Suggested by Richard Henderson and Richard Kenner:
[gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
25
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
31
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
54
55 - reg_live_length is not updated
56 - reg_n_refs is not adjusted in the rare case when a register is
57 no longer required in a computation
58 - there are extremely rare cases (see distribute_regnotes) when a
59 REG_DEAD note is lost
60 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
61 removed because there is no way to know which register it was
62 linking
63
64 To simplify substitution, we combine only when the earlier insn(s)
65 consist of only a single assignment. To simplify updating afterward,
66 we never combine when a subroutine call appears in the middle.
67
68 Since we do not represent assignments to CC0 explicitly except when that
69 is all an insn does, there is no LOG_LINKS entry in an insn that uses
70 the condition code for the insn that set the condition code.
71 Fortunately, these two insns must be consecutive.
72 Therefore, every JUMP_INSN is taken to have an implicit logical link
73 to the preceding insn. This is not quite right, since non-jumps can
74 also use the condition code; but in practice such insns would not
75 combine anyway. */
76
77 #include "config.h"
78 #include "system.h"
79 #include "rtl.h"
80 #include "tm_p.h"
81 #include "flags.h"
82 #include "regs.h"
83 #include "hard-reg-set.h"
84 #include "basic-block.h"
85 #include "insn-config.h"
86 #include "function.h"
87 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
88 #include "expr.h"
89 #include "insn-attr.h"
90 #include "recog.h"
91 #include "real.h"
92 #include "toplev.h"
93
94 /* It is not safe to use ordinary gen_lowpart in combine.
95 Use gen_lowpart_for_combine instead. See comments there. */
96 #define gen_lowpart dont_use_gen_lowpart_you_dummy
97
98 /* Number of attempts to combine instructions in this function. */
99
100 static int combine_attempts;
101
102 /* Number of attempts that got as far as substitution in this function. */
103
104 static int combine_merges;
105
106 /* Number of instructions combined with added SETs in this function. */
107
108 static int combine_extras;
109
110 /* Number of instructions combined in this function. */
111
112 static int combine_successes;
113
114 /* Totals over entire compilation. */
115
116 static int total_attempts, total_merges, total_extras, total_successes;
117
118 \f
119 /* Vector mapping INSN_UIDs to cuids.
120 The cuids are like uids but increase monotonically always.
121 Combine always uses cuids so that it can compare them.
122 But actually renumbering the uids, which we used to do,
123 proves to be a bad idea because it makes it hard to compare
124 the dumps produced by earlier passes with those from later passes. */
125
126 static int *uid_cuid;
127 static int max_uid_cuid;
128
129 /* Get the cuid of an insn. */
130
131 #define INSN_CUID(INSN) \
132 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
133
134 /* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
135 BITS_PER_WORD would invoke undefined behavior. Work around it. */
136
137 #define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
138 (((unsigned HOST_WIDE_INT)(val) << (BITS_PER_WORD - 1)) << 1)
139
140 /* Maximum register number, which is the size of the tables below. */
141
142 static unsigned int combine_max_regno;
143
144 /* Record last point of death of (hard or pseudo) register n. */
145
146 static rtx *reg_last_death;
147
148 /* Record last point of modification of (hard or pseudo) register n. */
149
150 static rtx *reg_last_set;
151
152 /* Record the cuid of the last insn that invalidated memory
153 (anything that writes memory, and subroutine calls, but not pushes). */
154
155 static int mem_last_set;
156
157 /* Record the cuid of the last CALL_INSN
158 so we can tell whether a potential combination crosses any calls. */
159
160 static int last_call_cuid;
161
162 /* When `subst' is called, this is the insn that is being modified
163 (by combining in a previous insn). The PATTERN of this insn
164 is still the old pattern partially modified and it should not be
165 looked at, but this may be used to examine the successors of the insn
166 to judge whether a simplification is valid. */
167
168 static rtx subst_insn;
169
170 /* This is an insn that belongs before subst_insn, but is not currently
171 on the insn chain. */
172
173 static rtx subst_prev_insn;
174
175 /* This is the lowest CUID that `subst' is currently dealing with.
176 get_last_value will not return a value if the register was set at or
177 after this CUID. If not for this mechanism, we could get confused if
178 I2 or I1 in try_combine were an insn that used the old value of a register
179 to obtain a new value. In that case, we might erroneously get the
180 new value of the register when we wanted the old one. */
181
182 static int subst_low_cuid;
183
184 /* This contains any hard registers that are used in newpat; reg_dead_at_p
185 must consider all these registers to be always live. */
186
187 static HARD_REG_SET newpat_used_regs;
188
189 /* This is an insn to which a LOG_LINKS entry has been added. If this
190 insn is the earlier than I2 or I3, combine should rescan starting at
191 that location. */
192
193 static rtx added_links_insn;
194
195 /* Basic block number of the block in which we are performing combines. */
196 static int this_basic_block;
197
198 /* A bitmap indicating which blocks had registers go dead at entry.
199 After combine, we'll need to re-do global life analysis with
200 those blocks as starting points. */
201 static sbitmap refresh_blocks;
202 static int need_refresh;
203 \f
204 /* The next group of arrays allows the recording of the last value assigned
205 to (hard or pseudo) register n. We use this information to see if a
206 operation being processed is redundant given a prior operation performed
207 on the register. For example, an `and' with a constant is redundant if
208 all the zero bits are already known to be turned off.
209
210 We use an approach similar to that used by cse, but change it in the
211 following ways:
212
213 (1) We do not want to reinitialize at each label.
214 (2) It is useful, but not critical, to know the actual value assigned
215 to a register. Often just its form is helpful.
216
217 Therefore, we maintain the following arrays:
218
219 reg_last_set_value the last value assigned
220 reg_last_set_label records the value of label_tick when the
221 register was assigned
222 reg_last_set_table_tick records the value of label_tick when a
223 value using the register is assigned
224 reg_last_set_invalid set to non-zero when it is not valid
225 to use the value of this register in some
226 register's value
227
228 To understand the usage of these tables, it is important to understand
229 the distinction between the value in reg_last_set_value being valid
230 and the register being validly contained in some other expression in the
231 table.
232
233 Entry I in reg_last_set_value is valid if it is non-zero, and either
234 reg_n_sets[i] is 1 or reg_last_set_label[i] == label_tick.
235
236 Register I may validly appear in any expression returned for the value
237 of another register if reg_n_sets[i] is 1. It may also appear in the
238 value for register J if reg_last_set_label[i] < reg_last_set_label[j] or
239 reg_last_set_invalid[j] is zero.
240
241 If an expression is found in the table containing a register which may
242 not validly appear in an expression, the register is replaced by
243 something that won't match, (clobber (const_int 0)).
244
245 reg_last_set_invalid[i] is set non-zero when register I is being assigned
246 to and reg_last_set_table_tick[i] == label_tick. */
247
248 /* Record last value assigned to (hard or pseudo) register n. */
249
250 static rtx *reg_last_set_value;
251
252 /* Record the value of label_tick when the value for register n is placed in
253 reg_last_set_value[n]. */
254
255 static int *reg_last_set_label;
256
257 /* Record the value of label_tick when an expression involving register n
258 is placed in reg_last_set_value. */
259
260 static int *reg_last_set_table_tick;
261
262 /* Set non-zero if references to register n in expressions should not be
263 used. */
264
265 static char *reg_last_set_invalid;
266
267 /* Incremented for each label. */
268
269 static int label_tick;
270
271 /* Some registers that are set more than once and used in more than one
272 basic block are nevertheless always set in similar ways. For example,
273 a QImode register may be loaded from memory in two places on a machine
274 where byte loads zero extend.
275
276 We record in the following array what we know about the nonzero
277 bits of a register, specifically which bits are known to be zero.
278
279 If an entry is zero, it means that we don't know anything special. */
280
281 static unsigned HOST_WIDE_INT *reg_nonzero_bits;
282
283 /* Mode used to compute significance in reg_nonzero_bits. It is the largest
284 integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
285
286 static enum machine_mode nonzero_bits_mode;
287
288 /* Nonzero if we know that a register has some leading bits that are always
289 equal to the sign bit. */
290
291 static unsigned char *reg_sign_bit_copies;
292
293 /* Nonzero when reg_nonzero_bits and reg_sign_bit_copies can be safely used.
294 It is zero while computing them and after combine has completed. This
295 former test prevents propagating values based on previously set values,
296 which can be incorrect if a variable is modified in a loop. */
297
298 static int nonzero_sign_valid;
299
300 /* These arrays are maintained in parallel with reg_last_set_value
301 and are used to store the mode in which the register was last set,
302 the bits that were known to be zero when it was last set, and the
303 number of sign bits copies it was known to have when it was last set. */
304
305 static enum machine_mode *reg_last_set_mode;
306 static unsigned HOST_WIDE_INT *reg_last_set_nonzero_bits;
307 static char *reg_last_set_sign_bit_copies;
308 \f
309 /* Record one modification to rtl structure
310 to be undone by storing old_contents into *where.
311 is_int is 1 if the contents are an int. */
312
313 struct undo
314 {
315 struct undo *next;
316 int is_int;
317 union {rtx r; unsigned int i;} old_contents;
318 union {rtx *r; unsigned int *i;} where;
319 };
320
321 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
322 num_undo says how many are currently recorded.
323
324 other_insn is nonzero if we have modified some other insn in the process
325 of working on subst_insn. It must be verified too. */
326
327 struct undobuf
328 {
329 struct undo *undos;
330 struct undo *frees;
331 rtx other_insn;
332 };
333
334 static struct undobuf undobuf;
335
336 /* Number of times the pseudo being substituted for
337 was found and replaced. */
338
339 static int n_occurrences;
340
341 static void do_SUBST PARAMS ((rtx *, rtx));
342 static void do_SUBST_INT PARAMS ((unsigned int *,
343 unsigned int));
344 static void init_reg_last_arrays PARAMS ((void));
345 static void setup_incoming_promotions PARAMS ((void));
346 static void set_nonzero_bits_and_sign_copies PARAMS ((rtx, rtx, void *));
347 static int cant_combine_insn_p PARAMS ((rtx));
348 static int can_combine_p PARAMS ((rtx, rtx, rtx, rtx, rtx *, rtx *));
349 static int sets_function_arg_p PARAMS ((rtx));
350 static int combinable_i3pat PARAMS ((rtx, rtx *, rtx, rtx, int, rtx *));
351 static int contains_muldiv PARAMS ((rtx));
352 static rtx try_combine PARAMS ((rtx, rtx, rtx, int *));
353 static void undo_all PARAMS ((void));
354 static void undo_commit PARAMS ((void));
355 static rtx *find_split_point PARAMS ((rtx *, rtx));
356 static rtx subst PARAMS ((rtx, rtx, rtx, int, int));
357 static rtx combine_simplify_rtx PARAMS ((rtx, enum machine_mode, int, int));
358 static rtx simplify_if_then_else PARAMS ((rtx));
359 static rtx simplify_set PARAMS ((rtx));
360 static rtx simplify_logical PARAMS ((rtx, int));
361 static rtx expand_compound_operation PARAMS ((rtx));
362 static rtx expand_field_assignment PARAMS ((rtx));
363 static rtx make_extraction PARAMS ((enum machine_mode, rtx, HOST_WIDE_INT,
364 rtx, unsigned HOST_WIDE_INT, int,
365 int, int));
366 static rtx extract_left_shift PARAMS ((rtx, int));
367 static rtx make_compound_operation PARAMS ((rtx, enum rtx_code));
368 static int get_pos_from_mask PARAMS ((unsigned HOST_WIDE_INT,
369 unsigned HOST_WIDE_INT *));
370 static rtx force_to_mode PARAMS ((rtx, enum machine_mode,
371 unsigned HOST_WIDE_INT, rtx, int));
372 static rtx if_then_else_cond PARAMS ((rtx, rtx *, rtx *));
373 static rtx known_cond PARAMS ((rtx, enum rtx_code, rtx, rtx));
374 static int rtx_equal_for_field_assignment_p PARAMS ((rtx, rtx));
375 static rtx make_field_assignment PARAMS ((rtx));
376 static rtx apply_distributive_law PARAMS ((rtx));
377 static rtx simplify_and_const_int PARAMS ((rtx, enum machine_mode, rtx,
378 unsigned HOST_WIDE_INT));
379 static unsigned HOST_WIDE_INT nonzero_bits PARAMS ((rtx, enum machine_mode));
380 static unsigned int num_sign_bit_copies PARAMS ((rtx, enum machine_mode));
381 static int merge_outer_ops PARAMS ((enum rtx_code *, HOST_WIDE_INT *,
382 enum rtx_code, HOST_WIDE_INT,
383 enum machine_mode, int *));
384 static rtx simplify_shift_const PARAMS ((rtx, enum rtx_code, enum machine_mode,
385 rtx, int));
386 static int recog_for_combine PARAMS ((rtx *, rtx, rtx *));
387 static rtx gen_lowpart_for_combine PARAMS ((enum machine_mode, rtx));
388 static rtx gen_binary PARAMS ((enum rtx_code, enum machine_mode,
389 rtx, rtx));
390 static enum rtx_code simplify_comparison PARAMS ((enum rtx_code, rtx *, rtx *));
391 static void update_table_tick PARAMS ((rtx));
392 static void record_value_for_reg PARAMS ((rtx, rtx, rtx));
393 static void check_promoted_subreg PARAMS ((rtx, rtx));
394 static void record_dead_and_set_regs_1 PARAMS ((rtx, rtx, void *));
395 static void record_dead_and_set_regs PARAMS ((rtx));
396 static int get_last_value_validate PARAMS ((rtx *, rtx, int, int));
397 static rtx get_last_value PARAMS ((rtx));
398 static int use_crosses_set_p PARAMS ((rtx, int));
399 static void reg_dead_at_p_1 PARAMS ((rtx, rtx, void *));
400 static int reg_dead_at_p PARAMS ((rtx, rtx));
401 static void move_deaths PARAMS ((rtx, rtx, int, rtx, rtx *));
402 static int reg_bitfield_target_p PARAMS ((rtx, rtx));
403 static void distribute_notes PARAMS ((rtx, rtx, rtx, rtx, rtx, rtx));
404 static void distribute_links PARAMS ((rtx));
405 static void mark_used_regs_combine PARAMS ((rtx));
406 static int insn_cuid PARAMS ((rtx));
407 static void record_promoted_value PARAMS ((rtx, rtx));
408 static rtx reversed_comparison PARAMS ((rtx, enum machine_mode, rtx, rtx));
409 static enum rtx_code combine_reversed_comparison_code PARAMS ((rtx));
410 \f
411 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
412 insn. The substitution can be undone by undo_all. If INTO is already
413 set to NEWVAL, do not record this change. Because computing NEWVAL might
414 also call SUBST, we have to compute it before we put anything into
415 the undo table. */
416
417 static void
418 do_SUBST (into, newval)
419 rtx *into, newval;
420 {
421 struct undo *buf;
422 rtx oldval = *into;
423
424 if (oldval == newval)
425 return;
426
427 if (undobuf.frees)
428 buf = undobuf.frees, undobuf.frees = buf->next;
429 else
430 buf = (struct undo *) xmalloc (sizeof (struct undo));
431
432 buf->is_int = 0;
433 buf->where.r = into;
434 buf->old_contents.r = oldval;
435 *into = newval;
436
437 buf->next = undobuf.undos, undobuf.undos = buf;
438 }
439
440 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
441
442 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
443 for the value of a HOST_WIDE_INT value (including CONST_INT) is
444 not safe. */
445
446 static void
447 do_SUBST_INT (into, newval)
448 unsigned int *into, newval;
449 {
450 struct undo *buf;
451 unsigned int oldval = *into;
452
453 if (oldval == newval)
454 return;
455
456 if (undobuf.frees)
457 buf = undobuf.frees, undobuf.frees = buf->next;
458 else
459 buf = (struct undo *) xmalloc (sizeof (struct undo));
460
461 buf->is_int = 1;
462 buf->where.i = into;
463 buf->old_contents.i = oldval;
464 *into = newval;
465
466 buf->next = undobuf.undos, undobuf.undos = buf;
467 }
468
469 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
470 \f
471 /* Main entry point for combiner. F is the first insn of the function.
472 NREGS is the first unused pseudo-reg number.
473
474 Return non-zero if the combiner has turned an indirect jump
475 instruction into a direct jump. */
476 int
477 combine_instructions (f, nregs)
478 rtx f;
479 unsigned int nregs;
480 {
481 register rtx insn, next;
482 #ifdef HAVE_cc0
483 register rtx prev;
484 #endif
485 register int i;
486 register rtx links, nextlinks;
487
488 int new_direct_jump_p = 0;
489
490 combine_attempts = 0;
491 combine_merges = 0;
492 combine_extras = 0;
493 combine_successes = 0;
494
495 combine_max_regno = nregs;
496
497 reg_nonzero_bits = ((unsigned HOST_WIDE_INT *)
498 xcalloc (nregs, sizeof (unsigned HOST_WIDE_INT)));
499 reg_sign_bit_copies
500 = (unsigned char *) xcalloc (nregs, sizeof (unsigned char));
501
502 reg_last_death = (rtx *) xmalloc (nregs * sizeof (rtx));
503 reg_last_set = (rtx *) xmalloc (nregs * sizeof (rtx));
504 reg_last_set_value = (rtx *) xmalloc (nregs * sizeof (rtx));
505 reg_last_set_table_tick = (int *) xmalloc (nregs * sizeof (int));
506 reg_last_set_label = (int *) xmalloc (nregs * sizeof (int));
507 reg_last_set_invalid = (char *) xmalloc (nregs * sizeof (char));
508 reg_last_set_mode
509 = (enum machine_mode *) xmalloc (nregs * sizeof (enum machine_mode));
510 reg_last_set_nonzero_bits
511 = (unsigned HOST_WIDE_INT *) xmalloc (nregs * sizeof (HOST_WIDE_INT));
512 reg_last_set_sign_bit_copies
513 = (char *) xmalloc (nregs * sizeof (char));
514
515 init_reg_last_arrays ();
516
517 init_recog_no_volatile ();
518
519 /* Compute maximum uid value so uid_cuid can be allocated. */
520
521 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
522 if (INSN_UID (insn) > i)
523 i = INSN_UID (insn);
524
525 uid_cuid = (int *) xmalloc ((i + 1) * sizeof (int));
526 max_uid_cuid = i;
527
528 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
529
530 /* Don't use reg_nonzero_bits when computing it. This can cause problems
531 when, for example, we have j <<= 1 in a loop. */
532
533 nonzero_sign_valid = 0;
534
535 /* Compute the mapping from uids to cuids.
536 Cuids are numbers assigned to insns, like uids,
537 except that cuids increase monotonically through the code.
538
539 Scan all SETs and see if we can deduce anything about what
540 bits are known to be zero for some registers and how many copies
541 of the sign bit are known to exist for those registers.
542
543 Also set any known values so that we can use it while searching
544 for what bits are known to be set. */
545
546 label_tick = 1;
547
548 /* We need to initialize it here, because record_dead_and_set_regs may call
549 get_last_value. */
550 subst_prev_insn = NULL_RTX;
551
552 setup_incoming_promotions ();
553
554 refresh_blocks = sbitmap_alloc (n_basic_blocks);
555 sbitmap_zero (refresh_blocks);
556 need_refresh = 0;
557
558 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
559 {
560 uid_cuid[INSN_UID (insn)] = ++i;
561 subst_low_cuid = i;
562 subst_insn = insn;
563
564 if (INSN_P (insn))
565 {
566 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
567 NULL);
568 record_dead_and_set_regs (insn);
569
570 #ifdef AUTO_INC_DEC
571 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
572 if (REG_NOTE_KIND (links) == REG_INC)
573 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
574 NULL);
575 #endif
576 }
577
578 if (GET_CODE (insn) == CODE_LABEL)
579 label_tick++;
580 }
581
582 nonzero_sign_valid = 1;
583
584 /* Now scan all the insns in forward order. */
585
586 this_basic_block = -1;
587 label_tick = 1;
588 last_call_cuid = 0;
589 mem_last_set = 0;
590 init_reg_last_arrays ();
591 setup_incoming_promotions ();
592
593 for (insn = f; insn; insn = next ? next : NEXT_INSN (insn))
594 {
595 next = 0;
596
597 /* If INSN starts a new basic block, update our basic block number. */
598 if (this_basic_block + 1 < n_basic_blocks
599 && BLOCK_HEAD (this_basic_block + 1) == insn)
600 this_basic_block++;
601
602 if (GET_CODE (insn) == CODE_LABEL)
603 label_tick++;
604
605 else if (INSN_P (insn))
606 {
607 /* See if we know about function return values before this
608 insn based upon SUBREG flags. */
609 check_promoted_subreg (insn, PATTERN (insn));
610
611 /* Try this insn with each insn it links back to. */
612
613 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
614 if ((next = try_combine (insn, XEXP (links, 0),
615 NULL_RTX, &new_direct_jump_p)) != 0)
616 goto retry;
617
618 /* Try each sequence of three linked insns ending with this one. */
619
620 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
621 {
622 rtx link = XEXP (links, 0);
623
624 /* If the linked insn has been replaced by a note, then there
625 is no point in persuing this chain any further. */
626 if (GET_CODE (link) == NOTE)
627 break;
628
629 for (nextlinks = LOG_LINKS (link);
630 nextlinks;
631 nextlinks = XEXP (nextlinks, 1))
632 if ((next = try_combine (insn, XEXP (links, 0),
633 XEXP (nextlinks, 0),
634 &new_direct_jump_p)) != 0)
635 goto retry;
636 }
637
638 #ifdef HAVE_cc0
639 /* Try to combine a jump insn that uses CC0
640 with a preceding insn that sets CC0, and maybe with its
641 logical predecessor as well.
642 This is how we make decrement-and-branch insns.
643 We need this special code because data flow connections
644 via CC0 do not get entered in LOG_LINKS. */
645
646 if (GET_CODE (insn) == JUMP_INSN
647 && (prev = prev_nonnote_insn (insn)) != 0
648 && GET_CODE (prev) == INSN
649 && sets_cc0_p (PATTERN (prev)))
650 {
651 if ((next = try_combine (insn, prev,
652 NULL_RTX, &new_direct_jump_p)) != 0)
653 goto retry;
654
655 for (nextlinks = LOG_LINKS (prev); nextlinks;
656 nextlinks = XEXP (nextlinks, 1))
657 if ((next = try_combine (insn, prev,
658 XEXP (nextlinks, 0),
659 &new_direct_jump_p)) != 0)
660 goto retry;
661 }
662
663 /* Do the same for an insn that explicitly references CC0. */
664 if (GET_CODE (insn) == INSN
665 && (prev = prev_nonnote_insn (insn)) != 0
666 && GET_CODE (prev) == INSN
667 && sets_cc0_p (PATTERN (prev))
668 && GET_CODE (PATTERN (insn)) == SET
669 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
670 {
671 if ((next = try_combine (insn, prev,
672 NULL_RTX, &new_direct_jump_p)) != 0)
673 goto retry;
674
675 for (nextlinks = LOG_LINKS (prev); nextlinks;
676 nextlinks = XEXP (nextlinks, 1))
677 if ((next = try_combine (insn, prev,
678 XEXP (nextlinks, 0),
679 &new_direct_jump_p)) != 0)
680 goto retry;
681 }
682
683 /* Finally, see if any of the insns that this insn links to
684 explicitly references CC0. If so, try this insn, that insn,
685 and its predecessor if it sets CC0. */
686 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
687 if (GET_CODE (XEXP (links, 0)) == INSN
688 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
689 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
690 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
691 && GET_CODE (prev) == INSN
692 && sets_cc0_p (PATTERN (prev))
693 && (next = try_combine (insn, XEXP (links, 0),
694 prev, &new_direct_jump_p)) != 0)
695 goto retry;
696 #endif
697
698 /* Try combining an insn with two different insns whose results it
699 uses. */
700 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
701 for (nextlinks = XEXP (links, 1); nextlinks;
702 nextlinks = XEXP (nextlinks, 1))
703 if ((next = try_combine (insn, XEXP (links, 0),
704 XEXP (nextlinks, 0),
705 &new_direct_jump_p)) != 0)
706 goto retry;
707
708 if (GET_CODE (insn) != NOTE)
709 record_dead_and_set_regs (insn);
710
711 retry:
712 ;
713 }
714 }
715
716 delete_noop_moves (f);
717
718 if (need_refresh)
719 {
720 compute_bb_for_insn (get_max_uid ());
721 update_life_info (refresh_blocks, UPDATE_LIFE_GLOBAL_RM_NOTES,
722 PROP_DEATH_NOTES);
723 }
724
725 /* Clean up. */
726 sbitmap_free (refresh_blocks);
727 free (reg_nonzero_bits);
728 free (reg_sign_bit_copies);
729 free (reg_last_death);
730 free (reg_last_set);
731 free (reg_last_set_value);
732 free (reg_last_set_table_tick);
733 free (reg_last_set_label);
734 free (reg_last_set_invalid);
735 free (reg_last_set_mode);
736 free (reg_last_set_nonzero_bits);
737 free (reg_last_set_sign_bit_copies);
738 free (uid_cuid);
739
740 {
741 struct undo *undo, *next;
742 for (undo = undobuf.frees; undo; undo = next)
743 {
744 next = undo->next;
745 free (undo);
746 }
747 undobuf.frees = 0;
748 }
749
750 total_attempts += combine_attempts;
751 total_merges += combine_merges;
752 total_extras += combine_extras;
753 total_successes += combine_successes;
754
755 nonzero_sign_valid = 0;
756
757 /* Make recognizer allow volatile MEMs again. */
758 init_recog ();
759
760 return new_direct_jump_p;
761 }
762
763 /* Wipe the reg_last_xxx arrays in preparation for another pass. */
764
765 static void
766 init_reg_last_arrays ()
767 {
768 unsigned int nregs = combine_max_regno;
769
770 memset ((char *) reg_last_death, 0, nregs * sizeof (rtx));
771 memset ((char *) reg_last_set, 0, nregs * sizeof (rtx));
772 memset ((char *) reg_last_set_value, 0, nregs * sizeof (rtx));
773 memset ((char *) reg_last_set_table_tick, 0, nregs * sizeof (int));
774 memset ((char *) reg_last_set_label, 0, nregs * sizeof (int));
775 memset (reg_last_set_invalid, 0, nregs * sizeof (char));
776 memset ((char *) reg_last_set_mode, 0, nregs * sizeof (enum machine_mode));
777 memset ((char *) reg_last_set_nonzero_bits, 0, nregs * sizeof (HOST_WIDE_INT));
778 memset (reg_last_set_sign_bit_copies, 0, nregs * sizeof (char));
779 }
780 \f
781 /* Set up any promoted values for incoming argument registers. */
782
783 static void
784 setup_incoming_promotions ()
785 {
786 #ifdef PROMOTE_FUNCTION_ARGS
787 unsigned int regno;
788 rtx reg;
789 enum machine_mode mode;
790 int unsignedp;
791 rtx first = get_insns ();
792
793 #ifndef OUTGOING_REGNO
794 #define OUTGOING_REGNO(N) N
795 #endif
796 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
797 /* Check whether this register can hold an incoming pointer
798 argument. FUNCTION_ARG_REGNO_P tests outgoing register
799 numbers, so translate if necessary due to register windows. */
800 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
801 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
802 {
803 record_value_for_reg
804 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
805 : SIGN_EXTEND),
806 GET_MODE (reg),
807 gen_rtx_CLOBBER (mode, const0_rtx)));
808 }
809 #endif
810 }
811 \f
812 /* Called via note_stores. If X is a pseudo that is narrower than
813 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
814
815 If we are setting only a portion of X and we can't figure out what
816 portion, assume all bits will be used since we don't know what will
817 be happening.
818
819 Similarly, set how many bits of X are known to be copies of the sign bit
820 at all locations in the function. This is the smallest number implied
821 by any set of X. */
822
823 static void
824 set_nonzero_bits_and_sign_copies (x, set, data)
825 rtx x;
826 rtx set;
827 void *data ATTRIBUTE_UNUSED;
828 {
829 unsigned int num;
830
831 if (GET_CODE (x) == REG
832 && REGNO (x) >= FIRST_PSEUDO_REGISTER
833 /* If this register is undefined at the start of the file, we can't
834 say what its contents were. */
835 && ! REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start, REGNO (x))
836 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
837 {
838 if (set == 0 || GET_CODE (set) == CLOBBER)
839 {
840 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
841 reg_sign_bit_copies[REGNO (x)] = 1;
842 return;
843 }
844
845 /* If this is a complex assignment, see if we can convert it into a
846 simple assignment. */
847 set = expand_field_assignment (set);
848
849 /* If this is a simple assignment, or we have a paradoxical SUBREG,
850 set what we know about X. */
851
852 if (SET_DEST (set) == x
853 || (GET_CODE (SET_DEST (set)) == SUBREG
854 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
855 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
856 && SUBREG_REG (SET_DEST (set)) == x))
857 {
858 rtx src = SET_SRC (set);
859
860 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
861 /* If X is narrower than a word and SRC is a non-negative
862 constant that would appear negative in the mode of X,
863 sign-extend it for use in reg_nonzero_bits because some
864 machines (maybe most) will actually do the sign-extension
865 and this is the conservative approach.
866
867 ??? For 2.5, try to tighten up the MD files in this regard
868 instead of this kludge. */
869
870 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
871 && GET_CODE (src) == CONST_INT
872 && INTVAL (src) > 0
873 && 0 != (INTVAL (src)
874 & ((HOST_WIDE_INT) 1
875 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
876 src = GEN_INT (INTVAL (src)
877 | ((HOST_WIDE_INT) (-1)
878 << GET_MODE_BITSIZE (GET_MODE (x))));
879 #endif
880
881 reg_nonzero_bits[REGNO (x)]
882 |= nonzero_bits (src, nonzero_bits_mode);
883 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
884 if (reg_sign_bit_copies[REGNO (x)] == 0
885 || reg_sign_bit_copies[REGNO (x)] > num)
886 reg_sign_bit_copies[REGNO (x)] = num;
887 }
888 else
889 {
890 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
891 reg_sign_bit_copies[REGNO (x)] = 1;
892 }
893 }
894 }
895 \f
896 /* See if INSN can be combined into I3. PRED and SUCC are optionally
897 insns that were previously combined into I3 or that will be combined
898 into the merger of INSN and I3.
899
900 Return 0 if the combination is not allowed for any reason.
901
902 If the combination is allowed, *PDEST will be set to the single
903 destination of INSN and *PSRC to the single source, and this function
904 will return 1. */
905
906 static int
907 can_combine_p (insn, i3, pred, succ, pdest, psrc)
908 rtx insn;
909 rtx i3;
910 rtx pred ATTRIBUTE_UNUSED;
911 rtx succ;
912 rtx *pdest, *psrc;
913 {
914 int i;
915 rtx set = 0, src, dest;
916 rtx p;
917 #ifdef AUTO_INC_DEC
918 rtx link;
919 #endif
920 int all_adjacent = (succ ? (next_active_insn (insn) == succ
921 && next_active_insn (succ) == i3)
922 : next_active_insn (insn) == i3);
923
924 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
925 or a PARALLEL consisting of such a SET and CLOBBERs.
926
927 If INSN has CLOBBER parallel parts, ignore them for our processing.
928 By definition, these happen during the execution of the insn. When it
929 is merged with another insn, all bets are off. If they are, in fact,
930 needed and aren't also supplied in I3, they may be added by
931 recog_for_combine. Otherwise, it won't match.
932
933 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
934 note.
935
936 Get the source and destination of INSN. If more than one, can't
937 combine. */
938
939 if (GET_CODE (PATTERN (insn)) == SET)
940 set = PATTERN (insn);
941 else if (GET_CODE (PATTERN (insn)) == PARALLEL
942 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
943 {
944 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
945 {
946 rtx elt = XVECEXP (PATTERN (insn), 0, i);
947
948 switch (GET_CODE (elt))
949 {
950 /* This is important to combine floating point insns
951 for the SH4 port. */
952 case USE:
953 /* Combining an isolated USE doesn't make sense.
954 We depend here on combinable_i3_pat to reject them. */
955 /* The code below this loop only verifies that the inputs of
956 the SET in INSN do not change. We call reg_set_between_p
957 to verify that the REG in the USE does not change betweeen
958 I3 and INSN.
959 If the USE in INSN was for a pseudo register, the matching
960 insn pattern will likely match any register; combining this
961 with any other USE would only be safe if we knew that the
962 used registers have identical values, or if there was
963 something to tell them apart, e.g. different modes. For
964 now, we forgo such compilcated tests and simply disallow
965 combining of USES of pseudo registers with any other USE. */
966 if (GET_CODE (XEXP (elt, 0)) == REG
967 && GET_CODE (PATTERN (i3)) == PARALLEL)
968 {
969 rtx i3pat = PATTERN (i3);
970 int i = XVECLEN (i3pat, 0) - 1;
971 unsigned int regno = REGNO (XEXP (elt, 0));
972
973 do
974 {
975 rtx i3elt = XVECEXP (i3pat, 0, i);
976
977 if (GET_CODE (i3elt) == USE
978 && GET_CODE (XEXP (i3elt, 0)) == REG
979 && (REGNO (XEXP (i3elt, 0)) == regno
980 ? reg_set_between_p (XEXP (elt, 0),
981 PREV_INSN (insn), i3)
982 : regno >= FIRST_PSEUDO_REGISTER))
983 return 0;
984 }
985 while (--i >= 0);
986 }
987 break;
988
989 /* We can ignore CLOBBERs. */
990 case CLOBBER:
991 break;
992
993 case SET:
994 /* Ignore SETs whose result isn't used but not those that
995 have side-effects. */
996 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
997 && ! side_effects_p (elt))
998 break;
999
1000 /* If we have already found a SET, this is a second one and
1001 so we cannot combine with this insn. */
1002 if (set)
1003 return 0;
1004
1005 set = elt;
1006 break;
1007
1008 default:
1009 /* Anything else means we can't combine. */
1010 return 0;
1011 }
1012 }
1013
1014 if (set == 0
1015 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1016 so don't do anything with it. */
1017 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1018 return 0;
1019 }
1020 else
1021 return 0;
1022
1023 if (set == 0)
1024 return 0;
1025
1026 set = expand_field_assignment (set);
1027 src = SET_SRC (set), dest = SET_DEST (set);
1028
1029 /* Don't eliminate a store in the stack pointer. */
1030 if (dest == stack_pointer_rtx
1031 /* If we couldn't eliminate a field assignment, we can't combine. */
1032 || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == STRICT_LOW_PART
1033 /* Don't combine with an insn that sets a register to itself if it has
1034 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1035 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1036 /* Can't merge an ASM_OPERANDS. */
1037 || GET_CODE (src) == ASM_OPERANDS
1038 /* Can't merge a function call. */
1039 || GET_CODE (src) == CALL
1040 /* Don't eliminate a function call argument. */
1041 || (GET_CODE (i3) == CALL_INSN
1042 && (find_reg_fusage (i3, USE, dest)
1043 || (GET_CODE (dest) == REG
1044 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1045 && global_regs[REGNO (dest)])))
1046 /* Don't substitute into an incremented register. */
1047 || FIND_REG_INC_NOTE (i3, dest)
1048 || (succ && FIND_REG_INC_NOTE (succ, dest))
1049 #if 0
1050 /* Don't combine the end of a libcall into anything. */
1051 /* ??? This gives worse code, and appears to be unnecessary, since no
1052 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1053 use REG_RETVAL notes for noconflict blocks, but other code here
1054 makes sure that those insns don't disappear. */
1055 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1056 #endif
1057 /* Make sure that DEST is not used after SUCC but before I3. */
1058 || (succ && ! all_adjacent
1059 && reg_used_between_p (dest, succ, i3))
1060 /* Make sure that the value that is to be substituted for the register
1061 does not use any registers whose values alter in between. However,
1062 If the insns are adjacent, a use can't cross a set even though we
1063 think it might (this can happen for a sequence of insns each setting
1064 the same destination; reg_last_set of that register might point to
1065 a NOTE). If INSN has a REG_EQUIV note, the register is always
1066 equivalent to the memory so the substitution is valid even if there
1067 are intervening stores. Also, don't move a volatile asm or
1068 UNSPEC_VOLATILE across any other insns. */
1069 || (! all_adjacent
1070 && (((GET_CODE (src) != MEM
1071 || ! find_reg_note (insn, REG_EQUIV, src))
1072 && use_crosses_set_p (src, INSN_CUID (insn)))
1073 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1074 || GET_CODE (src) == UNSPEC_VOLATILE))
1075 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1076 better register allocation by not doing the combine. */
1077 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1078 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1079 /* Don't combine across a CALL_INSN, because that would possibly
1080 change whether the life span of some REGs crosses calls or not,
1081 and it is a pain to update that information.
1082 Exception: if source is a constant, moving it later can't hurt.
1083 Accept that special case, because it helps -fforce-addr a lot. */
1084 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1085 return 0;
1086
1087 /* DEST must either be a REG or CC0. */
1088 if (GET_CODE (dest) == REG)
1089 {
1090 /* If register alignment is being enforced for multi-word items in all
1091 cases except for parameters, it is possible to have a register copy
1092 insn referencing a hard register that is not allowed to contain the
1093 mode being copied and which would not be valid as an operand of most
1094 insns. Eliminate this problem by not combining with such an insn.
1095
1096 Also, on some machines we don't want to extend the life of a hard
1097 register. */
1098
1099 if (GET_CODE (src) == REG
1100 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1101 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1102 /* Don't extend the life of a hard register unless it is
1103 user variable (if we have few registers) or it can't
1104 fit into the desired register (meaning something special
1105 is going on).
1106 Also avoid substituting a return register into I3, because
1107 reload can't handle a conflict with constraints of other
1108 inputs. */
1109 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1110 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1111 return 0;
1112 }
1113 else if (GET_CODE (dest) != CC0)
1114 return 0;
1115
1116 /* Don't substitute for a register intended as a clobberable operand.
1117 Similarly, don't substitute an expression containing a register that
1118 will be clobbered in I3. */
1119 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1120 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1121 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER
1122 && (reg_overlap_mentioned_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0),
1123 src)
1124 || rtx_equal_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0), dest)))
1125 return 0;
1126
1127 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1128 or not), reject, unless nothing volatile comes between it and I3 */
1129
1130 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1131 {
1132 /* Make sure succ doesn't contain a volatile reference. */
1133 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1134 return 0;
1135
1136 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1137 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1138 return 0;
1139 }
1140
1141 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1142 to be an explicit register variable, and was chosen for a reason. */
1143
1144 if (GET_CODE (src) == ASM_OPERANDS
1145 && GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1146 return 0;
1147
1148 /* If there are any volatile insns between INSN and I3, reject, because
1149 they might affect machine state. */
1150
1151 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1152 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1153 return 0;
1154
1155 /* If INSN or I2 contains an autoincrement or autodecrement,
1156 make sure that register is not used between there and I3,
1157 and not already used in I3 either.
1158 Also insist that I3 not be a jump; if it were one
1159 and the incremented register were spilled, we would lose. */
1160
1161 #ifdef AUTO_INC_DEC
1162 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1163 if (REG_NOTE_KIND (link) == REG_INC
1164 && (GET_CODE (i3) == JUMP_INSN
1165 || reg_used_between_p (XEXP (link, 0), insn, i3)
1166 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1167 return 0;
1168 #endif
1169
1170 #ifdef HAVE_cc0
1171 /* Don't combine an insn that follows a CC0-setting insn.
1172 An insn that uses CC0 must not be separated from the one that sets it.
1173 We do, however, allow I2 to follow a CC0-setting insn if that insn
1174 is passed as I1; in that case it will be deleted also.
1175 We also allow combining in this case if all the insns are adjacent
1176 because that would leave the two CC0 insns adjacent as well.
1177 It would be more logical to test whether CC0 occurs inside I1 or I2,
1178 but that would be much slower, and this ought to be equivalent. */
1179
1180 p = prev_nonnote_insn (insn);
1181 if (p && p != pred && GET_CODE (p) == INSN && sets_cc0_p (PATTERN (p))
1182 && ! all_adjacent)
1183 return 0;
1184 #endif
1185
1186 /* If we get here, we have passed all the tests and the combination is
1187 to be allowed. */
1188
1189 *pdest = dest;
1190 *psrc = src;
1191
1192 return 1;
1193 }
1194 \f
1195 /* Check if PAT is an insn - or a part of it - used to set up an
1196 argument for a function in a hard register. */
1197
1198 static int
1199 sets_function_arg_p (pat)
1200 rtx pat;
1201 {
1202 int i;
1203 rtx inner_dest;
1204
1205 switch (GET_CODE (pat))
1206 {
1207 case INSN:
1208 return sets_function_arg_p (PATTERN (pat));
1209
1210 case PARALLEL:
1211 for (i = XVECLEN (pat, 0); --i >= 0;)
1212 if (sets_function_arg_p (XVECEXP (pat, 0, i)))
1213 return 1;
1214
1215 break;
1216
1217 case SET:
1218 inner_dest = SET_DEST (pat);
1219 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1220 || GET_CODE (inner_dest) == SUBREG
1221 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1222 inner_dest = XEXP (inner_dest, 0);
1223
1224 return (GET_CODE (inner_dest) == REG
1225 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1226 && FUNCTION_ARG_REGNO_P (REGNO (inner_dest)));
1227
1228 default:
1229 break;
1230 }
1231
1232 return 0;
1233 }
1234
1235 /* LOC is the location within I3 that contains its pattern or the component
1236 of a PARALLEL of the pattern. We validate that it is valid for combining.
1237
1238 One problem is if I3 modifies its output, as opposed to replacing it
1239 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1240 so would produce an insn that is not equivalent to the original insns.
1241
1242 Consider:
1243
1244 (set (reg:DI 101) (reg:DI 100))
1245 (set (subreg:SI (reg:DI 101) 0) <foo>)
1246
1247 This is NOT equivalent to:
1248
1249 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1250 (set (reg:DI 101) (reg:DI 100))])
1251
1252 Not only does this modify 100 (in which case it might still be valid
1253 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1254
1255 We can also run into a problem if I2 sets a register that I1
1256 uses and I1 gets directly substituted into I3 (not via I2). In that
1257 case, we would be getting the wrong value of I2DEST into I3, so we
1258 must reject the combination. This case occurs when I2 and I1 both
1259 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1260 If I1_NOT_IN_SRC is non-zero, it means that finding I1 in the source
1261 of a SET must prevent combination from occurring.
1262
1263 Before doing the above check, we first try to expand a field assignment
1264 into a set of logical operations.
1265
1266 If PI3_DEST_KILLED is non-zero, it is a pointer to a location in which
1267 we place a register that is both set and used within I3. If more than one
1268 such register is detected, we fail.
1269
1270 Return 1 if the combination is valid, zero otherwise. */
1271
1272 static int
1273 combinable_i3pat (i3, loc, i2dest, i1dest, i1_not_in_src, pi3dest_killed)
1274 rtx i3;
1275 rtx *loc;
1276 rtx i2dest;
1277 rtx i1dest;
1278 int i1_not_in_src;
1279 rtx *pi3dest_killed;
1280 {
1281 rtx x = *loc;
1282
1283 if (GET_CODE (x) == SET)
1284 {
1285 rtx set = expand_field_assignment (x);
1286 rtx dest = SET_DEST (set);
1287 rtx src = SET_SRC (set);
1288 rtx inner_dest = dest;
1289
1290 #if 0
1291 rtx inner_src = src;
1292 #endif
1293
1294 SUBST (*loc, set);
1295
1296 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1297 || GET_CODE (inner_dest) == SUBREG
1298 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1299 inner_dest = XEXP (inner_dest, 0);
1300
1301 /* We probably don't need this any more now that LIMIT_RELOAD_CLASS
1302 was added. */
1303 #if 0
1304 while (GET_CODE (inner_src) == STRICT_LOW_PART
1305 || GET_CODE (inner_src) == SUBREG
1306 || GET_CODE (inner_src) == ZERO_EXTRACT)
1307 inner_src = XEXP (inner_src, 0);
1308
1309 /* If it is better that two different modes keep two different pseudos,
1310 avoid combining them. This avoids producing the following pattern
1311 on a 386:
1312 (set (subreg:SI (reg/v:QI 21) 0)
1313 (lshiftrt:SI (reg/v:SI 20)
1314 (const_int 24)))
1315 If that were made, reload could not handle the pair of
1316 reg 20/21, since it would try to get any GENERAL_REGS
1317 but some of them don't handle QImode. */
1318
1319 if (rtx_equal_p (inner_src, i2dest)
1320 && GET_CODE (inner_dest) == REG
1321 && ! MODES_TIEABLE_P (GET_MODE (i2dest), GET_MODE (inner_dest)))
1322 return 0;
1323 #endif
1324
1325 /* Check for the case where I3 modifies its output, as
1326 discussed above. */
1327 if ((inner_dest != dest
1328 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1329 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1330
1331 /* This is the same test done in can_combine_p except we can't test
1332 all_adjacent; we don't have to, since this instruction will stay
1333 in place, thus we are not considering increasing the lifetime of
1334 INNER_DEST.
1335
1336 Also, if this insn sets a function argument, combining it with
1337 something that might need a spill could clobber a previous
1338 function argument; the all_adjacent test in can_combine_p also
1339 checks this; here, we do a more specific test for this case. */
1340
1341 || (GET_CODE (inner_dest) == REG
1342 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1343 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1344 GET_MODE (inner_dest))))
1345 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1346 return 0;
1347
1348 /* If DEST is used in I3, it is being killed in this insn,
1349 so record that for later.
1350 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1351 STACK_POINTER_REGNUM, since these are always considered to be
1352 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1353 if (pi3dest_killed && GET_CODE (dest) == REG
1354 && reg_referenced_p (dest, PATTERN (i3))
1355 && REGNO (dest) != FRAME_POINTER_REGNUM
1356 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1357 && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
1358 #endif
1359 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1360 && (REGNO (dest) != ARG_POINTER_REGNUM
1361 || ! fixed_regs [REGNO (dest)])
1362 #endif
1363 && REGNO (dest) != STACK_POINTER_REGNUM)
1364 {
1365 if (*pi3dest_killed)
1366 return 0;
1367
1368 *pi3dest_killed = dest;
1369 }
1370 }
1371
1372 else if (GET_CODE (x) == PARALLEL)
1373 {
1374 int i;
1375
1376 for (i = 0; i < XVECLEN (x, 0); i++)
1377 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1378 i1_not_in_src, pi3dest_killed))
1379 return 0;
1380 }
1381
1382 return 1;
1383 }
1384 \f
1385 /* Return 1 if X is an arithmetic expression that contains a multiplication
1386 and division. We don't count multiplications by powers of two here. */
1387
1388 static int
1389 contains_muldiv (x)
1390 rtx x;
1391 {
1392 switch (GET_CODE (x))
1393 {
1394 case MOD: case DIV: case UMOD: case UDIV:
1395 return 1;
1396
1397 case MULT:
1398 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1399 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1400 default:
1401 switch (GET_RTX_CLASS (GET_CODE (x)))
1402 {
1403 case 'c': case '<': case '2':
1404 return contains_muldiv (XEXP (x, 0))
1405 || contains_muldiv (XEXP (x, 1));
1406
1407 case '1':
1408 return contains_muldiv (XEXP (x, 0));
1409
1410 default:
1411 return 0;
1412 }
1413 }
1414 }
1415 \f
1416 /* Determine whether INSN can be used in a combination. Return nonzero if
1417 not. This is used in try_combine to detect early some cases where we
1418 can't perform combinations. */
1419
1420 static int
1421 cant_combine_insn_p (insn)
1422 rtx insn;
1423 {
1424 rtx set;
1425 rtx src, dest;
1426
1427 /* If this isn't really an insn, we can't do anything.
1428 This can occur when flow deletes an insn that it has merged into an
1429 auto-increment address. */
1430 if (! INSN_P (insn))
1431 return 1;
1432
1433 /* Never combine loads and stores involving hard regs. The register
1434 allocator can usually handle such reg-reg moves by tying. If we allow
1435 the combiner to make substitutions of hard regs, we risk aborting in
1436 reload on machines that have SMALL_REGISTER_CLASSES.
1437 As an exception, we allow combinations involving fixed regs; these are
1438 not available to the register allocator so there's no risk involved. */
1439
1440 set = single_set (insn);
1441 if (! set)
1442 return 0;
1443 src = SET_SRC (set);
1444 dest = SET_DEST (set);
1445 if (GET_CODE (src) == SUBREG)
1446 src = SUBREG_REG (src);
1447 if (GET_CODE (dest) == SUBREG)
1448 dest = SUBREG_REG (dest);
1449 if (REG_P (src) && REG_P (dest)
1450 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1451 && ! fixed_regs[REGNO (src)])
1452 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1453 && ! fixed_regs[REGNO (dest)])))
1454 return 1;
1455
1456 return 0;
1457 }
1458
1459 /* Try to combine the insns I1 and I2 into I3.
1460 Here I1 and I2 appear earlier than I3.
1461 I1 can be zero; then we combine just I2 into I3.
1462
1463 If we are combining three insns and the resulting insn is not recognized,
1464 try splitting it into two insns. If that happens, I2 and I3 are retained
1465 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1466 are pseudo-deleted.
1467
1468 Return 0 if the combination does not work. Then nothing is changed.
1469 If we did the combination, return the insn at which combine should
1470 resume scanning.
1471
1472 Set NEW_DIRECT_JUMP_P to a non-zero value if try_combine creates a
1473 new direct jump instruction. */
1474
1475 static rtx
1476 try_combine (i3, i2, i1, new_direct_jump_p)
1477 register rtx i3, i2, i1;
1478 register int *new_direct_jump_p;
1479 {
1480 /* New patterns for I3 and I2, respectively. */
1481 rtx newpat, newi2pat = 0;
1482 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1483 int added_sets_1, added_sets_2;
1484 /* Total number of SETs to put into I3. */
1485 int total_sets;
1486 /* Nonzero is I2's body now appears in I3. */
1487 int i2_is_used;
1488 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1489 int insn_code_number, i2_code_number = 0, other_code_number = 0;
1490 /* Contains I3 if the destination of I3 is used in its source, which means
1491 that the old life of I3 is being killed. If that usage is placed into
1492 I2 and not in I3, a REG_DEAD note must be made. */
1493 rtx i3dest_killed = 0;
1494 /* SET_DEST and SET_SRC of I2 and I1. */
1495 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1496 /* PATTERN (I2), or a copy of it in certain cases. */
1497 rtx i2pat;
1498 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1499 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1500 int i1_feeds_i3 = 0;
1501 /* Notes that must be added to REG_NOTES in I3 and I2. */
1502 rtx new_i3_notes, new_i2_notes;
1503 /* Notes that we substituted I3 into I2 instead of the normal case. */
1504 int i3_subst_into_i2 = 0;
1505 /* Notes that I1, I2 or I3 is a MULT operation. */
1506 int have_mult = 0;
1507
1508 int maxreg;
1509 rtx temp;
1510 register rtx link;
1511 int i;
1512
1513 /* Exit early if one of the insns involved can't be used for
1514 combinations. */
1515 if (cant_combine_insn_p (i3)
1516 || cant_combine_insn_p (i2)
1517 || (i1 && cant_combine_insn_p (i1))
1518 /* We also can't do anything if I3 has a
1519 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1520 libcall. */
1521 #if 0
1522 /* ??? This gives worse code, and appears to be unnecessary, since no
1523 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1524 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1525 #endif
1526 )
1527 return 0;
1528
1529 combine_attempts++;
1530 undobuf.other_insn = 0;
1531
1532 /* Reset the hard register usage information. */
1533 CLEAR_HARD_REG_SET (newpat_used_regs);
1534
1535 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1536 code below, set I1 to be the earlier of the two insns. */
1537 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1538 temp = i1, i1 = i2, i2 = temp;
1539
1540 added_links_insn = 0;
1541
1542 /* First check for one important special-case that the code below will
1543 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1544 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1545 we may be able to replace that destination with the destination of I3.
