rs6000.md (fseldfsf4): Add TARGET_SINGLE_FLOAT condition.
[gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
25
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
31
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
55
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
64
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
68
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
77
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "tm.h"
82 #include "rtl.h"
83 #include "tree.h"
84 #include "tm_p.h"
85 #include "flags.h"
86 #include "regs.h"
87 #include "hard-reg-set.h"
88 #include "basic-block.h"
89 #include "insn-config.h"
90 #include "function.h"
91 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
92 #include "expr.h"
93 #include "insn-attr.h"
94 #include "recog.h"
95 #include "real.h"
96 #include "toplev.h"
97 #include "target.h"
98 #include "optabs.h"
99 #include "insn-codes.h"
100 #include "rtlhooks-def.h"
101 /* Include output.h for dump_file. */
102 #include "output.h"
103 #include "params.h"
104 #include "timevar.h"
105 #include "tree-pass.h"
106 #include "df.h"
107 #include "cgraph.h"
108
109 /* Number of attempts to combine instructions in this function. */
110
111 static int combine_attempts;
112
113 /* Number of attempts that got as far as substitution in this function. */
114
115 static int combine_merges;
116
117 /* Number of instructions combined with added SETs in this function. */
118
119 static int combine_extras;
120
121 /* Number of instructions combined in this function. */
122
123 static int combine_successes;
124
125 /* Totals over entire compilation. */
126
127 static int total_attempts, total_merges, total_extras, total_successes;
128
129 /* combine_instructions may try to replace the right hand side of the
130 second instruction with the value of an associated REG_EQUAL note
131 before throwing it at try_combine. That is problematic when there
132 is a REG_DEAD note for a register used in the old right hand side
133 and can cause distribute_notes to do wrong things. This is the
134 second instruction if it has been so modified, null otherwise. */
135
136 static rtx i2mod;
137
138 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
139
140 static rtx i2mod_old_rhs;
141
142 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
143
144 static rtx i2mod_new_rhs;
145 \f
146 typedef struct reg_stat_struct {
147 /* Record last point of death of (hard or pseudo) register n. */
148 rtx last_death;
149
150 /* Record last point of modification of (hard or pseudo) register n. */
151 rtx last_set;
152
153 /* The next group of fields allows the recording of the last value assigned
154 to (hard or pseudo) register n. We use this information to see if an
155 operation being processed is redundant given a prior operation performed
156 on the register. For example, an `and' with a constant is redundant if
157 all the zero bits are already known to be turned off.
158
159 We use an approach similar to that used by cse, but change it in the
160 following ways:
161
162 (1) We do not want to reinitialize at each label.
163 (2) It is useful, but not critical, to know the actual value assigned
164 to a register. Often just its form is helpful.
165
166 Therefore, we maintain the following fields:
167
168 last_set_value the last value assigned
169 last_set_label records the value of label_tick when the
170 register was assigned
171 last_set_table_tick records the value of label_tick when a
172 value using the register is assigned
173 last_set_invalid set to nonzero when it is not valid
174 to use the value of this register in some
175 register's value
176
177 To understand the usage of these tables, it is important to understand
178 the distinction between the value in last_set_value being valid and
179 the register being validly contained in some other expression in the
180 table.
181
182 (The next two parameters are out of date).
183
184 reg_stat[i].last_set_value is valid if it is nonzero, and either
185 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
186
187 Register I may validly appear in any expression returned for the value
188 of another register if reg_n_sets[i] is 1. It may also appear in the
189 value for register J if reg_stat[j].last_set_invalid is zero, or
190 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
191
192 If an expression is found in the table containing a register which may
193 not validly appear in an expression, the register is replaced by
194 something that won't match, (clobber (const_int 0)). */
195
196 /* Record last value assigned to (hard or pseudo) register n. */
197
198 rtx last_set_value;
199
200 /* Record the value of label_tick when an expression involving register n
201 is placed in last_set_value. */
202
203 int last_set_table_tick;
204
205 /* Record the value of label_tick when the value for register n is placed in
206 last_set_value. */
207
208 int last_set_label;
209
210 /* These fields are maintained in parallel with last_set_value and are
211 used to store the mode in which the register was last set, the bits
212 that were known to be zero when it was last set, and the number of
213 sign bits copies it was known to have when it was last set. */
214
215 unsigned HOST_WIDE_INT last_set_nonzero_bits;
216 char last_set_sign_bit_copies;
217 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
218
219 /* Set nonzero if references to register n in expressions should not be
220 used. last_set_invalid is set nonzero when this register is being
221 assigned to and last_set_table_tick == label_tick. */
222
223 char last_set_invalid;
224
225 /* Some registers that are set more than once and used in more than one
226 basic block are nevertheless always set in similar ways. For example,
227 a QImode register may be loaded from memory in two places on a machine
228 where byte loads zero extend.
229
230 We record in the following fields if a register has some leading bits
231 that are always equal to the sign bit, and what we know about the
232 nonzero bits of a register, specifically which bits are known to be
233 zero.
234
235 If an entry is zero, it means that we don't know anything special. */
236
237 unsigned char sign_bit_copies;
238
239 unsigned HOST_WIDE_INT nonzero_bits;
240
241 /* Record the value of the label_tick when the last truncation
242 happened. The field truncated_to_mode is only valid if
243 truncation_label == label_tick. */
244
245 int truncation_label;
246
247 /* Record the last truncation seen for this register. If truncation
248 is not a nop to this mode we might be able to save an explicit
249 truncation if we know that value already contains a truncated
250 value. */
251
252 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
253 } reg_stat_type;
254
255 DEF_VEC_O(reg_stat_type);
256 DEF_VEC_ALLOC_O(reg_stat_type,heap);
257
258 static VEC(reg_stat_type,heap) *reg_stat;
259
260 /* Record the luid of the last insn that invalidated memory
261 (anything that writes memory, and subroutine calls, but not pushes). */
262
263 static int mem_last_set;
264
265 /* Record the luid of the last CALL_INSN
266 so we can tell whether a potential combination crosses any calls. */
267
268 static int last_call_luid;
269
270 /* When `subst' is called, this is the insn that is being modified
271 (by combining in a previous insn). The PATTERN of this insn
272 is still the old pattern partially modified and it should not be
273 looked at, but this may be used to examine the successors of the insn
274 to judge whether a simplification is valid. */
275
276 static rtx subst_insn;
277
278 /* This is the lowest LUID that `subst' is currently dealing with.
279 get_last_value will not return a value if the register was set at or
280 after this LUID. If not for this mechanism, we could get confused if
281 I2 or I1 in try_combine were an insn that used the old value of a register
282 to obtain a new value. In that case, we might erroneously get the
283 new value of the register when we wanted the old one. */
284
285 static int subst_low_luid;
286
287 /* This contains any hard registers that are used in newpat; reg_dead_at_p
288 must consider all these registers to be always live. */
289
290 static HARD_REG_SET newpat_used_regs;
291
292 /* This is an insn to which a LOG_LINKS entry has been added. If this
293 insn is the earlier than I2 or I3, combine should rescan starting at
294 that location. */
295
296 static rtx added_links_insn;
297
298 /* Basic block in which we are performing combines. */
299 static basic_block this_basic_block;
300 static bool optimize_this_for_speed_p;
301
302 \f
303 /* Length of the currently allocated uid_insn_cost array. */
304
305 static int max_uid_known;
306
307 /* The following array records the insn_rtx_cost for every insn
308 in the instruction stream. */
309
310 static int *uid_insn_cost;
311
312 /* The following array records the LOG_LINKS for every insn in the
313 instruction stream as an INSN_LIST rtx. */
314
315 static rtx *uid_log_links;
316
317 #define INSN_COST(INSN) (uid_insn_cost[INSN_UID (INSN)])
318 #define LOG_LINKS(INSN) (uid_log_links[INSN_UID (INSN)])
319
320 /* Incremented for each basic block. */
321
322 static int label_tick;
323
324 /* Reset to label_tick for each label. */
325
326 static int label_tick_ebb_start;
327
328 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
329 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
330
331 static enum machine_mode nonzero_bits_mode;
332
333 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
334 be safely used. It is zero while computing them and after combine has
335 completed. This former test prevents propagating values based on
336 previously set values, which can be incorrect if a variable is modified
337 in a loop. */
338
339 static int nonzero_sign_valid;
340
341 \f
342 /* Record one modification to rtl structure
343 to be undone by storing old_contents into *where. */
344
345 struct undo
346 {
347 struct undo *next;
348 enum { UNDO_RTX, UNDO_INT, UNDO_MODE } kind;
349 union { rtx r; int i; enum machine_mode m; } old_contents;
350 union { rtx *r; int *i; } where;
351 };
352
353 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
354 num_undo says how many are currently recorded.
355
356 other_insn is nonzero if we have modified some other insn in the process
357 of working on subst_insn. It must be verified too. */
358
359 struct undobuf
360 {
361 struct undo *undos;
362 struct undo *frees;
363 rtx other_insn;
364 };
365
366 static struct undobuf undobuf;
367
368 /* Number of times the pseudo being substituted for
369 was found and replaced. */
370
371 static int n_occurrences;
372
373 static rtx reg_nonzero_bits_for_combine (const_rtx, enum machine_mode, const_rtx,
374 enum machine_mode,
375 unsigned HOST_WIDE_INT,
376 unsigned HOST_WIDE_INT *);
377 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, enum machine_mode, const_rtx,
378 enum machine_mode,
379 unsigned int, unsigned int *);
380 static void do_SUBST (rtx *, rtx);
381 static void do_SUBST_INT (int *, int);
382 static void init_reg_last (void);
383 static void setup_incoming_promotions (rtx);
384 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
385 static int cant_combine_insn_p (rtx);
386 static int can_combine_p (rtx, rtx, rtx, rtx, rtx *, rtx *);
387 static int combinable_i3pat (rtx, rtx *, rtx, rtx, int, rtx *);
388 static int contains_muldiv (rtx);
389 static rtx try_combine (rtx, rtx, rtx, int *);
390 static void undo_all (void);
391 static void undo_commit (void);
392 static rtx *find_split_point (rtx *, rtx);
393 static rtx subst (rtx, rtx, rtx, int, int);
394 static rtx combine_simplify_rtx (rtx, enum machine_mode, int);
395 static rtx simplify_if_then_else (rtx);
396 static rtx simplify_set (rtx);
397 static rtx simplify_logical (rtx);
398 static rtx expand_compound_operation (rtx);
399 static const_rtx expand_field_assignment (const_rtx);
400 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
401 rtx, unsigned HOST_WIDE_INT, int, int, int);
402 static rtx extract_left_shift (rtx, int);
403 static rtx make_compound_operation (rtx, enum rtx_code);
404 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
405 unsigned HOST_WIDE_INT *);
406 static rtx canon_reg_for_combine (rtx, rtx);
407 static rtx force_to_mode (rtx, enum machine_mode,
408 unsigned HOST_WIDE_INT, int);
409 static rtx if_then_else_cond (rtx, rtx *, rtx *);
410 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
411 static int rtx_equal_for_field_assignment_p (rtx, rtx);
412 static rtx make_field_assignment (rtx);
413 static rtx apply_distributive_law (rtx);
414 static rtx distribute_and_simplify_rtx (rtx, int);
415 static rtx simplify_and_const_int_1 (enum machine_mode, rtx,
416 unsigned HOST_WIDE_INT);
417 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
418 unsigned HOST_WIDE_INT);
419 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
420 HOST_WIDE_INT, enum machine_mode, int *);
421 static rtx simplify_shift_const_1 (enum rtx_code, enum machine_mode, rtx, int);
422 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
423 int);
424 static int recog_for_combine (rtx *, rtx, rtx *);
425 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
426 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
427 static void update_table_tick (rtx);
428 static void record_value_for_reg (rtx, rtx, rtx);
429 static void check_promoted_subreg (rtx, rtx);
430 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
431 static void record_dead_and_set_regs (rtx);
432 static int get_last_value_validate (rtx *, rtx, int, int);
433 static rtx get_last_value (const_rtx);
434 static int use_crosses_set_p (const_rtx, int);
435 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
436 static int reg_dead_at_p (rtx, rtx);
437 static void move_deaths (rtx, rtx, int, rtx, rtx *);
438 static int reg_bitfield_target_p (rtx, rtx);
439 static void distribute_notes (rtx, rtx, rtx, rtx, rtx, rtx);
440 static void distribute_links (rtx);
441 static void mark_used_regs_combine (rtx);
442 static void record_promoted_value (rtx, rtx);
443 static int unmentioned_reg_p_1 (rtx *, void *);
444 static bool unmentioned_reg_p (rtx, rtx);
445 static int record_truncated_value (rtx *, void *);
446 static void record_truncated_values (rtx *, void *);
447 static bool reg_truncated_to_mode (enum machine_mode, const_rtx);
448 static rtx gen_lowpart_or_truncate (enum machine_mode, rtx);
449 \f
450
451 /* It is not safe to use ordinary gen_lowpart in combine.
452 See comments in gen_lowpart_for_combine. */
453 #undef RTL_HOOKS_GEN_LOWPART
454 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
455
456 /* Our implementation of gen_lowpart never emits a new pseudo. */
457 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
458 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
459
460 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
461 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
462
463 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
464 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
465
466 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
467 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
468
469 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
470
471 \f
472 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
473 PATTERN can not be split. Otherwise, it returns an insn sequence.
474 This is a wrapper around split_insns which ensures that the
475 reg_stat vector is made larger if the splitter creates a new
476 register. */
477
478 static rtx
479 combine_split_insns (rtx pattern, rtx insn)
480 {
481 rtx ret;
482 unsigned int nregs;
483
484 ret = split_insns (pattern, insn);
485 nregs = max_reg_num ();
486 if (nregs > VEC_length (reg_stat_type, reg_stat))
487 VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
488 return ret;
489 }
490
491 /* This is used by find_single_use to locate an rtx in LOC that
492 contains exactly one use of DEST, which is typically either a REG
493 or CC0. It returns a pointer to the innermost rtx expression
494 containing DEST. Appearances of DEST that are being used to
495 totally replace it are not counted. */
496
497 static rtx *
498 find_single_use_1 (rtx dest, rtx *loc)
499 {
500 rtx x = *loc;
501 enum rtx_code code = GET_CODE (x);
502 rtx *result = NULL;
503 rtx *this_result;
504 int i;
505 const char *fmt;
506
507 switch (code)
508 {
509 case CONST_INT:
510 case CONST:
511 case LABEL_REF:
512 case SYMBOL_REF:
513 case CONST_DOUBLE:
514 case CONST_VECTOR:
515 case CLOBBER:
516 return 0;
517
518 case SET:
519 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
520 of a REG that occupies all of the REG, the insn uses DEST if
521 it is mentioned in the destination or the source. Otherwise, we
522 need just check the source. */
523 if (GET_CODE (SET_DEST (x)) != CC0
524 && GET_CODE (SET_DEST (x)) != PC
525 && !REG_P (SET_DEST (x))
526 && ! (GET_CODE (SET_DEST (x)) == SUBREG
527 && REG_P (SUBREG_REG (SET_DEST (x)))
528 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
529 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
530 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
531 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
532 break;
533
534 return find_single_use_1 (dest, &SET_SRC (x));
535
536 case MEM:
537 case SUBREG:
538 return find_single_use_1 (dest, &XEXP (x, 0));
539
540 default:
541 break;
542 }
543
544 /* If it wasn't one of the common cases above, check each expression and
545 vector of this code. Look for a unique usage of DEST. */
546
547 fmt = GET_RTX_FORMAT (code);
548 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
549 {
550 if (fmt[i] == 'e')
551 {
552 if (dest == XEXP (x, i)
553 || (REG_P (dest) && REG_P (XEXP (x, i))
554 && REGNO (dest) == REGNO (XEXP (x, i))))
555 this_result = loc;
556 else
557 this_result = find_single_use_1 (dest, &XEXP (x, i));
558
559 if (result == NULL)
560 result = this_result;
561 else if (this_result)
562 /* Duplicate usage. */
563 return NULL;
564 }
565 else if (fmt[i] == 'E')
566 {
567 int j;
568
569 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
570 {
571 if (XVECEXP (x, i, j) == dest
572 || (REG_P (dest)
573 && REG_P (XVECEXP (x, i, j))
574 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
575 this_result = loc;
576 else
577 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
578
579 if (result == NULL)
580 result = this_result;
581 else if (this_result)
582 return NULL;
583 }
584 }
585 }
586
587 return result;
588 }
589
590
591 /* See if DEST, produced in INSN, is used only a single time in the
592 sequel. If so, return a pointer to the innermost rtx expression in which
593 it is used.
594
595 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
596
597 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
598 care about REG_DEAD notes or LOG_LINKS.
