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
9375 }
9376
9377
9378 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
9379 in MODE.
9380
9381 Return an equivalent form, if different from X. Otherwise, return X. If
9382 X is zero, we are to always construct the equivalent form. */
9383
9384 static rtx
9385 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
9386 unsigned HOST_WIDE_INT constop)
9387 {
9388 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
9389 if (tem)
9390 return tem;
9391
9392 if (!x)
9393 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
9394 gen_int_mode (constop, mode));
9395 if (GET_MODE (x) != mode)
9396 x = gen_lowpart (mode, x);
9397 return x;
9398 }
9399 \f
9400 /* Given a REG, X, compute which bits in X can be nonzero.
9401 We don't care about bits outside of those defined in MODE.
9402
9403 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
9404 a shift, AND, or zero_extract, we can do better. */
9405
9406 static rtx
9407 reg_nonzero_bits_for_combine (const_rtx x, enum machine_mode mode,
9408 const_rtx known_x ATTRIBUTE_UNUSED,
9409 enum machine_mode known_mode ATTRIBUTE_UNUSED,
9410 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
9411 unsigned HOST_WIDE_INT *nonzero)
9412 {
9413 rtx tem;
9414 reg_stat_type *rsp;
9415
9416 /* If X is a register whose nonzero bits value is current, use it.
9417 Otherwise, if X is a register whose value we can find, use that
9418 value. Otherwise, use the previously-computed global nonzero bits
9419 for this register. */
9420
9421 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
9422 if (rsp->last_set_value != 0
9423 && (rsp->last_set_mode == mode
9424 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
9425 && GET_MODE_CLASS (mode) == MODE_INT))
9426 && ((rsp->last_set_label >= label_tick_ebb_start
9427 && rsp->last_set_label < label_tick)
9428 || (rsp->last_set_label == label_tick
9429 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9430 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9431 && REG_N_SETS (REGNO (x)) == 1
9432 && !REGNO_REG_SET_P
9433 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
9434 {
9435 *nonzero &= rsp->last_set_nonzero_bits;
9436 return NULL;
9437 }
9438
9439 tem = get_last_value (x);
9440
9441 if (tem)
9442 {
9443 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
9444 /* If X is narrower than MODE and TEM is a non-negative
9445 constant that would appear negative in the mode of X,
9446 sign-extend it for use in reg_nonzero_bits because some
9447 machines (maybe most) will actually do the sign-extension
9448 and this is the conservative approach.
9449
9450 ??? For 2.5, try to tighten up the MD files in this regard
9451 instead of this kludge. */
9452
9453 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode)
9454 && CONST_INT_P (tem)
9455 && INTVAL (tem) > 0
9456 && 0 != (INTVAL (tem)
9457 & ((HOST_WIDE_INT) 1
9458 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
9459 tem = GEN_INT (INTVAL (tem)
9460 | ((HOST_WIDE_INT) (-1)
9461 << GET_MODE_BITSIZE (GET_MODE (x))));
9462 #endif
9463 return tem;
9464 }
9465 else if (nonzero_sign_valid && rsp->nonzero_bits)
9466 {
9467 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
9468
9469 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode))
9470 /* We don't know anything about the upper bits. */
9471 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
9472 *nonzero &= mask;
9473 }
9474
9475 return NULL;
9476 }
9477
9478 /* Return the number of bits at the high-order end of X that are known to
9479 be equal to the sign bit. X will be used in mode MODE; if MODE is
9480 VOIDmode, X will be used in its own mode. The returned value will always
9481 be between 1 and the number of bits in MODE. */
9482
9483 static rtx
9484 reg_num_sign_bit_copies_for_combine (const_rtx x, enum machine_mode mode,
9485 const_rtx known_x ATTRIBUTE_UNUSED,
9486 enum machine_mode known_mode
9487 ATTRIBUTE_UNUSED,
9488 unsigned int known_ret ATTRIBUTE_UNUSED,
9489 unsigned int *result)
9490 {
9491 rtx tem;
9492 reg_stat_type *rsp;
9493
9494 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
9495 if (rsp->last_set_value != 0
9496 && rsp->last_set_mode == mode
9497 && ((rsp->last_set_label >= label_tick_ebb_start
9498 && rsp->last_set_label < label_tick)
9499 || (rsp->last_set_label == label_tick
9500 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9501 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9502 && REG_N_SETS (REGNO (x)) == 1
9503 && !REGNO_REG_SET_P
9504 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
9505 {
9506 *result = rsp->last_set_sign_bit_copies;
9507 return NULL;
9508 }
9509
9510 tem = get_last_value (x);
9511 if (tem != 0)
9512 return tem;
9513
9514 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
9515 && GET_MODE_BITSIZE (GET_MODE (x)) == GET_MODE_BITSIZE (mode))
9516 *result = rsp->sign_bit_copies;
9517
9518 return NULL;
9519 }
9520 \f
9521 /* Return the number of "extended" bits there are in X, when interpreted
9522 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
9523 unsigned quantities, this is the number of high-order zero bits.
9524 For signed quantities, this is the number of copies of the sign bit
9525 minus 1. In both case, this function returns the number of "spare"
9526 bits. For example, if two quantities for which this function returns
9527 at least 1 are added, the addition is known not to overflow.
9528
9529 This function will always return 0 unless called during combine, which
9530 implies that it must be called from a define_split. */
9531
9532 unsigned int
9533 extended_count (const_rtx x, enum machine_mode mode, int unsignedp)
9534 {
9535 if (nonzero_sign_valid == 0)
9536 return 0;
9537
9538 return (unsignedp
9539 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9540 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
9541 - floor_log2 (nonzero_bits (x, mode)))
9542 : 0)
9543 : num_sign_bit_copies (x, mode) - 1);
9544 }
9545 \f
9546 /* This function is called from `simplify_shift_const' to merge two
9547 outer operations. Specifically, we have already found that we need
9548 to perform operation *POP0 with constant *PCONST0 at the outermost
9549 position. We would now like to also perform OP1 with constant CONST1
9550 (with *POP0 being done last).
9551
9552 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
9553 the resulting operation. *PCOMP_P is set to 1 if we would need to
9554 complement the innermost operand, otherwise it is unchanged.
9555
9556 MODE is the mode in which the operation will be done. No bits outside
9557 the width of this mode matter. It is assumed that the width of this mode
9558 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
9559
9560 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
9561 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
9562 result is simply *PCONST0.
9563
9564 If the resulting operation cannot be expressed as one operation, we
9565 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
9566
9567 static int
9568 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
9569 {
9570 enum rtx_code op0 = *pop0;
9571 HOST_WIDE_INT const0 = *pconst0;
9572
9573 const0 &= GET_MODE_MASK (mode);
9574 const1 &= GET_MODE_MASK (mode);
9575
9576 /* If OP0 is an AND, clear unimportant bits in CONST1. */
9577 if (op0 == AND)
9578 const1 &= const0;
9579
9580 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
9581 if OP0 is SET. */
9582
9583 if (op1 == UNKNOWN || op0 == SET)
9584 return 1;
9585
9586 else if (op0 == UNKNOWN)
9587 op0 = op1, const0 = const1;
9588
9589 else if (op0 == op1)
9590 {
9591 switch (op0)
9592 {
9593 case AND:
9594 const0 &= const1;
9595 break;
9596 case IOR:
9597 const0 |= const1;
9598 break;
9599 case XOR:
9600 const0 ^= const1;
9601 break;
9602 case PLUS:
9603 const0 += const1;
9604 break;
9605 case NEG:
9606 op0 = UNKNOWN;
9607 break;
9608 default:
9609 break;
9610 }
9611 }
9612
9613 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
9614 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
9615 return 0;
9616
9617 /* If the two constants aren't the same, we can't do anything. The
9618 remaining six cases can all be done. */
9619 else if (const0 != const1)
9620 return 0;
9621
9622 else
9623 switch (op0)
9624 {
9625 case IOR:
9626 if (op1 == AND)
9627 /* (a & b) | b == b */
9628 op0 = SET;
9629 else /* op1 == XOR */
9630 /* (a ^ b) | b == a | b */
9631 {;}
9632 break;
9633
9634 case XOR:
9635 if (op1 == AND)
9636 /* (a & b) ^ b == (~a) & b */
9637 op0 = AND, *pcomp_p = 1;
9638 else /* op1 == IOR */
9639 /* (a | b) ^ b == a & ~b */
9640 op0 = AND, const0 = ~const0;
9641 break;
9642
9643 case AND:
9644 if (op1 == IOR)
9645 /* (a | b) & b == b */
9646 op0 = SET;
9647 else /* op1 == XOR */
9648 /* (a ^ b) & b) == (~a) & b */
9649 *pcomp_p = 1;
9650 break;
9651 default:
9652 break;
9653 }
9654
9655 /* Check for NO-OP cases. */
9656 const0 &= GET_MODE_MASK (mode);
9657 if (const0 == 0
9658 && (op0 == IOR || op0 == XOR || op0 == PLUS))
9659 op0 = UNKNOWN;
9660 else if (const0 == 0 && op0 == AND)
9661 op0 = SET;
9662 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
9663 && op0 == AND)
9664 op0 = UNKNOWN;
9665
9666 *pop0 = op0;
9667
9668 /* ??? Slightly redundant with the above mask, but not entirely.
9669 Moving this above means we'd have to sign-extend the mode mask
9670 for the final test. */
9671 if (op0 != UNKNOWN && op0 != NEG)
9672 *pconst0 = trunc_int_for_mode (const0, mode);
9673
9674 return 1;
9675 }
9676 \f
9677 /* A helper to simplify_shift_const_1 to determine the mode we can perform
9678 the shift in. The original shift operation CODE is performed on OP in
9679 ORIG_MODE. Return the wider mode MODE if we can perform the operation
9680 in that mode. Return ORIG_MODE otherwise. We can also assume that the
9681 result of the shift is subject to operation OUTER_CODE with operand
9682 OUTER_CONST. */
9683
9684 static enum machine_mode
9685 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
9686 enum machine_mode orig_mode, enum machine_mode mode,
9687 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
9688 {
9689 if (orig_mode == mode)
9690 return mode;
9691 gcc_assert (GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (orig_mode));
9692
9693 /* In general we can't perform in wider mode for right shift and rotate. */
9694 switch (code)
9695 {
9696 case ASHIFTRT:
9697 /* We can still widen if the bits brought in from the left are identical
9698 to the sign bit of ORIG_MODE. */
9699 if (num_sign_bit_copies (op, mode)
9700 > (unsigned) (GET_MODE_BITSIZE (mode)
9701 - GET_MODE_BITSIZE (orig_mode)))
9702 return mode;
9703 return orig_mode;
9704
9705 case LSHIFTRT:
9706 /* Similarly here but with zero bits. */
9707 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9708 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
9709 return mode;
9710
9711 /* We can also widen if the bits brought in will be masked off. This
9712 operation is performed in ORIG_MODE. */
9713 if (outer_code == AND)
9714 {
9715 int care_bits = low_bitmask_len (orig_mode, outer_const);
9716
9717 if (care_bits >= 0
9718 && GET_MODE_BITSIZE (orig_mode) - care_bits >= count)
9719 return mode;
9720 }
9721 /* fall through */
9722
9723 case ROTATE:
9724 return orig_mode;
9725
9726 case ROTATERT:
9727 gcc_unreachable ();
9728
9729 default:
9730 return mode;
9731 }
9732 }
9733
9734 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
9735 The result of the shift is RESULT_MODE. Return NULL_RTX if we cannot
9736 simplify it. Otherwise, return a simplified value.
9737
9738 The shift is normally computed in the widest mode we find in VAROP, as
9739 long as it isn't a different number of words than RESULT_MODE. Exceptions
9740 are ASHIFTRT and ROTATE, which are always done in their original mode. */
9741
9742 static rtx
9743 simplify_shift_const_1 (enum rtx_code code, enum machine_mode result_mode,
9744 rtx varop, int orig_count)
9745 {
9746 enum rtx_code orig_code = code;
9747 rtx orig_varop = varop;
9748 int count;
9749 enum machine_mode mode = result_mode;
9750 enum machine_mode shift_mode, tmode;
9751 unsigned int mode_words
9752 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
9753 /* We form (outer_op (code varop count) (outer_const)). */
9754 enum rtx_code outer_op = UNKNOWN;
9755 HOST_WIDE_INT outer_const = 0;
9756 int complement_p = 0;
9757 rtx new_rtx, x;
9758
9759 /* Make sure and truncate the "natural" shift on the way in. We don't
9760 want to do this inside the loop as it makes it more difficult to
9761 combine shifts. */
9762 if (SHIFT_COUNT_TRUNCATED)
9763 orig_count &= GET_MODE_BITSIZE (mode) - 1;
9764
9765 /* If we were given an invalid count, don't do anything except exactly
9766 what was requested. */
9767
9768 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
9769 return NULL_RTX;
9770
9771 count = orig_count;
9772
9773 /* Unless one of the branches of the `if' in this loop does a `continue',
9774 we will `break' the loop after the `if'. */
9775
9776 while (count != 0)
9777 {
9778 /* If we have an operand of (clobber (const_int 0)), fail. */
9779 if (GET_CODE (varop) == CLOBBER)
9780 return NULL_RTX;
9781
9782 /* Convert ROTATERT to ROTATE. */
9783 if (code == ROTATERT)
9784 {
9785 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
9786 code = ROTATE;
9787 if (VECTOR_MODE_P (result_mode))
9788 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
9789 else
9790 count = bitsize - count;
9791 }
9792
9793 shift_mode = try_widen_shift_mode (code, varop, count, result_mode,
9794 mode, outer_op, outer_const);
9795
9796 /* Handle cases where the count is greater than the size of the mode
9797 minus 1. For ASHIFT, use the size minus one as the count (this can
9798 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9799 take the count modulo the size. For other shifts, the result is
9800 zero.
9801
9802 Since these shifts are being produced by the compiler by combining
9803 multiple operations, each of which are defined, we know what the
9804 result is supposed to be. */
9805
9806 if (count > (GET_MODE_BITSIZE (shift_mode) - 1))
9807 {
9808 if (code == ASHIFTRT)
9809 count = GET_MODE_BITSIZE (shift_mode) - 1;
9810 else if (code == ROTATE || code == ROTATERT)
9811 count %= GET_MODE_BITSIZE (shift_mode);
9812 else
9813 {
9814 /* We can't simply return zero because there may be an
9815 outer op. */
9816 varop = const0_rtx;
9817 count = 0;
9818 break;
9819 }
9820 }
9821
9822 /* If we discovered we had to complement VAROP, leave. Making a NOT
9823 here would cause an infinite loop. */
9824 if (complement_p)
9825 break;
9826
9827 /* An arithmetic right shift of a quantity known to be -1 or 0
9828 is a no-op. */
9829 if (code == ASHIFTRT
9830 && (num_sign_bit_copies (varop, shift_mode)
9831 == GET_MODE_BITSIZE (shift_mode)))
9832 {
9833 count = 0;
9834 break;
9835 }
9836
9837 /* If we are doing an arithmetic right shift and discarding all but
9838 the sign bit copies, this is equivalent to doing a shift by the
9839 bitsize minus one. Convert it into that shift because it will often
9840 allow other simplifications. */
9841
9842 if (code == ASHIFTRT
9843 && (count + num_sign_bit_copies (varop, shift_mode)
9844 >= GET_MODE_BITSIZE (shift_mode)))
9845 count = GET_MODE_BITSIZE (shift_mode) - 1;
9846
9847 /* We simplify the tests below and elsewhere by converting
9848 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9849 `make_compound_operation' will convert it to an ASHIFTRT for
9850 those machines (such as VAX) that don't have an LSHIFTRT. */
9851 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9852 && code == ASHIFTRT
9853 && ((nonzero_bits (varop, shift_mode)
9854 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
9855 == 0))
9856 code = LSHIFTRT;
9857
9858 if (((code == LSHIFTRT
9859 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9860 && !(nonzero_bits (varop, shift_mode) >> count))
9861 || (code == ASHIFT
9862 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9863 && !((nonzero_bits (varop, shift_mode) << count)
9864 & GET_MODE_MASK (shift_mode))))
9865 && !side_effects_p (varop))
9866 varop = const0_rtx;
9867
9868 switch (GET_CODE (varop))
9869 {
9870 case SIGN_EXTEND:
9871 case ZERO_EXTEND:
9872 case SIGN_EXTRACT:
9873 case ZERO_EXTRACT:
9874 new_rtx = expand_compound_operation (varop);
9875 if (new_rtx != varop)
9876 {
9877 varop = new_rtx;
9878 continue;
9879 }
9880 break;
9881
9882 case MEM:
9883 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9884 minus the width of a smaller mode, we can do this with a
9885 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9886 if ((code == ASHIFTRT || code == LSHIFTRT)
9887 && ! mode_dependent_address_p (XEXP (varop, 0))
9888 && ! MEM_VOLATILE_P (varop)
9889 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9890 MODE_INT, 1)) != BLKmode)
9891 {
9892 new_rtx = adjust_address_nv (varop, tmode,
9893 BYTES_BIG_ENDIAN ? 0
9894 : count / BITS_PER_UNIT);
9895
9896 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9897 : ZERO_EXTEND, mode, new_rtx);
9898 count = 0;
9899 continue;
9900 }
9901 break;
9902
9903 case SUBREG:
9904 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9905 the same number of words as what we've seen so far. Then store
9906 the widest mode in MODE. */
9907 if (subreg_lowpart_p (varop)
9908 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9909 > GET_MODE_SIZE (GET_MODE (varop)))
9910 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9911 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9912 == mode_words
9913 && GET_MODE_CLASS (GET_MODE (varop)) == MODE_INT
9914 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (varop))) == MODE_INT)
9915 {
9916 varop = SUBREG_REG (varop);
9917 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9918 mode = GET_MODE (varop);
9919 continue;
9920 }
9921 break;
9922
9923 case MULT:
9924 /* Some machines use MULT instead of ASHIFT because MULT
9925 is cheaper. But it is still better on those machines to
9926 merge two shifts into one. */
9927 if (CONST_INT_P (XEXP (varop, 1))
9928 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9929 {
9930 varop
9931 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
9932 XEXP (varop, 0),
9933 GEN_INT (exact_log2 (
9934 INTVAL (XEXP (varop, 1)))));
9935 continue;
9936 }
9937 break;
9938
9939 case UDIV:
9940 /* Similar, for when divides are cheaper. */
9941 if (CONST_INT_P (XEXP (varop, 1))
9942 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9943 {
9944 varop
9945 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
9946 XEXP (varop, 0),
9947 GEN_INT (exact_log2 (
9948 INTVAL (XEXP (varop, 1)))));
9949 continue;
9950 }
9951 break;
9952
9953 case ASHIFTRT:
9954 /* If we are extracting just the sign bit of an arithmetic
9955 right shift, that shift is not needed. However, the sign
9956 bit of a wider mode may be different from what would be
9957 interpreted as the sign bit in a narrower mode, so, if
9958 the result is narrower, don't discard the shift. */
9959 if (code == LSHIFTRT
9960 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9961 && (GET_MODE_BITSIZE (result_mode)
9962 >= GET_MODE_BITSIZE (GET_MODE (varop))))
9963 {
9964 varop = XEXP (varop, 0);
9965 continue;
9966 }
9967
9968 /* ... fall through ... */
9969
9970 case LSHIFTRT:
9971 case ASHIFT:
9972 case ROTATE:
9973 /* Here we have two nested shifts. The result is usually the
9974 AND of a new shift with a mask. We compute the result below. */
9975 if (CONST_INT_P (XEXP (varop, 1))
9976 && INTVAL (XEXP (varop, 1)) >= 0
9977 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
9978 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9979 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9980 && !VECTOR_MODE_P (result_mode))
9981 {
9982 enum rtx_code first_code = GET_CODE (varop);
9983 unsigned int first_count = INTVAL (XEXP (varop, 1));
9984 unsigned HOST_WIDE_INT mask;
9985 rtx mask_rtx;
9986
9987 /* We have one common special case. We can't do any merging if
9988 the inner code is an ASHIFTRT of a smaller mode. However, if
9989 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
9990 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
9991 we can convert it to
9992 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
9993 This simplifies certain SIGN_EXTEND operations. */
9994 if (code == ASHIFT && first_code == ASHIFTRT
9995 && count == (GET_MODE_BITSIZE (result_mode)
9996 - GET_MODE_BITSIZE (GET_MODE (varop))))
9997 {
9998 /* C3 has the low-order C1 bits zero. */
9999
10000 mask = (GET_MODE_MASK (mode)
10001 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
10002
10003 varop = simplify_and_const_int (NULL_RTX, result_mode,
10004 XEXP (varop, 0), mask);
10005 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
10006 varop, count);
10007 count = first_count;
10008 code = ASHIFTRT;
10009 continue;
10010 }
10011
10012 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10013 than C1 high-order bits equal to the sign bit, we can convert
10014 this to either an ASHIFT or an ASHIFTRT depending on the
10015 two counts.