1546 This occurs in the common code where we compute both a quotient and
1547 remainder into a structure, in which case we want to do the computation
1548 directly into the structure to avoid register-register copies.
1549
1550 Note that this case handles both multiple sets in I2 and also
1551 cases where I2 has a number of CLOBBER or PARALLELs.
1552
1553 We make very conservative checks below and only try to handle the
1554 most common cases of this. For example, we only handle the case
1555 where I2 and I3 are adjacent to avoid making difficult register
1556 usage tests. */
1557
1558 if (i1 == 0 && GET_CODE (i3) == INSN && GET_CODE (PATTERN (i3)) == SET
1559 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1560 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1561 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1562 && GET_CODE (PATTERN (i2)) == PARALLEL
1563 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1564 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1565 below would need to check what is inside (and reg_overlap_mentioned_p
1566 doesn't support those codes anyway). Don't allow those destinations;
1567 the resulting insn isn't likely to be recognized anyway. */
1568 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1569 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1570 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1571 SET_DEST (PATTERN (i3)))
1572 && next_real_insn (i2) == i3)
1573 {
1574 rtx p2 = PATTERN (i2);
1575
1576 /* Make sure that the destination of I3,
1577 which we are going to substitute into one output of I2,
1578 is not used within another output of I2. We must avoid making this:
1579 (parallel [(set (mem (reg 69)) ...)
1580 (set (reg 69) ...)])
1581 which is not well-defined as to order of actions.
1582 (Besides, reload can't handle output reloads for this.)
1583
1584 The problem can also happen if the dest of I3 is a memory ref,
1585 if another dest in I2 is an indirect memory ref. */
1586 for (i = 0; i < XVECLEN (p2, 0); i++)
1587 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1588 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1589 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1590 SET_DEST (XVECEXP (p2, 0, i))))
1591 break;
1592
1593 if (i == XVECLEN (p2, 0))
1594 for (i = 0; i < XVECLEN (p2, 0); i++)
1595 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1596 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1597 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1598 {
1599 combine_merges++;
1600
1601 subst_insn = i3;
1602 subst_low_cuid = INSN_CUID (i2);
1603
1604 added_sets_2 = added_sets_1 = 0;
1605 i2dest = SET_SRC (PATTERN (i3));
1606
1607 /* Replace the dest in I2 with our dest and make the resulting
1608 insn the new pattern for I3. Then skip to where we
1609 validate the pattern. Everything was set up above. */
1610 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1611 SET_DEST (PATTERN (i3)));
1612
1613 newpat = p2;
1614 i3_subst_into_i2 = 1;
1615 goto validate_replacement;
1616 }
1617 }
1618
1619 /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1620 one of those words to another constant, merge them by making a new
1621 constant. */
1622 if (i1 == 0
1623 && (temp = single_set (i2)) != 0
1624 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1625 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1626 && GET_CODE (SET_DEST (temp)) == REG
1627 && GET_MODE_CLASS (GET_MODE (SET_DEST (temp))) == MODE_INT
1628 && GET_MODE_SIZE (GET_MODE (SET_DEST (temp))) == 2 * UNITS_PER_WORD
1629 && GET_CODE (PATTERN (i3)) == SET
1630 && GET_CODE (SET_DEST (PATTERN (i3))) == SUBREG
1631 && SUBREG_REG (SET_DEST (PATTERN (i3))) == SET_DEST (temp)
1632 && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3)))) == MODE_INT
1633 && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3)))) == UNITS_PER_WORD
1634 && GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT)
1635 {
1636 HOST_WIDE_INT lo, hi;
1637
1638 if (GET_CODE (SET_SRC (temp)) == CONST_INT)
1639 lo = INTVAL (SET_SRC (temp)), hi = lo < 0 ? -1 : 0;
1640 else
1641 {
1642 lo = CONST_DOUBLE_LOW (SET_SRC (temp));
1643 hi = CONST_DOUBLE_HIGH (SET_SRC (temp));
1644 }
1645
1646 if (subreg_lowpart_p (SET_DEST (PATTERN (i3))))
1647 {
1648 /* We don't handle the case of the target word being wider
1649 than a host wide int. */
1650 if (HOST_BITS_PER_WIDE_INT < BITS_PER_WORD)
1651 abort ();
1652
1653 lo &= ~(UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1);
1654 lo |= INTVAL (SET_SRC (PATTERN (i3)));
1655 }
1656 else if (HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1657 hi = INTVAL (SET_SRC (PATTERN (i3)));
1658 else if (HOST_BITS_PER_WIDE_INT >= 2 * BITS_PER_WORD)
1659 {
1660 int sign = -(int) ((unsigned HOST_WIDE_INT) lo
1661 >> (HOST_BITS_PER_WIDE_INT - 1));
1662
1663 lo &= ~ (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1664 (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1665 lo |= (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1666 (INTVAL (SET_SRC (PATTERN (i3)))));
1667 if (hi == sign)
1668 hi = lo < 0 ? -1 : 0;
1669 }
1670 else
1671 /* We don't handle the case of the higher word not fitting
1672 entirely in either hi or lo. */
1673 abort ();
1674
1675 combine_merges++;
1676 subst_insn = i3;
1677 subst_low_cuid = INSN_CUID (i2);
1678 added_sets_2 = added_sets_1 = 0;
1679 i2dest = SET_DEST (temp);
1680
1681 SUBST (SET_SRC (temp),
1682 immed_double_const (lo, hi, GET_MODE (SET_DEST (temp))));
1683
1684 newpat = PATTERN (i2);
1685 goto validate_replacement;
1686 }
1687
1688 #ifndef HAVE_cc0
1689 /* If we have no I1 and I2 looks like:
1690 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1691 (set Y OP)])
1692 make up a dummy I1 that is
1693 (set Y OP)
1694 and change I2 to be
1695 (set (reg:CC X) (compare:CC Y (const_int 0)))
1696
1697 (We can ignore any trailing CLOBBERs.)
1698
1699 This undoes a previous combination and allows us to match a branch-and-
1700 decrement insn. */
1701
1702 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1703 && XVECLEN (PATTERN (i2), 0) >= 2
1704 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1705 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1706 == MODE_CC)
1707 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1708 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1709 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1710 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 1))) == REG
1711 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1712 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1713 {
1714 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1715 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1716 break;
1717
1718 if (i == 1)
1719 {
1720 /* We make I1 with the same INSN_UID as I2. This gives it
1721 the same INSN_CUID for value tracking. Our fake I1 will
1722 never appear in the insn stream so giving it the same INSN_UID
1723 as I2 will not cause a problem. */
1724
1725 subst_prev_insn = i1
1726 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
1727 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
1728 NULL_RTX);
1729
1730 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1731 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1732 SET_DEST (PATTERN (i1)));
1733 }
1734 }
1735 #endif
1736
1737 /* Verify that I2 and I1 are valid for combining. */
1738 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1739 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1740 {
1741 undo_all ();
1742 return 0;
1743 }
1744
1745 /* Record whether I2DEST is used in I2SRC and similarly for the other
1746 cases. Knowing this will help in register status updating below. */
1747 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1748 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1749 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1750
1751 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1752 in I2SRC. */
1753 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1754
1755 /* Ensure that I3's pattern can be the destination of combines. */
1756 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
1757 i1 && i2dest_in_i1src && i1_feeds_i3,
1758 &i3dest_killed))
1759 {
1760 undo_all ();
1761 return 0;
1762 }
1763
1764 /* See if any of the insns is a MULT operation. Unless one is, we will
1765 reject a combination that is, since it must be slower. Be conservative
1766 here. */
1767 if (GET_CODE (i2src) == MULT
1768 || (i1 != 0 && GET_CODE (i1src) == MULT)
1769 || (GET_CODE (PATTERN (i3)) == SET
1770 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
1771 have_mult = 1;
1772
1773 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1774 We used to do this EXCEPT in one case: I3 has a post-inc in an
1775 output operand. However, that exception can give rise to insns like
1776 mov r3,(r3)+
1777 which is a famous insn on the PDP-11 where the value of r3 used as the
1778 source was model-dependent. Avoid this sort of thing. */
1779
1780 #if 0
1781 if (!(GET_CODE (PATTERN (i3)) == SET
1782 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1783 && GET_CODE (SET_DEST (PATTERN (i3))) == MEM
1784 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
1785 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
1786 /* It's not the exception. */
1787 #endif
1788 #ifdef AUTO_INC_DEC
1789 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
1790 if (REG_NOTE_KIND (link) == REG_INC
1791 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
1792 || (i1 != 0
1793 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
1794 {
1795 undo_all ();
1796 return 0;
1797 }
1798 #endif
1799
1800 /* See if the SETs in I1 or I2 need to be kept around in the merged
1801 instruction: whenever the value set there is still needed past I3.
1802 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1803
1804 For the SET in I1, we have two cases: If I1 and I2 independently
1805 feed into I3, the set in I1 needs to be kept around if I1DEST dies
1806 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
1807 in I1 needs to be kept around unless I1DEST dies or is set in either
1808 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
1809 I1DEST. If so, we know I1 feeds into I2. */
1810
1811 added_sets_2 = ! dead_or_set_p (i3, i2dest);
1812
1813 added_sets_1
1814 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
1815 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
1816
1817 /* If the set in I2 needs to be kept around, we must make a copy of
1818 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
1819 PATTERN (I2), we are only substituting for the original I1DEST, not into
1820 an already-substituted copy. This also prevents making self-referential
1821 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1822 I2DEST. */
1823
1824 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
1825 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
1826 : PATTERN (i2));
1827
1828 if (added_sets_2)
1829 i2pat = copy_rtx (i2pat);
1830
1831 combine_merges++;
1832
1833 /* Substitute in the latest insn for the regs set by the earlier ones. */
1834
1835 maxreg = max_reg_num ();
1836
1837 subst_insn = i3;
1838
1839 /* It is possible that the source of I2 or I1 may be performing an
1840 unneeded operation, such as a ZERO_EXTEND of something that is known
1841 to have the high part zero. Handle that case by letting subst look at
1842 the innermost one of them.
1843
1844 Another way to do this would be to have a function that tries to
1845 simplify a single insn instead of merging two or more insns. We don't
1846 do this because of the potential of infinite loops and because
1847 of the potential extra memory required. However, doing it the way
1848 we are is a bit of a kludge and doesn't catch all cases.
1849
1850 But only do this if -fexpensive-optimizations since it slows things down
1851 and doesn't usually win. */
1852
1853 if (flag_expensive_optimizations)
1854 {
1855 /* Pass pc_rtx so no substitutions are done, just simplifications.
1856 The cases that we are interested in here do not involve the few
1857 cases were is_replaced is checked. */
1858 if (i1)
1859 {
1860 subst_low_cuid = INSN_CUID (i1);
1861 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
1862 }
1863 else
1864 {
1865 subst_low_cuid = INSN_CUID (i2);
1866 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
1867 }
1868 }
1869
1870 #ifndef HAVE_cc0
1871 /* Many machines that don't use CC0 have insns that can both perform an
1872 arithmetic operation and set the condition code. These operations will
1873 be represented as a PARALLEL with the first element of the vector
1874 being a COMPARE of an arithmetic operation with the constant zero.
1875 The second element of the vector will set some pseudo to the result
1876 of the same arithmetic operation. If we simplify the COMPARE, we won't
1877 match such a pattern and so will generate an extra insn. Here we test
1878 for this case, where both the comparison and the operation result are
1879 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
1880 I2SRC. Later we will make the PARALLEL that contains I2. */
1881
1882 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
1883 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
1884 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
1885 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
1886 {
1887 #ifdef EXTRA_CC_MODES
1888 rtx *cc_use;
1889 enum machine_mode compare_mode;
1890 #endif
1891
1892 newpat = PATTERN (i3);
1893 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
1894
1895 i2_is_used = 1;
1896
1897 #ifdef EXTRA_CC_MODES
1898 /* See if a COMPARE with the operand we substituted in should be done
1899 with the mode that is currently being used. If not, do the same
1900 processing we do in `subst' for a SET; namely, if the destination
1901 is used only once, try to replace it with a register of the proper
1902 mode and also replace the COMPARE. */
1903 if (undobuf.other_insn == 0
1904 && (cc_use = find_single_use (SET_DEST (newpat), i3,
1905 &undobuf.other_insn))
1906 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
1907 i2src, const0_rtx))
1908 != GET_MODE (SET_DEST (newpat))))
1909 {
1910 unsigned int regno = REGNO (SET_DEST (newpat));
1911 rtx new_dest = gen_rtx_REG (compare_mode, regno);
1912
1913 if (regno < FIRST_PSEUDO_REGISTER
1914 || (REG_N_SETS (regno) == 1 && ! added_sets_2
1915 && ! REG_USERVAR_P (SET_DEST (newpat))))
1916 {
1917 if (regno >= FIRST_PSEUDO_REGISTER)
1918 SUBST (regno_reg_rtx[regno], new_dest);
1919
1920 SUBST (SET_DEST (newpat), new_dest);
1921 SUBST (XEXP (*cc_use, 0), new_dest);
1922 SUBST (SET_SRC (newpat),
1923 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
1924 }
1925 else
1926 undobuf.other_insn = 0;
1927 }
1928 #endif
1929 }
1930 else
1931 #endif
1932 {
1933 n_occurrences = 0; /* `subst' counts here */
1934
1935 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
1936 need to make a unique copy of I2SRC each time we substitute it
1937 to avoid self-referential rtl. */
1938
1939 subst_low_cuid = INSN_CUID (i2);
1940 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
1941 ! i1_feeds_i3 && i1dest_in_i1src);
1942
1943 /* Record whether i2's body now appears within i3's body. */
1944 i2_is_used = n_occurrences;
1945 }
1946
1947 /* If we already got a failure, don't try to do more. Otherwise,
1948 try to substitute in I1 if we have it. */
1949
1950 if (i1 && GET_CODE (newpat) != CLOBBER)
1951 {
1952 /* Before we can do this substitution, we must redo the test done
1953 above (see detailed comments there) that ensures that I1DEST
1954 isn't mentioned in any SETs in NEWPAT that are field assignments. */
1955
1956 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
1957 0, (rtx*)0))
1958 {
1959 undo_all ();
1960 return 0;
1961 }
1962
1963 n_occurrences = 0;
1964 subst_low_cuid = INSN_CUID (i1);
1965 newpat = subst (newpat, i1dest, i1src, 0, 0);
1966 }
1967
1968 /* Fail if an autoincrement side-effect has been duplicated. Be careful
1969 to count all the ways that I2SRC and I1SRC can be used. */
1970 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
1971 && i2_is_used + added_sets_2 > 1)
1972 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
1973 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
1974 > 1))
1975 /* Fail if we tried to make a new register (we used to abort, but there's
1976 really no reason to). */
1977 || max_reg_num () != maxreg
1978 /* Fail if we couldn't do something and have a CLOBBER. */
1979 || GET_CODE (newpat) == CLOBBER
1980 /* Fail if this new pattern is a MULT and we didn't have one before
1981 at the outer level. */
1982 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
1983 && ! have_mult))
1984 {
1985 undo_all ();
1986 return 0;
1987 }
1988
1989 /* If the actions of the earlier insns must be kept
1990 in addition to substituting them into the latest one,
1991 we must make a new PARALLEL for the latest insn
1992 to hold additional the SETs. */
1993
1994 if (added_sets_1 || added_sets_2)
1995 {
1996 combine_extras++;
1997
1998 if (GET_CODE (newpat) == PARALLEL)
1999 {
2000 rtvec old = XVEC (newpat, 0);
2001 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2002 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2003 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2004 sizeof (old->elem[0]) * old->num_elem);
2005 }
2006 else
2007 {
2008 rtx old = newpat;
2009 total_sets = 1 + added_sets_1 + added_sets_2;
2010 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2011 XVECEXP (newpat, 0, 0) = old;
2012 }
2013
2014 if (added_sets_1)
2015 XVECEXP (newpat, 0, --total_sets)
2016 = (GET_CODE (PATTERN (i1)) == PARALLEL
2017 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
2018
2019 if (added_sets_2)
2020 {
2021 /* If there is no I1, use I2's body as is. We used to also not do
2022 the subst call below if I2 was substituted into I3,
2023 but that could lose a simplification. */
2024 if (i1 == 0)
2025 XVECEXP (newpat, 0, --total_sets) = i2pat;
2026 else
2027 /* See comment where i2pat is assigned. */
2028 XVECEXP (newpat, 0, --total_sets)
2029 = subst (i2pat, i1dest, i1src, 0, 0);
2030 }
2031 }
2032
2033 /* We come here when we are replacing a destination in I2 with the
2034 destination of I3. */
2035 validate_replacement:
2036
2037 /* Note which hard regs this insn has as inputs. */
2038 mark_used_regs_combine (newpat);
2039
2040 /* Is the result of combination a valid instruction? */
2041 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2042
2043 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2044 the second SET's destination is a register that is unused. In that case,
2045 we just need the first SET. This can occur when simplifying a divmod
2046 insn. We *must* test for this case here because the code below that
2047 splits two independent SETs doesn't handle this case correctly when it
2048 updates the register status. Also check the case where the first
2049 SET's destination is unused. That would not cause incorrect code, but
2050 does cause an unneeded insn to remain. */
2051
2052 if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
2053 && XVECLEN (newpat, 0) == 2
2054 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2055 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2056 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == REG
2057 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 1)))
2058 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 1)))
2059 && asm_noperands (newpat) < 0)
2060 {
2061 newpat = XVECEXP (newpat, 0, 0);
2062 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2063 }
2064
2065 else if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
2066 && XVECLEN (newpat, 0) == 2
2067 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2068 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2069 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) == REG
2070 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 0)))
2071 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 0)))
2072 && asm_noperands (newpat) < 0)
2073 {
2074 newpat = XVECEXP (newpat, 0, 1);
2075 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2076 }
2077
2078 /* If we were combining three insns and the result is a simple SET
2079 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2080 insns. There are two ways to do this. It can be split using a
2081 machine-specific method (like when you have an addition of a large
2082 constant) or by combine in the function find_split_point. */
2083
2084 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2085 && asm_noperands (newpat) < 0)
2086 {
2087 rtx m_split, *split;
2088 rtx ni2dest = i2dest;
2089
2090 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2091 use I2DEST as a scratch register will help. In the latter case,
2092 convert I2DEST to the mode of the source of NEWPAT if we can. */
2093
2094 m_split = split_insns (newpat, i3);
2095
2096 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2097 inputs of NEWPAT. */
2098
2099 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2100 possible to try that as a scratch reg. This would require adding
2101 more code to make it work though. */
2102
2103 if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
2104 {
2105 /* If I2DEST is a hard register or the only use of a pseudo,
2106 we can change its mode. */
2107 if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
2108 && GET_MODE (SET_DEST (newpat)) != VOIDmode
2109 && GET_CODE (i2dest) == REG
2110 && (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2111 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2112 && ! REG_USERVAR_P (i2dest))))
2113 ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
2114 REGNO (i2dest));
2115
2116 m_split = split_insns (gen_rtx_PARALLEL
2117 (VOIDmode,
2118 gen_rtvec (2, newpat,
2119 gen_rtx_CLOBBER (VOIDmode,
2120 ni2dest))),
2121 i3);
2122 /* If the split with the mode-changed register didn't work, try
2123 the original register. */
2124 if (! m_split && ni2dest != i2dest)
2125 {
2126 ni2dest = i2dest;
2127 m_split = split_insns (gen_rtx_PARALLEL
2128 (VOIDmode,
2129 gen_rtvec (2, newpat,
2130 gen_rtx_CLOBBER (VOIDmode,
2131 i2dest))),
2132 i3);
2133 }
2134 }
2135
2136 if (m_split && GET_CODE (m_split) != SEQUENCE)
2137 {
2138 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2139 if (insn_code_number >= 0)
2140 newpat = m_split;
2141 }
2142 else if (m_split && GET_CODE (m_split) == SEQUENCE
2143 && XVECLEN (m_split, 0) == 2
2144 && (next_real_insn (i2) == i3
2145 || ! use_crosses_set_p (PATTERN (XVECEXP (m_split, 0, 0)),
2146 INSN_CUID (i2))))
2147 {
2148 rtx i2set, i3set;
2149 rtx newi3pat = PATTERN (XVECEXP (m_split, 0, 1));
2150 newi2pat = PATTERN (XVECEXP (m_split, 0, 0));
2151
2152 i3set = single_set (XVECEXP (m_split, 0, 1));
2153 i2set = single_set (XVECEXP (m_split, 0, 0));
2154
2155 /* In case we changed the mode of I2DEST, replace it in the
2156 pseudo-register table here. We can't do it above in case this
2157 code doesn't get executed and we do a split the other way. */
2158
2159 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2160 SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
2161
2162 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2163
2164 /* If I2 or I3 has multiple SETs, we won't know how to track
2165 register status, so don't use these insns. If I2's destination
2166 is used between I2 and I3, we also can't use these insns. */
2167
2168 if (i2_code_number >= 0 && i2set && i3set
2169 && (next_real_insn (i2) == i3
2170 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2171 insn_code_number = recog_for_combine (&newi3pat, i3,
2172 &new_i3_notes);
2173 if (insn_code_number >= 0)
2174 newpat = newi3pat;
2175
2176 /* It is possible that both insns now set the destination of I3.
2177 If so, we must show an extra use of it. */
2178
2179 if (insn_code_number >= 0)
2180 {
2181 rtx new_i3_dest = SET_DEST (i3set);
2182 rtx new_i2_dest = SET_DEST (i2set);
2183
2184 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2185 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2186 || GET_CODE (new_i3_dest) == SUBREG)
2187 new_i3_dest = XEXP (new_i3_dest, 0);
2188
2189 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2190 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2191 || GET_CODE (new_i2_dest) == SUBREG)
2192 new_i2_dest = XEXP (new_i2_dest, 0);
2193
2194 if (GET_CODE (new_i3_dest) == REG
2195 && GET_CODE (new_i2_dest) == REG
2196 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2197 REG_N_SETS (REGNO (new_i2_dest))++;
2198 }
2199 }
2200
2201 /* If we can split it and use I2DEST, go ahead and see if that
2202 helps things be recognized. Verify that none of the registers
2203 are set between I2 and I3. */
2204 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2205 #ifdef HAVE_cc0
2206 && GET_CODE (i2dest) == REG
2207 #endif
2208 /* We need I2DEST in the proper mode. If it is a hard register
2209 or the only use of a pseudo, we can change its mode. */
2210 && (GET_MODE (*split) == GET_MODE (i2dest)
2211 || GET_MODE (*split) == VOIDmode
2212 || REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2213 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2214 && ! REG_USERVAR_P (i2dest)))
2215 && (next_real_insn (i2) == i3
2216 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2217 /* We can't overwrite I2DEST if its value is still used by
2218 NEWPAT. */
2219 && ! reg_referenced_p (i2dest, newpat))
2220 {
2221 rtx newdest = i2dest;
2222 enum rtx_code split_code = GET_CODE (*split);
2223 enum machine_mode split_mode = GET_MODE (*split);
2224
2225 /* Get NEWDEST as a register in the proper mode. We have already
2226 validated that we can do this. */
2227 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2228 {
2229 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2230
2231 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2232 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
2233 }
2234
2235 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2236 an ASHIFT. This can occur if it was inside a PLUS and hence
2237 appeared to be a memory address. This is a kludge. */
2238 if (split_code == MULT
2239 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2240 && INTVAL (XEXP (*split, 1)) > 0
2241 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2242 {
2243 SUBST (*split, gen_rtx_ASHIFT (split_mode,
2244 XEXP (*split, 0), GEN_INT (i)));
2245 /* Update split_code because we may not have a multiply
2246 anymore. */
2247 split_code = GET_CODE (*split);
2248 }
2249
2250 #ifdef INSN_SCHEDULING
2251 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2252 be written as a ZERO_EXTEND. */
2253 if (split_code == SUBREG && GET_CODE (SUBREG_REG (*split)) == MEM)
2254 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
2255 SUBREG_REG (*split)));
2256 #endif
2257
2258 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
2259 SUBST (*split, newdest);
2260 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2261
2262 /* If the split point was a MULT and we didn't have one before,
2263 don't use one now. */
2264 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2265 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2266 }
2267 }
2268
2269 /* Check for a case where we loaded from memory in a narrow mode and
2270 then sign extended it, but we need both registers. In that case,
2271 we have a PARALLEL with both loads from the same memory location.
2272 We can split this into a load from memory followed by a register-register
2273 copy. This saves at least one insn, more if register allocation can
2274 eliminate the copy.
2275
2276 We cannot do this if the destination of the second assignment is
2277 a register that we have already assumed is zero-extended. Similarly
2278 for a SUBREG of such a register. */
2279
2280 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2281 && GET_CODE (newpat) == PARALLEL
2282 && XVECLEN (newpat, 0) == 2
2283 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2284 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2285 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2286 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2287 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2288 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2289 INSN_CUID (i2))
2290 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2291 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2292 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2293 (GET_CODE (temp) == REG
2294 && reg_nonzero_bits[REGNO (temp)] != 0
2295 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2296 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2297 && (reg_nonzero_bits[REGNO (temp)]
2298 != GET_MODE_MASK (word_mode))))
2299 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2300 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2301 (GET_CODE (temp) == REG
2302 && reg_nonzero_bits[REGNO (temp)] != 0
2303 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2304 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2305 && (reg_nonzero_bits[REGNO (temp)]
2306 != GET_MODE_MASK (word_mode)))))
2307 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2308 SET_SRC (XVECEXP (newpat, 0, 1)))
2309 && ! find_reg_note (i3, REG_UNUSED,
2310 SET_DEST (XVECEXP (newpat, 0, 0))))
2311 {
2312 rtx ni2dest;
2313
2314 newi2pat = XVECEXP (newpat, 0, 0);
2315 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2316 newpat = XVECEXP (newpat, 0, 1);
2317 SUBST (SET_SRC (newpat),
2318 gen_lowpart_for_combine (GET_MODE (SET_SRC (newpat)), ni2dest));
2319 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2320
2321 if (i2_code_number >= 0)
2322 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2323
2324 if (insn_code_number >= 0)
2325 {
2326 rtx insn;
2327 rtx link;
2328
2329 /* If we will be able to accept this, we have made a change to the
2330 destination of I3. This can invalidate a LOG_LINKS pointing
2331 to I3. No other part of combine.c makes such a transformation.
2332
2333 The new I3 will have a destination that was previously the
2334 destination of I1 or I2 and which was used in i2 or I3. Call
2335 distribute_links to make a LOG_LINK from the next use of
2336 that destination. */
2337
2338 PATTERN (i3) = newpat;
2339 distribute_links (gen_rtx_INSN_LIST (VOIDmode, i3, NULL_RTX));
2340
2341 /* I3 now uses what used to be its destination and which is
2342 now I2's destination. That means we need a LOG_LINK from
2343 I3 to I2. But we used to have one, so we still will.
2344
2345 However, some later insn might be using I2's dest and have
2346 a LOG_LINK pointing at I3. We must remove this link.
2347 The simplest way to remove the link is to point it at I1,
2348 which we know will be a NOTE. */
2349
2350 for (insn = NEXT_INSN (i3);
2351 insn && (this_basic_block == n_basic_blocks - 1
2352 || insn != BLOCK_HEAD (this_basic_block + 1));
2353 insn = NEXT_INSN (insn))
2354 {
2355 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
2356 {
2357 for (link = LOG_LINKS (insn); link;
2358 link = XEXP (link, 1))
2359 if (XEXP (link, 0) == i3)
2360 XEXP (link, 0) = i1;
2361
2362 break;
2363 }
2364 }
2365 }
2366 }
2367
2368 /* Similarly, check for a case where we have a PARALLEL of two independent
2369 SETs but we started with three insns. In this case, we can do the sets
2370 as two separate insns. This case occurs when some SET allows two
2371 other insns to combine, but the destination of that SET is still live. */
2372
2373 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2374 && GET_CODE (newpat) == PARALLEL
2375 && XVECLEN (newpat, 0) == 2
2376 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2377 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2378 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2379 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2380 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2381 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2382 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2383 INSN_CUID (i2))
2384 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2385 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2386 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2387 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2388 XVECEXP (newpat, 0, 0))
2389 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2390 XVECEXP (newpat, 0, 1))
2391 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2392 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
2393 {
2394 /* Normally, it doesn't matter which of the two is done first,
2395 but it does if one references cc0. In that case, it has to
2396 be first. */
2397 #ifdef HAVE_cc0
2398 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2399 {
2400 newi2pat = XVECEXP (newpat, 0, 0);
2401 newpat = XVECEXP (newpat, 0, 1);
2402 }
2403 else
2404 #endif
2405 {
2406 newi2pat = XVECEXP (newpat, 0, 1);
2407 newpat = XVECEXP (newpat, 0, 0);
2408 }
2409
2410 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2411
2412 if (i2_code_number >= 0)
2413 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2414 }
2415
2416 /* If it still isn't recognized, fail and change things back the way they
2417 were. */
2418 if ((insn_code_number < 0
2419 /* Is the result a reasonable ASM_OPERANDS? */
2420 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2421 {
2422 undo_all ();
2423 return 0;
2424 }
2425
2426 /* If we had to change another insn, make sure it is valid also. */
2427 if (undobuf.other_insn)
2428 {
2429 rtx other_pat = PATTERN (undobuf.other_insn);
2430 rtx new_other_notes;
2431 rtx note, next;
2432
2433 CLEAR_HARD_REG_SET (newpat_used_regs);
2434
2435 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2436 &new_other_notes);
2437
2438 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2439 {
2440 undo_all ();
2441 return 0;
2442 }
2443
2444 PATTERN (undobuf.other_insn) = other_pat;
2445
2446 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2447 are still valid. Then add any non-duplicate notes added by
2448 recog_for_combine. */
2449 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2450 {
2451 next = XEXP (note, 1);
2452
2453 if (REG_NOTE_KIND (note) == REG_UNUSED
2454 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2455 {
2456 if (GET_CODE (XEXP (note, 0)) == REG)
2457 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2458
2459 remove_note (undobuf.other_insn, note);
2460 }
2461 }
2462
2463 for (note = new_other_notes; note; note = XEXP (note, 1))
2464 if (GET_CODE (XEXP (note, 0)) == REG)
2465 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2466
2467 distribute_notes (new_other_notes, undobuf.other_insn,
2468 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
2469 }
2470 #ifdef HAVE_cc0
2471 /* If I2 is the setter CC0 and I3 is the user CC0 then check whether
2472 they are adjacent to each other or not. */
2473 {
2474 rtx p = prev_nonnote_insn (i3);
2475 if (p && p != i2 && GET_CODE (p) == INSN && newi2pat
2476 && sets_cc0_p (newi2pat))
2477 {
2478 undo_all ();
2479 return 0;
2480 }
2481 }
2482 #endif
2483
2484 /* We now know that we can do this combination. Merge the insns and
2485 update the status of registers and LOG_LINKS. */
2486
2487 {
2488 rtx i3notes, i2notes, i1notes = 0;
2489 rtx i3links, i2links, i1links = 0;
2490 rtx midnotes = 0;
2491 unsigned int regno;
2492 /* Compute which registers we expect to eliminate. newi2pat may be setting
2493 either i3dest or i2dest, so we must check it. Also, i1dest may be the
2494 same as i3dest, in which case newi2pat may be setting i1dest. */
2495 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
2496 || i2dest_in_i2src || i2dest_in_i1src
2497 ? 0 : i2dest);
2498 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src
2499 || (newi2pat && reg_set_p (i1dest, newi2pat))
2500 ? 0 : i1dest);
2501
2502 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2503 clear them. */
2504 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2505 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2506 if (i1)
2507 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2508
2509 /* Ensure that we do not have something that should not be shared but
2510 occurs multiple times in the new insns. Check this by first
2511 resetting all the `used' flags and then copying anything is shared. */
2512
2513 reset_used_flags (i3notes);
2514 reset_used_flags (i2notes);
2515 reset_used_flags (i1notes);
2516 reset_used_flags (newpat);
2517 reset_used_flags (newi2pat);
2518 if (undobuf.other_insn)
2519 reset_used_flags (PATTERN (undobuf.other_insn));
2520
2521 i3notes = copy_rtx_if_shared (i3notes);
2522 i2notes = copy_rtx_if_shared (i2notes);
2523 i1notes = copy_rtx_if_shared (i1notes);
2524 newpat = copy_rtx_if_shared (newpat);
2525 newi2pat = copy_rtx_if_shared (newi2pat);
2526 if (undobuf.other_insn)
2527 reset_used_flags (PATTERN (undobuf.other_insn));
2528
2529 INSN_CODE (i3) = insn_code_number;
2530 PATTERN (i3) = newpat;
2531 if (undobuf.other_insn)
2532 INSN_CODE (undobuf.other_insn) = other_code_number;
2533
2534 /* We had one special case above where I2 had more than one set and
2535 we replaced a destination of one of those sets with the destination
2536 of I3. In that case, we have to update LOG_LINKS of insns later
2537 in this basic block. Note that this (expensive) case is rare.
2538
2539 Also, in this case, we must pretend that all REG_NOTEs for I2
2540 actually came from I3, so that REG_UNUSED notes from I2 will be
2541 properly handled. */
2542
2543 if (i3_subst_into_i2)
2544 {
2545 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2546 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != USE
2547 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, i))) == REG
2548 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2549 && ! find_reg_note (i2, REG_UNUSED,
2550 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2551 for (temp = NEXT_INSN (i2);
2552 temp && (this_basic_block == n_basic_blocks - 1
2553 || BLOCK_HEAD (this_basic_block) != temp);
2554 temp = NEXT_INSN (temp))
2555 if (temp != i3 && INSN_P (temp))
2556 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2557 if (XEXP (link, 0) == i2)
2558 XEXP (link, 0) = i3;
2559
2560 if (i3notes)
2561 {
2562 rtx link = i3notes;
2563 while (XEXP (link, 1))
2564 link = XEXP (link, 1);
2565 XEXP (link, 1) = i2notes;
2566 }
2567 else
2568 i3notes = i2notes;
2569 i2notes = 0;
2570 }
2571
2572 LOG_LINKS (i3) = 0;
2573 REG_NOTES (i3) = 0;
2574 LOG_LINKS (i2) = 0;
2575 REG_NOTES (i2) = 0;
2576
2577 if (newi2pat)
2578 {
2579 INSN_CODE (i2) = i2_code_number;
2580 PATTERN (i2) = newi2pat;
2581 }
2582 else
2583 {
2584 PUT_CODE (i2, NOTE);
2585 NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED;
2586 NOTE_SOURCE_FILE (i2) = 0;
2587 }
2588
2589 if (i1)
2590 {
2591 LOG_LINKS (i1) = 0;
2592 REG_NOTES (i1) = 0;
2593 PUT_CODE (i1, NOTE);
2594 NOTE_LINE_NUMBER (i1) = NOTE_INSN_DELETED;
2595 NOTE_SOURCE_FILE (i1) = 0;
2596 }
2597
2598 /* Get death notes for everything that is now used in either I3 or
2599 I2 and used to die in a previous insn. If we built two new
2600 patterns, move from I1 to I2 then I2 to I3 so that we get the
2601 proper movement on registers that I2 modifies. */
2602
2603 if (newi2pat)
2604 {
2605 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2606 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2607 }
2608 else
2609 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2610 i3, &midnotes);
2611
2612 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2613 if (i3notes)
2614 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
2615 elim_i2, elim_i1);
2616 if (i2notes)
2617 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
2618 elim_i2, elim_i1);
2619 if (i1notes)
2620 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
2621 elim_i2, elim_i1);
2622 if (midnotes)
2623 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2624 elim_i2, elim_i1);
2625
2626 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2627 know these are REG_UNUSED and want them to go to the desired insn,
2628 so we always pass it as i3. We have not counted the notes in
2629 reg_n_deaths yet, so we need to do so now. */
2630
2631 if (newi2pat && new_i2_notes)
2632 {
2633 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
2634 if (GET_CODE (XEXP (temp, 0)) == REG)
2635 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2636
2637 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2638 }
2639
2640 if (new_i3_notes)
2641 {
2642 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
2643 if (GET_CODE (XEXP (temp, 0)) == REG)
2644 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2645
2646 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
2647 }
2648
2649 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
2650 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
2651 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
2652 in that case, it might delete I2. Similarly for I2 and I1.
2653 Show an additional death due to the REG_DEAD note we make here. If
2654 we discard it in distribute_notes, we will decrement it again. */
2655
2656 if (i3dest_killed)
2657 {
2658 if (GET_CODE (i3dest_killed) == REG)
2659 REG_N_DEATHS (REGNO (i3dest_killed))++;
2660
2661 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
2662 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2663 NULL_RTX),
2664 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1);
2665 else
2666 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2667 NULL_RTX),
2668 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2669 elim_i2, elim_i1);
2670 }
2671
2672 if (i2dest_in_i2src)
2673 {
2674 if (GET_CODE (i2dest) == REG)
2675 REG_N_DEATHS (REGNO (i2dest))++;
2676
2677 if (newi2pat && reg_set_p (i2dest, newi2pat))
2678 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2679 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2680 else
2681 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2682 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2683 NULL_RTX, NULL_RTX);
2684 }
2685
2686 if (i1dest_in_i1src)
2687 {
2688 if (GET_CODE (i1dest) == REG)
2689 REG_N_DEATHS (REGNO (i1dest))++;
2690
2691 if (newi2pat && reg_set_p (i1dest, newi2pat))
2692 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2693 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2694 else
2695 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2696 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2697 NULL_RTX, NULL_RTX);
2698 }
2699
2700 distribute_links (i3links);
2701 distribute_links (i2links);
2702 distribute_links (i1links);
2703
2704 if (GET_CODE (i2dest) == REG)
2705 {
2706 rtx link;
2707 rtx i2_insn = 0, i2_val = 0, set;
2708
2709 /* The insn that used to set this register doesn't exist, and
2710 this life of the register may not exist either. See if one of
2711 I3's links points to an insn that sets I2DEST. If it does,
2712 that is now the last known value for I2DEST. If we don't update
2713 this and I2 set the register to a value that depended on its old
2714 contents, we will get confused. If this insn is used, thing
2715 will be set correctly in combine_instructions. */
2716
2717 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2718 if ((set = single_set (XEXP (link, 0))) != 0
2719 && rtx_equal_p (i2dest, SET_DEST (set)))
2720 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
2721
2722 record_value_for_reg (i2dest, i2_insn, i2_val);
2723
2724 /* If the reg formerly set in I2 died only once and that was in I3,
2725 zero its use count so it won't make `reload' do any work. */
2726 if (! added_sets_2
2727 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
2728 && ! i2dest_in_i2src)
2729 {
2730 regno = REGNO (i2dest);
2731 REG_N_SETS (regno)--;
2732 }
2733 }
2734
2735 if (i1 && GET_CODE (i1dest) == REG)
2736 {
2737 rtx link;
2738 rtx i1_insn = 0, i1_val = 0, set;
2739
2740 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2741 if ((set = single_set (XEXP (link, 0))) != 0
2742 && rtx_equal_p (i1dest, SET_DEST (set)))
2743 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
2744
2745 record_value_for_reg (i1dest, i1_insn, i1_val);
2746
2747 regno = REGNO (i1dest);
2748 if (! added_sets_1 && ! i1dest_in_i1src)
2749 REG_N_SETS (regno)--;
2750 }
2751
2752 /* Update reg_nonzero_bits et al for any changes that may have been made
2753 to this insn. The order of set_nonzero_bits_and_sign_copies() is
2754 important. Because newi2pat can affect nonzero_bits of newpat */
2755 if (newi2pat)
2756 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
2757 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
2758
2759 /* Set new_direct_jump_p if a new return or simple jump instruction
2760 has been created.
2761
2762 If I3 is now an unconditional jump, ensure that it has a
2763 BARRIER following it since it may have initially been a
2764 conditional jump. It may also be the last nonnote insn. */
2765
2766 if (GET_CODE (newpat) == RETURN || any_uncondjump_p (i3)
2767 || (GET_CODE (newpat) == SET
2768 && SET_SRC (newpat) == pc_rtx
2769 && SET_DEST (newpat) == pc_rtx))
2770 {
2771 *new_direct_jump_p = 1;
2772
2773 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
2774 || GET_CODE (temp) != BARRIER)
2775 emit_barrier_after (i3);
2776 }
2777 }
2778
2779 combine_successes++;
2780 undo_commit ();
2781
2782 /* Clear this here, so that subsequent get_last_value calls are not
2783 affected. */
2784 subst_prev_insn = NULL_RTX;
2785
2786 if (added_links_insn
2787 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
2788 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
2789 return added_links_insn;
2790 else
2791 return newi2pat ? i2 : i3;
2792 }
2793 \f
2794 /* Undo all the modifications recorded in undobuf. */
2795
2796 static void
2797 undo_all ()
2798 {
2799 struct undo *undo, *next;
2800
2801 for (undo = undobuf.undos; undo; undo = next)
2802 {
2803 next = undo->next;
2804 if (undo->is_int)
2805 *undo->where.i = undo->old_contents.i;
2806 else
2807 *undo->where.r = undo->old_contents.r;
2808
2809 undo->next = undobuf.frees;
2810 undobuf.frees = undo;
2811 }
2812
2813 undobuf.undos = 0;
2814
2815 /* Clear this here, so that subsequent get_last_value calls are not
2816 affected. */
2817 subst_prev_insn = NULL_RTX;
2818 }
2819
2820 /* We've committed to accepting the changes we made. Move all
2821 of the undos to the free list. */
2822
2823 static void
2824 undo_commit ()
2825 {
2826 struct undo *undo, *next;
2827
2828 for (undo = undobuf.undos; undo; undo = next)
2829 {
2830 next = undo->next;
2831 undo->next = undobuf.frees;
2832 undobuf.frees = undo;
2833 }
2834 undobuf.undos = 0;
2835 }
2836
2837 \f
2838 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
2839 where we have an arithmetic expression and return that point. LOC will
2840 be inside INSN.
2841
2842 try_combine will call this function to see if an insn can be split into
2843 two insns. */
2844
2845 static rtx *
2846 find_split_point (loc, insn)
2847 rtx *loc;
2848 rtx insn;
2849 {
2850 rtx x = *loc;
2851 enum rtx_code code = GET_CODE (x);
2852 rtx *split;
2853 unsigned HOST_WIDE_INT len = 0;
2854 HOST_WIDE_INT pos = 0;
2855 int unsignedp = 0;
2856 rtx inner = NULL_RTX;
2857
2858 /* First special-case some codes. */
2859 switch (code)
2860 {
2861 case SUBREG:
2862 #ifdef INSN_SCHEDULING
2863 /* If we are making a paradoxical SUBREG invalid, it becomes a split
2864 point. */
2865 if (GET_CODE (SUBREG_REG (x)) == MEM)
2866 return loc;
2867 #endif
2868 return find_split_point (&SUBREG_REG (x), insn);
2869
2870 case MEM:
2871 #ifdef HAVE_lo_sum
2872 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
2873 using LO_SUM and HIGH. */
2874 if (GET_CODE (XEXP (x, 0)) == CONST
2875 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
2876 {
2877 SUBST (XEXP (x, 0),
2878 gen_rtx_LO_SUM (Pmode,
2879 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
2880 XEXP (x, 0)));
2881 return &XEXP (XEXP (x, 0), 0);
2882 }
2883 #endif
2884
2885 /* If we have a PLUS whose second operand is a constant and the
2886 address is not valid, perhaps will can split it up using
2887 the machine-specific way to split large constants. We use
2888 the first pseudo-reg (one of the virtual regs) as a placeholder;
2889 it will not remain in the result. */
2890 if (GET_CODE (XEXP (x, 0)) == PLUS
2891 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2892 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
2893 {
2894 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
2895 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
2896 subst_insn);
2897
2898 /* This should have produced two insns, each of which sets our
2899 placeholder. If the source of the second is a valid address,
2900 we can make put both sources together and make a split point
2901 in the middle. */
2902
2903 if (seq && XVECLEN (seq, 0) == 2
2904 && GET_CODE (XVECEXP (seq, 0, 0)) == INSN
2905 && GET_CODE (PATTERN (XVECEXP (seq, 0, 0))) == SET
2906 && SET_DEST (PATTERN (XVECEXP (seq, 0, 0))) == reg
2907 && ! reg_mentioned_p (reg,
2908 SET_SRC (PATTERN (XVECEXP (seq, 0, 0))))
2909 && GET_CODE (XVECEXP (seq, 0, 1)) == INSN
2910 && GET_CODE (PATTERN (XVECEXP (seq, 0, 1))) == SET
2911 && SET_DEST (PATTERN (XVECEXP (seq, 0, 1))) == reg
2912 && memory_address_p (GET_MODE (x),
2913 SET_SRC (PATTERN (XVECEXP (seq, 0, 1)))))
2914 {
2915 rtx src1 = SET_SRC (PATTERN (XVECEXP (seq, 0, 0)));
2916 rtx src2 = SET_SRC (PATTERN (XVECEXP (seq, 0, 1)));
2917
2918 /* Replace the placeholder in SRC2 with SRC1. If we can
2919 find where in SRC2 it was placed, that can become our
2920 split point and we can replace this address with SRC2.
2921 Just try two obvious places. */
2922
2923 src2 = replace_rtx (src2, reg, src1);
2924 split = 0;
2925 if (XEXP (src2, 0) == src1)
2926 split = &XEXP (src2, 0);
2927 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
2928 && XEXP (XEXP (src2, 0), 0) == src1)
2929 split = &XEXP (XEXP (src2, 0), 0);
2930
2931 if (split)
2932 {
2933 SUBST (XEXP (x, 0), src2);
2934 return split;
2935 }
2936 }
2937
2938 /* If that didn't work, perhaps the first operand is complex and
2939 needs to be computed separately, so make a split point there.
2940 This will occur on machines that just support REG + CONST
2941 and have a constant moved through some previous computation. */
2942
2943 else if (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) != 'o'
2944 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
2945 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (XEXP (x, 0), 0))))
2946 == 'o')))
2947 return &XEXP (XEXP (x, 0), 0);
2948 }
2949 break;
2950
2951 case SET:
2952 #ifdef HAVE_cc0
2953 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
2954 ZERO_EXTRACT, the most likely reason why this doesn't match is that
2955 we need to put the operand into a register. So split at that
2956 point. */
2957
2958 if (SET_DEST (x) == cc0_rtx
2959 && GET_CODE (SET_SRC (x)) != COMPARE
2960 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
2961 && GET_RTX_CLASS (GET_CODE (SET_SRC (x))) != 'o'
2962 && ! (GET_CODE (SET_SRC (x)) == SUBREG
2963 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (SET_SRC (x)))) == 'o'))
2964 return &SET_SRC (x);
2965 #endif
2966
2967 /* See if we can split SET_SRC as it stands. */
2968 split = find_split_point (&SET_SRC (x), insn);
2969 if (split && split != &SET_SRC (x))
2970 return split;
2971
2972 /* See if we can split SET_DEST as it stands. */
2973 split = find_split_point (&SET_DEST (x), insn);
2974 if (split && split != &SET_DEST (x))
2975 return split;
2976
2977 /* See if this is a bitfield assignment with everything constant. If
2978 so, this is an IOR of an AND, so split it into that. */
2979 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
2980 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
2981 <= HOST_BITS_PER_WIDE_INT)
2982 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
2983 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
2984 && GET_CODE (SET_SRC (x)) == CONST_INT
2985 && ((INTVAL (XEXP (SET_DEST (x), 1))
2986 + INTVAL (XEXP (SET_DEST (x), 2)))
2987 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
2988 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
2989 {
2990 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
2991 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
2992 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
2993 rtx dest = XEXP (SET_DEST (x), 0);
2994 enum machine_mode mode = GET_MODE (dest);
2995 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
2996
2997 if (BITS_BIG_ENDIAN)
2998 pos = GET_MODE_BITSIZE (mode) - len - pos;
2999
3000 if (src == mask)
3001 SUBST (SET_SRC (x),
3002 gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
3003 else
3004 SUBST (SET_SRC (x),
3005 gen_binary (IOR, mode,
3006 gen_binary (AND, mode, dest,
3007 GEN_INT (~(mask << pos)
3008 & GET_MODE_MASK (mode))),
3009 GEN_INT (src << pos)));
3010
3011 SUBST (SET_DEST (x), dest);
3012
3013 split = find_split_point (&SET_SRC (x), insn);
3014 if (split && split != &SET_SRC (x))
3015 return split;
3016 }
3017
3018 /* Otherwise, see if this is an operation that we can split into two.
3019 If so, try to split that. */
3020 code = GET_CODE (SET_SRC (x));
3021
3022 switch (code)
3023 {
3024 case AND:
3025 /* If we are AND'ing with a large constant that is only a single
3026 bit and the result is only being used in a context where we
3027 need to know if it is zero or non-zero, replace it with a bit
3028 extraction. This will avoid the large constant, which might
3029 have taken more than one insn to make. If the constant were
3030 not a valid argument to the AND but took only one insn to make,
3031 this is no worse, but if it took more than one insn, it will
3032 be better. */
3033
3034 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3035 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
3036 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3037 && GET_CODE (SET_DEST (x)) == REG
3038 && (split = find_single_use (SET_DEST (x), insn, (rtx*)0)) != 0
3039 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3040 && XEXP (*split, 0) == SET_DEST (x)
3041 && XEXP (*split, 1) == const0_rtx)
3042 {
3043 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3044 XEXP (SET_SRC (x), 0),
3045 pos, NULL_RTX, 1, 1, 0, 0);
3046 if (extraction != 0)
3047 {
3048 SUBST (SET_SRC (x), extraction);
3049 return find_split_point (loc, insn);
3050 }
3051 }
3052 break;
3053
3054 case NE:
3055 /* if STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3056 is known to be on, this can be converted into a NEG of a shift. */
3057 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3058 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3059 && 1 <= (pos = exact_log2
3060 (nonzero_bits (XEXP (SET_SRC (x), 0),
3061 GET_MODE (XEXP (SET_SRC (x), 0))))))
3062 {
3063 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3064
3065 SUBST (SET_SRC (x),
3066 gen_rtx_NEG (mode,
3067 gen_rtx_LSHIFTRT (mode,
3068 XEXP (SET_SRC (x), 0),
3069 GEN_INT (pos))));
3070
3071 split = find_split_point (&SET_SRC (x), insn);
3072 if (split && split != &SET_SRC (x))
3073 return split;
3074 }
3075 break;
3076
3077 case SIGN_EXTEND:
3078 inner = XEXP (SET_SRC (x), 0);
3079
3080 /* We can't optimize if either mode is a partial integer
3081 mode as we don't know how many bits are significant
3082 in those modes. */
3083 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3084 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3085 break;
3086
3087 pos = 0;
3088 len = GET_MODE_BITSIZE (GET_MODE (inner));
3089 unsignedp = 0;
3090 break;
3091
3092 case SIGN_EXTRACT:
3093 case ZERO_EXTRACT:
3094 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3095 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3096 {
3097 inner = XEXP (SET_SRC (x), 0);
3098 len = INTVAL (XEXP (SET_SRC (x), 1));
3099 pos = INTVAL (XEXP (SET_SRC (x), 2));
3100
3101 if (BITS_BIG_ENDIAN)
3102 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3103 unsignedp = (code == ZERO_EXTRACT);
3104 }
3105 break;
3106
3107 default:
3108 break;
3109 }
3110
3111 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3112 {
3113 enum machine_mode mode = GET_MODE (SET_SRC (x));
3114
3115 /* For unsigned, we have a choice of a shift followed by an
3116 AND or two shifts. Use two shifts for field sizes where the
3117 constant might be too large. We assume here that we can
3118 always at least get 8-bit constants in an AND insn, which is
3119 true for every current RISC. */
3120
3121 if (unsignedp && len <= 8)
3122 {
3123 SUBST (SET_SRC (x),
3124 gen_rtx_AND (mode,
3125 gen_rtx_LSHIFTRT
3126 (mode, gen_lowpart_for_combine (mode, inner),
3127 GEN_INT (pos)),
3128 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3129
3130 split = find_split_point (&SET_SRC (x), insn);
3131 if (split && split != &SET_SRC (x))
3132 return split;
3133 }
3134 else
3135 {
3136 SUBST (SET_SRC (x),
3137 gen_rtx_fmt_ee
3138 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3139 gen_rtx_ASHIFT (mode,
3140 gen_lowpart_for_combine (mode, inner),
3141 GEN_INT (GET_MODE_BITSIZE (mode)
3142 - len - pos)),
3143 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3144
3145 split = find_split_point (&SET_SRC (x), insn);
3146 if (split && split != &SET_SRC (x))
3147 return split;
3148 }
3149 }
3150
3151 /* See if this is a simple operation with a constant as the second
3152 operand. It might be that this constant is out of range and hence
3153 could be used as a split point. */
3154 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
3155 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
3156 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<')
3157 && CONSTANT_P (XEXP (SET_SRC (x), 1))
3158 && (GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (x), 0))) == 'o'
3159 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3160 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (SET_SRC (x), 0))))
3161 == 'o'))))
3162 return &XEXP (SET_SRC (x), 1);
3163
3164 /* Finally, see if this is a simple operation with its first operand
3165 not in a register. The operation might require this operand in a
3166 register, so return it as a split point. We can always do this
3167 because if the first operand were another operation, we would have
3168 already found it as a split point. */
3169 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
3170 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
3171 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<'
3172 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '1')
3173 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3174 return &XEXP (SET_SRC (x), 0);
3175
3176 return 0;
3177
3178 case AND:
3179 case IOR:
3180 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3181 it is better to write this as (not (ior A B)) so we can split it.