599
600 Otherwise, we find the single use by finding an insn that has a
601 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
602 only referenced once in that insn, we know that it must be the first
603 and last insn referencing DEST. */
604
605 static rtx *
606 find_single_use (rtx dest, rtx insn, rtx *ploc)
607 {
608 rtx next;
609 rtx *result;
610 rtx link;
611
612 #ifdef HAVE_cc0
613 if (dest == cc0_rtx)
614 {
615 next = NEXT_INSN (insn);
616 if (next == 0
617 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
618 return 0;
619
620 result = find_single_use_1 (dest, &PATTERN (next));
621 if (result && ploc)
622 *ploc = next;
623 return result;
624 }
625 #endif
626
627 if (!REG_P (dest))
628 return 0;
629
630 for (next = next_nonnote_insn (insn);
631 next != 0 && !LABEL_P (next);
632 next = next_nonnote_insn (next))
633 if (INSN_P (next) && dead_or_set_p (next, dest))
634 {
635 for (link = LOG_LINKS (next); link; link = XEXP (link, 1))
636 if (XEXP (link, 0) == insn)
637 break;
638
639 if (link)
640 {
641 result = find_single_use_1 (dest, &PATTERN (next));
642 if (ploc)
643 *ploc = next;
644 return result;
645 }
646 }
647
648 return 0;
649 }
650 \f
651 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
652 insn. The substitution can be undone by undo_all. If INTO is already
653 set to NEWVAL, do not record this change. Because computing NEWVAL might
654 also call SUBST, we have to compute it before we put anything into
655 the undo table. */
656
657 static void
658 do_SUBST (rtx *into, rtx newval)
659 {
660 struct undo *buf;
661 rtx oldval = *into;
662
663 if (oldval == newval)
664 return;
665
666 /* We'd like to catch as many invalid transformations here as
667 possible. Unfortunately, there are way too many mode changes
668 that are perfectly valid, so we'd waste too much effort for
669 little gain doing the checks here. Focus on catching invalid
670 transformations involving integer constants. */
671 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
672 && GET_CODE (newval) == CONST_INT)
673 {
674 /* Sanity check that we're replacing oldval with a CONST_INT
675 that is a valid sign-extension for the original mode. */
676 gcc_assert (INTVAL (newval)
677 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
678
679 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
680 CONST_INT is not valid, because after the replacement, the
681 original mode would be gone. Unfortunately, we can't tell
682 when do_SUBST is called to replace the operand thereof, so we
683 perform this test on oldval instead, checking whether an
684 invalid replacement took place before we got here. */
685 gcc_assert (!(GET_CODE (oldval) == SUBREG
686 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT));
687 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
688 && GET_CODE (XEXP (oldval, 0)) == CONST_INT));
689 }
690
691 if (undobuf.frees)
692 buf = undobuf.frees, undobuf.frees = buf->next;
693 else
694 buf = XNEW (struct undo);
695
696 buf->kind = UNDO_RTX;
697 buf->where.r = into;
698 buf->old_contents.r = oldval;
699 *into = newval;
700
701 buf->next = undobuf.undos, undobuf.undos = buf;
702 }
703
704 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
705
706 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
707 for the value of a HOST_WIDE_INT value (including CONST_INT) is
708 not safe. */
709
710 static void
711 do_SUBST_INT (int *into, int newval)
712 {
713 struct undo *buf;
714 int oldval = *into;
715
716 if (oldval == newval)
717 return;
718
719 if (undobuf.frees)
720 buf = undobuf.frees, undobuf.frees = buf->next;
721 else
722 buf = XNEW (struct undo);
723
724 buf->kind = UNDO_INT;
725 buf->where.i = into;
726 buf->old_contents.i = oldval;
727 *into = newval;
728
729 buf->next = undobuf.undos, undobuf.undos = buf;
730 }
731
732 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
733
734 /* Similar to SUBST, but just substitute the mode. This is used when
735 changing the mode of a pseudo-register, so that any other
736 references to the entry in the regno_reg_rtx array will change as
737 well. */
738
739 static void
740 do_SUBST_MODE (rtx *into, enum machine_mode newval)
741 {
742 struct undo *buf;
743 enum machine_mode oldval = GET_MODE (*into);
744
745 if (oldval == newval)
746 return;
747
748 if (undobuf.frees)
749 buf = undobuf.frees, undobuf.frees = buf->next;
750 else
751 buf = XNEW (struct undo);
752
753 buf->kind = UNDO_MODE;
754 buf->where.r = into;
755 buf->old_contents.m = oldval;
756 adjust_reg_mode (*into, newval);
757
758 buf->next = undobuf.undos, undobuf.undos = buf;
759 }
760
761 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE(&(INTO), (NEWVAL))
762 \f
763 /* Subroutine of try_combine. Determine whether the combine replacement
764 patterns NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to
765 insn_rtx_cost that the original instruction sequence I1, I2, I3 and
766 undobuf.other_insn. Note that I1 and/or NEWI2PAT may be NULL_RTX.
767 NEWOTHERPAT and undobuf.other_insn may also both be NULL_RTX. This
768 function returns false, if the costs of all instructions can be
769 estimated, and the replacements are more expensive than the original
770 sequence. */
771
772 static bool
773 combine_validate_cost (rtx i1, rtx i2, rtx i3, rtx newpat, rtx newi2pat,
774 rtx newotherpat)
775 {
776 int i1_cost, i2_cost, i3_cost;
777 int new_i2_cost, new_i3_cost;
778 int old_cost, new_cost;
779
780 /* Lookup the original insn_rtx_costs. */
781 i2_cost = INSN_COST (i2);
782 i3_cost = INSN_COST (i3);
783
784 if (i1)
785 {
786 i1_cost = INSN_COST (i1);
787 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0)
788 ? i1_cost + i2_cost + i3_cost : 0;
789 }
790 else
791 {
792 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
793 i1_cost = 0;
794 }
795
796 /* Calculate the replacement insn_rtx_costs. */
797 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
798 if (newi2pat)
799 {
800 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
801 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
802 ? new_i2_cost + new_i3_cost : 0;
803 }
804 else
805 {
806 new_cost = new_i3_cost;
807 new_i2_cost = 0;
808 }
809
810 if (undobuf.other_insn)
811 {
812 int old_other_cost, new_other_cost;
813
814 old_other_cost = INSN_COST (undobuf.other_insn);
815 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
816 if (old_other_cost > 0 && new_other_cost > 0)
817 {
818 old_cost += old_other_cost;
819 new_cost += new_other_cost;
820 }
821 else
822 old_cost = 0;
823 }
824
825 /* Disallow this recombination if both new_cost and old_cost are
826 greater than zero, and new_cost is greater than old cost. */
827 if (old_cost > 0
828 && new_cost > old_cost)
829 {
830 if (dump_file)
831 {
832 if (i1)
833 {
834 fprintf (dump_file,
835 "rejecting combination of insns %d, %d and %d\n",
836 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
837 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
838 i1_cost, i2_cost, i3_cost, old_cost);
839 }
840 else
841 {
842 fprintf (dump_file,
843 "rejecting combination of insns %d and %d\n",
844 INSN_UID (i2), INSN_UID (i3));
845 fprintf (dump_file, "original costs %d + %d = %d\n",
846 i2_cost, i3_cost, old_cost);
847 }
848
849 if (newi2pat)
850 {
851 fprintf (dump_file, "replacement costs %d + %d = %d\n",
852 new_i2_cost, new_i3_cost, new_cost);
853 }
854 else
855 fprintf (dump_file, "replacement cost %d\n", new_cost);
856 }
857
858 return false;
859 }
860
861 /* Update the uid_insn_cost array with the replacement costs. */
862 INSN_COST (i2) = new_i2_cost;
863 INSN_COST (i3) = new_i3_cost;
864 if (i1)
865 INSN_COST (i1) = 0;
866
867 return true;
868 }
869
870
871 /* Delete any insns that copy a register to itself. */
872
873 static void
874 delete_noop_moves (void)
875 {
876 rtx insn, next;
877 basic_block bb;
878
879 FOR_EACH_BB (bb)
880 {
881 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
882 {
883 next = NEXT_INSN (insn);
884 if (INSN_P (insn) && noop_move_p (insn))
885 {
886 if (dump_file)
887 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
888
889 delete_insn_and_edges (insn);
890 }
891 }
892 }
893 }
894
895 \f
896 /* Fill in log links field for all insns. */
897
898 static void
899 create_log_links (void)
900 {
901 basic_block bb;
902 rtx *next_use, insn;
903 struct df_ref **def_vec, **use_vec;
904
905 next_use = XCNEWVEC (rtx, max_reg_num ());
906
907 /* Pass through each block from the end, recording the uses of each
908 register and establishing log links when def is encountered.
909 Note that we do not clear next_use array in order to save time,
910 so we have to test whether the use is in the same basic block as def.
911
912 There are a few cases below when we do not consider the definition or
913 usage -- these are taken from original flow.c did. Don't ask me why it is
914 done this way; I don't know and if it works, I don't want to know. */
915
916 FOR_EACH_BB (bb)
917 {
918 FOR_BB_INSNS_REVERSE (bb, insn)
919 {
920 if (!INSN_P (insn))
921 continue;
922
923 /* Log links are created only once. */
924 gcc_assert (!LOG_LINKS (insn));
925
926 for (def_vec = DF_INSN_DEFS (insn); *def_vec; def_vec++)
927 {
928 struct df_ref *def = *def_vec;
929 int regno = DF_REF_REGNO (def);
930 rtx use_insn;
931
932 if (!next_use[regno])
933 continue;
934
935 /* Do not consider if it is pre/post modification in MEM. */
936 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
937 continue;
938
939 /* Do not make the log link for frame pointer. */
940 if ((regno == FRAME_POINTER_REGNUM
941 && (! reload_completed || frame_pointer_needed))
942 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
943 || (regno == HARD_FRAME_POINTER_REGNUM
944 && (! reload_completed || frame_pointer_needed))
945 #endif
946 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
947 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
948 #endif
949 )
950 continue;
951
952 use_insn = next_use[regno];
953 if (BLOCK_FOR_INSN (use_insn) == bb)
954 {
955 /* flow.c claimed:
956
957 We don't build a LOG_LINK for hard registers contained
958 in ASM_OPERANDs. If these registers get replaced,
959 we might wind up changing the semantics of the insn,
960 even if reload can make what appear to be valid
961 assignments later. */
962 if (regno >= FIRST_PSEUDO_REGISTER
963 || asm_noperands (PATTERN (use_insn)) < 0)
964 {
965 /* Don't add duplicate links between instructions. */
966 rtx links;
967 for (links = LOG_LINKS (use_insn); links;
968 links = XEXP (links, 1))
969 if (insn == XEXP (links, 0))
970 break;
971
972 if (!links)
973 LOG_LINKS (use_insn) =
974 alloc_INSN_LIST (insn, LOG_LINKS (use_insn));
975 }
976 }
977 next_use[regno] = NULL_RTX;
978 }
979
980 for (use_vec = DF_INSN_USES (insn); *use_vec; use_vec++)
981 {
982 struct df_ref *use = *use_vec;
983 int regno = DF_REF_REGNO (use);
984
985 /* Do not consider the usage of the stack pointer
986 by function call. */
987 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
988 continue;
989
990 next_use[regno] = insn;
991 }
992 }
993 }
994
995 free (next_use);
996 }
997
998 /* Clear LOG_LINKS fields of insns. */
999
1000 static void
1001 clear_log_links (void)
1002 {
1003 rtx insn;
1004
1005 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1006 if (INSN_P (insn))
1007 free_INSN_LIST_list (&LOG_LINKS (insn));
1008 }
1009
1010
1011
1012 \f
1013 /* Main entry point for combiner. F is the first insn of the function.
1014 NREGS is the first unused pseudo-reg number.
1015
1016 Return nonzero if the combiner has turned an indirect jump
1017 instruction into a direct jump. */
1018 static int
1019 combine_instructions (rtx f, unsigned int nregs)
1020 {
1021 rtx insn, next;
1022 #ifdef HAVE_cc0
1023 rtx prev;
1024 #endif
1025 rtx links, nextlinks;
1026 rtx first;
1027
1028 int new_direct_jump_p = 0;
1029
1030 for (first = f; first && !INSN_P (first); )
1031 first = NEXT_INSN (first);
1032 if (!first)
1033 return 0;
1034
1035 combine_attempts = 0;
1036 combine_merges = 0;
1037 combine_extras = 0;
1038 combine_successes = 0;
1039
1040 rtl_hooks = combine_rtl_hooks;
1041
1042 VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
1043
1044 init_recog_no_volatile ();
1045
1046 /* Allocate array for insn info. */
1047 max_uid_known = get_max_uid ();
1048 uid_log_links = XCNEWVEC (rtx, max_uid_known + 1);
1049 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1050
1051 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1052
1053 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1054 problems when, for example, we have j <<= 1 in a loop. */
1055
1056 nonzero_sign_valid = 0;
1057
1058 /* Scan all SETs and see if we can deduce anything about what
1059 bits are known to be zero for some registers and how many copies
1060 of the sign bit are known to exist for those registers.
1061
1062 Also set any known values so that we can use it while searching
1063 for what bits are known to be set. */
1064
1065 label_tick = label_tick_ebb_start = 1;
1066
1067 setup_incoming_promotions (first);
1068
1069 create_log_links ();
1070 FOR_EACH_BB (this_basic_block)
1071 {
1072 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1073 last_call_luid = 0;
1074 mem_last_set = -1;
1075 label_tick++;
1076 FOR_BB_INSNS (this_basic_block, insn)
1077 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1078 {
1079 subst_low_luid = DF_INSN_LUID (insn);
1080 subst_insn = insn;
1081
1082 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1083 insn);
1084 record_dead_and_set_regs (insn);
1085
1086 #ifdef AUTO_INC_DEC
1087 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1088 if (REG_NOTE_KIND (links) == REG_INC)
1089 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1090 insn);
1091 #endif
1092
1093 /* Record the current insn_rtx_cost of this instruction. */
1094 if (NONJUMP_INSN_P (insn))
1095 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1096 optimize_this_for_speed_p);
1097 if (dump_file)
1098 fprintf(dump_file, "insn_cost %d: %d\n",
1099 INSN_UID (insn), INSN_COST (insn));
1100 }
1101 else if (LABEL_P (insn))
1102 label_tick_ebb_start = label_tick;
1103 }
1104
1105 nonzero_sign_valid = 1;
1106
1107 /* Now scan all the insns in forward order. */
1108
1109 label_tick = label_tick_ebb_start = 1;
1110 init_reg_last ();
1111 setup_incoming_promotions (first);
1112
1113 FOR_EACH_BB (this_basic_block)
1114 {
1115 last_call_luid = 0;
1116 mem_last_set = -1;
1117 label_tick++;
1118 rtl_profile_for_bb (this_basic_block);
1119 for (insn = BB_HEAD (this_basic_block);
1120 insn != NEXT_INSN (BB_END (this_basic_block));
1121 insn = next ? next : NEXT_INSN (insn))
1122 {
1123 next = 0;
1124 if (INSN_P (insn))
1125 {
1126 /* See if we know about function return values before this
1127 insn based upon SUBREG flags. */
1128 check_promoted_subreg (insn, PATTERN (insn));
1129
1130 /* See if we can find hardregs and subreg of pseudos in
1131 narrower modes. This could help turning TRUNCATEs
1132 into SUBREGs. */
1133 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1134
1135 /* Try this insn with each insn it links back to. */
1136
1137 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1138 if ((next = try_combine (insn, XEXP (links, 0),
1139 NULL_RTX, &new_direct_jump_p)) != 0)
1140 goto retry;
1141
1142 /* Try each sequence of three linked insns ending with this one. */
1143
1144 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1145 {
1146 rtx link = XEXP (links, 0);
1147
1148 /* If the linked insn has been replaced by a note, then there
1149 is no point in pursuing this chain any further. */
1150 if (NOTE_P (link))
1151 continue;
1152
1153 for (nextlinks = LOG_LINKS (link);
1154 nextlinks;
1155 nextlinks = XEXP (nextlinks, 1))
1156 if ((next = try_combine (insn, link,
1157 XEXP (nextlinks, 0),
1158 &new_direct_jump_p)) != 0)
1159 goto retry;
1160 }
1161
1162 #ifdef HAVE_cc0
1163 /* Try to combine a jump insn that uses CC0
1164 with a preceding insn that sets CC0, and maybe with its
1165 logical predecessor as well.
1166 This is how we make decrement-and-branch insns.
1167 We need this special code because data flow connections
1168 via CC0 do not get entered in LOG_LINKS. */
1169
1170 if (JUMP_P (insn)
1171 && (prev = prev_nonnote_insn (insn)) != 0
1172 && NONJUMP_INSN_P (prev)
1173 && sets_cc0_p (PATTERN (prev)))
1174 {
1175 if ((next = try_combine (insn, prev,
1176 NULL_RTX, &new_direct_jump_p)) != 0)
1177 goto retry;
1178
1179 for (nextlinks = LOG_LINKS (prev); nextlinks;
1180 nextlinks = XEXP (nextlinks, 1))
1181 if ((next = try_combine (insn, prev,
1182 XEXP (nextlinks, 0),
1183 &new_direct_jump_p)) != 0)
1184 goto retry;
1185 }
1186
1187 /* Do the same for an insn that explicitly references CC0. */
1188 if (NONJUMP_INSN_P (insn)
1189 && (prev = prev_nonnote_insn (insn)) != 0
1190 && NONJUMP_INSN_P (prev)
1191 && sets_cc0_p (PATTERN (prev))
1192 && GET_CODE (PATTERN (insn)) == SET
1193 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1194 {
1195 if ((next = try_combine (insn, prev,
1196 NULL_RTX, &new_direct_jump_p)) != 0)
1197 goto retry;
1198
1199 for (nextlinks = LOG_LINKS (prev); nextlinks;
1200 nextlinks = XEXP (nextlinks, 1))
1201 if ((next = try_combine (insn, prev,
1202 XEXP (nextlinks, 0),
1203 &new_direct_jump_p)) != 0)
1204 goto retry;
1205 }
1206
1207 /* Finally, see if any of the insns that this insn links to
1208 explicitly references CC0. If so, try this insn, that insn,
1209 and its predecessor if it sets CC0. */
1210 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1211 if (NONJUMP_INSN_P (XEXP (links, 0))
1212 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
1213 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
1214 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
1215 && NONJUMP_INSN_P (prev)
1216 && sets_cc0_p (PATTERN (prev))
1217 && (next = try_combine (insn, XEXP (links, 0),
1218 prev, &new_direct_jump_p)) != 0)
1219 goto retry;
1220 #endif
1221
1222 /* Try combining an insn with two different insns whose results it
1223 uses. */
1224 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1225 for (nextlinks = XEXP (links, 1); nextlinks;
1226 nextlinks = XEXP (nextlinks, 1))
1227 if ((next = try_combine (insn, XEXP (links, 0),
1228 XEXP (nextlinks, 0),
1229 &new_direct_jump_p)) != 0)
1230 goto retry;
1231
1232 /* Try this insn with each REG_EQUAL note it links back to. */
1233 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1234 {
1235 rtx set, note;
1236 rtx temp = XEXP (links, 0);
1237 if ((set = single_set (temp)) != 0
1238 && (note = find_reg_equal_equiv_note (temp)) != 0
1239 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1240 /* Avoid using a register that may already been marked
1241 dead by an earlier instruction. */
1242 && ! unmentioned_reg_p (note, SET_SRC (set))
1243 && (GET_MODE (note) == VOIDmode
1244 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1245 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
1246 {
1247 /* Temporarily replace the set's source with the
1248 contents of the REG_EQUAL note. The insn will
1249 be deleted or recognized by try_combine. */
1250 rtx orig = SET_SRC (set);
1251 SET_SRC (set) = note;
1252 i2mod = temp;
1253 i2mod_old_rhs = copy_rtx (orig);
1254 i2mod_new_rhs = copy_rtx (note);
1255 next = try_combine (insn, i2mod, NULL_RTX,
1256 &new_direct_jump_p);
1257 i2mod = NULL_RTX;
1258 if (next)
1259 goto retry;
1260 SET_SRC (set) = orig;
1261 }
1262 }
1263
1264 if (!NOTE_P (insn))
1265 record_dead_and_set_regs (insn);
1266
1267 retry:
1268 ;
1269 }
1270 else if (LABEL_P (insn))
1271 label_tick_ebb_start = label_tick;
1272 }
1273 }
1274
1275 default_rtl_profile ();
1276 clear_log_links ();
1277 clear_bb_flags ();
1278 new_direct_jump_p |= purge_all_dead_edges ();
1279 delete_noop_moves ();
1280
1281 /* Clean up. */
1282 free (uid_log_links);
1283 free (uid_insn_cost);
1284 VEC_free (reg_stat_type, heap, reg_stat);
1285
1286 {
1287 struct undo *undo, *next;
1288 for (undo = undobuf.frees; undo; undo = next)
1289 {
1290 next = undo->next;
1291 free (undo);
1292 }
1293 undobuf.frees = 0;
1294 }
1295
1296 total_attempts += combine_attempts;
1297 total_merges += combine_merges;
1298 total_extras += combine_extras;
1299 total_successes += combine_successes;
1300
1301 nonzero_sign_valid = 0;
1302 rtl_hooks = general_rtl_hooks;
1303
1304 /* Make recognizer allow volatile MEMs again. */
1305 init_recog ();
1306
1307 return new_direct_jump_p;
1308 }
1309
1310 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1311
1312 static void
1313 init_reg_last (void)
1314 {
1315 unsigned int i;
1316 reg_stat_type *p;
1317
1318 for (i = 0; VEC_iterate (reg_stat_type, reg_stat, i, p); ++i)
1319 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1320 }
1321 \f
1322 /* Set up any promoted values for incoming argument registers. */
1323
1324 static void
1325 setup_incoming_promotions (rtx first)
1326 {
1327 tree arg;
1328 bool strictly_local = false;
1329
1330 if (!targetm.calls.promote_function_args (TREE_TYPE (cfun->decl)))
1331 return;
1332
1333 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1334 arg = TREE_CHAIN (arg))
1335 {
1336 rtx reg = DECL_INCOMING_RTL (arg);
1337 int uns1, uns3;
1338 enum machine_mode mode1, mode2, mode3, mode4;
1339
1340 /* Only continue if the incoming argument is in a register. */
1341 if (!REG_P (reg))
1342 continue;
1343
1344 /* Determine, if possible, whether all call sites of the current
1345 function lie within the current compilation unit. (This does
1346 take into account the exporting of a function via taking its
1347 address, and so forth.) */
1348 strictly_local = cgraph_local_info (current_function_decl)->local;
1349
1350 /* The mode and signedness of the argument before any promotions happen
1351 (equal to the mode of the pseudo holding it at that stage). */
1352 mode1 = TYPE_MODE (TREE_TYPE (arg));
1353 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1354
1355 /* The mode and signedness of the argument after any source language and
1356 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1357 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1358 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1359
1360 /* The mode and signedness of the argument as it is actually passed,
1361 after any TARGET_PROMOTE_FUNCTION_ARGS-driven ABI promotions. */
1362 mode3 = promote_mode (DECL_ARG_TYPE (arg), mode2, &uns3, 1);
1363
1364 /* The mode of the register in which the argument is being passed. */
1365 mode4 = GET_MODE (reg);
1366
1367 /* Eliminate sign extensions in the callee when possible. Only
1368 do this when:
1369 (a) a mode promotion has occurred;
1370 (b) the mode of the register is the same as the mode of
1371 the argument as it is passed; and
1372 (c) the signedness does not change across any of the promotions; and
1373 (d) when no language-level promotions (which we cannot guarantee
1374 will have been done by an external caller) are necessary,
1375 unless we know that this function is only ever called from
1376 the current compilation unit -- all of whose call sites will
1377 do the mode1 --> mode2 promotion. */
1378 if (mode1 != mode3
1379 && mode3 == mode4
1380 && uns1 == uns3
1381 && (mode1 == mode2 || strictly_local))
1382 {
1383 /* Record that the value was promoted from mode1 to mode3,
1384 so that any sign extension at the head of the current
1385 function may be eliminated. */
1386 rtx x;
1387 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1388 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1389 record_value_for_reg (reg, first, x);
1390 }
1391 }
1392 }
1393
1394 /* Called via note_stores. If X is a pseudo that is narrower than
1395 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1396
1397 If we are setting only a portion of X and we can't figure out what
1398 portion, assume all bits will be used since we don't know what will
1399 be happening.