10016
10017 We cannot do this if VAROP's mode is not SHIFT_MODE. */
10018
10019 if (code == ASHIFTRT && first_code == ASHIFT
10020 && GET_MODE (varop) == shift_mode
10021 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
10022 > first_count))
10023 {
10024 varop = XEXP (varop, 0);
10025 count -= first_count;
10026 if (count < 0)
10027 {
10028 count = -count;
10029 code = ASHIFT;
10030 }
10031
10032 continue;
10033 }
10034
10035 /* There are some cases we can't do. If CODE is ASHIFTRT,
10036 we can only do this if FIRST_CODE is also ASHIFTRT.
10037
10038 We can't do the case when CODE is ROTATE and FIRST_CODE is
10039 ASHIFTRT.
10040
10041 If the mode of this shift is not the mode of the outer shift,
10042 we can't do this if either shift is a right shift or ROTATE.
10043
10044 Finally, we can't do any of these if the mode is too wide
10045 unless the codes are the same.
10046
10047 Handle the case where the shift codes are the same
10048 first. */
10049
10050 if (code == first_code)
10051 {
10052 if (GET_MODE (varop) != result_mode
10053 && (code == ASHIFTRT || code == LSHIFTRT
10054 || code == ROTATE))
10055 break;
10056
10057 count += first_count;
10058 varop = XEXP (varop, 0);
10059 continue;
10060 }
10061
10062 if (code == ASHIFTRT
10063 || (code == ROTATE && first_code == ASHIFTRT)
10064 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
10065 || (GET_MODE (varop) != result_mode
10066 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10067 || first_code == ROTATE
10068 || code == ROTATE)))
10069 break;
10070
10071 /* To compute the mask to apply after the shift, shift the
10072 nonzero bits of the inner shift the same way the
10073 outer shift will. */
10074
10075 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
10076
10077 mask_rtx
10078 = simplify_const_binary_operation (code, result_mode, mask_rtx,
10079 GEN_INT (count));
10080
10081 /* Give up if we can't compute an outer operation to use. */
10082 if (mask_rtx == 0
10083 || !CONST_INT_P (mask_rtx)
10084 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10085 INTVAL (mask_rtx),
10086 result_mode, &complement_p))
10087 break;
10088
10089 /* If the shifts are in the same direction, we add the
10090 counts. Otherwise, we subtract them. */
10091 if ((code == ASHIFTRT || code == LSHIFTRT)
10092 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10093 count += first_count;
10094 else
10095 count -= first_count;
10096
10097 /* If COUNT is positive, the new shift is usually CODE,
10098 except for the two exceptions below, in which case it is
10099 FIRST_CODE. If the count is negative, FIRST_CODE should
10100 always be used */
10101 if (count > 0
10102 && ((first_code == ROTATE && code == ASHIFT)
10103 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10104 code = first_code;
10105 else if (count < 0)
10106 code = first_code, count = -count;
10107
10108 varop = XEXP (varop, 0);
10109 continue;
10110 }
10111
10112 /* If we have (A << B << C) for any shift, we can convert this to
10113 (A << C << B). This wins if A is a constant. Only try this if
10114 B is not a constant. */
10115
10116 else if (GET_CODE (varop) == code
10117 && CONST_INT_P (XEXP (varop, 0))
10118 && !CONST_INT_P (XEXP (varop, 1)))
10119 {
10120 rtx new_rtx = simplify_const_binary_operation (code, mode,
10121 XEXP (varop, 0),
10122 GEN_INT (count));
10123 varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
10124 count = 0;
10125 continue;
10126 }
10127 break;
10128
10129 case NOT:
10130 if (VECTOR_MODE_P (mode))
10131 break;
10132
10133 /* Make this fit the case below. */
10134 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
10135 GEN_INT (GET_MODE_MASK (mode)));
10136 continue;
10137
10138 case IOR:
10139 case AND:
10140 case XOR:
10141 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10142 with C the size of VAROP - 1 and the shift is logical if
10143 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10144 we have an (le X 0) operation. If we have an arithmetic shift
10145 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10146 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10147
10148 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10149 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10150 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10151 && (code == LSHIFTRT || code == ASHIFTRT)
10152 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
10153 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10154 {
10155 count = 0;
10156 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
10157 const0_rtx);
10158
10159 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10160 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10161
10162 continue;
10163 }
10164
10165 /* If we have (shift (logical)), move the logical to the outside
10166 to allow it to possibly combine with another logical and the
10167 shift to combine with another shift. This also canonicalizes to
10168 what a ZERO_EXTRACT looks like. Also, some machines have
10169 (and (shift)) insns. */
10170
10171 if (CONST_INT_P (XEXP (varop, 1))
10172 /* We can't do this if we have (ashiftrt (xor)) and the
10173 constant has its sign bit set in shift_mode. */
10174 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10175 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10176 shift_mode))
10177 && (new_rtx = simplify_const_binary_operation (code, result_mode,
10178 XEXP (varop, 1),
10179 GEN_INT (count))) != 0
10180 && CONST_INT_P (new_rtx)
10181 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10182 INTVAL (new_rtx), result_mode, &complement_p))
10183 {
10184 varop = XEXP (varop, 0);
10185 continue;
10186 }
10187
10188 /* If we can't do that, try to simplify the shift in each arm of the
10189 logical expression, make a new logical expression, and apply
10190 the inverse distributive law. This also can't be done
10191 for some (ashiftrt (xor)). */
10192 if (CONST_INT_P (XEXP (varop, 1))
10193 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10194 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10195 shift_mode)))
10196 {
10197 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10198 XEXP (varop, 0), count);
10199 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10200 XEXP (varop, 1), count);
10201
10202 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
10203 lhs, rhs);
10204 varop = apply_distributive_law (varop);
10205
10206 count = 0;
10207 continue;
10208 }
10209 break;
10210
10211 case EQ:
10212 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10213 says that the sign bit can be tested, FOO has mode MODE, C is
10214 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
10215 that may be nonzero. */
10216 if (code == LSHIFTRT
10217 && XEXP (varop, 1) == const0_rtx
10218 && GET_MODE (XEXP (varop, 0)) == result_mode
10219 && count == (GET_MODE_BITSIZE (result_mode) - 1)
10220 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
10221 && STORE_FLAG_VALUE == -1
10222 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10223 && merge_outer_ops (&outer_op, &outer_const, XOR,
10224 (HOST_WIDE_INT) 1, result_mode,
10225 &complement_p))
10226 {
10227 varop = XEXP (varop, 0);
10228 count = 0;
10229 continue;
10230 }
10231 break;
10232
10233 case NEG:
10234 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
10235 than the number of bits in the mode is equivalent to A. */
10236 if (code == LSHIFTRT
10237 && count == (GET_MODE_BITSIZE (result_mode) - 1)
10238 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
10239 {
10240 varop = XEXP (varop, 0);
10241 count = 0;
10242 continue;
10243 }
10244
10245 /* NEG commutes with ASHIFT since it is multiplication. Move the
10246 NEG outside to allow shifts to combine. */
10247 if (code == ASHIFT
10248 && merge_outer_ops (&outer_op, &outer_const, NEG,
10249 (HOST_WIDE_INT) 0, result_mode,
10250 &complement_p))
10251 {
10252 varop = XEXP (varop, 0);
10253 continue;
10254 }
10255 break;
10256
10257 case PLUS:
10258 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
10259 is one less than the number of bits in the mode is
10260 equivalent to (xor A 1). */
10261 if (code == LSHIFTRT
10262 && count == (GET_MODE_BITSIZE (result_mode) - 1)
10263 && XEXP (varop, 1) == constm1_rtx
10264 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10265 && merge_outer_ops (&outer_op, &outer_const, XOR,
10266 (HOST_WIDE_INT) 1, result_mode,
10267 &complement_p))
10268 {
10269 count = 0;
10270 varop = XEXP (varop, 0);
10271 continue;
10272 }
10273
10274 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
10275 that might be nonzero in BAR are those being shifted out and those
10276 bits are known zero in FOO, we can replace the PLUS with FOO.
10277 Similarly in the other operand order. This code occurs when
10278 we are computing the size of a variable-size array. */
10279
10280 if ((code == ASHIFTRT || code == LSHIFTRT)
10281 && count < HOST_BITS_PER_WIDE_INT
10282 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
10283 && (nonzero_bits (XEXP (varop, 1), result_mode)
10284 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
10285 {
10286 varop = XEXP (varop, 0);
10287 continue;
10288 }
10289 else if ((code == ASHIFTRT || code == LSHIFTRT)
10290 && count < HOST_BITS_PER_WIDE_INT
10291 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
10292 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10293 >> count)
10294 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10295 & nonzero_bits (XEXP (varop, 1),
10296 result_mode)))
10297 {
10298 varop = XEXP (varop, 1);
10299 continue;
10300 }
10301
10302 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
10303 if (code == ASHIFT
10304 && CONST_INT_P (XEXP (varop, 1))
10305 && (new_rtx = simplify_const_binary_operation (ASHIFT, result_mode,
10306 XEXP (varop, 1),
10307 GEN_INT (count))) != 0
10308 && CONST_INT_P (new_rtx)
10309 && merge_outer_ops (&outer_op, &outer_const, PLUS,
10310 INTVAL (new_rtx), result_mode, &complement_p))
10311 {
10312 varop = XEXP (varop, 0);
10313 continue;
10314 }
10315
10316 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
10317 signbit', and attempt to change the PLUS to an XOR and move it to
10318 the outer operation as is done above in the AND/IOR/XOR case
10319 leg for shift(logical). See details in logical handling above
10320 for reasoning in doing so. */
10321 if (code == LSHIFTRT
10322 && CONST_INT_P (XEXP (varop, 1))
10323 && mode_signbit_p (result_mode, XEXP (varop, 1))
10324 && (new_rtx = simplify_const_binary_operation (code, result_mode,
10325 XEXP (varop, 1),
10326 GEN_INT (count))) != 0
10327 && CONST_INT_P (new_rtx)
10328 && merge_outer_ops (&outer_op, &outer_const, XOR,
10329 INTVAL (new_rtx), result_mode, &complement_p))
10330 {
10331 varop = XEXP (varop, 0);
10332 continue;
10333 }
10334
10335 break;
10336
10337 case MINUS:
10338 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
10339 with C the size of VAROP - 1 and the shift is logical if
10340 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10341 we have a (gt X 0) operation. If the shift is arithmetic with
10342 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
10343 we have a (neg (gt X 0)) operation. */
10344
10345 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10346 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
10347 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
10348 && (code == LSHIFTRT || code == ASHIFTRT)
10349 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10350 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
10351 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10352 {
10353 count = 0;
10354 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
10355 const0_rtx);
10356
10357 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10358 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10359
10360 continue;
10361 }
10362 break;
10363
10364 case TRUNCATE:
10365 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
10366 if the truncate does not affect the value. */
10367 if (code == LSHIFTRT
10368 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
10369 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10370 && (INTVAL (XEXP (XEXP (varop, 0), 1))
10371 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
10372 - GET_MODE_BITSIZE (GET_MODE (varop)))))
10373 {
10374 rtx varop_inner = XEXP (varop, 0);
10375
10376 varop_inner
10377 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
10378 XEXP (varop_inner, 0),
10379 GEN_INT
10380 (count + INTVAL (XEXP (varop_inner, 1))));
10381 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
10382 count = 0;
10383 continue;
10384 }
10385 break;
10386
10387 default:
10388 break;
10389 }
10390
10391 break;
10392 }
10393
10394 shift_mode = try_widen_shift_mode (code, varop, count, result_mode, mode,
10395 outer_op, outer_const);
10396
10397 /* We have now finished analyzing the shift. The result should be
10398 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
10399 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
10400 to the result of the shift. OUTER_CONST is the relevant constant,
10401 but we must turn off all bits turned off in the shift. */
10402
10403 if (outer_op == UNKNOWN
10404 && orig_code == code && orig_count == count
10405 && varop == orig_varop
10406 && shift_mode == GET_MODE (varop))
10407 return NULL_RTX;
10408
10409 /* Make a SUBREG if necessary. If we can't make it, fail. */
10410 varop = gen_lowpart (shift_mode, varop);
10411 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10412 return NULL_RTX;
10413
10414 /* If we have an outer operation and we just made a shift, it is
10415 possible that we could have simplified the shift were it not
10416 for the outer operation. So try to do the simplification
10417 recursively. */
10418
10419 if (outer_op != UNKNOWN)
10420 x = simplify_shift_const_1 (code, shift_mode, varop, count);
10421 else
10422 x = NULL_RTX;
10423
10424 if (x == NULL_RTX)
10425 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
10426
10427 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
10428 turn off all the bits that the shift would have turned off. */
10429 if (orig_code == LSHIFTRT && result_mode != shift_mode)
10430 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
10431 GET_MODE_MASK (result_mode) >> orig_count);
10432
10433 /* Do the remainder of the processing in RESULT_MODE. */
10434 x = gen_lowpart_or_truncate (result_mode, x);
10435
10436 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
10437 operation. */
10438 if (complement_p)
10439 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
10440
10441 if (outer_op != UNKNOWN)
10442 {
10443 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
10444 && GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
10445 outer_const = trunc_int_for_mode (outer_const, result_mode);
10446
10447 if (outer_op == AND)
10448 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
10449 else if (outer_op == SET)
10450 {
10451 /* This means that we have determined that the result is
10452 equivalent to a constant. This should be rare. */
10453 if (!side_effects_p (x))
10454 x = GEN_INT (outer_const);
10455 }
10456 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
10457 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
10458 else
10459 x = simplify_gen_binary (outer_op, result_mode, x,
10460 GEN_INT (outer_const));
10461 }
10462
10463 return x;
10464 }
10465
10466 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
10467 The result of the shift is RESULT_MODE. If we cannot simplify it,
10468 return X or, if it is NULL, synthesize the expression with
10469 simplify_gen_binary. Otherwise, return a simplified value.
10470
10471 The shift is normally computed in the widest mode we find in VAROP, as
10472 long as it isn't a different number of words than RESULT_MODE. Exceptions
10473 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10474
10475 static rtx
10476 simplify_shift_const (rtx x, enum rtx_code code, enum machine_mode result_mode,
10477 rtx varop, int count)
10478 {
10479 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
10480 if (tem)
10481 return tem;
10482
10483 if (!x)
10484 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
10485 if (GET_MODE (x) != result_mode)
10486 x = gen_lowpart (result_mode, x);
10487 return x;
10488 }
10489
10490 \f
10491 /* Like recog, but we receive the address of a pointer to a new pattern.