3182 Similarly for IOR. */
3183 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3184 {
3185 SUBST (*loc,
3186 gen_rtx_NOT (GET_MODE (x),
3187 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3188 GET_MODE (x),
3189 XEXP (XEXP (x, 0), 0),
3190 XEXP (XEXP (x, 1), 0))));
3191 return find_split_point (loc, insn);
3192 }
3193
3194 /* Many RISC machines have a large set of logical insns. If the
3195 second operand is a NOT, put it first so we will try to split the
3196 other operand first. */
3197 if (GET_CODE (XEXP (x, 1)) == NOT)
3198 {
3199 rtx tem = XEXP (x, 0);
3200 SUBST (XEXP (x, 0), XEXP (x, 1));
3201 SUBST (XEXP (x, 1), tem);
3202 }
3203 break;
3204
3205 default:
3206 break;
3207 }
3208
3209 /* Otherwise, select our actions depending on our rtx class. */
3210 switch (GET_RTX_CLASS (code))
3211 {
3212 case 'b': /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3213 case '3':
3214 split = find_split_point (&XEXP (x, 2), insn);
3215 if (split)
3216 return split;
3217 /* ... fall through ... */
3218 case '2':
3219 case 'c':
3220 case '<':
3221 split = find_split_point (&XEXP (x, 1), insn);
3222 if (split)
3223 return split;
3224 /* ... fall through ... */
3225 case '1':
3226 /* Some machines have (and (shift ...) ...) insns. If X is not
3227 an AND, but XEXP (X, 0) is, use it as our split point. */
3228 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3229 return &XEXP (x, 0);
3230
3231 split = find_split_point (&XEXP (x, 0), insn);
3232 if (split)
3233 return split;
3234 return loc;
3235 }
3236
3237 /* Otherwise, we don't have a split point. */
3238 return 0;
3239 }
3240 \f
3241 /* Throughout X, replace FROM with TO, and return the result.
3242 The result is TO if X is FROM;
3243 otherwise the result is X, but its contents may have been modified.
3244 If they were modified, a record was made in undobuf so that
3245 undo_all will (among other things) return X to its original state.
3246
3247 If the number of changes necessary is too much to record to undo,
3248 the excess changes are not made, so the result is invalid.
3249 The changes already made can still be undone.
3250 undobuf.num_undo is incremented for such changes, so by testing that
3251 the caller can tell whether the result is valid.
3252
3253 `n_occurrences' is incremented each time FROM is replaced.
3254
3255 IN_DEST is non-zero if we are processing the SET_DEST of a SET.
3256
3257 UNIQUE_COPY is non-zero if each substitution must be unique. We do this
3258 by copying if `n_occurrences' is non-zero. */
3259
3260 static rtx
3261 subst (x, from, to, in_dest, unique_copy)
3262 register rtx x, from, to;
3263 int in_dest;
3264 int unique_copy;
3265 {
3266 register enum rtx_code code = GET_CODE (x);
3267 enum machine_mode op0_mode = VOIDmode;
3268 register const char *fmt;
3269 register int len, i;
3270 rtx new;
3271
3272 /* Two expressions are equal if they are identical copies of a shared
3273 RTX or if they are both registers with the same register number
3274 and mode. */
3275
3276 #define COMBINE_RTX_EQUAL_P(X,Y) \
3277 ((X) == (Y) \
3278 || (GET_CODE (X) == REG && GET_CODE (Y) == REG \
3279 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3280
3281 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3282 {
3283 n_occurrences++;
3284 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3285 }
3286
3287 /* If X and FROM are the same register but different modes, they will
3288 not have been seen as equal above. However, flow.c will make a
3289 LOG_LINKS entry for that case. If we do nothing, we will try to
3290 rerecognize our original insn and, when it succeeds, we will
3291 delete the feeding insn, which is incorrect.
3292
3293 So force this insn not to match in this (rare) case. */
3294 if (! in_dest && code == REG && GET_CODE (from) == REG
3295 && REGNO (x) == REGNO (from))
3296 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3297
3298 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3299 of which may contain things that can be combined. */
3300 if (code != MEM && code != LO_SUM && GET_RTX_CLASS (code) == 'o')
3301 return x;
3302
3303 /* It is possible to have a subexpression appear twice in the insn.
3304 Suppose that FROM is a register that appears within TO.
3305 Then, after that subexpression has been scanned once by `subst',
3306 the second time it is scanned, TO may be found. If we were
3307 to scan TO here, we would find FROM within it and create a
3308 self-referent rtl structure which is completely wrong. */
3309 if (COMBINE_RTX_EQUAL_P (x, to))
3310 return to;
3311
3312 /* Parallel asm_operands need special attention because all of the
3313 inputs are shared across the arms. Furthermore, unsharing the
3314 rtl results in recognition failures. Failure to handle this case
3315 specially can result in circular rtl.
3316
3317 Solve this by doing a normal pass across the first entry of the
3318 parallel, and only processing the SET_DESTs of the subsequent
3319 entries. Ug. */
3320
3321 if (code == PARALLEL
3322 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3323 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3324 {
3325 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3326
3327 /* If this substitution failed, this whole thing fails. */
3328 if (GET_CODE (new) == CLOBBER
3329 && XEXP (new, 0) == const0_rtx)
3330 return new;
3331
3332 SUBST (XVECEXP (x, 0, 0), new);
3333
3334 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3335 {
3336 rtx dest = SET_DEST (XVECEXP (x, 0, i));
3337
3338 if (GET_CODE (dest) != REG
3339 && GET_CODE (dest) != CC0
3340 && GET_CODE (dest) != PC)
3341 {
3342 new = subst (dest, from, to, 0, unique_copy);
3343
3344 /* If this substitution failed, this whole thing fails. */
3345 if (GET_CODE (new) == CLOBBER
3346 && XEXP (new, 0) == const0_rtx)
3347 return new;
3348
3349 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3350 }
3351 }
3352 }
3353 else
3354 {
3355 len = GET_RTX_LENGTH (code);
3356 fmt = GET_RTX_FORMAT (code);
3357
3358 /* We don't need to process a SET_DEST that is a register, CC0,
3359 or PC, so set up to skip this common case. All other cases
3360 where we want to suppress replacing something inside a
3361 SET_SRC are handled via the IN_DEST operand. */
3362 if (code == SET
3363 && (GET_CODE (SET_DEST (x)) == REG
3364 || GET_CODE (SET_DEST (x)) == CC0
3365 || GET_CODE (SET_DEST (x)) == PC))
3366 fmt = "ie";
3367
3368 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3369 constant. */
3370 if (fmt[0] == 'e')
3371 op0_mode = GET_MODE (XEXP (x, 0));
3372
3373 for (i = 0; i < len; i++)
3374 {
3375 if (fmt[i] == 'E')
3376 {
3377 register int j;
3378 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3379 {
3380 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3381 {
3382 new = (unique_copy && n_occurrences
3383 ? copy_rtx (to) : to);
3384 n_occurrences++;
3385 }
3386 else
3387 {
3388 new = subst (XVECEXP (x, i, j), from, to, 0,
3389 unique_copy);
3390
3391 /* If this substitution failed, this whole thing
3392 fails. */
3393 if (GET_CODE (new) == CLOBBER
3394 && XEXP (new, 0) == const0_rtx)
3395 return new;
3396 }
3397
3398 SUBST (XVECEXP (x, i, j), new);
3399 }
3400 }
3401 else if (fmt[i] == 'e')
3402 {
3403 /* If this is a register being set, ignore it. */
3404 new = XEXP (x, i);
3405 if (in_dest
3406 && (code == SUBREG || code == STRICT_LOW_PART
3407 || code == ZERO_EXTRACT)
3408 && i == 0
3409 && GET_CODE (new) == REG)
3410 ;
3411
3412 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
3413 {
3414 /* In general, don't install a subreg involving two
3415 modes not tieable. It can worsen register
3416 allocation, and can even make invalid reload
3417 insns, since the reg inside may need to be copied
3418 from in the outside mode, and that may be invalid
3419 if it is an fp reg copied in integer mode.
3420
3421 We allow two exceptions to this: It is valid if
3422 it is inside another SUBREG and the mode of that
3423 SUBREG and the mode of the inside of TO is
3424 tieable and it is valid if X is a SET that copies
3425 FROM to CC0. */
3426
3427 if (GET_CODE (to) == SUBREG
3428 && ! MODES_TIEABLE_P (GET_MODE (to),
3429 GET_MODE (SUBREG_REG (to)))
3430 && ! (code == SUBREG
3431 && MODES_TIEABLE_P (GET_MODE (x),
3432 GET_MODE (SUBREG_REG (to))))
3433 #ifdef HAVE_cc0
3434 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
3435 #endif
3436 )
3437 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3438
3439 #ifdef CLASS_CANNOT_CHANGE_MODE
3440 if (code == SUBREG
3441 && GET_CODE (to) == REG
3442 && REGNO (to) < FIRST_PSEUDO_REGISTER
3443 && (TEST_HARD_REG_BIT
3444 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
3445 REGNO (to)))
3446 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (to),
3447 GET_MODE (x)))
3448 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3449 #endif
3450
3451 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3452 n_occurrences++;
3453 }
3454 else
3455 /* If we are in a SET_DEST, suppress most cases unless we
3456 have gone inside a MEM, in which case we want to
3457 simplify the address. We assume here that things that
3458 are actually part of the destination have their inner
3459 parts in the first expression. This is true for SUBREG,
3460 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3461 things aside from REG and MEM that should appear in a
3462 SET_DEST. */
3463 new = subst (XEXP (x, i), from, to,
3464 (((in_dest
3465 && (code == SUBREG || code == STRICT_LOW_PART
3466 || code == ZERO_EXTRACT))
3467 || code == SET)
3468 && i == 0), unique_copy);
3469
3470 /* If we found that we will have to reject this combination,
3471 indicate that by returning the CLOBBER ourselves, rather than
3472 an expression containing it. This will speed things up as
3473 well as prevent accidents where two CLOBBERs are considered
3474 to be equal, thus producing an incorrect simplification. */
3475
3476 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3477 return new;
3478
3479 SUBST (XEXP (x, i), new);
3480 }
3481 }
3482 }
3483
3484 /* Try to simplify X. If the simplification changed the code, it is likely
3485 that further simplification will help, so loop, but limit the number
3486 of repetitions that will be performed. */
3487
3488 for (i = 0; i < 4; i++)
3489 {
3490 /* If X is sufficiently simple, don't bother trying to do anything
3491 with it. */
3492 if (code != CONST_INT && code != REG && code != CLOBBER)
3493 x = combine_simplify_rtx (x, op0_mode, i == 3, in_dest);
3494
3495 if (GET_CODE (x) == code)
3496 break;
3497
3498 code = GET_CODE (x);
3499
3500 /* We no longer know the original mode of operand 0 since we
3501 have changed the form of X) */
3502 op0_mode = VOIDmode;
3503 }
3504
3505 return x;
3506 }
3507 \f
3508 /* Simplify X, a piece of RTL. We just operate on the expression at the
3509 outer level; call `subst' to simplify recursively. Return the new
3510 expression.
3511
3512 OP0_MODE is the original mode of XEXP (x, 0); LAST is nonzero if this
3513 will be the iteration even if an expression with a code different from
3514 X is returned; IN_DEST is nonzero if we are inside a SET_DEST. */
3515
3516 static rtx
3517 combine_simplify_rtx (x, op0_mode, last, in_dest)
3518 rtx x;
3519 enum machine_mode op0_mode;
3520 int last;
3521 int in_dest;
3522 {
3523 enum rtx_code code = GET_CODE (x);
3524 enum machine_mode mode = GET_MODE (x);
3525 rtx temp;
3526 rtx reversed;
3527 int i;
3528
3529 /* If this is a commutative operation, put a constant last and a complex
3530 expression first. We don't need to do this for comparisons here. */
3531 if (GET_RTX_CLASS (code) == 'c'
3532 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
3533 {
3534 temp = XEXP (x, 0);
3535 SUBST (XEXP (x, 0), XEXP (x, 1));
3536 SUBST (XEXP (x, 1), temp);
3537 }
3538
3539 /* If this is a PLUS, MINUS, or MULT, and the first operand is the
3540 sign extension of a PLUS with a constant, reverse the order of the sign
3541 extension and the addition. Note that this not the same as the original
3542 code, but overflow is undefined for signed values. Also note that the
3543 PLUS will have been partially moved "inside" the sign-extension, so that
3544 the first operand of X will really look like:
3545 (ashiftrt (plus (ashift A C4) C5) C4).
3546 We convert this to
3547 (plus (ashiftrt (ashift A C4) C2) C4)
3548 and replace the first operand of X with that expression. Later parts
3549 of this function may simplify the expression further.
3550
3551 For example, if we start with (mult (sign_extend (plus A C1)) C2),
3552 we swap the SIGN_EXTEND and PLUS. Later code will apply the
3553 distributive law to produce (plus (mult (sign_extend X) C1) C3).
3554
3555 We do this to simplify address expressions. */
3556
3557 if ((code == PLUS || code == MINUS || code == MULT)
3558 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3559 && GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
3560 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ASHIFT
3561 && GET_CODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1)) == CONST_INT
3562 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3563 && XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1) == XEXP (XEXP (x, 0), 1)
3564 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
3565 && (temp = simplify_binary_operation (ASHIFTRT, mode,
3566 XEXP (XEXP (XEXP (x, 0), 0), 1),
3567 XEXP (XEXP (x, 0), 1))) != 0)
3568 {
3569 rtx new
3570 = simplify_shift_const (NULL_RTX, ASHIFT, mode,
3571 XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0),
3572 INTVAL (XEXP (XEXP (x, 0), 1)));
3573
3574 new = simplify_shift_const (NULL_RTX, ASHIFTRT, mode, new,
3575 INTVAL (XEXP (XEXP (x, 0), 1)));
3576
3577 SUBST (XEXP (x, 0), gen_binary (PLUS, mode, new, temp));
3578 }
3579
3580 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3581 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3582 things. Check for cases where both arms are testing the same
3583 condition.
3584
3585 Don't do anything if all operands are very simple. */
3586
3587 if (((GET_RTX_CLASS (code) == '2' || GET_RTX_CLASS (code) == 'c'
3588 || GET_RTX_CLASS (code) == '<')
3589 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3590 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3591 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3592 == 'o')))
3593 || (GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o'
3594 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3595 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 1))))
3596 == 'o')))))
3597 || (GET_RTX_CLASS (code) == '1'
3598 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3599 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3600 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3601 == 'o'))))))
3602 {
3603 rtx cond, true_rtx, false_rtx;
3604
3605 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
3606 if (cond != 0
3607 /* If everything is a comparison, what we have is highly unlikely
3608 to be simpler, so don't use it. */
3609 && ! (GET_RTX_CLASS (code) == '<'
3610 && (GET_RTX_CLASS (GET_CODE (true_rtx)) == '<'
3611 || GET_RTX_CLASS (GET_CODE (false_rtx)) == '<')))
3612 {
3613 rtx cop1 = const0_rtx;
3614 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3615
3616 if (cond_code == NE && GET_RTX_CLASS (GET_CODE (cond)) == '<')
3617 return x;
3618
3619 /* Simplify the alternative arms; this may collapse the true and
3620 false arms to store-flag values. */
3621 true_rtx = subst (true_rtx, pc_rtx, pc_rtx, 0, 0);
3622 false_rtx = subst (false_rtx, pc_rtx, pc_rtx, 0, 0);
3623
3624 /* If true_rtx and false_rtx are not general_operands, an if_then_else
3625 is unlikely to be simpler. */
3626 if (general_operand (true_rtx, VOIDmode)
3627 && general_operand (false_rtx, VOIDmode))
3628 {
3629 /* Restarting if we generate a store-flag expression will cause
3630 us to loop. Just drop through in this case. */
3631
3632 /* If the result values are STORE_FLAG_VALUE and zero, we can
3633 just make the comparison operation. */
3634 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
3635 x = gen_binary (cond_code, mode, cond, cop1);
3636 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx)
3637 x = gen_binary (reverse_condition (cond_code),
3638 mode, cond, cop1);
3639
3640 /* Likewise, we can make the negate of a comparison operation
3641 if the result values are - STORE_FLAG_VALUE and zero. */
3642 else if (GET_CODE (true_rtx) == CONST_INT
3643 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
3644 && false_rtx == const0_rtx)
3645 x = simplify_gen_unary (NEG, mode,
3646 gen_binary (cond_code, mode, cond,
3647 cop1),
3648 mode);
3649 else if (GET_CODE (false_rtx) == CONST_INT
3650 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
3651 && true_rtx == const0_rtx)
3652 x = simplify_gen_unary (NEG, mode,
3653 gen_binary (reverse_condition
3654 (cond_code),
3655 mode, cond, cop1),
3656 mode);
3657 else
3658 return gen_rtx_IF_THEN_ELSE (mode,
3659 gen_binary (cond_code, VOIDmode,
3660 cond, cop1),
3661 true_rtx, false_rtx);
3662
3663 code = GET_CODE (x);
3664 op0_mode = VOIDmode;
3665 }
3666 }
3667 }
3668
3669 /* Try to fold this expression in case we have constants that weren't
3670 present before. */
3671 temp = 0;
3672 switch (GET_RTX_CLASS (code))
3673 {
3674 case '1':
3675 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
3676 break;
3677 case '<':
3678 {
3679 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
3680 if (cmp_mode == VOIDmode)
3681 {
3682 cmp_mode = GET_MODE (XEXP (x, 1));
3683 if (cmp_mode == VOIDmode)
3684 cmp_mode = op0_mode;
3685 }
3686 temp = simplify_relational_operation (code, cmp_mode,
3687 XEXP (x, 0), XEXP (x, 1));
3688 }
3689 #ifdef FLOAT_STORE_FLAG_VALUE
3690 if (temp != 0 && GET_MODE_CLASS (mode) == MODE_FLOAT)
3691 {
3692 if (temp == const0_rtx)
3693 temp = CONST0_RTX (mode);
3694 else
3695 temp = immed_real_const_1 (FLOAT_STORE_FLAG_VALUE (mode), mode);
3696 }
3697 #endif
3698 break;
3699 case 'c':
3700 case '2':
3701 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
3702 break;
3703 case 'b':
3704 case '3':
3705 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
3706 XEXP (x, 1), XEXP (x, 2));
3707 break;
3708 }
3709
3710 if (temp)
3711 {
3712 x = temp;
3713 code = GET_CODE (temp);
3714 op0_mode = VOIDmode;
3715 mode = GET_MODE (temp);
3716 }
3717
3718 /* First see if we can apply the inverse distributive law. */
3719 if (code == PLUS || code == MINUS
3720 || code == AND || code == IOR || code == XOR)
3721 {
3722 x = apply_distributive_law (x);
3723 code = GET_CODE (x);
3724 op0_mode = VOIDmode;
3725 }
3726
3727 /* If CODE is an associative operation not otherwise handled, see if we
3728 can associate some operands. This can win if they are constants or
3729 if they are logically related (i.e. (a & b) & a). */
3730 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
3731 || code == AND || code == IOR || code == XOR
3732 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
3733 && ((INTEGRAL_MODE_P (mode) && code != DIV)
3734 || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
3735 {
3736 if (GET_CODE (XEXP (x, 0)) == code)
3737 {
3738 rtx other = XEXP (XEXP (x, 0), 0);
3739 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
3740 rtx inner_op1 = XEXP (x, 1);
3741 rtx inner;
3742
3743 /* Make sure we pass the constant operand if any as the second
3744 one if this is a commutative operation. */
3745 if (CONSTANT_P (inner_op0) && GET_RTX_CLASS (code) == 'c')
3746 {
3747 rtx tem = inner_op0;
3748 inner_op0 = inner_op1;
3749 inner_op1 = tem;
3750 }
3751 inner = simplify_binary_operation (code == MINUS ? PLUS
3752 : code == DIV ? MULT
3753 : code,
3754 mode, inner_op0, inner_op1);
3755
3756 /* For commutative operations, try the other pair if that one
3757 didn't simplify. */
3758 if (inner == 0 && GET_RTX_CLASS (code) == 'c')
3759 {
3760 other = XEXP (XEXP (x, 0), 1);
3761 inner = simplify_binary_operation (code, mode,
3762 XEXP (XEXP (x, 0), 0),
3763 XEXP (x, 1));
3764 }
3765
3766 if (inner)
3767 return gen_binary (code, mode, other, inner);
3768 }
3769 }
3770
3771 /* A little bit of algebraic simplification here. */
3772 switch (code)
3773 {
3774 case MEM:
3775 /* Ensure that our address has any ASHIFTs converted to MULT in case
3776 address-recognizing predicates are called later. */
3777 temp = make_compound_operation (XEXP (x, 0), MEM);
3778 SUBST (XEXP (x, 0), temp);
3779 break;
3780
3781 case SUBREG:
3782 if (op0_mode == VOIDmode)
3783 op0_mode = GET_MODE (SUBREG_REG (x));
3784
3785 /* simplify_subreg can't use gen_lowpart_for_combine. */
3786 if (CONSTANT_P (SUBREG_REG (x))
3787 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x))
3788 return gen_lowpart_for_combine (mode, SUBREG_REG (x));
3789
3790 {
3791 rtx temp;
3792 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
3793 SUBREG_BYTE (x));
3794 if (temp)
3795 return temp;
3796 }
3797
3798 /* Note that we cannot do any narrowing for non-constants since
3799 we might have been counting on using the fact that some bits were
3800 zero. We now do this in the SET. */
3801
3802 break;
3803
3804 case NOT:
3805 /* (not (plus X -1)) can become (neg X). */
3806 if (GET_CODE (XEXP (x, 0)) == PLUS
3807 && XEXP (XEXP (x, 0), 1) == constm1_rtx)
3808 return gen_rtx_NEG (mode, XEXP (XEXP (x, 0), 0));
3809
3810 /* Similarly, (not (neg X)) is (plus X -1). */
3811 if (GET_CODE (XEXP (x, 0)) == NEG)
3812 return gen_rtx_PLUS (mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
3813
3814 /* (not (xor X C)) for C constant is (xor X D) with D = ~C. */
3815 if (GET_CODE (XEXP (x, 0)) == XOR
3816 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3817 && (temp = simplify_unary_operation (NOT, mode,
3818 XEXP (XEXP (x, 0), 1),
3819 mode)) != 0)
3820 return gen_binary (XOR, mode, XEXP (XEXP (x, 0), 0), temp);
3821
3822 /* (not (ashift 1 X)) is (rotate ~1 X). We used to do this for operands
3823 other than 1, but that is not valid. We could do a similar
3824 simplification for (not (lshiftrt C X)) where C is just the sign bit,
3825 but this doesn't seem common enough to bother with. */
3826 if (GET_CODE (XEXP (x, 0)) == ASHIFT
3827 && XEXP (XEXP (x, 0), 0) == const1_rtx)
3828 return gen_rtx_ROTATE (mode, simplify_gen_unary (NOT, mode,
3829 const1_rtx, mode),
3830 XEXP (XEXP (x, 0), 1));
3831
3832 if (GET_CODE (XEXP (x, 0)) == SUBREG
3833 && subreg_lowpart_p (XEXP (x, 0))
3834 && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
3835 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
3836 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
3837 && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
3838 {
3839 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
3840
3841 x = gen_rtx_ROTATE (inner_mode,
3842 simplify_gen_unary (NOT, inner_mode, const1_rtx,
3843 inner_mode),
3844 XEXP (SUBREG_REG (XEXP (x, 0)), 1));
3845 return gen_lowpart_for_combine (mode, x);
3846 }
3847
3848 /* If STORE_FLAG_VALUE is -1, (not (comparison foo bar)) can be done by
3849 reversing the comparison code if valid. */
3850 if (STORE_FLAG_VALUE == -1
3851 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
3852 && (reversed = reversed_comparison (x, mode, XEXP (XEXP (x, 0), 0),
3853 XEXP (XEXP (x, 0), 1))))
3854 return reversed;
3855
3856 /* (ashiftrt foo C) where C is the number of bits in FOO minus 1
3857 is (lt foo (const_int 0)) if STORE_FLAG_VALUE is -1, so we can
3858 perform the above simplification. */
3859
3860 if (STORE_FLAG_VALUE == -1
3861 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3862 && XEXP (x, 1) == const1_rtx
3863 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3864 && INTVAL (XEXP (XEXP (x, 0), 1)) == GET_MODE_BITSIZE (mode) - 1)
3865 return gen_rtx_GE (mode, XEXP (XEXP (x, 0), 0), const0_rtx);
3866
3867 /* Apply De Morgan's laws to reduce number of patterns for machines
3868 with negating logical insns (and-not, nand, etc.). If result has
3869 only one NOT, put it first, since that is how the patterns are
3870 coded. */
3871
3872 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
3873 {
3874 rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
3875 enum machine_mode op_mode;
3876
3877 op_mode = GET_MODE (in1);
3878 in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
3879
3880 op_mode = GET_MODE (in2);
3881 if (op_mode == VOIDmode)
3882 op_mode = mode;
3883 in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
3884
3885 if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
3886 {
3887 rtx tem = in2;
3888 in2 = in1; in1 = tem;
3889 }
3890
3891 return gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
3892 mode, in1, in2);
3893 }
3894 break;
3895
3896 case NEG:
3897 /* (neg (plus X 1)) can become (not X). */
3898 if (GET_CODE (XEXP (x, 0)) == PLUS
3899 && XEXP (XEXP (x, 0), 1) == const1_rtx)
3900 return gen_rtx_NOT (mode, XEXP (XEXP (x, 0), 0));
3901
3902 /* Similarly, (neg (not X)) is (plus X 1). */
3903 if (GET_CODE (XEXP (x, 0)) == NOT)
3904 return plus_constant (XEXP (XEXP (x, 0), 0), 1);
3905
3906 /* (neg (minus X Y)) can become (minus Y X). */
3907 if (GET_CODE (XEXP (x, 0)) == MINUS
3908 && (! FLOAT_MODE_P (mode)
3909 /* x-y != -(y-x) with IEEE floating point. */
3910 || TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
3911 || flag_unsafe_math_optimizations))
3912 return gen_binary (MINUS, mode, XEXP (XEXP (x, 0), 1),
3913 XEXP (XEXP (x, 0), 0));
3914
3915 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
3916 if (GET_CODE (XEXP (x, 0)) == XOR && XEXP (XEXP (x, 0), 1) == const1_rtx
3917 && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
3918 return gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
3919
3920 /* NEG commutes with ASHIFT since it is multiplication. Only do this
3921 if we can then eliminate the NEG (e.g.,
3922 if the operand is a constant). */
3923
3924 if (GET_CODE (XEXP (x, 0)) == ASHIFT)
3925 {
3926 temp = simplify_unary_operation (NEG, mode,
3927 XEXP (XEXP (x, 0), 0), mode);
3928 if (temp)
3929 return gen_binary (ASHIFT, mode, temp, XEXP (XEXP (x, 0), 1));
3930 }
3931
3932 temp = expand_compound_operation (XEXP (x, 0));
3933
3934 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
3935 replaced by (lshiftrt X C). This will convert
3936 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
3937
3938 if (GET_CODE (temp) == ASHIFTRT
3939 && GET_CODE (XEXP (temp, 1)) == CONST_INT
3940 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
3941 return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
3942 INTVAL (XEXP (temp, 1)));
3943
3944 /* If X has only a single bit that might be nonzero, say, bit I, convert
3945 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
3946 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
3947 (sign_extract X 1 Y). But only do this if TEMP isn't a register
3948 or a SUBREG of one since we'd be making the expression more
3949 complex if it was just a register. */
3950
3951 if (GET_CODE (temp) != REG
3952 && ! (GET_CODE (temp) == SUBREG
3953 && GET_CODE (SUBREG_REG (temp)) == REG)
3954 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
3955 {
3956 rtx temp1 = simplify_shift_const
3957 (NULL_RTX, ASHIFTRT, mode,
3958 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
3959 GET_MODE_BITSIZE (mode) - 1 - i),
3960 GET_MODE_BITSIZE (mode) - 1 - i);
3961
3962 /* If all we did was surround TEMP with the two shifts, we
3963 haven't improved anything, so don't use it. Otherwise,
3964 we are better off with TEMP1. */
3965 if (GET_CODE (temp1) != ASHIFTRT
3966 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
3967 || XEXP (XEXP (temp1, 0), 0) != temp)
3968 return temp1;
3969 }
3970 break;
3971
3972 case TRUNCATE:
3973 /* We can't handle truncation to a partial integer mode here
3974 because we don't know the real bitsize of the partial
3975 integer mode. */
3976 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
3977 break;
3978
3979 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
3980 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
3981 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
3982 SUBST (XEXP (x, 0),
3983 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
3984 GET_MODE_MASK (mode), NULL_RTX, 0));
3985
3986 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
3987 if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
3988 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
3989 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
3990 return XEXP (XEXP (x, 0), 0);
3991
3992 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
3993 (OP:SI foo:SI) if OP is NEG or ABS. */
3994 if ((GET_CODE (XEXP (x, 0)) == ABS
3995 || GET_CODE (XEXP (x, 0)) == NEG)
3996 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
3997 || GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND)
3998 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
3999 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4000 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4001
4002 /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
4003 (truncate:SI x). */
4004 if (GET_CODE (XEXP (x, 0)) == SUBREG
4005 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == TRUNCATE
4006 && subreg_lowpart_p (XEXP (x, 0)))
4007 return SUBREG_REG (XEXP (x, 0));
4008
4009 /* If we know that the value is already truncated, we can
4010 replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
4011 is nonzero for the corresponding modes. But don't do this
4012 for an (LSHIFTRT (MULT ...)) since this will cause problems
4013 with the umulXi3_highpart patterns. */
4014 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4015 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
4016 && num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4017 >= GET_MODE_BITSIZE (mode) + 1
4018 && ! (GET_CODE (XEXP (x, 0)) == LSHIFTRT
4019 && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT))
4020 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4021
4022 /* A truncate of a comparison can be replaced with a subreg if
4023 STORE_FLAG_VALUE permits. This is like the previous test,
4024 but it works even if the comparison is done in a mode larger
4025 than HOST_BITS_PER_WIDE_INT. */
4026 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4027 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
4028 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
4029 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4030
4031 /* Similarly, a truncate of a register whose value is a
4032 comparison can be replaced with a subreg if STORE_FLAG_VALUE
4033 permits. */
4034 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4035 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4036 && (temp = get_last_value (XEXP (x, 0)))
4037 && GET_RTX_CLASS (GET_CODE (temp)) == '<')
4038 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4039
4040 break;
4041
4042 case FLOAT_TRUNCATE:
4043 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
4044 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4045 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4046 return XEXP (XEXP (x, 0), 0);
4047
4048 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
4049 (OP:SF foo:SF) if OP is NEG or ABS. */
4050 if ((GET_CODE (XEXP (x, 0)) == ABS
4051 || GET_CODE (XEXP (x, 0)) == NEG)
4052 && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
4053 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4054 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4055 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4056
4057 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
4058 is (float_truncate:SF x). */
4059 if (GET_CODE (XEXP (x, 0)) == SUBREG
4060 && subreg_lowpart_p (XEXP (x, 0))
4061 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
4062 return SUBREG_REG (XEXP (x, 0));
4063 break;
4064
4065 #ifdef HAVE_cc0
4066 case COMPARE:
4067 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4068 using cc0, in which case we want to leave it as a COMPARE
4069 so we can distinguish it from a register-register-copy. */
4070 if (XEXP (x, 1) == const0_rtx)
4071 return XEXP (x, 0);
4072
4073 /* In IEEE floating point, x-0 is not the same as x. */
4074 if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
4075 || ! FLOAT_MODE_P (GET_MODE (XEXP (x, 0)))
4076 || flag_unsafe_math_optimizations)
4077 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4078 return XEXP (x, 0);
4079 break;
4080 #endif
4081
4082 case CONST:
4083 /* (const (const X)) can become (const X). Do it this way rather than
4084 returning the inner CONST since CONST can be shared with a
4085 REG_EQUAL note. */
4086 if (GET_CODE (XEXP (x, 0)) == CONST)
4087 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4088 break;
4089
4090 #ifdef HAVE_lo_sum
4091 case LO_SUM:
4092 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4093 can add in an offset. find_split_point will split this address up
4094 again if it doesn't match. */
4095 if (GET_CODE (XEXP (x, 0)) == HIGH
4096 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4097 return XEXP (x, 1);
4098 break;
4099 #endif
4100
4101 case PLUS:
4102 /* If we have (plus (plus (A const) B)), associate it so that CONST is
4103 outermost. That's because that's the way indexed addresses are
4104 supposed to appear. This code used to check many more cases, but
4105 they are now checked elsewhere. */
4106 if (GET_CODE (XEXP (x, 0)) == PLUS
4107 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
4108 return gen_binary (PLUS, mode,
4109 gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
4110 XEXP (x, 1)),
4111 XEXP (XEXP (x, 0), 1));
4112
4113 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4114 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4115 bit-field and can be replaced by either a sign_extend or a
4116 sign_extract. The `and' may be a zero_extend and the two
4117 <c>, -<c> constants may be reversed. */
4118 if (GET_CODE (XEXP (x, 0)) == XOR
4119 && GET_CODE (XEXP (x, 1)) == CONST_INT
4120 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4121 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4122 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4123 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4124 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4125 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4126 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4127 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4128 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4129 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4130 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4131 == (unsigned int) i + 1))))
4132 return simplify_shift_const
4133 (NULL_RTX, ASHIFTRT, mode,
4134 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4135 XEXP (XEXP (XEXP (x, 0), 0), 0),
4136 GET_MODE_BITSIZE (mode) - (i + 1)),
4137 GET_MODE_BITSIZE (mode) - (i + 1));
4138
4139 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
4140 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
4141 is 1. This produces better code than the alternative immediately
4142 below. */
4143 if (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
4144 && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
4145 || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx))
4146 && (reversed = reversed_comparison (XEXP (x, 0), mode,
4147 XEXP (XEXP (x, 0), 0),
4148 XEXP (XEXP (x, 0), 1))))
4149 return
4150 simplify_gen_unary (NEG, mode, reversed, mode);
4151
4152 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4153 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4154 the bitsize of the mode - 1. This allows simplification of
4155 "a = (b & 8) == 0;" */
4156 if (XEXP (x, 1) == constm1_rtx
4157 && GET_CODE (XEXP (x, 0)) != REG
4158 && ! (GET_CODE (XEXP (x,0)) == SUBREG
4159 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == REG)
4160 && nonzero_bits (XEXP (x, 0), mode) == 1)
4161 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4162 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4163 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4164 GET_MODE_BITSIZE (mode) - 1),
4165 GET_MODE_BITSIZE (mode) - 1);
4166
4167 /* If we are adding two things that have no bits in common, convert
4168 the addition into an IOR. This will often be further simplified,
4169 for example in cases like ((a & 1) + (a & 2)), which can
4170 become a & 3. */
4171
4172 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4173 && (nonzero_bits (XEXP (x, 0), mode)
4174 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4175 {
4176 /* Try to simplify the expression further. */
4177 rtx tor = gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4178 temp = combine_simplify_rtx (tor, mode, last, in_dest);
4179
4180 /* If we could, great. If not, do not go ahead with the IOR
4181 replacement, since PLUS appears in many special purpose
4182 address arithmetic instructions. */
4183 if (GET_CODE (temp) != CLOBBER && temp != tor)
4184 return temp;
4185 }
4186 break;
4187
4188 case MINUS:
4189 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
4190 by reversing the comparison code if valid. */
4191 if (STORE_FLAG_VALUE == 1
4192 && XEXP (x, 0) == const1_rtx
4193 && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) == '<'
4194 && (reversed = reversed_comparison (XEXP (x, 1), mode,
4195 XEXP (XEXP (x, 1), 0),
4196 XEXP (XEXP (x, 1), 1))))
4197 return reversed;
4198
4199 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4200 (and <foo> (const_int pow2-1)) */
4201 if (GET_CODE (XEXP (x, 1)) == AND
4202 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4203 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4204 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4205 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4206 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4207
4208 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
4209 integers. */
4210 if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
4211 return gen_binary (MINUS, mode,
4212 gen_binary (MINUS, mode, XEXP (x, 0),
4213 XEXP (XEXP (x, 1), 0)),
4214 XEXP (XEXP (x, 1), 1));
4215 break;
4216
4217 case MULT:
4218 /* If we have (mult (plus A B) C), apply the distributive law and then
4219 the inverse distributive law to see if things simplify. This
4220 occurs mostly in addresses, often when unrolling loops. */
4221
4222 if (GET_CODE (XEXP (x, 0)) == PLUS)
4223 {
4224 x = apply_distributive_law
4225 (gen_binary (PLUS, mode,
4226 gen_binary (MULT, mode,
4227 XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
4228 gen_binary (MULT, mode,
4229 XEXP (XEXP (x, 0), 1),
4230 copy_rtx (XEXP (x, 1)))));
4231
4232 if (GET_CODE (x) != MULT)
4233 return x;
4234 }
4235 /* Try simplify a*(b/c) as (a*b)/c. */
4236 if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4237 && GET_CODE (XEXP (x, 0)) == DIV)
4238 {
4239 rtx tem = simplify_binary_operation (MULT, mode,
4240 XEXP (XEXP (x, 0), 0),
4241 XEXP (x, 1));
4242 if (tem)
4243 return gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4244 }
4245 break;
4246
4247 case UDIV:
4248 /* If this is a divide by a power of two, treat it as a shift if
4249 its first operand is a shift. */
4250 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4251 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4252 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4253 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4254 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4255 || GET_CODE (XEXP (x, 0)) == ROTATE
4256 || GET_CODE (XEXP (x, 0)) == ROTATERT))
4257 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4258 break;
4259
4260 case EQ: case NE:
4261 case GT: case GTU: case GE: case GEU:
4262 case LT: case LTU: case LE: case LEU:
4263 case UNEQ: case LTGT:
4264 case UNGT: case UNGE:
4265 case UNLT: case UNLE:
4266 case UNORDERED: case ORDERED:
4267 /* If the first operand is a condition code, we can't do anything
4268 with it. */
4269 if (GET_CODE (XEXP (x, 0)) == COMPARE
4270 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4271 #ifdef HAVE_cc0
4272 && XEXP (x, 0) != cc0_rtx
4273 #endif
4274 ))
4275 {
4276 rtx op0 = XEXP (x, 0);
4277 rtx op1 = XEXP (x, 1);
4278 enum rtx_code new_code;
4279
4280 if (GET_CODE (op0) == COMPARE)
4281 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4282
4283 /* Simplify our comparison, if possible. */
4284 new_code = simplify_comparison (code, &op0, &op1);
4285
4286 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4287 if only the low-order bit is possibly nonzero in X (such as when
4288 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4289 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4290 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4291 (plus X 1).
4292
4293 Remove any ZERO_EXTRACT we made when thinking this was a
4294 comparison. It may now be simpler to use, e.g., an AND. If a
4295 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4296 the call to make_compound_operation in the SET case. */
4297
4298 if (STORE_FLAG_VALUE == 1
4299 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4300 && op1 == const0_rtx
4301 && mode == GET_MODE (op0)
4302 && nonzero_bits (op0, mode) == 1)
4303 return gen_lowpart_for_combine (mode,
4304 expand_compound_operation (op0));
4305
4306 else if (STORE_FLAG_VALUE == 1
4307 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4308 && op1 == const0_rtx
4309 && mode == GET_MODE (op0)
4310 && (num_sign_bit_copies (op0, mode)
4311 == GET_MODE_BITSIZE (mode)))
4312 {
4313 op0 = expand_compound_operation (op0);
4314 return simplify_gen_unary (NEG, mode,
4315 gen_lowpart_for_combine (mode, op0),
4316 mode);
4317 }
4318
4319 else if (STORE_FLAG_VALUE == 1
4320 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4321 && op1 == const0_rtx
4322 && mode == GET_MODE (op0)
4323 && nonzero_bits (op0, mode) == 1)
4324 {
4325 op0 = expand_compound_operation (op0);
4326 return gen_binary (XOR, mode,
4327 gen_lowpart_for_combine (mode, op0),
4328 const1_rtx);
4329 }
4330
4331 else if (STORE_FLAG_VALUE == 1
4332 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4333 && op1 == const0_rtx
4334 && mode == GET_MODE (op0)
4335 && (num_sign_bit_copies (op0, mode)
4336 == GET_MODE_BITSIZE (mode)))
4337 {
4338 op0 = expand_compound_operation (op0);
4339 return plus_constant (gen_lowpart_for_combine (mode, op0), 1);
4340 }
4341
4342 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4343 those above. */
4344 if (STORE_FLAG_VALUE == -1
4345 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4346 && op1 == const0_rtx
4347 && (num_sign_bit_copies (op0, mode)
4348 == GET_MODE_BITSIZE (mode)))
4349 return gen_lowpart_for_combine (mode,
4350 expand_compound_operation (op0));
4351
4352 else if (STORE_FLAG_VALUE == -1
4353 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4354 && op1 == const0_rtx
4355 && mode == GET_MODE (op0)
4356 && nonzero_bits (op0, mode) == 1)
4357 {
4358 op0 = expand_compound_operation (op0);
4359 return simplify_gen_unary (NEG, mode,
4360 gen_lowpart_for_combine (mode, op0),
4361 mode);
4362 }
4363
4364 else if (STORE_FLAG_VALUE == -1
4365 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4366 && op1 == const0_rtx
4367 && mode == GET_MODE (op0)
4368 && (num_sign_bit_copies (op0, mode)
4369 == GET_MODE_BITSIZE (mode)))
4370 {
4371 op0 = expand_compound_operation (op0);
4372 return simplify_gen_unary (NOT, mode,
4373 gen_lowpart_for_combine (mode, op0),
4374 mode);
4375 }
4376
4377 /* If X is 0/1, (eq X 0) is X-1. */
4378 else if (STORE_FLAG_VALUE == -1
4379 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4380 && op1 == const0_rtx
4381 && mode == GET_MODE (op0)
4382 && nonzero_bits (op0, mode) == 1)
4383 {
4384 op0 = expand_compound_operation (op0);
4385 return plus_constant (gen_lowpart_for_combine (mode, op0), -1);
4386 }
4387
4388 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4389 one bit that might be nonzero, we can convert (ne x 0) to
4390 (ashift x c) where C puts the bit in the sign bit. Remove any
4391 AND with STORE_FLAG_VALUE when we are done, since we are only
4392 going to test the sign bit. */
4393 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4394 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4395 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4396 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE(mode)-1))
4397 && op1 == const0_rtx
4398 && mode == GET_MODE (op0)
4399 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4400 {
4401 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4402 expand_compound_operation (op0),
4403 GET_MODE_BITSIZE (mode) - 1 - i);
4404 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4405 return XEXP (x, 0);
4406 else
4407 return x;
4408 }
4409
4410 /* If the code changed, return a whole new comparison. */
4411 if (new_code != code)
4412 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
4413
4414 /* Otherwise, keep this operation, but maybe change its operands.