1400
1401 Similarly, set how many bits of X are known to be copies of the sign bit
1402 at all locations in the function. This is the smallest number implied
1403 by any set of X. */
1404
1405 static void
1406 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1407 {
1408 rtx insn = (rtx) data;
1409 unsigned int num;
1410
1411 if (REG_P (x)
1412 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1413 /* If this register is undefined at the start of the file, we can't
1414 say what its contents were. */
1415 && ! REGNO_REG_SET_P
1416 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x))
1417 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
1418 {
1419 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
1420
1421 if (set == 0 || GET_CODE (set) == CLOBBER)
1422 {
1423 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1424 rsp->sign_bit_copies = 1;
1425 return;
1426 }
1427
1428 /* If this register is being initialized using itself, and the
1429 register is uninitialized in this basic block, and there are
1430 no LOG_LINKS which set the register, then part of the
1431 register is uninitialized. In that case we can't assume
1432 anything about the number of nonzero bits.
1433
1434 ??? We could do better if we checked this in
1435 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1436 could avoid making assumptions about the insn which initially
1437 sets the register, while still using the information in other
1438 insns. We would have to be careful to check every insn
1439 involved in the combination. */
1440
1441 if (insn
1442 && reg_referenced_p (x, PATTERN (insn))
1443 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1444 REGNO (x)))
1445 {
1446 rtx link;
1447
1448 for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
1449 {
1450 if (dead_or_set_p (XEXP (link, 0), x))
1451 break;
1452 }
1453 if (!link)
1454 {
1455 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1456 rsp->sign_bit_copies = 1;
1457 return;
1458 }
1459 }
1460
1461 /* If this is a complex assignment, see if we can convert it into a
1462 simple assignment. */
1463 set = expand_field_assignment (set);
1464
1465 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1466 set what we know about X. */
1467
1468 if (SET_DEST (set) == x
1469 || (GET_CODE (SET_DEST (set)) == SUBREG
1470 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
1471 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
1472 && SUBREG_REG (SET_DEST (set)) == x))
1473 {
1474 rtx src = SET_SRC (set);
1475
1476 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1477 /* If X is narrower than a word and SRC is a non-negative
1478 constant that would appear negative in the mode of X,
1479 sign-extend it for use in reg_stat[].nonzero_bits because some
1480 machines (maybe most) will actually do the sign-extension
1481 and this is the conservative approach.
1482
1483 ??? For 2.5, try to tighten up the MD files in this regard
1484 instead of this kludge. */
1485
1486 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
1487 && GET_CODE (src) == CONST_INT
1488 && INTVAL (src) > 0
1489 && 0 != (INTVAL (src)
1490 & ((HOST_WIDE_INT) 1
1491 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
1492 src = GEN_INT (INTVAL (src)
1493 | ((HOST_WIDE_INT) (-1)
1494 << GET_MODE_BITSIZE (GET_MODE (x))));
1495 #endif
1496
1497 /* Don't call nonzero_bits if it cannot change anything. */
1498 if (rsp->nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1499 rsp->nonzero_bits |= nonzero_bits (src, nonzero_bits_mode);
1500 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1501 if (rsp->sign_bit_copies == 0
1502 || rsp->sign_bit_copies > num)
1503 rsp->sign_bit_copies = num;
1504 }
1505 else
1506 {
1507 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1508 rsp->sign_bit_copies = 1;
1509 }
1510 }
1511 }
1512 \f
1513 /* See if INSN can be combined into I3. PRED and SUCC are optionally
1514 insns that were previously combined into I3 or that will be combined
1515 into the merger of INSN and I3.
1516
1517 Return 0 if the combination is not allowed for any reason.
1518
1519 If the combination is allowed, *PDEST will be set to the single
1520 destination of INSN and *PSRC to the single source, and this function
1521 will return 1. */
1522
1523 static int
1524 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED, rtx succ,
1525 rtx *pdest, rtx *psrc)
1526 {
1527 int i;
1528 const_rtx set = 0;
1529 rtx src, dest;
1530 rtx p;
1531 #ifdef AUTO_INC_DEC
1532 rtx link;
1533 #endif
1534 int all_adjacent = (succ ? (next_active_insn (insn) == succ
1535 && next_active_insn (succ) == i3)
1536 : next_active_insn (insn) == i3);
1537
1538 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1539 or a PARALLEL consisting of such a SET and CLOBBERs.
1540
1541 If INSN has CLOBBER parallel parts, ignore them for our processing.
1542 By definition, these happen during the execution of the insn. When it
1543 is merged with another insn, all bets are off. If they are, in fact,
1544 needed and aren't also supplied in I3, they may be added by
1545 recog_for_combine. Otherwise, it won't match.
1546
1547 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1548 note.
1549
1550 Get the source and destination of INSN. If more than one, can't
1551 combine. */
1552
1553 if (GET_CODE (PATTERN (insn)) == SET)
1554 set = PATTERN (insn);
1555 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1556 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1557 {
1558 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1559 {
1560 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1561 rtx note;
1562
1563 switch (GET_CODE (elt))
1564 {
1565 /* This is important to combine floating point insns
1566 for the SH4 port. */
1567 case USE:
1568 /* Combining an isolated USE doesn't make sense.
1569 We depend here on combinable_i3pat to reject them. */
1570 /* The code below this loop only verifies that the inputs of
1571 the SET in INSN do not change. We call reg_set_between_p
1572 to verify that the REG in the USE does not change between
1573 I3 and INSN.
1574 If the USE in INSN was for a pseudo register, the matching
1575 insn pattern will likely match any register; combining this
1576 with any other USE would only be safe if we knew that the
1577 used registers have identical values, or if there was
1578 something to tell them apart, e.g. different modes. For
1579 now, we forgo such complicated tests and simply disallow
1580 combining of USES of pseudo registers with any other USE. */
1581 if (REG_P (XEXP (elt, 0))
1582 && GET_CODE (PATTERN (i3)) == PARALLEL)
1583 {
1584 rtx i3pat = PATTERN (i3);
1585 int i = XVECLEN (i3pat, 0) - 1;
1586 unsigned int regno = REGNO (XEXP (elt, 0));
1587
1588 do
1589 {
1590 rtx i3elt = XVECEXP (i3pat, 0, i);
1591
1592 if (GET_CODE (i3elt) == USE
1593 && REG_P (XEXP (i3elt, 0))
1594 && (REGNO (XEXP (i3elt, 0)) == regno
1595 ? reg_set_between_p (XEXP (elt, 0),
1596 PREV_INSN (insn), i3)
1597 : regno >= FIRST_PSEUDO_REGISTER))
1598 return 0;
1599 }
1600 while (--i >= 0);
1601 }
1602 break;
1603
1604 /* We can ignore CLOBBERs. */
1605 case CLOBBER:
1606 break;
1607
1608 case SET:
1609 /* Ignore SETs whose result isn't used but not those that
1610 have side-effects. */
1611 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1612 && (!(note = find_reg_note (insn, REG_EH_REGION, NULL_RTX))
1613 || INTVAL (XEXP (note, 0)) <= 0)
1614 && ! side_effects_p (elt))
1615 break;
1616
1617 /* If we have already found a SET, this is a second one and
1618 so we cannot combine with this insn. */
1619 if (set)
1620 return 0;
1621
1622 set = elt;
1623 break;
1624
1625 default:
1626 /* Anything else means we can't combine. */
1627 return 0;
1628 }
1629 }
1630
1631 if (set == 0
1632 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1633 so don't do anything with it. */
1634 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1635 return 0;
1636 }
1637 else
1638 return 0;
1639
1640 if (set == 0)
1641 return 0;
1642
1643 set = expand_field_assignment (set);
1644 src = SET_SRC (set), dest = SET_DEST (set);
1645
1646 /* Don't eliminate a store in the stack pointer. */
1647 if (dest == stack_pointer_rtx
1648 /* Don't combine with an insn that sets a register to itself if it has
1649 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1650 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1651 /* Can't merge an ASM_OPERANDS. */
1652 || GET_CODE (src) == ASM_OPERANDS
1653 /* Can't merge a function call. */
1654 || GET_CODE (src) == CALL
1655 /* Don't eliminate a function call argument. */
1656 || (CALL_P (i3)
1657 && (find_reg_fusage (i3, USE, dest)
1658 || (REG_P (dest)
1659 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1660 && global_regs[REGNO (dest)])))
1661 /* Don't substitute into an incremented register. */
1662 || FIND_REG_INC_NOTE (i3, dest)
1663 || (succ && FIND_REG_INC_NOTE (succ, dest))
1664 /* Don't substitute into a non-local goto, this confuses CFG. */
1665 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1666 /* Make sure that DEST is not used after SUCC but before I3. */
1667 || (succ && ! all_adjacent
1668 && reg_used_between_p (dest, succ, i3))
1669 /* Make sure that the value that is to be substituted for the register
1670 does not use any registers whose values alter in between. However,
1671 If the insns are adjacent, a use can't cross a set even though we
1672 think it might (this can happen for a sequence of insns each setting
1673 the same destination; last_set of that register might point to
1674 a NOTE). If INSN has a REG_EQUIV note, the register is always
1675 equivalent to the memory so the substitution is valid even if there
1676 are intervening stores. Also, don't move a volatile asm or
1677 UNSPEC_VOLATILE across any other insns. */
1678 || (! all_adjacent
1679 && (((!MEM_P (src)
1680 || ! find_reg_note (insn, REG_EQUIV, src))
1681 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1682 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1683 || GET_CODE (src) == UNSPEC_VOLATILE))
1684 /* Don't combine across a CALL_INSN, because that would possibly
1685 change whether the life span of some REGs crosses calls or not,
1686 and it is a pain to update that information.
1687 Exception: if source is a constant, moving it later can't hurt.
1688 Accept that as a special case. */
1689 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1690 return 0;
1691
1692 /* DEST must either be a REG or CC0. */
1693 if (REG_P (dest))
1694 {
1695 /* If register alignment is being enforced for multi-word items in all
1696 cases except for parameters, it is possible to have a register copy
1697 insn referencing a hard register that is not allowed to contain the
1698 mode being copied and which would not be valid as an operand of most
1699 insns. Eliminate this problem by not combining with such an insn.
1700
1701 Also, on some machines we don't want to extend the life of a hard
1702 register. */
1703
1704 if (REG_P (src)
1705 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1706 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1707 /* Don't extend the life of a hard register unless it is
1708 user variable (if we have few registers) or it can't
1709 fit into the desired register (meaning something special
1710 is going on).
1711 Also avoid substituting a return register into I3, because
1712 reload can't handle a conflict with constraints of other
1713 inputs. */
1714 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1715 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1716 return 0;
1717 }
1718 else if (GET_CODE (dest) != CC0)
1719 return 0;
1720
1721
1722 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1723 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1724 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1725 {
1726 /* Don't substitute for a register intended as a clobberable
1727 operand. */
1728 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1729 if (rtx_equal_p (reg, dest))
1730 return 0;
1731
1732 /* If the clobber represents an earlyclobber operand, we must not
1733 substitute an expression containing the clobbered register.
1734 As we do not analyze the constraint strings here, we have to
1735 make the conservative assumption. However, if the register is
1736 a fixed hard reg, the clobber cannot represent any operand;
1737 we leave it up to the machine description to either accept or
1738 reject use-and-clobber patterns. */
1739 if (!REG_P (reg)
1740 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1741 || !fixed_regs[REGNO (reg)])
1742 if (reg_overlap_mentioned_p (reg, src))
1743 return 0;
1744 }
1745
1746 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1747 or not), reject, unless nothing volatile comes between it and I3 */
1748
1749 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1750 {
1751 /* Make sure succ doesn't contain a volatile reference. */
1752 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1753 return 0;
1754
1755 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1756 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1757 return 0;
1758 }
1759
1760 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1761 to be an explicit register variable, and was chosen for a reason. */
1762
1763 if (GET_CODE (src) == ASM_OPERANDS
1764 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1765 return 0;
1766
1767 /* If there are any volatile insns between INSN and I3, reject, because
1768 they might affect machine state. */
1769
1770 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1771 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1772 return 0;
1773
1774 /* If INSN contains an autoincrement or autodecrement, make sure that
1775 register is not used between there and I3, and not already used in
1776 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1777 Also insist that I3 not be a jump; if it were one
1778 and the incremented register were spilled, we would lose. */
1779
1780 #ifdef AUTO_INC_DEC
1781 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1782 if (REG_NOTE_KIND (link) == REG_INC
1783 && (JUMP_P (i3)
1784 || reg_used_between_p (XEXP (link, 0), insn, i3)
1785 || (pred != NULL_RTX
1786 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1787 || (succ != NULL_RTX
1788 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1789 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1790 return 0;
1791 #endif
1792
1793 #ifdef HAVE_cc0
1794 /* Don't combine an insn that follows a CC0-setting insn.
1795 An insn that uses CC0 must not be separated from the one that sets it.
1796 We do, however, allow I2 to follow a CC0-setting insn if that insn
1797 is passed as I1; in that case it will be deleted also.
1798 We also allow combining in this case if all the insns are adjacent
1799 because that would leave the two CC0 insns adjacent as well.
1800 It would be more logical to test whether CC0 occurs inside I1 or I2,
1801 but that would be much slower, and this ought to be equivalent. */
1802
1803 p = prev_nonnote_insn (insn);
1804 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
1805 && ! all_adjacent)
1806 return 0;
1807 #endif
1808
1809 /* If we get here, we have passed all the tests and the combination is
1810 to be allowed. */
1811
1812 *pdest = dest;
1813 *psrc = src;
1814
1815 return 1;
1816 }
1817 \f
1818 /* LOC is the location within I3 that contains its pattern or the component
1819 of a PARALLEL of the pattern. We validate that it is valid for combining.
1820
1821 One problem is if I3 modifies its output, as opposed to replacing it
1822 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1823 so would produce an insn that is not equivalent to the original insns.
1824
1825 Consider:
1826
1827 (set (reg:DI 101) (reg:DI 100))
1828 (set (subreg:SI (reg:DI 101) 0) <foo>)
1829
1830 This is NOT equivalent to:
1831
1832 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1833 (set (reg:DI 101) (reg:DI 100))])
1834
1835 Not only does this modify 100 (in which case it might still be valid
1836 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1837
1838 We can also run into a problem if I2 sets a register that I1
1839 uses and I1 gets directly substituted into I3 (not via I2). In that
1840 case, we would be getting the wrong value of I2DEST into I3, so we
1841 must reject the combination. This case occurs when I2 and I1 both
1842 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1843 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1844 of a SET must prevent combination from occurring.
1845
1846 Before doing the above check, we first try to expand a field assignment
1847 into a set of logical operations.
1848
1849 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1850 we place a register that is both set and used within I3. If more than one
1851 such register is detected, we fail.