10492 We try to match the rtx that the pointer points to.
10493 If that fails, we may try to modify or replace the pattern,
10494 storing the replacement into the same pointer object.
10495
10496 Modifications include deletion or addition of CLOBBERs.
10497
10498 PNOTES is a pointer to a location where any REG_UNUSED notes added for
10499 the CLOBBERs are placed.
10500
10501 The value is the final insn code from the pattern ultimately matched,
10502 or -1. */
10503
10504 static int
10505 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
10506 {
10507 rtx pat = *pnewpat;
10508 int insn_code_number;
10509 int num_clobbers_to_add = 0;
10510 int i;
10511 rtx notes = 0;
10512 rtx old_notes, old_pat;
10513
10514 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
10515 we use to indicate that something didn't match. If we find such a
10516 thing, force rejection. */
10517 if (GET_CODE (pat) == PARALLEL)
10518 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
10519 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
10520 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
10521 return -1;
10522
10523 old_pat = PATTERN (insn);
10524 old_notes = REG_NOTES (insn);
10525 PATTERN (insn) = pat;
10526 REG_NOTES (insn) = 0;
10527
10528 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10529 if (dump_file && (dump_flags & TDF_DETAILS))
10530 {
10531 if (insn_code_number < 0)
10532 fputs ("Failed to match this instruction:\n", dump_file);
10533 else
10534 fputs ("Successfully matched this instruction:\n", dump_file);
10535 print_rtl_single (dump_file, pat);
10536 }
10537
10538 /* If it isn't, there is the possibility that we previously had an insn
10539 that clobbered some register as a side effect, but the combined
10540 insn doesn't need to do that. So try once more without the clobbers
10541 unless this represents an ASM insn. */
10542
10543 if (insn_code_number < 0 && ! check_asm_operands (pat)
10544 && GET_CODE (pat) == PARALLEL)
10545 {
10546 int pos;
10547
10548 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
10549 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
10550 {
10551 if (i != pos)
10552 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
10553 pos++;
10554 }
10555
10556 SUBST_INT (XVECLEN (pat, 0), pos);
10557
10558 if (pos == 1)
10559 pat = XVECEXP (pat, 0, 0);
10560
10561 PATTERN (insn) = pat;
10562 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10563 if (dump_file && (dump_flags & TDF_DETAILS))
10564 {
10565 if (insn_code_number < 0)
10566 fputs ("Failed to match this instruction:\n", dump_file);
10567 else
10568 fputs ("Successfully matched this instruction:\n", dump_file);
10569 print_rtl_single (dump_file, pat);
10570 }
10571 }
10572 PATTERN (insn) = old_pat;
10573 REG_NOTES (insn) = old_notes;
10574
10575 /* Recognize all noop sets, these will be killed by followup pass. */
10576 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
10577 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
10578
10579 /* If we had any clobbers to add, make a new pattern than contains
10580 them. Then check to make sure that all of them are dead. */
10581 if (num_clobbers_to_add)
10582 {
10583 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
10584 rtvec_alloc (GET_CODE (pat) == PARALLEL
10585 ? (XVECLEN (pat, 0)
10586 + num_clobbers_to_add)
10587 : num_clobbers_to_add + 1));
10588
10589 if (GET_CODE (pat) == PARALLEL)
10590 for (i = 0; i < XVECLEN (pat, 0); i++)
10591 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
10592 else
10593 XVECEXP (newpat, 0, 0) = pat;
10594
10595 add_clobbers (newpat, insn_code_number);
10596
10597 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
10598 i < XVECLEN (newpat, 0); i++)
10599 {
10600 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
10601 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
10602 return -1;
10603 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
10604 {
10605 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
10606 notes = alloc_reg_note (REG_UNUSED,
10607 XEXP (XVECEXP (newpat, 0, i), 0), notes);
10608 }
10609 }
10610 pat = newpat;
10611 }
10612
10613 *pnewpat = pat;
10614 *pnotes = notes;
10615
10616 return insn_code_number;
10617 }
10618 \f
10619 /* Like gen_lowpart_general but for use by combine. In combine it
10620 is not possible to create any new pseudoregs. However, it is
10621 safe to create invalid memory addresses, because combine will
10622 try to recognize them and all they will do is make the combine
10623 attempt fail.
10624
10625 If for some reason this cannot do its job, an rtx
10626 (clobber (const_int 0)) is returned.
10627 An insn containing that will not be recognized. */
10628
10629 static rtx
10630 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
10631 {
10632 enum machine_mode imode = GET_MODE (x);
10633 unsigned int osize = GET_MODE_SIZE (omode);
10634 unsigned int isize = GET_MODE_SIZE (imode);
10635 rtx result;
10636
10637 if (omode == imode)
10638 return x;
10639
10640 /* Return identity if this is a CONST or symbolic reference. */
10641 if (omode == Pmode
10642 && (GET_CODE (x) == CONST
10643 || GET_CODE (x) == SYMBOL_REF
10644 || GET_CODE (x) == LABEL_REF))
10645 return x;
10646
10647 /* We can only support MODE being wider than a word if X is a
10648 constant integer or has a mode the same size. */
10649 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
10650 && ! ((imode == VOIDmode
10651 && (CONST_INT_P (x)
10652 || GET_CODE (x) == CONST_DOUBLE))
10653 || isize == osize))
10654 goto fail;
10655
10656 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
10657 won't know what to do. So we will strip off the SUBREG here and
10658 process normally. */
10659 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
10660 {
10661 x = SUBREG_REG (x);
10662
10663 /* For use in case we fall down into the address adjustments
10664 further below, we need to adjust the known mode and size of
10665 x; imode and isize, since we just adjusted x. */
10666 imode = GET_MODE (x);
10667
10668 if (imode == omode)
10669 return x;
10670
10671 isize = GET_MODE_SIZE (imode);
10672 }
10673
10674 result = gen_lowpart_common (omode, x);
10675
10676 if (result)
10677 return result;
10678
10679 if (MEM_P (x))
10680 {
10681 int offset = 0;
10682
10683 /* Refuse to work on a volatile memory ref or one with a mode-dependent
10684 address. */
10685 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
10686 goto fail;
10687
10688 /* If we want to refer to something bigger than the original memref,
10689 generate a paradoxical subreg instead. That will force a reload
10690 of the original memref X. */
10691 if (isize < osize)
10692 return gen_rtx_SUBREG (omode, x, 0);
10693
10694 if (WORDS_BIG_ENDIAN)
10695 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
10696
10697 /* Adjust the address so that the address-after-the-data is
10698 unchanged. */
10699 if (BYTES_BIG_ENDIAN)
10700 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
10701
10702 return adjust_address_nv (x, omode, offset);
10703 }
10704
10705 /* If X is a comparison operator, rewrite it in a new mode. This
10706 probably won't match, but may allow further simplifications. */
10707 else if (COMPARISON_P (x))
10708 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
10709
10710 /* If we couldn't simplify X any other way, just enclose it in a
10711 SUBREG. Normally, this SUBREG won't match, but some patterns may
10712 include an explicit SUBREG or we may simplify it further in combine. */
10713 else
10714 {
10715 int offset = 0;
10716 rtx res;
10717
10718 offset = subreg_lowpart_offset (omode, imode);
10719 if (imode == VOIDmode)
10720 {
10721 imode = int_mode_for_mode (omode);
10722 x = gen_lowpart_common (imode, x);
10723 if (x == NULL)
10724 goto fail;
10725 }
10726 res = simplify_gen_subreg (omode, x, imode, offset);
10727 if (res)
10728 return res;
10729 }
10730
10731 fail:
10732 return gen_rtx_CLOBBER (omode, const0_rtx);
10733 }
10734 \f
10735 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
10736 comparison code that will be tested.
10737
10738 The result is a possibly different comparison code to use. *POP0 and
10739 *POP1 may be updated.
10740
10741 It is possible that we might detect that a comparison is either always
10742 true or always false. However, we do not perform general constant
10743 folding in combine, so this knowledge isn't useful. Such tautologies
10744 should have been detected earlier. Hence we ignore all such cases. */
10745
10746 static enum rtx_code
10747 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
10748 {
10749 rtx op0 = *pop0;
10750 rtx op1 = *pop1;
10751 rtx tem, tem1;
10752 int i;
10753 enum machine_mode mode, tmode;
10754
10755 /* Try a few ways of applying the same transformation to both operands. */
10756 while (1)
10757 {
10758 #ifndef WORD_REGISTER_OPERATIONS
10759 /* The test below this one won't handle SIGN_EXTENDs on these machines,
10760 so check specially. */
10761 if (code != GTU && code != GEU && code != LTU && code != LEU
10762 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
10763 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10764 && GET_CODE (XEXP (op1, 0)) == ASHIFT
10765 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
10766 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
10767 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
10768 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
10769 && CONST_INT_P (XEXP (op0, 1))
10770 && XEXP (op0, 1) == XEXP (op1, 1)
10771 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10772 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
10773 && (INTVAL (XEXP (op0, 1))
10774 == (GET_MODE_BITSIZE (GET_MODE (op0))
10775 - (GET_MODE_BITSIZE
10776 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
10777 {
10778 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
10779 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
10780 }
10781 #endif
10782
10783 /* If both operands are the same constant shift, see if we can ignore the
10784 shift. We can if the shift is a rotate or if the bits shifted out of
10785 this shift are known to be zero for both inputs and if the type of
10786 comparison is compatible with the shift. */
10787 if (GET_CODE (op0) == GET_CODE (op1)
10788 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10789 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
10790 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
10791 && (code != GT && code != LT && code != GE && code != LE))
10792 || (GET_CODE (op0) == ASHIFTRT
10793 && (code != GTU && code != LTU
10794 && code != GEU && code != LEU)))
10795 && CONST_INT_P (XEXP (op0, 1))
10796 && INTVAL (XEXP (op0, 1)) >= 0
10797 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10798 && XEXP (op0, 1) == XEXP (op1, 1))
10799 {
10800 enum machine_mode mode = GET_MODE (op0);
10801 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10802 int shift_count = INTVAL (XEXP (op0, 1));
10803
10804 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
10805 mask &= (mask >> shift_count) << shift_count;
10806 else if (GET_CODE (op0) == ASHIFT)
10807 mask = (mask & (mask << shift_count)) >> shift_count;
10808
10809 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
10810 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
10811 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
10812 else
10813 break;
10814 }
10815
10816 /* If both operands are AND's of a paradoxical SUBREG by constant, the
10817 SUBREGs are of the same mode, and, in both cases, the AND would
10818 be redundant if the comparison was done in the narrower mode,
10819 do the comparison in the narrower mode (e.g., we are AND'ing with 1
10820 and the operand's possibly nonzero bits are 0xffffff01; in that case
10821 if we only care about QImode, we don't need the AND). This case
10822 occurs if the output mode of an scc insn is not SImode and
10823 STORE_FLAG_VALUE == 1 (e.g., the 386).
10824
10825 Similarly, check for a case where the AND's are ZERO_EXTEND
10826 operations from some narrower mode even though a SUBREG is not
10827 present. */
10828
10829 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
10830 && CONST_INT_P (XEXP (op0, 1))
10831 && CONST_INT_P (XEXP (op1, 1)))
10832 {
10833 rtx inner_op0 = XEXP (op0, 0);
10834 rtx inner_op1 = XEXP (op1, 0);
10835 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
10836 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
10837 int changed = 0;
10838
10839 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
10840 && (GET_MODE_SIZE (GET_MODE (inner_op0))
10841 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
10842 && (GET_MODE (SUBREG_REG (inner_op0))
10843 == GET_MODE (SUBREG_REG (inner_op1)))
10844 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
10845 <= HOST_BITS_PER_WIDE_INT)
10846 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
10847 GET_MODE (SUBREG_REG (inner_op0)))))
10848 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
10849 GET_MODE (SUBREG_REG (inner_op1))))))
10850 {
10851 op0 = SUBREG_REG (inner_op0);
10852 op1 = SUBREG_REG (inner_op1);
10853
10854 /* The resulting comparison is always unsigned since we masked
10855 off the original sign bit. */
10856 code = unsigned_condition (code);
10857
10858 changed = 1;
10859 }
10860
10861 else if (c0 == c1)
10862 for (tmode = GET_CLASS_NARROWEST_MODE
10863 (GET_MODE_CLASS (GET_MODE (op0)));
10864 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
10865 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
10866 {
10867 op0 = gen_lowpart (tmode, inner_op0);
10868 op1 = gen_lowpart (tmode, inner_op1);
10869 code = unsigned_condition (code);
10870 changed = 1;
10871 break;
10872 }
10873
10874 if (! changed)
10875 break;
10876 }
10877
10878 /* If both operands are NOT, we can strip off the outer operation
10879 and adjust the comparison code for swapped operands; similarly for
10880 NEG, except that this must be an equality comparison. */
10881 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
10882 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
10883 && (code == EQ || code == NE)))
10884 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
10885
10886 else
10887 break;
10888 }
10889
10890 /* If the first operand is a constant, swap the operands and adjust the
10891 comparison code appropriately, but don't do this if the second operand
10892 is already a constant integer. */
10893 if (swap_commutative_operands_p (op0, op1))
10894 {
10895 tem = op0, op0 = op1, op1 = tem;
10896 code = swap_condition (code);
10897 }
10898
10899 /* We now enter a loop during which we will try to simplify the comparison.
10900 For the most part, we only are concerned with comparisons with zero,
10901 but some things may really be comparisons with zero but not start
10902 out looking that way. */
10903
10904 while (CONST_INT_P (op1))
10905 {
10906 enum machine_mode mode = GET_MODE (op0);
10907 unsigned int mode_width = GET_MODE_BITSIZE (mode);
10908 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10909 int equality_comparison_p;
10910 int sign_bit_comparison_p;
10911 int unsigned_comparison_p;
10912 HOST_WIDE_INT const_op;
10913
10914 /* We only want to handle integral modes. This catches VOIDmode,
10915 CCmode, and the floating-point modes. An exception is that we
10916 can handle VOIDmode if OP0 is a COMPARE or a comparison
10917 operation. */
10918
10919 if (GET_MODE_CLASS (mode) != MODE_INT
10920 && ! (mode == VOIDmode
10921 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
10922 break;
10923
10924 /* Get the constant we are comparing against and turn off all bits
10925 not on in our mode. */
10926 const_op = INTVAL (op1);
10927 if (mode != VOIDmode)
10928 const_op = trunc_int_for_mode (const_op, mode);
10929 op1 = GEN_INT (const_op);
10930
10931 /* If we are comparing against a constant power of two and the value
10932 being compared can only have that single bit nonzero (e.g., it was
10933 `and'ed with that bit), we can replace this with a comparison
10934 with zero. */
10935 if (const_op
10936 && (code == EQ || code == NE || code == GE || code == GEU
10937 || code == LT || code == LTU)
10938 && mode_width <= HOST_BITS_PER_WIDE_INT
10939 && exact_log2 (const_op) >= 0
10940 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10941 {
10942 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10943 op1 = const0_rtx, const_op = 0;
10944 }
10945
10946 /* Similarly, if we are comparing a value known to be either -1 or
10947 0 with -1, change it to the opposite comparison against zero. */
10948
10949 if (const_op == -1
10950 && (code == EQ || code == NE || code == GT || code == LE
10951 || code == GEU || code == LTU)
10952 && num_sign_bit_copies (op0, mode) == mode_width)
10953 {
10954 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10955 op1 = const0_rtx, const_op = 0;
10956 }
10957
10958 /* Do some canonicalizations based on the comparison code. We prefer
10959 comparisons against zero and then prefer equality comparisons.