4415 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4416 SUBST (XEXP (x, 0), op0);
4417 SUBST (XEXP (x, 1), op1);
4418 }
4419 break;
4420
4421 case IF_THEN_ELSE:
4422 return simplify_if_then_else (x);
4423
4424 case ZERO_EXTRACT:
4425 case SIGN_EXTRACT:
4426 case ZERO_EXTEND:
4427 case SIGN_EXTEND:
4428 /* If we are processing SET_DEST, we are done. */
4429 if (in_dest)
4430 return x;
4431
4432 return expand_compound_operation (x);
4433
4434 case SET:
4435 return simplify_set (x);
4436
4437 case AND:
4438 case IOR:
4439 case XOR:
4440 return simplify_logical (x, last);
4441
4442 case ABS:
4443 /* (abs (neg <foo>)) -> (abs <foo>) */
4444 if (GET_CODE (XEXP (x, 0)) == NEG)
4445 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4446
4447 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4448 do nothing. */
4449 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
4450 break;
4451
4452 /* If operand is something known to be positive, ignore the ABS. */
4453 if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
4454 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4455 <= HOST_BITS_PER_WIDE_INT)
4456 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4457 & ((HOST_WIDE_INT) 1
4458 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
4459 == 0)))
4460 return XEXP (x, 0);
4461
4462 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4463 if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
4464 return gen_rtx_NEG (mode, XEXP (x, 0));
4465
4466 break;
4467
4468 case FFS:
4469 /* (ffs (*_extend <X>)) = (ffs <X>) */
4470 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4471 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4472 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4473 break;
4474
4475 case FLOAT:
4476 /* (float (sign_extend <X>)) = (float <X>). */
4477 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
4478 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4479 break;
4480
4481 case ASHIFT:
4482 case LSHIFTRT:
4483 case ASHIFTRT:
4484 case ROTATE:
4485 case ROTATERT:
4486 /* If this is a shift by a constant amount, simplify it. */
4487 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4488 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4489 INTVAL (XEXP (x, 1)));
4490
4491 #ifdef SHIFT_COUNT_TRUNCATED
4492 else if (SHIFT_COUNT_TRUNCATED && GET_CODE (XEXP (x, 1)) != REG)
4493 SUBST (XEXP (x, 1),
4494 force_to_mode (XEXP (x, 1), GET_MODE (x),
4495 ((HOST_WIDE_INT) 1
4496 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4497 - 1,
4498 NULL_RTX, 0));
4499 #endif
4500
4501 break;
4502
4503 case VEC_SELECT:
4504 {
4505 rtx op0 = XEXP (x, 0);
4506 rtx op1 = XEXP (x, 1);
4507 int len;
4508
4509 if (GET_CODE (op1) != PARALLEL)
4510 abort ();
4511 len = XVECLEN (op1, 0);
4512 if (len == 1
4513 && GET_CODE (XVECEXP (op1, 0, 0)) == CONST_INT
4514 && GET_CODE (op0) == VEC_CONCAT)
4515 {
4516 int offset = INTVAL (XVECEXP (op1, 0, 0)) * GET_MODE_SIZE (GET_MODE (x));
4517
4518 /* Try to find the element in the VEC_CONCAT. */
4519 for (;;)
4520 {
4521 if (GET_MODE (op0) == GET_MODE (x))
4522 return op0;
4523 if (GET_CODE (op0) == VEC_CONCAT)
4524 {
4525 HOST_WIDE_INT op0_size = GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)));
4526 if (op0_size < offset)
4527 op0 = XEXP (op0, 0);
4528 else
4529 {
4530 offset -= op0_size;
4531 op0 = XEXP (op0, 1);
4532 }
4533 }
4534 else
4535 break;
4536 }
4537 }
4538 }
4539
4540 break;
4541
4542 default:
4543 break;
4544 }
4545
4546 return x;
4547 }
4548 \f
4549 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4550
4551 static rtx
4552 simplify_if_then_else (x)
4553 rtx x;
4554 {
4555 enum machine_mode mode = GET_MODE (x);
4556 rtx cond = XEXP (x, 0);
4557 rtx true_rtx = XEXP (x, 1);
4558 rtx false_rtx = XEXP (x, 2);
4559 enum rtx_code true_code = GET_CODE (cond);
4560 int comparison_p = GET_RTX_CLASS (true_code) == '<';
4561 rtx temp;
4562 int i;
4563 enum rtx_code false_code;
4564 rtx reversed;
4565
4566 /* Simplify storing of the truth value. */
4567 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
4568 return gen_binary (true_code, mode, XEXP (cond, 0), XEXP (cond, 1));
4569
4570 /* Also when the truth value has to be reversed. */
4571 if (comparison_p
4572 && true_rtx == const0_rtx && false_rtx == const_true_rtx
4573 && (reversed = reversed_comparison (cond, mode, XEXP (cond, 0),
4574 XEXP (cond, 1))))
4575 return reversed;
4576
4577 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4578 in it is being compared against certain values. Get the true and false
4579 comparisons and see if that says anything about the value of each arm. */
4580
4581 if (comparison_p
4582 && ((false_code = combine_reversed_comparison_code (cond))
4583 != UNKNOWN)
4584 && GET_CODE (XEXP (cond, 0)) == REG)
4585 {
4586 HOST_WIDE_INT nzb;
4587 rtx from = XEXP (cond, 0);
4588 rtx true_val = XEXP (cond, 1);
4589 rtx false_val = true_val;
4590 int swapped = 0;
4591
4592 /* If FALSE_CODE is EQ, swap the codes and arms. */
4593
4594 if (false_code == EQ)
4595 {
4596 swapped = 1, true_code = EQ, false_code = NE;
4597 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4598 }
4599
4600 /* If we are comparing against zero and the expression being tested has
4601 only a single bit that might be nonzero, that is its value when it is
4602 not equal to zero. Similarly if it is known to be -1 or 0. */
4603
4604 if (true_code == EQ && true_val == const0_rtx
4605 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4606 false_code = EQ, false_val = GEN_INT (nzb);
4607 else if (true_code == EQ && true_val == const0_rtx
4608 && (num_sign_bit_copies (from, GET_MODE (from))
4609 == GET_MODE_BITSIZE (GET_MODE (from))))
4610 false_code = EQ, false_val = constm1_rtx;
4611
4612 /* Now simplify an arm if we know the value of the register in the
4613 branch and it is used in the arm. Be careful due to the potential
4614 of locally-shared RTL. */
4615
4616 if (reg_mentioned_p (from, true_rtx))
4617 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
4618 from, true_val),
4619 pc_rtx, pc_rtx, 0, 0);
4620 if (reg_mentioned_p (from, false_rtx))
4621 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
4622 from, false_val),
4623 pc_rtx, pc_rtx, 0, 0);
4624
4625 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
4626 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
4627
4628 true_rtx = XEXP (x, 1);
4629 false_rtx = XEXP (x, 2);
4630 true_code = GET_CODE (cond);
4631 }
4632
4633 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4634 reversed, do so to avoid needing two sets of patterns for
4635 subtract-and-branch insns. Similarly if we have a constant in the true
4636 arm, the false arm is the same as the first operand of the comparison, or
4637 the false arm is more complicated than the true arm. */
4638
4639 if (comparison_p
4640 && combine_reversed_comparison_code (cond) != UNKNOWN
4641 && (true_rtx == pc_rtx
4642 || (CONSTANT_P (true_rtx)
4643 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
4644 || true_rtx == const0_rtx
4645 || (GET_RTX_CLASS (GET_CODE (true_rtx)) == 'o'
4646 && GET_RTX_CLASS (GET_CODE (false_rtx)) != 'o')
4647 || (GET_CODE (true_rtx) == SUBREG
4648 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (true_rtx))) == 'o'
4649 && GET_RTX_CLASS (GET_CODE (false_rtx)) != 'o')
4650 || reg_mentioned_p (true_rtx, false_rtx)
4651 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
4652 {
4653 true_code = reversed_comparison_code (cond, NULL);
4654 SUBST (XEXP (x, 0),
4655 reversed_comparison (cond, GET_MODE (cond), XEXP (cond, 0),
4656 XEXP (cond, 1)));
4657
4658 SUBST (XEXP (x, 1), false_rtx);
4659 SUBST (XEXP (x, 2), true_rtx);
4660
4661 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4662 cond = XEXP (x, 0);
4663
4664 /* It is possible that the conditional has been simplified out. */
4665 true_code = GET_CODE (cond);
4666 comparison_p = GET_RTX_CLASS (true_code) == '<';
4667 }
4668
4669 /* If the two arms are identical, we don't need the comparison. */
4670
4671 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
4672 return true_rtx;
4673
4674 /* Convert a == b ? b : a to "a". */
4675 if (true_code == EQ && ! side_effects_p (cond)
4676 && (! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4677 && rtx_equal_p (XEXP (cond, 0), false_rtx)
4678 && rtx_equal_p (XEXP (cond, 1), true_rtx))
4679 return false_rtx;
4680 else if (true_code == NE && ! side_effects_p (cond)
4681 && (! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4682 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4683 && rtx_equal_p (XEXP (cond, 1), false_rtx))
4684 return true_rtx;
4685
4686 /* Look for cases where we have (abs x) or (neg (abs X)). */
4687
4688 if (GET_MODE_CLASS (mode) == MODE_INT
4689 && GET_CODE (false_rtx) == NEG
4690 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
4691 && comparison_p
4692 && rtx_equal_p (true_rtx, XEXP (cond, 0))
4693 && ! side_effects_p (true_rtx))
4694 switch (true_code)
4695 {
4696 case GT:
4697 case GE:
4698 return simplify_gen_unary (ABS, mode, true_rtx, mode);
4699 case LT:
4700 case LE:
4701 return
4702 simplify_gen_unary (NEG, mode,
4703 simplify_gen_unary (ABS, mode, true_rtx, mode),
4704 mode);
4705 default:
4706 break;
4707 }
4708
4709 /* Look for MIN or MAX. */
4710
4711 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4712 && comparison_p
4713 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4714 && rtx_equal_p (XEXP (cond, 1), false_rtx)
4715 && ! side_effects_p (cond))
4716 switch (true_code)
4717 {
4718 case GE:
4719 case GT:
4720 return gen_binary (SMAX, mode, true_rtx, false_rtx);
4721 case LE:
4722 case LT:
4723 return gen_binary (SMIN, mode, true_rtx, false_rtx);
4724 case GEU:
4725 case GTU:
4726 return gen_binary (UMAX, mode, true_rtx, false_rtx);
4727 case LEU:
4728 case LTU:
4729 return gen_binary (UMIN, mode, true_rtx, false_rtx);
4730 default:
4731 break;
4732 }
4733
4734 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4735 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4736 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4737 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4738 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4739 neither 1 or -1, but it isn't worth checking for. */
4740
4741 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
4742 && comparison_p && mode != VOIDmode && ! side_effects_p (x))
4743 {
4744 rtx t = make_compound_operation (true_rtx, SET);
4745 rtx f = make_compound_operation (false_rtx, SET);
4746 rtx cond_op0 = XEXP (cond, 0);
4747 rtx cond_op1 = XEXP (cond, 1);
4748 enum rtx_code op = NIL, extend_op = NIL;
4749 enum machine_mode m = mode;
4750 rtx z = 0, c1 = NULL_RTX;
4751
4752 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
4753 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
4754 || GET_CODE (t) == ASHIFT
4755 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
4756 && rtx_equal_p (XEXP (t, 0), f))
4757 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
4758
4759 /* If an identity-zero op is commutative, check whether there
4760 would be a match if we swapped the operands. */
4761 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
4762 || GET_CODE (t) == XOR)
4763 && rtx_equal_p (XEXP (t, 1), f))
4764 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
4765 else if (GET_CODE (t) == SIGN_EXTEND
4766 && (GET_CODE (XEXP (t, 0)) == PLUS
4767 || GET_CODE (XEXP (t, 0)) == MINUS
4768 || GET_CODE (XEXP (t, 0)) == IOR
4769 || GET_CODE (XEXP (t, 0)) == XOR
4770 || GET_CODE (XEXP (t, 0)) == ASHIFT
4771 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4772 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4773 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4774 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4775 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4776 && (num_sign_bit_copies (f, GET_MODE (f))
4777 > (GET_MODE_BITSIZE (mode)
4778 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
4779 {
4780 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4781 extend_op = SIGN_EXTEND;
4782 m = GET_MODE (XEXP (t, 0));
4783 }
4784 else if (GET_CODE (t) == SIGN_EXTEND
4785 && (GET_CODE (XEXP (t, 0)) == PLUS
4786 || GET_CODE (XEXP (t, 0)) == IOR
4787 || GET_CODE (XEXP (t, 0)) == XOR)
4788 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4789 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4790 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4791 && (num_sign_bit_copies (f, GET_MODE (f))
4792 > (GET_MODE_BITSIZE (mode)
4793 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
4794 {
4795 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4796 extend_op = SIGN_EXTEND;
4797 m = GET_MODE (XEXP (t, 0));
4798 }
4799 else if (GET_CODE (t) == ZERO_EXTEND
4800 && (GET_CODE (XEXP (t, 0)) == PLUS
4801 || GET_CODE (XEXP (t, 0)) == MINUS
4802 || GET_CODE (XEXP (t, 0)) == IOR
4803 || GET_CODE (XEXP (t, 0)) == XOR
4804 || GET_CODE (XEXP (t, 0)) == ASHIFT
4805 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4806 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4807 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4808 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4809 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4810 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4811 && ((nonzero_bits (f, GET_MODE (f))
4812 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
4813 == 0))
4814 {
4815 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4816 extend_op = ZERO_EXTEND;
4817 m = GET_MODE (XEXP (t, 0));
4818 }
4819 else if (GET_CODE (t) == ZERO_EXTEND
4820 && (GET_CODE (XEXP (t, 0)) == PLUS
4821 || GET_CODE (XEXP (t, 0)) == IOR
4822 || GET_CODE (XEXP (t, 0)) == XOR)
4823 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4824 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4825 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4826 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4827 && ((nonzero_bits (f, GET_MODE (f))
4828 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
4829 == 0))
4830 {
4831 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4832 extend_op = ZERO_EXTEND;
4833 m = GET_MODE (XEXP (t, 0));
4834 }
4835
4836 if (z)
4837 {
4838 temp = subst (gen_binary (true_code, m, cond_op0, cond_op1),
4839 pc_rtx, pc_rtx, 0, 0);
4840 temp = gen_binary (MULT, m, temp,
4841 gen_binary (MULT, m, c1, const_true_rtx));
4842 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
4843 temp = gen_binary (op, m, gen_lowpart_for_combine (m, z), temp);
4844
4845 if (extend_op != NIL)
4846 temp = simplify_gen_unary (extend_op, mode, temp, m);
4847
4848 return temp;
4849 }
4850 }
4851
4852 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
4853 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
4854 negation of a single bit, we can convert this operation to a shift. We
4855 can actually do this more generally, but it doesn't seem worth it. */
4856
4857 if (true_code == NE && XEXP (cond, 1) == const0_rtx
4858 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
4859 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
4860 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
4861 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
4862 == GET_MODE_BITSIZE (mode))
4863 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
4864 return
4865 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4866 gen_lowpart_for_combine (mode, XEXP (cond, 0)), i);
4867
4868 return x;
4869 }
4870 \f
4871 /* Simplify X, a SET expression. Return the new expression. */
4872
4873 static rtx
4874 simplify_set (x)
4875 rtx x;
4876 {
4877 rtx src = SET_SRC (x);
4878 rtx dest = SET_DEST (x);
4879 enum machine_mode mode
4880 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
4881 rtx other_insn;
4882 rtx *cc_use;
4883
4884 /* (set (pc) (return)) gets written as (return). */
4885 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
4886 return src;
4887
4888 /* Now that we know for sure which bits of SRC we are using, see if we can
4889 simplify the expression for the object knowing that we only need the
4890 low-order bits. */
4891
4892 if (GET_MODE_CLASS (mode) == MODE_INT)
4893 {
4894 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, NULL_RTX, 0);
4895 SUBST (SET_SRC (x), src);
4896 }
4897
4898 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
4899 the comparison result and try to simplify it unless we already have used
4900 undobuf.other_insn. */
4901 if ((GET_CODE (src) == COMPARE
4902 #ifdef HAVE_cc0
4903 || dest == cc0_rtx
4904 #endif
4905 )
4906 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
4907 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
4908 && GET_RTX_CLASS (GET_CODE (*cc_use)) == '<'
4909 && rtx_equal_p (XEXP (*cc_use, 0), dest))
4910 {
4911 enum rtx_code old_code = GET_CODE (*cc_use);
4912 enum rtx_code new_code;
4913 rtx op0, op1;
4914 int other_changed = 0;
4915 enum machine_mode compare_mode = GET_MODE (dest);
4916
4917 if (GET_CODE (src) == COMPARE)
4918 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
4919 else
4920 op0 = src, op1 = const0_rtx;
4921
4922 /* Simplify our comparison, if possible. */
4923 new_code = simplify_comparison (old_code, &op0, &op1);
4924
4925 #ifdef EXTRA_CC_MODES
4926 /* If this machine has CC modes other than CCmode, check to see if we
4927 need to use a different CC mode here. */
4928 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
4929 #endif /* EXTRA_CC_MODES */
4930
4931 #if !defined (HAVE_cc0) && defined (EXTRA_CC_MODES)
4932 /* If the mode changed, we have to change SET_DEST, the mode in the
4933 compare, and the mode in the place SET_DEST is used. If SET_DEST is
4934 a hard register, just build new versions with the proper mode. If it
4935 is a pseudo, we lose unless it is only time we set the pseudo, in
4936 which case we can safely change its mode. */
4937 if (compare_mode != GET_MODE (dest))
4938 {
4939 unsigned int regno = REGNO (dest);
4940 rtx new_dest = gen_rtx_REG (compare_mode, regno);
4941
4942 if (regno < FIRST_PSEUDO_REGISTER
4943 || (REG_N_SETS (regno) == 1 && ! REG_USERVAR_P (dest)))
4944 {
4945 if (regno >= FIRST_PSEUDO_REGISTER)
4946 SUBST (regno_reg_rtx[regno], new_dest);
4947
4948 SUBST (SET_DEST (x), new_dest);
4949 SUBST (XEXP (*cc_use, 0), new_dest);
4950 other_changed = 1;
4951
4952 dest = new_dest;
4953 }
4954 }
4955 #endif
4956
4957 /* If the code changed, we have to build a new comparison in
4958 undobuf.other_insn. */
4959 if (new_code != old_code)
4960 {
4961 unsigned HOST_WIDE_INT mask;
4962
4963 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
4964 dest, const0_rtx));
4965
4966 /* If the only change we made was to change an EQ into an NE or
4967 vice versa, OP0 has only one bit that might be nonzero, and OP1
4968 is zero, check if changing the user of the condition code will
4969 produce a valid insn. If it won't, we can keep the original code
4970 in that insn by surrounding our operation with an XOR. */
4971
4972 if (((old_code == NE && new_code == EQ)
4973 || (old_code == EQ && new_code == NE))
4974 && ! other_changed && op1 == const0_rtx
4975 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
4976 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
4977 {
4978 rtx pat = PATTERN (other_insn), note = 0;
4979
4980 if ((recog_for_combine (&pat, other_insn, &note) < 0
4981 && ! check_asm_operands (pat)))
4982 {
4983 PUT_CODE (*cc_use, old_code);
4984 other_insn = 0;
4985
4986 op0 = gen_binary (XOR, GET_MODE (op0), op0, GEN_INT (mask));
4987 }
4988 }
4989
4990 other_changed = 1;
4991 }
4992
4993 if (other_changed)
4994 undobuf.other_insn = other_insn;
4995
4996 #ifdef HAVE_cc0
4997 /* If we are now comparing against zero, change our source if
4998 needed. If we do not use cc0, we always have a COMPARE. */
4999 if (op1 == const0_rtx && dest == cc0_rtx)
5000 {
5001 SUBST (SET_SRC (x), op0);
5002 src = op0;
5003 }
5004 else
5005 #endif
5006
5007 /* Otherwise, if we didn't previously have a COMPARE in the
5008 correct mode, we need one. */
5009 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5010 {
5011 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5012 src = SET_SRC (x);
5013 }
5014 else
5015 {
5016 /* Otherwise, update the COMPARE if needed. */
5017 SUBST (XEXP (src, 0), op0);
5018 SUBST (XEXP (src, 1), op1);
5019 }
5020 }
5021 else
5022 {
5023 /* Get SET_SRC in a form where we have placed back any
5024 compound expressions. Then do the checks below. */
5025 src = make_compound_operation (src, SET);
5026 SUBST (SET_SRC (x), src);
5027 }
5028
5029 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5030 and X being a REG or (subreg (reg)), we may be able to convert this to
5031 (set (subreg:m2 x) (op)).
5032
5033 We can always do this if M1 is narrower than M2 because that means that
5034 we only care about the low bits of the result.
5035
5036 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5037 perform a narrower operation than requested since the high-order bits will
5038 be undefined. On machine where it is defined, this transformation is safe
5039 as long as M1 and M2 have the same number of words. */
5040
5041 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5042 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (src))) != 'o'
5043 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5044 / UNITS_PER_WORD)
5045 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5046 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5047 #ifndef WORD_REGISTER_OPERATIONS
5048 && (GET_MODE_SIZE (GET_MODE (src))
5049 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5050 #endif
5051 #ifdef CLASS_CANNOT_CHANGE_MODE
5052 && ! (GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER
5053 && (TEST_HARD_REG_BIT
5054 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
5055 REGNO (dest)))
5056 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (src),
5057 GET_MODE (SUBREG_REG (src))))
5058 #endif
5059 && (GET_CODE (dest) == REG
5060 || (GET_CODE (dest) == SUBREG
5061 && GET_CODE (SUBREG_REG (dest)) == REG)))
5062 {
5063 SUBST (SET_DEST (x),
5064 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (src)),
5065 dest));
5066 SUBST (SET_SRC (x), SUBREG_REG (src));
5067
5068 src = SET_SRC (x), dest = SET_DEST (x);
5069 }
5070
5071 #ifdef LOAD_EXTEND_OP
5072 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5073 would require a paradoxical subreg. Replace the subreg with a
5074 zero_extend to avoid the reload that would otherwise be required. */
5075
5076 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5077 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != NIL
5078 && SUBREG_BYTE (src) == 0
5079 && (GET_MODE_SIZE (GET_MODE (src))
5080 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5081 && GET_CODE (SUBREG_REG (src)) == MEM)
5082 {
5083 SUBST (SET_SRC (x),
5084 gen_rtx (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5085 GET_MODE (src), SUBREG_REG (src)));
5086
5087 src = SET_SRC (x);
5088 }
5089 #endif
5090
5091 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5092 are comparing an item known to be 0 or -1 against 0, use a logical
5093 operation instead. Check for one of the arms being an IOR of the other
5094 arm with some value. We compute three terms to be IOR'ed together. In
5095 practice, at most two will be nonzero. Then we do the IOR's. */
5096
5097 if (GET_CODE (dest) != PC
5098 && GET_CODE (src) == IF_THEN_ELSE
5099 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5100 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5101 && XEXP (XEXP (src, 0), 1) == const0_rtx
5102 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5103 #ifdef HAVE_conditional_move
5104 && ! can_conditionally_move_p (GET_MODE (src))
5105 #endif
5106 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5107 GET_MODE (XEXP (XEXP (src, 0), 0)))
5108 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5109 && ! side_effects_p (src))
5110 {
5111 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5112 ? XEXP (src, 1) : XEXP (src, 2));
5113 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5114 ? XEXP (src, 2) : XEXP (src, 1));
5115 rtx term1 = const0_rtx, term2, term3;
5116
5117 if (GET_CODE (true_rtx) == IOR
5118 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5119 term1 = false_rtx, true_rtx = XEXP(true_rtx, 1), false_rtx = const0_rtx;
5120 else if (GET_CODE (true_rtx) == IOR
5121 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5122 term1 = false_rtx, true_rtx = XEXP(true_rtx, 0), false_rtx = const0_rtx;
5123 else if (GET_CODE (false_rtx) == IOR
5124 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5125 term1 = true_rtx, false_rtx = XEXP(false_rtx, 1), true_rtx = const0_rtx;
5126 else if (GET_CODE (false_rtx) == IOR
5127 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5128 term1 = true_rtx, false_rtx = XEXP(false_rtx, 0), true_rtx = const0_rtx;
5129
5130 term2 = gen_binary (AND, GET_MODE (src),
5131 XEXP (XEXP (src, 0), 0), true_rtx);
5132 term3 = gen_binary (AND, GET_MODE (src),
5133 simplify_gen_unary (NOT, GET_MODE (src),
5134 XEXP (XEXP (src, 0), 0),
5135 GET_MODE (src)),
5136 false_rtx);
5137
5138 SUBST (SET_SRC (x),
5139 gen_binary (IOR, GET_MODE (src),
5140 gen_binary (IOR, GET_MODE (src), term1, term2),
5141 term3));
5142
5143 src = SET_SRC (x);
5144 }
5145
5146 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5147 whole thing fail. */
5148 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5149 return src;
5150 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5151 return dest;
5152 else
5153 /* Convert this into a field assignment operation, if possible. */
5154 return make_field_assignment (x);
5155 }
5156 \f
5157 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5158 result. LAST is nonzero if this is the last retry. */
5159
5160 static rtx
5161 simplify_logical (x, last)
5162 rtx x;
5163 int last;
5164 {
5165 enum machine_mode mode = GET_MODE (x);
5166 rtx op0 = XEXP (x, 0);
5167 rtx op1 = XEXP (x, 1);
5168 rtx reversed;
5169
5170 switch (GET_CODE (x))
5171 {
5172 case AND:
5173 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
5174 insn (and may simplify more). */
5175 if (GET_CODE (op0) == XOR
5176 && rtx_equal_p (XEXP (op0, 0), op1)
5177 && ! side_effects_p (op1))
5178 x = gen_binary (AND, mode,
5179 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5180 op1);
5181
5182 if (GET_CODE (op0) == XOR
5183 && rtx_equal_p (XEXP (op0, 1), op1)
5184 && ! side_effects_p (op1))
5185 x = gen_binary (AND, mode,
5186 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5187 op1);
5188
5189 /* Similarly for (~(A ^ B)) & A. */
5190 if (GET_CODE (op0) == NOT
5191 && GET_CODE (XEXP (op0, 0)) == XOR
5192 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
5193 && ! side_effects_p (op1))
5194 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
5195
5196 if (GET_CODE (op0) == NOT
5197 && GET_CODE (XEXP (op0, 0)) == XOR
5198 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
5199 && ! side_effects_p (op1))
5200 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
5201
5202 /* We can call simplify_and_const_int only if we don't lose
5203 any (sign) bits when converting INTVAL (op1) to
5204 "unsigned HOST_WIDE_INT". */
5205 if (GET_CODE (op1) == CONST_INT
5206 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5207 || INTVAL (op1) > 0))
5208 {
5209 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5210
5211 /* If we have (ior (and (X C1) C2)) and the next restart would be
5212 the last, simplify this by making C1 as small as possible
5213 and then exit. */
5214 if (last
5215 && GET_CODE (x) == IOR && GET_CODE (op0) == AND
5216 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5217 && GET_CODE (op1) == CONST_INT)
5218 return gen_binary (IOR, mode,
5219 gen_binary (AND, mode, XEXP (op0, 0),
5220 GEN_INT (INTVAL (XEXP (op0, 1))
5221 & ~INTVAL (op1))), op1);
5222
5223 if (GET_CODE (x) != AND)
5224 return x;
5225
5226 if (GET_RTX_CLASS (GET_CODE (x)) == 'c'
5227 || GET_RTX_CLASS (GET_CODE (x)) == '2')
5228 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5229 }
5230
5231 /* Convert (A | B) & A to A. */
5232 if (GET_CODE (op0) == IOR
5233 && (rtx_equal_p (XEXP (op0, 0), op1)
5234 || rtx_equal_p (XEXP (op0, 1), op1))
5235 && ! side_effects_p (XEXP (op0, 0))
5236 && ! side_effects_p (XEXP (op0, 1)))
5237 return op1;
5238
5239 /* In the following group of tests (and those in case IOR below),
5240 we start with some combination of logical operations and apply
5241 the distributive law followed by the inverse distributive law.
5242 Most of the time, this results in no change. However, if some of
5243 the operands are the same or inverses of each other, simplifications
5244 will result.
5245
5246 For example, (and (ior A B) (not B)) can occur as the result of
5247 expanding a bit field assignment. When we apply the distributive
5248 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
5249 which then simplifies to (and (A (not B))).
5250
5251 If we have (and (ior A B) C), apply the distributive law and then
5252 the inverse distributive law to see if things simplify. */
5253
5254 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5255 {
5256 x = apply_distributive_law
5257 (gen_binary (GET_CODE (op0), mode,
5258 gen_binary (AND, mode, XEXP (op0, 0), op1),
5259 gen_binary (AND, mode, XEXP (op0, 1),
5260 copy_rtx (op1))));
5261 if (GET_CODE (x) != AND)
5262 return x;
5263 }
5264
5265 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5266 return apply_distributive_law
5267 (gen_binary (GET_CODE (op1), mode,
5268 gen_binary (AND, mode, XEXP (op1, 0), op0),
5269 gen_binary (AND, mode, XEXP (op1, 1),
5270 copy_rtx (op0))));
5271
5272 /* Similarly, taking advantage of the fact that
5273 (and (not A) (xor B C)) == (xor (ior A B) (ior A C)) */
5274
5275 if (GET_CODE (op0) == NOT && GET_CODE (op1) == XOR)
5276 return apply_distributive_law
5277 (gen_binary (XOR, mode,
5278 gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 0)),
5279 gen_binary (IOR, mode, copy_rtx (XEXP (op0, 0)),
5280 XEXP (op1, 1))));
5281
5282 else if (GET_CODE (op1) == NOT && GET_CODE (op0) == XOR)
5283 return apply_distributive_law
5284 (gen_binary (XOR, mode,
5285 gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 0)),
5286 gen_binary (IOR, mode, copy_rtx (XEXP (op1, 0)), XEXP (op0, 1))));
5287 break;
5288
5289 case IOR:
5290 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
5291 if (GET_CODE (op1) == CONST_INT
5292 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5293 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
5294 return op1;
5295
5296 /* Convert (A & B) | A to A. */
5297 if (GET_CODE (op0) == AND
5298 && (rtx_equal_p (XEXP (op0, 0), op1)
5299 || rtx_equal_p (XEXP (op0, 1), op1))
5300 && ! side_effects_p (XEXP (op0, 0))
5301 && ! side_effects_p (XEXP (op0, 1)))
5302 return op1;
5303
5304 /* If we have (ior (and A B) C), apply the distributive law and then
5305 the inverse distributive law to see if things simplify. */
5306
5307 if (GET_CODE (op0) == AND)
5308 {
5309 x = apply_distributive_law
5310 (gen_binary (AND, mode,
5311 gen_binary (IOR, mode, XEXP (op0, 0), op1),
5312 gen_binary (IOR, mode, XEXP (op0, 1),
5313 copy_rtx (op1))));
5314
5315 if (GET_CODE (x) != IOR)
5316 return x;
5317 }
5318
5319 if (GET_CODE (op1) == AND)
5320 {
5321 x = apply_distributive_law
5322 (gen_binary (AND, mode,
5323 gen_binary (IOR, mode, XEXP (op1, 0), op0),
5324 gen_binary (IOR, mode, XEXP (op1, 1),
5325 copy_rtx (op0))));
5326
5327 if (GET_CODE (x) != IOR)
5328 return x;
5329 }
5330
5331 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5332 mode size to (rotate A CX). */
5333
5334 if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
5335 || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
5336 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
5337 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5338 && GET_CODE (XEXP (op1, 1)) == CONST_INT
5339 && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
5340 == GET_MODE_BITSIZE (mode)))
5341 return gen_rtx_ROTATE (mode, XEXP (op0, 0),
5342 (GET_CODE (op0) == ASHIFT
5343 ? XEXP (op0, 1) : XEXP (op1, 1)));
5344
5345 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5346 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
5347 does not affect any of the bits in OP1, it can really be done
5348 as a PLUS and we can associate. We do this by seeing if OP1
5349 can be safely shifted left C bits. */
5350 if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
5351 && GET_CODE (XEXP (op0, 0)) == PLUS
5352 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
5353 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5354 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
5355 {
5356 int count = INTVAL (XEXP (op0, 1));
5357 HOST_WIDE_INT mask = INTVAL (op1) << count;
5358
5359 if (mask >> count == INTVAL (op1)
5360 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
5361 {
5362 SUBST (XEXP (XEXP (op0, 0), 1),
5363 GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
5364 return op0;
5365 }
5366 }
5367 break;
5368
5369 case XOR:
5370 /* If we are XORing two things that have no bits in common,
5371 convert them into an IOR. This helps to detect rotation encoded
5372 using those methods and possibly other simplifications. */
5373
5374 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5375 && (nonzero_bits (op0, mode)
5376 & nonzero_bits (op1, mode)) == 0)
5377 return (gen_binary (IOR, mode, op0, op1));
5378
5379 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5380 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5381 (NOT y). */
5382 {
5383 int num_negated = 0;
5384
5385 if (GET_CODE (op0) == NOT)
5386 num_negated++, op0 = XEXP (op0, 0);
5387 if (GET_CODE (op1) == NOT)
5388 num_negated++, op1 = XEXP (op1, 0);
5389
5390 if (num_negated == 2)
5391 {
5392 SUBST (XEXP (x, 0), op0);
5393 SUBST (XEXP (x, 1), op1);
5394 }
5395 else if (num_negated == 1)
5396 return
5397 simplify_gen_unary (NOT, mode, gen_binary (XOR, mode, op0, op1),
5398 mode);
5399 }
5400
5401 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
5402 correspond to a machine insn or result in further simplifications
5403 if B is a constant. */
5404
5405 if (GET_CODE (op0) == AND
5406 && rtx_equal_p (XEXP (op0, 1), op1)
5407 && ! side_effects_p (op1))
5408 return gen_binary (AND, mode,
5409 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5410 op1);
5411
5412 else if (GET_CODE (op0) == AND
5413 && rtx_equal_p (XEXP (op0, 0), op1)
5414 && ! side_effects_p (op1))
5415 return gen_binary (AND, mode,
5416 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5417 op1);
5418
5419 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5420 comparison if STORE_FLAG_VALUE is 1. */
5421 if (STORE_FLAG_VALUE == 1
5422 && op1 == const1_rtx
5423 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5424 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5425 XEXP (op0, 1))))
5426 return reversed;
5427
5428 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5429 is (lt foo (const_int 0)), so we can perform the above
5430 simplification if STORE_FLAG_VALUE is 1. */
5431
5432 if (STORE_FLAG_VALUE == 1
5433 && op1 == const1_rtx
5434 && GET_CODE (op0) == LSHIFTRT
5435 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5436 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
5437 return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
5438
5439 /* (xor (comparison foo bar) (const_int sign-bit))
5440 when STORE_FLAG_VALUE is the sign bit. */
5441 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5442 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5443 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5444 && op1 == const_true_rtx
5445 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5446 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5447 XEXP (op0, 1))))
5448 return reversed;
5449
5450 break;
5451
5452 default:
5453 abort ();
5454 }
5455
5456 return x;
5457 }
5458 \f
5459 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5460 operations" because they can be replaced with two more basic operations.
5461 ZERO_EXTEND is also considered "compound" because it can be replaced with
5462 an AND operation, which is simpler, though only one operation.
5463
5464 The function expand_compound_operation is called with an rtx expression
5465 and will convert it to the appropriate shifts and AND operations,
5466 simplifying at each stage.
5467
5468 The function make_compound_operation is called to convert an expression
5469 consisting of shifts and ANDs into the equivalent compound expression.
5470 It is the inverse of this function, loosely speaking. */
5471
5472 static rtx
5473 expand_compound_operation (x)
5474 rtx x;
5475 {
5476 unsigned HOST_WIDE_INT pos = 0, len;
5477 int unsignedp = 0;
5478 unsigned int modewidth;
5479 rtx tem;
5480
5481 switch (GET_CODE (x))
5482 {
5483 case ZERO_EXTEND:
5484 unsignedp = 1;
5485 case SIGN_EXTEND:
5486 /* We can't necessarily use a const_int for a multiword mode;
5487 it depends on implicitly extending the value.
5488 Since we don't know the right way to extend it,
5489 we can't tell whether the implicit way is right.
5490
5491 Even for a mode that is no wider than a const_int,
5492 we can't win, because we need to sign extend one of its bits through
5493 the rest of it, and we don't know which bit. */
5494 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5495 return x;
5496
5497 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5498 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5499 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5500 reloaded. If not for that, MEM's would very rarely be safe.
5501
5502 Reject MODEs bigger than a word, because we might not be able
5503 to reference a two-register group starting with an arbitrary register
5504 (and currently gen_lowpart might crash for a SUBREG). */
5505
5506 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5507 return x;
5508
5509 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5510 /* If the inner object has VOIDmode (the only way this can happen
5511 is if it is a ASM_OPERANDS), we can't do anything since we don't
5512 know how much masking to do. */
5513 if (len == 0)
5514 return x;
5515
5516 break;
5517
5518 case ZERO_EXTRACT:
5519 unsignedp = 1;
5520 case SIGN_EXTRACT:
5521 /* If the operand is a CLOBBER, just return it. */
5522 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5523 return XEXP (x, 0);
5524
5525 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5526 || GET_CODE (XEXP (x, 2)) != CONST_INT
5527 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5528 return x;
5529
5530 len = INTVAL (XEXP (x, 1));
5531 pos = INTVAL (XEXP (x, 2));
5532
5533 /* If this goes outside the object being extracted, replace the object
5534 with a (use (mem ...)) construct that only combine understands
5535 and is used only for this purpose. */
5536 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5537 SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
5538
5539 if (BITS_BIG_ENDIAN)
5540 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5541
5542 break;
5543
5544 default:
5545 return x;
5546 }
5547 /* Convert sign extension to zero extension, if we know that the high
5548 bit is not set, as this is easier to optimize. It will be converted
5549 back to cheaper alternative in make_extraction. */
5550 if (GET_CODE (x) == SIGN_EXTEND
5551 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5552 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5553 & ~(((unsigned HOST_WIDE_INT)
5554 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5555 >> 1))
5556 == 0)))
5557 {
5558 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5559 return expand_compound_operation (temp);
5560 }
5561
5562 /* We can optimize some special cases of ZERO_EXTEND. */
5563 if (GET_CODE (x) == ZERO_EXTEND)
5564 {
5565 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5566 know that the last value didn't have any inappropriate bits
5567 set. */
5568 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5569 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5570 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5571 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5572 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5573 return XEXP (XEXP (x, 0), 0);
5574
5575 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5576 if (GET_CODE (XEXP (x, 0)) == SUBREG
5577 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5578 && subreg_lowpart_p (XEXP (x, 0))
5579 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5580 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5581 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5582 return SUBREG_REG (XEXP (x, 0));
5583
5584 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5585 is a comparison and STORE_FLAG_VALUE permits. This is like
5586 the first case, but it works even when GET_MODE (x) is larger
5587 than HOST_WIDE_INT. */
5588 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5589 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5590 && GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) == '<'
5591 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5592 <= HOST_BITS_PER_WIDE_INT)
5593 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5594 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5595 return XEXP (XEXP (x, 0), 0);
5596
5597 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5598 if (GET_CODE (XEXP (x, 0)) == SUBREG
5599 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5600 && subreg_lowpart_p (XEXP (x, 0))
5601 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0)))) == '<'
5602 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5603 <= HOST_BITS_PER_WIDE_INT)
5604 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5605 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5606 return SUBREG_REG (XEXP (x, 0));
5607
5608 }
5609
5610 /* If we reach here, we want to return a pair of shifts. The inner
5611 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5612 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5613 logical depending on the value of UNSIGNEDP.
5614
5615 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5616 converted into an AND of a shift.
5617
5618 We must check for the case where the left shift would have a negative
5619 count. This can happen in a case like (x >> 31) & 255 on machines
5620 that can't shift by a constant. On those machines, we would first
5621 combine the shift with the AND to produce a variable-position
5622 extraction. Then the constant of 31 would be substituted in to produce
5623 a such a position. */
5624
5625 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5626 if (modewidth + len >= pos)
5627 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
5628 GET_MODE (x),
5629 simplify_shift_const (NULL_RTX, ASHIFT,
5630 GET_MODE (x),
5631 XEXP (x, 0),
5632 modewidth - pos - len),
5633 modewidth - len);
5634
5635 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5636 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5637 simplify_shift_const (NULL_RTX, LSHIFTRT,
5638 GET_MODE (x),
5639 XEXP (x, 0), pos),
5640 ((HOST_WIDE_INT) 1 << len) - 1);
5641 else
5642 /* Any other cases we can't handle. */
5643 return x;
5644
5645 /* If we couldn't do this for some reason, return the original
5646 expression. */
5647 if (GET_CODE (tem) == CLOBBER)
5648 return x;
5649
5650 return tem;
5651 }
5652 \f
5653 /* X is a SET which contains an assignment of one object into
5654 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5655 or certain SUBREGS). If possible, convert it into a series of
5656 logical operations.
5657
5658 We half-heartedly support variable positions, but do not at all
5659 support variable lengths. */
5660
5661 static rtx
5662 expand_field_assignment (x)
5663 rtx x;
5664 {
5665 rtx inner;
5666 rtx pos; /* Always counts from low bit. */
5667 int len;
5668 rtx mask;
5669 enum machine_mode compute_mode;
5670
5671 /* Loop until we find something we can't simplify. */
5672 while (1)
5673 {
5674 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
5675 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
5676 {
5677 int byte_offset = SUBREG_BYTE (XEXP (SET_DEST (x), 0));
5678
5679 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
5680 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
5681 pos = GEN_INT (BITS_PER_WORD * (byte_offset / UNITS_PER_WORD));
5682 }
5683 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5684 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
5685 {
5686 inner = XEXP (SET_DEST (x), 0);
5687 len = INTVAL (XEXP (SET_DEST (x), 1));
5688 pos = XEXP (SET_DEST (x), 2);
5689
5690 /* If the position is constant and spans the width of INNER,
5691 surround INNER with a USE to indicate this. */
5692 if (GET_CODE (pos) == CONST_INT
5693 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
5694 inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
5695
5696 if (BITS_BIG_ENDIAN)
5697 {
5698 if (GET_CODE (pos) == CONST_INT)
5699 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
5700 - INTVAL (pos));
5701 else if (GET_CODE (pos) == MINUS
5702 && GET_CODE (XEXP (pos, 1)) == CONST_INT
5703 && (INTVAL (XEXP (pos, 1))
5704 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
5705 /* If position is ADJUST - X, new position is X. */
5706 pos = XEXP (pos, 0);
5707 else
5708 pos = gen_binary (MINUS, GET_MODE (pos),
5709 GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner))
5710 - len),
5711 pos);
5712 }
5713 }
5714
5715 /* A SUBREG between two modes that occupy the same numbers of words
5716 can be done by moving the SUBREG to the source. */
5717 else if (GET_CODE (SET_DEST (x)) == SUBREG
5718 /* We need SUBREGs to compute nonzero_bits properly. */
5719 && nonzero_sign_valid
5720 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
5721 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
5722 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
5723 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
5724 {
5725 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
5726 gen_lowpart_for_combine
5727 (GET_MODE (SUBREG_REG (SET_DEST (x))),
5728 SET_SRC (x)));
5729 continue;
5730 }
5731 else
5732 break;
5733
5734 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5735 inner = SUBREG_REG (inner);
5736
5737 compute_mode = GET_MODE (inner);
5738
5739 /* Don't attempt bitwise arithmetic on non-integral modes. */
5740 if (! INTEGRAL_MODE_P (compute_mode))
5741 {
5742 enum machine_mode imode;
5743
5744 /* Something is probably seriously wrong if this matches. */
5745 if (! FLOAT_MODE_P (compute_mode))
5746 break;
5747
5748 /* Try to find an integral mode to pun with. */
5749 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
5750 if (imode == BLKmode)
5751 break;
5752
5753 compute_mode = imode;
5754 inner = gen_lowpart_for_combine (imode, inner);
5755 }
5756
5757 /* Compute a mask of LEN bits, if we can do this on the host machine. */
5758 if (len < HOST_BITS_PER_WIDE_INT)
5759 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
5760 else
5761 break;
5762
5763 /* Now compute the equivalent expression. Make a copy of INNER
5764 for the SET_DEST in case it is a MEM into which we will substitute;
5765 we don't want shared RTL in that case. */
5766 x = gen_rtx_SET
5767 (VOIDmode, copy_rtx (inner),
5768 gen_binary (IOR, compute_mode,
5769 gen_binary (AND, compute_mode,
5770 simplify_gen_unary (NOT, compute_mode,
5771 gen_binary (ASHIFT,
5772 compute_mode,
5773 mask, pos),
5774 compute_mode),
5775 inner),
5776 gen_binary (ASHIFT, compute_mode,
5777 gen_binary (AND, compute_mode,
5778 gen_lowpart_for_combine
5779 (compute_mode, SET_SRC (x)),
5780 mask),
5781 pos)));
5782 }
5783
5784 return x;
5785 }
5786 \f
5787 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
5788 it is an RTX that represents a variable starting position; otherwise,
5789 POS is the (constant) starting bit position (counted from the LSB).
5790
5791 INNER may be a USE. This will occur when we started with a bitfield
5792 that went outside the boundary of the object in memory, which is
5793 allowed on most machines. To isolate this case, we produce a USE
5794 whose mode is wide enough and surround the MEM with it. The only
5795 code that understands the USE is this routine. If it is not removed,
5796 it will cause the resulting insn not to match.
5797
5798 UNSIGNEDP is non-zero for an unsigned reference and zero for a
5799 signed reference.
5800
5801 IN_DEST is non-zero if this is a reference in the destination of a
5802 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If non-zero,
5803 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
5804 be used.
5805
5806 IN_COMPARE is non-zero if we are in a COMPARE. This means that a
5807 ZERO_EXTRACT should be built even for bits starting at bit 0.
5808
5809 MODE is the desired mode of the result (if IN_DEST == 0).
5810
5811 The result is an RTX for the extraction or NULL_RTX if the target
5812 can't handle it. */
5813
5814 static rtx
5815 make_extraction (mode, inner, pos, pos_rtx, len,
5816 unsignedp, in_dest, in_compare)
5817 enum machine_mode mode;
5818 rtx inner;
5819 HOST_WIDE_INT pos;
5820 rtx pos_rtx;
5821 unsigned HOST_WIDE_INT len;
5822 int unsignedp;
5823 int in_dest, in_compare;
5824 {
5825 /* This mode describes the size of the storage area
5826 to fetch the overall value from. Within that, we
5827 ignore the POS lowest bits, etc. */
5828 enum machine_mode is_mode = GET_MODE (inner);
5829 enum machine_mode inner_mode;
5830 enum machine_mode wanted_inner_mode = byte_mode;
5831 enum machine_mode wanted_inner_reg_mode = word_mode;
5832 enum machine_mode pos_mode = word_mode;
5833 enum machine_mode extraction_mode = word_mode;
5834 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
5835 int spans_byte = 0;
5836 rtx new = 0;
5837 rtx orig_pos_rtx = pos_rtx;
5838 HOST_WIDE_INT orig_pos;
5839
5840 /* Get some information about INNER and get the innermost object. */
5841 if (GET_CODE (inner) == USE)
5842 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
5843 /* We don't need to adjust the position because we set up the USE
5844 to pretend that it was a full-word object. */
5845 spans_byte = 1, inner = XEXP (inner, 0);
5846 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5847 {
5848 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
5849 consider just the QI as the memory to extract from.
5850 The subreg adds or removes high bits; its mode is
5851 irrelevant to the meaning of this extraction,
5852 since POS and LEN count from the lsb. */
5853 if (GET_CODE (SUBREG_REG (inner)) == MEM)
5854 is_mode = GET_MODE (SUBREG_REG (inner));
5855 inner = SUBREG_REG (inner);
5856 }
5857
5858 inner_mode = GET_MODE (inner);
5859
5860 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
5861 pos = INTVAL (pos_rtx), pos_rtx = 0;
5862
5863 /* See if this can be done without an extraction. We never can if the
5864 width of the field is not the same as that of some integer mode. For
5865 registers, we can only avoid the extraction if the position is at the
5866 low-order bit and this is either not in the destination or we have the
5867 appropriate STRICT_LOW_PART operation available.
5868
5869 For MEM, we can avoid an extract if the field starts on an appropriate
5870 boundary and we can change the mode of the memory reference. However,
5871 we cannot directly access the MEM if we have a USE and the underlying
5872 MEM is not TMODE. This combination means that MEM was being used in a
5873 context where bits outside its mode were being referenced; that is only
5874 valid in bit-field insns. */
5875
5876 if (tmode != BLKmode
5877 && ! (spans_byte && inner_mode != tmode)
5878 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
5879 && GET_CODE (inner) != MEM
5880 && (! in_dest
5881 || (GET_CODE (inner) == REG
5882 && (movstrict_optab->handlers[(int) tmode].insn_code
5883 != CODE_FOR_nothing))))
5884 || (GET_CODE (inner) == MEM && pos_rtx == 0
5885 && (pos
5886 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
5887 : BITS_PER_UNIT)) == 0
5888 /* We can't do this if we are widening INNER_MODE (it
5889 may not be aligned, for one thing). */
5890 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
5891 && (inner_mode == tmode
5892 || (! mode_dependent_address_p (XEXP (inner, 0))
5893 && ! MEM_VOLATILE_P (inner))))))
5894 {
5895 /* If INNER is a MEM, make a new MEM that encompasses just the desired
5896 field. If the original and current mode are the same, we need not
5897 adjust the offset. Otherwise, we do if bytes big endian.
5898
5899 If INNER is not a MEM, get a piece consisting of just the field
5900 of interest (in this case POS % BITS_PER_WORD must be 0). */
5901
5902 if (GET_CODE (inner) == MEM)
5903 {
5904 HOST_WIDE_INT offset;
5905
5906 /* POS counts from lsb, but make OFFSET count in memory order. */
5907 if (BYTES_BIG_ENDIAN)
5908 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
5909 else
5910 offset = pos / BITS_PER_UNIT;
5911
5912 new = adjust_address_nv (inner, tmode, offset);
5913 }
5914 else if (GET_CODE (inner) == REG)
5915 {
5916 /* We can't call gen_lowpart_for_combine here since we always want
5917 a SUBREG and it would sometimes return a new hard register. */
5918 if (tmode != inner_mode)
5919 {
5920 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
5921
5922 if (WORDS_BIG_ENDIAN
5923 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
5924 final_word = ((GET_MODE_SIZE (inner_mode)
5925 - GET_MODE_SIZE (tmode))
5926 / UNITS_PER_WORD) - final_word;
5927
5928 final_word *= UNITS_PER_WORD;
5929 if (BYTES_BIG_ENDIAN &&
5930 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
5931 final_word += (GET_MODE_SIZE (inner_mode)
5932 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
5933
5934 new = gen_rtx_SUBREG (tmode, inner, final_word);
5935 }
5936 else
5937 new = inner;
5938 }
5939 else
5940 new = force_to_mode (inner, tmode,
5941 len >= HOST_BITS_PER_WIDE_INT
5942 ? ~(unsigned HOST_WIDE_INT) 0
5943 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
5944 NULL_RTX, 0);
5945
5946 /* If this extraction is going into the destination of a SET,
5947 make a STRICT_LOW_PART unless we made a MEM. */
5948
5949 if (in_dest)
5950 return (GET_CODE (new) == MEM ? new
5951 : (GET_CODE (new) != SUBREG
5952 ? gen_rtx_CLOBBER (tmode, const0_rtx)
5953 : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
5954
5955 if (mode == tmode)
5956 return new;
5957
5958 /* If we know that no extraneous bits are set, and that the high
5959 bit is not set, convert the extraction to the cheaper of
5960 sign and zero extension, that are equivalent in these cases. */
5961 if (flag_expensive_optimizations
5962 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
5963 && ((nonzero_bits (new, tmode)
5964 & ~(((unsigned HOST_WIDE_INT)
5965 GET_MODE_MASK (tmode))
5966 >> 1))
5967 == 0)))
5968 {
5969 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
5970 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
5971
5972 /* Prefer ZERO_EXTENSION, since it gives more information to
5973 backends. */
5974 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
5975 return temp;
5976 return temp1;
5977 }
5978
5979 /* Otherwise, sign- or zero-extend unless we already are in the
5980 proper mode. */
5981
5982 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
5983 mode, new));
5984 }
5985
5986 /* Unless this is a COMPARE or we have a funny memory reference,
5987 don't do anything with zero-extending field extracts starting at
5988 the low-order bit since they are simple AND operations. */
5989 if (pos_rtx == 0 && pos == 0 && ! in_dest
5990 && ! in_compare && ! spans_byte && unsignedp)
5991 return 0;
5992
5993 /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
5994 we would be spanning bytes or if the position is not a constant and the
5995 length is not 1. In all other cases, we would only be going outside
5996 our object in cases when an original shift would have been
5997 undefined. */
5998 if (! spans_byte && GET_CODE (inner) == MEM
5999 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6000 || (pos_rtx != 0 && len != 1)))
6001 return 0;
6002
6003 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6004 and the mode for the result. */
6005 #ifdef HAVE_insv
6006 if (in_dest)
6007 {
6008 wanted_inner_reg_mode
6009 = insn_data[(int) CODE_FOR_insv].operand[0].mode;
6010 if (wanted_inner_reg_mode == VOIDmode)
6011 wanted_inner_reg_mode = word_mode;
6012
6013 pos_mode = insn_data[(int) CODE_FOR_insv].operand[2].mode;
6014 if (pos_mode == VOIDmode)
6015 pos_mode = word_mode;
6016
6017 extraction_mode = insn_data[(int) CODE_FOR_insv].operand[3].mode;
6018 if (extraction_mode == VOIDmode)
6019 extraction_mode = word_mode;
6020 }
6021 #endif
6022
6023 #ifdef HAVE_extzv
6024 if (! in_dest && unsignedp)
6025 {
6026 wanted_inner_reg_mode
6027 = insn_data[(int) CODE_FOR_extzv].operand[1].mode;
6028 if (wanted_inner_reg_mode == VOIDmode)
6029 wanted_inner_reg_mode = word_mode;
6030
6031 pos_mode = insn_data[(int) CODE_FOR_extzv].operand[3].mode;
6032 if (pos_mode == VOIDmode)
6033 pos_mode = word_mode;
6034
6035 extraction_mode = insn_data[(int) CODE_FOR_extzv].operand[0].mode;
6036 if (extraction_mode == VOIDmode)
6037 extraction_mode = word_mode;
6038 }
6039 #endif
6040
6041 #ifdef HAVE_extv
6042 if (! in_dest && ! unsignedp)
6043 {
6044 wanted_inner_reg_mode
6045 = insn_data[(int) CODE_FOR_extv].operand[1].mode;
6046 if (wanted_inner_reg_mode == VOIDmode)
6047 wanted_inner_reg_mode = word_mode;
6048
6049 pos_mode = insn_data[(int) CODE_FOR_extv].operand[3].mode;
6050 if (pos_mode == VOIDmode)
6051 pos_mode = word_mode;
6052
6053 extraction_mode = insn_data[(int) CODE_FOR_extv].operand[0].mode;
6054 if (extraction_mode == VOIDmode)
6055 extraction_mode = word_mode;
6056 }
6057 #endif
6058
6059 /* Never narrow an object, since that might not be safe. */
6060
6061 if (mode != VOIDmode
6062 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6063 extraction_mode = mode;
6064
6065 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6066 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6067 pos_mode = GET_MODE (pos_rtx);
6068
6069 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6070 if we have to change the mode of memory and cannot, the desired mode is
6071 EXTRACTION_MODE. */
6072 if (GET_CODE (inner) != MEM)
6073 wanted_inner_mode = wanted_inner_reg_mode;
6074 else if (inner_mode != wanted_inner_mode
6075 && (mode_dependent_address_p (XEXP (inner, 0))
6076 || MEM_VOLATILE_P (inner)))
6077 wanted_inner_mode = extraction_mode;
6078
6079 orig_pos = pos;
6080
6081 if (BITS_BIG_ENDIAN)
6082 {
6083 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6084 BITS_BIG_ENDIAN style. If position is constant, compute new
6085 position. Otherwise, build subtraction.
6086 Note that POS is relative to the mode of the original argument.
6087 If it's a MEM we need to recompute POS relative to that.
6088 However, if we're extracting from (or inserting into) a register,
6089 we want to recompute POS relative to wanted_inner_mode. */
6090 int width = (GET_CODE (inner) == MEM
6091 ? GET_MODE_BITSIZE (is_mode)
6092 : GET_MODE_BITSIZE (wanted_inner_mode));
6093
6094 if (pos_rtx == 0)
6095 pos = width - len - pos;
6096 else
6097 pos_rtx
6098 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6099 /* POS may be less than 0 now, but we check for that below.
6100 Note that it can only be less than 0 if GET_CODE (inner) != MEM. */
6101 }
6102
6103 /* If INNER has a wider mode, make it smaller. If this is a constant
6104 extract, try to adjust the byte to point to the byte containing
6105 the value. */
6106 if (wanted_inner_mode != VOIDmode
6107 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6108 && ((GET_CODE (inner) == MEM
6109 && (inner_mode == wanted_inner_mode
6110 || (! mode_dependent_address_p (XEXP (inner, 0))
6111 && ! MEM_VOLATILE_P (inner))))))
6112 {
6113 int offset = 0;
6114
6115 /* The computations below will be correct if the machine is big
6116 endian in both bits and bytes or little endian in bits and bytes.