1852
1853 Return 1 if the combination is valid, zero otherwise. */
1854
1855 static int
1856 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest,
1857 int i1_not_in_src, rtx *pi3dest_killed)
1858 {
1859 rtx x = *loc;
1860
1861 if (GET_CODE (x) == SET)
1862 {
1863 rtx set = x ;
1864 rtx dest = SET_DEST (set);
1865 rtx src = SET_SRC (set);
1866 rtx inner_dest = dest;
1867 rtx subdest;
1868
1869 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1870 || GET_CODE (inner_dest) == SUBREG
1871 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1872 inner_dest = XEXP (inner_dest, 0);
1873
1874 /* Check for the case where I3 modifies its output, as discussed
1875 above. We don't want to prevent pseudos from being combined
1876 into the address of a MEM, so only prevent the combination if
1877 i1 or i2 set the same MEM. */
1878 if ((inner_dest != dest &&
1879 (!MEM_P (inner_dest)
1880 || rtx_equal_p (i2dest, inner_dest)
1881 || (i1dest && rtx_equal_p (i1dest, inner_dest)))
1882 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1883 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1884
1885 /* This is the same test done in can_combine_p except we can't test
1886 all_adjacent; we don't have to, since this instruction will stay
1887 in place, thus we are not considering increasing the lifetime of
1888 INNER_DEST.
1889
1890 Also, if this insn sets a function argument, combining it with
1891 something that might need a spill could clobber a previous
1892 function argument; the all_adjacent test in can_combine_p also
1893 checks this; here, we do a more specific test for this case. */
1894
1895 || (REG_P (inner_dest)
1896 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1897 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1898 GET_MODE (inner_dest))))
1899 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1900 return 0;
1901
1902 /* If DEST is used in I3, it is being killed in this insn, so
1903 record that for later. We have to consider paradoxical
1904 subregs here, since they kill the whole register, but we
1905 ignore partial subregs, STRICT_LOW_PART, etc.
1906 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1907 STACK_POINTER_REGNUM, since these are always considered to be
1908 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1909 subdest = dest;
1910 if (GET_CODE (subdest) == SUBREG
1911 && (GET_MODE_SIZE (GET_MODE (subdest))
1912 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
1913 subdest = SUBREG_REG (subdest);
1914 if (pi3dest_killed
1915 && REG_P (subdest)
1916 && reg_referenced_p (subdest, PATTERN (i3))
1917 && REGNO (subdest) != FRAME_POINTER_REGNUM
1918 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1919 && REGNO (subdest) != HARD_FRAME_POINTER_REGNUM
1920 #endif
1921 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1922 && (REGNO (subdest) != ARG_POINTER_REGNUM
1923 || ! fixed_regs [REGNO (subdest)])
1924 #endif
1925 && REGNO (subdest) != STACK_POINTER_REGNUM)
1926 {
1927 if (*pi3dest_killed)
1928 return 0;
1929
1930 *pi3dest_killed = subdest;
1931 }
1932 }
1933
1934 else if (GET_CODE (x) == PARALLEL)
1935 {
1936 int i;
1937
1938 for (i = 0; i < XVECLEN (x, 0); i++)
1939 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1940 i1_not_in_src, pi3dest_killed))
1941 return 0;
1942 }
1943
1944 return 1;
1945 }
1946 \f
1947 /* Return 1 if X is an arithmetic expression that contains a multiplication
1948 and division. We don't count multiplications by powers of two here. */
1949
1950 static int
1951 contains_muldiv (rtx x)
1952 {
1953 switch (GET_CODE (x))
1954 {
1955 case MOD: case DIV: case UMOD: case UDIV:
1956 return 1;
1957
1958 case MULT:
1959 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1960 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1961 default:
1962 if (BINARY_P (x))
1963 return contains_muldiv (XEXP (x, 0))
1964 || contains_muldiv (XEXP (x, 1));
1965
1966 if (UNARY_P (x))
1967 return contains_muldiv (XEXP (x, 0));
1968
1969 return 0;
1970 }
1971 }
1972 \f
1973 /* Determine whether INSN can be used in a combination. Return nonzero if
1974 not. This is used in try_combine to detect early some cases where we
1975 can't perform combinations. */
1976
1977 static int
1978 cant_combine_insn_p (rtx insn)
1979 {
1980 rtx set;
1981 rtx src, dest;
1982
1983 /* If this isn't really an insn, we can't do anything.
1984 This can occur when flow deletes an insn that it has merged into an
1985 auto-increment address. */
1986 if (! INSN_P (insn))
1987 return 1;
1988
1989 /* Never combine loads and stores involving hard regs that are likely
1990 to be spilled. The register allocator can usually handle such
1991 reg-reg moves by tying. If we allow the combiner to make
1992 substitutions of likely-spilled regs, reload might die.
1993 As an exception, we allow combinations involving fixed regs; these are
1994 not available to the register allocator so there's no risk involved. */
1995
1996 set = single_set (insn);
1997 if (! set)
1998 return 0;
1999 src = SET_SRC (set);
2000 dest = SET_DEST (set);
2001 if (GET_CODE (src) == SUBREG)
2002 src = SUBREG_REG (src);
2003 if (GET_CODE (dest) == SUBREG)
2004 dest = SUBREG_REG (dest);
2005 if (REG_P (src) && REG_P (dest)
2006 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
2007 && ! fixed_regs[REGNO (src)]
2008 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src))))
2009 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
2010 && ! fixed_regs[REGNO (dest)]
2011 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest))))))
2012 return 1;
2013
2014 return 0;
2015 }
2016
2017 struct likely_spilled_retval_info
2018 {
2019 unsigned regno, nregs;
2020 unsigned mask;
2021 };
2022
2023 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2024 hard registers that are known to be written to / clobbered in full. */
2025 static void
2026 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2027 {
2028 struct likely_spilled_retval_info *const info =
2029 (struct likely_spilled_retval_info *) data;
2030 unsigned regno, nregs;
2031 unsigned new_mask;
2032
2033 if (!REG_P (XEXP (set, 0)))
2034 return;
2035 regno = REGNO (x);
2036 if (regno >= info->regno + info->nregs)
2037 return;
2038 nregs = hard_regno_nregs[regno][GET_MODE (x)];
2039 if (regno + nregs <= info->regno)
2040 return;
2041 new_mask = (2U << (nregs - 1)) - 1;
2042 if (regno < info->regno)
2043 new_mask >>= info->regno - regno;
2044 else
2045 new_mask <<= regno - info->regno;
2046 info->mask &= ~new_mask;
2047 }
2048
2049 /* Return nonzero iff part of the return value is live during INSN, and
2050 it is likely spilled. This can happen when more than one insn is needed
2051 to copy the return value, e.g. when we consider to combine into the
2052 second copy insn for a complex value. */
2053
2054 static int
2055 likely_spilled_retval_p (rtx insn)
2056 {
2057 rtx use = BB_END (this_basic_block);
2058 rtx reg, p;
2059 unsigned regno, nregs;
2060 /* We assume here that no machine mode needs more than
2061 32 hard registers when the value overlaps with a register
2062 for which FUNCTION_VALUE_REGNO_P is true. */
2063 unsigned mask;
2064 struct likely_spilled_retval_info info;
2065
2066 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2067 return 0;
2068 reg = XEXP (PATTERN (use), 0);
2069 if (!REG_P (reg) || !FUNCTION_VALUE_REGNO_P (REGNO (reg)))
2070 return 0;
2071 regno = REGNO (reg);
2072 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
2073 if (nregs == 1)
2074 return 0;
2075 mask = (2U << (nregs - 1)) - 1;
2076
2077 /* Disregard parts of the return value that are set later. */
2078 info.regno = regno;
2079 info.nregs = nregs;
2080 info.mask = mask;
2081 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2082 if (INSN_P (p))
2083 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2084 mask = info.mask;
2085
2086 /* Check if any of the (probably) live return value registers is
2087 likely spilled. */
2088 nregs --;
2089 do
2090 {
2091 if ((mask & 1 << nregs)
2092 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno + nregs)))
2093 return 1;
2094 } while (nregs--);
2095 return 0;
2096 }
2097
2098 /* Adjust INSN after we made a change to its destination.
2099
2100 Changing the destination can invalidate notes that say something about
2101 the results of the insn and a LOG_LINK pointing to the insn. */
2102
2103 static void
2104 adjust_for_new_dest (rtx insn)
2105 {
2106 /* For notes, be conservative and simply remove them. */
2107 remove_reg_equal_equiv_notes (insn);
2108
2109 /* The new insn will have a destination that was previously the destination
2110 of an insn just above it. Call distribute_links to make a LOG_LINK from
2111 the next use of that destination. */
2112 distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
2113
2114 df_insn_rescan (insn);
2115 }
2116
2117 /* Return TRUE if combine can reuse reg X in mode MODE.
2118 ADDED_SETS is nonzero if the original set is still required. */
2119 static bool
2120 can_change_dest_mode (rtx x, int added_sets, enum machine_mode mode)
2121 {
2122 unsigned int regno;
2123
2124 if (!REG_P(x))
2125 return false;
2126
2127 regno = REGNO (x);
2128 /* Allow hard registers if the new mode is legal, and occupies no more
2129 registers than the old mode. */
2130 if (regno < FIRST_PSEUDO_REGISTER)
2131 return (HARD_REGNO_MODE_OK (regno, mode)
2132 && (hard_regno_nregs[regno][GET_MODE (x)]
2133 >= hard_regno_nregs[regno][mode]));
2134
2135 /* Or a pseudo that is only used once. */
2136 return (REG_N_SETS (regno) == 1 && !added_sets
2137 && !REG_USERVAR_P (x));
2138 }
2139
2140
2141 /* Check whether X, the destination of a set, refers to part of
2142 the register specified by REG. */
2143
2144 static bool
2145 reg_subword_p (rtx x, rtx reg)
2146 {
2147 /* Check that reg is an integer mode register. */
2148 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2149 return false;
2150
2151 if (GET_CODE (x) == STRICT_LOW_PART
2152 || GET_CODE (x) == ZERO_EXTRACT)
2153 x = XEXP (x, 0);
2154
2155 return GET_CODE (x) == SUBREG
2156 && SUBREG_REG (x) == reg
2157 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2158 }
2159
2160
2161 /* Try to combine the insns I1 and I2 into I3.
2162 Here I1 and I2 appear earlier than I3.
2163 I1 can be zero; then we combine just I2 into I3.
2164
2165 If we are combining three insns and the resulting insn is not recognized,
2166 try splitting it into two insns. If that happens, I2 and I3 are retained
2167 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
2168 are pseudo-deleted.
2169
2170 Return 0 if the combination does not work. Then nothing is changed.
2171 If we did the combination, return the insn at which combine should
2172 resume scanning.
2173
2174 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2175 new direct jump instruction. */
2176
2177 static rtx
2178 try_combine (rtx i3, rtx i2, rtx i1, int *new_direct_jump_p)
2179 {
2180 /* New patterns for I3 and I2, respectively. */
2181 rtx newpat, newi2pat = 0;
2182 rtvec newpat_vec_with_clobbers = 0;
2183 int substed_i2 = 0, substed_i1 = 0;
2184 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
2185 int added_sets_1, added_sets_2;
2186 /* Total number of SETs to put into I3. */
2187 int total_sets;
2188 /* Nonzero if I2's body now appears in I3. */
2189 int i2_is_used;
2190 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2191 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2192 /* Contains I3 if the destination of I3 is used in its source, which means
2193 that the old life of I3 is being killed. If that usage is placed into
2194 I2 and not in I3, a REG_DEAD note must be made. */
2195 rtx i3dest_killed = 0;
2196 /* SET_DEST and SET_SRC of I2 and I1. */
2197 rtx i2dest, i2src, i1dest = 0, i1src = 0;
2198 /* PATTERN (I1) and PATTERN (I2), or a copy of it in certain cases. */
2199 rtx i1pat = 0, i2pat = 0;
2200 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2201 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2202 int i2dest_killed = 0, i1dest_killed = 0;
2203 int i1_feeds_i3 = 0;
2204 /* Notes that must be added to REG_NOTES in I3 and I2. */
2205 rtx new_i3_notes, new_i2_notes;
2206 /* Notes that we substituted I3 into I2 instead of the normal case. */
2207 int i3_subst_into_i2 = 0;
2208 /* Notes that I1, I2 or I3 is a MULT operation. */
2209 int have_mult = 0;
2210 int swap_i2i3 = 0;
2211
2212 int maxreg;
2213 rtx temp;
2214 rtx link;
2215 rtx other_pat = 0;
2216 rtx new_other_notes;
2217 int i;
2218
2219 /* Exit early if one of the insns involved can't be used for
2220 combinations. */
2221 if (cant_combine_insn_p (i3)
2222 || cant_combine_insn_p (i2)
2223 || (i1 && cant_combine_insn_p (i1))
2224 || likely_spilled_retval_p (i3))
2225 return 0;
2226
2227 combine_attempts++;
2228 undobuf.other_insn = 0;
2229
2230 /* Reset the hard register usage information. */
2231 CLEAR_HARD_REG_SET (newpat_used_regs);
2232
2233 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
2234 code below, set I1 to be the earlier of the two insns. */
2235 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2236 temp = i1, i1 = i2, i2 = temp;
2237
2238 added_links_insn = 0;
2239
2240 /* First check for one important special-case that the code below will
2241 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2242 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2243 we may be able to replace that destination with the destination of I3.
2244 This occurs in the common code where we compute both a quotient and
2245 remainder into a structure, in which case we want to do the computation
2246 directly into the structure to avoid register-register copies.
2247
2248 Note that this case handles both multiple sets in I2 and also
2249 cases where I2 has a number of CLOBBER or PARALLELs.
2250
2251 We make very conservative checks below and only try to handle the
2252 most common cases of this. For example, we only handle the case
2253 where I2 and I3 are adjacent to avoid making difficult register
2254 usage tests. */
2255
2256 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2257 && REG_P (SET_SRC (PATTERN (i3)))
2258 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2259 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2260 && GET_CODE (PATTERN (i2)) == PARALLEL
2261 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2262 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2263 below would need to check what is inside (and reg_overlap_mentioned_p
2264 doesn't support those codes anyway). Don't allow those destinations;
2265 the resulting insn isn't likely to be recognized anyway. */
2266 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2267 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2268 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2269 SET_DEST (PATTERN (i3)))
2270 && next_real_insn (i2) == i3)
2271 {
2272 rtx p2 = PATTERN (i2);
2273
2274 /* Make sure that the destination of I3,
2275 which we are going to substitute into one output of I2,
2276 is not used within another output of I2. We must avoid making this:
2277 (parallel [(set (mem (reg 69)) ...)
2278 (set (reg 69) ...)])
2279 which is not well-defined as to order of actions.
2280 (Besides, reload can't handle output reloads for this.)
2281
2282 The problem can also happen if the dest of I3 is a memory ref,
2283 if another dest in I2 is an indirect memory ref. */
2284 for (i = 0; i < XVECLEN (p2, 0); i++)
2285 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2286 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2287 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2288 SET_DEST (XVECEXP (p2, 0, i))))
2289 break;
2290
2291 if (i == XVECLEN (p2, 0))
2292 for (i = 0; i < XVECLEN (p2, 0); i++)
2293 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2294 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2295 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2296 {
2297 combine_merges++;
2298
2299 subst_insn = i3;
2300 subst_low_luid = DF_INSN_LUID (i2);
2301
2302 added_sets_2 = added_sets_1 = 0;
2303 i2dest = SET_SRC (PATTERN (i3));
2304 i2dest_killed = dead_or_set_p (i2, i2dest);
2305
2306 /* Replace the dest in I2 with our dest and make the resulting
2307 insn the new pattern for I3. Then skip to where we
2308 validate the pattern. Everything was set up above. */
2309 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
2310 SET_DEST (PATTERN (i3)));
2311
2312 newpat = p2;
2313 i3_subst_into_i2 = 1;
2314 goto validate_replacement;
2315 }
2316 }
2317
2318 /* If I2 is setting a pseudo to a constant and I3 is setting some
2319 sub-part of it to another constant, merge them by making a new
2320 constant. */
2321 if (i1 == 0
2322 && (temp = single_set (i2)) != 0
2323 && (GET_CODE (SET_SRC (temp)) == CONST_INT
2324 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
2325 && GET_CODE (PATTERN (i3)) == SET
2326 && (GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT
2327 || GET_CODE (SET_SRC (PATTERN (i3))) == CONST_DOUBLE)
2328 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp)))
2329 {
2330 rtx dest = SET_DEST (PATTERN (i3));
2331 int offset = -1;
2332 int width = 0;
2333
2334 if (GET_CODE (dest) == ZERO_EXTRACT)
2335 {
2336 if (GET_CODE (XEXP (dest, 1)) == CONST_INT
2337 && GET_CODE (XEXP (dest, 2)) == CONST_INT)
2338 {
2339 width = INTVAL (XEXP (dest, 1));
2340 offset = INTVAL (XEXP (dest, 2));
2341 dest = XEXP (dest, 0);
2342 if (BITS_BIG_ENDIAN)
2343 offset = GET_MODE_BITSIZE (GET_MODE (dest)) - width - offset;
2344 }
2345 }
2346 else
2347 {
2348 if (GET_CODE (dest) == STRICT_LOW_PART)
2349 dest = XEXP (dest, 0);
2350 width = GET_MODE_BITSIZE (GET_MODE (dest));
2351 offset = 0;
2352 }
2353
2354 if (offset >= 0)
2355 {
2356 /* If this is the low part, we're done. */
2357 if (subreg_lowpart_p (dest))
2358 ;
2359 /* Handle the case where inner is twice the size of outer. */
2360 else if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (temp)))
2361 == 2 * GET_MODE_BITSIZE (GET_MODE (dest)))
2362 offset += GET_MODE_BITSIZE (GET_MODE (dest));
2363 /* Otherwise give up for now. */
2364 else
2365 offset = -1;
2366 }
2367
2368 if (offset >= 0
2369 && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (temp)))
2370 <= HOST_BITS_PER_WIDE_INT * 2))
2371 {
2372 HOST_WIDE_INT mhi, ohi, ihi;
2373 HOST_WIDE_INT mlo, olo, ilo;
2374 rtx inner = SET_SRC (PATTERN (i3));
2375 rtx outer = SET_SRC (temp);
2376
2377 if (GET_CODE (outer) == CONST_INT)
2378 {
2379 olo = INTVAL (outer);
2380 ohi = olo < 0 ? -1 : 0;
2381 }
2382 else
2383 {
2384 olo = CONST_DOUBLE_LOW (outer);
2385 ohi = CONST_DOUBLE_HIGH (outer);
2386 }
2387
2388 if (GET_CODE (inner) == CONST_INT)
2389 {
2390 ilo = INTVAL (inner);
2391 ihi = ilo < 0 ? -1 : 0;
2392 }
2393 else
2394 {
2395 ilo = CONST_DOUBLE_LOW (inner);
2396 ihi = CONST_DOUBLE_HIGH (inner);
2397 }
2398
2399 if (width < HOST_BITS_PER_WIDE_INT)
2400 {
2401 mlo = ((unsigned HOST_WIDE_INT) 1 << width) - 1;
2402 mhi = 0;
2403 }
2404 else if (width < HOST_BITS_PER_WIDE_INT * 2)
2405 {
2406 mhi = ((unsigned HOST_WIDE_INT) 1
2407 << (width - HOST_BITS_PER_WIDE_INT)) - 1;
2408 mlo = -1;
2409 }
2410 else
2411 {
2412 mlo = -1;
2413 mhi = -1;
2414 }
2415
2416 ilo &= mlo;
2417 ihi &= mhi;
2418
2419 if (offset >= HOST_BITS_PER_WIDE_INT)
2420 {
2421 mhi = mlo << (offset - HOST_BITS_PER_WIDE_INT);
2422 mlo = 0;
2423 ihi = ilo << (offset - HOST_BITS_PER_WIDE_INT);
2424 ilo = 0;
2425 }
2426 else if (offset > 0)
2427 {
2428 mhi = (mhi << offset) | ((unsigned HOST_WIDE_INT) mlo
2429 >> (HOST_BITS_PER_WIDE_INT - offset));
2430 mlo = mlo << offset;
2431 ihi = (ihi << offset) | ((unsigned HOST_WIDE_INT) ilo
2432 >> (HOST_BITS_PER_WIDE_INT - offset));
2433 ilo = ilo << offset;
2434 }
2435
2436 olo = (olo & ~mlo) | ilo;
2437 ohi = (ohi & ~mhi) | ihi;
2438
2439 combine_merges++;
2440 subst_insn = i3;
2441 subst_low_luid = DF_INSN_LUID (i2);
2442 added_sets_2 = added_sets_1 = 0;
2443 i2dest = SET_DEST (temp);
2444 i2dest_killed = dead_or_set_p (i2, i2dest);
2445
2446 SUBST (SET_SRC (temp),
2447 immed_double_const (olo, ohi, GET_MODE (SET_DEST (temp))));
2448
2449 newpat = PATTERN (i2);
2450 goto validate_replacement;
2451 }
2452 }
2453
2454 #ifndef HAVE_cc0
2455 /* If we have no I1 and I2 looks like:
2456 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2457 (set Y OP)])
2458 make up a dummy I1 that is
2459 (set Y OP)
2460 and change I2 to be
2461 (set (reg:CC X) (compare:CC Y (const_int 0)))
2462
2463 (We can ignore any trailing CLOBBERs.)