10960 If we can reduce the size of a constant, we will do that too. */
10961
10962 switch (code)
10963 {
10964 case LT:
10965 /* < C is equivalent to <= (C - 1) */
10966 if (const_op > 0)
10967 {
10968 const_op -= 1;
10969 op1 = GEN_INT (const_op);
10970 code = LE;
10971 /* ... fall through to LE case below. */
10972 }
10973 else
10974 break;
10975
10976 case LE:
10977 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10978 if (const_op < 0)
10979 {
10980 const_op += 1;
10981 op1 = GEN_INT (const_op);
10982 code = LT;
10983 }
10984
10985 /* If we are doing a <= 0 comparison on a value known to have
10986 a zero sign bit, we can replace this with == 0. */
10987 else if (const_op == 0
10988 && mode_width <= HOST_BITS_PER_WIDE_INT
10989 && (nonzero_bits (op0, mode)
10990 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10991 code = EQ;
10992 break;
10993
10994 case GE:
10995 /* >= C is equivalent to > (C - 1). */
10996 if (const_op > 0)
10997 {
10998 const_op -= 1;
10999 op1 = GEN_INT (const_op);
11000 code = GT;
11001 /* ... fall through to GT below. */
11002 }
11003 else
11004 break;
11005
11006 case GT:
11007 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
11008 if (const_op < 0)
11009 {
11010 const_op += 1;
11011 op1 = GEN_INT (const_op);
11012 code = GE;
11013 }
11014
11015 /* If we are doing a > 0 comparison on a value known to have
11016 a zero sign bit, we can replace this with != 0. */
11017 else if (const_op == 0
11018 && mode_width <= HOST_BITS_PER_WIDE_INT
11019 && (nonzero_bits (op0, mode)
11020 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
11021 code = NE;
11022 break;
11023
11024 case LTU:
11025 /* < C is equivalent to <= (C - 1). */
11026 if (const_op > 0)
11027 {
11028 const_op -= 1;
11029 op1 = GEN_INT (const_op);
11030 code = LEU;
11031 /* ... fall through ... */
11032 }
11033
11034 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11035 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
11036 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
11037 {
11038 const_op = 0, op1 = const0_rtx;
11039 code = GE;
11040 break;
11041 }
11042 else
11043 break;
11044
11045 case LEU:
11046 /* unsigned <= 0 is equivalent to == 0 */
11047 if (const_op == 0)
11048 code = EQ;
11049
11050 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11051 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
11052 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
11053 {
11054 const_op = 0, op1 = const0_rtx;
11055 code = GE;
11056 }
11057 break;
11058
11059 case GEU:
11060 /* >= C is equivalent to > (C - 1). */
11061 if (const_op > 1)
11062 {
11063 const_op -= 1;
11064 op1 = GEN_INT (const_op);
11065 code = GTU;
11066 /* ... fall through ... */
11067 }
11068
11069 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
11070 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
11071 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
11072 {
11073 const_op = 0, op1 = const0_rtx;
11074 code = LT;
11075 break;
11076 }
11077 else
11078 break;
11079
11080 case GTU:
11081 /* unsigned > 0 is equivalent to != 0 */
11082 if (const_op == 0)
11083 code = NE;
11084
11085 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
11086 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
11087 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
11088 {
11089 const_op = 0, op1 = const0_rtx;
11090 code = LT;
11091 }
11092 break;
11093
11094 default:
11095 break;
11096 }
11097
11098 /* Compute some predicates to simplify code below. */
11099
11100 equality_comparison_p = (code == EQ || code == NE);
11101 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
11102 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
11103 || code == GEU);
11104
11105 /* If this is a sign bit comparison and we can do arithmetic in
11106 MODE, say that we will only be needing the sign bit of OP0. */
11107 if (sign_bit_comparison_p
11108 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11109 op0 = force_to_mode (op0, mode,
11110 ((HOST_WIDE_INT) 1
11111 << (GET_MODE_BITSIZE (mode) - 1)),
11112 0);
11113
11114 /* Now try cases based on the opcode of OP0. If none of the cases
11115 does a "continue", we exit this loop immediately after the
11116 switch. */
11117
11118 switch (GET_CODE (op0))
11119 {
11120 case ZERO_EXTRACT:
11121 /* If we are extracting a single bit from a variable position in
11122 a constant that has only a single bit set and are comparing it
11123 with zero, we can convert this into an equality comparison
11124 between the position and the location of the single bit. */
11125 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
11126 have already reduced the shift count modulo the word size. */
11127 if (!SHIFT_COUNT_TRUNCATED
11128 && CONST_INT_P (XEXP (op0, 0))
11129 && XEXP (op0, 1) == const1_rtx
11130 && equality_comparison_p && const_op == 0
11131 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
11132 {
11133 if (BITS_BIG_ENDIAN)
11134 {
11135 enum machine_mode new_mode
11136 = mode_for_extraction (EP_extzv, 1);
11137 if (new_mode == MAX_MACHINE_MODE)
11138 i = BITS_PER_WORD - 1 - i;
11139 else
11140 {
11141 mode = new_mode;
11142 i = (GET_MODE_BITSIZE (mode) - 1 - i);
11143 }
11144 }
11145
11146 op0 = XEXP (op0, 2);
11147 op1 = GEN_INT (i);
11148 const_op = i;
11149
11150 /* Result is nonzero iff shift count is equal to I. */
11151 code = reverse_condition (code);
11152 continue;
11153 }
11154
11155 /* ... fall through ... */
11156
11157 case SIGN_EXTRACT:
11158 tem = expand_compound_operation (op0);
11159 if (tem != op0)
11160 {
11161 op0 = tem;
11162 continue;
11163 }
11164 break;
11165
11166 case NOT:
11167 /* If testing for equality, we can take the NOT of the constant. */
11168 if (equality_comparison_p
11169 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
11170 {
11171 op0 = XEXP (op0, 0);
11172 op1 = tem;
11173 continue;
11174 }
11175
11176 /* If just looking at the sign bit, reverse the sense of the
11177 comparison. */
11178 if (sign_bit_comparison_p)
11179 {
11180 op0 = XEXP (op0, 0);
11181 code = (code == GE ? LT : GE);
11182 continue;
11183 }
11184 break;
11185
11186 case NEG:
11187 /* If testing for equality, we can take the NEG of the constant. */
11188 if (equality_comparison_p
11189 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
11190 {
11191 op0 = XEXP (op0, 0);
11192 op1 = tem;
11193 continue;
11194 }
11195
11196 /* The remaining cases only apply to comparisons with zero. */
11197 if (const_op != 0)
11198 break;
11199
11200 /* When X is ABS or is known positive,
11201 (neg X) is < 0 if and only if X != 0. */
11202
11203 if (sign_bit_comparison_p
11204 && (GET_CODE (XEXP (op0, 0)) == ABS
11205 || (mode_width <= HOST_BITS_PER_WIDE_INT
11206 && (nonzero_bits (XEXP (op0, 0), mode)
11207 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
11208 {
11209 op0 = XEXP (op0, 0);
11210 code = (code == LT ? NE : EQ);
11211 continue;
11212 }
11213
11214 /* If we have NEG of something whose two high-order bits are the
11215 same, we know that "(-a) < 0" is equivalent to "a > 0". */
11216 if (num_sign_bit_copies (op0, mode) >= 2)
11217 {
11218 op0 = XEXP (op0, 0);
11219 code = swap_condition (code);
11220 continue;
11221 }
11222 break;
11223
11224 case ROTATE:
11225 /* If we are testing equality and our count is a constant, we
11226 can perform the inverse operation on our RHS. */
11227 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
11228 && (tem = simplify_binary_operation (ROTATERT, mode,
11229 op1, XEXP (op0, 1))) != 0)
11230 {
11231 op0 = XEXP (op0, 0);
11232 op1 = tem;
11233 continue;
11234 }
11235
11236 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
11237 a particular bit. Convert it to an AND of a constant of that
11238 bit. This will be converted into a ZERO_EXTRACT. */
11239 if (const_op == 0 && sign_bit_comparison_p
11240 && CONST_INT_P (XEXP (op0, 1))
11241 && mode_width <= HOST_BITS_PER_WIDE_INT)
11242 {
11243 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11244 ((HOST_WIDE_INT) 1
11245 << (mode_width - 1
11246 - INTVAL (XEXP (op0, 1)))));
11247 code = (code == LT ? NE : EQ);
11248 continue;
11249 }
11250
11251 /* Fall through. */
11252
11253 case ABS:
11254 /* ABS is ignorable inside an equality comparison with zero. */
11255 if (const_op == 0 && equality_comparison_p)
11256 {
11257 op0 = XEXP (op0, 0);
11258 continue;
11259 }
11260 break;
11261
11262 case SIGN_EXTEND:
11263 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
11264 (compare FOO CONST) if CONST fits in FOO's mode and we
11265 are either testing inequality or have an unsigned
11266 comparison with ZERO_EXTEND or a signed comparison with
11267 SIGN_EXTEND. But don't do it if we don't have a compare
11268 insn of the given mode, since we'd have to revert it
11269 later on, and then we wouldn't know whether to sign- or
11270 zero-extend. */
11271 mode = GET_MODE (XEXP (op0, 0));
11272 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11273 && ! unsigned_comparison_p
11274 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11275 && ((unsigned HOST_WIDE_INT) const_op
11276 < (((unsigned HOST_WIDE_INT) 1
11277 << (GET_MODE_BITSIZE (mode) - 1))))
11278 && have_insn_for (COMPARE, mode))
11279 {
11280 op0 = XEXP (op0, 0);
11281 continue;
11282 }
11283 break;
11284
11285 case SUBREG:
11286 /* Check for the case where we are comparing A - C1 with C2, that is
11287
11288 (subreg:MODE (plus (A) (-C1))) op (C2)
11289
11290 with C1 a constant, and try to lift the SUBREG, i.e. to do the
11291 comparison in the wider mode. One of the following two conditions
11292 must be true in order for this to be valid:
11293
11294 1. The mode extension results in the same bit pattern being added
11295 on both sides and the comparison is equality or unsigned. As
11296 C2 has been truncated to fit in MODE, the pattern can only be
11297 all 0s or all 1s.
11298
11299 2. The mode extension results in the sign bit being copied on
11300 each side.
11301
11302 The difficulty here is that we have predicates for A but not for
11303 (A - C1) so we need to check that C1 is within proper bounds so
11304 as to perturbate A as little as possible. */
11305
11306 if (mode_width <= HOST_BITS_PER_WIDE_INT
11307 && subreg_lowpart_p (op0)
11308 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) > mode_width
11309 && GET_CODE (SUBREG_REG (op0)) == PLUS
11310 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
11311 {
11312 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
11313 rtx a = XEXP (SUBREG_REG (op0), 0);
11314 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
11315
11316 if ((c1 > 0
11317 && (unsigned HOST_WIDE_INT) c1
11318 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
11319 && (equality_comparison_p || unsigned_comparison_p)
11320 /* (A - C1) zero-extends if it is positive and sign-extends
11321 if it is negative, C2 both zero- and sign-extends. */
11322 && ((0 == (nonzero_bits (a, inner_mode)
11323 & ~GET_MODE_MASK (mode))
11324 && const_op >= 0)
11325 /* (A - C1) sign-extends if it is positive and 1-extends
11326 if it is negative, C2 both sign- and 1-extends. */
11327 || (num_sign_bit_copies (a, inner_mode)
11328 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
11329 - mode_width)
11330 && const_op < 0)))
11331 || ((unsigned HOST_WIDE_INT) c1
11332 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
11333 /* (A - C1) always sign-extends, like C2. */
11334 && num_sign_bit_copies (a, inner_mode)
11335 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
11336 - (mode_width - 1))))
11337 {
11338 op0 = SUBREG_REG (op0);
11339 continue;
11340 }
11341 }
11342
11343 /* If the inner mode is narrower and we are extracting the low part,
11344 we can treat the SUBREG as if it were a ZERO_EXTEND. */
11345 if (subreg_lowpart_p (op0)
11346 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
11347 /* Fall through */ ;
11348 else
11349 break;
11350
11351 /* ... fall through ... */
11352
11353 case ZERO_EXTEND:
11354 mode = GET_MODE (XEXP (op0, 0));
11355 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11356 && (unsigned_comparison_p || equality_comparison_p)
11357 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11358 && ((unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode))
11359 && have_insn_for (COMPARE, mode))
11360 {
11361 op0 = XEXP (op0, 0);
11362 continue;
11363 }
11364 break;
11365
11366 case PLUS:
11367 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
11368 this for equality comparisons due to pathological cases involving
11369 overflows. */
11370 if (equality_comparison_p
11371 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11372 op1, XEXP (op0, 1))))
11373 {
11374 op0 = XEXP (op0, 0);
11375 op1 = tem;
11376 continue;
11377 }
11378
11379 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
11380 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
11381 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
11382 {
11383 op0 = XEXP (XEXP (op0, 0), 0);
11384 code = (code == LT ? EQ : NE);
11385 continue;
11386 }
11387 break;
11388
11389 case MINUS:
11390 /* We used to optimize signed comparisons against zero, but that
11391 was incorrect. Unsigned comparisons against zero (GTU, LEU)
11392 arrive here as equality comparisons, or (GEU, LTU) are
11393 optimized away. No need to special-case them. */
11394
11395 /* (eq (minus A B) C) -> (eq A (plus B C)) or
11396 (eq B (minus A C)), whichever simplifies. We can only do
11397 this for equality comparisons due to pathological cases involving
11398 overflows. */
11399 if (equality_comparison_p
11400 && 0 != (tem = simplify_binary_operation (PLUS, mode,
11401 XEXP (op0, 1), op1)))
11402 {
11403 op0 = XEXP (op0, 0);
11404 op1 = tem;
11405 continue;
11406 }
11407
11408 if (equality_comparison_p
11409 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11410 XEXP (op0, 0), op1)))
11411 {
11412 op0 = XEXP (op0, 1);
11413 op1 = tem;
11414 continue;
11415 }
11416
11417 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
11418 of bits in X minus 1, is one iff X > 0. */
11419 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
11420 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11421 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
11422 == mode_width - 1
11423 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11424 {
11425 op0 = XEXP (op0, 1);
11426 code = (code == GE ? LE : GT);
11427 continue;
11428 }
11429 break;
11430
11431 case XOR:
11432 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
11433 if C is zero or B is a constant. */
11434 if (equality_comparison_p
11435 && 0 != (tem = simplify_binary_operation (XOR, mode,
11436 XEXP (op0, 1), op1)))
11437 {
11438 op0 = XEXP (op0, 0);
11439 op1 = tem;
11440 continue;
11441 }
11442 break;
11443
11444 case EQ: case NE:
11445 case UNEQ: case LTGT:
11446 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
11447 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
11448 case UNORDERED: case ORDERED:
11449 /* We can't do anything if OP0 is a condition code value, rather
11450 than an actual data value. */
11451 if (const_op != 0
11452 || CC0_P (XEXP (op0, 0))
11453 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
11454 break;
11455
11456 /* Get the two operands being compared. */
11457 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
11458 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
11459 else
11460 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
11461
11462 /* Check for the cases where we simply want the result of the
11463 earlier test or the opposite of that result. */
11464 if (code == NE || code == EQ
11465 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
11466 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11467 && (STORE_FLAG_VALUE
11468 & (((HOST_WIDE_INT) 1
11469 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
11470 && (code == LT || code == GE)))
11471 {
11472 enum rtx_code new_code;
11473 if (code == LT || code == NE)
11474 new_code = GET_CODE (op0);
11475 else
11476 new_code = reversed_comparison_code (op0, NULL);
11477
11478 if (new_code != UNKNOWN)
11479 {
11480 code = new_code;
11481 op0 = tem;
11482 op1 = tem1;
11483 continue;
11484 }
11485 }
11486 break;
11487
11488 case IOR:
11489 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
11490 iff X <= 0. */
11491 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
11492 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
11493 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11494 {
11495 op0 = XEXP (op0, 1);
11496 code = (code == GE ? GT : LE);
11497 continue;
11498 }
11499 break;
11500
11501 case AND:
11502 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
11503 will be converted to a ZERO_EXTRACT later. */
11504 if (const_op == 0 && equality_comparison_p
11505 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11506 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
11507 {
11508 op0 = simplify_and_const_int
11509 (NULL_RTX, mode, gen_rtx_LSHIFTRT (mode,
11510 XEXP (op0, 1),
11511 XEXP (XEXP (op0, 0), 1)),
11512 (HOST_WIDE_INT) 1);
11513 continue;
11514 }
11515
11516 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
11517 zero and X is a comparison and C1 and C2 describe only bits set
11518 in STORE_FLAG_VALUE, we can compare with X. */
11519 if (const_op == 0 && equality_comparison_p
11520 && mode_width <= HOST_BITS_PER_WIDE_INT
11521 && CONST_INT_P (XEXP (op0, 1))
11522 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
11523 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11524 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
11525 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
11526 {
11527 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11528 << INTVAL (XEXP (XEXP (op0, 0), 1)));
11529 if ((~STORE_FLAG_VALUE & mask) == 0
11530 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
11531 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
11532 && COMPARISON_P (tem))))
11533 {
11534 op0 = XEXP (XEXP (op0, 0), 0);
11535 continue;
11536 }
11537 }
11538
11539 /* If we are doing an equality comparison of an AND of a bit equal
11540 to the sign bit, replace this with a LT or GE comparison of
11541 the underlying value. */
11542 if (equality_comparison_p
11543 && const_op == 0
11544 && CONST_INT_P (XEXP (op0, 1))
11545 && mode_width <= HOST_BITS_PER_WIDE_INT
11546 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11547 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11548 {
11549 op0 = XEXP (op0, 0);
11550 code = (code == EQ ? GE : LT);
11551 continue;
11552 }
11553
11554 /* If this AND operation is really a ZERO_EXTEND from a narrower
11555 mode, the constant fits within that mode, and this is either an
11556 equality or unsigned comparison, try to do this comparison in
11557 the narrower mode.
11558
11559 Note that in:
11560
11561 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
11562 -> (ne:DI (reg:SI 4) (const_int 0))
11563
11564 unless TRULY_NOOP_TRUNCATION allows it or the register is
11565 known to hold a value of the required mode the
11566 transformation is invalid. */
11567 if ((equality_comparison_p || unsigned_comparison_p)
11568 && CONST_INT_P (XEXP (op0, 1))
11569 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
11570 & GET_MODE_MASK (mode))
11571 + 1)) >= 0
11572 && const_op >> i == 0
11573 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode
11574 && (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
11575 GET_MODE_BITSIZE (GET_MODE (op0)))
11576 || (REG_P (XEXP (op0, 0))
11577 && reg_truncated_to_mode (tmode, XEXP (op0, 0)))))
11578 {
11579 op0 = gen_lowpart (tmode, XEXP (op0, 0));
11580 continue;
11581 }
11582
11583 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
11584 fits in both M1 and M2 and the SUBREG is either paradoxical
11585 or represents the low part, permute the SUBREG and the AND
11586 and try again. */
11587 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
11588 {
11589 unsigned HOST_WIDE_INT c1;
11590 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
11591 /* Require an integral mode, to avoid creating something like
11592 (AND:SF ...). */
11593 if (SCALAR_INT_MODE_P (tmode)
11594 /* It is unsafe to commute the AND into the SUBREG if the
11595 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
11596 not defined. As originally written the upper bits
11597 have a defined value due to the AND operation.