6117 If it is mixed, we must adjust. */
6118
6119 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6120 adjust OFFSET to compensate. */
6121 if (BYTES_BIG_ENDIAN
6122 && ! spans_byte
6123 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6124 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6125
6126 /* If this is a constant position, we can move to the desired byte. */
6127 if (pos_rtx == 0)
6128 {
6129 offset += pos / BITS_PER_UNIT;
6130 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6131 }
6132
6133 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6134 && ! spans_byte
6135 && is_mode != wanted_inner_mode)
6136 offset = (GET_MODE_SIZE (is_mode)
6137 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6138
6139 if (offset != 0 || inner_mode != wanted_inner_mode)
6140 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6141 }
6142
6143 /* If INNER is not memory, we can always get it into the proper mode. If we
6144 are changing its mode, POS must be a constant and smaller than the size
6145 of the new mode. */
6146 else if (GET_CODE (inner) != MEM)
6147 {
6148 if (GET_MODE (inner) != wanted_inner_mode
6149 && (pos_rtx != 0
6150 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6151 return 0;
6152
6153 inner = force_to_mode (inner, wanted_inner_mode,
6154 pos_rtx
6155 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6156 ? ~(unsigned HOST_WIDE_INT) 0
6157 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6158 << orig_pos),
6159 NULL_RTX, 0);
6160 }
6161
6162 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6163 have to zero extend. Otherwise, we can just use a SUBREG. */
6164 if (pos_rtx != 0
6165 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6166 {
6167 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6168
6169 /* If we know that no extraneous bits are set, and that the high
6170 bit is not set, convert extraction to cheaper one - eighter
6171 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6172 cases. */
6173 if (flag_expensive_optimizations
6174 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6175 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6176 & ~(((unsigned HOST_WIDE_INT)
6177 GET_MODE_MASK (GET_MODE (pos_rtx)))
6178 >> 1))
6179 == 0)))
6180 {
6181 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6182
6183 /* Prefer ZERO_EXTENSION, since it gives more information to
6184 backends. */
6185 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6186 temp = temp1;
6187 }
6188 pos_rtx = temp;
6189 }
6190 else if (pos_rtx != 0
6191 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6192 pos_rtx = gen_lowpart_for_combine (pos_mode, pos_rtx);
6193
6194 /* Make POS_RTX unless we already have it and it is correct. If we don't
6195 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6196 be a CONST_INT. */
6197 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6198 pos_rtx = orig_pos_rtx;
6199
6200 else if (pos_rtx == 0)
6201 pos_rtx = GEN_INT (pos);
6202
6203 /* Make the required operation. See if we can use existing rtx. */
6204 new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6205 extraction_mode, inner, GEN_INT (len), pos_rtx);
6206 if (! in_dest)
6207 new = gen_lowpart_for_combine (mode, new);
6208
6209 return new;
6210 }
6211 \f
6212 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6213 with any other operations in X. Return X without that shift if so. */
6214
6215 static rtx
6216 extract_left_shift (x, count)
6217 rtx x;
6218 int count;
6219 {
6220 enum rtx_code code = GET_CODE (x);
6221 enum machine_mode mode = GET_MODE (x);
6222 rtx tem;
6223
6224 switch (code)
6225 {
6226 case ASHIFT:
6227 /* This is the shift itself. If it is wide enough, we will return
6228 either the value being shifted if the shift count is equal to
6229 COUNT or a shift for the difference. */
6230 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6231 && INTVAL (XEXP (x, 1)) >= count)
6232 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6233 INTVAL (XEXP (x, 1)) - count);
6234 break;
6235
6236 case NEG: case NOT:
6237 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6238 return simplify_gen_unary (code, mode, tem, mode);
6239
6240 break;
6241
6242 case PLUS: case IOR: case XOR: case AND:
6243 /* If we can safely shift this constant and we find the inner shift,
6244 make a new operation. */
6245 if (GET_CODE (XEXP (x,1)) == CONST_INT
6246 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6247 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6248 return gen_binary (code, mode, tem,
6249 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6250
6251 break;
6252
6253 default:
6254 break;
6255 }
6256
6257 return 0;
6258 }
6259 \f
6260 /* Look at the expression rooted at X. Look for expressions
6261 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6262 Form these expressions.
6263
6264 Return the new rtx, usually just X.
6265
6266 Also, for machines like the Vax that don't have logical shift insns,
6267 try to convert logical to arithmetic shift operations in cases where
6268 they are equivalent. This undoes the canonicalizations to logical
6269 shifts done elsewhere.
6270
6271 We try, as much as possible, to re-use rtl expressions to save memory.
6272
6273 IN_CODE says what kind of expression we are processing. Normally, it is
6274 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6275 being kludges), it is MEM. When processing the arguments of a comparison
6276 or a COMPARE against zero, it is COMPARE. */
6277
6278 static rtx
6279 make_compound_operation (x, in_code)
6280 rtx x;
6281 enum rtx_code in_code;
6282 {
6283 enum rtx_code code = GET_CODE (x);
6284 enum machine_mode mode = GET_MODE (x);
6285 int mode_width = GET_MODE_BITSIZE (mode);
6286 rtx rhs, lhs;
6287 enum rtx_code next_code;
6288 int i;
6289 rtx new = 0;
6290 rtx tem;
6291 const char *fmt;
6292
6293 /* Select the code to be used in recursive calls. Once we are inside an
6294 address, we stay there. If we have a comparison, set to COMPARE,
6295 but once inside, go back to our default of SET. */
6296
6297 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6298 : ((code == COMPARE || GET_RTX_CLASS (code) == '<')
6299 && XEXP (x, 1) == const0_rtx) ? COMPARE
6300 : in_code == COMPARE ? SET : in_code);
6301
6302 /* Process depending on the code of this operation. If NEW is set
6303 non-zero, it will be returned. */
6304
6305 switch (code)
6306 {
6307 case ASHIFT:
6308 /* Convert shifts by constants into multiplications if inside
6309 an address. */
6310 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6311 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6312 && INTVAL (XEXP (x, 1)) >= 0)
6313 {
6314 new = make_compound_operation (XEXP (x, 0), next_code);
6315 new = gen_rtx_MULT (mode, new,
6316 GEN_INT ((HOST_WIDE_INT) 1
6317 << INTVAL (XEXP (x, 1))));
6318 }
6319 break;
6320
6321 case AND:
6322 /* If the second operand is not a constant, we can't do anything
6323 with it. */
6324 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6325 break;
6326
6327 /* If the constant is a power of two minus one and the first operand
6328 is a logical right shift, make an extraction. */
6329 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6330 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6331 {
6332 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6333 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6334 0, in_code == COMPARE);
6335 }
6336
6337 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6338 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6339 && subreg_lowpart_p (XEXP (x, 0))
6340 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6341 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6342 {
6343 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6344 next_code);
6345 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6346 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6347 0, in_code == COMPARE);
6348 }
6349 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6350 else if ((GET_CODE (XEXP (x, 0)) == XOR
6351 || GET_CODE (XEXP (x, 0)) == IOR)
6352 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6353 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6354 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6355 {
6356 /* Apply the distributive law, and then try to make extractions. */
6357 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6358 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6359 XEXP (x, 1)),
6360 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6361 XEXP (x, 1)));
6362 new = make_compound_operation (new, in_code);
6363 }
6364
6365 /* If we are have (and (rotate X C) M) and C is larger than the number
6366 of bits in M, this is an extraction. */
6367
6368 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6369 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6370 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6371 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6372 {
6373 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6374 new = make_extraction (mode, new,
6375 (GET_MODE_BITSIZE (mode)
6376 - INTVAL (XEXP (XEXP (x, 0), 1))),
6377 NULL_RTX, i, 1, 0, in_code == COMPARE);
6378 }
6379
6380 /* On machines without logical shifts, if the operand of the AND is
6381 a logical shift and our mask turns off all the propagated sign
6382 bits, we can replace the logical shift with an arithmetic shift. */
6383 else if (ashr_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
6384 && (lshr_optab->handlers[(int) mode].insn_code
6385 == CODE_FOR_nothing)
6386 && GET_CODE (XEXP (x, 0)) == LSHIFTRT
6387 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6388 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6389 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6390 && mode_width <= HOST_BITS_PER_WIDE_INT)
6391 {
6392 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6393
6394 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6395 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6396 SUBST (XEXP (x, 0),
6397 gen_rtx_ASHIFTRT (mode,
6398 make_compound_operation
6399 (XEXP (XEXP (x, 0), 0), next_code),
6400 XEXP (XEXP (x, 0), 1)));
6401 }
6402
6403 /* If the constant is one less than a power of two, this might be
6404 representable by an extraction even if no shift is present.
6405 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6406 we are in a COMPARE. */
6407 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6408 new = make_extraction (mode,
6409 make_compound_operation (XEXP (x, 0),
6410 next_code),
6411 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6412
6413 /* If we are in a comparison and this is an AND with a power of two,
6414 convert this into the appropriate bit extract. */
6415 else if (in_code == COMPARE
6416 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6417 new = make_extraction (mode,
6418 make_compound_operation (XEXP (x, 0),
6419 next_code),
6420 i, NULL_RTX, 1, 1, 0, 1);
6421
6422 break;
6423
6424 case LSHIFTRT:
6425 /* If the sign bit is known to be zero, replace this with an
6426 arithmetic shift. */
6427 if (ashr_optab->handlers[(int) mode].insn_code == CODE_FOR_nothing
6428 && lshr_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
6429 && mode_width <= HOST_BITS_PER_WIDE_INT
6430 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6431 {
6432 new = gen_rtx_ASHIFTRT (mode,
6433 make_compound_operation (XEXP (x, 0),
6434 next_code),
6435 XEXP (x, 1));
6436 break;
6437 }
6438
6439 /* ... fall through ... */
6440
6441 case ASHIFTRT:
6442 lhs = XEXP (x, 0);
6443 rhs = XEXP (x, 1);
6444
6445 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6446 this is a SIGN_EXTRACT. */
6447 if (GET_CODE (rhs) == CONST_INT
6448 && GET_CODE (lhs) == ASHIFT
6449 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6450 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6451 {
6452 new = make_compound_operation (XEXP (lhs, 0), next_code);
6453 new = make_extraction (mode, new,
6454 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6455 NULL_RTX, mode_width - INTVAL (rhs),
6456 code == LSHIFTRT, 0, in_code == COMPARE);
6457 break;
6458 }
6459
6460 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6461 If so, try to merge the shifts into a SIGN_EXTEND. We could
6462 also do this for some cases of SIGN_EXTRACT, but it doesn't
6463 seem worth the effort; the case checked for occurs on Alpha. */
6464
6465 if (GET_RTX_CLASS (GET_CODE (lhs)) != 'o'
6466 && ! (GET_CODE (lhs) == SUBREG
6467 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (lhs))) == 'o'))
6468 && GET_CODE (rhs) == CONST_INT
6469 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6470 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6471 new = make_extraction (mode, make_compound_operation (new, next_code),
6472 0, NULL_RTX, mode_width - INTVAL (rhs),
6473 code == LSHIFTRT, 0, in_code == COMPARE);
6474
6475 break;
6476
6477 case SUBREG:
6478 /* Call ourselves recursively on the inner expression. If we are
6479 narrowing the object and it has a different RTL code from
6480 what it originally did, do this SUBREG as a force_to_mode. */
6481
6482 tem = make_compound_operation (SUBREG_REG (x), in_code);
6483 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6484 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6485 && subreg_lowpart_p (x))
6486 {
6487 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6488 NULL_RTX, 0);
6489
6490 /* If we have something other than a SUBREG, we might have
6491 done an expansion, so rerun outselves. */
6492 if (GET_CODE (newer) != SUBREG)
6493 newer = make_compound_operation (newer, in_code);
6494
6495 return newer;
6496 }
6497
6498 /* If this is a paradoxical subreg, and the new code is a sign or
6499 zero extension, omit the subreg and widen the extension. If it
6500 is a regular subreg, we can still get rid of the subreg by not
6501 widening so much, or in fact removing the extension entirely. */
6502 if ((GET_CODE (tem) == SIGN_EXTEND
6503 || GET_CODE (tem) == ZERO_EXTEND)
6504 && subreg_lowpart_p (x))
6505 {
6506 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (tem))
6507 || (GET_MODE_SIZE (mode) >
6508 GET_MODE_SIZE (GET_MODE (XEXP (tem, 0)))))
6509 tem = gen_rtx_fmt_e (GET_CODE (tem), mode, XEXP (tem, 0));
6510 else
6511 tem = gen_lowpart_for_combine (mode, XEXP (tem, 0));
6512 return tem;
6513 }
6514 break;
6515
6516 default:
6517 break;
6518 }
6519
6520 if (new)
6521 {
6522 x = gen_lowpart_for_combine (mode, new);
6523 code = GET_CODE (x);
6524 }
6525
6526 /* Now recursively process each operand of this operation. */
6527 fmt = GET_RTX_FORMAT (code);
6528 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6529 if (fmt[i] == 'e')
6530 {
6531 new = make_compound_operation (XEXP (x, i), next_code);
6532 SUBST (XEXP (x, i), new);
6533 }
6534
6535 return x;
6536 }
6537 \f
6538 /* Given M see if it is a value that would select a field of bits
6539 within an item, but not the entire word. Return -1 if not.
6540 Otherwise, return the starting position of the field, where 0 is the
6541 low-order bit.
6542
6543 *PLEN is set to the length of the field. */
6544
6545 static int
6546 get_pos_from_mask (m, plen)
6547 unsigned HOST_WIDE_INT m;
6548 unsigned HOST_WIDE_INT *plen;
6549 {
6550 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6551 int pos = exact_log2 (m & -m);
6552 int len;
6553
6554 if (pos < 0)
6555 return -1;
6556
6557 /* Now shift off the low-order zero bits and see if we have a power of
6558 two minus 1. */
6559 len = exact_log2 ((m >> pos) + 1);
6560
6561 if (len <= 0)
6562 return -1;
6563
6564 *plen = len;
6565 return pos;
6566 }
6567 \f
6568 /* See if X can be simplified knowing that we will only refer to it in
6569 MODE and will only refer to those bits that are nonzero in MASK.
6570 If other bits are being computed or if masking operations are done
6571 that select a superset of the bits in MASK, they can sometimes be
6572 ignored.
6573
6574 Return a possibly simplified expression, but always convert X to
6575 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6576
6577 Also, if REG is non-zero and X is a register equal in value to REG,
6578 replace X with REG.
6579
6580 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6581 are all off in X. This is used when X will be complemented, by either
6582 NOT, NEG, or XOR. */
6583
6584 static rtx
6585 force_to_mode (x, mode, mask, reg, just_select)
6586 rtx x;
6587 enum machine_mode mode;
6588 unsigned HOST_WIDE_INT mask;
6589 rtx reg;
6590 int just_select;
6591 {
6592 enum rtx_code code = GET_CODE (x);
6593 int next_select = just_select || code == XOR || code == NOT || code == NEG;
6594 enum machine_mode op_mode;
6595 unsigned HOST_WIDE_INT fuller_mask, nonzero;
6596 rtx op0, op1, temp;
6597
6598 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6599 code below will do the wrong thing since the mode of such an
6600 expression is VOIDmode.
6601
6602 Also do nothing if X is a CLOBBER; this can happen if X was
6603 the return value from a call to gen_lowpart_for_combine. */
6604 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6605 return x;
6606
6607 /* We want to perform the operation is its present mode unless we know
6608 that the operation is valid in MODE, in which case we do the operation
6609 in MODE. */
6610 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6611 && code_to_optab[(int) code] != 0
6612 && (code_to_optab[(int) code]->handlers[(int) mode].insn_code
6613 != CODE_FOR_nothing))
6614 ? mode : GET_MODE (x));
6615
6616 /* It is not valid to do a right-shift in a narrower mode
6617 than the one it came in with. */
6618 if ((code == LSHIFTRT || code == ASHIFTRT)
6619 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6620 op_mode = GET_MODE (x);
6621
6622 /* Truncate MASK to fit OP_MODE. */
6623 if (op_mode)
6624 mask &= GET_MODE_MASK (op_mode);
6625
6626 /* When we have an arithmetic operation, or a shift whose count we
6627 do not know, we need to assume that all bit the up to the highest-order
6628 bit in MASK will be needed. This is how we form such a mask. */
6629 if (op_mode)
6630 fuller_mask = (GET_MODE_BITSIZE (op_mode) >= HOST_BITS_PER_WIDE_INT
6631 ? GET_MODE_MASK (op_mode)
6632 : (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
6633 - 1));
6634 else
6635 fuller_mask = ~(HOST_WIDE_INT) 0;
6636
6637 /* Determine what bits of X are guaranteed to be (non)zero. */
6638 nonzero = nonzero_bits (x, mode);
6639
6640 /* If none of the bits in X are needed, return a zero. */
6641 if (! just_select && (nonzero & mask) == 0)
6642 return const0_rtx;
6643
6644 /* If X is a CONST_INT, return a new one. Do this here since the
6645 test below will fail. */
6646 if (GET_CODE (x) == CONST_INT)
6647 {
6648 HOST_WIDE_INT cval = INTVAL (x) & mask;
6649 int width = GET_MODE_BITSIZE (mode);
6650
6651 /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
6652 number, sign extend it. */
6653 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6654 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6655 cval |= (HOST_WIDE_INT) -1 << width;
6656
6657 return GEN_INT (cval);
6658 }
6659
6660 /* If X is narrower than MODE and we want all the bits in X's mode, just
6661 get X in the proper mode. */
6662 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
6663 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
6664 return gen_lowpart_for_combine (mode, x);
6665
6666 /* If we aren't changing the mode, X is not a SUBREG, and all zero bits in
6667 MASK are already known to be zero in X, we need not do anything. */
6668 if (GET_MODE (x) == mode && code != SUBREG && (~mask & nonzero) == 0)
6669 return x;
6670
6671 switch (code)
6672 {
6673 case CLOBBER:
6674 /* If X is a (clobber (const_int)), return it since we know we are
6675 generating something that won't match. */
6676 return x;
6677
6678 case USE:
6679 /* X is a (use (mem ..)) that was made from a bit-field extraction that
6680 spanned the boundary of the MEM. If we are now masking so it is
6681 within that boundary, we don't need the USE any more. */
6682 if (! BITS_BIG_ENDIAN
6683 && (mask & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6684 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6685 break;
6686
6687 case SIGN_EXTEND:
6688 case ZERO_EXTEND:
6689 case ZERO_EXTRACT:
6690 case SIGN_EXTRACT:
6691 x = expand_compound_operation (x);
6692 if (GET_CODE (x) != code)
6693 return force_to_mode (x, mode, mask, reg, next_select);
6694 break;
6695
6696 case REG:
6697 if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
6698 || rtx_equal_p (reg, get_last_value (x))))
6699 x = reg;
6700 break;
6701
6702 case SUBREG:
6703 if (subreg_lowpart_p (x)
6704 /* We can ignore the effect of this SUBREG if it narrows the mode or
6705 if the constant masks to zero all the bits the mode doesn't
6706 have. */
6707 && ((GET_MODE_SIZE (GET_MODE (x))
6708 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6709 || (0 == (mask
6710 & GET_MODE_MASK (GET_MODE (x))
6711 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
6712 return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
6713 break;
6714
6715 case AND:
6716 /* If this is an AND with a constant, convert it into an AND
6717 whose constant is the AND of that constant with MASK. If it
6718 remains an AND of MASK, delete it since it is redundant. */
6719
6720 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6721 {
6722 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
6723 mask & INTVAL (XEXP (x, 1)));
6724
6725 /* If X is still an AND, see if it is an AND with a mask that
6726 is just some low-order bits. If so, and it is MASK, we don't
6727 need it. */
6728
6729 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6730 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) == mask)
6731 x = XEXP (x, 0);
6732
6733 /* If it remains an AND, try making another AND with the bits
6734 in the mode mask that aren't in MASK turned on. If the
6735 constant in the AND is wide enough, this might make a
6736 cheaper constant. */
6737
6738 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6739 && GET_MODE_MASK (GET_MODE (x)) != mask
6740 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
6741 {
6742 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
6743 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
6744 int width = GET_MODE_BITSIZE (GET_MODE (x));
6745 rtx y;
6746
6747 /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
6748 number, sign extend it. */
6749 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6750 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6751 cval |= (HOST_WIDE_INT) -1 << width;
6752
6753 y = gen_binary (AND, GET_MODE (x), XEXP (x, 0), GEN_INT (cval));
6754 if (rtx_cost (y, SET) < rtx_cost (x, SET))
6755 x = y;
6756 }
6757
6758 break;
6759 }
6760
6761 goto binop;
6762
6763 case PLUS:
6764 /* In (and (plus FOO C1) M), if M is a mask that just turns off
6765 low-order bits (as in an alignment operation) and FOO is already
6766 aligned to that boundary, mask C1 to that boundary as well.
6767 This may eliminate that PLUS and, later, the AND. */
6768
6769 {
6770 unsigned int width = GET_MODE_BITSIZE (mode);
6771 unsigned HOST_WIDE_INT smask = mask;
6772
6773 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
6774 number, sign extend it. */
6775
6776 if (width < HOST_BITS_PER_WIDE_INT
6777 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6778 smask |= (HOST_WIDE_INT) -1 << width;
6779
6780 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6781 && exact_log2 (- smask) >= 0)
6782 {
6783 #ifdef STACK_BIAS
6784 if (STACK_BIAS
6785 && (XEXP (x, 0) == stack_pointer_rtx
6786 || XEXP (x, 0) == frame_pointer_rtx))
6787 {
6788 int sp_alignment = STACK_BOUNDARY / BITS_PER_UNIT;
6789 unsigned HOST_WIDE_INT sp_mask = GET_MODE_MASK (mode);
6790
6791 sp_mask &= ~(sp_alignment - 1);
6792 if ((sp_mask & ~smask) == 0
6793 && ((INTVAL (XEXP (x, 1)) - STACK_BIAS) & ~smask) != 0)
6794 return force_to_mode (plus_constant (XEXP (x, 0),
6795 ((INTVAL (XEXP (x, 1)) -
6796 STACK_BIAS) & smask)
6797 + STACK_BIAS),
6798 mode, smask, reg, next_select);
6799 }
6800 #endif
6801 if ((nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
6802 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
6803 return force_to_mode (plus_constant (XEXP (x, 0),
6804 (INTVAL (XEXP (x, 1))
6805 & smask)),
6806 mode, smask, reg, next_select);
6807 }
6808 }
6809
6810 /* ... fall through ... */
6811
6812 case MULT:
6813 /* For PLUS, MINUS and MULT, we need any bits less significant than the
6814 most significant bit in MASK since carries from those bits will
6815 affect the bits we are interested in. */
6816 mask = fuller_mask;
6817 goto binop;
6818
6819 case MINUS:
6820 /* If X is (minus C Y) where C's least set bit is larger than any bit
6821 in the mask, then we may replace with (neg Y). */
6822 if (GET_CODE (XEXP (x, 0)) == CONST_INT
6823 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
6824 & -INTVAL (XEXP (x, 0))))
6825 > mask))
6826 {
6827 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
6828 GET_MODE (x));
6829 return force_to_mode (x, mode, mask, reg, next_select);
6830 }
6831
6832 /* Similarly, if C contains every bit in the mask, then we may
6833 replace with (not Y). */
6834 if (GET_CODE (XEXP (x, 0)) == CONST_INT
6835 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) mask)
6836 == INTVAL (XEXP (x, 0))))
6837 {
6838 x = simplify_gen_unary (NOT, GET_MODE (x),
6839 XEXP (x, 1), GET_MODE (x));
6840 return force_to_mode (x, mode, mask, reg, next_select);
6841 }
6842
6843 mask = fuller_mask;
6844 goto binop;
6845
6846 case IOR:
6847 case XOR:
6848 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
6849 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
6850 operation which may be a bitfield extraction. Ensure that the
6851 constant we form is not wider than the mode of X. */
6852
6853 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6854 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6855 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6856 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6857 && GET_CODE (XEXP (x, 1)) == CONST_INT
6858 && ((INTVAL (XEXP (XEXP (x, 0), 1))
6859 + floor_log2 (INTVAL (XEXP (x, 1))))
6860 < GET_MODE_BITSIZE (GET_MODE (x)))
6861 && (INTVAL (XEXP (x, 1))
6862 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
6863 {
6864 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
6865 << INTVAL (XEXP (XEXP (x, 0), 1)));
6866 temp = gen_binary (GET_CODE (x), GET_MODE (x),
6867 XEXP (XEXP (x, 0), 0), temp);
6868 x = gen_binary (LSHIFTRT, GET_MODE (x), temp,
6869 XEXP (XEXP (x, 0), 1));
6870 return force_to_mode (x, mode, mask, reg, next_select);
6871 }
6872
6873 binop:
6874 /* For most binary operations, just propagate into the operation and
6875 change the mode if we have an operation of that mode. */
6876
6877 op0 = gen_lowpart_for_combine (op_mode,
6878 force_to_mode (XEXP (x, 0), mode, mask,
6879 reg, next_select));
6880 op1 = gen_lowpart_for_combine (op_mode,
6881 force_to_mode (XEXP (x, 1), mode, mask,
6882 reg, next_select));
6883
6884 /* If OP1 is a CONST_INT and X is an IOR or XOR, clear bits outside
6885 MASK since OP1 might have been sign-extended but we never want
6886 to turn on extra bits, since combine might have previously relied
6887 on them being off. */
6888 if (GET_CODE (op1) == CONST_INT && (code == IOR || code == XOR)
6889 && (INTVAL (op1) & mask) != 0)
6890 op1 = GEN_INT (INTVAL (op1) & mask);
6891
6892 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
6893 x = gen_binary (code, op_mode, op0, op1);
6894 break;
6895
6896 case ASHIFT:
6897 /* For left shifts, do the same, but just for the first operand.
6898 However, we cannot do anything with shifts where we cannot
6899 guarantee that the counts are smaller than the size of the mode
6900 because such a count will have a different meaning in a
6901 wider mode. */
6902
6903 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
6904 && INTVAL (XEXP (x, 1)) >= 0
6905 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
6906 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
6907 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
6908 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
6909 break;
6910
6911 /* If the shift count is a constant and we can do arithmetic in
6912 the mode of the shift, refine which bits we need. Otherwise, use the
6913 conservative form of the mask. */
6914 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6915 && INTVAL (XEXP (x, 1)) >= 0
6916 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
6917 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
6918 mask >>= INTVAL (XEXP (x, 1));
6919 else
6920 mask = fuller_mask;
6921
6922 op0 = gen_lowpart_for_combine (op_mode,
6923 force_to_mode (XEXP (x, 0), op_mode,
6924 mask, reg, next_select));
6925
6926 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
6927 x = gen_binary (code, op_mode, op0, XEXP (x, 1));
6928 break;
6929
6930 case LSHIFTRT:
6931 /* Here we can only do something if the shift count is a constant,
6932 this shift constant is valid for the host, and we can do arithmetic
6933 in OP_MODE. */
6934
6935 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6936 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6937 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
6938 {
6939 rtx inner = XEXP (x, 0);
6940 unsigned HOST_WIDE_INT inner_mask;
6941
6942 /* Select the mask of the bits we need for the shift operand. */
6943 inner_mask = mask << INTVAL (XEXP (x, 1));
6944
6945 /* We can only change the mode of the shift if we can do arithmetic
6946 in the mode of the shift and INNER_MASK is no wider than the
6947 width of OP_MODE. */
6948 if (GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT
6949 || (inner_mask & ~GET_MODE_MASK (op_mode)) != 0)
6950 op_mode = GET_MODE (x);
6951
6952 inner = force_to_mode (inner, op_mode, inner_mask, reg, next_select);
6953
6954 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
6955 x = gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
6956 }
6957
6958 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
6959 shift and AND produces only copies of the sign bit (C2 is one less
6960 than a power of two), we can do this with just a shift. */
6961
6962 if (GET_CODE (x) == LSHIFTRT
6963 && GET_CODE (XEXP (x, 1)) == CONST_INT
6964 /* The shift puts one of the sign bit copies in the least significant
6965 bit. */
6966 && ((INTVAL (XEXP (x, 1))
6967 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
6968 >= GET_MODE_BITSIZE (GET_MODE (x)))
6969 && exact_log2 (mask + 1) >= 0
6970 /* Number of bits left after the shift must be more than the mask
6971 needs. */
6972 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
6973 <= GET_MODE_BITSIZE (GET_MODE (x)))
6974 /* Must be more sign bit copies than the mask needs. */
6975 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
6976 >= exact_log2 (mask + 1)))
6977 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
6978 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
6979 - exact_log2 (mask + 1)));
6980
6981 goto shiftrt;
6982
6983 case ASHIFTRT:
6984 /* If we are just looking for the sign bit, we don't need this shift at
6985 all, even if it has a variable count. */
6986 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6987 && (mask == ((unsigned HOST_WIDE_INT) 1
6988 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
6989 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6990
6991 /* If this is a shift by a constant, get a mask that contains those bits
6992 that are not copies of the sign bit. We then have two cases: If
6993 MASK only includes those bits, this can be a logical shift, which may
6994 allow simplifications. If MASK is a single-bit field not within
6995 those bits, we are requesting a copy of the sign bit and hence can
6996 shift the sign bit to the appropriate location. */
6997
6998 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
6999 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7000 {
7001 int i = -1;
7002
7003 /* If the considered data is wider then HOST_WIDE_INT, we can't
7004 represent a mask for all its bits in a single scalar.
7005 But we only care about the lower bits, so calculate these. */
7006
7007 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7008 {
7009 nonzero = ~(HOST_WIDE_INT) 0;
7010
7011 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7012 is the number of bits a full-width mask would have set.
7013 We need only shift if these are fewer than nonzero can
7014 hold. If not, we must keep all bits set in nonzero. */
7015
7016 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7017 < HOST_BITS_PER_WIDE_INT)
7018 nonzero >>= INTVAL (XEXP (x, 1))
7019 + HOST_BITS_PER_WIDE_INT
7020 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7021 }
7022 else
7023 {
7024 nonzero = GET_MODE_MASK (GET_MODE (x));
7025 nonzero >>= INTVAL (XEXP (x, 1));
7026 }
7027
7028 if ((mask & ~nonzero) == 0
7029 || (i = exact_log2 (mask)) >= 0)
7030 {
7031 x = simplify_shift_const
7032 (x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7033 i < 0 ? INTVAL (XEXP (x, 1))
7034 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7035
7036 if (GET_CODE (x) != ASHIFTRT)
7037 return force_to_mode (x, mode, mask, reg, next_select);
7038 }
7039 }
7040
7041 /* If MASK is 1, convert this to a LSHIFTRT. This can be done
7042 even if the shift count isn't a constant. */
7043 if (mask == 1)
7044 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0), XEXP (x, 1));
7045
7046 shiftrt:
7047
7048 /* If this is a zero- or sign-extension operation that just affects bits
7049 we don't care about, remove it. Be sure the call above returned
7050 something that is still a shift. */
7051
7052 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7053 && GET_CODE (XEXP (x, 1)) == CONST_INT
7054 && INTVAL (XEXP (x, 1)) >= 0
7055 && (INTVAL (XEXP (x, 1))
7056 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7057 && GET_CODE (XEXP (x, 0)) == ASHIFT
7058 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7059 && INTVAL (XEXP (XEXP (x, 0), 1)) == INTVAL (XEXP (x, 1)))
7060 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7061 reg, next_select);
7062
7063 break;
7064
7065 case ROTATE:
7066 case ROTATERT:
7067 /* If the shift count is constant and we can do computations
7068 in the mode of X, compute where the bits we care about are.
7069 Otherwise, we can't do anything. Don't change the mode of
7070 the shift or propagate MODE into the shift, though. */
7071 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7072 && INTVAL (XEXP (x, 1)) >= 0)
7073 {
7074 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7075 GET_MODE (x), GEN_INT (mask),
7076 XEXP (x, 1));
7077 if (temp && GET_CODE(temp) == CONST_INT)
7078 SUBST (XEXP (x, 0),
7079 force_to_mode (XEXP (x, 0), GET_MODE (x),
7080 INTVAL (temp), reg, next_select));
7081 }
7082 break;
7083
7084 case NEG:
7085 /* If we just want the low-order bit, the NEG isn't needed since it
7086 won't change the low-order bit. */
7087 if (mask == 1)
7088 return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
7089
7090 /* We need any bits less significant than the most significant bit in
7091 MASK since carries from those bits will affect the bits we are
7092 interested in. */
7093 mask = fuller_mask;
7094 goto unop;
7095
7096 case NOT:
7097 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7098 same as the XOR case above. Ensure that the constant we form is not
7099 wider than the mode of X. */
7100
7101 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7102 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7103 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7104 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7105 < GET_MODE_BITSIZE (GET_MODE (x)))
7106 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7107 {
7108 temp = GEN_INT (mask << INTVAL (XEXP (XEXP (x, 0), 1)));
7109 temp = gen_binary (XOR, GET_MODE (x), XEXP (XEXP (x, 0), 0), temp);
7110 x = gen_binary (LSHIFTRT, GET_MODE (x), temp, XEXP (XEXP (x, 0), 1));
7111
7112 return force_to_mode (x, mode, mask, reg, next_select);
7113 }
7114
7115 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7116 use the full mask inside the NOT. */
7117 mask = fuller_mask;
7118
7119 unop:
7120 op0 = gen_lowpart_for_combine (op_mode,
7121 force_to_mode (XEXP (x, 0), mode, mask,
7122 reg, next_select));
7123 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7124 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7125 break;
7126
7127 case NE:
7128 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7129 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7130 which is equal to STORE_FLAG_VALUE. */
7131 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7132 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7133 && nonzero_bits (XEXP (x, 0), mode) == STORE_FLAG_VALUE)
7134 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7135
7136 break;
7137
7138 case IF_THEN_ELSE:
7139 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7140 written in a narrower mode. We play it safe and do not do so. */
7141
7142 SUBST (XEXP (x, 1),
7143 gen_lowpart_for_combine (GET_MODE (x),
7144 force_to_mode (XEXP (x, 1), mode,
7145 mask, reg, next_select)));
7146 SUBST (XEXP (x, 2),
7147 gen_lowpart_for_combine (GET_MODE (x),
7148 force_to_mode (XEXP (x, 2), mode,
7149 mask, reg,next_select)));
7150 break;
7151
7152 default:
7153 break;
7154 }
7155
7156 /* Ensure we return a value of the proper mode. */
7157 return gen_lowpart_for_combine (mode, x);
7158 }
7159 \f
7160 /* Return nonzero if X is an expression that has one of two values depending on
7161 whether some other value is zero or nonzero. In that case, we return the
7162 value that is being tested, *PTRUE is set to the value if the rtx being
7163 returned has a nonzero value, and *PFALSE is set to the other alternative.
7164
7165 If we return zero, we set *PTRUE and *PFALSE to X. */
7166
7167 static rtx
7168 if_then_else_cond (x, ptrue, pfalse)
7169 rtx x;
7170 rtx *ptrue, *pfalse;
7171 {
7172 enum machine_mode mode = GET_MODE (x);
7173 enum rtx_code code = GET_CODE (x);
7174 rtx cond0, cond1, true0, true1, false0, false1;
7175 unsigned HOST_WIDE_INT nz;
7176
7177 /* If we are comparing a value against zero, we are done. */
7178 if ((code == NE || code == EQ)
7179 && GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) == 0)
7180 {
7181 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7182 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7183 return XEXP (x, 0);
7184 }
7185
7186 /* If this is a unary operation whose operand has one of two values, apply
7187 our opcode to compute those values. */
7188 else if (GET_RTX_CLASS (code) == '1'
7189 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7190 {
7191 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7192 *pfalse = simplify_gen_unary (code, mode, false0,
7193 GET_MODE (XEXP (x, 0)));
7194 return cond0;
7195 }
7196
7197 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7198 make can't possibly match and would suppress other optimizations. */
7199 else if (code == COMPARE)
7200 ;
7201
7202 /* If this is a binary operation, see if either side has only one of two
7203 values. If either one does or if both do and they are conditional on
7204 the same value, compute the new true and false values. */
7205 else if (GET_RTX_CLASS (code) == 'c' || GET_RTX_CLASS (code) == '2'
7206 || GET_RTX_CLASS (code) == '<')
7207 {
7208 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7209 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7210
7211 if ((cond0 != 0 || cond1 != 0)
7212 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7213 {
7214 /* If if_then_else_cond returned zero, then true/false are the
7215 same rtl. We must copy one of them to prevent invalid rtl
7216 sharing. */
7217 if (cond0 == 0)
7218 true0 = copy_rtx (true0);
7219 else if (cond1 == 0)
7220 true1 = copy_rtx (true1);
7221
7222 *ptrue = gen_binary (code, mode, true0, true1);
7223 *pfalse = gen_binary (code, mode, false0, false1);
7224 return cond0 ? cond0 : cond1;
7225 }
7226
7227 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7228 operands is zero when the other is non-zero, and vice-versa,
7229 and STORE_FLAG_VALUE is 1 or -1. */
7230
7231 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7232 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7233 || code == UMAX)
7234 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7235 {
7236 rtx op0 = XEXP (XEXP (x, 0), 1);
7237 rtx op1 = XEXP (XEXP (x, 1), 1);
7238
7239 cond0 = XEXP (XEXP (x, 0), 0);
7240 cond1 = XEXP (XEXP (x, 1), 0);
7241
7242 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
7243 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
7244 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7245 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7246 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7247 || ((swap_condition (GET_CODE (cond0))
7248 == combine_reversed_comparison_code (cond1))
7249 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7250 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7251 && ! side_effects_p (x))
7252 {
7253 *ptrue = gen_binary (MULT, mode, op0, const_true_rtx);
7254 *pfalse = gen_binary (MULT, mode,
7255 (code == MINUS
7256 ? simplify_gen_unary (NEG, mode, op1,
7257 mode)
7258 : op1),
7259 const_true_rtx);
7260 return cond0;
7261 }
7262 }
7263
7264 /* Similarly for MULT, AND and UMIN, execpt that for these the result
7265 is always zero. */
7266 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7267 && (code == MULT || code == AND || code == UMIN)
7268 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7269 {
7270 cond0 = XEXP (XEXP (x, 0), 0);
7271 cond1 = XEXP (XEXP (x, 1), 0);
7272
7273 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
7274 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
7275 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7276 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7277 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7278 || ((swap_condition (GET_CODE (cond0))
7279 == combine_reversed_comparison_code (cond1))
7280 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7281 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7282 && ! side_effects_p (x))
7283 {
7284 *ptrue = *pfalse = const0_rtx;
7285 return cond0;
7286 }
7287 }
7288 }
7289
7290 else if (code == IF_THEN_ELSE)
7291 {
7292 /* If we have IF_THEN_ELSE already, extract the condition and
7293 canonicalize it if it is NE or EQ. */
7294 cond0 = XEXP (x, 0);
7295 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7296 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7297 return XEXP (cond0, 0);
7298 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7299 {
7300 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7301 return XEXP (cond0, 0);
7302 }
7303 else
7304 return cond0;
7305 }
7306
7307 /* If X is a SUBREG, we can narrow both the true and false values
7308 if the inner expression, if there is a condition. */
7309 else if (code == SUBREG
7310 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7311 &true0, &false0)))
7312 {
7313 *ptrue = simplify_gen_subreg (mode, true0,
7314 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7315 *pfalse = simplify_gen_subreg (mode, false0,
7316 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7317
7318 return cond0;
7319 }
7320
7321 /* If X is a constant, this isn't special and will cause confusions
7322 if we treat it as such. Likewise if it is equivalent to a constant. */
7323 else if (CONSTANT_P (x)
7324 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7325 ;
7326
7327 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7328 will be least confusing to the rest of the compiler. */
7329 else if (mode == BImode)
7330 {
7331 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7332 return x;
7333 }
7334
7335 /* If X is known to be either 0 or -1, those are the true and
7336 false values when testing X. */
7337 else if (x == constm1_rtx || x == const0_rtx
7338 || (mode != VOIDmode
7339 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7340 {
7341 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7342 return x;
7343 }
7344
7345 /* Likewise for 0 or a single bit. */
7346 else if (mode != VOIDmode
7347 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7348 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7349 {
7350 *ptrue = GEN_INT (nz), *pfalse = const0_rtx;
7351 return x;
7352 }
7353
7354 /* Otherwise fail; show no condition with true and false values the same. */
7355 *ptrue = *pfalse = x;
7356 return 0;
7357 }
7358 \f
7359 /* Return the value of expression X given the fact that condition COND
7360 is known to be true when applied to REG as its first operand and VAL
7361 as its second. X is known to not be shared and so can be modified in
7362 place.
7363
7364 We only handle the simplest cases, and specifically those cases that
7365 arise with IF_THEN_ELSE expressions. */
7366
7367 static rtx
7368 known_cond (x, cond, reg, val)
7369 rtx x;
7370 enum rtx_code cond;
7371 rtx reg, val;
7372 {
7373 enum rtx_code code = GET_CODE (x);
7374 rtx temp;
7375 const char *fmt;
7376 int i, j;
7377
7378 if (side_effects_p (x))
7379 return x;
7380
7381 if (cond == EQ && rtx_equal_p (x, reg) && !FLOAT_MODE_P (cond))
7382 return val;
7383 if (cond == UNEQ && rtx_equal_p (x, reg))
7384 return val;
7385
7386 /* If X is (abs REG) and we know something about REG's relationship
7387 with zero, we may be able to simplify this. */
7388
7389 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7390 switch (cond)
7391 {
7392 case GE: case GT: case EQ:
7393 return XEXP (x, 0);
7394 case LT: case LE:
7395 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7396 XEXP (x, 0),
7397 GET_MODE (XEXP (x, 0)));
7398 default:
7399 break;
7400 }
7401
7402 /* The only other cases we handle are MIN, MAX, and comparisons if the
7403 operands are the same as REG and VAL. */
7404
7405 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == 'c')
7406 {
7407 if (rtx_equal_p (XEXP (x, 0), val))
7408 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7409
7410 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7411 {
7412 if (GET_RTX_CLASS (code) == '<')
7413 {
7414 if (comparison_dominates_p (cond, code))
7415 return const_true_rtx;
7416
7417 code = combine_reversed_comparison_code (x);
7418 if (code != UNKNOWN
7419 && comparison_dominates_p (cond, code))
7420 return const0_rtx;
7421 else
7422 return x;
7423 }
7424 else if (code == SMAX || code == SMIN
7425 || code == UMIN || code == UMAX)
7426 {
7427 int unsignedp = (code == UMIN || code == UMAX);
7428
7429 /* Do not reverse the condition when it is NE or EQ.
7430 This is because we cannot conclude anything about
7431 the value of 'SMAX (x, y)' when x is not equal to y,
7432 but we can when x equals y. */
7433 if ((code == SMAX || code == UMAX)
7434 && ! (cond == EQ || cond == NE))
7435 cond = reverse_condition (cond);
7436
7437 switch (cond)
7438 {
7439 case GE: case GT:
7440 return unsignedp ? x : XEXP (x, 1);
7441 case LE: case LT:
7442 return unsignedp ? x : XEXP (x, 0);
7443 case GEU: case GTU:
7444 return unsignedp ? XEXP (x, 1) : x;
7445 case LEU: case LTU:
7446 return unsignedp ? XEXP (x, 0) : x;
7447 default:
7448 break;
7449 }
7450 }
7451 }
7452 }
7453
7454 fmt = GET_RTX_FORMAT (code);
7455 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7456 {
7457 if (fmt[i] == 'e')
7458 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7459 else if (fmt[i] == 'E')
7460 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7461 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7462 cond, reg, val));
7463 }
7464
7465 return x;
7466 }
7467 \f
7468 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7469 assignment as a field assignment. */
7470
7471 static int
7472 rtx_equal_for_field_assignment_p (x, y)
7473 rtx x;
7474 rtx y;
7475 {
7476 if (x == y || rtx_equal_p (x, y))
7477 return 1;
7478
7479 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7480 return 0;
7481
7482 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7483 Note that all SUBREGs of MEM are paradoxical; otherwise they
7484 would have been rewritten. */
7485 if (GET_CODE (x) == MEM && GET_CODE (y) == SUBREG
7486 && GET_CODE (SUBREG_REG (y)) == MEM
7487 && rtx_equal_p (SUBREG_REG (y),
7488 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (y)), x)))
7489 return 1;
7490
7491 if (GET_CODE (y) == MEM && GET_CODE (x) == SUBREG
7492 && GET_CODE (SUBREG_REG (x)) == MEM
7493 && rtx_equal_p (SUBREG_REG (x),
7494 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (x)), y)))
7495 return 1;
7496
7497 /* We used to see if get_last_value of X and Y were the same but that's
7498 not correct. In one direction, we'll cause the assignment to have
7499 the wrong destination and in the case, we'll import a register into this
7500 insn that might have already have been dead. So fail if none of the
7501 above cases are true. */
7502 return 0;
7503 }
7504 \f
7505 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7506 Return that assignment if so.
7507
7508 We only handle the most common cases. */
7509
7510 static rtx
7511 make_field_assignment (x)
7512 rtx x;
7513 {
7514 rtx dest = SET_DEST (x);
7515 rtx src = SET_SRC (x);
7516 rtx assign;
7517 rtx rhs, lhs;
7518 HOST_WIDE_INT c1;
7519 HOST_WIDE_INT pos;
7520 unsigned HOST_WIDE_INT len;
7521 rtx other;
7522 enum machine_mode mode;
7523
7524 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7525 a clear of a one-bit field. We will have changed it to
7526 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7527 for a SUBREG. */
7528
7529 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7530 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7531 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7532 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7533 {
7534 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7535 1, 1, 1, 0);
7536 if (assign != 0)
7537 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7538 return x;
7539 }
7540
7541 else if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7542 && subreg_lowpart_p (XEXP (src, 0))
7543 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7544 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7545 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7546 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7547 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7548 {
7549 assign = make_extraction (VOIDmode, dest, 0,
7550 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7551 1, 1, 1, 0);
7552 if (assign != 0)
7553 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7554 return x;
7555 }
7556
7557 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7558 one-bit field. */
7559 else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7560 && XEXP (XEXP (src, 0), 0) == const1_rtx
7561 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7562 {
7563 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7564 1, 1, 1, 0);
7565 if (assign != 0)
7566 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7567 return x;
7568 }
7569
7570 /* The other case we handle is assignments into a constant-position
7571 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7572 a mask that has all one bits except for a group of zero bits and
7573 OTHER is known to have zeros where C1 has ones, this is such an
7574 assignment. Compute the position and length from C1. Shift OTHER
7575 to the appropriate position, force it to the required mode, and
7576 make the extraction. Check for the AND in both operands. */
7577
7578 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
7579 return x;
7580
7581 rhs = expand_compound_operation (XEXP (src, 0));
7582 lhs = expand_compound_operation (XEXP (src, 1));
7583
7584 if (GET_CODE (rhs) == AND
7585 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7586 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7587 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7588 else if (GET_CODE (lhs) == AND
7589 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7590 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7591 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
7592 else
7593 return x;
7594
7595 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
7596 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
7597 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7598 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
7599 return x;
7600
7601 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
7602 if (assign == 0)
7603 return x;
7604
7605 /* The mode to use for the source is the mode of the assignment, or of
7606 what is inside a possible STRICT_LOW_PART. */
7607 mode = (GET_CODE (assign) == STRICT_LOW_PART
7608 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
7609
7610 /* Shift OTHER right POS places and make it the source, restricting it
7611 to the proper length and mode. */
7612
7613 src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
7614 GET_MODE (src), other, pos),
7615 mode,
7616 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
7617 ? ~(unsigned HOST_WIDE_INT) 0
7618 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7619 dest, 0);
7620
7621 return gen_rtx_SET (VOIDmode, assign, src);
7622 }
7623 \f
7624 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7625 if so. */
7626
7627 static rtx
7628 apply_distributive_law (x)
7629 rtx x;
7630 {
7631 enum rtx_code code = GET_CODE (x);
7632 rtx lhs, rhs, other;
7633 rtx tem;
7634 enum rtx_code inner_code;
7635
7636 /* Distributivity is not true for floating point.
7637 It can change the value. So don't do it.
7638 -- rms and moshier@world.std.com. */
7639 if (FLOAT_MODE_P (GET_MODE (x)))
7640 return x;
7641
7642 /* The outer operation can only be one of the following: */
7643 if (code != IOR && code != AND && code != XOR
7644 && code != PLUS && code != MINUS)
7645 return x;
7646
7647 lhs = XEXP (x, 0), rhs = XEXP (x, 1);
7648
7649 /* If either operand is a primitive we can't do anything, so get out
7650 fast. */
7651 if (GET_RTX_CLASS (GET_CODE (lhs)) == 'o'
7652 || GET_RTX_CLASS (GET_CODE (rhs)) == 'o')
7653 return x;
7654
7655 lhs = expand_compound_operation (lhs);
7656 rhs = expand_compound_operation (rhs);
7657 inner_code = GET_CODE (lhs);
7658 if (inner_code != GET_CODE (rhs))
7659 return x;
7660
7661 /* See if the inner and outer operations distribute. */
7662 switch (inner_code)
7663 {
7664 case LSHIFTRT:
7665 case ASHIFTRT:
7666 case AND:
7667 case IOR:
7668 /* These all distribute except over PLUS. */
7669 if (code == PLUS || code == MINUS)
7670 return x;
7671 break;
7672
7673 case MULT:
7674 if (code != PLUS && code != MINUS)
7675 return x;
7676 break;
7677
7678 case ASHIFT:
7679 /* This is also a multiply, so it distributes over everything. */
7680 break;
7681
7682 case SUBREG:
7683 /* Non-paradoxical SUBREGs distributes over all operations, provided
7684 the inner modes and byte offsets are the same, this is an extraction
7685 of a low-order part, we don't convert an fp operation to int or
7686 vice versa, and we would not be converting a single-word
7687 operation into a multi-word operation. The latter test is not
7688 required, but it prevents generating unneeded multi-word operations.
7689 Some of the previous tests are redundant given the latter test, but
7690 are retained because they are required for correctness.
7691
7692 We produce the result slightly differently in this case. */
7693
7694 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
7695 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
7696 || ! subreg_lowpart_p (lhs)
7697 || (GET_MODE_CLASS (GET_MODE (lhs))
7698 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
7699 || (GET_MODE_SIZE (GET_MODE (lhs))
7700 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
7701 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
7702 return x;
7703
7704 tem = gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
7705 SUBREG_REG (lhs), SUBREG_REG (rhs));
7706 return gen_lowpart_for_combine (GET_MODE (x), tem);
7707
7708 default:
7709 return x;
7710 }
7711
7712 /* Set LHS and RHS to the inner operands (A and B in the example
7713 above) and set OTHER to the common operand (C in the example).
7714 These is only one way to do this unless the inner operation is
7715 commutative. */
7716 if (GET_RTX_CLASS (inner_code) == 'c'
7717 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
7718 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
7719 else if (GET_RTX_CLASS (inner_code) == 'c'
7720 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
7721 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
7722 else if (GET_RTX_CLASS (inner_code) == 'c'
7723 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
7724 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
7725 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
7726 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
7727 else
7728 return x;
7729
7730 /* Form the new inner operation, seeing if it simplifies first. */
7731 tem = gen_binary (code, GET_MODE (x), lhs, rhs);
7732
7733 /* There is one exception to the general way of distributing:
7734 (a ^ b) | (a ^ c) -> (~a) & (b ^ c) */
7735 if (code == XOR && inner_code == IOR)
7736 {
7737 inner_code = AND;
7738 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
7739 }
7740
7741 /* We may be able to continuing distributing the result, so call
7742 ourselves recursively on the inner operation before forming the
7743 outer operation, which we return. */
7744 return gen_binary (inner_code, GET_MODE (x),
7745 apply_distributive_law (tem), other);
7746 }
7747 \f
7748 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
7749 in MODE.
7750
7751 Return an equivalent form, if different from X. Otherwise, return X. If
7752 X is zero, we are to always construct the equivalent form. */
7753
7754 static rtx
7755 simplify_and_const_int (x, mode, varop, constop)
7756 rtx x;
7757 enum machine_mode mode;
7758 rtx varop;
7759 unsigned HOST_WIDE_INT constop;
7760 {
7761 unsigned HOST_WIDE_INT nonzero;
7762 int i;
7763
7764 /* Simplify VAROP knowing that we will be only looking at some of the
7765 bits in it. */
7766 varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
7767
7768 /* If VAROP is a CLOBBER, we will fail so return it; if it is a
7769 CONST_INT, we are done. */
7770 if (GET_CODE (varop) == CLOBBER || GET_CODE (varop) == CONST_INT)
7771 return varop;
7772
7773 /* See what bits may be nonzero in VAROP. Unlike the general case of
7774 a call to nonzero_bits, here we don't care about bits outside
7775 MODE. */
7776
7777 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
7778 nonzero = trunc_int_for_mode (nonzero, mode);
7779
7780 /* Turn off all bits in the constant that are known to already be zero.
7781 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
7782 which is tested below. */
7783
7784 constop &= nonzero;
7785
7786 /* If we don't have any bits left, return zero. */
7787 if (constop == 0)
7788 return const0_rtx;
7789
7790 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
7791 a power of two, we can replace this with a ASHIFT. */
7792 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
7793 && (i = exact_log2 (constop)) >= 0)
7794 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
7795
7796 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
7797 or XOR, then try to apply the distributive law. This may eliminate
7798 operations if either branch can be simplified because of the AND.