2464
2465 This undoes a previous combination and allows us to match a branch-and-
2466 decrement insn. */
2467
2468 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
2469 && XVECLEN (PATTERN (i2), 0) >= 2
2470 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
2471 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2472 == MODE_CC)
2473 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2474 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2475 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
2476 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
2477 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2478 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
2479 {
2480 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
2481 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
2482 break;
2483
2484 if (i == 1)
2485 {
2486 /* We make I1 with the same INSN_UID as I2. This gives it
2487 the same DF_INSN_LUID for value tracking. Our fake I1 will
2488 never appear in the insn stream so giving it the same INSN_UID
2489 as I2 will not cause a problem. */
2490
2491 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
2492 BLOCK_FOR_INSN (i2), INSN_LOCATOR (i2),
2493 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX);
2494
2495 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2496 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2497 SET_DEST (PATTERN (i1)));
2498 }
2499 }
2500 #endif
2501
2502 /* Verify that I2 and I1 are valid for combining. */
2503 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
2504 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
2505 {
2506 undo_all ();
2507 return 0;
2508 }
2509
2510 /* Record whether I2DEST is used in I2SRC and similarly for the other
2511 cases. Knowing this will help in register status updating below. */
2512 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2513 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2514 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2515 i2dest_killed = dead_or_set_p (i2, i2dest);
2516 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2517
2518 /* See if I1 directly feeds into I3. It does if I1DEST is not used
2519 in I2SRC. */
2520 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
2521
2522 /* Ensure that I3's pattern can be the destination of combines. */
2523 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
2524 i1 && i2dest_in_i1src && i1_feeds_i3,
2525 &i3dest_killed))
2526 {
2527 undo_all ();
2528 return 0;
2529 }
2530
2531 /* See if any of the insns is a MULT operation. Unless one is, we will
2532 reject a combination that is, since it must be slower. Be conservative
2533 here. */
2534 if (GET_CODE (i2src) == MULT
2535 || (i1 != 0 && GET_CODE (i1src) == MULT)
2536 || (GET_CODE (PATTERN (i3)) == SET
2537 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
2538 have_mult = 1;
2539
2540 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
2541 We used to do this EXCEPT in one case: I3 has a post-inc in an
2542 output operand. However, that exception can give rise to insns like
2543 mov r3,(r3)+
2544 which is a famous insn on the PDP-11 where the value of r3 used as the
2545 source was model-dependent. Avoid this sort of thing. */
2546
2547 #if 0
2548 if (!(GET_CODE (PATTERN (i3)) == SET
2549 && REG_P (SET_SRC (PATTERN (i3)))
2550 && MEM_P (SET_DEST (PATTERN (i3)))
2551 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
2552 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
2553 /* It's not the exception. */
2554 #endif
2555 #ifdef AUTO_INC_DEC
2556 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
2557 if (REG_NOTE_KIND (link) == REG_INC
2558 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
2559 || (i1 != 0
2560 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
2561 {
2562 undo_all ();
2563 return 0;
2564 }
2565 #endif
2566
2567 /* See if the SETs in I1 or I2 need to be kept around in the merged
2568 instruction: whenever the value set there is still needed past I3.
2569 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
2570
2571 For the SET in I1, we have two cases: If I1 and I2 independently
2572 feed into I3, the set in I1 needs to be kept around if I1DEST dies
2573 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
2574 in I1 needs to be kept around unless I1DEST dies or is set in either
2575 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
2576 I1DEST. If so, we know I1 feeds into I2. */
2577
2578 added_sets_2 = ! dead_or_set_p (i3, i2dest);
2579
2580 added_sets_1
2581 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
2582 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
2583
2584 /* If the set in I2 needs to be kept around, we must make a copy of
2585 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
2586 PATTERN (I2), we are only substituting for the original I1DEST, not into
2587 an already-substituted copy. This also prevents making self-referential
2588 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
2589 I2DEST. */
2590
2591 if (added_sets_2)
2592 {
2593 if (GET_CODE (PATTERN (i2)) == PARALLEL)
2594 i2pat = gen_rtx_SET (VOIDmode, i2dest, copy_rtx (i2src));
2595 else
2596 i2pat = copy_rtx (PATTERN (i2));
2597 }
2598
2599 if (added_sets_1)
2600 {
2601 if (GET_CODE (PATTERN (i1)) == PARALLEL)
2602 i1pat = gen_rtx_SET (VOIDmode, i1dest, copy_rtx (i1src));
2603 else
2604 i1pat = copy_rtx (PATTERN (i1));
2605 }
2606
2607 combine_merges++;
2608
2609 /* Substitute in the latest insn for the regs set by the earlier ones. */
2610
2611 maxreg = max_reg_num ();
2612
2613 subst_insn = i3;
2614
2615 #ifndef HAVE_cc0
2616 /* Many machines that don't use CC0 have insns that can both perform an
2617 arithmetic operation and set the condition code. These operations will
2618 be represented as a PARALLEL with the first element of the vector
2619 being a COMPARE of an arithmetic operation with the constant zero.
2620 The second element of the vector will set some pseudo to the result
2621 of the same arithmetic operation. If we simplify the COMPARE, we won't
2622 match such a pattern and so will generate an extra insn. Here we test
2623 for this case, where both the comparison and the operation result are
2624 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
2625 I2SRC. Later we will make the PARALLEL that contains I2. */
2626
2627 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
2628 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
2629 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
2630 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
2631 {
2632 #ifdef SELECT_CC_MODE
2633 rtx *cc_use;
2634 enum machine_mode compare_mode;
2635 #endif
2636
2637 newpat = PATTERN (i3);
2638 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
2639
2640 i2_is_used = 1;
2641
2642 #ifdef SELECT_CC_MODE
2643 /* See if a COMPARE with the operand we substituted in should be done
2644 with the mode that is currently being used. If not, do the same
2645 processing we do in `subst' for a SET; namely, if the destination
2646 is used only once, try to replace it with a register of the proper
2647 mode and also replace the COMPARE. */
2648 if (undobuf.other_insn == 0
2649 && (cc_use = find_single_use (SET_DEST (newpat), i3,
2650 &undobuf.other_insn))
2651 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
2652 i2src, const0_rtx))
2653 != GET_MODE (SET_DEST (newpat))))
2654 {
2655 if (can_change_dest_mode(SET_DEST (newpat), added_sets_2,
2656 compare_mode))
2657 {
2658 unsigned int regno = REGNO (SET_DEST (newpat));
2659 rtx new_dest;
2660
2661 if (regno < FIRST_PSEUDO_REGISTER)
2662 new_dest = gen_rtx_REG (compare_mode, regno);
2663 else
2664 {
2665 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
2666 new_dest = regno_reg_rtx[regno];
2667 }
2668
2669 SUBST (SET_DEST (newpat), new_dest);
2670 SUBST (XEXP (*cc_use, 0), new_dest);
2671 SUBST (SET_SRC (newpat),
2672 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
2673 }
2674 else
2675 undobuf.other_insn = 0;
2676 }
2677 #endif
2678 }
2679 else
2680 #endif
2681 {
2682 /* It is possible that the source of I2 or I1 may be performing
2683 an unneeded operation, such as a ZERO_EXTEND of something
2684 that is known to have the high part zero. Handle that case
2685 by letting subst look at the innermost one of them.
2686
2687 Another way to do this would be to have a function that tries
2688 to simplify a single insn instead of merging two or more
2689 insns. We don't do this because of the potential of infinite
2690 loops and because of the potential extra memory required.
2691 However, doing it the way we are is a bit of a kludge and
2692 doesn't catch all cases.
2693
2694 But only do this if -fexpensive-optimizations since it slows
2695 things down and doesn't usually win.
2696
2697 This is not done in the COMPARE case above because the
2698 unmodified I2PAT is used in the PARALLEL and so a pattern
2699 with a modified I2SRC would not match. */
2700
2701 if (flag_expensive_optimizations)
2702 {
2703 /* Pass pc_rtx so no substitutions are done, just
2704 simplifications. */
2705 if (i1)
2706 {
2707 subst_low_luid = DF_INSN_LUID (i1);
2708 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
2709 }
2710 else
2711 {
2712 subst_low_luid = DF_INSN_LUID (i2);
2713 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
2714 }
2715 }
2716
2717 n_occurrences = 0; /* `subst' counts here */
2718
2719 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
2720 need to make a unique copy of I2SRC each time we substitute it
2721 to avoid self-referential rtl. */
2722
2723 subst_low_luid = DF_INSN_LUID (i2);
2724 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
2725 ! i1_feeds_i3 && i1dest_in_i1src);
2726 substed_i2 = 1;
2727
2728 /* Record whether i2's body now appears within i3's body. */
2729 i2_is_used = n_occurrences;
2730 }
2731
2732 /* If we already got a failure, don't try to do more. Otherwise,
2733 try to substitute in I1 if we have it. */
2734
2735 if (i1 && GET_CODE (newpat) != CLOBBER)
2736 {
2737 /* Check that an autoincrement side-effect on I1 has not been lost.
2738 This happens if I1DEST is mentioned in I2 and dies there, and
2739 has disappeared from the new pattern. */
2740 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2741 && !i1_feeds_i3
2742 && dead_or_set_p (i2, i1dest)
2743 && !reg_overlap_mentioned_p (i1dest, newpat))
2744 /* Before we can do this substitution, we must redo the test done
2745 above (see detailed comments there) that ensures that I1DEST
2746 isn't mentioned in any SETs in NEWPAT that are field assignments. */
2747 || !combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX, 0, 0))
2748 {
2749 undo_all ();
2750 return 0;
2751 }
2752
2753 n_occurrences = 0;
2754 subst_low_luid = DF_INSN_LUID (i1);
2755 newpat = subst (newpat, i1dest, i1src, 0, 0);
2756 substed_i1 = 1;
2757 }
2758
2759 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2760 to count all the ways that I2SRC and I1SRC can be used. */
2761 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
2762 && i2_is_used + added_sets_2 > 1)
2763 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2764 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2765 > 1))
2766 /* Fail if we tried to make a new register. */
2767 || max_reg_num () != maxreg
2768 /* Fail if we couldn't do something and have a CLOBBER. */
2769 || GET_CODE (newpat) == CLOBBER
2770 /* Fail if this new pattern is a MULT and we didn't have one before
2771 at the outer level. */
2772 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2773 && ! have_mult))
2774 {
2775 undo_all ();
2776 return 0;
2777 }
2778
2779 /* If the actions of the earlier insns must be kept
2780 in addition to substituting them into the latest one,
2781 we must make a new PARALLEL for the latest insn
2782 to hold additional the SETs. */
2783
2784 if (added_sets_1 || added_sets_2)
2785 {
2786 combine_extras++;
2787
2788 if (GET_CODE (newpat) == PARALLEL)
2789 {
2790 rtvec old = XVEC (newpat, 0);
2791 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2792 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2793 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2794 sizeof (old->elem[0]) * old->num_elem);
2795 }
2796 else
2797 {
2798 rtx old = newpat;
2799 total_sets = 1 + added_sets_1 + added_sets_2;
2800 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2801 XVECEXP (newpat, 0, 0) = old;
2802 }
2803
2804 if (added_sets_1)
2805 XVECEXP (newpat, 0, --total_sets) = i1pat;
2806
2807 if (added_sets_2)
2808 {
2809 /* If there is no I1, use I2's body as is. We used to also not do
2810 the subst call below if I2 was substituted into I3,
2811 but that could lose a simplification. */
2812 if (i1 == 0)
2813 XVECEXP (newpat, 0, --total_sets) = i2pat;
2814 else
2815 /* See comment where i2pat is assigned. */
2816 XVECEXP (newpat, 0, --total_sets)
2817 = subst (i2pat, i1dest, i1src, 0, 0);
2818 }
2819 }
2820
2821 /* We come here when we are replacing a destination in I2 with the
2822 destination of I3. */
2823 validate_replacement:
2824
2825 /* Note which hard regs this insn has as inputs. */
2826 mark_used_regs_combine (newpat);
2827
2828 /* If recog_for_combine fails, it strips existing clobbers. If we'll
2829 consider splitting this pattern, we might need these clobbers. */
2830 if (i1 && GET_CODE (newpat) == PARALLEL
2831 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
2832 {
2833 int len = XVECLEN (newpat, 0);
2834
2835 newpat_vec_with_clobbers = rtvec_alloc (len);
2836 for (i = 0; i < len; i++)
2837 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
2838 }
2839
2840 /* Is the result of combination a valid instruction? */
2841 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2842
2843 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2844 the second SET's destination is a register that is unused and isn't
2845 marked as an instruction that might trap in an EH region. In that case,
2846 we just need the first SET. This can occur when simplifying a divmod
2847 insn. We *must* test for this case here because the code below that
2848 splits two independent SETs doesn't handle this case correctly when it
2849 updates the register status.
2850
2851 It's pointless doing this if we originally had two sets, one from
2852 i3, and one from i2. Combining then splitting the parallel results
2853 in the original i2 again plus an invalid insn (which we delete).
2854 The net effect is only to move instructions around, which makes
2855 debug info less accurate.
2856
2857 Also check the case where the first SET's destination is unused.
2858 That would not cause incorrect code, but does cause an unneeded
2859 insn to remain. */
2860
2861 if (insn_code_number < 0
2862 && !(added_sets_2 && i1 == 0)
2863 && GET_CODE (newpat) == PARALLEL
2864 && XVECLEN (newpat, 0) == 2
2865 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2866 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2867 && asm_noperands (newpat) < 0)
2868 {
2869 rtx set0 = XVECEXP (newpat, 0, 0);
2870 rtx set1 = XVECEXP (newpat, 0, 1);
2871 rtx note;
2872
2873 if (((REG_P (SET_DEST (set1))
2874 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
2875 || (GET_CODE (SET_DEST (set1)) == SUBREG
2876 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
2877 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2878 || INTVAL (XEXP (note, 0)) <= 0)
2879 && ! side_effects_p (SET_SRC (set1)))
2880 {
2881 newpat = set0;
2882 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2883 }
2884
2885 else if (((REG_P (SET_DEST (set0))
2886 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
2887 || (GET_CODE (SET_DEST (set0)) == SUBREG
2888 && find_reg_note (i3, REG_UNUSED,
2889 SUBREG_REG (SET_DEST (set0)))))
2890 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2891 || INTVAL (XEXP (note, 0)) <= 0)
2892 && ! side_effects_p (SET_SRC (set0)))
2893 {
2894 newpat = set1;
2895 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2896
2897 if (insn_code_number >= 0)
2898 {
2899 /* If we will be able to accept this, we have made a
2900 change to the destination of I3. This requires us to
2901 do a few adjustments. */
2902
2903 PATTERN (i3) = newpat;
2904 adjust_for_new_dest (i3);
2905 }
2906 }
2907 }
2908
2909 /* If we were combining three insns and the result is a simple SET
2910 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2911 insns. There are two ways to do this. It can be split using a
2912 machine-specific method (like when you have an addition of a large
2913 constant) or by combine in the function find_split_point. */
2914
2915 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2916 && asm_noperands (newpat) < 0)
2917 {
2918 rtx parallel, m_split, *split;
2919
2920 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2921 use I2DEST as a scratch register will help. In the latter case,
2922 convert I2DEST to the mode of the source of NEWPAT if we can. */
2923
2924 m_split = combine_split_insns (newpat, i3);
2925
2926 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2927 inputs of NEWPAT. */
2928
2929 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2930 possible to try that as a scratch reg. This would require adding
2931 more code to make it work though. */
2932
2933 if (m_split == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
2934 {
2935 enum machine_mode new_mode = GET_MODE (SET_DEST (newpat));
2936
2937 /* First try to split using the original register as a
2938 scratch register. */
2939 parallel = gen_rtx_PARALLEL (VOIDmode,
2940 gen_rtvec (2, newpat,
2941 gen_rtx_CLOBBER (VOIDmode,
2942 i2dest)));
2943 m_split = combine_split_insns (parallel, i3);
2944
2945 /* If that didn't work, try changing the mode of I2DEST if
2946 we can. */
2947 if (m_split == 0
2948 && new_mode != GET_MODE (i2dest)
2949 && new_mode != VOIDmode
2950 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
2951 {
2952 enum machine_mode old_mode = GET_MODE (i2dest);
2953 rtx ni2dest;
2954
2955 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
2956 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
2957 else
2958 {
2959 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
2960 ni2dest = regno_reg_rtx[REGNO (i2dest)];
2961 }
2962
2963 parallel = (gen_rtx_PARALLEL
2964 (VOIDmode,
2965 gen_rtvec (2, newpat,
2966 gen_rtx_CLOBBER (VOIDmode,
2967 ni2dest))));
2968 m_split = combine_split_insns (parallel, i3);
2969
2970 if (m_split == 0
2971 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2972 {
2973 struct undo *buf;
2974
2975 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
2976 buf = undobuf.undos;
2977 undobuf.undos = buf->next;
2978 buf->next = undobuf.frees;
2979 undobuf.frees = buf;
2980 }
2981 }
2982 }
2983
2984 /* If recog_for_combine has discarded clobbers, try to use them
2985 again for the split. */
2986 if (m_split == 0 && newpat_vec_with_clobbers)
2987 {
2988 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
2989 m_split = combine_split_insns (parallel, i3);
2990 }
2991
2992 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
2993 {
2994 m_split = PATTERN (m_split);
2995 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2996 if (insn_code_number >= 0)
2997 newpat = m_split;
2998 }
2999 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
3000 && (next_real_insn (i2) == i3
3001 || ! use_crosses_set_p (PATTERN (m_split), DF_INSN_LUID (i2))))
3002 {
3003 rtx i2set, i3set;
3004 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
3005 newi2pat = PATTERN (m_split);
3006
3007 i3set = single_set (NEXT_INSN (m_split));
3008 i2set = single_set (m_split);
3009
3010 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3011
3012 /* If I2 or I3 has multiple SETs, we won't know how to track
3013 register status, so don't use these insns. If I2's destination
3014 is used between I2 and I3, we also can't use these insns. */
3015
3016 if (i2_code_number >= 0 && i2set && i3set
3017 && (next_real_insn (i2) == i3
3018 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3019 insn_code_number = recog_for_combine (&newi3pat, i3,
3020 &new_i3_notes);
3021 if (insn_code_number >= 0)
3022 newpat = newi3pat;
3023
3024 /* It is possible that both insns now set the destination of I3.