11598 However, if we commute the AND inside the SUBREG then
11599 they no longer have defined values and the meaning of
11600 the code has been changed. */
11601 && (0
11602 #ifdef WORD_REGISTER_OPERATIONS
11603 || (mode_width > GET_MODE_BITSIZE (tmode)
11604 && mode_width <= BITS_PER_WORD)
11605 #endif
11606 || (mode_width <= GET_MODE_BITSIZE (tmode)
11607 && subreg_lowpart_p (XEXP (op0, 0))))
11608 && CONST_INT_P (XEXP (op0, 1))
11609 && mode_width <= HOST_BITS_PER_WIDE_INT
11610 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
11611 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
11612 && (c1 & ~GET_MODE_MASK (tmode)) == 0
11613 && c1 != mask
11614 && c1 != GET_MODE_MASK (tmode))
11615 {
11616 op0 = simplify_gen_binary (AND, tmode,
11617 SUBREG_REG (XEXP (op0, 0)),
11618 gen_int_mode (c1, tmode));
11619 op0 = gen_lowpart (mode, op0);
11620 continue;
11621 }
11622 }
11623
11624 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
11625 if (const_op == 0 && equality_comparison_p
11626 && XEXP (op0, 1) == const1_rtx
11627 && GET_CODE (XEXP (op0, 0)) == NOT)
11628 {
11629 op0 = simplify_and_const_int
11630 (NULL_RTX, mode, XEXP (XEXP (op0, 0), 0), (HOST_WIDE_INT) 1);
11631 code = (code == NE ? EQ : NE);
11632 continue;
11633 }
11634
11635 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
11636 (eq (and (lshiftrt X) 1) 0).
11637 Also handle the case where (not X) is expressed using xor. */
11638 if (const_op == 0 && equality_comparison_p
11639 && XEXP (op0, 1) == const1_rtx
11640 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
11641 {
11642 rtx shift_op = XEXP (XEXP (op0, 0), 0);
11643 rtx shift_count = XEXP (XEXP (op0, 0), 1);
11644
11645 if (GET_CODE (shift_op) == NOT
11646 || (GET_CODE (shift_op) == XOR
11647 && CONST_INT_P (XEXP (shift_op, 1))
11648 && CONST_INT_P (shift_count)
11649 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
11650 && (INTVAL (XEXP (shift_op, 1))
11651 == (HOST_WIDE_INT) 1 << INTVAL (shift_count))))
11652 {
11653 op0 = simplify_and_const_int
11654 (NULL_RTX, mode,
11655 gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count),
11656 (HOST_WIDE_INT) 1);
11657 code = (code == NE ? EQ : NE);
11658 continue;
11659 }
11660 }
11661 break;
11662
11663 case ASHIFT:
11664 /* If we have (compare (ashift FOO N) (const_int C)) and
11665 the high order N bits of FOO (N+1 if an inequality comparison)
11666 are known to be zero, we can do this by comparing FOO with C
11667 shifted right N bits so long as the low-order N bits of C are
11668 zero. */
11669 if (CONST_INT_P (XEXP (op0, 1))
11670 && INTVAL (XEXP (op0, 1)) >= 0
11671 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
11672 < HOST_BITS_PER_WIDE_INT)
11673 && ((const_op
11674 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
11675 && mode_width <= HOST_BITS_PER_WIDE_INT
11676 && (nonzero_bits (XEXP (op0, 0), mode)
11677 & ~(mask >> (INTVAL (XEXP (op0, 1))
11678 + ! equality_comparison_p))) == 0)
11679 {
11680 /* We must perform a logical shift, not an arithmetic one,
11681 as we want the top N bits of C to be zero. */
11682 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
11683
11684 temp >>= INTVAL (XEXP (op0, 1));
11685 op1 = gen_int_mode (temp, mode);
11686 op0 = XEXP (op0, 0);
11687 continue;
11688 }
11689
11690 /* If we are doing a sign bit comparison, it means we are testing
11691 a particular bit. Convert it to the appropriate AND. */
11692 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
11693 && mode_width <= HOST_BITS_PER_WIDE_INT)
11694 {
11695 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11696 ((HOST_WIDE_INT) 1
11697 << (mode_width - 1
11698 - INTVAL (XEXP (op0, 1)))));
11699 code = (code == LT ? NE : EQ);
11700 continue;
11701 }
11702
11703 /* If this an equality comparison with zero and we are shifting
11704 the low bit to the sign bit, we can convert this to an AND of the
11705 low-order bit. */
11706 if (const_op == 0 && equality_comparison_p
11707 && CONST_INT_P (XEXP (op0, 1))
11708 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11709 == mode_width - 1)
11710 {
11711 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11712 (HOST_WIDE_INT) 1);
11713 continue;
11714 }
11715 break;
11716
11717 case ASHIFTRT:
11718 /* If this is an equality comparison with zero, we can do this
11719 as a logical shift, which might be much simpler. */
11720 if (equality_comparison_p && const_op == 0
11721 && CONST_INT_P (XEXP (op0, 1)))
11722 {
11723 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
11724 XEXP (op0, 0),
11725 INTVAL (XEXP (op0, 1)));
11726 continue;
11727 }
11728
11729 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
11730 do the comparison in a narrower mode. */
11731 if (! unsigned_comparison_p
11732 && CONST_INT_P (XEXP (op0, 1))
11733 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11734 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11735 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11736 MODE_INT, 1)) != BLKmode
11737 && (((unsigned HOST_WIDE_INT) const_op
11738 + (GET_MODE_MASK (tmode) >> 1) + 1)
11739 <= GET_MODE_MASK (tmode)))
11740 {
11741 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
11742 continue;
11743 }
11744
11745 /* Likewise if OP0 is a PLUS of a sign extension with a
11746 constant, which is usually represented with the PLUS
11747 between the shifts. */
11748 if (! unsigned_comparison_p
11749 && CONST_INT_P (XEXP (op0, 1))
11750 && GET_CODE (XEXP (op0, 0)) == PLUS
11751 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11752 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
11753 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
11754 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11755 MODE_INT, 1)) != BLKmode
11756 && (((unsigned HOST_WIDE_INT) const_op
11757 + (GET_MODE_MASK (tmode) >> 1) + 1)
11758 <= GET_MODE_MASK (tmode)))
11759 {
11760 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
11761 rtx add_const = XEXP (XEXP (op0, 0), 1);
11762 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
11763 add_const, XEXP (op0, 1));
11764
11765 op0 = simplify_gen_binary (PLUS, tmode,
11766 gen_lowpart (tmode, inner),
11767 new_const);
11768 continue;
11769 }
11770
11771 /* ... fall through ... */
11772 case LSHIFTRT:
11773 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
11774 the low order N bits of FOO are known to be zero, we can do this
11775 by comparing FOO with C shifted left N bits so long as no
11776 overflow occurs. */
11777 if (CONST_INT_P (XEXP (op0, 1))
11778 && INTVAL (XEXP (op0, 1)) >= 0
11779 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11780 && mode_width <= HOST_BITS_PER_WIDE_INT
11781 && (nonzero_bits (XEXP (op0, 0), mode)
11782 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
11783 && (((unsigned HOST_WIDE_INT) const_op
11784 + (GET_CODE (op0) != LSHIFTRT
11785 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
11786 + 1)
11787 : 0))
11788 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
11789 {
11790 /* If the shift was logical, then we must make the condition
11791 unsigned. */
11792 if (GET_CODE (op0) == LSHIFTRT)
11793 code = unsigned_condition (code);
11794
11795 const_op <<= INTVAL (XEXP (op0, 1));
11796 op1 = GEN_INT (const_op);
11797 op0 = XEXP (op0, 0);
11798 continue;
11799 }
11800
11801 /* If we are using this shift to extract just the sign bit, we
11802 can replace this with an LT or GE comparison. */
11803 if (const_op == 0
11804 && (equality_comparison_p || sign_bit_comparison_p)
11805 && CONST_INT_P (XEXP (op0, 1))
11806 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11807 == mode_width - 1)
11808 {
11809 op0 = XEXP (op0, 0);
11810 code = (code == NE || code == GT ? LT : GE);
11811 continue;
11812 }
11813 break;
11814
11815 default:
11816 break;
11817 }
11818
11819 break;
11820 }
11821
11822 /* Now make any compound operations involved in this comparison. Then,
11823 check for an outmost SUBREG on OP0 that is not doing anything or is
11824 paradoxical. The latter transformation must only be performed when
11825 it is known that the "extra" bits will be the same in op0 and op1 or
11826 that they don't matter. There are three cases to consider:
11827
11828 1. SUBREG_REG (op0) is a register. In this case the bits are don't
11829 care bits and we can assume they have any convenient value. So
11830 making the transformation is safe.
11831
11832 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
11833 In this case the upper bits of op0 are undefined. We should not make
11834 the simplification in that case as we do not know the contents of
11835 those bits.
11836
11837 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
11838 UNKNOWN. In that case we know those bits are zeros or ones. We must
11839 also be sure that they are the same as the upper bits of op1.
11840
11841 We can never remove a SUBREG for a non-equality comparison because
11842 the sign bit is in a different place in the underlying object. */
11843
11844 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
11845 op1 = make_compound_operation (op1, SET);
11846
11847 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
11848 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11849 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
11850 && (code == NE || code == EQ))
11851 {
11852 if (GET_MODE_SIZE (GET_MODE (op0))
11853 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
11854 {
11855 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
11856 implemented. */
11857 if (REG_P (SUBREG_REG (op0)))
11858 {
11859 op0 = SUBREG_REG (op0);
11860 op1 = gen_lowpart (GET_MODE (op0), op1);
11861 }
11862 }
11863 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
11864 <= HOST_BITS_PER_WIDE_INT)
11865 && (nonzero_bits (SUBREG_REG (op0),
11866 GET_MODE (SUBREG_REG (op0)))
11867 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11868 {
11869 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
11870
11871 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
11872 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11873 op0 = SUBREG_REG (op0), op1 = tem;
11874 }
11875 }
11876
11877 /* We now do the opposite procedure: Some machines don't have compare
11878 insns in all modes. If OP0's mode is an integer mode smaller than a
11879 word and we can't do a compare in that mode, see if there is a larger
11880 mode for which we can do the compare. There are a number of cases in
11881 which we can use the wider mode. */
11882
11883 mode = GET_MODE (op0);
11884 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11885 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
11886 && ! have_insn_for (COMPARE, mode))
11887 for (tmode = GET_MODE_WIDER_MODE (mode);
11888 (tmode != VOIDmode
11889 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
11890 tmode = GET_MODE_WIDER_MODE (tmode))
11891 if (have_insn_for (COMPARE, tmode))
11892 {
11893 int zero_extended;
11894
11895 /* If this is a test for negative, we can make an explicit
11896 test of the sign bit. Test this first so we can use
11897 a paradoxical subreg to extend OP0. */
11898
11899 if (op1 == const0_rtx && (code == LT || code == GE)
11900 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11901 {
11902 op0 = simplify_gen_binary (AND, tmode,
11903 gen_lowpart (tmode, op0),
11904 GEN_INT ((HOST_WIDE_INT) 1
11905 << (GET_MODE_BITSIZE (mode)
11906 - 1)));
11907 code = (code == LT) ? NE : EQ;
11908 break;
11909 }
11910
11911 /* If the only nonzero bits in OP0 and OP1 are those in the
11912 narrower mode and this is an equality or unsigned comparison,
11913 we can use the wider mode. Similarly for sign-extended
11914 values, in which case it is true for all comparisons. */
11915 zero_extended = ((code == EQ || code == NE
11916 || code == GEU || code == GTU
11917 || code == LEU || code == LTU)
11918 && (nonzero_bits (op0, tmode)
11919 & ~GET_MODE_MASK (mode)) == 0
11920 && ((CONST_INT_P (op1)
11921 || (nonzero_bits (op1, tmode)
11922 & ~GET_MODE_MASK (mode)) == 0)));
11923
11924 if (zero_extended
11925 || ((num_sign_bit_copies (op0, tmode)
11926 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11927 - GET_MODE_BITSIZE (mode)))
11928 && (num_sign_bit_copies (op1, tmode)
11929 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11930 - GET_MODE_BITSIZE (mode)))))
11931 {
11932 /* If OP0 is an AND and we don't have an AND in MODE either,
11933 make a new AND in the proper mode. */
11934 if (GET_CODE (op0) == AND
11935 && !have_insn_for (AND, mode))
11936 op0 = simplify_gen_binary (AND, tmode,
11937 gen_lowpart (tmode,
11938 XEXP (op0, 0)),
11939 gen_lowpart (tmode,
11940 XEXP (op0, 1)));
11941 else
11942 {
11943 if (zero_extended)
11944 {
11945 op0 = simplify_gen_unary (ZERO_EXTEND, tmode, op0, mode);
11946 op1 = simplify_gen_unary (ZERO_EXTEND, tmode, op1, mode);
11947 }
11948 else
11949 {
11950 op0 = simplify_gen_unary (SIGN_EXTEND, tmode, op0, mode);
11951 op1 = simplify_gen_unary (SIGN_EXTEND, tmode, op1, mode);
11952 }
11953 break;
11954 }
11955 }
11956 }
11957
11958 #ifdef CANONICALIZE_COMPARISON
11959 /* If this machine only supports a subset of valid comparisons, see if we
11960 can convert an unsupported one into a supported one. */
11961 CANONICALIZE_COMPARISON (code, op0, op1);
11962 #endif
11963
11964 *pop0 = op0;
11965 *pop1 = op1;
11966
11967 return code;
11968 }
11969 \f
11970 /* Utility function for record_value_for_reg. Count number of
11971 rtxs in X. */
11972 static int
11973 count_rtxs (rtx x)
11974 {
11975 enum rtx_code code = GET_CODE (x);
11976 const char *fmt;
11977 int i, j, ret = 1;
11978
11979 if (GET_RTX_CLASS (code) == '2'
11980 || GET_RTX_CLASS (code) == 'c')
11981 {
11982 rtx x0 = XEXP (x, 0);
11983 rtx x1 = XEXP (x, 1);
11984
11985 if (x0 == x1)
11986 return 1 + 2 * count_rtxs (x0);
11987
11988 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
11989 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
11990 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11991 return 2 + 2 * count_rtxs (x0)
11992 + count_rtxs (x == XEXP (x1, 0)
11993 ? XEXP (x1, 1) : XEXP (x1, 0));
11994
11995 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
11996 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
11997 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11998 return 2 + 2 * count_rtxs (x1)
11999 + count_rtxs (x == XEXP (x0, 0)
12000 ? XEXP (x0, 1) : XEXP (x0, 0));
12001 }
12002
12003 fmt = GET_RTX_FORMAT (code);
12004 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12005 if (fmt[i] == 'e')
12006 ret += count_rtxs (XEXP (x, i));
12007 else if (fmt[i] == 'E')
12008 for (j = 0; j < XVECLEN (x, i); j++)
12009 ret += count_rtxs (XVECEXP (x, i, j));
12010
12011 return ret;
12012 }
12013 \f
12014 /* Utility function for following routine. Called when X is part of a value
12015 being stored into last_set_value. Sets last_set_table_tick
12016 for each register mentioned. Similar to mention_regs in cse.c */
12017
12018 static void
12019 update_table_tick (rtx x)
12020 {
12021 enum rtx_code code = GET_CODE (x);
12022 const char *fmt = GET_RTX_FORMAT (code);
12023 int i, j;
12024
12025 if (code == REG)
12026 {
12027 unsigned int regno = REGNO (x);
12028 unsigned int endregno = END_REGNO (x);
12029 unsigned int r;
12030
12031 for (r = regno; r < endregno; r++)
12032 {
12033 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, r);
12034 rsp->last_set_table_tick = label_tick;
12035 }
12036
12037 return;
12038 }
12039
12040 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12041 if (fmt[i] == 'e')
12042 {
12043 /* Check for identical subexpressions. If x contains
12044 identical subexpression we only have to traverse one of
12045 them. */
12046 if (i == 0 && ARITHMETIC_P (x))
12047 {
12048 /* Note that at this point x1 has already been
12049 processed. */
12050 rtx x0 = XEXP (x, 0);
12051 rtx x1 = XEXP (x, 1);
12052
12053 /* If x0 and x1 are identical then there is no need to
12054 process x0. */
12055 if (x0 == x1)
12056 break;
12057
12058 /* If x0 is identical to a subexpression of x1 then while
12059 processing x1, x0 has already been processed. Thus we
12060 are done with x. */
12061 if (ARITHMETIC_P (x1)
12062 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12063 break;
12064
12065 /* If x1 is identical to a subexpression of x0 then we
12066 still have to process the rest of x0. */
12067 if (ARITHMETIC_P (x0)
12068 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12069 {
12070 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
12071 break;
12072 }
12073 }
12074
12075 update_table_tick (XEXP (x, i));
12076 }
12077 else if (fmt[i] == 'E')
12078 for (j = 0; j < XVECLEN (x, i); j++)
12079 update_table_tick (XVECEXP (x, i, j));
12080 }
12081
12082 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
12083 are saying that the register is clobbered and we no longer know its
12084 value. If INSN is zero, don't update reg_stat[].last_set; this is
12085 only permitted with VALUE also zero and is used to invalidate the
12086 register. */
12087
12088 static void
12089 record_value_for_reg (rtx reg, rtx insn, rtx value)
12090 {
12091 unsigned int regno = REGNO (reg);
12092 unsigned int endregno = END_REGNO (reg);
12093 unsigned int i;
12094 reg_stat_type *rsp;
12095
12096 /* If VALUE contains REG and we have a previous value for REG, substitute
12097 the previous value. */
12098 if (value && insn && reg_overlap_mentioned_p (reg, value))
12099 {
12100 rtx tem;
12101
12102 /* Set things up so get_last_value is allowed to see anything set up to
12103 our insn. */
12104 subst_low_luid = DF_INSN_LUID (insn);
12105 tem = get_last_value (reg);
12106
12107 /* If TEM is simply a binary operation with two CLOBBERs as operands,
12108 it isn't going to be useful and will take a lot of time to process,
12109 so just use the CLOBBER. */
12110
12111 if (tem)
12112 {
12113 if (ARITHMETIC_P (tem)
12114 && GET_CODE (XEXP (tem, 0)) == CLOBBER
12115 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
12116 tem = XEXP (tem, 0);
12117 else if (count_occurrences (value, reg, 1) >= 2)
12118 {
12119 /* If there are two or more occurrences of REG in VALUE,
12120 prevent the value from growing too much. */
12121 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
12122 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
12123 }
12124
12125 value = replace_rtx (copy_rtx (value), reg, tem);
12126 }
12127 }
12128
12129 /* For each register modified, show we don't know its value, that
12130 we don't know about its bitwise content, that its value has been
12131 updated, and that we don't know the location of the death of the
12132 register. */
12133 for (i = regno; i < endregno; i++)
12134 {
12135 rsp = VEC_index (reg_stat_type, reg_stat, i);
12136
12137 if (insn)
12138 rsp->last_set = insn;
12139
12140 rsp->last_set_value = 0;
12141 rsp->last_set_mode = VOIDmode;
12142 rsp->last_set_nonzero_bits = 0;
12143 rsp->last_set_sign_bit_copies = 0;
12144 rsp->last_death = 0;
12145 rsp->truncated_to_mode = VOIDmode;
12146 }
12147
12148 /* Mark registers that are being referenced in this value. */
12149 if (value)
12150 update_table_tick (value);
12151
12152 /* Now update the status of each register being set.