7799 It may also make some cases more complex, but those cases probably
7800 won't match a pattern either with or without this. */
7801
7802 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
7803 return
7804 gen_lowpart_for_combine
7805 (mode,
7806 apply_distributive_law
7807 (gen_binary (GET_CODE (varop), GET_MODE (varop),
7808 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
7809 XEXP (varop, 0), constop),
7810 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
7811 XEXP (varop, 1), constop))));
7812
7813 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
7814 if we already had one (just check for the simplest cases). */
7815 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
7816 && GET_MODE (XEXP (x, 0)) == mode
7817 && SUBREG_REG (XEXP (x, 0)) == varop)
7818 varop = XEXP (x, 0);
7819 else
7820 varop = gen_lowpart_for_combine (mode, varop);
7821
7822 /* If we can't make the SUBREG, try to return what we were given. */
7823 if (GET_CODE (varop) == CLOBBER)
7824 return x ? x : varop;
7825
7826 /* If we are only masking insignificant bits, return VAROP. */
7827 if (constop == nonzero)
7828 x = varop;
7829
7830 /* Otherwise, return an AND. See how much, if any, of X we can use. */
7831 else if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
7832 x = gen_binary (AND, mode, varop, GEN_INT (constop));
7833
7834 else
7835 {
7836 if (GET_CODE (XEXP (x, 1)) != CONST_INT
7837 || (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) != constop)
7838 SUBST (XEXP (x, 1), GEN_INT (constop));
7839
7840 SUBST (XEXP (x, 0), varop);
7841 }
7842
7843 return x;
7844 }
7845 \f
7846 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
7847 We don't let nonzero_bits recur into num_sign_bit_copies, because that
7848 is less useful. We can't allow both, because that results in exponential
7849 run time recursion. There is a nullstone testcase that triggered
7850 this. This macro avoids accidental uses of num_sign_bit_copies. */
7851 #define num_sign_bit_copies()
7852
7853 /* Given an expression, X, compute which bits in X can be non-zero.
7854 We don't care about bits outside of those defined in MODE.
7855
7856 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
7857 a shift, AND, or zero_extract, we can do better. */
7858
7859 static unsigned HOST_WIDE_INT
7860 nonzero_bits (x, mode)
7861 rtx x;
7862 enum machine_mode mode;
7863 {
7864 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
7865 unsigned HOST_WIDE_INT inner_nz;
7866 enum rtx_code code;
7867 unsigned int mode_width = GET_MODE_BITSIZE (mode);
7868 rtx tem;
7869
7870 /* For floating-point values, assume all bits are needed. */
7871 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
7872 return nonzero;
7873
7874 /* If X is wider than MODE, use its mode instead. */
7875 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
7876 {
7877 mode = GET_MODE (x);
7878 nonzero = GET_MODE_MASK (mode);
7879 mode_width = GET_MODE_BITSIZE (mode);
7880 }
7881
7882 if (mode_width > HOST_BITS_PER_WIDE_INT)
7883 /* Our only callers in this case look for single bit values. So
7884 just return the mode mask. Those tests will then be false. */
7885 return nonzero;
7886
7887 #ifndef WORD_REGISTER_OPERATIONS
7888 /* If MODE is wider than X, but both are a single word for both the host
7889 and target machines, we can compute this from which bits of the
7890 object might be nonzero in its own mode, taking into account the fact
7891 that on many CISC machines, accessing an object in a wider mode
7892 causes the high-order bits to become undefined. So they are
7893 not known to be zero. */
7894
7895 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
7896 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
7897 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7898 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
7899 {
7900 nonzero &= nonzero_bits (x, GET_MODE (x));
7901 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
7902 return nonzero;
7903 }
7904 #endif
7905
7906 code = GET_CODE (x);
7907 switch (code)
7908 {
7909 case REG:
7910 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
7911 /* If pointers extend unsigned and this is a pointer in Pmode, say that
7912 all the bits above ptr_mode are known to be zero. */
7913 if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
7914 && REG_POINTER (x))
7915 nonzero &= GET_MODE_MASK (ptr_mode);
7916 #endif
7917
7918 #ifdef STACK_BOUNDARY
7919 /* If this is the stack pointer, we may know something about its
7920 alignment. If PUSH_ROUNDING is defined, it is possible for the
7921 stack to be momentarily aligned only to that amount, so we pick
7922 the least alignment. */
7923
7924 /* We can't check for arg_pointer_rtx here, because it is not
7925 guaranteed to have as much alignment as the stack pointer.
7926 In particular, in the Irix6 n64 ABI, the stack has 128 bit
7927 alignment but the argument pointer has only 64 bit alignment. */
7928
7929 if ((x == frame_pointer_rtx
7930 || x == stack_pointer_rtx
7931 || x == hard_frame_pointer_rtx
7932 || (REGNO (x) >= FIRST_VIRTUAL_REGISTER
7933 && REGNO (x) <= LAST_VIRTUAL_REGISTER))
7934 #ifdef STACK_BIAS
7935 && !STACK_BIAS
7936 #endif
7937 )
7938 {
7939 int sp_alignment = STACK_BOUNDARY / BITS_PER_UNIT;
7940
7941 #ifdef PUSH_ROUNDING
7942 if (REGNO (x) == STACK_POINTER_REGNUM && PUSH_ARGS)
7943 sp_alignment = MIN (PUSH_ROUNDING (1), sp_alignment);
7944 #endif
7945
7946 /* We must return here, otherwise we may get a worse result from
7947 one of the choices below. There is nothing useful below as
7948 far as the stack pointer is concerned. */
7949 return nonzero &= ~(sp_alignment - 1);
7950 }
7951 #endif
7952
7953 /* If X is a register whose nonzero bits value is current, use it.
7954 Otherwise, if X is a register whose value we can find, use that
7955 value. Otherwise, use the previously-computed global nonzero bits
7956 for this register. */
7957
7958 if (reg_last_set_value[REGNO (x)] != 0
7959 && reg_last_set_mode[REGNO (x)] == mode
7960 && (reg_last_set_label[REGNO (x)] == label_tick
7961 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
7962 && REG_N_SETS (REGNO (x)) == 1
7963 && ! REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start,
7964 REGNO (x))))
7965 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
7966 return reg_last_set_nonzero_bits[REGNO (x)];
7967
7968 tem = get_last_value (x);
7969
7970 if (tem)
7971 {
7972 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
7973 /* If X is narrower than MODE and TEM is a non-negative
7974 constant that would appear negative in the mode of X,
7975 sign-extend it for use in reg_nonzero_bits because some
7976 machines (maybe most) will actually do the sign-extension
7977 and this is the conservative approach.
7978
7979 ??? For 2.5, try to tighten up the MD files in this regard
7980 instead of this kludge. */
7981
7982 if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width
7983 && GET_CODE (tem) == CONST_INT
7984 && INTVAL (tem) > 0
7985 && 0 != (INTVAL (tem)
7986 & ((HOST_WIDE_INT) 1
7987 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7988 tem = GEN_INT (INTVAL (tem)
7989 | ((HOST_WIDE_INT) (-1)
7990 << GET_MODE_BITSIZE (GET_MODE (x))));
7991 #endif
7992 return nonzero_bits (tem, mode);
7993 }
7994 else if (nonzero_sign_valid && reg_nonzero_bits[REGNO (x)])
7995 return reg_nonzero_bits[REGNO (x)] & nonzero;
7996 else
7997 return nonzero;
7998
7999 case CONST_INT:
8000 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8001 /* If X is negative in MODE, sign-extend the value. */
8002 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
8003 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
8004 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
8005 #endif
8006
8007 return INTVAL (x);
8008
8009 case MEM:
8010 #ifdef LOAD_EXTEND_OP
8011 /* In many, if not most, RISC machines, reading a byte from memory
8012 zeros the rest of the register. Noticing that fact saves a lot
8013 of extra zero-extends. */
8014 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
8015 nonzero &= GET_MODE_MASK (GET_MODE (x));
8016 #endif
8017 break;
8018
8019 case EQ: case NE:
8020 case UNEQ: case LTGT:
8021 case GT: case GTU: case UNGT:
8022 case LT: case LTU: case UNLT:
8023 case GE: case GEU: case UNGE:
8024 case LE: case LEU: case UNLE:
8025 case UNORDERED: case ORDERED:
8026
8027 /* If this produces an integer result, we know which bits are set.
8028 Code here used to clear bits outside the mode of X, but that is
8029 now done above. */
8030
8031 if (GET_MODE_CLASS (mode) == MODE_INT
8032 && mode_width <= HOST_BITS_PER_WIDE_INT)
8033 nonzero = STORE_FLAG_VALUE;
8034 break;
8035
8036 case NEG:
8037 #if 0
8038 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8039 and num_sign_bit_copies. */
8040 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8041 == GET_MODE_BITSIZE (GET_MODE (x)))
8042 nonzero = 1;
8043 #endif
8044
8045 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
8046 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
8047 break;
8048
8049 case ABS:
8050 #if 0
8051 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8052 and num_sign_bit_copies. */
8053 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8054 == GET_MODE_BITSIZE (GET_MODE (x)))
8055 nonzero = 1;
8056 #endif
8057 break;
8058
8059 case TRUNCATE:
8060 nonzero &= (nonzero_bits (XEXP (x, 0), mode) & GET_MODE_MASK (mode));
8061 break;
8062
8063 case ZERO_EXTEND:
8064 nonzero &= nonzero_bits (XEXP (x, 0), mode);
8065 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8066 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8067 break;
8068
8069 case SIGN_EXTEND:
8070 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
8071 Otherwise, show all the bits in the outer mode but not the inner
8072 may be non-zero. */
8073 inner_nz = nonzero_bits (XEXP (x, 0), mode);
8074 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8075 {
8076 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8077 if (inner_nz
8078 & (((HOST_WIDE_INT) 1
8079 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
8080 inner_nz |= (GET_MODE_MASK (mode)
8081 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
8082 }
8083
8084 nonzero &= inner_nz;
8085 break;
8086
8087 case AND:
8088 nonzero &= (nonzero_bits (XEXP (x, 0), mode)
8089 & nonzero_bits (XEXP (x, 1), mode));
8090 break;
8091
8092 case XOR: case IOR:
8093 case UMIN: case UMAX: case SMIN: case SMAX:
8094 nonzero &= (nonzero_bits (XEXP (x, 0), mode)
8095 | nonzero_bits (XEXP (x, 1), mode));
8096 break;
8097
8098 case PLUS: case MINUS:
8099 case MULT:
8100 case DIV: case UDIV:
8101 case MOD: case UMOD:
8102 /* We can apply the rules of arithmetic to compute the number of
8103 high- and low-order zero bits of these operations. We start by
8104 computing the width (position of the highest-order non-zero bit)
8105 and the number of low-order zero bits for each value. */
8106 {
8107 unsigned HOST_WIDE_INT nz0 = nonzero_bits (XEXP (x, 0), mode);
8108 unsigned HOST_WIDE_INT nz1 = nonzero_bits (XEXP (x, 1), mode);
8109 int width0 = floor_log2 (nz0) + 1;
8110 int width1 = floor_log2 (nz1) + 1;
8111 int low0 = floor_log2 (nz0 & -nz0);
8112 int low1 = floor_log2 (nz1 & -nz1);
8113 HOST_WIDE_INT op0_maybe_minusp
8114 = (nz0 & ((HOST_WIDE_INT) 1 << (mode_width - 1)));
8115 HOST_WIDE_INT op1_maybe_minusp
8116 = (nz1 & ((HOST_WIDE_INT) 1 << (mode_width - 1)));
8117 unsigned int result_width = mode_width;
8118 int result_low = 0;
8119
8120 switch (code)
8121 {
8122 case PLUS:
8123 #ifdef STACK_BIAS
8124 if (STACK_BIAS
8125 && (XEXP (x, 0) == stack_pointer_rtx
8126 || XEXP (x, 0) == frame_pointer_rtx)
8127 && GET_CODE (XEXP (x, 1)) == CONST_INT)
8128 {
8129 int sp_alignment = STACK_BOUNDARY / BITS_PER_UNIT;
8130
8131 nz0 = (GET_MODE_MASK (mode) & ~(sp_alignment - 1));
8132 nz1 = INTVAL (XEXP (x, 1)) - STACK_BIAS;
8133 width0 = floor_log2 (nz0) + 1;
8134 width1 = floor_log2 (nz1) + 1;
8135 low0 = floor_log2 (nz0 & -nz0);
8136 low1 = floor_log2 (nz1 & -nz1);
8137 }
8138 #endif
8139 result_width = MAX (width0, width1) + 1;
8140 result_low = MIN (low0, low1);
8141 break;
8142 case MINUS:
8143 result_low = MIN (low0, low1);
8144 break;
8145 case MULT:
8146 result_width = width0 + width1;
8147 result_low = low0 + low1;
8148 break;
8149 case DIV:
8150 if (width1 == 0)
8151 break;
8152 if (! op0_maybe_minusp && ! op1_maybe_minusp)
8153 result_width = width0;
8154 break;
8155 case UDIV:
8156 if (width1 == 0)
8157 break;
8158 result_width = width0;
8159 break;
8160 case MOD:
8161 if (width1 == 0)
8162 break;
8163 if (! op0_maybe_minusp && ! op1_maybe_minusp)
8164 result_width = MIN (width0, width1);
8165 result_low = MIN (low0, low1);
8166 break;
8167 case UMOD:
8168 if (width1 == 0)
8169 break;
8170 result_width = MIN (width0, width1);
8171 result_low = MIN (low0, low1);
8172 break;
8173 default:
8174 abort ();
8175 }
8176
8177 if (result_width < mode_width)
8178 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
8179
8180 if (result_low > 0)
8181 nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
8182
8183 #ifdef POINTERS_EXTEND_UNSIGNED
8184 /* If pointers extend unsigned and this is an addition or subtraction
8185 to a pointer in Pmode, all the bits above ptr_mode are known to be
8186 zero. */
8187 if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
8188 && (code == PLUS || code == MINUS)
8189 && GET_CODE (XEXP (x, 0)) == REG && REG_POINTER (XEXP (x, 0)))
8190 nonzero &= GET_MODE_MASK (ptr_mode);
8191 #endif
8192 }
8193 break;
8194
8195 case ZERO_EXTRACT:
8196 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8197 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8198 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
8199 break;
8200
8201 case SUBREG:
8202 /* If this is a SUBREG formed for a promoted variable that has
8203 been zero-extended, we know that at least the high-order bits
8204 are zero, though others might be too. */
8205
8206 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x))
8207 nonzero = (GET_MODE_MASK (GET_MODE (x))
8208 & nonzero_bits (SUBREG_REG (x), GET_MODE (x)));
8209
8210 /* If the inner mode is a single word for both the host and target
8211 machines, we can compute this from which bits of the inner
8212 object might be nonzero. */
8213 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
8214 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8215 <= HOST_BITS_PER_WIDE_INT))
8216 {
8217 nonzero &= nonzero_bits (SUBREG_REG (x), mode);
8218
8219 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
8220 /* If this is a typical RISC machine, we only have to worry
8221 about the way loads are extended. */
8222 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
8223 ? (((nonzero
8224 & (((unsigned HOST_WIDE_INT) 1
8225 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
8226 != 0))
8227 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
8228 #endif
8229 {
8230 /* On many CISC machines, accessing an object in a wider mode
8231 causes the high-order bits to become undefined. So they are
8232 not known to be zero. */
8233 if (GET_MODE_SIZE (GET_MODE (x))
8234 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8235 nonzero |= (GET_MODE_MASK (GET_MODE (x))
8236 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
8237 }
8238 }
8239 break;
8240
8241 case ASHIFTRT:
8242 case LSHIFTRT:
8243 case ASHIFT:
8244 case ROTATE:
8245 /* The nonzero bits are in two classes: any bits within MODE
8246 that aren't in GET_MODE (x) are always significant. The rest of the
8247 nonzero bits are those that are significant in the operand of
8248 the shift when shifted the appropriate number of bits. This
8249 shows that high-order bits are cleared by the right shift and
8250 low-order bits by left shifts. */
8251 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8252 && INTVAL (XEXP (x, 1)) >= 0
8253 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8254 {
8255 enum machine_mode inner_mode = GET_MODE (x);
8256 unsigned int width = GET_MODE_BITSIZE (inner_mode);
8257 int count = INTVAL (XEXP (x, 1));
8258 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
8259 unsigned HOST_WIDE_INT op_nonzero = nonzero_bits (XEXP (x, 0), mode);
8260 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
8261 unsigned HOST_WIDE_INT outer = 0;
8262
8263 if (mode_width > width)
8264 outer = (op_nonzero & nonzero & ~mode_mask);
8265
8266 if (code == LSHIFTRT)
8267 inner >>= count;
8268 else if (code == ASHIFTRT)
8269 {
8270 inner >>= count;
8271
8272 /* If the sign bit may have been nonzero before the shift, we
8273 need to mark all the places it could have been copied to
8274 by the shift as possibly nonzero. */
8275 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
8276 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
8277 }
8278 else if (code == ASHIFT)
8279 inner <<= count;
8280 else
8281 inner = ((inner << (count % width)
8282 | (inner >> (width - (count % width)))) & mode_mask);
8283
8284 nonzero &= (outer | inner);
8285 }
8286 break;
8287
8288 case FFS:
8289 /* This is at most the number of bits in the mode. */
8290 nonzero = ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width) + 1)) - 1;
8291 break;
8292
8293 case IF_THEN_ELSE:
8294 nonzero &= (nonzero_bits (XEXP (x, 1), mode)
8295 | nonzero_bits (XEXP (x, 2), mode));
8296 break;
8297
8298 default:
8299 break;
8300 }
8301
8302 return nonzero;
8303 }
8304
8305 /* See the macro definition above. */
8306 #undef num_sign_bit_copies
8307 \f
8308 /* Return the number of bits at the high-order end of X that are known to
8309 be equal to the sign bit. X will be used in mode MODE; if MODE is
8310 VOIDmode, X will be used in its own mode. The returned value will always
8311 be between 1 and the number of bits in MODE. */
8312
8313 static unsigned int
8314 num_sign_bit_copies (x, mode)
8315 rtx x;
8316 enum machine_mode mode;
8317 {
8318 enum rtx_code code = GET_CODE (x);
8319 unsigned int bitwidth;
8320 int num0, num1, result;
8321 unsigned HOST_WIDE_INT nonzero;
8322 rtx tem;
8323
8324 /* If we weren't given a mode, use the mode of X. If the mode is still
8325 VOIDmode, we don't know anything. Likewise if one of the modes is
8326 floating-point. */
8327
8328 if (mode == VOIDmode)
8329 mode = GET_MODE (x);
8330
8331 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
8332 return 1;
8333
8334 bitwidth = GET_MODE_BITSIZE (mode);
8335
8336 /* For a smaller object, just ignore the high bits. */
8337 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
8338 {
8339 num0 = num_sign_bit_copies (x, GET_MODE (x));
8340 return MAX (1,
8341 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
8342 }
8343
8344 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
8345 {
8346 #ifndef WORD_REGISTER_OPERATIONS
8347 /* If this machine does not do all register operations on the entire
8348 register and MODE is wider than the mode of X, we can say nothing
8349 at all about the high-order bits. */
8350 return 1;
8351 #else
8352 /* Likewise on machines that do, if the mode of the object is smaller
8353 than a word and loads of that size don't sign extend, we can say
8354 nothing about the high order bits. */
8355 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
8356 #ifdef LOAD_EXTEND_OP
8357 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
8358 #endif
8359 )
8360 return 1;
8361 #endif
8362 }
8363
8364 switch (code)
8365 {
8366 case REG:
8367
8368 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
8369 /* If pointers extend signed and this is a pointer in Pmode, say that
8370 all the bits above ptr_mode are known to be sign bit copies. */
8371 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
8372 && REG_POINTER (x))
8373 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
8374 #endif
8375
8376 if (reg_last_set_value[REGNO (x)] != 0
8377 && reg_last_set_mode[REGNO (x)] == mode
8378 && (reg_last_set_label[REGNO (x)] == label_tick
8379 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8380 && REG_N_SETS (REGNO (x)) == 1
8381 && ! REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start,
8382 REGNO (x))))
8383 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
8384 return reg_last_set_sign_bit_copies[REGNO (x)];
8385
8386 tem = get_last_value (x);
8387 if (tem != 0)
8388 return num_sign_bit_copies (tem, mode);
8389
8390 if (nonzero_sign_valid && reg_sign_bit_copies[REGNO (x)] != 0)
8391 return reg_sign_bit_copies[REGNO (x)];
8392 break;
8393
8394 case MEM:
8395 #ifdef LOAD_EXTEND_OP
8396 /* Some RISC machines sign-extend all loads of smaller than a word. */
8397 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
8398 return MAX (1, ((int) bitwidth
8399 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
8400 #endif
8401 break;
8402
8403 case CONST_INT:
8404 /* If the constant is negative, take its 1's complement and remask.
8405 Then see how many zero bits we have. */
8406 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
8407 if (bitwidth <= HOST_BITS_PER_WIDE_INT
8408 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8409 nonzero = (~nonzero) & GET_MODE_MASK (mode);
8410
8411 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
8412
8413 case SUBREG:
8414 /* If this is a SUBREG for a promoted object that is sign-extended
8415 and we are looking at it in a wider mode, we know that at least the
8416 high-order bits are known to be sign bit copies. */
8417
8418 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
8419 {
8420 num0 = num_sign_bit_copies (SUBREG_REG (x), mode);
8421 return MAX ((int) bitwidth
8422 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
8423 num0);
8424 }
8425
8426 /* For a smaller object, just ignore the high bits. */
8427 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
8428 {
8429 num0 = num_sign_bit_copies (SUBREG_REG (x), VOIDmode);
8430 return MAX (1, (num0
8431 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8432 - bitwidth)));
8433 }
8434
8435 #ifdef WORD_REGISTER_OPERATIONS
8436 #ifdef LOAD_EXTEND_OP
8437 /* For paradoxical SUBREGs on machines where all register operations
8438 affect the entire register, just look inside. Note that we are
8439 passing MODE to the recursive call, so the number of sign bit copies
8440 will remain relative to that mode, not the inner mode. */
8441
8442 /* This works only if loads sign extend. Otherwise, if we get a
8443 reload for the inner part, it may be loaded from the stack, and
8444 then we lose all sign bit copies that existed before the store
8445 to the stack. */
8446
8447 if ((GET_MODE_SIZE (GET_MODE (x))
8448 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8449 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND)
8450 return num_sign_bit_copies (SUBREG_REG (x), mode);
8451 #endif
8452 #endif
8453 break;
8454
8455 case SIGN_EXTRACT:
8456 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
8457 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
8458 break;
8459
8460 case SIGN_EXTEND:
8461 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8462 + num_sign_bit_copies (XEXP (x, 0), VOIDmode));
8463
8464 case TRUNCATE:
8465 /* For a smaller object, just ignore the high bits. */
8466 num0 = num_sign_bit_copies (XEXP (x, 0), VOIDmode);
8467 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8468 - bitwidth)));
8469
8470 case NOT:
8471 return num_sign_bit_copies (XEXP (x, 0), mode);
8472
8473 case ROTATE: case ROTATERT:
8474 /* If we are rotating left by a number of bits less than the number
8475 of sign bit copies, we can just subtract that amount from the
8476 number. */
8477 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8478 && INTVAL (XEXP (x, 1)) >= 0
8479 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
8480 {
8481 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8482 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
8483 : (int) bitwidth - INTVAL (XEXP (x, 1))));
8484 }
8485 break;
8486
8487 case NEG:
8488 /* In general, this subtracts one sign bit copy. But if the value
8489 is known to be positive, the number of sign bit copies is the
8490 same as that of the input. Finally, if the input has just one bit
8491 that might be nonzero, all the bits are copies of the sign bit. */
8492 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8493 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8494 return num0 > 1 ? num0 - 1 : 1;
8495
8496 nonzero = nonzero_bits (XEXP (x, 0), mode);
8497 if (nonzero == 1)
8498 return bitwidth;
8499
8500 if (num0 > 1
8501 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
8502 num0--;
8503
8504 return num0;
8505
8506 case IOR: case AND: case XOR:
8507 case SMIN: case SMAX: case UMIN: case UMAX:
8508 /* Logical operations will preserve the number of sign-bit copies.
8509 MIN and MAX operations always return one of the operands. */
8510 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8511 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8512 return MIN (num0, num1);
8513
8514 case PLUS: case MINUS:
8515 /* For addition and subtraction, we can have a 1-bit carry. However,
8516 if we are subtracting 1 from a positive number, there will not
8517 be such a carry. Furthermore, if the positive number is known to
8518 be 0 or 1, we know the result is either -1 or 0. */
8519
8520 if (code == PLUS && XEXP (x, 1) == constm1_rtx
8521 && bitwidth <= HOST_BITS_PER_WIDE_INT)
8522 {
8523 nonzero = nonzero_bits (XEXP (x, 0), mode);
8524 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
8525 return (nonzero == 1 || nonzero == 0 ? bitwidth
8526 : bitwidth - floor_log2 (nonzero) - 1);
8527 }
8528
8529 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8530 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8531 result = MAX (1, MIN (num0, num1) - 1);
8532
8533 #ifdef POINTERS_EXTEND_UNSIGNED
8534 /* If pointers extend signed and this is an addition or subtraction
8535 to a pointer in Pmode, all the bits above ptr_mode are known to be
8536 sign bit copies. */
8537 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
8538 && (code == PLUS || code == MINUS)
8539 && GET_CODE (XEXP (x, 0)) == REG && REG_POINTER (XEXP (x, 0)))
8540 result = MAX ((GET_MODE_BITSIZE (Pmode)
8541 - GET_MODE_BITSIZE (ptr_mode) + 1),
8542 result);
8543 #endif
8544 return result;
8545
8546 case MULT:
8547 /* The number of bits of the product is the sum of the number of
8548 bits of both terms. However, unless one of the terms if known
8549 to be positive, we must allow for an additional bit since negating
8550 a negative number can remove one sign bit copy. */
8551
8552 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8553 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8554
8555 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
8556 if (result > 0
8557 && (bitwidth > HOST_BITS_PER_WIDE_INT
8558 || (((nonzero_bits (XEXP (x, 0), mode)
8559 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8560 && ((nonzero_bits (XEXP (x, 1), mode)
8561 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
8562 result--;
8563
8564 return MAX (1, result);
8565
8566 case UDIV:
8567 /* The result must be <= the first operand. If the first operand
8568 has the high bit set, we know nothing about the number of sign
8569 bit copies. */
8570 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8571 return 1;
8572 else if ((nonzero_bits (XEXP (x, 0), mode)
8573 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8574 return 1;
8575 else
8576 return num_sign_bit_copies (XEXP (x, 0), mode);
8577
8578 case UMOD:
8579 /* The result must be <= the scond operand. */
8580 return num_sign_bit_copies (XEXP (x, 1), mode);
8581
8582 case DIV:
8583 /* Similar to unsigned division, except that we have to worry about
8584 the case where the divisor is negative, in which case we have
8585 to add 1. */
8586 result = num_sign_bit_copies (XEXP (x, 0), mode);
8587 if (result > 1
8588 && (bitwidth > HOST_BITS_PER_WIDE_INT
8589 || (nonzero_bits (XEXP (x, 1), mode)
8590 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8591 result--;
8592
8593 return result;
8594
8595 case MOD:
8596 result = num_sign_bit_copies (XEXP (x, 1), mode);
8597 if (result > 1
8598 && (bitwidth > HOST_BITS_PER_WIDE_INT
8599 || (nonzero_bits (XEXP (x, 1), mode)
8600 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8601 result--;
8602
8603 return result;
8604
8605 case ASHIFTRT:
8606 /* Shifts by a constant add to the number of bits equal to the
8607 sign bit. */
8608 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8609 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8610 && INTVAL (XEXP (x, 1)) > 0)
8611 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
8612
8613 return num0;
8614
8615 case ASHIFT:
8616 /* Left shifts destroy copies. */
8617 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8618 || INTVAL (XEXP (x, 1)) < 0
8619 || INTVAL (XEXP (x, 1)) >= (int) bitwidth)
8620 return 1;
8621
8622 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8623 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
8624
8625 case IF_THEN_ELSE:
8626 num0 = num_sign_bit_copies (XEXP (x, 1), mode);
8627 num1 = num_sign_bit_copies (XEXP (x, 2), mode);
8628 return MIN (num0, num1);
8629
8630 case EQ: case NE: case GE: case GT: case LE: case LT:
8631 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
8632 case GEU: case GTU: case LEU: case LTU:
8633 case UNORDERED: case ORDERED:
8634 /* If the constant is negative, take its 1's complement and remask.
8635 Then see how many zero bits we have. */
8636 nonzero = STORE_FLAG_VALUE;
8637 if (bitwidth <= HOST_BITS_PER_WIDE_INT
8638 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8639 nonzero = (~nonzero) & GET_MODE_MASK (mode);
8640
8641 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
8642 break;
8643
8644 default:
8645 break;
8646 }
8647
8648 /* If we haven't been able to figure it out by one of the above rules,
8649 see if some of the high-order bits are known to be zero. If so,
8650 count those bits and return one less than that amount. If we can't
8651 safely compute the mask for this mode, always return BITWIDTH. */
8652
8653 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8654 return 1;
8655
8656 nonzero = nonzero_bits (x, mode);
8657 return (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
8658 ? 1 : bitwidth - floor_log2 (nonzero) - 1);
8659 }
8660 \f
8661 /* Return the number of "extended" bits there are in X, when interpreted
8662 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8663 unsigned quantities, this is the number of high-order zero bits.
8664 For signed quantities, this is the number of copies of the sign bit
8665 minus 1. In both case, this function returns the number of "spare"
8666 bits. For example, if two quantities for which this function returns
8667 at least 1 are added, the addition is known not to overflow.
8668
8669 This function will always return 0 unless called during combine, which
8670 implies that it must be called from a define_split. */
8671
8672 unsigned int
8673 extended_count (x, mode, unsignedp)
8674 rtx x;
8675 enum machine_mode mode;
8676 int unsignedp;
8677 {
8678 if (nonzero_sign_valid == 0)
8679 return 0;
8680
8681 return (unsignedp
8682 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8683 ? (GET_MODE_BITSIZE (mode) - 1
8684 - floor_log2 (nonzero_bits (x, mode)))
8685 : 0)
8686 : num_sign_bit_copies (x, mode) - 1);
8687 }
8688 \f
8689 /* This function is called from `simplify_shift_const' to merge two
8690 outer operations. Specifically, we have already found that we need
8691 to perform operation *POP0 with constant *PCONST0 at the outermost
8692 position. We would now like to also perform OP1 with constant CONST1
8693 (with *POP0 being done last).
8694
8695 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8696 the resulting operation. *PCOMP_P is set to 1 if we would need to
8697 complement the innermost operand, otherwise it is unchanged.
8698
8699 MODE is the mode in which the operation will be done. No bits outside
8700 the width of this mode matter. It is assumed that the width of this mode
8701 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8702
8703 If *POP0 or OP1 are NIL, it means no operation is required. Only NEG, PLUS,
8704 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8705 result is simply *PCONST0.
8706
8707 If the resulting operation cannot be expressed as one operation, we
8708 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8709
8710 static int
8711 merge_outer_ops (pop0, pconst0, op1, const1, mode, pcomp_p)
8712 enum rtx_code *pop0;
8713 HOST_WIDE_INT *pconst0;
8714 enum rtx_code op1;
8715 HOST_WIDE_INT const1;
8716 enum machine_mode mode;
8717 int *pcomp_p;
8718 {
8719 enum rtx_code op0 = *pop0;
8720 HOST_WIDE_INT const0 = *pconst0;
8721
8722 const0 &= GET_MODE_MASK (mode);
8723 const1 &= GET_MODE_MASK (mode);
8724
8725 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8726 if (op0 == AND)
8727 const1 &= const0;
8728
8729 /* If OP0 or OP1 is NIL, this is easy. Similarly if they are the same or
8730 if OP0 is SET. */
8731
8732 if (op1 == NIL || op0 == SET)
8733 return 1;
8734
8735 else if (op0 == NIL)
8736 op0 = op1, const0 = const1;
8737
8738 else if (op0 == op1)
8739 {
8740 switch (op0)
8741 {
8742 case AND:
8743 const0 &= const1;
8744 break;
8745 case IOR:
8746 const0 |= const1;
8747 break;
8748 case XOR:
8749 const0 ^= const1;
8750 break;
8751 case PLUS:
8752 const0 += const1;
8753 break;
8754 case NEG:
8755 op0 = NIL;
8756 break;
8757 default:
8758 break;
8759 }
8760 }
8761
8762 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8763 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8764 return 0;
8765
8766 /* If the two constants aren't the same, we can't do anything. The
8767 remaining six cases can all be done. */
8768 else if (const0 != const1)
8769 return 0;
8770
8771 else
8772 switch (op0)
8773 {
8774 case IOR:
8775 if (op1 == AND)
8776 /* (a & b) | b == b */
8777 op0 = SET;
8778 else /* op1 == XOR */
8779 /* (a ^ b) | b == a | b */
8780 {;}
8781 break;
8782
8783 case XOR:
8784 if (op1 == AND)
8785 /* (a & b) ^ b == (~a) & b */
8786 op0 = AND, *pcomp_p = 1;
8787 else /* op1 == IOR */
8788 /* (a | b) ^ b == a & ~b */
8789 op0 = AND, *pconst0 = ~const0;
8790 break;
8791
8792 case AND:
8793 if (op1 == IOR)
8794 /* (a | b) & b == b */
8795 op0 = SET;
8796 else /* op1 == XOR */
8797 /* (a ^ b) & b) == (~a) & b */
8798 *pcomp_p = 1;
8799 break;
8800 default:
8801 break;
8802 }
8803
8804 /* Check for NO-OP cases. */
8805 const0 &= GET_MODE_MASK (mode);
8806 if (const0 == 0
8807 && (op0 == IOR || op0 == XOR || op0 == PLUS))
8808 op0 = NIL;
8809 else if (const0 == 0 && op0 == AND)
8810 op0 = SET;
8811 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8812 && op0 == AND)
8813 op0 = NIL;
8814
8815 /* ??? Slightly redundant with the above mask, but not entirely.
8816 Moving this above means we'd have to sign-extend the mode mask
8817 for the final test. */
8818 const0 = trunc_int_for_mode (const0, mode);
8819
8820 *pop0 = op0;
8821 *pconst0 = const0;
8822
8823 return 1;
8824 }
8825 \f
8826 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8827 The result of the shift is RESULT_MODE. X, if non-zero, is an expression
8828 that we started with.
8829
8830 The shift is normally computed in the widest mode we find in VAROP, as
8831 long as it isn't a different number of words than RESULT_MODE. Exceptions
8832 are ASHIFTRT and ROTATE, which are always done in their original mode, */
8833
8834 static rtx
8835 simplify_shift_const (x, code, result_mode, varop, input_count)
8836 rtx x;
8837 enum rtx_code code;
8838 enum machine_mode result_mode;
8839 rtx varop;
8840 int input_count;
8841 {
8842 enum rtx_code orig_code = code;
8843 int orig_count = input_count;
8844 unsigned int count;
8845 int signed_count;
8846 enum machine_mode mode = result_mode;
8847 enum machine_mode shift_mode, tmode;
8848 unsigned int mode_words
8849 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
8850 /* We form (outer_op (code varop count) (outer_const)). */
8851 enum rtx_code outer_op = NIL;
8852 HOST_WIDE_INT outer_const = 0;
8853 rtx const_rtx;
8854 int complement_p = 0;
8855 rtx new;
8856
8857 /* If we were given an invalid count, don't do anything except exactly
8858 what was requested. */
8859
8860 if (input_count < 0 || input_count > (int) GET_MODE_BITSIZE (mode))
8861 {
8862 if (x)
8863 return x;
8864
8865 return gen_rtx_fmt_ee (code, mode, varop, GEN_INT (input_count));
8866 }
8867
8868 count = input_count;
8869
8870 /* Make sure and truncate the "natural" shift on the way in. We don't
8871 want to do this inside the loop as it makes it more difficult to
8872 combine shifts. */
8873 #ifdef SHIFT_COUNT_TRUNCATED
8874 if (SHIFT_COUNT_TRUNCATED)
8875 count %= GET_MODE_BITSIZE (mode);
8876 #endif
8877
8878 /* Unless one of the branches of the `if' in this loop does a `continue',
8879 we will `break' the loop after the `if'. */
8880
8881 while (count != 0)
8882 {
8883 /* If we have an operand of (clobber (const_int 0)), just return that
8884 value. */
8885 if (GET_CODE (varop) == CLOBBER)
8886 return varop;
8887
8888 /* If we discovered we had to complement VAROP, leave. Making a NOT
8889 here would cause an infinite loop. */
8890 if (complement_p)
8891 break;
8892
8893 /* Convert ROTATERT to ROTATE. */
8894 if (code == ROTATERT)
8895 code = ROTATE, count = GET_MODE_BITSIZE (result_mode) - count;
8896
8897 /* We need to determine what mode we will do the shift in. If the
8898 shift is a right shift or a ROTATE, we must always do it in the mode
8899 it was originally done in. Otherwise, we can do it in MODE, the
8900 widest mode encountered. */
8901 shift_mode
8902 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
8903 ? result_mode : mode);
8904
8905 /* Handle cases where the count is greater than the size of the mode
8906 minus 1. For ASHIFT, use the size minus one as the count (this can
8907 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
8908 take the count modulo the size. For other shifts, the result is
8909 zero.
8910
8911 Since these shifts are being produced by the compiler by combining
8912 multiple operations, each of which are defined, we know what the
8913 result is supposed to be. */
8914
8915 if (count > GET_MODE_BITSIZE (shift_mode) - 1)
8916 {
8917 if (code == ASHIFTRT)
8918 count = GET_MODE_BITSIZE (shift_mode) - 1;
8919 else if (code == ROTATE || code == ROTATERT)
8920 count %= GET_MODE_BITSIZE (shift_mode);
8921 else
8922 {
8923 /* We can't simply return zero because there may be an
8924 outer op. */
8925 varop = const0_rtx;
8926 count = 0;
8927 break;
8928 }
8929 }
8930
8931 /* An arithmetic right shift of a quantity known to be -1 or 0
8932 is a no-op. */
8933 if (code == ASHIFTRT
8934 && (num_sign_bit_copies (varop, shift_mode)
8935 == GET_MODE_BITSIZE (shift_mode)))
8936 {
8937 count = 0;
8938 break;
8939 }
8940
8941 /* If we are doing an arithmetic right shift and discarding all but
8942 the sign bit copies, this is equivalent to doing a shift by the
8943 bitsize minus one. Convert it into that shift because it will often
8944 allow other simplifications. */
8945
8946 if (code == ASHIFTRT
8947 && (count + num_sign_bit_copies (varop, shift_mode)
8948 >= GET_MODE_BITSIZE (shift_mode)))
8949 count = GET_MODE_BITSIZE (shift_mode) - 1;
8950
8951 /* We simplify the tests below and elsewhere by converting
8952 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
8953 `make_compound_operation' will convert it to a ASHIFTRT for
8954 those machines (such as Vax) that don't have a LSHIFTRT. */
8955 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8956 && code == ASHIFTRT
8957 && ((nonzero_bits (varop, shift_mode)
8958 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
8959 == 0))
8960 code = LSHIFTRT;
8961
8962 switch (GET_CODE (varop))
8963 {
8964 case SIGN_EXTEND:
8965 case ZERO_EXTEND:
8966 case SIGN_EXTRACT:
8967 case ZERO_EXTRACT:
8968 new = expand_compound_operation (varop);
8969 if (new != varop)
8970 {
8971 varop = new;
8972 continue;
8973 }
8974 break;
8975
8976 case MEM:
8977 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
8978 minus the width of a smaller mode, we can do this with a
8979 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
8980 if ((code == ASHIFTRT || code == LSHIFTRT)
8981 && ! mode_dependent_address_p (XEXP (varop, 0))
8982 && ! MEM_VOLATILE_P (varop)
8983 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8984 MODE_INT, 1)) != BLKmode)
8985 {
8986 new = adjust_address_nv (varop, tmode,
8987 BYTES_BIG_ENDIAN ? 0
8988 : count / BITS_PER_UNIT);
8989
8990 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8991 : ZERO_EXTEND, mode, new);
8992 count = 0;
8993 continue;
8994 }
8995 break;
8996
8997 case USE:
8998 /* Similar to the case above, except that we can only do this if
8999 the resulting mode is the same as that of the underlying
9000 MEM and adjust the address depending on the *bits* endianness
9001 because of the way that bit-field extract insns are defined. */
9002 if ((code == ASHIFTRT || code == LSHIFTRT)
9003 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9004 MODE_INT, 1)) != BLKmode
9005 && tmode == GET_MODE (XEXP (varop, 0)))
9006 {
9007 if (BITS_BIG_ENDIAN)
9008 new = XEXP (varop, 0);
9009 else
9010 {
9011 new = copy_rtx (XEXP (varop, 0));
9012 SUBST (XEXP (new, 0),
9013 plus_constant (XEXP (new, 0),
9014 count / BITS_PER_UNIT));
9015 }
9016
9017 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9018 : ZERO_EXTEND, mode, new);
9019 count = 0;
9020 continue;
9021 }
9022 break;
9023
9024 case SUBREG:
9025 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9026 the same number of words as what we've seen so far. Then store
9027 the widest mode in MODE. */
9028 if (subreg_lowpart_p (varop)
9029 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9030 > GET_MODE_SIZE (GET_MODE (varop)))
9031 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9032 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9033 == mode_words))
9034 {
9035 varop = SUBREG_REG (varop);
9036 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9037 mode = GET_MODE (varop);
9038 continue;
9039 }
9040 break;
9041
9042 case MULT:
9043 /* Some machines use MULT instead of ASHIFT because MULT
9044 is cheaper. But it is still better on those machines to
9045 merge two shifts into one. */
9046 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9047 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9048 {
9049 varop
9050 = gen_binary (ASHIFT, GET_MODE (varop), XEXP (varop, 0),
9051 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9052 continue;
9053 }
9054 break;
9055
9056 case UDIV:
9057 /* Similar, for when divides are cheaper. */
9058 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9059 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9060 {
9061 varop
9062 = gen_binary (LSHIFTRT, GET_MODE (varop), XEXP (varop, 0),
9063 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9064 continue;
9065 }
9066 break;
9067
9068 case ASHIFTRT:
9069 /* If we are extracting just the sign bit of an arithmetic
9070 right shift, that shift is not needed. However, the sign
9071 bit of a wider mode may be different from what would be
9072 interpreted as the sign bit in a narrower mode, so, if
9073 the result is narrower, don't discard the shift. */
9074 if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
9075 && (GET_MODE_BITSIZE (result_mode)
9076 >= GET_MODE_BITSIZE (GET_MODE (varop))))
9077 {
9078 varop = XEXP (varop, 0);
9079 continue;
9080 }
9081
9082 /* ... fall through ... */
9083
9084 case LSHIFTRT:
9085 case ASHIFT:
9086 case ROTATE:
9087 /* Here we have two nested shifts. The result is usually the
9088 AND of a new shift with a mask. We compute the result below. */
9089 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9090 && INTVAL (XEXP (varop, 1)) >= 0
9091 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
9092 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9093 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9094 {
9095 enum rtx_code first_code = GET_CODE (varop);
9096 unsigned int first_count = INTVAL (XEXP (varop, 1));
9097 unsigned HOST_WIDE_INT mask;
9098 rtx mask_rtx;
9099
9100 /* We have one common special case. We can't do any merging if
9101 the inner code is an ASHIFTRT of a smaller mode. However, if
9102 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
9103 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
9104 we can convert it to
9105 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
9106 This simplifies certain SIGN_EXTEND operations. */
9107 if (code == ASHIFT && first_code == ASHIFTRT
9108 && (GET_MODE_BITSIZE (result_mode)
9109 - GET_MODE_BITSIZE (GET_MODE (varop))) == count)
9110 {
9111 /* C3 has the low-order C1 bits zero. */
9112
9113 mask = (GET_MODE_MASK (mode)
9114 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
9115
9116 varop = simplify_and_const_int (NULL_RTX, result_mode,
9117 XEXP (varop, 0), mask);
9118 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
9119 varop, count);
9120 count = first_count;
9121 code = ASHIFTRT;
9122 continue;
9123 }
9124
9125 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
9126 than C1 high-order bits equal to the sign bit, we can convert
9127 this to either an ASHIFT or a ASHIFTRT depending on the
9128 two counts.
9129
9130 We cannot do this if VAROP's mode is not SHIFT_MODE. */
9131
9132 if (code == ASHIFTRT && first_code == ASHIFT
9133 && GET_MODE (varop) == shift_mode
9134 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
9135 > first_count))
9136 {
9137 varop = XEXP (varop, 0);
9138
9139 signed_count = count - first_count;
9140 if (signed_count < 0)
9141 count = -signed_count, code = ASHIFT;
9142 else
9143 count = signed_count;
9144
9145 continue;
9146 }
9147
9148 /* There are some cases we can't do. If CODE is ASHIFTRT,
9149 we can only do this if FIRST_CODE is also ASHIFTRT.
9150
9151 We can't do the case when CODE is ROTATE and FIRST_CODE is
9152 ASHIFTRT.
9153
9154 If the mode of this shift is not the mode of the outer shift,
9155 we can't do this if either shift is a right shift or ROTATE.
9156
9157 Finally, we can't do any of these if the mode is too wide
9158 unless the codes are the same.
9159
9160 Handle the case where the shift codes are the same
9161 first. */
9162
9163 if (code == first_code)
9164 {
9165 if (GET_MODE (varop) != result_mode
9166 && (code == ASHIFTRT || code == LSHIFTRT
9167 || code == ROTATE))
9168 break;
9169
9170 count += first_count;
9171 varop = XEXP (varop, 0);
9172 continue;
9173 }
9174
9175 if (code == ASHIFTRT
9176 || (code == ROTATE && first_code == ASHIFTRT)
9177 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
9178 || (GET_MODE (varop) != result_mode
9179 && (first_code == ASHIFTRT || first_code == LSHIFTRT
9180 || first_code == ROTATE
9181 || code == ROTATE)))
9182 break;
9183
9184 /* To compute the mask to apply after the shift, shift the
9185 nonzero bits of the inner shift the same way the
9186 outer shift will. */
9187
9188 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
9189
9190 mask_rtx
9191 = simplify_binary_operation (code, result_mode, mask_rtx,
9192 GEN_INT (count));
9193
9194 /* Give up if we can't compute an outer operation to use. */
9195 if (mask_rtx == 0
9196 || GET_CODE (mask_rtx) != CONST_INT
9197 || ! merge_outer_ops (&outer_op, &outer_const, AND,
9198 INTVAL (mask_rtx),
9199 result_mode, &complement_p))
9200 break;
9201
9202 /* If the shifts are in the same direction, we add the
9203 counts. Otherwise, we subtract them. */
9204 signed_count = count;
9205 if ((code == ASHIFTRT || code == LSHIFTRT)
9206 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
9207 signed_count += first_count;
9208 else
9209 signed_count -= first_count;
9210
9211 /* If COUNT is positive, the new shift is usually CODE,
9212 except for the two exceptions below, in which case it is
9213 FIRST_CODE. If the count is negative, FIRST_CODE should
9214 always be used */
9215 if (signed_count > 0
9216 && ((first_code == ROTATE && code == ASHIFT)
9217 || (first_code == ASHIFTRT && code == LSHIFTRT)))
9218 code = first_code, count = signed_count;
9219 else if (signed_count < 0)
9220 code = first_code, count = -signed_count;
9221 else
9222 count = signed_count;
9223
9224 varop = XEXP (varop, 0);
9225 continue;
9226 }
9227
9228 /* If we have (A << B << C) for any shift, we can convert this to
9229 (A << C << B). This wins if A is a constant. Only try this if
9230 B is not a constant. */
9231
9232 else if (GET_CODE (varop) == code
9233 && GET_CODE (XEXP (varop, 1)) != CONST_INT
9234 && 0 != (new
9235 = simplify_binary_operation (code, mode,
9236 XEXP (varop, 0),
9237 GEN_INT (count))))
9238 {
9239 varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
9240 count = 0;
9241 continue;
9242 }
9243 break;
9244
9245 case NOT:
9246 /* Make this fit the case below. */
9247 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
9248 GEN_INT (GET_MODE_MASK (mode)));
9249 continue;
9250
9251 case IOR:
9252 case AND:
9253 case XOR:
9254 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
9255 with C the size of VAROP - 1 and the shift is logical if
9256 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9257 we have an (le X 0) operation. If we have an arithmetic shift
9258 and STORE_FLAG_VALUE is 1 or we have a logical shift with
9259 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
9260
9261 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
9262 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
9263 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9264 && (code == LSHIFTRT || code == ASHIFTRT)
9265 && count == GET_MODE_BITSIZE (GET_MODE (varop)) - 1
9266 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9267 {
9268 count = 0;
9269 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
9270 const0_rtx);
9271
9272 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9273 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9274
9275 continue;
9276 }
9277
9278 /* If we have (shift (logical)), move the logical to the outside
9279 to allow it to possibly combine with another logical and the
9280 shift to combine with another shift. This also canonicalizes to
9281 what a ZERO_EXTRACT looks like. Also, some machines have
9282 (and (shift)) insns. */
9283
9284 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9285 && (new = simplify_binary_operation (code, result_mode,
9286 XEXP (varop, 1),
9287 GEN_INT (count))) != 0
9288 && GET_CODE (new) == CONST_INT
9289 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9290 INTVAL (new), result_mode, &complement_p))
9291 {
9292 varop = XEXP (varop, 0);
9293 continue;
9294 }
9295
9296 /* If we can't do that, try to simplify the shift in each arm of the
9297 logical expression, make a new logical expression, and apply
9298 the inverse distributive law. */
9299 {
9300 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9301 XEXP (varop, 0), count);
9302 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9303 XEXP (varop, 1), count);
9304
9305 varop = gen_binary (GET_CODE (varop), shift_mode, lhs, rhs);
9306 varop = apply_distributive_law (varop);
9307
9308 count = 0;
9309 }
9310 break;
9311
9312 case EQ:
9313 /* convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9314 says that the sign bit can be tested, FOO has mode MODE, C is
9315 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9316 that may be nonzero. */
9317 if (code == LSHIFTRT
9318 && XEXP (varop, 1) == const0_rtx
9319 && GET_MODE (XEXP (varop, 0)) == result_mode
9320 && count == GET_MODE_BITSIZE (result_mode) - 1
9321 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9322 && ((STORE_FLAG_VALUE
9323 & ((HOST_WIDE_INT) 1
9324 < (GET_MODE_BITSIZE (result_mode) - 1))))
9325 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9326 && merge_outer_ops (&outer_op, &outer_const, XOR,
9327 (HOST_WIDE_INT) 1, result_mode,
9328 &complement_p))
9329 {
9330 varop = XEXP (varop, 0);
9331 count = 0;
9332 continue;
9333 }
9334 break;
9335
9336 case NEG:
9337 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9338 than the number of bits in the mode is equivalent to A. */
9339 if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
9340 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9341 {
9342 varop = XEXP (varop, 0);
9343 count = 0;
9344 continue;
9345 }
9346
9347 /* NEG commutes with ASHIFT since it is multiplication. Move the
9348 NEG outside to allow shifts to combine. */
9349 if (code == ASHIFT
9350 && merge_outer_ops (&outer_op, &outer_const, NEG,
9351 (HOST_WIDE_INT) 0, result_mode,
9352 &complement_p))
9353 {
9354 varop = XEXP (varop, 0);
9355 continue;
9356 }
9357 break;
9358
9359 case PLUS:
9360 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9361 is one less than the number of bits in the mode is
9362 equivalent to (xor A 1). */
9363 if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
9364 && XEXP (varop, 1) == constm1_rtx
9365 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9366 && merge_outer_ops (&outer_op, &outer_const, XOR,
9367 (HOST_WIDE_INT) 1, result_mode,
9368 &complement_p))
9369 {
9370 count = 0;
9371 varop = XEXP (varop, 0);
9372 continue;
9373 }
9374
9375 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9376 that might be nonzero in BAR are those being shifted out and those
9377 bits are known zero in FOO, we can replace the PLUS with FOO.