3025 If so, we must show an extra use of it. */
3026
3027 if (insn_code_number >= 0)
3028 {
3029 rtx new_i3_dest = SET_DEST (i3set);
3030 rtx new_i2_dest = SET_DEST (i2set);
3031
3032 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3033 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3034 || GET_CODE (new_i3_dest) == SUBREG)
3035 new_i3_dest = XEXP (new_i3_dest, 0);
3036
3037 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3038 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3039 || GET_CODE (new_i2_dest) == SUBREG)
3040 new_i2_dest = XEXP (new_i2_dest, 0);
3041
3042 if (REG_P (new_i3_dest)
3043 && REG_P (new_i2_dest)
3044 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
3045 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3046 }
3047 }
3048
3049 /* If we can split it and use I2DEST, go ahead and see if that
3050 helps things be recognized. Verify that none of the registers
3051 are set between I2 and I3. */
3052 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
3053 #ifdef HAVE_cc0
3054 && REG_P (i2dest)
3055 #endif
3056 /* We need I2DEST in the proper mode. If it is a hard register
3057 or the only use of a pseudo, we can change its mode.
3058 Make sure we don't change a hard register to have a mode that
3059 isn't valid for it, or change the number of registers. */
3060 && (GET_MODE (*split) == GET_MODE (i2dest)
3061 || GET_MODE (*split) == VOIDmode
3062 || can_change_dest_mode (i2dest, added_sets_2,
3063 GET_MODE (*split)))
3064 && (next_real_insn (i2) == i3
3065 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3066 /* We can't overwrite I2DEST if its value is still used by
3067 NEWPAT. */
3068 && ! reg_referenced_p (i2dest, newpat))
3069 {
3070 rtx newdest = i2dest;
3071 enum rtx_code split_code = GET_CODE (*split);
3072 enum machine_mode split_mode = GET_MODE (*split);
3073 bool subst_done = false;
3074 newi2pat = NULL_RTX;
3075
3076 /* Get NEWDEST as a register in the proper mode. We have already
3077 validated that we can do this. */
3078 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3079 {
3080 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3081 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3082 else
3083 {
3084 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3085 newdest = regno_reg_rtx[REGNO (i2dest)];
3086 }
3087 }
3088
3089 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3090 an ASHIFT. This can occur if it was inside a PLUS and hence
3091 appeared to be a memory address. This is a kludge. */
3092 if (split_code == MULT
3093 && GET_CODE (XEXP (*split, 1)) == CONST_INT
3094 && INTVAL (XEXP (*split, 1)) > 0
3095 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
3096 {
3097 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3098 XEXP (*split, 0), GEN_INT (i)));
3099 /* Update split_code because we may not have a multiply
3100 anymore. */
3101 split_code = GET_CODE (*split);
3102 }
3103
3104 #ifdef INSN_SCHEDULING
3105 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3106 be written as a ZERO_EXTEND. */
3107 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3108 {
3109 #ifdef LOAD_EXTEND_OP
3110 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3111 what it really is. */
3112 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
3113 == SIGN_EXTEND)
3114 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3115 SUBREG_REG (*split)));
3116 else
3117 #endif
3118 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3119 SUBREG_REG (*split)));
3120 }
3121 #endif
3122
3123 /* Attempt to split binary operators using arithmetic identities. */
3124 if (BINARY_P (SET_SRC (newpat))
3125 && split_mode == GET_MODE (SET_SRC (newpat))
3126 && ! side_effects_p (SET_SRC (newpat)))
3127 {
3128 rtx setsrc = SET_SRC (newpat);
3129 enum machine_mode mode = GET_MODE (setsrc);
3130 enum rtx_code code = GET_CODE (setsrc);
3131 rtx src_op0 = XEXP (setsrc, 0);
3132 rtx src_op1 = XEXP (setsrc, 1);
3133
3134 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3135 if (rtx_equal_p (src_op0, src_op1))
3136 {
3137 newi2pat = gen_rtx_SET (VOIDmode, newdest, src_op0);
3138 SUBST (XEXP (setsrc, 0), newdest);
3139 SUBST (XEXP (setsrc, 1), newdest);
3140 subst_done = true;
3141 }
3142 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3143 else if ((code == PLUS || code == MULT)
3144 && GET_CODE (src_op0) == code
3145 && GET_CODE (XEXP (src_op0, 0)) == code
3146 && (INTEGRAL_MODE_P (mode)
3147 || (FLOAT_MODE_P (mode)
3148 && flag_unsafe_math_optimizations)))
3149 {
3150 rtx p = XEXP (XEXP (src_op0, 0), 0);
3151 rtx q = XEXP (XEXP (src_op0, 0), 1);
3152 rtx r = XEXP (src_op0, 1);
3153 rtx s = src_op1;
3154
3155 /* Split both "((X op Y) op X) op Y" and
3156 "((X op Y) op Y) op X" as "T op T" where T is
3157 "X op Y". */
3158 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3159 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3160 {
3161 newi2pat = gen_rtx_SET (VOIDmode, newdest,
3162 XEXP (src_op0, 0));
3163 SUBST (XEXP (setsrc, 0), newdest);
3164 SUBST (XEXP (setsrc, 1), newdest);
3165 subst_done = true;
3166 }
3167 /* Split "((X op X) op Y) op Y)" as "T op T" where
3168 T is "X op Y". */
3169 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3170 {
3171 rtx tmp = simplify_gen_binary (code, mode, p, r);
3172 newi2pat = gen_rtx_SET (VOIDmode, newdest, tmp);
3173 SUBST (XEXP (setsrc, 0), newdest);
3174 SUBST (XEXP (setsrc, 1), newdest);
3175 subst_done = true;
3176 }
3177 }
3178 }
3179
3180 if (!subst_done)
3181 {
3182 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
3183 SUBST (*split, newdest);
3184 }
3185
3186 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3187
3188 /* recog_for_combine might have added CLOBBERs to newi2pat.
3189 Make sure NEWPAT does not depend on the clobbered regs. */
3190 if (GET_CODE (newi2pat) == PARALLEL)
3191 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3192 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3193 {
3194 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3195 if (reg_overlap_mentioned_p (reg, newpat))
3196 {
3197 undo_all ();
3198 return 0;
3199 }
3200 }
3201
3202 /* If the split point was a MULT and we didn't have one before,
3203 don't use one now. */
3204 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3205 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3206 }
3207 }
3208
3209 /* Check for a case where we loaded from memory in a narrow mode and
3210 then sign extended it, but we need both registers. In that case,
3211 we have a PARALLEL with both loads from the same memory location.
3212 We can split this into a load from memory followed by a register-register
3213 copy. This saves at least one insn, more if register allocation can
3214 eliminate the copy.
3215
3216 We cannot do this if the destination of the first assignment is a
3217 condition code register or cc0. We eliminate this case by making sure
3218 the SET_DEST and SET_SRC have the same mode.
3219
3220 We cannot do this if the destination of the second assignment is
3221 a register that we have already assumed is zero-extended. Similarly
3222 for a SUBREG of such a register. */
3223
3224 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3225 && GET_CODE (newpat) == PARALLEL
3226 && XVECLEN (newpat, 0) == 2
3227 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3228 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3229 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3230 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3231 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3232 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3233 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3234 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3235 DF_INSN_LUID (i2))
3236 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3237 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3238 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
3239 (REG_P (temp)
3240 && VEC_index (reg_stat_type, reg_stat,
3241 REGNO (temp))->nonzero_bits != 0
3242 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
3243 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
3244 && (VEC_index (reg_stat_type, reg_stat,
3245 REGNO (temp))->nonzero_bits
3246 != GET_MODE_MASK (word_mode))))
3247 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3248 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3249 (REG_P (temp)
3250 && VEC_index (reg_stat_type, reg_stat,
3251 REGNO (temp))->nonzero_bits != 0
3252 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
3253 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
3254 && (VEC_index (reg_stat_type, reg_stat,
3255 REGNO (temp))->nonzero_bits
3256 != GET_MODE_MASK (word_mode)))))
3257 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3258 SET_SRC (XVECEXP (newpat, 0, 1)))
3259 && ! find_reg_note (i3, REG_UNUSED,
3260 SET_DEST (XVECEXP (newpat, 0, 0))))
3261 {
3262 rtx ni2dest;
3263
3264 newi2pat = XVECEXP (newpat, 0, 0);
3265 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3266 newpat = XVECEXP (newpat, 0, 1);
3267 SUBST (SET_SRC (newpat),
3268 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3269 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3270
3271 if (i2_code_number >= 0)
3272 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3273
3274 if (insn_code_number >= 0)
3275 swap_i2i3 = 1;
3276 }
3277
3278 /* Similarly, check for a case where we have a PARALLEL of two independent
3279 SETs but we started with three insns. In this case, we can do the sets
3280 as two separate insns. This case occurs when some SET allows two
3281 other insns to combine, but the destination of that SET is still live. */
3282
3283 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3284 && GET_CODE (newpat) == PARALLEL
3285 && XVECLEN (newpat, 0) == 2
3286 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3287 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3288 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3289 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3290 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3291 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3292 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3293 DF_INSN_LUID (i2))
3294 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3295 XVECEXP (newpat, 0, 0))
3296 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3297 XVECEXP (newpat, 0, 1))
3298 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3299 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1))))
3300 #ifdef HAVE_cc0
3301 /* We cannot split the parallel into two sets if both sets
3302 reference cc0. */
3303 && ! (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0))
3304 && reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 1)))
3305 #endif
3306 )
3307 {
3308 /* Normally, it doesn't matter which of the two is done first,
3309 but it does if one references cc0. In that case, it has to
3310 be first. */
3311 #ifdef HAVE_cc0
3312 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
3313 {
3314 newi2pat = XVECEXP (newpat, 0, 0);
3315 newpat = XVECEXP (newpat, 0, 1);
3316 }
3317 else
3318 #endif
3319 {
3320 newi2pat = XVECEXP (newpat, 0, 1);
3321 newpat = XVECEXP (newpat, 0, 0);
3322 }
3323
3324 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3325
3326 if (i2_code_number >= 0)
3327 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3328 }
3329
3330 /* If it still isn't recognized, fail and change things back the way they
3331 were. */
3332 if ((insn_code_number < 0
3333 /* Is the result a reasonable ASM_OPERANDS? */
3334 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
3335 {
3336 undo_all ();
3337 return 0;
3338 }
3339
3340 /* If we had to change another insn, make sure it is valid also. */
3341 if (undobuf.other_insn)
3342 {
3343 CLEAR_HARD_REG_SET (newpat_used_regs);
3344
3345 other_pat = PATTERN (undobuf.other_insn);
3346 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
3347 &new_other_notes);
3348
3349 if (other_code_number < 0 && ! check_asm_operands (other_pat))
3350 {
3351 undo_all ();
3352 return 0;
3353 }
3354 }
3355
3356 #ifdef HAVE_cc0
3357 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
3358 they are adjacent to each other or not. */
3359 {
3360 rtx p = prev_nonnote_insn (i3);
3361 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
3362 && sets_cc0_p (newi2pat))
3363 {
3364 undo_all ();
3365 return 0;
3366 }
3367 }
3368 #endif
3369
3370 /* Only allow this combination if insn_rtx_costs reports that the
3371 replacement instructions are cheaper than the originals. */
3372 if (!combine_validate_cost (i1, i2, i3, newpat, newi2pat, other_pat))
3373 {
3374 undo_all ();
3375 return 0;
3376 }
3377
3378 /* We now know that we can do this combination. Merge the insns and
3379 update the status of registers and LOG_LINKS. */
3380
3381 if (undobuf.other_insn)
3382 {
3383 rtx note, next;
3384
3385 PATTERN (undobuf.other_insn) = other_pat;
3386
3387 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
3388 are still valid. Then add any non-duplicate notes added by
3389 recog_for_combine. */
3390 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
3391 {
3392 next = XEXP (note, 1);
3393
3394 if (REG_NOTE_KIND (note) == REG_UNUSED
3395 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
3396 remove_note (undobuf.other_insn, note);
3397 }
3398
3399 distribute_notes (new_other_notes, undobuf.other_insn,
3400 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
3401 }
3402
3403 if (swap_i2i3)
3404 {
3405 rtx insn;
3406 rtx link;
3407 rtx ni2dest;
3408
3409 /* I3 now uses what used to be its destination and which is now
3410 I2's destination. This requires us to do a few adjustments. */
3411 PATTERN (i3) = newpat;
3412 adjust_for_new_dest (i3);
3413
3414 /* We need a LOG_LINK from I3 to I2. But we used to have one,
3415 so we still will.
3416
3417 However, some later insn might be using I2's dest and have
3418 a LOG_LINK pointing at I3. We must remove this link.
3419 The simplest way to remove the link is to point it at I1,
3420 which we know will be a NOTE. */
3421
3422 /* newi2pat is usually a SET here; however, recog_for_combine might
3423 have added some clobbers. */
3424 if (GET_CODE (newi2pat) == PARALLEL)
3425 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
3426 else
3427 ni2dest = SET_DEST (newi2pat);
3428
3429 for (insn = NEXT_INSN (i3);
3430 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3431 || insn != BB_HEAD (this_basic_block->next_bb));
3432 insn = NEXT_INSN (insn))
3433 {
3434 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
3435 {
3436 for (link = LOG_LINKS (insn); link;
3437 link = XEXP (link, 1))
3438 if (XEXP (link, 0) == i3)
3439 XEXP (link, 0) = i1;
3440
3441 break;
3442 }
3443 }
3444 }
3445
3446 {
3447 rtx i3notes, i2notes, i1notes = 0;
3448 rtx i3links, i2links, i1links = 0;
3449 rtx midnotes = 0;
3450 unsigned int regno;
3451 /* Compute which registers we expect to eliminate. newi2pat may be setting
3452 either i3dest or i2dest, so we must check it. Also, i1dest may be the
3453 same as i3dest, in which case newi2pat may be setting i1dest. */
3454 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
3455 || i2dest_in_i2src || i2dest_in_i1src
3456 || !i2dest_killed
3457 ? 0 : i2dest);
3458 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src
3459 || (newi2pat && reg_set_p (i1dest, newi2pat))
3460 || !i1dest_killed
3461 ? 0 : i1dest);
3462
3463 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
3464 clear them. */
3465 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
3466 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
3467 if (i1)
3468 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
3469
3470 /* Ensure that we do not have something that should not be shared but
3471 occurs multiple times in the new insns. Check this by first
3472 resetting all the `used' flags and then copying anything is shared. */
3473
3474 reset_used_flags (i3notes);
3475 reset_used_flags (i2notes);
3476 reset_used_flags (i1notes);
3477 reset_used_flags (newpat);
3478 reset_used_flags (newi2pat);
3479 if (undobuf.other_insn)
3480 reset_used_flags (PATTERN (undobuf.other_insn));
3481
3482 i3notes = copy_rtx_if_shared (i3notes);
3483 i2notes = copy_rtx_if_shared (i2notes);
3484 i1notes = copy_rtx_if_shared (i1notes);
3485 newpat = copy_rtx_if_shared (newpat);
3486 newi2pat = copy_rtx_if_shared (newi2pat);
3487 if (undobuf.other_insn)
3488 reset_used_flags (PATTERN (undobuf.other_insn));
3489
3490 INSN_CODE (i3) = insn_code_number;
3491 PATTERN (i3) = newpat;
3492
3493 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
3494 {
3495 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
3496
3497 reset_used_flags (call_usage);
3498 call_usage = copy_rtx (call_usage);
3499
3500 if (substed_i2)
3501 replace_rtx (call_usage, i2dest, i2src);
3502
3503 if (substed_i1)
3504 replace_rtx (call_usage, i1dest, i1src);
3505
3506 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
3507 }
3508
3509 if (undobuf.other_insn)
3510 INSN_CODE (undobuf.other_insn) = other_code_number;
3511
3512 /* We had one special case above where I2 had more than one set and
3513 we replaced a destination of one of those sets with the destination
3514 of I3. In that case, we have to update LOG_LINKS of insns later
3515 in this basic block. Note that this (expensive) case is rare.