12153 If someone is using this register in this block, set this register
12154 to invalid since we will get confused between the two lives in this
12155 basic block. This makes using this register always invalid. In cse, we
12156 scan the table to invalidate all entries using this register, but this
12157 is too much work for us. */
12158
12159 for (i = regno; i < endregno; i++)
12160 {
12161 rsp = VEC_index (reg_stat_type, reg_stat, i);
12162 rsp->last_set_label = label_tick;
12163 if (!insn
12164 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
12165 rsp->last_set_invalid = 1;
12166 else
12167 rsp->last_set_invalid = 0;
12168 }
12169
12170 /* The value being assigned might refer to X (like in "x++;"). In that
12171 case, we must replace it with (clobber (const_int 0)) to prevent
12172 infinite loops. */
12173 rsp = VEC_index (reg_stat_type, reg_stat, regno);
12174 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
12175 {
12176 value = copy_rtx (value);
12177 if (!get_last_value_validate (&value, insn, label_tick, 1))
12178 value = 0;
12179 }
12180
12181 /* For the main register being modified, update the value, the mode, the
12182 nonzero bits, and the number of sign bit copies. */
12183
12184 rsp->last_set_value = value;
12185
12186 if (value)
12187 {
12188 enum machine_mode mode = GET_MODE (reg);
12189 subst_low_luid = DF_INSN_LUID (insn);
12190 rsp->last_set_mode = mode;
12191 if (GET_MODE_CLASS (mode) == MODE_INT
12192 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
12193 mode = nonzero_bits_mode;
12194 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
12195 rsp->last_set_sign_bit_copies
12196 = num_sign_bit_copies (value, GET_MODE (reg));
12197 }
12198 }
12199
12200 /* Called via note_stores from record_dead_and_set_regs to handle one
12201 SET or CLOBBER in an insn. DATA is the instruction in which the
12202 set is occurring. */
12203
12204 static void
12205 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
12206 {
12207 rtx record_dead_insn = (rtx) data;
12208
12209 if (GET_CODE (dest) == SUBREG)
12210 dest = SUBREG_REG (dest);
12211
12212 if (!record_dead_insn)
12213 {
12214 if (REG_P (dest))
12215 record_value_for_reg (dest, NULL_RTX, NULL_RTX);
12216 return;
12217 }
12218
12219 if (REG_P (dest))
12220 {
12221 /* If we are setting the whole register, we know its value. Otherwise
12222 show that we don't know the value. We can handle SUBREG in
12223 some cases. */
12224 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
12225 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
12226 else if (GET_CODE (setter) == SET
12227 && GET_CODE (SET_DEST (setter)) == SUBREG
12228 && SUBREG_REG (SET_DEST (setter)) == dest
12229 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
12230 && subreg_lowpart_p (SET_DEST (setter)))
12231 record_value_for_reg (dest, record_dead_insn,
12232 gen_lowpart (GET_MODE (dest),
12233 SET_SRC (setter)));
12234 else
12235 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
12236 }
12237 else if (MEM_P (dest)
12238 /* Ignore pushes, they clobber nothing. */
12239 && ! push_operand (dest, GET_MODE (dest)))
12240 mem_last_set = DF_INSN_LUID (record_dead_insn);
12241 }
12242
12243 /* Update the records of when each REG was most recently set or killed
12244 for the things done by INSN. This is the last thing done in processing
12245 INSN in the combiner loop.
12246
12247 We update reg_stat[], in particular fields last_set, last_set_value,
12248 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
12249 last_death, and also the similar information mem_last_set (which insn
12250 most recently modified memory) and last_call_luid (which insn was the
12251 most recent subroutine call). */
12252
12253 static void
12254 record_dead_and_set_regs (rtx insn)
12255 {
12256 rtx link;
12257 unsigned int i;
12258
12259 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
12260 {
12261 if (REG_NOTE_KIND (link) == REG_DEAD
12262 && REG_P (XEXP (link, 0)))
12263 {
12264 unsigned int regno = REGNO (XEXP (link, 0));
12265 unsigned int endregno = END_REGNO (XEXP (link, 0));
12266
12267 for (i = regno; i < endregno; i++)
12268 {
12269 reg_stat_type *rsp;
12270
12271 rsp = VEC_index (reg_stat_type, reg_stat, i);
12272 rsp->last_death = insn;
12273 }
12274 }
12275 else if (REG_NOTE_KIND (link) == REG_INC)
12276 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
12277 }
12278
12279 if (CALL_P (insn))
12280 {
12281 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
12282 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
12283 {
12284 reg_stat_type *rsp;
12285
12286 rsp = VEC_index (reg_stat_type, reg_stat, i);
12287 rsp->last_set_invalid = 1;
12288 rsp->last_set = insn;
12289 rsp->last_set_value = 0;
12290 rsp->last_set_mode = VOIDmode;
12291 rsp->last_set_nonzero_bits = 0;
12292 rsp->last_set_sign_bit_copies = 0;
12293 rsp->last_death = 0;
12294 rsp->truncated_to_mode = VOIDmode;
12295 }
12296
12297 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
12298
12299 /* We can't combine into a call pattern. Remember, though, that
12300 the return value register is set at this LUID. We could
12301 still replace a register with the return value from the
12302 wrong subroutine call! */
12303 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
12304 }
12305 else
12306 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
12307 }
12308
12309 /* If a SUBREG has the promoted bit set, it is in fact a property of the
12310 register present in the SUBREG, so for each such SUBREG go back and
12311 adjust nonzero and sign bit information of the registers that are
12312 known to have some zero/sign bits set.
12313
12314 This is needed because when combine blows the SUBREGs away, the
12315 information on zero/sign bits is lost and further combines can be
12316 missed because of that. */
12317
12318 static void
12319 record_promoted_value (rtx insn, rtx subreg)
12320 {
12321 rtx links, set;
12322 unsigned int regno = REGNO (SUBREG_REG (subreg));
12323 enum machine_mode mode = GET_MODE (subreg);
12324
12325 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
12326 return;
12327
12328 for (links = LOG_LINKS (insn); links;)
12329 {
12330 reg_stat_type *rsp;
12331
12332 insn = XEXP (links, 0);
12333 set = single_set (insn);
12334
12335 if (! set || !REG_P (SET_DEST (set))
12336 || REGNO (SET_DEST (set)) != regno
12337 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
12338 {
12339 links = XEXP (links, 1);
12340 continue;
12341 }
12342
12343 rsp = VEC_index (reg_stat_type, reg_stat, regno);
12344 if (rsp->last_set == insn)
12345 {
12346 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
12347 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
12348 }
12349
12350 if (REG_P (SET_SRC (set)))
12351 {
12352 regno = REGNO (SET_SRC (set));
12353 links = LOG_LINKS (insn);
12354 }
12355 else
12356 break;
12357 }
12358 }
12359
12360 /* Check if X, a register, is known to contain a value already
12361 truncated to MODE. In this case we can use a subreg to refer to
12362 the truncated value even though in the generic case we would need
12363 an explicit truncation. */
12364
12365 static bool
12366 reg_truncated_to_mode (enum machine_mode mode, const_rtx x)
12367 {
12368 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
12369 enum machine_mode truncated = rsp->truncated_to_mode;
12370
12371 if (truncated == 0
12372 || rsp->truncation_label < label_tick_ebb_start)
12373 return false;
12374 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
12375 return true;
12376 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
12377 GET_MODE_BITSIZE (truncated)))
12378 return true;
12379 return false;
12380 }
12381
12382 /* Callback for for_each_rtx. If *P is a hard reg or a subreg record the mode
12383 that the register is accessed in. For non-TRULY_NOOP_TRUNCATION targets we
12384 might be able to turn a truncate into a subreg using this information.
12385 Return -1 if traversing *P is complete or 0 otherwise. */
12386
12387 static int
12388 record_truncated_value (rtx *p, void *data ATTRIBUTE_UNUSED)
12389 {
12390 rtx x = *p;
12391 enum machine_mode truncated_mode;
12392 reg_stat_type *rsp;
12393
12394 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
12395 {
12396 enum machine_mode original_mode = GET_MODE (SUBREG_REG (x));
12397 truncated_mode = GET_MODE (x);
12398
12399 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
12400 return -1;
12401
12402 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (truncated_mode),
12403 GET_MODE_BITSIZE (original_mode)))
12404 return -1;
12405
12406 x = SUBREG_REG (x);
12407 }
12408 /* ??? For hard-regs we now record everything. We might be able to
12409 optimize this using last_set_mode. */
12410 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
12411 truncated_mode = GET_MODE (x);
12412 else
12413 return 0;
12414
12415 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
12416 if (rsp->truncated_to_mode == 0
12417 || rsp->truncation_label < label_tick_ebb_start
12418 || (GET_MODE_SIZE (truncated_mode)
12419 < GET_MODE_SIZE (rsp->truncated_to_mode)))
12420 {
12421 rsp->truncated_to_mode = truncated_mode;
12422 rsp->truncation_label = label_tick;
12423 }
12424
12425 return -1;
12426 }
12427
12428 /* Callback for note_uses. Find hardregs and subregs of pseudos and
12429 the modes they are used in. This can help truning TRUNCATEs into
12430 SUBREGs. */
12431
12432 static void
12433 record_truncated_values (rtx *x, void *data ATTRIBUTE_UNUSED)
12434 {
12435 for_each_rtx (x, record_truncated_value, NULL);
12436 }
12437
12438 /* Scan X for promoted SUBREGs. For each one found,
12439 note what it implies to the registers used in it. */
12440
12441 static void
12442 check_promoted_subreg (rtx insn, rtx x)
12443 {
12444 if (GET_CODE (x) == SUBREG
12445 && SUBREG_PROMOTED_VAR_P (x)
12446 && REG_P (SUBREG_REG (x)))
12447 record_promoted_value (insn, x);
12448 else
12449 {
12450 const char *format = GET_RTX_FORMAT (GET_CODE (x));
12451 int i, j;
12452
12453 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
12454 switch (format[i])
12455 {
12456 case 'e':
12457 check_promoted_subreg (insn, XEXP (x, i));
12458 break;
12459 case 'V':
12460 case 'E':
12461 if (XVEC (x, i) != 0)
12462 for (j = 0; j < XVECLEN (x, i); j++)
12463 check_promoted_subreg (insn, XVECEXP (x, i, j));
12464 break;
12465 }
12466 }
12467 }
12468 \f
12469 /* Verify that all the registers and memory references mentioned in *LOC are
12470 still valid. *LOC was part of a value set in INSN when label_tick was
12471 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
12472 the invalid references with (clobber (const_int 0)) and return 1. This
12473 replacement is useful because we often can get useful information about
12474 the form of a value (e.g., if it was produced by a shift that always
12475 produces -1 or 0) even though we don't know exactly what registers it
12476 was produced from. */
12477
12478 static int
12479 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
12480 {
12481 rtx x = *loc;
12482 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
12483 int len = GET_RTX_LENGTH (GET_CODE (x));
12484 int i, j;
12485
12486 if (REG_P (x))
12487 {
12488 unsigned int regno = REGNO (x);
12489 unsigned int endregno = END_REGNO (x);
12490 unsigned int j;
12491
12492 for (j = regno; j < endregno; j++)
12493 {
12494 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, j);
12495 if (rsp->last_set_invalid
12496 /* If this is a pseudo-register that was only set once and not
12497 live at the beginning of the function, it is always valid. */
12498 || (! (regno >= FIRST_PSEUDO_REGISTER
12499 && REG_N_SETS (regno) == 1
12500 && (!REGNO_REG_SET_P
12501 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno)))
12502 && rsp->last_set_label > tick))
12503 {
12504 if (replace)
12505 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
12506 return replace;
12507 }
12508 }
12509
12510 return 1;
12511 }
12512 /* If this is a memory reference, make sure that there were no stores after
12513 it that might have clobbered the value. We don't have alias info, so we
12514 assume any store invalidates it. Moreover, we only have local UIDs, so
12515 we also assume that there were stores in the intervening basic blocks. */
12516 else if (MEM_P (x) && !MEM_READONLY_P (x)
12517 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
12518 {
12519 if (replace)
12520 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
12521 return replace;
12522 }
12523
12524 for (i = 0; i < len; i++)
12525 {
12526 if (fmt[i] == 'e')
12527 {
12528 /* Check for identical subexpressions. If x contains
12529 identical subexpression we only have to traverse one of
12530 them. */
12531 if (i == 1 && ARITHMETIC_P (x))
12532 {
12533 /* Note that at this point x0 has already been checked
12534 and found valid. */
12535 rtx x0 = XEXP (x, 0);
12536 rtx x1 = XEXP (x, 1);
12537
12538 /* If x0 and x1 are identical then x is also valid. */
12539 if (x0 == x1)
12540 return 1;
12541
12542 /* If x1 is identical to a subexpression of x0 then
12543 while checking x0, x1 has already been checked. Thus
12544 it is valid and so as x. */
12545 if (ARITHMETIC_P (x0)
12546 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12547 return 1;
12548
12549 /* If x0 is identical to a subexpression of x1 then x is
12550 valid iff the rest of x1 is valid. */
12551 if (ARITHMETIC_P (x1)
12552 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12553 return
12554 get_last_value_validate (&XEXP (x1,
12555 x0 == XEXP (x1, 0) ? 1 : 0),
12556 insn, tick, replace);
12557 }
12558
12559 if (get_last_value_validate (&XEXP (x, i), insn, tick,
12560 replace) == 0)
12561 return 0;
12562 }
12563 else if (fmt[i] == 'E')
12564 for (j = 0; j < XVECLEN (x, i); j++)
12565 if (get_last_value_validate (&XVECEXP (x, i, j),
12566 insn, tick, replace) == 0)
12567 return 0;
12568 }
12569
12570 /* If we haven't found a reason for it to be invalid, it is valid. */
12571 return 1;
12572 }
12573
12574 /* Get the last value assigned to X, if known. Some registers
12575 in the value may be replaced with (clobber (const_int 0)) if their value
12576 is known longer known reliably. */
12577
12578 static rtx
12579 get_last_value (const_rtx x)
12580 {
12581 unsigned int regno;
12582 rtx value;
12583 reg_stat_type *rsp;
12584
12585 /* If this is a non-paradoxical SUBREG, get the value of its operand and
12586 then convert it to the desired mode. If this is a paradoxical SUBREG,
12587 we cannot predict what values the "extra" bits might have. */
12588 if (GET_CODE (x) == SUBREG
12589 && subreg_lowpart_p (x)
12590 && (GET_MODE_SIZE (GET_MODE (x))
12591 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
12592 && (value = get_last_value (SUBREG_REG (x))) != 0)
12593 return gen_lowpart (GET_MODE (x), value);
12594
12595 if (!REG_P (x))
12596 return 0;
12597
12598 regno = REGNO (x);
12599 rsp = VEC_index (reg_stat_type, reg_stat, regno);
12600 value = rsp->last_set_value;
12601
12602 /* If we don't have a value, or if it isn't for this basic block and
12603 it's either a hard register, set more than once, or it's a live
12604 at the beginning of the function, return 0.
12605
12606 Because if it's not live at the beginning of the function then the reg
12607 is always set before being used (is never used without being set).