9378 Similarly in the other operand order. This code occurs when
9379 we are computing the size of a variable-size array. */
9380
9381 if ((code == ASHIFTRT || code == LSHIFTRT)
9382 && count < HOST_BITS_PER_WIDE_INT
9383 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9384 && (nonzero_bits (XEXP (varop, 1), result_mode)
9385 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9386 {
9387 varop = XEXP (varop, 0);
9388 continue;
9389 }
9390 else if ((code == ASHIFTRT || code == LSHIFTRT)
9391 && count < HOST_BITS_PER_WIDE_INT
9392 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9393 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9394 >> count)
9395 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9396 & nonzero_bits (XEXP (varop, 1),
9397 result_mode)))
9398 {
9399 varop = XEXP (varop, 1);
9400 continue;
9401 }
9402
9403 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9404 if (code == ASHIFT
9405 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9406 && (new = simplify_binary_operation (ASHIFT, result_mode,
9407 XEXP (varop, 1),
9408 GEN_INT (count))) != 0
9409 && GET_CODE (new) == CONST_INT
9410 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9411 INTVAL (new), result_mode, &complement_p))
9412 {
9413 varop = XEXP (varop, 0);
9414 continue;
9415 }
9416 break;
9417
9418 case MINUS:
9419 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9420 with C the size of VAROP - 1 and the shift is logical if
9421 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9422 we have a (gt X 0) operation. If the shift is arithmetic with
9423 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9424 we have a (neg (gt X 0)) operation. */
9425
9426 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9427 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9428 && count == GET_MODE_BITSIZE (GET_MODE (varop)) - 1
9429 && (code == LSHIFTRT || code == ASHIFTRT)
9430 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9431 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
9432 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9433 {
9434 count = 0;
9435 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9436 const0_rtx);
9437
9438 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9439 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9440
9441 continue;
9442 }
9443 break;
9444
9445 case TRUNCATE:
9446 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9447 if the truncate does not affect the value. */
9448 if (code == LSHIFTRT
9449 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9450 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9451 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9452 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9453 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9454 {
9455 rtx varop_inner = XEXP (varop, 0);
9456
9457 varop_inner
9458 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9459 XEXP (varop_inner, 0),
9460 GEN_INT
9461 (count + INTVAL (XEXP (varop_inner, 1))));
9462 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9463 count = 0;
9464 continue;
9465 }
9466 break;
9467
9468 default:
9469 break;
9470 }
9471
9472 break;
9473 }
9474
9475 /* We need to determine what mode to do the shift in. If the shift is
9476 a right shift or ROTATE, we must always do it in the mode it was
9477 originally done in. Otherwise, we can do it in MODE, the widest mode
9478 encountered. The code we care about is that of the shift that will
9479 actually be done, not the shift that was originally requested. */
9480 shift_mode
9481 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9482 ? result_mode : mode);
9483
9484 /* We have now finished analyzing the shift. The result should be
9485 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9486 OUTER_OP is non-NIL, it is an operation that needs to be applied
9487 to the result of the shift. OUTER_CONST is the relevant constant,
9488 but we must turn off all bits turned off in the shift.
9489
9490 If we were passed a value for X, see if we can use any pieces of
9491 it. If not, make new rtx. */
9492
9493 if (x && GET_RTX_CLASS (GET_CODE (x)) == '2'
9494 && GET_CODE (XEXP (x, 1)) == CONST_INT
9495 && INTVAL (XEXP (x, 1)) == count)
9496 const_rtx = XEXP (x, 1);
9497 else
9498 const_rtx = GEN_INT (count);
9499
9500 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
9501 && GET_MODE (XEXP (x, 0)) == shift_mode
9502 && SUBREG_REG (XEXP (x, 0)) == varop)
9503 varop = XEXP (x, 0);
9504 else if (GET_MODE (varop) != shift_mode)
9505 varop = gen_lowpart_for_combine (shift_mode, varop);
9506
9507 /* If we can't make the SUBREG, try to return what we were given. */
9508 if (GET_CODE (varop) == CLOBBER)
9509 return x ? x : varop;
9510
9511 new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
9512 if (new != 0)
9513 x = new;
9514 else
9515 {
9516 if (x == 0 || GET_CODE (x) != code || GET_MODE (x) != shift_mode)
9517 x = gen_rtx_fmt_ee (code, shift_mode, varop, const_rtx);
9518
9519 SUBST (XEXP (x, 0), varop);
9520 SUBST (XEXP (x, 1), const_rtx);
9521 }
9522
9523 /* If we have an outer operation and we just made a shift, it is
9524 possible that we could have simplified the shift were it not
9525 for the outer operation. So try to do the simplification
9526 recursively. */
9527
9528 if (outer_op != NIL && GET_CODE (x) == code
9529 && GET_CODE (XEXP (x, 1)) == CONST_INT)
9530 x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
9531 INTVAL (XEXP (x, 1)));
9532
9533 /* If we were doing a LSHIFTRT in a wider mode than it was originally,
9534 turn off all the bits that the shift would have turned off. */
9535 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9536 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9537 GET_MODE_MASK (result_mode) >> orig_count);
9538
9539 /* Do the remainder of the processing in RESULT_MODE. */
9540 x = gen_lowpart_for_combine (result_mode, x);
9541
9542 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9543 operation. */
9544 if (complement_p)
9545 x =simplify_gen_unary (NOT, result_mode, x, result_mode);
9546
9547 if (outer_op != NIL)
9548 {
9549 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9550 outer_const = trunc_int_for_mode (outer_const, result_mode);
9551
9552 if (outer_op == AND)
9553 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9554 else if (outer_op == SET)
9555 /* This means that we have determined that the result is
9556 equivalent to a constant. This should be rare. */
9557 x = GEN_INT (outer_const);
9558 else if (GET_RTX_CLASS (outer_op) == '1')
9559 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9560 else
9561 x = gen_binary (outer_op, result_mode, x, GEN_INT (outer_const));
9562 }
9563
9564 return x;
9565 }
9566 \f
9567 /* Like recog, but we receive the address of a pointer to a new pattern.
9568 We try to match the rtx that the pointer points to.
9569 If that fails, we may try to modify or replace the pattern,
9570 storing the replacement into the same pointer object.
9571
9572 Modifications include deletion or addition of CLOBBERs.
9573
9574 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9575 the CLOBBERs are placed.
9576
9577 The value is the final insn code from the pattern ultimately matched,
9578 or -1. */
9579
9580 static int
9581 recog_for_combine (pnewpat, insn, pnotes)
9582 rtx *pnewpat;
9583 rtx insn;
9584 rtx *pnotes;
9585 {
9586 register rtx pat = *pnewpat;
9587 int insn_code_number;
9588 int num_clobbers_to_add = 0;
9589 int i;
9590 rtx notes = 0;
9591 rtx old_notes;
9592
9593 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9594 we use to indicate that something didn't match. If we find such a
9595 thing, force rejection. */
9596 if (GET_CODE (pat) == PARALLEL)
9597 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9598 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9599 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9600 return -1;
9601
9602 /* Remove the old notes prior to trying to recognize the new pattern. */
9603 old_notes = REG_NOTES (insn);
9604 REG_NOTES (insn) = 0;
9605
9606 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9607
9608 /* If it isn't, there is the possibility that we previously had an insn
9609 that clobbered some register as a side effect, but the combined
9610 insn doesn't need to do that. So try once more without the clobbers
9611 unless this represents an ASM insn. */
9612
9613 if (insn_code_number < 0 && ! check_asm_operands (pat)
9614 && GET_CODE (pat) == PARALLEL)
9615 {
9616 int pos;
9617
9618 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9619 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9620 {
9621 if (i != pos)
9622 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9623 pos++;
9624 }
9625
9626 SUBST_INT (XVECLEN (pat, 0), pos);
9627
9628 if (pos == 1)
9629 pat = XVECEXP (pat, 0, 0);
9630
9631 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9632 }
9633
9634 /* Recognize all noop sets, these will be killed by followup pass. */
9635 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9636 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9637
9638 REG_NOTES (insn) = old_notes;
9639
9640 /* If we had any clobbers to add, make a new pattern than contains
9641 them. Then check to make sure that all of them are dead. */
9642 if (num_clobbers_to_add)
9643 {
9644 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9645 rtvec_alloc (GET_CODE (pat) == PARALLEL
9646 ? (XVECLEN (pat, 0)
9647 + num_clobbers_to_add)
9648 : num_clobbers_to_add + 1));
9649
9650 if (GET_CODE (pat) == PARALLEL)
9651 for (i = 0; i < XVECLEN (pat, 0); i++)
9652 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9653 else
9654 XVECEXP (newpat, 0, 0) = pat;
9655
9656 add_clobbers (newpat, insn_code_number);
9657
9658 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9659 i < XVECLEN (newpat, 0); i++)
9660 {
9661 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) == REG
9662 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9663 return -1;
9664 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9665 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9666 }
9667 pat = newpat;
9668 }
9669
9670 *pnewpat = pat;
9671 *pnotes = notes;
9672
9673 return insn_code_number;
9674 }
9675 \f
9676 /* Like gen_lowpart but for use by combine. In combine it is not possible
9677 to create any new pseudoregs. However, it is safe to create
9678 invalid memory addresses, because combine will try to recognize
9679 them and all they will do is make the combine attempt fail.
9680
9681 If for some reason this cannot do its job, an rtx
9682 (clobber (const_int 0)) is returned.
9683 An insn containing that will not be recognized. */
9684
9685 #undef gen_lowpart
9686
9687 static rtx
9688 gen_lowpart_for_combine (mode, x)
9689 enum machine_mode mode;
9690 register rtx x;
9691 {
9692 rtx result;
9693
9694 if (GET_MODE (x) == mode)
9695 return x;
9696
9697 /* We can only support MODE being wider than a word if X is a
9698 constant integer or has a mode the same size. */
9699
9700 if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
9701 && ! ((GET_MODE (x) == VOIDmode
9702 && (GET_CODE (x) == CONST_INT
9703 || GET_CODE (x) == CONST_DOUBLE))
9704 || GET_MODE_SIZE (GET_MODE (x)) == GET_MODE_SIZE (mode)))
9705 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9706
9707 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9708 won't know what to do. So we will strip off the SUBREG here and
9709 process normally. */
9710 if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
9711 {
9712 x = SUBREG_REG (x);
9713 if (GET_MODE (x) == mode)
9714 return x;
9715 }
9716
9717 result = gen_lowpart_common (mode, x);
9718 #ifdef CLASS_CANNOT_CHANGE_MODE
9719 if (result != 0
9720 && GET_CODE (result) == SUBREG
9721 && GET_CODE (SUBREG_REG (result)) == REG
9722 && REGNO (SUBREG_REG (result)) >= FIRST_PSEUDO_REGISTER
9723 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (result),
9724 GET_MODE (SUBREG_REG (result))))
9725 REG_CHANGES_MODE (REGNO (SUBREG_REG (result))) = 1;
9726 #endif
9727
9728 if (result)
9729 return result;
9730
9731 if (GET_CODE (x) == MEM)
9732 {
9733 register int offset = 0;
9734
9735 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9736 address. */
9737 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9738 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9739
9740 /* If we want to refer to something bigger than the original memref,
9741 generate a perverse subreg instead. That will force a reload
9742 of the original memref X. */
9743 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode))
9744 return gen_rtx_SUBREG (mode, x, 0);
9745
9746 if (WORDS_BIG_ENDIAN)
9747 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
9748 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
9749
9750 if (BYTES_BIG_ENDIAN)
9751 {
9752 /* Adjust the address so that the address-after-the-data is
9753 unchanged. */
9754 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
9755 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
9756 }
9757
9758 return adjust_address_nv (x, mode, offset);
9759 }
9760
9761 /* If X is a comparison operator, rewrite it in a new mode. This
9762 probably won't match, but may allow further simplifications. */
9763 else if (GET_RTX_CLASS (GET_CODE (x)) == '<')
9764 return gen_rtx_fmt_ee (GET_CODE (x), mode, XEXP (x, 0), XEXP (x, 1));
9765
9766 /* If we couldn't simplify X any other way, just enclose it in a
9767 SUBREG. Normally, this SUBREG won't match, but some patterns may
9768 include an explicit SUBREG or we may simplify it further in combine. */
9769 else
9770 {
9771 int offset = 0;
9772 rtx res;
9773
9774 offset = subreg_lowpart_offset (mode, GET_MODE (x));
9775 res = simplify_gen_subreg (mode, x, GET_MODE (x), offset);
9776 if (res)
9777 return res;
9778 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9779 }
9780 }
9781 \f
9782 /* These routines make binary and unary operations by first seeing if they
9783 fold; if not, a new expression is allocated. */
9784
9785 static rtx
9786 gen_binary (code, mode, op0, op1)
9787 enum rtx_code code;
9788 enum machine_mode mode;
9789 rtx op0, op1;
9790 {
9791 rtx result;
9792 rtx tem;
9793
9794 if (GET_RTX_CLASS (code) == 'c'
9795 && swap_commutative_operands_p (op0, op1))
9796 tem = op0, op0 = op1, op1 = tem;
9797
9798 if (GET_RTX_CLASS (code) == '<')
9799 {
9800 enum machine_mode op_mode = GET_MODE (op0);
9801
9802 /* Strip the COMPARE from (REL_OP (compare X Y) 0) to get
9803 just (REL_OP X Y). */
9804 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
9805 {
9806 op1 = XEXP (op0, 1);
9807 op0 = XEXP (op0, 0);
9808 op_mode = GET_MODE (op0);
9809 }
9810
9811 if (op_mode == VOIDmode)
9812 op_mode = GET_MODE (op1);
9813 result = simplify_relational_operation (code, op_mode, op0, op1);
9814 }
9815 else
9816 result = simplify_binary_operation (code, mode, op0, op1);
9817
9818 if (result)
9819 return result;
9820
9821 /* Put complex operands first and constants second. */
9822 if (GET_RTX_CLASS (code) == 'c'
9823 && swap_commutative_operands_p (op0, op1))
9824 return gen_rtx_fmt_ee (code, mode, op1, op0);
9825
9826 /* If we are turning off bits already known off in OP0, we need not do
9827 an AND. */
9828 else if (code == AND && GET_CODE (op1) == CONST_INT
9829 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9830 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
9831 return op0;
9832
9833 return gen_rtx_fmt_ee (code, mode, op0, op1);
9834 }
9835 \f
9836 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
9837 comparison code that will be tested.
9838
9839 The result is a possibly different comparison code to use. *POP0 and
9840 *POP1 may be updated.
9841
9842 It is possible that we might detect that a comparison is either always
9843 true or always false. However, we do not perform general constant
9844 folding in combine, so this knowledge isn't useful. Such tautologies
9845 should have been detected earlier. Hence we ignore all such cases. */
9846
9847 static enum rtx_code
9848 simplify_comparison (code, pop0, pop1)
9849 enum rtx_code code;
9850 rtx *pop0;
9851 rtx *pop1;
9852 {
9853 rtx op0 = *pop0;
9854 rtx op1 = *pop1;
9855 rtx tem, tem1;
9856 int i;
9857 enum machine_mode mode, tmode;
9858
9859 /* Try a few ways of applying the same transformation to both operands. */
9860 while (1)
9861 {
9862 #ifndef WORD_REGISTER_OPERATIONS
9863 /* The test below this one won't handle SIGN_EXTENDs on these machines,
9864 so check specially. */
9865 if (code != GTU && code != GEU && code != LTU && code != LEU
9866 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
9867 && GET_CODE (XEXP (op0, 0)) == ASHIFT
9868 && GET_CODE (XEXP (op1, 0)) == ASHIFT
9869 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
9870 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
9871 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
9872 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
9873 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9874 && GET_CODE (XEXP (op1, 1)) == CONST_INT
9875 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
9876 && GET_CODE (XEXP (XEXP (op1, 0), 1)) == CONST_INT
9877 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (op1, 1))
9878 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op0, 0), 1))
9879 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op1, 0), 1))
9880 && (INTVAL (XEXP (op0, 1))
9881 == (GET_MODE_BITSIZE (GET_MODE (op0))
9882 - (GET_MODE_BITSIZE
9883 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
9884 {
9885 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
9886 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
9887 }
9888 #endif
9889
9890 /* If both operands are the same constant shift, see if we can ignore the
9891 shift. We can if the shift is a rotate or if the bits shifted out of
9892 this shift are known to be zero for both inputs and if the type of
9893 comparison is compatible with the shift. */
9894 if (GET_CODE (op0) == GET_CODE (op1)
9895 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
9896 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
9897 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
9898 && (code != GT && code != LT && code != GE && code != LE))
9899 || (GET_CODE (op0) == ASHIFTRT
9900 && (code != GTU && code != LTU
9901 && code != GEU && code != LEU)))
9902 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9903 && INTVAL (XEXP (op0, 1)) >= 0
9904 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
9905 && XEXP (op0, 1) == XEXP (op1, 1))
9906 {
9907 enum machine_mode mode = GET_MODE (op0);
9908 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9909 int shift_count = INTVAL (XEXP (op0, 1));
9910
9911 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
9912 mask &= (mask >> shift_count) << shift_count;
9913 else if (GET_CODE (op0) == ASHIFT)
9914 mask = (mask & (mask << shift_count)) >> shift_count;
9915
9916 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
9917 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
9918 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
9919 else
9920 break;
9921 }
9922
9923 /* If both operands are AND's of a paradoxical SUBREG by constant, the
9924 SUBREGs are of the same mode, and, in both cases, the AND would
9925 be redundant if the comparison was done in the narrower mode,
9926 do the comparison in the narrower mode (e.g., we are AND'ing with 1
9927 and the operand's possibly nonzero bits are 0xffffff01; in that case
9928 if we only care about QImode, we don't need the AND). This case
9929 occurs if the output mode of an scc insn is not SImode and
9930 STORE_FLAG_VALUE == 1 (e.g., the 386).
9931
9932 Similarly, check for a case where the AND's are ZERO_EXTEND
9933 operations from some narrower mode even though a SUBREG is not
9934 present. */
9935
9936 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
9937 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9938 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
9939 {
9940 rtx inner_op0 = XEXP (op0, 0);
9941 rtx inner_op1 = XEXP (op1, 0);
9942 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
9943 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
9944 int changed = 0;
9945
9946 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
9947 && (GET_MODE_SIZE (GET_MODE (inner_op0))
9948 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
9949 && (GET_MODE (SUBREG_REG (inner_op0))
9950 == GET_MODE (SUBREG_REG (inner_op1)))
9951 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
9952 <= HOST_BITS_PER_WIDE_INT)
9953 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
9954 GET_MODE (SUBREG_REG (inner_op0)))))
9955 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
9956 GET_MODE (SUBREG_REG (inner_op1))))))
9957 {
9958 op0 = SUBREG_REG (inner_op0);
9959 op1 = SUBREG_REG (inner_op1);
9960
9961 /* The resulting comparison is always unsigned since we masked
9962 off the original sign bit. */
9963 code = unsigned_condition (code);
9964
9965 changed = 1;
9966 }
9967
9968 else if (c0 == c1)
9969 for (tmode = GET_CLASS_NARROWEST_MODE
9970 (GET_MODE_CLASS (GET_MODE (op0)));
9971 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
9972 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
9973 {
9974 op0 = gen_lowpart_for_combine (tmode, inner_op0);
9975 op1 = gen_lowpart_for_combine (tmode, inner_op1);
9976 code = unsigned_condition (code);
9977 changed = 1;
9978 break;
9979 }
9980
9981 if (! changed)
9982 break;
9983 }
9984
9985 /* If both operands are NOT, we can strip off the outer operation
9986 and adjust the comparison code for swapped operands; similarly for
9987 NEG, except that this must be an equality comparison. */
9988 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
9989 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
9990 && (code == EQ || code == NE)))
9991 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
9992
9993 else
9994 break;
9995 }
9996
9997 /* If the first operand is a constant, swap the operands and adjust the
9998 comparison code appropriately, but don't do this if the second operand
9999 is already a constant integer. */
10000 if (swap_commutative_operands_p (op0, op1))
10001 {
10002 tem = op0, op0 = op1, op1 = tem;
10003 code = swap_condition (code);
10004 }
10005
10006 /* We now enter a loop during which we will try to simplify the comparison.
10007 For the most part, we only are concerned with comparisons with zero,
10008 but some things may really be comparisons with zero but not start
10009 out looking that way. */
10010
10011 while (GET_CODE (op1) == CONST_INT)
10012 {
10013 enum machine_mode mode = GET_MODE (op0);
10014 unsigned int mode_width = GET_MODE_BITSIZE (mode);
10015 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10016 int equality_comparison_p;
10017 int sign_bit_comparison_p;
10018 int unsigned_comparison_p;
10019 HOST_WIDE_INT const_op;
10020
10021 /* We only want to handle integral modes. This catches VOIDmode,
10022 CCmode, and the floating-point modes. An exception is that we
10023 can handle VOIDmode if OP0 is a COMPARE or a comparison
10024 operation. */
10025
10026 if (GET_MODE_CLASS (mode) != MODE_INT
10027 && ! (mode == VOIDmode
10028 && (GET_CODE (op0) == COMPARE
10029 || GET_RTX_CLASS (GET_CODE (op0)) == '<')))
10030 break;
10031
10032 /* Get the constant we are comparing against and turn off all bits
10033 not on in our mode. */
10034 const_op = trunc_int_for_mode (INTVAL (op1), mode);
10035 op1 = GEN_INT (const_op);
10036
10037 /* If we are comparing against a constant power of two and the value
10038 being compared can only have that single bit nonzero (e.g., it was
10039 `and'ed with that bit), we can replace this with a comparison
10040 with zero. */
10041 if (const_op
10042 && (code == EQ || code == NE || code == GE || code == GEU
10043 || code == LT || code == LTU)
10044 && mode_width <= HOST_BITS_PER_WIDE_INT
10045 && exact_log2 (const_op) >= 0
10046 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10047 {
10048 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10049 op1 = const0_rtx, const_op = 0;
10050 }
10051
10052 /* Similarly, if we are comparing a value known to be either -1 or
10053 0 with -1, change it to the opposite comparison against zero. */
10054
10055 if (const_op == -1
10056 && (code == EQ || code == NE || code == GT || code == LE
10057 || code == GEU || code == LTU)
10058 && num_sign_bit_copies (op0, mode) == mode_width)
10059 {
10060 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10061 op1 = const0_rtx, const_op = 0;
10062 }
10063
10064 /* Do some canonicalizations based on the comparison code. We prefer
10065 comparisons against zero and then prefer equality comparisons.
10066 If we can reduce the size of a constant, we will do that too. */
10067
10068 switch (code)
10069 {
10070 case LT:
10071 /* < C is equivalent to <= (C - 1) */
10072 if (const_op > 0)
10073 {
10074 const_op -= 1;
10075 op1 = GEN_INT (const_op);
10076 code = LE;
10077 /* ... fall through to LE case below. */
10078 }
10079 else
10080 break;
10081
10082 case LE:
10083 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10084 if (const_op < 0)
10085 {
10086 const_op += 1;
10087 op1 = GEN_INT (const_op);
10088 code = LT;
10089 }
10090
10091 /* If we are doing a <= 0 comparison on a value known to have
10092 a zero sign bit, we can replace this with == 0. */
10093 else if (const_op == 0
10094 && mode_width <= HOST_BITS_PER_WIDE_INT
10095 && (nonzero_bits (op0, mode)
10096 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10097 code = EQ;
10098 break;
10099
10100 case GE:
10101 /* >= C is equivalent to > (C - 1). */
10102 if (const_op > 0)
10103 {
10104 const_op -= 1;
10105 op1 = GEN_INT (const_op);
10106 code = GT;
10107 /* ... fall through to GT below. */
10108 }
10109 else
10110 break;
10111
10112 case GT:
10113 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10114 if (const_op < 0)
10115 {
10116 const_op += 1;
10117 op1 = GEN_INT (const_op);
10118 code = GE;
10119 }
10120
10121 /* If we are doing a > 0 comparison on a value known to have
10122 a zero sign bit, we can replace this with != 0. */
10123 else if (const_op == 0
10124 && mode_width <= HOST_BITS_PER_WIDE_INT
10125 && (nonzero_bits (op0, mode)
10126 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10127 code = NE;
10128 break;
10129
10130 case LTU:
10131 /* < C is equivalent to <= (C - 1). */
10132 if (const_op > 0)
10133 {
10134 const_op -= 1;
10135 op1 = GEN_INT (const_op);
10136 code = LEU;
10137 /* ... fall through ... */
10138 }
10139
10140 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10141 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10142 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10143 {
10144 const_op = 0, op1 = const0_rtx;
10145 code = GE;
10146 break;
10147 }
10148 else
10149 break;
10150
10151 case LEU:
10152 /* unsigned <= 0 is equivalent to == 0 */
10153 if (const_op == 0)
10154 code = EQ;
10155
10156 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10157 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10158 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10159 {
10160 const_op = 0, op1 = const0_rtx;
10161 code = GE;
10162 }
10163 break;
10164
10165 case GEU:
10166 /* >= C is equivalent to < (C - 1). */
10167 if (const_op > 1)
10168 {
10169 const_op -= 1;
10170 op1 = GEN_INT (const_op);
10171 code = GTU;
10172 /* ... fall through ... */
10173 }
10174
10175 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10176 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10177 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10178 {
10179 const_op = 0, op1 = const0_rtx;
10180 code = LT;
10181 break;
10182 }
10183 else
10184 break;
10185
10186 case GTU:
10187 /* unsigned > 0 is equivalent to != 0 */
10188 if (const_op == 0)
10189 code = NE;
10190
10191 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10192 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10193 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10194 {
10195 const_op = 0, op1 = const0_rtx;
10196 code = LT;
10197 }
10198 break;
10199
10200 default:
10201 break;
10202 }
10203
10204 /* Compute some predicates to simplify code below. */
10205
10206 equality_comparison_p = (code == EQ || code == NE);
10207 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
10208 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
10209 || code == GEU);
10210
10211 /* If this is a sign bit comparison and we can do arithmetic in
10212 MODE, say that we will only be needing the sign bit of OP0. */
10213 if (sign_bit_comparison_p
10214 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10215 op0 = force_to_mode (op0, mode,
10216 ((HOST_WIDE_INT) 1
10217 << (GET_MODE_BITSIZE (mode) - 1)),
10218 NULL_RTX, 0);
10219
10220 /* Now try cases based on the opcode of OP0. If none of the cases
10221 does a "continue", we exit this loop immediately after the
10222 switch. */
10223
10224 switch (GET_CODE (op0))
10225 {
10226 case ZERO_EXTRACT:
10227 /* If we are extracting a single bit from a variable position in
10228 a constant that has only a single bit set and are comparing it
10229 with zero, we can convert this into an equality comparison
10230 between the position and the location of the single bit. */
10231
10232 if (GET_CODE (XEXP (op0, 0)) == CONST_INT
10233 && XEXP (op0, 1) == const1_rtx
10234 && equality_comparison_p && const_op == 0
10235 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
10236 {
10237 if (BITS_BIG_ENDIAN)
10238 {
10239 #ifdef HAVE_extzv
10240 mode = insn_data[(int) CODE_FOR_extzv].operand[1].mode;
10241 if (mode == VOIDmode)
10242 mode = word_mode;
10243 i = (GET_MODE_BITSIZE (mode) - 1 - i);
10244 #else
10245 i = BITS_PER_WORD - 1 - i;
10246 #endif
10247 }
10248
10249 op0 = XEXP (op0, 2);
10250 op1 = GEN_INT (i);
10251 const_op = i;
10252
10253 /* Result is nonzero iff shift count is equal to I. */
10254 code = reverse_condition (code);
10255 continue;
10256 }
10257
10258 /* ... fall through ... */
10259
10260 case SIGN_EXTRACT:
10261 tem = expand_compound_operation (op0);
10262 if (tem != op0)
10263 {
10264 op0 = tem;
10265 continue;
10266 }
10267 break;
10268
10269 case NOT:
10270 /* If testing for equality, we can take the NOT of the constant. */
10271 if (equality_comparison_p
10272 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
10273 {
10274 op0 = XEXP (op0, 0);
10275 op1 = tem;
10276 continue;
10277 }
10278
10279 /* If just looking at the sign bit, reverse the sense of the
10280 comparison. */
10281 if (sign_bit_comparison_p)
10282 {
10283 op0 = XEXP (op0, 0);
10284 code = (code == GE ? LT : GE);
10285 continue;
10286 }
10287 break;
10288
10289 case NEG:
10290 /* If testing for equality, we can take the NEG of the constant. */
10291 if (equality_comparison_p
10292 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
10293 {
10294 op0 = XEXP (op0, 0);
10295 op1 = tem;
10296 continue;
10297 }
10298
10299 /* The remaining cases only apply to comparisons with zero. */
10300 if (const_op != 0)
10301 break;
10302
10303 /* When X is ABS or is known positive,
10304 (neg X) is < 0 if and only if X != 0. */
10305
10306 if (sign_bit_comparison_p
10307 && (GET_CODE (XEXP (op0, 0)) == ABS
10308 || (mode_width <= HOST_BITS_PER_WIDE_INT
10309 && (nonzero_bits (XEXP (op0, 0), mode)
10310 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10311 {
10312 op0 = XEXP (op0, 0);
10313 code = (code == LT ? NE : EQ);
10314 continue;
10315 }
10316
10317 /* If we have NEG of something whose two high-order bits are the
10318 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10319 if (num_sign_bit_copies (op0, mode) >= 2)
10320 {
10321 op0 = XEXP (op0, 0);
10322 code = swap_condition (code);
10323 continue;
10324 }
10325 break;
10326
10327 case ROTATE:
10328 /* If we are testing equality and our count is a constant, we
10329 can perform the inverse operation on our RHS. */
10330 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10331 && (tem = simplify_binary_operation (ROTATERT, mode,
10332 op1, XEXP (op0, 1))) != 0)
10333 {
10334 op0 = XEXP (op0, 0);
10335 op1 = tem;
10336 continue;
10337 }
10338
10339 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10340 a particular bit. Convert it to an AND of a constant of that
10341 bit. This will be converted into a ZERO_EXTRACT. */
10342 if (const_op == 0 && sign_bit_comparison_p
10343 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10344 && mode_width <= HOST_BITS_PER_WIDE_INT)
10345 {
10346 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10347 ((HOST_WIDE_INT) 1
10348 << (mode_width - 1
10349 - INTVAL (XEXP (op0, 1)))));
10350 code = (code == LT ? NE : EQ);
10351 continue;
10352 }
10353
10354 /* Fall through. */
10355
10356 case ABS:
10357 /* ABS is ignorable inside an equality comparison with zero. */
10358 if (const_op == 0 && equality_comparison_p)
10359 {
10360 op0 = XEXP (op0, 0);
10361 continue;
10362 }
10363 break;
10364
10365 case SIGN_EXTEND:
10366 /* Can simplify (compare (zero/sign_extend FOO) CONST)
10367 to (compare FOO CONST) if CONST fits in FOO's mode and we
10368 are either testing inequality or have an unsigned comparison
10369 with ZERO_EXTEND or a signed comparison with SIGN_EXTEND. */
10370 if (! unsigned_comparison_p
10371 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10372 <= HOST_BITS_PER_WIDE_INT)
10373 && ((unsigned HOST_WIDE_INT) const_op
10374 < (((unsigned HOST_WIDE_INT) 1
10375 << (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))) - 1)))))
10376 {
10377 op0 = XEXP (op0, 0);
10378 continue;
10379 }
10380 break;
10381
10382 case SUBREG:
10383 /* Check for the case where we are comparing A - C1 with C2,
10384 both constants are smaller than 1/2 the maximum positive
10385 value in MODE, and the comparison is equality or unsigned.
10386 In that case, if A is either zero-extended to MODE or has
10387 sufficient sign bits so that the high-order bit in MODE
10388 is a copy of the sign in the inner mode, we can prove that it is
10389 safe to do the operation in the wider mode. This simplifies
10390 many range checks. */
10391
10392 if (mode_width <= HOST_BITS_PER_WIDE_INT
10393 && subreg_lowpart_p (op0)
10394 && GET_CODE (SUBREG_REG (op0)) == PLUS
10395 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT
10396 && INTVAL (XEXP (SUBREG_REG (op0), 1)) < 0
10397 && (-INTVAL (XEXP (SUBREG_REG (op0), 1))
10398 < (HOST_WIDE_INT) (GET_MODE_MASK (mode) / 2))
10399 && (unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode) / 2
10400 && (0 == (nonzero_bits (XEXP (SUBREG_REG (op0), 0),
10401 GET_MODE (SUBREG_REG (op0)))
10402 & ~GET_MODE_MASK (mode))
10403 || (num_sign_bit_copies (XEXP (SUBREG_REG (op0), 0),
10404 GET_MODE (SUBREG_REG (op0)))
10405 > (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10406 - GET_MODE_BITSIZE (mode)))))
10407 {
10408 op0 = SUBREG_REG (op0);
10409 continue;
10410 }
10411
10412 /* If the inner mode is narrower and we are extracting the low part,
10413 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10414 if (subreg_lowpart_p (op0)
10415 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10416 /* Fall through */ ;
10417 else
10418 break;
10419
10420 /* ... fall through ... */
10421
10422 case ZERO_EXTEND:
10423 if ((unsigned_comparison_p || equality_comparison_p)
10424 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10425 <= HOST_BITS_PER_WIDE_INT)
10426 && ((unsigned HOST_WIDE_INT) const_op
10427 < GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))))
10428 {
10429 op0 = XEXP (op0, 0);
10430 continue;
10431 }
10432 break;
10433
10434 case PLUS:
10435 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10436 this for equality comparisons due to pathological cases involving
10437 overflows. */
10438 if (equality_comparison_p
10439 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10440 op1, XEXP (op0, 1))))
10441 {
10442 op0 = XEXP (op0, 0);
10443 op1 = tem;
10444 continue;
10445 }
10446
10447 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10448 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10449 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10450 {
10451 op0 = XEXP (XEXP (op0, 0), 0);
10452 code = (code == LT ? EQ : NE);
10453 continue;
10454 }
10455 break;
10456
10457 case MINUS:
10458 /* We used to optimize signed comparisons against zero, but that
10459 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10460 arrive here as equality comparisons, or (GEU, LTU) are
10461 optimized away. No need to special-case them. */
10462
10463 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10464 (eq B (minus A C)), whichever simplifies. We can only do
10465 this for equality comparisons due to pathological cases involving
10466 overflows. */
10467 if (equality_comparison_p
10468 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10469 XEXP (op0, 1), op1)))
10470 {
10471 op0 = XEXP (op0, 0);
10472 op1 = tem;
10473 continue;
10474 }
10475
10476 if (equality_comparison_p
10477 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10478 XEXP (op0, 0), op1)))
10479 {
10480 op0 = XEXP (op0, 1);
10481 op1 = tem;
10482 continue;
10483 }
10484
10485 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10486 of bits in X minus 1, is one iff X > 0. */
10487 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10488 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10489 && INTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
10490 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10491 {
10492 op0 = XEXP (op0, 1);
10493 code = (code == GE ? LE : GT);
10494 continue;
10495 }
10496 break;
10497
10498 case XOR:
10499 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10500 if C is zero or B is a constant. */
10501 if (equality_comparison_p
10502 && 0 != (tem = simplify_binary_operation (XOR, mode,
10503 XEXP (op0, 1), op1)))
10504 {
10505 op0 = XEXP (op0, 0);
10506 op1 = tem;
10507 continue;
10508 }
10509 break;
10510
10511 case EQ: case NE:
10512 case UNEQ: case LTGT:
10513 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10514 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10515 case UNORDERED: case ORDERED:
10516 /* We can't do anything if OP0 is a condition code value, rather
10517 than an actual data value. */
10518 if (const_op != 0
10519 #ifdef HAVE_cc0
10520 || XEXP (op0, 0) == cc0_rtx
10521 #endif
10522 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10523 break;
10524
10525 /* Get the two operands being compared. */
10526 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10527 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10528 else
10529 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10530
10531 /* Check for the cases where we simply want the result of the
10532 earlier test or the opposite of that result. */
10533 if (code == NE || code == EQ
10534 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10535 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10536 && (STORE_FLAG_VALUE
10537 & (((HOST_WIDE_INT) 1
10538 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10539 && (code == LT || code == GE)))
10540 {
10541 enum rtx_code new_code;
10542 if (code == LT || code == NE)
10543 new_code = GET_CODE (op0);
10544 else
10545 new_code = combine_reversed_comparison_code (op0);
10546
10547 if (new_code != UNKNOWN)
10548 {
10549 code = new_code;
10550 op0 = tem;
10551 op1 = tem1;
10552 continue;
10553 }
10554 }
10555 break;
10556
10557 case IOR:
10558 /* The sign bit of (ior (plus X (const_int -1)) X) is non-zero
10559 iff X <= 0. */
10560 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10561 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10562 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10563 {
10564 op0 = XEXP (op0, 1);
10565 code = (code == GE ? GT : LE);
10566 continue;
10567 }
10568 break;
10569
10570 case AND:
10571 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10572 will be converted to a ZERO_EXTRACT later. */
10573 if (const_op == 0 && equality_comparison_p
10574 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10575 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10576 {
10577 op0 = simplify_and_const_int
10578 (op0, mode, gen_rtx_LSHIFTRT (mode,
10579 XEXP (op0, 1),
10580 XEXP (XEXP (op0, 0), 1)),
10581 (HOST_WIDE_INT) 1);
10582 continue;
10583 }
10584
10585 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10586 zero and X is a comparison and C1 and C2 describe only bits set
10587 in STORE_FLAG_VALUE, we can compare with X. */
10588 if (const_op == 0 && equality_comparison_p
10589 && mode_width <= HOST_BITS_PER_WIDE_INT
10590 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10591 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10592 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10593 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10594 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10595 {
10596 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10597 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10598 if ((~STORE_FLAG_VALUE & mask) == 0
10599 && (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (op0, 0), 0))) == '<'
10600 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10601 && GET_RTX_CLASS (GET_CODE (tem)) == '<')))
10602 {
10603 op0 = XEXP (XEXP (op0, 0), 0);
10604 continue;
10605 }
10606 }
10607
10608 /* If we are doing an equality comparison of an AND of a bit equal
10609 to the sign bit, replace this with a LT or GE comparison of
10610 the underlying value. */
10611 if (equality_comparison_p
10612 && const_op == 0
10613 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10614 && mode_width <= HOST_BITS_PER_WIDE_INT
10615 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10616 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10617 {
10618 op0 = XEXP (op0, 0);
10619 code = (code == EQ ? GE : LT);
10620 continue;
10621 }
10622
10623 /* If this AND operation is really a ZERO_EXTEND from a narrower
10624 mode, the constant fits within that mode, and this is either an
10625 equality or unsigned comparison, try to do this comparison in
10626 the narrower mode. */
10627 if ((equality_comparison_p || unsigned_comparison_p)
10628 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10629 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10630 & GET_MODE_MASK (mode))
10631 + 1)) >= 0
10632 && const_op >> i == 0
10633 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
10634 {
10635 op0 = gen_lowpart_for_combine (tmode, XEXP (op0, 0));
10636 continue;
10637 }
10638
10639 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1 fits
10640 in both M1 and M2 and the SUBREG is either paradoxical or
10641 represents the low part, permute the SUBREG and the AND and
10642 try again. */
10643 if (GET_CODE (XEXP (op0, 0)) == SUBREG
10644 && (0
10645 #ifdef WORD_REGISTER_OPERATIONS
10646 || ((mode_width
10647 > (GET_MODE_BITSIZE
10648 (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10649 && mode_width <= BITS_PER_WORD)
10650 #endif
10651 || ((mode_width
10652 <= (GET_MODE_BITSIZE
10653 (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10654 && subreg_lowpart_p (XEXP (op0, 0))))
10655 #ifndef WORD_REGISTER_OPERATIONS
10656 /* It is unsafe to commute the AND into the SUBREG if the SUBREG
10657 is paradoxical and WORD_REGISTER_OPERATIONS is not defined.
10658 As originally written the upper bits have a defined value
10659 due to the AND operation. However, if we commute the AND
10660 inside the SUBREG then they no longer have defined values
10661 and the meaning of the code has been changed. */
10662 && (GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)))
10663 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (op0, 0)))))
10664 #endif
10665 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10666 && mode_width <= HOST_BITS_PER_WIDE_INT
10667 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (XEXP (op0, 0))))
10668 <= HOST_BITS_PER_WIDE_INT)
10669 && (INTVAL (XEXP (op0, 1)) & ~mask) == 0
10670 && 0 == (~GET_MODE_MASK (GET_MODE (SUBREG_REG (XEXP (op0, 0))))
10671 & INTVAL (XEXP (op0, 1)))
10672 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1)) != mask
10673 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10674 != GET_MODE_MASK (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10675
10676 {
10677 op0
10678 = gen_lowpart_for_combine
10679 (mode,
10680 gen_binary (AND, GET_MODE (SUBREG_REG (XEXP (op0, 0))),
10681 SUBREG_REG (XEXP (op0, 0)), XEXP (op0, 1)));
10682 continue;
10683 }
10684
10685 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10686 (eq (and (lshiftrt X) 1) 0). */
10687 if (const_op == 0 && equality_comparison_p
10688 && XEXP (op0, 1) == const1_rtx
10689 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10690 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == NOT)
10691 {
10692 op0 = simplify_and_const_int
10693 (op0, mode,
10694 gen_rtx_LSHIFTRT (mode, XEXP (XEXP (XEXP (op0, 0), 0), 0),
10695 XEXP (XEXP (op0, 0), 1)),
10696 (HOST_WIDE_INT) 1);
10697 code = (code == NE ? EQ : NE);
10698 continue;
10699 }
10700 break;
10701
10702 case ASHIFT:
10703 /* If we have (compare (ashift FOO N) (const_int C)) and
10704 the high order N bits of FOO (N+1 if an inequality comparison)
10705 are known to be zero, we can do this by comparing FOO with C
10706 shifted right N bits so long as the low-order N bits of C are
10707 zero. */
10708 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10709 && INTVAL (XEXP (op0, 1)) >= 0
10710 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10711 < HOST_BITS_PER_WIDE_INT)
10712 && ((const_op
10713 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10714 && mode_width <= HOST_BITS_PER_WIDE_INT
10715 && (nonzero_bits (XEXP (op0, 0), mode)
10716 & ~(mask >> (INTVAL (XEXP (op0, 1))
10717 + ! equality_comparison_p))) == 0)
10718 {
10719 /* We must perform a logical shift, not an arithmetic one,
10720 as we want the top N bits of C to be zero. */
10721 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10722
10723 temp >>= INTVAL (XEXP (op0, 1));
10724 op1 = GEN_INT (trunc_int_for_mode (temp, mode));
10725 op0 = XEXP (op0, 0);
10726 continue;
10727 }
10728
10729 /* If we are doing a sign bit comparison, it means we are testing
10730 a particular bit. Convert it to the appropriate AND. */
10731 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10732 && mode_width <= HOST_BITS_PER_WIDE_INT)
10733 {
10734 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10735 ((HOST_WIDE_INT) 1
10736 << (mode_width - 1
10737 - INTVAL (XEXP (op0, 1)))));
10738 code = (code == LT ? NE : EQ);
10739 continue;
10740 }
10741
10742 /* If this an equality comparison with zero and we are shifting
10743 the low bit to the sign bit, we can convert this to an AND of the
10744 low-order bit. */
10745 if (const_op == 0 && equality_comparison_p
10746 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10747 && INTVAL (XEXP (op0, 1)) == mode_width - 1)
10748 {
10749 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10750 (HOST_WIDE_INT) 1);
10751 continue;
10752 }
10753 break;
10754
10755 case ASHIFTRT:
10756 /* If this is an equality comparison with zero, we can do this
10757 as a logical shift, which might be much simpler. */
10758 if (equality_comparison_p && const_op == 0
10759 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10760 {
10761 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10762 XEXP (op0, 0),
10763 INTVAL (XEXP (op0, 1)));
10764 continue;
10765 }
10766
10767 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10768 do the comparison in a narrower mode. */
10769 if (! unsigned_comparison_p
10770 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10771 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10772 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10773 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10774 MODE_INT, 1)) != BLKmode
10775 && ((unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (tmode)
10776 || ((unsigned HOST_WIDE_INT) -const_op
10777 <= GET_MODE_MASK (tmode))))
10778 {
10779 op0 = gen_lowpart_for_combine (tmode, XEXP (XEXP (op0, 0), 0));
10780 continue;
10781 }
10782
10783 /* Likewise if OP0 is a PLUS of a sign extension with a
10784 constant, which is usually represented with the PLUS
10785 between the shifts. */
10786 if (! unsigned_comparison_p
10787 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10788 && GET_CODE (XEXP (op0, 0)) == PLUS
10789 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10790 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
10791 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
10792 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10793 MODE_INT, 1)) != BLKmode
10794 && ((unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (tmode)
10795 || ((unsigned HOST_WIDE_INT) -const_op
10796 <= GET_MODE_MASK (tmode))))
10797 {
10798 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
10799 rtx add_const = XEXP (XEXP (op0, 0), 1);
10800 rtx new_const = gen_binary (ASHIFTRT, GET_MODE (op0), add_const,
10801 XEXP (op0, 1));
10802
10803 op0 = gen_binary (PLUS, tmode,
10804 gen_lowpart_for_combine (tmode, inner),
10805 new_const);
10806 continue;
10807 }
10808
10809 /* ... fall through ... */
10810 case LSHIFTRT:
10811 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
10812 the low order N bits of FOO are known to be zero, we can do this
10813 by comparing FOO with C shifted left N bits so long as no
10814 overflow occurs. */
10815 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10816 && INTVAL (XEXP (op0, 1)) >= 0
10817 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10818 && mode_width <= HOST_BITS_PER_WIDE_INT
10819 && (nonzero_bits (XEXP (op0, 0), mode)
10820 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
10821 && (const_op == 0
10822 || (floor_log2 (const_op) + INTVAL (XEXP (op0, 1))
10823 < mode_width)))
10824 {
10825 const_op <<= INTVAL (XEXP (op0, 1));
10826 op1 = GEN_INT (const_op);
10827 op0 = XEXP (op0, 0);
10828 continue;
10829 }
10830
10831 /* If we are using this shift to extract just the sign bit, we
10832 can replace this with an LT or GE comparison. */
10833 if (const_op == 0
10834 && (equality_comparison_p || sign_bit_comparison_p)
10835 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10836 && INTVAL (XEXP (op0, 1)) == mode_width - 1)
10837 {
10838 op0 = XEXP (op0, 0);
10839 code = (code == NE || code == GT ? LT : GE);
10840 continue;
10841 }
10842 break;
10843
10844 default:
10845 break;
10846 }
10847
10848 break;
10849 }
10850
10851 /* Now make any compound operations involved in this comparison. Then,
10852 check for an outmost SUBREG on OP0 that is not doing anything or is
10853 paradoxical. The latter case can only occur when it is known that the
10854 "extra" bits will be zero. Therefore, it is safe to remove the SUBREG.
10855 We can never remove a SUBREG for a non-equality comparison because the
10856 sign bit is in a different place in the underlying object. */
10857
10858 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
10859 op1 = make_compound_operation (op1, SET);
10860
10861 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
10862 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10863 && (code == NE || code == EQ)
10864 && ((GET_MODE_SIZE (GET_MODE (op0))
10865 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))))
10866 {
10867 op0 = SUBREG_REG (op0);
10868 op1 = gen_lowpart_for_combine (GET_MODE (op0), op1);
10869 }
10870
10871 else if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
10872 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10873 && (code == NE || code == EQ)
10874 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10875 <= HOST_BITS_PER_WIDE_INT)
10876 && (nonzero_bits (SUBREG_REG (op0), GET_MODE (SUBREG_REG (op0)))
10877 & ~GET_MODE_MASK (GET_MODE (op0))) == 0
10878 && (tem = gen_lowpart_for_combine (GET_MODE (SUBREG_REG (op0)),
10879 op1),
10880 (nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
10881 & ~GET_MODE_MASK (GET_MODE (op0))) == 0))
10882 op0 = SUBREG_REG (op0), op1 = tem;
10883
10884 /* We now do the opposite procedure: Some machines don't have compare
10885 insns in all modes. If OP0's mode is an integer mode smaller than a
10886 word and we can't do a compare in that mode, see if there is a larger
10887 mode for which we can do the compare. There are a number of cases in
10888 which we can use the wider mode. */
10889
10890 mode = GET_MODE (op0);
10891 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10892 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
10893 && cmp_optab->handlers[(int) mode].insn_code == CODE_FOR_nothing)
10894 for (tmode = GET_MODE_WIDER_MODE (mode);
10895 (tmode != VOIDmode
10896 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
10897 tmode = GET_MODE_WIDER_MODE (tmode))
10898 if (cmp_optab->handlers[(int) tmode].insn_code != CODE_FOR_nothing)
10899 {
10900 /* If the only nonzero bits in OP0 and OP1 are those in the
10901 narrower mode and this is an equality or unsigned comparison,
10902 we can use the wider mode. Similarly for sign-extended
10903 values, in which case it is true for all comparisons. */
10904 if (((code == EQ || code == NE
10905 || code == GEU || code == GTU || code == LEU || code == LTU)
10906 && (nonzero_bits (op0, tmode) & ~GET_MODE_MASK (mode)) == 0
10907 && (nonzero_bits (op1, tmode) & ~GET_MODE_MASK (mode)) == 0)
10908 || ((num_sign_bit_copies (op0, tmode)
10909 > GET_MODE_BITSIZE (tmode) - GET_MODE_BITSIZE (mode))
10910 && (num_sign_bit_copies (op1, tmode)
10911 > GET_MODE_BITSIZE (tmode) - GET_MODE_BITSIZE (mode))))
10912 {
10913 /* If OP0 is an AND and we don't have an AND in MODE either,
10914 make a new AND in the proper mode. */
10915 if (GET_CODE (op0) == AND
10916 && (add_optab->handlers[(int) mode].insn_code
10917 == CODE_FOR_nothing))
10918 op0 = gen_binary (AND, tmode,
10919 gen_lowpart_for_combine (tmode,
10920 XEXP (op0, 0)),
10921 gen_lowpart_for_combine (tmode,
10922 XEXP (op0, 1)));
10923
10924 op0 = gen_lowpart_for_combine (tmode, op0);
10925 op1 = gen_lowpart_for_combine (tmode, op1);
10926 break;
10927 }
10928
10929 /* If this is a test for negative, we can make an explicit
10930 test of the sign bit. */
10931
10932 if (op1 == const0_rtx && (code == LT || code == GE)
10933 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10934 {
10935 op0 = gen_binary (AND, tmode,
10936 gen_lowpart_for_combine (tmode, op0),
10937 GEN_INT ((HOST_WIDE_INT) 1
10938 << (GET_MODE_BITSIZE (mode) - 1)));
10939 code = (code == LT) ? NE : EQ;
10940 break;
10941 }
10942 }
10943
10944 #ifdef CANONICALIZE_COMPARISON
10945 /* If this machine only supports a subset of valid comparisons, see if we
10946 can convert an unsupported one into a supported one. */
10947 CANONICALIZE_COMPARISON (code, op0, op1);
10948 #endif
10949
10950 *pop0 = op0;
10951 *pop1 = op1;
10952
10953 return code;
10954 }
10955 \f
10956 /* Like jump.c' reversed_comparison_code, but use combine infrastructure for
10957 searching backward. */
10958 static enum rtx_code
10959 combine_reversed_comparison_code (exp)
10960 rtx exp;
10961 {
10962 enum rtx_code code1 = reversed_comparison_code (exp, NULL);
10963 rtx x;
10964
10965 if (code1 != UNKNOWN
10966 || GET_MODE_CLASS (GET_MODE (XEXP (exp, 0))) != MODE_CC)
10967 return code1;
10968 /* Otherwise try and find where the condition codes were last set and
10969 use that. */
10970 x = get_last_value (XEXP (exp, 0));
10971 if (!x || GET_CODE (x) != COMPARE)
10972 return UNKNOWN;
10973 return reversed_comparison_code_parts (GET_CODE (exp),
10974 XEXP (x, 0), XEXP (x, 1), NULL);
10975 }
10976 /* Return comparison with reversed code of EXP and operands OP0 and OP1.