3516
3517 Also, in this case, we must pretend that all REG_NOTEs for I2
3518 actually came from I3, so that REG_UNUSED notes from I2 will be
3519 properly handled. */
3520
3521 if (i3_subst_into_i2)
3522 {
3523 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
3524 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
3525 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
3526 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
3527 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
3528 && ! find_reg_note (i2, REG_UNUSED,
3529 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
3530 for (temp = NEXT_INSN (i2);
3531 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3532 || BB_HEAD (this_basic_block) != temp);
3533 temp = NEXT_INSN (temp))
3534 if (temp != i3 && INSN_P (temp))
3535 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
3536 if (XEXP (link, 0) == i2)
3537 XEXP (link, 0) = i3;
3538
3539 if (i3notes)
3540 {
3541 rtx link = i3notes;
3542 while (XEXP (link, 1))
3543 link = XEXP (link, 1);
3544 XEXP (link, 1) = i2notes;
3545 }
3546 else
3547 i3notes = i2notes;
3548 i2notes = 0;
3549 }
3550
3551 LOG_LINKS (i3) = 0;
3552 REG_NOTES (i3) = 0;
3553 LOG_LINKS (i2) = 0;
3554 REG_NOTES (i2) = 0;
3555
3556 if (newi2pat)
3557 {
3558 INSN_CODE (i2) = i2_code_number;
3559 PATTERN (i2) = newi2pat;
3560 }
3561 else
3562 SET_INSN_DELETED (i2);
3563
3564 if (i1)
3565 {
3566 LOG_LINKS (i1) = 0;
3567 REG_NOTES (i1) = 0;
3568 SET_INSN_DELETED (i1);
3569 }
3570
3571 /* Get death notes for everything that is now used in either I3 or
3572 I2 and used to die in a previous insn. If we built two new
3573 patterns, move from I1 to I2 then I2 to I3 so that we get the
3574 proper movement on registers that I2 modifies. */
3575
3576 if (newi2pat)
3577 {
3578 move_deaths (newi2pat, NULL_RTX, DF_INSN_LUID (i1), i2, &midnotes);
3579 move_deaths (newpat, newi2pat, DF_INSN_LUID (i1), i3, &midnotes);
3580 }
3581 else
3582 move_deaths (newpat, NULL_RTX, i1 ? DF_INSN_LUID (i1) : DF_INSN_LUID (i2),
3583 i3, &midnotes);
3584
3585 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
3586 if (i3notes)
3587 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
3588 elim_i2, elim_i1);
3589 if (i2notes)
3590 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
3591 elim_i2, elim_i1);
3592 if (i1notes)
3593 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
3594 elim_i2, elim_i1);
3595 if (midnotes)
3596 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3597 elim_i2, elim_i1);
3598
3599 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
3600 know these are REG_UNUSED and want them to go to the desired insn,
3601 so we always pass it as i3. */
3602
3603 if (newi2pat && new_i2_notes)
3604 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3605
3606 if (new_i3_notes)
3607 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
3608
3609 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
3610 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
3611 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
3612 in that case, it might delete I2. Similarly for I2 and I1.
3613 Show an additional death due to the REG_DEAD note we make here. If
3614 we discard it in distribute_notes, we will decrement it again. */
3615
3616 if (i3dest_killed)
3617 {
3618 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
3619 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
3620 NULL_RTX),
3621 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1);
3622 else
3623 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
3624 NULL_RTX),
3625 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3626 elim_i2, elim_i1);
3627 }
3628
3629 if (i2dest_in_i2src)
3630 {
3631 if (newi2pat && reg_set_p (i2dest, newi2pat))
3632 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
3633 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3634 else
3635 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
3636 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3637 NULL_RTX, NULL_RTX);
3638 }
3639
3640 if (i1dest_in_i1src)
3641 {
3642 if (newi2pat && reg_set_p (i1dest, newi2pat))
3643 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
3644 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3645 else
3646 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
3647 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3648 NULL_RTX, NULL_RTX);
3649 }
3650
3651 distribute_links (i3links);
3652 distribute_links (i2links);
3653 distribute_links (i1links);
3654
3655 if (REG_P (i2dest))
3656 {
3657 rtx link;
3658 rtx i2_insn = 0, i2_val = 0, set;
3659
3660 /* The insn that used to set this register doesn't exist, and
3661 this life of the register may not exist either. See if one of
3662 I3's links points to an insn that sets I2DEST. If it does,
3663 that is now the last known value for I2DEST. If we don't update
3664 this and I2 set the register to a value that depended on its old
3665 contents, we will get confused. If this insn is used, thing
3666 will be set correctly in combine_instructions. */
3667
3668 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3669 if ((set = single_set (XEXP (link, 0))) != 0
3670 && rtx_equal_p (i2dest, SET_DEST (set)))
3671 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
3672
3673 record_value_for_reg (i2dest, i2_insn, i2_val);
3674
3675 /* If the reg formerly set in I2 died only once and that was in I3,
3676 zero its use count so it won't make `reload' do any work. */
3677 if (! added_sets_2
3678 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
3679 && ! i2dest_in_i2src)
3680 {
3681 regno = REGNO (i2dest);
3682 INC_REG_N_SETS (regno, -1);
3683 }
3684 }
3685
3686 if (i1 && REG_P (i1dest))
3687 {
3688 rtx link;
3689 rtx i1_insn = 0, i1_val = 0, set;
3690
3691 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3692 if ((set = single_set (XEXP (link, 0))) != 0
3693 && rtx_equal_p (i1dest, SET_DEST (set)))
3694 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
3695
3696 record_value_for_reg (i1dest, i1_insn, i1_val);
3697
3698 regno = REGNO (i1dest);
3699 if (! added_sets_1 && ! i1dest_in_i1src)
3700 INC_REG_N_SETS (regno, -1);
3701 }
3702
3703 /* Update reg_stat[].nonzero_bits et al for any changes that may have
3704 been made to this insn. The order of
3705 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
3706 can affect nonzero_bits of newpat */
3707 if (newi2pat)
3708 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
3709 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
3710
3711 /* Set new_direct_jump_p if a new return or simple jump instruction
3712 has been created.
3713
3714 If I3 is now an unconditional jump, ensure that it has a
3715 BARRIER following it since it may have initially been a
3716 conditional jump. It may also be the last nonnote insn. */
3717
3718 if (returnjump_p (i3) || any_uncondjump_p (i3))
3719 {
3720 *new_direct_jump_p = 1;
3721 mark_jump_label (PATTERN (i3), i3, 0);
3722
3723 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
3724 || !BARRIER_P (temp))
3725 emit_barrier_after (i3);
3726 }
3727
3728 if (undobuf.other_insn != NULL_RTX
3729 && (returnjump_p (undobuf.other_insn)
3730 || any_uncondjump_p (undobuf.other_insn)))
3731 {
3732 *new_direct_jump_p = 1;
3733
3734 if ((temp = next_nonnote_insn (undobuf.other_insn)) == NULL_RTX
3735 || !BARRIER_P (temp))
3736 emit_barrier_after (undobuf.other_insn);
3737 }
3738
3739 /* An NOOP jump does not need barrier, but it does need cleaning up
3740 of CFG. */
3741 if (GET_CODE (newpat) == SET
3742 && SET_SRC (newpat) == pc_rtx
3743 && SET_DEST (newpat) == pc_rtx)
3744 *new_direct_jump_p = 1;
3745 }
3746
3747 if (undobuf.other_insn != NULL_RTX)
3748 {
3749 if (dump_file)
3750 {
3751 fprintf (dump_file, "modifying other_insn ");
3752 dump_insn_slim (dump_file, undobuf.other_insn);
3753 }
3754 df_insn_rescan (undobuf.other_insn);
3755 }
3756
3757 if (i1 && !(NOTE_P(i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
3758 {
3759 if (dump_file)
3760 {
3761 fprintf (dump_file, "modifying insn i1 ");
3762 dump_insn_slim (dump_file, i1);
3763 }
3764 df_insn_rescan (i1);
3765 }
3766
3767 if (i2 && !(NOTE_P(i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
3768 {
3769 if (dump_file)
3770 {
3771 fprintf (dump_file, "modifying insn i2 ");
3772 dump_insn_slim (dump_file, i2);
3773 }
3774 df_insn_rescan (i2);
3775 }
3776
3777 if (i3 && !(NOTE_P(i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
3778 {
3779 if (dump_file)
3780 {
3781 fprintf (dump_file, "modifying insn i3 ");
3782 dump_insn_slim (dump_file, i3);
3783 }
3784 df_insn_rescan (i3);
3785 }
3786
3787 combine_successes++;
3788 undo_commit ();
3789
3790 if (added_links_insn
3791 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
3792 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
3793 return added_links_insn;
3794 else
3795 return newi2pat ? i2 : i3;
3796 }
3797 \f
3798 /* Undo all the modifications recorded in undobuf. */
3799
3800 static void
3801 undo_all (void)
3802 {
3803 struct undo *undo, *next;
3804
3805 for (undo = undobuf.undos; undo; undo = next)
3806 {
3807 next = undo->next;
3808 switch (undo->kind)
3809 {
3810 case UNDO_RTX:
3811 *undo->where.r = undo->old_contents.r;
3812 break;
3813 case UNDO_INT:
3814 *undo->where.i = undo->old_contents.i;
3815 break;
3816 case UNDO_MODE:
3817 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
3818 break;
3819 default:
3820 gcc_unreachable ();
3821 }
3822
3823 undo->next = undobuf.frees;
3824 undobuf.frees = undo;
3825 }
3826
3827 undobuf.undos = 0;
3828 }
3829
3830 /* We've committed to accepting the changes we made. Move all
3831 of the undos to the free list. */
3832
3833 static void
3834 undo_commit (void)
3835 {
3836 struct undo *undo, *next;
3837
3838 for (undo = undobuf.undos; undo; undo = next)
3839 {
3840 next = undo->next;
3841 undo->next = undobuf.frees;
3842 undobuf.frees = undo;
3843 }
3844 undobuf.undos = 0;
3845 }
3846 \f
3847 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
3848 where we have an arithmetic expression and return that point. LOC will
3849 be inside INSN.
3850
3851 try_combine will call this function to see if an insn can be split into
3852 two insns. */
3853
3854 static rtx *
3855 find_split_point (rtx *loc, rtx insn)
3856 {
3857 rtx x = *loc;
3858 enum rtx_code code = GET_CODE (x);
3859 rtx *split;
3860 unsigned HOST_WIDE_INT len = 0;
3861 HOST_WIDE_INT pos = 0;
3862 int unsignedp = 0;
3863 rtx inner = NULL_RTX;
3864
3865 /* First special-case some codes. */
3866 switch (code)
3867 {
3868 case SUBREG:
3869 #ifdef INSN_SCHEDULING
3870 /* If we are making a paradoxical SUBREG invalid, it becomes a split
3871 point. */
3872 if (MEM_P (SUBREG_REG (x)))
3873 return loc;
3874 #endif
3875 return find_split_point (&SUBREG_REG (x), insn);
3876
3877 case MEM:
3878 #ifdef HAVE_lo_sum
3879 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
3880 using LO_SUM and HIGH. */
3881 if (GET_CODE (XEXP (x, 0)) == CONST
3882 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3883 {
3884 SUBST (XEXP (x, 0),
3885 gen_rtx_LO_SUM (Pmode,
3886 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
3887 XEXP (x, 0)));
3888 return &XEXP (XEXP (x, 0), 0);
3889 }
3890 #endif
3891
3892 /* If we have a PLUS whose second operand is a constant and the
3893 address is not valid, perhaps will can split it up using
3894 the machine-specific way to split large constants. We use
3895 the first pseudo-reg (one of the virtual regs) as a placeholder;
3896 it will not remain in the result. */
3897 if (GET_CODE (XEXP (x, 0)) == PLUS
3898 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3899 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
3900 {
3901 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3902 rtx seq = combine_split_insns (gen_rtx_SET (VOIDmode, reg,
3903 XEXP (x, 0)),
3904 subst_insn);
3905
3906 /* This should have produced two insns, each of which sets our
3907 placeholder. If the source of the second is a valid address,
3908 we can make put both sources together and make a split point
3909 in the middle. */
3910
3911 if (seq
3912 && NEXT_INSN (seq) != NULL_RTX
3913 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
3914 && NONJUMP_INSN_P (seq)
3915 && GET_CODE (PATTERN (seq)) == SET
3916 && SET_DEST (PATTERN (seq)) == reg
3917 && ! reg_mentioned_p (reg,
3918 SET_SRC (PATTERN (seq)))
3919 && NONJUMP_INSN_P (NEXT_INSN (seq))
3920 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
3921 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
3922 && memory_address_p (GET_MODE (x),
3923 SET_SRC (PATTERN (NEXT_INSN (seq)))))
3924 {
3925 rtx src1 = SET_SRC (PATTERN (seq));
3926 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
3927
3928 /* Replace the placeholder in SRC2 with SRC1. If we can
3929 find where in SRC2 it was placed, that can become our
3930 split point and we can replace this address with SRC2.
3931 Just try two obvious places. */
3932
3933 src2 = replace_rtx (src2, reg, src1);
3934 split = 0;
3935 if (XEXP (src2, 0) == src1)
3936 split = &XEXP (src2, 0);
3937 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
3938 && XEXP (XEXP (src2, 0), 0) == src1)
3939 split = &XEXP (XEXP (src2, 0), 0);
3940
3941 if (split)
3942 {
3943 SUBST (XEXP (x, 0), src2);
3944 return split;
3945 }
3946 }
3947
3948 /* If that didn't work, perhaps the first operand is complex and
3949 needs to be computed separately, so make a split point there.
3950 This will occur on machines that just support REG + CONST
3951 and have a constant moved through some previous computation. */
3952
3953 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
3954 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3955 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
3956 return &XEXP (XEXP (x, 0), 0);
3957 }
3958
3959 /* If we have a PLUS whose first operand is complex, try computing it
3960 separately by making a split there. */
3961 if (GET_CODE (XEXP (x, 0)) == PLUS
3962 && ! memory_address_p (GET_MODE (x), XEXP (x, 0))
3963 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
3964 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3965 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
3966 return &XEXP (XEXP (x, 0), 0);
3967 break;
3968
3969 case SET:
3970 #ifdef HAVE_cc0
3971 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
3972 ZERO_EXTRACT, the most likely reason why this doesn't match is that
3973 we need to put the operand into a register. So split at that
3974 point. */
3975
3976 if (SET_DEST (x) == cc0_rtx
3977 && GET_CODE (SET_SRC (x)) != COMPARE
3978 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
3979 && !OBJECT_P (SET_SRC (x))
3980 && ! (GET_CODE (SET_SRC (x)) == SUBREG
3981 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
3982 return &SET_SRC (x);
3983 #endif
3984
3985 /* See if we can split SET_SRC as it stands. */
3986 split = find_split_point (&SET_SRC (x), insn);
3987 if (split && split != &SET_SRC (x))
3988 return split;
3989
3990 /* See if we can split SET_DEST as it stands. */
3991 split = find_split_point (&SET_DEST (x), insn);
3992 if (split && split != &SET_DEST (x))
3993 return split;
3994
3995 /* See if this is a bitfield assignment with everything constant. If
3996 so, this is an IOR of an AND, so split it into that. */
3997 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
3998 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
3999 <= HOST_BITS_PER_WIDE_INT)
4000 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
4001 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
4002 && GET_CODE (SET_SRC (x)) == CONST_INT
4003 && ((INTVAL (XEXP (SET_DEST (x), 1))
4004 + INTVAL (XEXP (SET_DEST (x), 2)))
4005 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
4006 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4007 {
4008 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4009 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4010 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4011 rtx dest = XEXP (SET_DEST (x), 0);
4012 enum machine_mode mode = GET_MODE (dest);
4013 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
4014 rtx or_mask;
4015
4016 if (BITS_BIG_ENDIAN)
4017 pos = GET_MODE_BITSIZE (mode) - len - pos;
4018
4019 or_mask = gen_int_mode (src << pos, mode);
4020 if (src == mask)
4021 SUBST (SET_SRC (x),
4022 simplify_gen_binary (IOR, mode, dest, or_mask));
4023 else
4024 {
4025 rtx negmask = gen_int_mode (~(mask << pos), mode);
4026 SUBST (SET_SRC (x),
4027 simplify_gen_binary (IOR, mode,
4028 simplify_gen_binary (AND, mode,
4029 dest, negmask),
4030 or_mask));
4031 }
4032
4033 SUBST (SET_DEST (x), dest);
4034
4035 split = find_split_point (&SET_SRC (x), insn);
4036 if (split && split != &SET_SRC (x))
4037 return split;
4038 }
4039
4040 /* Otherwise, see if this is an operation that we can split into two.
4041 If so, try to split that. */
4042 code = GET_CODE (SET_SRC (x));
4043
4044 switch (code)
4045 {
4046 case AND:
4047 /* If we are AND'ing with a large constant that is only a single
4048 bit and the result is only being used in a context where we
4049 need to know if it is zero or nonzero, replace it with a bit
4050 extraction. This will avoid the large constant, which might
4051 have taken more than one insn to make. If the constant were
4052 not a valid argument to the AND but took only one insn to make,
4053 this is no worse, but if it took more than one insn, it will
4054 be better. */
4055
4056 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
4057 && REG_P (XEXP (SET_SRC (x), 0))
4058 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4059 && REG_P (SET_DEST (x))
4060 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
4061 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4062 && XEXP (*split, 0) == SET_DEST (x)
4063 && XEXP (*split, 1) == const0_rtx)
4064 {
4065 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4066 XEXP (SET_SRC (x), 0),
4067 pos, NULL_RTX, 1, 1, 0, 0);
4068 if (extraction != 0)
4069 {
4070 SUBST (SET_SRC (x), extraction);
4071 return find_split_point (loc, insn);
4072 }
4073 }
4074 break;
4075
4076 case NE:
4077 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4078 is known to be on, this can be converted into a NEG of a shift. */
4079 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
4080 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
4081 && 1 <= (pos = exact_log2
4082 (nonzero_bits (XEXP (SET_SRC (x), 0),
4083 GET_MODE (XEXP (SET_SRC (x), 0))))))
4084 {
4085 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
4086
4087 SUBST (SET_SRC (x),
4088 gen_rtx_NEG (mode,
4089 gen_rtx_LSHIFTRT (mode,
4090 XEXP (SET_SRC (x), 0),
4091 GEN_INT (pos))));
4092
4093 split = find_split_point (&SET_SRC (x), insn);
4094 if (split && split != &SET_SRC (x))
4095 return split;
4096 }
4097 break;
4098
4099 case SIGN_EXTEND:
4100 inner = XEXP (SET_SRC (x), 0);
4101
4102 /* We can't optimize if either mode is a partial integer
4103 mode as we don't know how many bits are significant
4104 in those modes. */
4105 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
4106 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
4107 break;
4108
4109 pos = 0;
4110 len = GET_MODE_BITSIZE (GET_MODE (inner));
4111 unsignedp = 0;
4112 break;
4113
4114 case SIGN_EXTRACT:
4115 case ZERO_EXTRACT:
4116 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
4117 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
4118 {
4119 inner = XEXP (SET_SRC (x), 0);
4120 len = INTVAL (XEXP (SET_SRC (x), 1));
4121 pos = INTVAL (XEXP (SET_SRC (x), 2));
4122
4123 if (BITS_BIG_ENDIAN)
4124 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
4125 unsignedp = (code == ZERO_EXTRACT);
4126 }
4127 break;
4128
4129 default:
4130 break;
4131 }
4132
4133 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
4134 {
4135 enum machine_mode mode = GET_MODE (SET_SRC (x));
4136
4137 /* For unsigned, we have a choice of a shift followed by an
4138 AND or two shifts. Use two shifts for field sizes where the
4139 constant might be too large. We assume here that we can
4140 always at least get 8-bit constants in an AND insn, which is
4141 true for every current RISC. */
4142
4143 if (unsignedp && len <= 8)
4144 {
4145 SUBST (SET_SRC (x),
4146 gen_rtx_AND (mode,
4147 gen_rtx_LSHIFTRT
4148 (mode, gen_lowpart (mode, inner),
4149 GEN_INT (pos)),
4150 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
4151
4152 split = find_split_point (&SET_SRC (x), insn);
4153 if (split && split != &SET_SRC (x))
4154 return split;
4155 }
4156 else
4157 {
4158 SUBST (SET_SRC (x),
4159 gen_rtx_fmt_ee
4160 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
4161 gen_rtx_ASHIFT (mode,
4162 gen_lowpart (mode, inner),
4163 GEN_INT (GET_MODE_BITSIZE (mode)
4164 - len - pos)),
4165 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
4166
4167 split = find_split_point (&SET_SRC (x), insn);
4168 if (split && split != &SET_SRC (x))
4169 return split;
4170 }
4171 }
4172
4173 /* See if this is a simple operation with a constant as the second
4174 operand. It might be that this constant is out of range and hence
4175 could be used as a split point. */
4176 if (BINARY_P (SET_SRC (x))
4177 && CONSTANT_P (XEXP (SET_SRC (x), 1))
4178 && (OBJECT_P (XEXP (SET_SRC (x), 0))
4179 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
4180 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
4181 return &XEXP (SET_SRC (x), 1);
4182
4183 /* Finally, see if this is a simple operation with its first operand
4184 not in a register. The operation might require this operand in a
4185 register, so return it as a split point. We can always do this
4186 because if the first operand were another operation, we would have
4187 already found it as a split point. */
4188 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
4189 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
4190 return &XEXP (SET_SRC (x), 0);
4191
4192 return 0;
4193
4194 case AND:
4195 case IOR:
4196 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
4197 it is better to write this as (not (ior A B)) so we can split it.