12608 And, if it's set only once, and it's always set before use, then all
12609 uses must have the same last value, even if it's not from this basic
12610 block. */
12611
12612 if (value == 0
12613 || (rsp->last_set_label < label_tick_ebb_start
12614 && (regno < FIRST_PSEUDO_REGISTER
12615 || REG_N_SETS (regno) != 1
12616 || REGNO_REG_SET_P
12617 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno))))
12618 return 0;
12619
12620 /* If the value was set in a later insn than the ones we are processing,
12621 we can't use it even if the register was only set once. */
12622 if (rsp->last_set_label == label_tick
12623 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
12624 return 0;
12625
12626 /* If the value has all its registers valid, return it. */
12627 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
12628 return value;
12629
12630 /* Otherwise, make a copy and replace any invalid register with
12631 (clobber (const_int 0)). If that fails for some reason, return 0. */
12632
12633 value = copy_rtx (value);
12634 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
12635 return value;
12636
12637 return 0;
12638 }
12639 \f
12640 /* Return nonzero if expression X refers to a REG or to memory
12641 that is set in an instruction more recent than FROM_LUID. */
12642
12643 static int
12644 use_crosses_set_p (const_rtx x, int from_luid)
12645 {
12646 const char *fmt;
12647 int i;
12648 enum rtx_code code = GET_CODE (x);
12649
12650 if (code == REG)
12651 {
12652 unsigned int regno = REGNO (x);
12653 unsigned endreg = END_REGNO (x);
12654
12655 #ifdef PUSH_ROUNDING
12656 /* Don't allow uses of the stack pointer to be moved,
12657 because we don't know whether the move crosses a push insn. */
12658 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
12659 return 1;
12660 #endif
12661 for (; regno < endreg; regno++)
12662 {
12663 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
12664 if (rsp->last_set
12665 && rsp->last_set_label == label_tick
12666 && DF_INSN_LUID (rsp->last_set) > from_luid)
12667 return 1;
12668 }
12669 return 0;
12670 }
12671
12672 if (code == MEM && mem_last_set > from_luid)
12673 return 1;
12674
12675 fmt = GET_RTX_FORMAT (code);
12676
12677 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12678 {
12679 if (fmt[i] == 'E')
12680 {
12681 int j;
12682 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12683 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
12684 return 1;
12685 }
12686 else if (fmt[i] == 'e'
12687 && use_crosses_set_p (XEXP (x, i), from_luid))
12688 return 1;
12689 }
12690 return 0;
12691 }
12692 \f
12693 /* Define three variables used for communication between the following
12694 routines. */
12695
12696 static unsigned int reg_dead_regno, reg_dead_endregno;
12697 static int reg_dead_flag;
12698
12699 /* Function called via note_stores from reg_dead_at_p.
12700
12701 If DEST is within [reg_dead_regno, reg_dead_endregno), set
12702 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
12703
12704 static void
12705 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
12706 {
12707 unsigned int regno, endregno;
12708
12709 if (!REG_P (dest))
12710 return;
12711
12712 regno = REGNO (dest);
12713 endregno = END_REGNO (dest);
12714 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
12715 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
12716 }
12717
12718 /* Return nonzero if REG is known to be dead at INSN.
12719
12720 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
12721 referencing REG, it is dead. If we hit a SET referencing REG, it is
12722 live. Otherwise, see if it is live or dead at the start of the basic
12723 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
12724 must be assumed to be always live. */
12725
12726 static int
12727 reg_dead_at_p (rtx reg, rtx insn)
12728 {
12729 basic_block block;
12730 unsigned int i;
12731
12732 /* Set variables for reg_dead_at_p_1. */
12733 reg_dead_regno = REGNO (reg);
12734 reg_dead_endregno = END_REGNO (reg);
12735
12736 reg_dead_flag = 0;
12737
12738 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
12739 we allow the machine description to decide whether use-and-clobber
12740 patterns are OK. */
12741 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
12742 {
12743 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12744 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
12745 return 0;
12746 }
12747
12748 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
12749 beginning of basic block. */
12750 block = BLOCK_FOR_INSN (insn);
12751 for (;;)
12752 {
12753 if (INSN_P (insn))
12754 {
12755 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
12756 if (reg_dead_flag)
12757 return reg_dead_flag == 1 ? 1 : 0;
12758
12759 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
12760 return 1;
12761 }
12762
12763 if (insn == BB_HEAD (block))
12764 break;
12765
12766 insn = PREV_INSN (insn);
12767 }
12768
12769 /* Look at live-in sets for the basic block that we were in. */
12770 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12771 if (REGNO_REG_SET_P (df_get_live_in (block), i))
12772 return 0;
12773
12774 return 1;
12775 }
12776 \f
12777 /* Note hard registers in X that are used. */
12778
12779 static void
12780 mark_used_regs_combine (rtx x)
12781 {
12782 RTX_CODE code = GET_CODE (x);
12783 unsigned int regno;
12784 int i;
12785
12786 switch (code)
12787 {
12788 case LABEL_REF:
12789 case SYMBOL_REF:
12790 case CONST_INT:
12791 case CONST:
12792 case CONST_DOUBLE:
12793 case CONST_VECTOR:
12794 case PC:
12795 case ADDR_VEC:
12796 case ADDR_DIFF_VEC:
12797 case ASM_INPUT:
12798 #ifdef HAVE_cc0
12799 /* CC0 must die in the insn after it is set, so we don't need to take
12800 special note of it here. */
12801 case CC0:
12802 #endif
12803 return;
12804
12805 case CLOBBER:
12806 /* If we are clobbering a MEM, mark any hard registers inside the
12807 address as used. */
12808 if (MEM_P (XEXP (x, 0)))
12809 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
12810 return;
12811
12812 case REG:
12813 regno = REGNO (x);
12814 /* A hard reg in a wide mode may really be multiple registers.
12815 If so, mark all of them just like the first. */
12816 if (regno < FIRST_PSEUDO_REGISTER)
12817 {
12818 /* None of this applies to the stack, frame or arg pointers. */
12819 if (regno == STACK_POINTER_REGNUM
12820 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
12821 || regno == HARD_FRAME_POINTER_REGNUM
12822 #endif
12823 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
12824 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
12825 #endif
12826 || regno == FRAME_POINTER_REGNUM)
12827 return;
12828
12829 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
12830 }
12831 return;
12832
12833 case SET:
12834 {
12835 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
12836 the address. */
12837 rtx testreg = SET_DEST (x);
12838
12839 while (GET_CODE (testreg) == SUBREG
12840 || GET_CODE (testreg) == ZERO_EXTRACT
12841 || GET_CODE (testreg) == STRICT_LOW_PART)
12842 testreg = XEXP (testreg, 0);
12843
12844 if (MEM_P (testreg))
12845 mark_used_regs_combine (XEXP (testreg, 0));
12846
12847 mark_used_regs_combine (SET_SRC (x));
12848 }
12849 return;
12850
12851 default:
12852 break;
12853 }
12854
12855 /* Recursively scan the operands of this expression. */
12856
12857 {
12858 const char *fmt = GET_RTX_FORMAT (code);
12859
12860 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12861 {
12862 if (fmt[i] == 'e')
12863 mark_used_regs_combine (XEXP (x, i));
12864 else if (fmt[i] == 'E')
12865 {
12866 int j;
12867
12868 for (j = 0; j < XVECLEN (x, i); j++)
12869 mark_used_regs_combine (XVECEXP (x, i, j));
12870 }
12871 }
12872 }
12873 }
12874 \f
12875 /* Remove register number REGNO from the dead registers list of INSN.
12876
12877 Return the note used to record the death, if there was one. */
12878
12879 rtx
12880 remove_death (unsigned int regno, rtx insn)
12881 {
12882 rtx note = find_regno_note (insn, REG_DEAD, regno);
12883
12884 if (note)
12885 remove_note (insn, note);
12886
12887 return note;
12888 }
12889
12890 /* For each register (hardware or pseudo) used within expression X, if its
12891 death is in an instruction with luid between FROM_LUID (inclusive) and
12892 TO_INSN (exclusive), put a REG_DEAD note for that register in the
12893 list headed by PNOTES.
12894
12895 That said, don't move registers killed by maybe_kill_insn.
12896
12897 This is done when X is being merged by combination into TO_INSN. These
12898 notes will then be distributed as needed. */
12899
12900 static void
12901 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx to_insn,
12902 rtx *pnotes)
12903 {
12904 const char *fmt;
12905 int len, i;
12906 enum rtx_code code = GET_CODE (x);
12907
12908 if (code == REG)
12909 {
12910 unsigned int regno = REGNO (x);
12911 rtx where_dead = VEC_index (reg_stat_type, reg_stat, regno)->last_death;
12912
12913 /* Don't move the register if it gets killed in between from and to. */
12914 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
12915 && ! reg_referenced_p (x, maybe_kill_insn))
12916 return;
12917
12918 if (where_dead
12919 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
12920 && DF_INSN_LUID (where_dead) >= from_luid
12921 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
12922 {
12923 rtx note = remove_death (regno, where_dead);
12924
12925 /* It is possible for the call above to return 0. This can occur
12926 when last_death points to I2 or I1 that we combined with.
12927 In that case make a new note.
12928
12929 We must also check for the case where X is a hard register
12930 and NOTE is a death note for a range of hard registers
12931 including X. In that case, we must put REG_DEAD notes for
12932 the remaining registers in place of NOTE. */
12933
12934 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
12935 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12936 > GET_MODE_SIZE (GET_MODE (x))))
12937 {
12938 unsigned int deadregno = REGNO (XEXP (note, 0));
12939 unsigned int deadend = END_HARD_REGNO (XEXP (note, 0));
12940 unsigned int ourend = END_HARD_REGNO (x);
12941 unsigned int i;
12942
12943 for (i = deadregno; i < deadend; i++)
12944 if (i < regno || i >= ourend)
12945 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
12946 }
12947
12948 /* If we didn't find any note, or if we found a REG_DEAD note that
12949 covers only part of the given reg, and we have a multi-reg hard
12950 register, then to be safe we must check for REG_DEAD notes
12951 for each register other than the first. They could have
12952 their own REG_DEAD notes lying around. */
12953 else if ((note == 0
12954 || (note != 0
12955 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12956 < GET_MODE_SIZE (GET_MODE (x)))))
12957 && regno < FIRST_PSEUDO_REGISTER
12958 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
12959 {
12960 unsigned int ourend = END_HARD_REGNO (x);
12961 unsigned int i, offset;
12962 rtx oldnotes = 0;
12963
12964 if (note)
12965 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
12966 else
12967 offset = 1;
12968
12969 for (i = regno + offset; i < ourend; i++)
12970 move_deaths (regno_reg_rtx[i],
12971 maybe_kill_insn, from_luid, to_insn, &oldnotes);
12972 }
12973
12974 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
12975 {
12976 XEXP (note, 1) = *pnotes;
12977 *pnotes = note;
12978 }
12979 else
12980 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
12981 }
12982
12983 return;
12984 }
12985
12986 else if (GET_CODE (x) == SET)
12987 {
12988 rtx dest = SET_DEST (x);
12989
12990 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
12991
12992 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
12993 that accesses one word of a multi-word item, some
12994 piece of everything register in the expression is used by
12995 this insn, so remove any old death. */
12996 /* ??? So why do we test for equality of the sizes? */
12997
12998 if (GET_CODE (dest) == ZERO_EXTRACT
12999 || GET_CODE (dest) == STRICT_LOW_PART
13000 || (GET_CODE (dest) == SUBREG
13001 && (((GET_MODE_SIZE (GET_MODE (dest))
13002 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
13003 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
13004 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
13005 {
13006 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
13007 return;
13008 }
13009
13010 /* If this is some other SUBREG, we know it replaces the entire
13011 value, so use that as the destination. */
13012 if (GET_CODE (dest) == SUBREG)
13013 dest = SUBREG_REG (dest);
13014
13015 /* If this is a MEM, adjust deaths of anything used in the address.
13016 For a REG (the only other possibility), the entire value is
13017 being replaced so the old value is not used in this insn. */
13018
13019 if (MEM_P (dest))
13020 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
13021 to_insn, pnotes);
13022 return;
13023 }
13024
13025 else if (GET_CODE (x) == CLOBBER)
13026 return;
13027
13028 len = GET_RTX_LENGTH (code);
13029 fmt = GET_RTX_FORMAT (code);
13030
13031 for (i = 0; i < len; i++)
13032 {
13033 if (fmt[i] == 'E')
13034 {
13035 int j;
13036 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13037 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
13038 to_insn, pnotes);
13039 }
13040 else if (fmt[i] == 'e')
13041 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
13042 }
13043 }
13044 \f
13045 /* Return 1 if X is the target of a bit-field assignment in BODY, the
13046 pattern of an insn. X must be a REG. */
13047
13048 static int
13049 reg_bitfield_target_p (rtx x, rtx body)
13050 {
13051 int i;
13052
13053 if (GET_CODE (body) == SET)
13054 {
13055 rtx dest = SET_DEST (body);
13056 rtx target;
13057 unsigned int regno, tregno, endregno, endtregno;
13058
13059 if (GET_CODE (dest) == ZERO_EXTRACT)
13060 target = XEXP (dest, 0);
13061 else if (GET_CODE (dest) == STRICT_LOW_PART)
13062 target = SUBREG_REG (XEXP (dest, 0));
13063 else
13064 return 0;
13065
13066 if (GET_CODE (target) == SUBREG)
13067 target = SUBREG_REG (target);
13068
13069 if (!REG_P (target))
13070 return 0;
13071
13072 tregno = REGNO (target), regno = REGNO (x);
13073 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
13074 return target == x;
13075
13076 endtregno = end_hard_regno (GET_MODE (target), tregno);
13077 endregno = end_hard_regno (GET_MODE (x), regno);
13078
13079 return endregno > tregno && regno < endtregno;
13080 }
13081
13082 else if (GET_CODE (body) == PARALLEL)
13083 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
13084 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
13085 return 1;
13086
13087 return 0;
13088 }
13089 \f
13090 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
13091 as appropriate. I3 and I2 are the insns resulting from the combination
13092 insns including FROM (I2 may be zero).
13093
13094 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
13095 not need REG_DEAD notes because they are being substituted for. This
13096 saves searching in the most common cases.
13097
13098 Each note in the list is either ignored or placed on some insns, depending
13099 on the type of note. */
13100
13101 static void
13102 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2, rtx elim_i2,
13103 rtx elim_i1, rtx elim_i0)
13104 {
13105 rtx note, next_note;
13106 rtx tem;
13107
13108 for (note = notes; note; note = next_note)
13109 {
13110 rtx place = 0, place2 = 0;
13111
13112 next_note = XEXP (note, 1);
13113 switch (REG_NOTE_KIND (note))
13114 {
13115 case REG_BR_PROB:
13116 case REG_BR_PRED:
13117 /* Doesn't matter much where we put this, as long as it's somewhere.
13118 It is preferable to keep these notes on branches, which is most
13119 likely to be i3. */
13120 place = i3;
13121 break;
13122
13123 case REG_VALUE_PROFILE:
13124 /* Just get rid of this note, as it is unused later anyway. */
13125 break;
13126
13127 case REG_NON_LOCAL_GOTO:
13128 if (JUMP_P (i3))
13129 place = i3;
13130 else
13131 {
13132 gcc_assert (i2 && JUMP_P (i2));
13133 place = i2;
13134 }
13135 break;
13136
13137 case REG_EH_REGION:
13138 /* These notes must remain with the call or trapping instruction. */
13139 if (CALL_P (i3))
13140 place = i3;
13141 else if (i2 && CALL_P (i2))
13142 place = i2;
13143 else
13144 {
13145 gcc_assert (cfun->can_throw_non_call_exceptions);
13146 if (may_trap_p (i3))
13147 place = i3;
13148 else if (i2 && may_trap_p (i2))
13149 place = i2;
13150 /* ??? Otherwise assume we've combined things such that we
13151 can now prove that the instructions can't trap. Drop the
13152 note in this case. */
13153 }
13154 break;
13155
13156 case REG_NORETURN:
13157 case REG_SETJMP:
13158 /* These notes must remain with the call. It should not be
13159 possible for both I2 and I3 to be a call. */
13160 if (CALL_P (i3))
13161 place = i3;
13162 else
13163 {
13164 gcc_assert (i2 && CALL_P (i2));
13165 place = i2;
13166 }
13167 break;
13168
13169 case REG_UNUSED:
13170 /* Any clobbers for i3 may still exist, and so we must process
13171 REG_UNUSED notes from that insn.
13172
13173 Any clobbers from i2 or i1 can only exist if they were added by
13174 recog_for_combine. In that case, recog_for_combine created the
13175 necessary REG_UNUSED notes. Trying to keep any original
13176 REG_UNUSED notes from these insns can cause incorrect output
13177 if it is for the same register as the original i3 dest.
13178 In that case, we will notice that the register is set in i3,
13179 and then add a REG_UNUSED note for the destination of i3, which
13180 is wrong. However, it is possible to have REG_UNUSED notes from
13181 i2 or i1 for register which were both used and clobbered, so
13182 we keep notes from i2 or i1 if they will turn into REG_DEAD
13183 notes. */
13184
13185 /* If this register is set or clobbered in I3, put the note there
13186 unless there is one already. */
13187 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
13188 {
13189 if (from_insn != i3)
13190 break;
13191
13192 if (! (REG_P (XEXP (note, 0))
13193 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
13194 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
13195 place = i3;
13196 }
13197 /* Otherwise, if this register is used by I3, then this register
13198 now dies here, so we must put a REG_DEAD note here unless there
13199 is one already. */
13200 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
13201 && ! (REG_P (XEXP (note, 0))
13202 ? find_regno_note (i3, REG_DEAD,
13203 REGNO (XEXP (note, 0)))
13204 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
13205 {
13206 PUT_REG_NOTE_KIND (note, REG_DEAD);
13207 place = i3;
13208 }
13209 break;
13210
13211 case REG_EQUAL:
13212 case REG_EQUIV:
13213 case REG_NOALIAS:
13214 /* These notes say something about results of an insn. We can
13215 only support them if they used to be on I3 in which case they
13216 remain on I3. Otherwise they are ignored.
13217
13218 If the note refers to an expression that is not a constant, we
13219 must also ignore the note since we cannot tell whether the
13220 equivalence is still true. It might be possible to do
13221 slightly better than this (we only have a problem if I2DEST
13222 or I1DEST is present in the expression), but it doesn't
13223 seem worth the trouble. */
13224
13225 if (from_insn == i3
13226 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
13227 place = i3;
13228 break;
13229
13230 case REG_INC:
13231 /* These notes say something about how a register is used. They must
13232 be present on any use of the register in I2 or I3. */
13233 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
13234 place = i3;
13235
13236 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
13237 {
13238 if (place)
13239 place2 = i2;
13240 else
13241 place = i2;
13242 }
13243 break;
13244
13245 case REG_LABEL_TARGET:
13246 case REG_LABEL_OPERAND:
13247 /* This can show up in several ways -- either directly in the
13248 pattern, or hidden off in the constant pool with (or without?)