10977 Return NULL_RTX in case we fail to do the reversal. */
10978 static rtx
10979 reversed_comparison (exp, mode, op0, op1)
10980 rtx exp, op0, op1;
10981 enum machine_mode mode;
10982 {
10983 enum rtx_code reversed_code = combine_reversed_comparison_code (exp);
10984 if (reversed_code == UNKNOWN)
10985 return NULL_RTX;
10986 else
10987 return gen_binary (reversed_code, mode, op0, op1);
10988 }
10989 \f
10990 /* Utility function for following routine. Called when X is part of a value
10991 being stored into reg_last_set_value. Sets reg_last_set_table_tick
10992 for each register mentioned. Similar to mention_regs in cse.c */
10993
10994 static void
10995 update_table_tick (x)
10996 rtx x;
10997 {
10998 register enum rtx_code code = GET_CODE (x);
10999 register const char *fmt = GET_RTX_FORMAT (code);
11000 register int i;
11001
11002 if (code == REG)
11003 {
11004 unsigned int regno = REGNO (x);
11005 unsigned int endregno
11006 = regno + (regno < FIRST_PSEUDO_REGISTER
11007 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11008 unsigned int r;
11009
11010 for (r = regno; r < endregno; r++)
11011 reg_last_set_table_tick[r] = label_tick;
11012
11013 return;
11014 }
11015
11016 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11017 /* Note that we can't have an "E" in values stored; see
11018 get_last_value_validate. */
11019 if (fmt[i] == 'e')
11020 update_table_tick (XEXP (x, i));
11021 }
11022
11023 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
11024 are saying that the register is clobbered and we no longer know its
11025 value. If INSN is zero, don't update reg_last_set; this is only permitted
11026 with VALUE also zero and is used to invalidate the register. */
11027
11028 static void
11029 record_value_for_reg (reg, insn, value)
11030 rtx reg;
11031 rtx insn;
11032 rtx value;
11033 {
11034 unsigned int regno = REGNO (reg);
11035 unsigned int endregno
11036 = regno + (regno < FIRST_PSEUDO_REGISTER
11037 ? HARD_REGNO_NREGS (regno, GET_MODE (reg)) : 1);
11038 unsigned int i;
11039
11040 /* If VALUE contains REG and we have a previous value for REG, substitute
11041 the previous value. */
11042 if (value && insn && reg_overlap_mentioned_p (reg, value))
11043 {
11044 rtx tem;
11045
11046 /* Set things up so get_last_value is allowed to see anything set up to
11047 our insn. */
11048 subst_low_cuid = INSN_CUID (insn);
11049 tem = get_last_value (reg);
11050
11051 /* If TEM is simply a binary operation with two CLOBBERs as operands,
11052 it isn't going to be useful and will take a lot of time to process,
11053 so just use the CLOBBER. */
11054
11055 if (tem)
11056 {
11057 if ((GET_RTX_CLASS (GET_CODE (tem)) == '2'
11058 || GET_RTX_CLASS (GET_CODE (tem)) == 'c')
11059 && GET_CODE (XEXP (tem, 0)) == CLOBBER
11060 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
11061 tem = XEXP (tem, 0);
11062
11063 value = replace_rtx (copy_rtx (value), reg, tem);
11064 }
11065 }
11066
11067 /* For each register modified, show we don't know its value, that
11068 we don't know about its bitwise content, that its value has been
11069 updated, and that we don't know the location of the death of the
11070 register. */
11071 for (i = regno; i < endregno; i++)
11072 {
11073 if (insn)
11074 reg_last_set[i] = insn;
11075
11076 reg_last_set_value[i] = 0;
11077 reg_last_set_mode[i] = 0;
11078 reg_last_set_nonzero_bits[i] = 0;
11079 reg_last_set_sign_bit_copies[i] = 0;
11080 reg_last_death[i] = 0;
11081 }
11082
11083 /* Mark registers that are being referenced in this value. */
11084 if (value)
11085 update_table_tick (value);
11086
11087 /* Now update the status of each register being set.
11088 If someone is using this register in this block, set this register
11089 to invalid since we will get confused between the two lives in this
11090 basic block. This makes using this register always invalid. In cse, we
11091 scan the table to invalidate all entries using this register, but this
11092 is too much work for us. */
11093
11094 for (i = regno; i < endregno; i++)
11095 {
11096 reg_last_set_label[i] = label_tick;
11097 if (value && reg_last_set_table_tick[i] == label_tick)
11098 reg_last_set_invalid[i] = 1;
11099 else
11100 reg_last_set_invalid[i] = 0;
11101 }
11102
11103 /* The value being assigned might refer to X (like in "x++;"). In that
11104 case, we must replace it with (clobber (const_int 0)) to prevent
11105 infinite loops. */
11106 if (value && ! get_last_value_validate (&value, insn,
11107 reg_last_set_label[regno], 0))
11108 {
11109 value = copy_rtx (value);
11110 if (! get_last_value_validate (&value, insn,
11111 reg_last_set_label[regno], 1))
11112 value = 0;
11113 }
11114
11115 /* For the main register being modified, update the value, the mode, the
11116 nonzero bits, and the number of sign bit copies. */
11117
11118 reg_last_set_value[regno] = value;
11119
11120 if (value)
11121 {
11122 subst_low_cuid = INSN_CUID (insn);
11123 reg_last_set_mode[regno] = GET_MODE (reg);
11124 reg_last_set_nonzero_bits[regno] = nonzero_bits (value, GET_MODE (reg));
11125 reg_last_set_sign_bit_copies[regno]
11126 = num_sign_bit_copies (value, GET_MODE (reg));
11127 }
11128 }
11129
11130 /* Called via note_stores from record_dead_and_set_regs to handle one
11131 SET or CLOBBER in an insn. DATA is the instruction in which the
11132 set is occurring. */
11133
11134 static void
11135 record_dead_and_set_regs_1 (dest, setter, data)
11136 rtx dest, setter;
11137 void *data;
11138 {
11139 rtx record_dead_insn = (rtx) data;
11140
11141 if (GET_CODE (dest) == SUBREG)
11142 dest = SUBREG_REG (dest);
11143
11144 if (GET_CODE (dest) == REG)
11145 {
11146 /* If we are setting the whole register, we know its value. Otherwise
11147 show that we don't know the value. We can handle SUBREG in
11148 some cases. */
11149 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
11150 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
11151 else if (GET_CODE (setter) == SET
11152 && GET_CODE (SET_DEST (setter)) == SUBREG
11153 && SUBREG_REG (SET_DEST (setter)) == dest
11154 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
11155 && subreg_lowpart_p (SET_DEST (setter)))
11156 record_value_for_reg (dest, record_dead_insn,
11157 gen_lowpart_for_combine (GET_MODE (dest),
11158 SET_SRC (setter)));
11159 else
11160 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11161 }
11162 else if (GET_CODE (dest) == MEM
11163 /* Ignore pushes, they clobber nothing. */
11164 && ! push_operand (dest, GET_MODE (dest)))
11165 mem_last_set = INSN_CUID (record_dead_insn);
11166 }
11167
11168 /* Update the records of when each REG was most recently set or killed
11169 for the things done by INSN. This is the last thing done in processing
11170 INSN in the combiner loop.
11171
11172 We update reg_last_set, reg_last_set_value, reg_last_set_mode,
11173 reg_last_set_nonzero_bits, reg_last_set_sign_bit_copies, reg_last_death,
11174 and also the similar information mem_last_set (which insn most recently
11175 modified memory) and last_call_cuid (which insn was the most recent
11176 subroutine call). */
11177
11178 static void
11179 record_dead_and_set_regs (insn)
11180 rtx insn;
11181 {
11182 register rtx link;
11183 unsigned int i;
11184
11185 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11186 {
11187 if (REG_NOTE_KIND (link) == REG_DEAD
11188 && GET_CODE (XEXP (link, 0)) == REG)
11189 {
11190 unsigned int regno = REGNO (XEXP (link, 0));
11191 unsigned int endregno
11192 = regno + (regno < FIRST_PSEUDO_REGISTER
11193 ? HARD_REGNO_NREGS (regno, GET_MODE (XEXP (link, 0)))
11194 : 1);
11195
11196 for (i = regno; i < endregno; i++)
11197 reg_last_death[i] = insn;
11198 }
11199 else if (REG_NOTE_KIND (link) == REG_INC)
11200 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11201 }
11202
11203 if (GET_CODE (insn) == CALL_INSN)
11204 {
11205 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11206 if (call_used_regs[i])
11207 {
11208 reg_last_set_value[i] = 0;
11209 reg_last_set_mode[i] = 0;
11210 reg_last_set_nonzero_bits[i] = 0;
11211 reg_last_set_sign_bit_copies[i] = 0;
11212 reg_last_death[i] = 0;
11213 }
11214
11215 last_call_cuid = mem_last_set = INSN_CUID (insn);
11216 }
11217
11218 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11219 }
11220
11221 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11222 register present in the SUBREG, so for each such SUBREG go back and
11223 adjust nonzero and sign bit information of the registers that are
11224 known to have some zero/sign bits set.
11225
11226 This is needed because when combine blows the SUBREGs away, the
11227 information on zero/sign bits is lost and further combines can be
11228 missed because of that. */
11229
11230 static void
11231 record_promoted_value (insn, subreg)
11232 rtx insn;
11233 rtx subreg;
11234 {
11235 rtx links, set;
11236 unsigned int regno = REGNO (SUBREG_REG (subreg));
11237 enum machine_mode mode = GET_MODE (subreg);
11238
11239 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11240 return;
11241
11242 for (links = LOG_LINKS (insn); links;)
11243 {
11244 insn = XEXP (links, 0);
11245 set = single_set (insn);
11246
11247 if (! set || GET_CODE (SET_DEST (set)) != REG
11248 || REGNO (SET_DEST (set)) != regno
11249 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11250 {
11251 links = XEXP (links, 1);
11252 continue;
11253 }
11254
11255 if (reg_last_set[regno] == insn)
11256 {
11257 if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
11258 reg_last_set_nonzero_bits[regno] &= GET_MODE_MASK (mode);
11259 }
11260
11261 if (GET_CODE (SET_SRC (set)) == REG)
11262 {
11263 regno = REGNO (SET_SRC (set));
11264 links = LOG_LINKS (insn);
11265 }
11266 else
11267 break;
11268 }
11269 }
11270
11271 /* Scan X for promoted SUBREGs. For each one found,
11272 note what it implies to the registers used in it. */
11273
11274 static void
11275 check_promoted_subreg (insn, x)
11276 rtx insn;
11277 rtx x;
11278 {
11279 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
11280 && GET_CODE (SUBREG_REG (x)) == REG)
11281 record_promoted_value (insn, x);
11282 else
11283 {
11284 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11285 int i, j;
11286
11287 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11288 switch (format[i])
11289 {
11290 case 'e':
11291 check_promoted_subreg (insn, XEXP (x, i));
11292 break;
11293 case 'V':
11294 case 'E':
11295 if (XVEC (x, i) != 0)
11296 for (j = 0; j < XVECLEN (x, i); j++)
11297 check_promoted_subreg (insn, XVECEXP (x, i, j));
11298 break;
11299 }
11300 }
11301 }
11302 \f
11303 /* Utility routine for the following function. Verify that all the registers
11304 mentioned in *LOC are valid when *LOC was part of a value set when
11305 label_tick == TICK. Return 0 if some are not.
11306
11307 If REPLACE is non-zero, replace the invalid reference with
11308 (clobber (const_int 0)) and return 1. This replacement is useful because
11309 we often can get useful information about the form of a value (e.g., if
11310 it was produced by a shift that always produces -1 or 0) even though
11311 we don't know exactly what registers it was produced from. */
11312
11313 static int
11314 get_last_value_validate (loc, insn, tick, replace)
11315 rtx *loc;
11316 rtx insn;
11317 int tick;
11318 int replace;
11319 {
11320 rtx x = *loc;
11321 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11322 int len = GET_RTX_LENGTH (GET_CODE (x));
11323 int i;
11324
11325 if (GET_CODE (x) == REG)
11326 {
11327 unsigned int regno = REGNO (x);
11328 unsigned int endregno
11329 = regno + (regno < FIRST_PSEUDO_REGISTER
11330 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11331 unsigned int j;
11332
11333 for (j = regno; j < endregno; j++)
11334 if (reg_last_set_invalid[j]
11335 /* If this is a pseudo-register that was only set once and not
11336 live at the beginning of the function, it is always valid. */
11337 || (! (regno >= FIRST_PSEUDO_REGISTER
11338 && REG_N_SETS (regno) == 1
11339 && (! REGNO_REG_SET_P
11340 (BASIC_BLOCK (0)->global_live_at_start, regno)))
11341 && reg_last_set_label[j] > tick))
11342 {
11343 if (replace)
11344 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11345 return replace;
11346 }
11347
11348 return 1;
11349 }
11350 /* If this is a memory reference, make sure that there were
11351 no stores after it that might have clobbered the value. We don't
11352 have alias info, so we assume any store invalidates it. */
11353 else if (GET_CODE (x) == MEM && ! RTX_UNCHANGING_P (x)
11354 && INSN_CUID (insn) <= mem_last_set)
11355 {
11356 if (replace)
11357 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11358 return replace;
11359 }
11360
11361 for (i = 0; i < len; i++)
11362 if ((fmt[i] == 'e'
11363 && get_last_value_validate (&XEXP (x, i), insn, tick, replace) == 0)
11364 /* Don't bother with these. They shouldn't occur anyway. */
11365 || fmt[i] == 'E')
11366 return 0;
11367
11368 /* If we haven't found a reason for it to be invalid, it is valid. */
11369 return 1;
11370 }
11371
11372 /* Get the last value assigned to X, if known. Some registers
11373 in the value may be replaced with (clobber (const_int 0)) if their value
11374 is known longer known reliably. */
11375
11376 static rtx
11377 get_last_value (x)
11378 rtx x;
11379 {
11380 unsigned int regno;
11381 rtx value;
11382
11383 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11384 then convert it to the desired mode. If this is a paradoxical SUBREG,
11385 we cannot predict what values the "extra" bits might have. */
11386 if (GET_CODE (x) == SUBREG
11387 && subreg_lowpart_p (x)
11388 && (GET_MODE_SIZE (GET_MODE (x))
11389 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11390 && (value = get_last_value (SUBREG_REG (x))) != 0)
11391 return gen_lowpart_for_combine (GET_MODE (x), value);
11392
11393 if (GET_CODE (x) != REG)
11394 return 0;
11395
11396 regno = REGNO (x);
11397 value = reg_last_set_value[regno];
11398
11399 /* If we don't have a value, or if it isn't for this basic block and
11400 it's either a hard register, set more than once, or it's a live
11401 at the beginning of the function, return 0.
11402
11403 Because if it's not live at the beginnning of the function then the reg
11404 is always set before being used (is never used without being set).
11405 And, if it's set only once, and it's always set before use, then all
11406 uses must have the same last value, even if it's not from this basic
11407 block. */
11408
11409 if (value == 0
11410 || (reg_last_set_label[regno] != label_tick
11411 && (regno < FIRST_PSEUDO_REGISTER
11412 || REG_N_SETS (regno) != 1
11413 || (REGNO_REG_SET_P
11414 (BASIC_BLOCK (0)->global_live_at_start, regno)))))
11415 return 0;
11416
11417 /* If the value was set in a later insn than the ones we are processing,
11418 we can't use it even if the register was only set once. */
11419 if (INSN_CUID (reg_last_set[regno]) >= subst_low_cuid)
11420 return 0;
11421
11422 /* If the value has all its registers valid, return it. */
11423 if (get_last_value_validate (&value, reg_last_set[regno],
11424 reg_last_set_label[regno], 0))
11425 return value;
11426
11427 /* Otherwise, make a copy and replace any invalid register with
11428 (clobber (const_int 0)). If that fails for some reason, return 0. */
11429
11430 value = copy_rtx (value);
11431 if (get_last_value_validate (&value, reg_last_set[regno],
11432 reg_last_set_label[regno], 1))
11433 return value;
11434
11435 return 0;
11436 }
11437 \f
11438 /* Return nonzero if expression X refers to a REG or to memory
11439 that is set in an instruction more recent than FROM_CUID. */
11440
11441 static int
11442 use_crosses_set_p (x, from_cuid)
11443 register rtx x;
11444 int from_cuid;
11445 {
11446 register const char *fmt;
11447 register int i;
11448 register enum rtx_code code = GET_CODE (x);
11449
11450 if (code == REG)
11451 {
11452 unsigned int regno = REGNO (x);
11453 unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
11454 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11455
11456 #ifdef PUSH_ROUNDING
11457 /* Don't allow uses of the stack pointer to be moved,
11458 because we don't know whether the move crosses a push insn. */
11459 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11460 return 1;
11461 #endif
11462 for (; regno < endreg; regno++)
11463 if (reg_last_set[regno]
11464 && INSN_CUID (reg_last_set[regno]) > from_cuid)
11465 return 1;
11466 return 0;
11467 }
11468
11469 if (code == MEM && mem_last_set > from_cuid)
11470 return 1;
11471
11472 fmt = GET_RTX_FORMAT (code);
11473
11474 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11475 {
11476 if (fmt[i] == 'E')
11477 {
11478 register int j;
11479 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11480 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11481 return 1;
11482 }
11483 else if (fmt[i] == 'e'
11484 && use_crosses_set_p (XEXP (x, i), from_cuid))
11485 return 1;
11486 }
11487 return 0;
11488 }
11489 \f
11490 /* Define three variables used for communication between the following
11491 routines. */
11492
11493 static unsigned int reg_dead_regno, reg_dead_endregno;
11494 static int reg_dead_flag;
11495
11496 /* Function called via note_stores from reg_dead_at_p.
11497
11498 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11499 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11500
11501 static void
11502 reg_dead_at_p_1 (dest, x, data)
11503 rtx dest;
11504 rtx x;
11505 void *data ATTRIBUTE_UNUSED;
11506 {
11507 unsigned int regno, endregno;
11508
11509 if (GET_CODE (dest) != REG)
11510 return;
11511
11512 regno = REGNO (dest);
11513 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
11514 ? HARD_REGNO_NREGS (regno, GET_MODE (dest)) : 1);
11515
11516 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11517 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11518 }
11519
11520 /* Return non-zero if REG is known to be dead at INSN.
11521
11522 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11523 referencing REG, it is dead. If we hit a SET referencing REG, it is
11524 live. Otherwise, see if it is live or dead at the start of the basic
11525 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11526 must be assumed to be always live. */
11527
11528 static int
11529 reg_dead_at_p (reg, insn)
11530 rtx reg;
11531 rtx insn;
11532 {
11533 int block;
11534 unsigned int i;
11535
11536 /* Set variables for reg_dead_at_p_1. */
11537 reg_dead_regno = REGNO (reg);
11538 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
11539 ? HARD_REGNO_NREGS (reg_dead_regno,
11540 GET_MODE (reg))
11541 : 1);
11542
11543 reg_dead_flag = 0;
11544
11545 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. */
11546 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11547 {
11548 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11549 if (TEST_HARD_REG_BIT (newpat_used_regs, i))
11550 return 0;
11551 }
11552
11553 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11554 beginning of function. */
11555 for (; insn && GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != BARRIER;
11556 insn = prev_nonnote_insn (insn))
11557 {
11558 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11559 if (reg_dead_flag)
11560 return reg_dead_flag == 1 ? 1 : 0;
11561
11562 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11563 return 1;
11564 }
11565
11566 /* Get the basic block number that we were in. */
11567 if (insn == 0)
11568 block = 0;
11569 else
11570 {
11571 for (block = 0; block < n_basic_blocks; block++)
11572 if (insn == BLOCK_HEAD (block))
11573 break;
11574
11575 if (block == n_basic_blocks)
11576 return 0;
11577 }
11578
11579 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11580 if (REGNO_REG_SET_P (BASIC_BLOCK (block)->global_live_at_start, i))
11581 return 0;
11582
11583 return 1;
11584 }
11585 \f
11586 /* Note hard registers in X that are used. This code is similar to
11587 that in flow.c, but much simpler since we don't care about pseudos. */
11588
11589 static void
11590 mark_used_regs_combine (x)
11591 rtx x;
11592 {
11593 RTX_CODE code = GET_CODE (x);
11594 unsigned int regno;
11595 int i;
11596
11597 switch (code)
11598 {
11599 case LABEL_REF:
11600 case SYMBOL_REF:
11601 case CONST_INT:
11602 case CONST:
11603 case CONST_DOUBLE:
11604 case PC:
11605 case ADDR_VEC:
11606 case ADDR_DIFF_VEC:
11607 case ASM_INPUT:
11608 #ifdef HAVE_cc0
11609 /* CC0 must die in the insn after it is set, so we don't need to take
11610 special note of it here. */
11611 case CC0:
11612 #endif
11613 return;
11614
11615 case CLOBBER:
11616 /* If we are clobbering a MEM, mark any hard registers inside the
11617 address as used. */
11618 if (GET_CODE (XEXP (x, 0)) == MEM)
11619 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
11620 return;
11621
11622 case REG:
11623 regno = REGNO (x);
11624 /* A hard reg in a wide mode may really be multiple registers.
11625 If so, mark all of them just like the first. */
11626 if (regno < FIRST_PSEUDO_REGISTER)
11627 {
11628 unsigned int endregno, r;
11629
11630 /* None of this applies to the stack, frame or arg pointers */
11631 if (regno == STACK_POINTER_REGNUM
11632 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11633 || regno == HARD_FRAME_POINTER_REGNUM
11634 #endif
11635 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11636 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
11637 #endif
11638 || regno == FRAME_POINTER_REGNUM)
11639 return;
11640
11641 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11642 for (r = regno; r < endregno; r++)
11643 SET_HARD_REG_BIT (newpat_used_regs, r);
11644 }
11645 return;
11646
11647 case SET:
11648 {
11649 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11650 the address. */
11651 register rtx testreg = SET_DEST (x);
11652
11653 while (GET_CODE (testreg) == SUBREG
11654 || GET_CODE (testreg) == ZERO_EXTRACT
11655 || GET_CODE (testreg) == SIGN_EXTRACT
11656 || GET_CODE (testreg) == STRICT_LOW_PART)
11657 testreg = XEXP (testreg, 0);
11658
11659 if (GET_CODE (testreg) == MEM)
11660 mark_used_regs_combine (XEXP (testreg, 0));
11661
11662 mark_used_regs_combine (SET_SRC (x));
11663 }
11664 return;
11665
11666 default:
11667 break;
11668 }
11669
11670 /* Recursively scan the operands of this expression. */
11671
11672 {
11673 register const char *fmt = GET_RTX_FORMAT (code);
11674
11675 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11676 {
11677 if (fmt[i] == 'e')
11678 mark_used_regs_combine (XEXP (x, i));
11679 else if (fmt[i] == 'E')
11680 {
11681 register int j;
11682
11683 for (j = 0; j < XVECLEN (x, i); j++)
11684 mark_used_regs_combine (XVECEXP (x, i, j));
11685 }
11686 }
11687 }
11688 }
11689 \f
11690 /* Remove register number REGNO from the dead registers list of INSN.
11691
11692 Return the note used to record the death, if there was one. */
11693
11694 rtx
11695 remove_death (regno, insn)
11696 unsigned int regno;
11697 rtx insn;
11698 {
11699 register rtx note = find_regno_note (insn, REG_DEAD, regno);
11700
11701 if (note)
11702 {
11703 REG_N_DEATHS (regno)--;
11704 remove_note (insn, note);
11705 }
11706
11707 return note;
11708 }
11709
11710 /* For each register (hardware or pseudo) used within expression X, if its
11711 death is in an instruction with cuid between FROM_CUID (inclusive) and
11712 TO_INSN (exclusive), put a REG_DEAD note for that register in the
11713 list headed by PNOTES.
11714
11715 That said, don't move registers killed by maybe_kill_insn.
11716
11717 This is done when X is being merged by combination into TO_INSN. These
11718 notes will then be distributed as needed. */
11719
11720 static void
11721 move_deaths (x, maybe_kill_insn, from_cuid, to_insn, pnotes)
11722 rtx x;
11723 rtx maybe_kill_insn;
11724 int from_cuid;
11725 rtx to_insn;
11726 rtx *pnotes;
11727 {
11728 register const char *fmt;
11729 register int len, i;
11730 register enum rtx_code code = GET_CODE (x);
11731
11732 if (code == REG)
11733 {
11734 unsigned int regno = REGNO (x);
11735 register rtx where_dead = reg_last_death[regno];
11736 register rtx before_dead, after_dead;
11737
11738 /* Don't move the register if it gets killed in between from and to */
11739 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
11740 && ! reg_referenced_p (x, maybe_kill_insn))
11741 return;
11742
11743 /* WHERE_DEAD could be a USE insn made by combine, so first we
11744 make sure that we have insns with valid INSN_CUID values. */
11745 before_dead = where_dead;
11746 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
11747 before_dead = PREV_INSN (before_dead);
11748
11749 after_dead = where_dead;
11750 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
11751 after_dead = NEXT_INSN (after_dead);
11752
11753 if (before_dead && after_dead
11754 && INSN_CUID (before_dead) >= from_cuid
11755 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
11756 || (where_dead != after_dead
11757 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
11758 {
11759 rtx note = remove_death (regno, where_dead);
11760
11761 /* It is possible for the call above to return 0. This can occur
11762 when reg_last_death points to I2 or I1 that we combined with.
11763 In that case make a new note.
11764
11765 We must also check for the case where X is a hard register
11766 and NOTE is a death note for a range of hard registers
11767 including X. In that case, we must put REG_DEAD notes for
11768 the remaining registers in place of NOTE. */
11769
11770 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
11771 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11772 > GET_MODE_SIZE (GET_MODE (x))))
11773 {
11774 unsigned int deadregno = REGNO (XEXP (note, 0));
11775 unsigned int deadend
11776 = (deadregno + HARD_REGNO_NREGS (deadregno,
11777 GET_MODE (XEXP (note, 0))));
11778 unsigned int ourend
11779 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11780 unsigned int i;
11781
11782 for (i = deadregno; i < deadend; i++)
11783 if (i < regno || i >= ourend)
11784 REG_NOTES (where_dead)
11785 = gen_rtx_EXPR_LIST (REG_DEAD,
11786 gen_rtx_REG (reg_raw_mode[i], i),
11787 REG_NOTES (where_dead));
11788 }
11789
11790 /* If we didn't find any note, or if we found a REG_DEAD note that
11791 covers only part of the given reg, and we have a multi-reg hard
11792 register, then to be safe we must check for REG_DEAD notes
11793 for each register other than the first. They could have
11794 their own REG_DEAD notes lying around. */
11795 else if ((note == 0
11796 || (note != 0
11797 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11798 < GET_MODE_SIZE (GET_MODE (x)))))
11799 && regno < FIRST_PSEUDO_REGISTER
11800 && HARD_REGNO_NREGS (regno, GET_MODE (x)) > 1)
11801 {
11802 unsigned int ourend
11803 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11804 unsigned int i, offset;
11805 rtx oldnotes = 0;
11806
11807 if (note)
11808 offset = HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0)));
11809 else
11810 offset = 1;
11811
11812 for (i = regno + offset; i < ourend; i++)
11813 move_deaths (gen_rtx_REG (reg_raw_mode[i], i),
11814 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
11815 }
11816
11817 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
11818 {
11819 XEXP (note, 1) = *pnotes;
11820 *pnotes = note;
11821 }
11822 else
11823 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
11824
11825 REG_N_DEATHS (regno)++;
11826 }
11827
11828 return;
11829 }
11830
11831 else if (GET_CODE (x) == SET)
11832 {
11833 rtx dest = SET_DEST (x);
11834
11835 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
11836
11837 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
11838 that accesses one word of a multi-word item, some
11839 piece of everything register in the expression is used by
11840 this insn, so remove any old death. */
11841 /* ??? So why do we test for equality of the sizes? */
11842
11843 if (GET_CODE (dest) == ZERO_EXTRACT
11844 || GET_CODE (dest) == STRICT_LOW_PART
11845 || (GET_CODE (dest) == SUBREG
11846 && (((GET_MODE_SIZE (GET_MODE (dest))
11847 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
11848 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
11849 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
11850 {
11851 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
11852 return;
11853 }
11854
11855 /* If this is some other SUBREG, we know it replaces the entire
11856 value, so use that as the destination. */
11857 if (GET_CODE (dest) == SUBREG)
11858 dest = SUBREG_REG (dest);
11859
11860 /* If this is a MEM, adjust deaths of anything used in the address.
11861 For a REG (the only other possibility), the entire value is
11862 being replaced so the old value is not used in this insn. */
11863
11864 if (GET_CODE (dest) == MEM)
11865 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
11866 to_insn, pnotes);
11867 return;
11868 }
11869
11870 else if (GET_CODE (x) == CLOBBER)
11871 return;
11872
11873 len = GET_RTX_LENGTH (code);
11874 fmt = GET_RTX_FORMAT (code);
11875
11876 for (i = 0; i < len; i++)
11877 {
11878 if (fmt[i] == 'E')
11879 {
11880 register int j;
11881 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11882 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
11883 to_insn, pnotes);
11884 }
11885 else if (fmt[i] == 'e')
11886 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
11887 }
11888 }
11889 \f
11890 /* Return 1 if X is the target of a bit-field assignment in BODY, the
11891 pattern of an insn. X must be a REG. */
11892
11893 static int
11894 reg_bitfield_target_p (x, body)
11895 rtx x;
11896 rtx body;
11897 {
11898 int i;
11899
11900 if (GET_CODE (body) == SET)
11901 {
11902 rtx dest = SET_DEST (body);
11903 rtx target;
11904 unsigned int regno, tregno, endregno, endtregno;
11905
11906 if (GET_CODE (dest) == ZERO_EXTRACT)
11907 target = XEXP (dest, 0);
11908 else if (GET_CODE (dest) == STRICT_LOW_PART)
11909 target = SUBREG_REG (XEXP (dest, 0));
11910 else
11911 return 0;
11912
11913 if (GET_CODE (target) == SUBREG)
11914 target = SUBREG_REG (target);
11915
11916 if (GET_CODE (target) != REG)
11917 return 0;
11918
11919 tregno = REGNO (target), regno = REGNO (x);
11920 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
11921 return target == x;
11922
11923 endtregno = tregno + HARD_REGNO_NREGS (tregno, GET_MODE (target));
11924 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11925
11926 return endregno > tregno && regno < endtregno;
11927 }
11928
11929 else if (GET_CODE (body) == PARALLEL)
11930 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
11931 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
11932 return 1;
11933
11934 return 0;
11935 }
11936 \f
11937 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
11938 as appropriate. I3 and I2 are the insns resulting from the combination
11939 insns including FROM (I2 may be zero).
11940
11941 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
11942 not need REG_DEAD notes because they are being substituted for. This
11943 saves searching in the most common cases.
11944
11945 Each note in the list is either ignored or placed on some insns, depending
11946 on the type of note. */
11947
11948 static void
11949 distribute_notes (notes, from_insn, i3, i2, elim_i2, elim_i1)
11950 rtx notes;
11951 rtx from_insn;
11952 rtx i3, i2;
11953 rtx elim_i2, elim_i1;
11954 {
11955 rtx note, next_note;
11956 rtx tem;
11957
11958 for (note = notes; note; note = next_note)
11959 {
11960 rtx place = 0, place2 = 0;
11961
11962 /* If this NOTE references a pseudo register, ensure it references
11963 the latest copy of that register. */
11964 if (XEXP (note, 0) && GET_CODE (XEXP (note, 0)) == REG
11965 && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
11966 XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
11967
11968 next_note = XEXP (note, 1);
11969 switch (REG_NOTE_KIND (note))
11970 {
11971 case REG_BR_PROB:
11972 case REG_BR_PRED:
11973 case REG_EXEC_COUNT:
11974 /* Doesn't matter much where we put this, as long as it's somewhere.
11975 It is preferable to keep these notes on branches, which is most
11976 likely to be i3. */
11977 place = i3;
11978 break;
11979
11980 case REG_NON_LOCAL_GOTO:
11981 if (GET_CODE (i3) == JUMP_INSN)
11982 place = i3;
11983 else if (i2 && GET_CODE (i2) == JUMP_INSN)
11984 place = i2;
11985 else
11986 abort();
11987 break;
11988
11989 case REG_EH_REGION:
11990 /* These notes must remain with the call or trapping instruction. */
11991 if (GET_CODE (i3) == CALL_INSN)
11992 place = i3;
11993 else if (i2 && GET_CODE (i2) == CALL_INSN)
11994 place = i2;
11995 else if (flag_non_call_exceptions)
11996 {
11997 if (may_trap_p (i3))
11998 place = i3;
11999 else if (i2 && may_trap_p (i2))
12000 place = i2;
12001 /* ??? Otherwise assume we've combined things such that we
12002 can now prove that the instructions can't trap. Drop the
12003 note in this case. */
12004 }
12005 else
12006 abort ();
12007 break;
12008
12009 case REG_EH_RETHROW:
12010 case REG_NORETURN:
12011 /* These notes must remain with the call. It should not be
12012 possible for both I2 and I3 to be a call. */
12013 if (GET_CODE (i3) == CALL_INSN)
12014 place = i3;
12015 else if (i2 && GET_CODE (i2) == CALL_INSN)
12016 place = i2;
12017 else
12018 abort ();
12019 break;
12020
12021 case REG_UNUSED:
12022 /* Any clobbers for i3 may still exist, and so we must process
12023 REG_UNUSED notes from that insn.
12024
12025 Any clobbers from i2 or i1 can only exist if they were added by
12026 recog_for_combine. In that case, recog_for_combine created the
12027 necessary REG_UNUSED notes. Trying to keep any original
12028 REG_UNUSED notes from these insns can cause incorrect output
12029 if it is for the same register as the original i3 dest.
12030 In that case, we will notice that the register is set in i3,
12031 and then add a REG_UNUSED note for the destination of i3, which
12032 is wrong. However, it is possible to have REG_UNUSED notes from
12033 i2 or i1 for register which were both used and clobbered, so
12034 we keep notes from i2 or i1 if they will turn into REG_DEAD
12035 notes. */
12036
12037 /* If this register is set or clobbered in I3, put the note there
12038 unless there is one already. */
12039 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
12040 {
12041 if (from_insn != i3)
12042 break;
12043
12044 if (! (GET_CODE (XEXP (note, 0)) == REG
12045 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
12046 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
12047 place = i3;
12048 }
12049 /* Otherwise, if this register is used by I3, then this register
12050 now dies here, so we must put a REG_DEAD note here unless there
12051 is one already. */
12052 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
12053 && ! (GET_CODE (XEXP (note, 0)) == REG
12054 ? find_regno_note (i3, REG_DEAD,
12055 REGNO (XEXP (note, 0)))
12056 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
12057 {
12058 PUT_REG_NOTE_KIND (note, REG_DEAD);
12059 place = i3;
12060 }
12061 break;
12062
12063 case REG_EQUAL:
12064 case REG_EQUIV:
12065 case REG_NOALIAS:
12066 /* These notes say something about results of an insn. We can
12067 only support them if they used to be on I3 in which case they
12068 remain on I3. Otherwise they are ignored.
12069
12070 If the note refers to an expression that is not a constant, we
12071 must also ignore the note since we cannot tell whether the
12072 equivalence is still true. It might be possible to do
12073 slightly better than this (we only have a problem if I2DEST
12074 or I1DEST is present in the expression), but it doesn't
12075 seem worth the trouble. */
12076
12077 if (from_insn == i3
12078 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
12079 place = i3;
12080 break;
12081
12082 case REG_INC:
12083 case REG_NO_CONFLICT:
12084 /* These notes say something about how a register is used. They must
12085 be present on any use of the register in I2 or I3. */
12086 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
12087 place = i3;
12088
12089 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
12090 {
12091 if (place)
12092 place2 = i2;
12093 else
12094 place = i2;
12095 }
12096 break;
12097
12098 case REG_LABEL:
12099 /* This can show up in several ways -- either directly in the
12100 pattern, or hidden off in the constant pool with (or without?)
12101 a REG_EQUAL note. */
12102 /* ??? Ignore the without-reg_equal-note problem for now. */
12103 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
12104 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
12105 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12106 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12107 place = i3;
12108
12109 if (i2
12110 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12111 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12112 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12113 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12114 {
12115 if (place)
12116 place2 = i2;
12117 else
12118 place = i2;
12119 }
12120 break;
12121
12122 case REG_NONNEG:
12123 case REG_WAS_0:
12124 /* These notes say something about the value of a register prior
12125 to the execution of an insn. It is too much trouble to see
12126 if the note is still correct in all situations. It is better
12127 to simply delete it. */
12128 break;
12129
12130 case REG_RETVAL:
12131 /* If the insn previously containing this note still exists,
12132 put it back where it was. Otherwise move it to the previous
12133 insn. Adjust the corresponding REG_LIBCALL note. */
12134 if (GET_CODE (from_insn) != NOTE)
12135 place = from_insn;
12136 else
12137 {
12138 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
12139 place = prev_real_insn (from_insn);
12140 if (tem && place)
12141 XEXP (tem, 0) = place;
12142 /* If we're deleting the last remaining instruction of a
12143 libcall sequence, don't add the notes. */
12144 else if (XEXP (note, 0) == from_insn)
12145 tem = place = 0;
12146 }
12147 break;
12148
12149 case REG_LIBCALL:
12150 /* This is handled similarly to REG_RETVAL. */
12151 if (GET_CODE (from_insn) != NOTE)
12152 place = from_insn;
12153 else
12154 {
12155 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
12156 place = next_real_insn (from_insn);
12157 if (tem && place)
12158 XEXP (tem, 0) = place;
12159 /* If we're deleting the last remaining instruction of a
12160 libcall sequence, don't add the notes. */
12161 else if (XEXP (note, 0) == from_insn)
12162 tem = place = 0;
12163 }
12164 break;
12165
12166 case REG_DEAD:
12167 /* If the register is used as an input in I3, it dies there.
12168 Similarly for I2, if it is non-zero and adjacent to I3.
12169
12170 If the register is not used as an input in either I3 or I2
12171 and it is not one of the registers we were supposed to eliminate,
12172 there are two possibilities. We might have a non-adjacent I2
12173 or we might have somehow eliminated an additional register
12174 from a computation. For example, we might have had A & B where
12175 we discover that B will always be zero. In this case we will
12176 eliminate the reference to A.
12177
12178 In both cases, we must search to see if we can find a previous
12179 use of A and put the death note there. */
12180
12181 if (from_insn
12182 && GET_CODE (from_insn) == CALL_INSN
12183 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12184 place = from_insn;
12185 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12186 place = i3;
12187 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12188 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12189 place = i2;
12190
12191 if (rtx_equal_p (XEXP (note, 0), elim_i2)
12192 || rtx_equal_p (XEXP (note, 0), elim_i1))
12193 break;
12194
12195 if (place == 0)
12196 {
12197 basic_block bb = BASIC_BLOCK (this_basic_block);
12198
12199 for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
12200 {
12201 if (! INSN_P (tem))
12202 {
12203 if (tem == bb->head)
12204 break;
12205 continue;
12206 }
12207
12208 /* If the register is being set at TEM, see if that is all
12209 TEM is doing. If so, delete TEM. Otherwise, make this
12210 into a REG_UNUSED note instead. */
12211 if (reg_set_p (XEXP (note, 0), PATTERN (tem)))
12212 {
12213 rtx set = single_set (tem);
12214 rtx inner_dest = 0;
12215 #ifdef HAVE_cc0
12216 rtx cc0_setter = NULL_RTX;
12217 #endif
12218
12219 if (set != 0)
12220 for (inner_dest = SET_DEST (set);
12221 (GET_CODE (inner_dest) == STRICT_LOW_PART
12222 || GET_CODE (inner_dest) == SUBREG
12223 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12224 inner_dest = XEXP (inner_dest, 0))
12225 ;
12226
12227 /* Verify that it was the set, and not a clobber that
12228 modified the register.
12229
12230 CC0 targets must be careful to maintain setter/user
12231 pairs. If we cannot delete the setter due to side
12232 effects, mark the user with an UNUSED note instead
12233 of deleting it. */
12234
12235 if (set != 0 && ! side_effects_p (SET_SRC (set))
12236 && rtx_equal_p (XEXP (note, 0), inner_dest)
12237 #ifdef HAVE_cc0
12238 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12239 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12240 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12241 #endif
12242 )
12243 {
12244 /* Move the notes and links of TEM elsewhere.
12245 This might delete other dead insns recursively.
12246 First set the pattern to something that won't use
12247 any register. */
12248
12249 PATTERN (tem) = pc_rtx;
12250
12251 distribute_notes (REG_NOTES (tem), tem, tem,
12252 NULL_RTX, NULL_RTX, NULL_RTX);
12253 distribute_links (LOG_LINKS (tem));
12254
12255 PUT_CODE (tem, NOTE);
12256 NOTE_LINE_NUMBER (tem) = NOTE_INSN_DELETED;
12257 NOTE_SOURCE_FILE (tem) = 0;
12258
12259 #ifdef HAVE_cc0
12260 /* Delete the setter too. */
12261 if (cc0_setter)
12262 {
12263 PATTERN (cc0_setter) = pc_rtx;
12264
12265 distribute_notes (REG_NOTES (cc0_setter),
12266 cc0_setter, cc0_setter,
12267 NULL_RTX, NULL_RTX, NULL_RTX);
12268 distribute_links (LOG_LINKS (cc0_setter));
12269
12270 PUT_CODE (cc0_setter, NOTE);
12271 NOTE_LINE_NUMBER (cc0_setter)
12272 = NOTE_INSN_DELETED;
12273 NOTE_SOURCE_FILE (cc0_setter) = 0;
12274 }
12275 #endif
12276 }
12277 /* If the register is both set and used here, put the
12278 REG_DEAD note here, but place a REG_UNUSED note
12279 here too unless there already is one. */
12280 else if (reg_referenced_p (XEXP (note, 0),
12281 PATTERN (tem)))
12282 {
12283 place = tem;
12284
12285 if (! find_regno_note (tem, REG_UNUSED,
12286 REGNO (XEXP (note, 0))))
12287 REG_NOTES (tem)
12288 = gen_rtx_EXPR_LIST (REG_UNUSED, XEXP (note, 0),
12289 REG_NOTES (tem));
12290 }
12291 else
12292 {
12293 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12294
12295 /* If there isn't already a REG_UNUSED note, put one
12296 here. */
12297 if (! find_regno_note (tem, REG_UNUSED,
12298 REGNO (XEXP (note, 0))))
12299 place = tem;
12300 break;
12301 }
12302 }
12303 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12304 || (GET_CODE (tem) == CALL_INSN
12305 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12306 {
12307 place = tem;
12308
12309 /* If we are doing a 3->2 combination, and we have a
12310 register which formerly died in i3 and was not used
12311 by i2, which now no longer dies in i3 and is used in
12312 i2 but does not die in i2, and place is between i2
12313 and i3, then we may need to move a link from place to
12314 i2. */
12315 if (i2 && INSN_UID (place) <= max_uid_cuid
12316 && INSN_CUID (place) > INSN_CUID (i2)
12317 && from_insn
12318 && INSN_CUID (from_insn) > INSN_CUID (i2)
12319 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12320 {
12321 rtx links = LOG_LINKS (place);
12322 LOG_LINKS (place) = 0;
12323 distribute_links (links);
12324 }
12325 break;
12326 }
12327
12328 if (tem == bb->head)
12329 break;
12330 }
12331
12332 /* We haven't found an insn for the death note and it
12333 is still a REG_DEAD note, but we have hit the beginning
12334 of the block. If the existing life info says the reg
12335 was dead, there's nothing left to do. Otherwise, we'll
12336 need to do a global life update after combine. */
12337 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12338 && REGNO_REG_SET_P (bb->global_live_at_start,
12339 REGNO (XEXP (note, 0))))
12340 {
12341 SET_BIT (refresh_blocks, this_basic_block);
12342 need_refresh = 1;
12343 }
12344 }
12345
12346 /* If the register is set or already dead at PLACE, we needn't do
12347 anything with this note if it is still a REG_DEAD note.
12348 We can here if it is set at all, not if is it totally replace,
12349 which is what `dead_or_set_p' checks, so also check for it being
12350 set partially. */
12351
12352 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12353 {
12354 unsigned int regno = REGNO (XEXP (note, 0));
12355
12356 /* Similarly, if the instruction on which we want to place
12357 the note is a noop, we'll need do a global live update
12358 after we remove them in delete_noop_moves. */
12359 if (noop_move_p (place))
12360 {
12361 SET_BIT (refresh_blocks, this_basic_block);
12362 need_refresh = 1;
12363 }
12364
12365 if (dead_or_set_p (place, XEXP (note, 0))
12366 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12367 {
12368 /* Unless the register previously died in PLACE, clear
12369 reg_last_death. [I no longer understand why this is
12370 being done.] */
12371 if (reg_last_death[regno] != place)
12372 reg_last_death[regno] = 0;
12373 place = 0;
12374 }
12375 else
12376 reg_last_death[regno] = place;
12377
12378 /* If this is a death note for a hard reg that is occupying
12379 multiple registers, ensure that we are still using all
12380 parts of the object. If we find a piece of the object
12381 that is unused, we must arrange for an appropriate REG_DEAD
12382 note to be added for it. However, we can't just emit a USE
12383 and tag the note to it, since the register might actually
12384 be dead; so we recourse, and the recursive call then finds
12385 the previous insn that used this register. */
12386
12387 if (place && regno < FIRST_PSEUDO_REGISTER
12388 && HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0))) > 1)
12389 {
12390 unsigned int endregno
12391 = regno + HARD_REGNO_NREGS (regno,
12392 GET_MODE (XEXP (note, 0)));
12393 int all_used = 1;
12394 unsigned int i;
12395
12396 for (i = regno; i < endregno; i++)
12397 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12398 && ! find_regno_fusage (place, USE, i))
12399 || dead_or_set_regno_p (place, i))
12400 all_used = 0;
12401
12402 if (! all_used)
12403 {
12404 /* Put only REG_DEAD notes for pieces that are
12405 not already dead or set. */
12406
12407 for (i = regno; i < endregno;
12408 i += HARD_REGNO_NREGS (i, reg_raw_mode[i]))
12409 {
12410 rtx piece = gen_rtx_REG (reg_raw_mode[i], i);
12411 basic_block bb = BASIC_BLOCK (this_basic_block);
12412
12413 if (! dead_or_set_p (place, piece)
12414 && ! reg_bitfield_target_p (piece,
12415 PATTERN (place)))
12416 {
12417 rtx new_note
12418 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12419
12420 distribute_notes (new_note, place, place,
12421 NULL_RTX, NULL_RTX, NULL_RTX);
12422 }
12423 else if (! refers_to_regno_p (i, i + 1,
12424 PATTERN (place), 0)
12425 && ! find_regno_fusage (place, USE, i))
12426 for (tem = PREV_INSN (place); ;
12427 tem = PREV_INSN (tem))
12428 {
12429 if (! INSN_P (tem))
12430 {
12431 if (tem == bb->head)
12432 {
12433 SET_BIT (refresh_blocks,
12434 this_basic_block);
12435 need_refresh = 1;
12436 break;
12437 }
12438 continue;
12439 }
12440 if (dead_or_set_p (tem, piece)
12441 || reg_bitfield_target_p (piece,
12442 PATTERN (tem)))
12443 {
12444 REG_NOTES (tem)
12445 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12446 REG_NOTES (tem));
12447 break;
12448 }
12449 }
12450
12451 }
12452
12453 place = 0;
12454 }
12455 }
12456 }
12457 break;
12458
12459 default:
12460 /* Any other notes should not be present at this point in the
12461 compilation. */
12462 abort ();
12463 }
12464
12465 if (place)
12466 {
12467 XEXP (note, 1) = REG_NOTES (place);
12468 REG_NOTES (place) = note;
12469 }
12470 else if ((REG_NOTE_KIND (note) == REG_DEAD
12471 || REG_NOTE_KIND (note) == REG_UNUSED)
12472 && GET_CODE (XEXP (note, 0)) == REG)
12473 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
12474
12475 if (place2)
12476 {
12477 if ((REG_NOTE_KIND (note) == REG_DEAD
12478 || REG_NOTE_KIND (note) == REG_UNUSED)
12479 && GET_CODE (XEXP (note, 0)) == REG)
12480 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
12481
12482 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12483 REG_NOTE_KIND (note),
12484 XEXP (note, 0),
12485 REG_NOTES (place2));
12486 }
12487 }
12488 }
12489 \f
12490 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12491 I3, I2, and I1 to new locations. This is also called in one case to
12492 add a link pointing at I3 when I3's destination is changed. */
12493
12494 static void
12495 distribute_links (links)
12496 rtx links;
12497 {
12498 rtx link, next_link;
12499
12500 for (link = links; link; link = next_link)
12501 {
12502 rtx place = 0;
12503 rtx insn;
12504 rtx set, reg;
12505
12506 next_link = XEXP (link, 1);
12507
12508 /* If the insn that this link points to is a NOTE or isn't a single
12509 set, ignore it. In the latter case, it isn't clear what we
12510 can do other than ignore the link, since we can't tell which
12511 register it was for. Such links wouldn't be used by combine
12512 anyway.
12513
12514 It is not possible for the destination of the target of the link to
12515 have been changed by combine. The only potential of this is if we
12516 replace I3, I2, and I1 by I3 and I2. But in that case the
12517 destination of I2 also remains unchanged. */
12518
12519 if (GET_CODE (XEXP (link, 0)) == NOTE
12520 || (set = single_set (XEXP (link, 0))) == 0)
12521 continue;
12522
12523 reg = SET_DEST (set);
12524 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12525 || GET_CODE (reg) == SIGN_EXTRACT
12526 || GET_CODE (reg) == STRICT_LOW_PART)
12527 reg = XEXP (reg, 0);
12528
12529 /* A LOG_LINK is defined as being placed on the first insn that uses
12530 a register and points to the insn that sets the register. Start
12531 searching at the next insn after the target of the link and stop
12532 when we reach a set of the register or the end of the basic block.
12533
12534 Note that this correctly handles the link that used to point from
12535 I3 to I2. Also note that not much searching is typically done here
12536 since most links don't point very far away. */
12537
12538 for (insn = NEXT_INSN (XEXP (link, 0));
12539 (insn && (this_basic_block == n_basic_blocks - 1
12540 || BLOCK_HEAD (this_basic_block + 1) != insn));
12541 insn = NEXT_INSN (insn))
12542 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12543 {
12544 if (reg_referenced_p (reg, PATTERN (insn)))
12545 place = insn;
12546 break;
12547 }
12548 else if (GET_CODE (insn) == CALL_INSN
12549 && find_reg_fusage (insn, USE, reg))
12550 {
12551 place = insn;
12552 break;
12553 }
12554
12555 /* If we found a place to put the link, place it there unless there
12556 is already a link to the same insn as LINK at that point. */
12557
12558 if (place)
12559 {
12560 rtx link2;
12561
12562 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12563 if (XEXP (link2, 0) == XEXP (link, 0))
12564 break;
12565
12566 if (link2 == 0)
12567 {
12568 XEXP (link, 1) = LOG_LINKS (place);
12569 LOG_LINKS (place) = link;
12570
12571 /* Set added_links_insn to the earliest insn we added a
12572 link to. */
12573 if (added_links_insn == 0
12574 || INSN_CUID (added_links_insn) > INSN_CUID (place))
12575 added_links_insn = place;
12576 }
12577 }
12578 }
12579 }
12580 \f
12581 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
12582
12583 static int
12584 insn_cuid (insn)
12585 rtx insn;
12586 {
12587 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
12588 && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == USE)
12589 insn = NEXT_INSN (insn);
12590
12591 if (INSN_UID (insn) > max_uid_cuid)
12592 abort ();
12593
12594 return INSN_CUID (insn);
12595 }
12596 \f
12597 void
12598 dump_combine_stats (file)
12599 FILE *file;
12600 {
12601 fnotice
12602 (file,
12603 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12604 combine_attempts, combine_merges, combine_extras, combine_successes);
12605 }
12606
12607 void
12608 dump_combine_total_stats (file)
12609 FILE *file;
12610 {
12611 fnotice
12612 (file,
12613 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12614 total_attempts, total_merges, total_extras, total_successes);
12615 }