13249 a REG_EQUAL note. */
13250 /* ??? Ignore the without-reg_equal-note problem for now. */
13251 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
13252 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
13253 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
13254 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
13255 place = i3;
13256
13257 if (i2
13258 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
13259 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
13260 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
13261 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
13262 {
13263 if (place)
13264 place2 = i2;
13265 else
13266 place = i2;
13267 }
13268
13269 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
13270 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
13271 there. */
13272 if (place && JUMP_P (place)
13273 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13274 && (JUMP_LABEL (place) == NULL
13275 || JUMP_LABEL (place) == XEXP (note, 0)))
13276 {
13277 rtx label = JUMP_LABEL (place);
13278
13279 if (!label)
13280 JUMP_LABEL (place) = XEXP (note, 0);
13281 else if (LABEL_P (label))
13282 LABEL_NUSES (label)--;
13283 }
13284
13285 if (place2 && JUMP_P (place2)
13286 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13287 && (JUMP_LABEL (place2) == NULL
13288 || JUMP_LABEL (place2) == XEXP (note, 0)))
13289 {
13290 rtx label = JUMP_LABEL (place2);
13291
13292 if (!label)
13293 JUMP_LABEL (place2) = XEXP (note, 0);
13294 else if (LABEL_P (label))
13295 LABEL_NUSES (label)--;
13296 place2 = 0;
13297 }
13298 break;
13299
13300 case REG_NONNEG:
13301 /* This note says something about the value of a register prior
13302 to the execution of an insn. It is too much trouble to see
13303 if the note is still correct in all situations. It is better
13304 to simply delete it. */
13305 break;
13306
13307 case REG_DEAD:
13308 /* If we replaced the right hand side of FROM_INSN with a
13309 REG_EQUAL note, the original use of the dying register
13310 will not have been combined into I3 and I2. In such cases,
13311 FROM_INSN is guaranteed to be the first of the combined
13312 instructions, so we simply need to search back before
13313 FROM_INSN for the previous use or set of this register,
13314 then alter the notes there appropriately.
13315
13316 If the register is used as an input in I3, it dies there.
13317 Similarly for I2, if it is nonzero and adjacent to I3.
13318
13319 If the register is not used as an input in either I3 or I2
13320 and it is not one of the registers we were supposed to eliminate,
13321 there are two possibilities. We might have a non-adjacent I2
13322 or we might have somehow eliminated an additional register
13323 from a computation. For example, we might have had A & B where
13324 we discover that B will always be zero. In this case we will
13325 eliminate the reference to A.
13326
13327 In both cases, we must search to see if we can find a previous
13328 use of A and put the death note there. */
13329
13330 if (from_insn
13331 && from_insn == i2mod
13332 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
13333 tem = from_insn;
13334 else
13335 {
13336 if (from_insn
13337 && CALL_P (from_insn)
13338 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
13339 place = from_insn;
13340 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
13341 place = i3;
13342 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
13343 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13344 place = i2;
13345 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
13346 && !(i2mod
13347 && reg_overlap_mentioned_p (XEXP (note, 0),
13348 i2mod_old_rhs)))
13349 || rtx_equal_p (XEXP (note, 0), elim_i1)
13350 || rtx_equal_p (XEXP (note, 0), elim_i0))
13351 break;
13352 tem = i3;
13353 }
13354
13355 if (place == 0)
13356 {
13357 basic_block bb = this_basic_block;
13358
13359 for (tem = PREV_INSN (tem); place == 0; tem = PREV_INSN (tem))
13360 {
13361 if (!NONDEBUG_INSN_P (tem))
13362 {
13363 if (tem == BB_HEAD (bb))
13364 break;
13365 continue;
13366 }
13367
13368 /* If the register is being set at TEM, see if that is all
13369 TEM is doing. If so, delete TEM. Otherwise, make this
13370 into a REG_UNUSED note instead. Don't delete sets to
13371 global register vars. */
13372 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
13373 || !global_regs[REGNO (XEXP (note, 0))])
13374 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
13375 {
13376 rtx set = single_set (tem);
13377 rtx inner_dest = 0;
13378 #ifdef HAVE_cc0
13379 rtx cc0_setter = NULL_RTX;
13380 #endif
13381
13382 if (set != 0)
13383 for (inner_dest = SET_DEST (set);
13384 (GET_CODE (inner_dest) == STRICT_LOW_PART
13385 || GET_CODE (inner_dest) == SUBREG
13386 || GET_CODE (inner_dest) == ZERO_EXTRACT);
13387 inner_dest = XEXP (inner_dest, 0))
13388 ;
13389
13390 /* Verify that it was the set, and not a clobber that
13391 modified the register.
13392
13393 CC0 targets must be careful to maintain setter/user
13394 pairs. If we cannot delete the setter due to side
13395 effects, mark the user with an UNUSED note instead
13396 of deleting it. */
13397
13398 if (set != 0 && ! side_effects_p (SET_SRC (set))
13399 && rtx_equal_p (XEXP (note, 0), inner_dest)
13400 #ifdef HAVE_cc0
13401 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
13402 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
13403 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
13404 #endif
13405 )
13406 {
13407 /* Move the notes and links of TEM elsewhere.
13408 This might delete other dead insns recursively.
13409 First set the pattern to something that won't use
13410 any register. */
13411 rtx old_notes = REG_NOTES (tem);
13412
13413 PATTERN (tem) = pc_rtx;
13414 REG_NOTES (tem) = NULL;
13415
13416 distribute_notes (old_notes, tem, tem, NULL_RTX,
13417 NULL_RTX, NULL_RTX, NULL_RTX);
13418 distribute_links (LOG_LINKS (tem));
13419
13420 SET_INSN_DELETED (tem);
13421 if (tem == i2)
13422 i2 = NULL_RTX;
13423
13424 #ifdef HAVE_cc0
13425 /* Delete the setter too. */
13426 if (cc0_setter)
13427 {
13428 PATTERN (cc0_setter) = pc_rtx;
13429 old_notes = REG_NOTES (cc0_setter);
13430 REG_NOTES (cc0_setter) = NULL;
13431
13432 distribute_notes (old_notes, cc0_setter,
13433 cc0_setter, NULL_RTX,
13434 NULL_RTX, NULL_RTX, NULL_RTX);
13435 distribute_links (LOG_LINKS (cc0_setter));
13436
13437 SET_INSN_DELETED (cc0_setter);
13438 if (cc0_setter == i2)
13439 i2 = NULL_RTX;
13440 }
13441 #endif
13442 }
13443 else
13444 {
13445 PUT_REG_NOTE_KIND (note, REG_UNUSED);
13446
13447 /* If there isn't already a REG_UNUSED note, put one
13448 here. Do not place a REG_DEAD note, even if
13449 the register is also used here; that would not
13450 match the algorithm used in lifetime analysis
13451 and can cause the consistency check in the
13452 scheduler to fail. */
13453 if (! find_regno_note (tem, REG_UNUSED,
13454 REGNO (XEXP (note, 0))))
13455 place = tem;
13456 break;
13457 }
13458 }
13459 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
13460 || (CALL_P (tem)
13461 && find_reg_fusage (tem, USE, XEXP (note, 0))))
13462 {
13463 place = tem;
13464
13465 /* If we are doing a 3->2 combination, and we have a
13466 register which formerly died in i3 and was not used
13467 by i2, which now no longer dies in i3 and is used in
13468 i2 but does not die in i2, and place is between i2
13469 and i3, then we may need to move a link from place to
13470 i2. */
13471 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
13472 && from_insn
13473 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
13474 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13475 {
13476 rtx links = LOG_LINKS (place);
13477 LOG_LINKS (place) = 0;
13478 distribute_links (links);
13479 }
13480 break;
13481 }
13482
13483 if (tem == BB_HEAD (bb))
13484 break;
13485 }
13486
13487 }
13488
13489 /* If the register is set or already dead at PLACE, we needn't do
13490 anything with this note if it is still a REG_DEAD note.
13491 We check here if it is set at all, not if is it totally replaced,
13492 which is what `dead_or_set_p' checks, so also check for it being
13493 set partially. */
13494
13495 if (place && REG_NOTE_KIND (note) == REG_DEAD)
13496 {
13497 unsigned int regno = REGNO (XEXP (note, 0));
13498 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
13499
13500 if (dead_or_set_p (place, XEXP (note, 0))
13501 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
13502 {
13503 /* Unless the register previously died in PLACE, clear
13504 last_death. [I no longer understand why this is
13505 being done.] */
13506 if (rsp->last_death != place)
13507 rsp->last_death = 0;
13508 place = 0;
13509 }
13510 else
13511 rsp->last_death = place;
13512
13513 /* If this is a death note for a hard reg that is occupying
13514 multiple registers, ensure that we are still using all
13515 parts of the object. If we find a piece of the object
13516 that is unused, we must arrange for an appropriate REG_DEAD
13517 note to be added for it. However, we can't just emit a USE
13518 and tag the note to it, since the register might actually
13519 be dead; so we recourse, and the recursive call then finds
13520 the previous insn that used this register. */
13521
13522 if (place && regno < FIRST_PSEUDO_REGISTER
13523 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
13524 {
13525 unsigned int endregno = END_HARD_REGNO (XEXP (note, 0));
13526 int all_used = 1;
13527 unsigned int i;
13528
13529 for (i = regno; i < endregno; i++)
13530 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
13531 && ! find_regno_fusage (place, USE, i))
13532 || dead_or_set_regno_p (place, i))
13533 all_used = 0;
13534
13535 if (! all_used)
13536 {
13537 /* Put only REG_DEAD notes for pieces that are
13538 not already dead or set. */
13539
13540 for (i = regno; i < endregno;
13541 i += hard_regno_nregs[i][reg_raw_mode[i]])
13542 {
13543 rtx piece = regno_reg_rtx[i];
13544 basic_block bb = this_basic_block;
13545
13546 if (! dead_or_set_p (place, piece)
13547 && ! reg_bitfield_target_p (piece,
13548 PATTERN (place)))
13549 {
13550 rtx new_note = alloc_reg_note (REG_DEAD, piece,
13551 NULL_RTX);
13552
13553 distribute_notes (new_note, place, place,
13554 NULL_RTX, NULL_RTX, NULL_RTX,
13555 NULL_RTX);
13556 }
13557 else if (! refers_to_regno_p (i, i + 1,
13558 PATTERN (place), 0)
13559 && ! find_regno_fusage (place, USE, i))
13560 for (tem = PREV_INSN (place); ;
13561 tem = PREV_INSN (tem))
13562 {
13563 if (!NONDEBUG_INSN_P (tem))
13564 {
13565 if (tem == BB_HEAD (bb))
13566 break;
13567 continue;
13568 }
13569 if (dead_or_set_p (tem, piece)
13570 || reg_bitfield_target_p (piece,
13571 PATTERN (tem)))
13572 {
13573 add_reg_note (tem, REG_UNUSED, piece);
13574 break;
13575 }
13576 }
13577
13578 }
13579
13580 place = 0;
13581 }
13582 }
13583 }
13584 break;
13585
13586 default:
13587 /* Any other notes should not be present at this point in the
13588 compilation. */
13589 gcc_unreachable ();
13590 }
13591
13592 if (place)
13593 {
13594 XEXP (note, 1) = REG_NOTES (place);
13595 REG_NOTES (place) = note;
13596 }
13597
13598 if (place2)
13599 add_reg_note (place2, REG_NOTE_KIND (note), XEXP (note, 0));
13600 }
13601 }
13602 \f
13603 /* Similarly to above, distribute the LOG_LINKS that used to be present on
13604 I3, I2, and I1 to new locations. This is also called to add a link
13605 pointing at I3 when I3's destination is changed. */
13606
13607 static void
13608 distribute_links (rtx links)
13609 {
13610 rtx link, next_link;
13611
13612 for (link = links; link; link = next_link)
13613 {
13614 rtx place = 0;
13615 rtx insn;
13616 rtx set, reg;
13617
13618 next_link = XEXP (link, 1);
13619
13620 /* If the insn that this link points to is a NOTE or isn't a single
13621 set, ignore it. In the latter case, it isn't clear what we
13622 can do other than ignore the link, since we can't tell which
13623 register it was for. Such links wouldn't be used by combine
13624 anyway.
13625
13626 It is not possible for the destination of the target of the link to
13627 have been changed by combine. The only potential of this is if we
13628 replace I3, I2, and I1 by I3 and I2. But in that case the
13629 destination of I2 also remains unchanged. */
13630
13631 if (NOTE_P (XEXP (link, 0))
13632 || (set = single_set (XEXP (link, 0))) == 0)
13633 continue;
13634
13635 reg = SET_DEST (set);
13636 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
13637 || GET_CODE (reg) == STRICT_LOW_PART)
13638 reg = XEXP (reg, 0);
13639
13640 /* A LOG_LINK is defined as being placed on the first insn that uses
13641 a register and points to the insn that sets the register. Start
13642 searching at the next insn after the target of the link and stop
13643 when we reach a set of the register or the end of the basic block.
13644
13645 Note that this correctly handles the link that used to point from
13646 I3 to I2. Also note that not much searching is typically done here
13647 since most links don't point very far away. */
13648
13649 for (insn = NEXT_INSN (XEXP (link, 0));
13650 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
13651 || BB_HEAD (this_basic_block->next_bb) != insn));
13652 insn = NEXT_INSN (insn))
13653 if (DEBUG_INSN_P (insn))
13654 continue;
13655 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
13656 {
13657 if (reg_referenced_p (reg, PATTERN (insn)))
13658 place = insn;
13659 break;
13660 }
13661 else if (CALL_P (insn)
13662 && find_reg_fusage (insn, USE, reg))
13663 {
13664 place = insn;
13665 break;
13666 }
13667 else if (INSN_P (insn) && reg_set_p (reg, insn))
13668 break;
13669
13670 /* If we found a place to put the link, place it there unless there
13671 is already a link to the same insn as LINK at that point. */
13672
13673 if (place)
13674 {
13675 rtx link2;
13676
13677 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
13678 if (XEXP (link2, 0) == XEXP (link, 0))
13679 break;
13680
13681 if (link2 == 0)
13682 {
13683 XEXP (link, 1) = LOG_LINKS (place);
13684 LOG_LINKS (place) = link;
13685
13686 /* Set added_links_insn to the earliest insn we added a
13687 link to. */
13688 if (added_links_insn == 0
13689 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
13690 added_links_insn = place;
13691 }
13692 }
13693 }
13694 }
13695 \f
13696 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
13697 Check whether the expression pointer to by LOC is a register or
13698 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
13699 Otherwise return zero. */
13700
13701 static int
13702 unmentioned_reg_p_1 (rtx *loc, void *expr)
13703 {
13704 rtx x = *loc;
13705
13706 if (x != NULL_RTX
13707 && (REG_P (x) || MEM_P (x))
13708 && ! reg_mentioned_p (x, (rtx) expr))
13709 return 1;
13710 return 0;
13711 }
13712
13713 /* Check for any register or memory mentioned in EQUIV that is not
13714 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
13715 of EXPR where some registers may have been replaced by constants. */
13716
13717 static bool
13718 unmentioned_reg_p (rtx equiv, rtx expr)
13719 {
13720 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
13721 }
13722 \f
13723 void
13724 dump_combine_stats (FILE *file)
13725 {
13726 fprintf
13727 (file,
13728 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
13729 combine_attempts, combine_merges, combine_extras, combine_successes);
13730 }
13731
13732 void
13733 dump_combine_total_stats (FILE *file)
13734 {
13735 fprintf
13736 (file,
13737 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
13738 total_attempts, total_merges, total_extras, total_successes);
13739 }
13740 \f
13741 static bool
13742 gate_handle_combine (void)
13743 {
13744 return (optimize > 0);
13745 }
13746
13747 /* Try combining insns through substitution. */
13748 static unsigned int
13749 rest_of_handle_combine (void)
13750 {
13751 int rebuild_jump_labels_after_combine;
13752
13753 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
13754 df_note_add_problem ();
13755 df_analyze ();
13756
13757 regstat_init_n_sets_and_refs ();
13758
13759 rebuild_jump_labels_after_combine
13760 = combine_instructions (get_insns (), max_reg_num ());
13761
13762 /* Combining insns may have turned an indirect jump into a
13763 direct jump. Rebuild the JUMP_LABEL fields of jumping
13764 instructions. */
13765 if (rebuild_jump_labels_after_combine)
13766 {
13767 timevar_push (TV_JUMP);
13768 rebuild_jump_labels (get_insns ());
13769 cleanup_cfg (0);
13770 timevar_pop (TV_JUMP);
13771 }
13772
13773 regstat_free_n_sets_and_refs ();
13774 return 0;
13775 }
13776
13777 struct rtl_opt_pass pass_combine =
13778 {
13779 {
13780 RTL_PASS,
13781 "combine", /* name */
13782 gate_handle_combine, /* gate */
13783 rest_of_handle_combine, /* execute */
13784 NULL, /* sub */
13785 NULL, /* next */
13786 0, /* static_pass_number */
13787 TV_COMBINE, /* tv_id */
13788 PROP_cfglayout, /* properties_required */
13789 0, /* properties_provided */
13790 0, /* properties_destroyed */
13791 0, /* todo_flags_start */
13792 TODO_dump_func |
13793 TODO_df_finish | TODO_verify_rtl_sharing |
13794 TODO_ggc_collect, /* todo_flags_finish */
13795 }
13796 };