4198 Similarly for IOR. */
4199 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
4200 {
4201 SUBST (*loc,
4202 gen_rtx_NOT (GET_MODE (x),
4203 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
4204 GET_MODE (x),
4205 XEXP (XEXP (x, 0), 0),
4206 XEXP (XEXP (x, 1), 0))));
4207 return find_split_point (loc, insn);
4208 }
4209
4210 /* Many RISC machines have a large set of logical insns. If the
4211 second operand is a NOT, put it first so we will try to split the
4212 other operand first. */
4213 if (GET_CODE (XEXP (x, 1)) == NOT)
4214 {
4215 rtx tem = XEXP (x, 0);
4216 SUBST (XEXP (x, 0), XEXP (x, 1));
4217 SUBST (XEXP (x, 1), tem);
4218 }
4219 break;
4220
4221 default:
4222 break;
4223 }
4224
4225 /* Otherwise, select our actions depending on our rtx class. */
4226 switch (GET_RTX_CLASS (code))
4227 {
4228 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
4229 case RTX_TERNARY:
4230 split = find_split_point (&XEXP (x, 2), insn);
4231 if (split)
4232 return split;
4233 /* ... fall through ... */
4234 case RTX_BIN_ARITH:
4235 case RTX_COMM_ARITH:
4236 case RTX_COMPARE:
4237 case RTX_COMM_COMPARE:
4238 split = find_split_point (&XEXP (x, 1), insn);
4239 if (split)
4240 return split;
4241 /* ... fall through ... */
4242 case RTX_UNARY:
4243 /* Some machines have (and (shift ...) ...) insns. If X is not
4244 an AND, but XEXP (X, 0) is, use it as our split point. */
4245 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
4246 return &XEXP (x, 0);
4247
4248 split = find_split_point (&XEXP (x, 0), insn);
4249 if (split)
4250 return split;
4251 return loc;
4252
4253 default:
4254 /* Otherwise, we don't have a split point. */
4255 return 0;
4256 }
4257 }
4258 \f
4259 /* Throughout X, replace FROM with TO, and return the result.
4260 The result is TO if X is FROM;
4261 otherwise the result is X, but its contents may have been modified.
4262 If they were modified, a record was made in undobuf so that
4263 undo_all will (among other things) return X to its original state.
4264
4265 If the number of changes necessary is too much to record to undo,
4266 the excess changes are not made, so the result is invalid.
4267 The changes already made can still be undone.
4268 undobuf.num_undo is incremented for such changes, so by testing that
4269 the caller can tell whether the result is valid.
4270
4271 `n_occurrences' is incremented each time FROM is replaced.
4272
4273 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
4274
4275 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
4276 by copying if `n_occurrences' is nonzero. */
4277
4278 static rtx
4279 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
4280 {
4281 enum rtx_code code = GET_CODE (x);
4282 enum machine_mode op0_mode = VOIDmode;
4283 const char *fmt;
4284 int len, i;
4285 rtx new_rtx;
4286
4287 /* Two expressions are equal if they are identical copies of a shared
4288 RTX or if they are both registers with the same register number
4289 and mode. */
4290
4291 #define COMBINE_RTX_EQUAL_P(X,Y) \
4292 ((X) == (Y) \
4293 || (REG_P (X) && REG_P (Y) \
4294 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
4295
4296 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
4297 {
4298 n_occurrences++;
4299 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
4300 }
4301
4302 /* If X and FROM are the same register but different modes, they
4303 will not have been seen as equal above. However, the log links code
4304 will make a LOG_LINKS entry for that case. If we do nothing, we
4305 will try to rerecognize our original insn and, when it succeeds,
4306 we will delete the feeding insn, which is incorrect.
4307
4308 So force this insn not to match in this (rare) case. */
4309 if (! in_dest && code == REG && REG_P (from)
4310 && reg_overlap_mentioned_p (x, from))
4311 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
4312
4313 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
4314 of which may contain things that can be combined. */
4315 if (code != MEM && code != LO_SUM && OBJECT_P (x))
4316 return x;
4317
4318 /* It is possible to have a subexpression appear twice in the insn.
4319 Suppose that FROM is a register that appears within TO.
4320 Then, after that subexpression has been scanned once by `subst',
4321 the second time it is scanned, TO may be found. If we were
4322 to scan TO here, we would find FROM within it and create a
4323 self-referent rtl structure which is completely wrong. */
4324 if (COMBINE_RTX_EQUAL_P (x, to))
4325 return to;
4326
4327 /* Parallel asm_operands need special attention because all of the
4328 inputs are shared across the arms. Furthermore, unsharing the
4329 rtl results in recognition failures. Failure to handle this case
4330 specially can result in circular rtl.
4331
4332 Solve this by doing a normal pass across the first entry of the
4333 parallel, and only processing the SET_DESTs of the subsequent
4334 entries. Ug. */
4335
4336 if (code == PARALLEL
4337 && GET_CODE (XVECEXP (x, 0, 0)) == SET
4338 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
4339 {
4340 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
4341
4342 /* If this substitution failed, this whole thing fails. */
4343 if (GET_CODE (new_rtx) == CLOBBER
4344 && XEXP (new_rtx, 0) == const0_rtx)
4345 return new_rtx;
4346
4347 SUBST (XVECEXP (x, 0, 0), new_rtx);
4348
4349 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
4350 {
4351 rtx dest = SET_DEST (XVECEXP (x, 0, i));
4352
4353 if (!REG_P (dest)
4354 && GET_CODE (dest) != CC0
4355 && GET_CODE (dest) != PC)
4356 {
4357 new_rtx = subst (dest, from, to, 0, unique_copy);
4358
4359 /* If this substitution failed, this whole thing fails. */
4360 if (GET_CODE (new_rtx) == CLOBBER
4361 && XEXP (new_rtx, 0) == const0_rtx)
4362 return new_rtx;
4363
4364 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
4365 }
4366 }
4367 }
4368 else
4369 {
4370 len = GET_RTX_LENGTH (code);
4371 fmt = GET_RTX_FORMAT (code);
4372
4373 /* We don't need to process a SET_DEST that is a register, CC0,
4374 or PC, so set up to skip this common case. All other cases
4375 where we want to suppress replacing something inside a
4376 SET_SRC are handled via the IN_DEST operand. */
4377 if (code == SET
4378 && (REG_P (SET_DEST (x))
4379 || GET_CODE (SET_DEST (x)) == CC0
4380 || GET_CODE (SET_DEST (x)) == PC))
4381 fmt = "ie";
4382
4383 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
4384 constant. */
4385 if (fmt[0] == 'e')
4386 op0_mode = GET_MODE (XEXP (x, 0));
4387
4388 for (i = 0; i < len; i++)
4389 {
4390 if (fmt[i] == 'E')
4391 {
4392 int j;
4393 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4394 {
4395 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
4396 {
4397 new_rtx = (unique_copy && n_occurrences
4398 ? copy_rtx (to) : to);
4399 n_occurrences++;
4400 }
4401 else
4402 {
4403 new_rtx = subst (XVECEXP (x, i, j), from, to, 0,
4404 unique_copy);
4405
4406 /* If this substitution failed, this whole thing
4407 fails. */
4408 if (GET_CODE (new_rtx) == CLOBBER
4409 && XEXP (new_rtx, 0) == const0_rtx)
4410 return new_rtx;
4411 }
4412
4413 SUBST (XVECEXP (x, i, j), new_rtx);
4414 }
4415 }
4416 else if (fmt[i] == 'e')
4417 {
4418 /* If this is a register being set, ignore it. */
4419 new_rtx = XEXP (x, i);
4420 if (in_dest
4421 && i == 0
4422 && (((code == SUBREG || code == ZERO_EXTRACT)
4423 && REG_P (new_rtx))
4424 || code == STRICT_LOW_PART))
4425 ;
4426
4427 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
4428 {
4429 /* In general, don't install a subreg involving two
4430 modes not tieable. It can worsen register
4431 allocation, and can even make invalid reload
4432 insns, since the reg inside may need to be copied
4433 from in the outside mode, and that may be invalid
4434 if it is an fp reg copied in integer mode.
4435
4436 We allow two exceptions to this: It is valid if
4437 it is inside another SUBREG and the mode of that
4438 SUBREG and the mode of the inside of TO is
4439 tieable and it is valid if X is a SET that copies
4440 FROM to CC0. */
4441
4442 if (GET_CODE (to) == SUBREG
4443 && ! MODES_TIEABLE_P (GET_MODE (to),
4444 GET_MODE (SUBREG_REG (to)))
4445 && ! (code == SUBREG
4446 && MODES_TIEABLE_P (GET_MODE (x),
4447 GET_MODE (SUBREG_REG (to))))
4448 #ifdef HAVE_cc0
4449 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
4450 #endif
4451 )
4452 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
4453
4454 #ifdef CANNOT_CHANGE_MODE_CLASS
4455 if (code == SUBREG
4456 && REG_P (to)
4457 && REGNO (to) < FIRST_PSEUDO_REGISTER
4458 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
4459 GET_MODE (to),
4460 GET_MODE (x)))
4461 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
4462 #endif
4463
4464 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
4465 n_occurrences++;
4466 }
4467 else
4468 /* If we are in a SET_DEST, suppress most cases unless we
4469 have gone inside a MEM, in which case we want to
4470 simplify the address. We assume here that things that
4471 are actually part of the destination have their inner
4472 parts in the first expression. This is true for SUBREG,
4473 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
4474 things aside from REG and MEM that should appear in a
4475 SET_DEST. */
4476 new_rtx = subst (XEXP (x, i), from, to,
4477 (((in_dest
4478 && (code == SUBREG || code == STRICT_LOW_PART
4479 || code == ZERO_EXTRACT))
4480 || code == SET)
4481 && i == 0), unique_copy);
4482
4483 /* If we found that we will have to reject this combination,
4484 indicate that by returning the CLOBBER ourselves, rather than
4485 an expression containing it. This will speed things up as
4486 well as prevent accidents where two CLOBBERs are considered
4487 to be equal, thus producing an incorrect simplification. */
4488
4489 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
4490 return new_rtx;
4491
4492 if (GET_CODE (x) == SUBREG
4493 && (GET_CODE (new_rtx) == CONST_INT
4494 || GET_CODE (new_rtx) == CONST_DOUBLE))
4495 {
4496 enum machine_mode mode = GET_MODE (x);
4497
4498 x = simplify_subreg (GET_MODE (x), new_rtx,
4499 GET_MODE (SUBREG_REG (x)),
4500 SUBREG_BYTE (x));
4501 if (! x)
4502 x = gen_rtx_CLOBBER (mode, const0_rtx);
4503 }
4504 else if (GET_CODE (new_rtx) == CONST_INT
4505 && GET_CODE (x) == ZERO_EXTEND)
4506 {
4507 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
4508 new_rtx, GET_MODE (XEXP (x, 0)));
4509 gcc_assert (x);
4510 }
4511 else
4512 SUBST (XEXP (x, i), new_rtx);
4513 }
4514 }
4515 }
4516
4517 /* Check if we are loading something from the constant pool via float
4518 extension; in this case we would undo compress_float_constant
4519 optimization and degenerate constant load to an immediate value. */
4520 if (GET_CODE (x) == FLOAT_EXTEND
4521 && MEM_P (XEXP (x, 0))
4522 && MEM_READONLY_P (XEXP (x, 0)))
4523 {
4524 rtx tmp = avoid_constant_pool_reference (x);
4525 if (x != tmp)
4526 return x;
4527 }
4528
4529 /* Try to simplify X. If the simplification changed the code, it is likely
4530 that further simplification will help, so loop, but limit the number
4531 of repetitions that will be performed. */
4532
4533 for (i = 0; i < 4; i++)
4534 {
4535 /* If X is sufficiently simple, don't bother trying to do anything
4536 with it. */
4537 if (code != CONST_INT && code != REG && code != CLOBBER)
4538 x = combine_simplify_rtx (x, op0_mode, in_dest);
4539
4540 if (GET_CODE (x) == code)
4541 break;
4542
4543 code = GET_CODE (x);
4544
4545 /* We no longer know the original mode of operand 0 since we
4546 have changed the form of X) */
4547 op0_mode = VOIDmode;
4548 }
4549
4550 return x;
4551 }
4552 \f
4553 /* Simplify X, a piece of RTL. We just operate on the expression at the
4554 outer level; call `subst' to simplify recursively. Return the new
4555 expression.
4556
4557 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
4558 if we are inside a SET_DEST. */
4559
4560 static rtx
4561 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest)
4562 {
4563 enum rtx_code code = GET_CODE (x);
4564 enum machine_mode mode = GET_MODE (x);
4565 rtx temp;
4566 int i;
4567
4568 /* If this is a commutative operation, put a constant last and a complex
4569 expression first. We don't need to do this for comparisons here. */
4570 if (COMMUTATIVE_ARITH_P (x)
4571 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
4572 {
4573 temp = XEXP (x, 0);
4574 SUBST (XEXP (x, 0), XEXP (x, 1));
4575 SUBST (XEXP (x, 1), temp);
4576 }
4577
4578 /* If this is a simple operation applied to an IF_THEN_ELSE, try
4579 applying it to the arms of the IF_THEN_ELSE. This often simplifies
4580 things. Check for cases where both arms are testing the same
4581 condition.
4582
4583 Don't do anything if all operands are very simple. */
4584
4585 if ((BINARY_P (x)
4586 && ((!OBJECT_P (XEXP (x, 0))
4587 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4588 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
4589 || (!OBJECT_P (XEXP (x, 1))
4590 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
4591 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
4592 || (UNARY_P (x)
4593 && (!OBJECT_P (XEXP (x, 0))
4594 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4595 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
4596 {
4597 rtx cond, true_rtx, false_rtx;
4598
4599 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
4600 if (cond != 0
4601 /* If everything is a comparison, what we have is highly unlikely
4602 to be simpler, so don't use it. */
4603 && ! (COMPARISON_P (x)
4604 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
4605 {
4606 rtx cop1 = const0_rtx;
4607 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
4608
4609 if (cond_code == NE && COMPARISON_P (cond))
4610 return x;
4611
4612 /* Simplify the alternative arms; this may collapse the true and
4613 false arms to store-flag values. Be careful to use copy_rtx
4614 here since true_rtx or false_rtx might share RTL with x as a
4615 result of the if_then_else_cond call above. */
4616 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
4617 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
4618
4619 /* If true_rtx and false_rtx are not general_operands, an if_then_else
4620 is unlikely to be simpler. */
4621 if (general_operand (true_rtx, VOIDmode)
4622 && general_operand (false_rtx, VOIDmode))
4623 {
4624 enum rtx_code reversed;
4625
4626 /* Restarting if we generate a store-flag expression will cause
4627 us to loop. Just drop through in this case. */
4628
4629 /* If the result values are STORE_FLAG_VALUE and zero, we can
4630 just make the comparison operation. */
4631 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
4632 x = simplify_gen_relational (cond_code, mode, VOIDmode,
4633 cond, cop1);
4634 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
4635 && ((reversed = reversed_comparison_code_parts
4636 (cond_code, cond, cop1, NULL))
4637 != UNKNOWN))
4638 x = simplify_gen_relational (reversed, mode, VOIDmode,
4639 cond, cop1);
4640
4641 /* Likewise, we can make the negate of a comparison operation
4642 if the result values are - STORE_FLAG_VALUE and zero. */
4643 else if (GET_CODE (true_rtx) == CONST_INT
4644 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
4645 && false_rtx == const0_rtx)
4646 x = simplify_gen_unary (NEG, mode,
4647 simplify_gen_relational (cond_code,
4648 mode, VOIDmode,
4649 cond, cop1),
4650 mode);
4651 else if (GET_CODE (false_rtx) == CONST_INT
4652 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
4653 && true_rtx == const0_rtx
4654 && ((reversed = reversed_comparison_code_parts
4655 (cond_code, cond, cop1, NULL))
4656 != UNKNOWN))
4657 x = simplify_gen_unary (NEG, mode,
4658 simplify_gen_relational (reversed,
4659 mode, VOIDmode,
4660 cond, cop1),
4661 mode);
4662 else
4663 return gen_rtx_IF_THEN_ELSE (mode,
4664 simplify_gen_relational (cond_code,
4665 mode,
4666 VOIDmode,
4667 cond,
4668 cop1),
4669 true_rtx, false_rtx);
4670
4671 code = GET_CODE (x);
4672 op0_mode = VOIDmode;
4673 }
4674 }
4675 }
4676
4677 /* Try to fold this expression in case we have constants that weren't
4678 present before. */
4679 temp = 0;
4680 switch (GET_RTX_CLASS (code))
4681 {
4682 case RTX_UNARY:
4683 if (op0_mode == VOIDmode)
4684 op0_mode = GET_MODE (XEXP (x, 0));
4685 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
4686 break;
4687 case RTX_COMPARE:
4688 case RTX_COMM_COMPARE:
4689 {
4690 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
4691 if (cmp_mode == VOIDmode)
4692 {
4693 cmp_mode = GET_MODE (XEXP (x, 1));
4694 if (cmp_mode == VOIDmode)
4695 cmp_mode = op0_mode;
4696 }
4697 temp = simplify_relational_operation (code, mode, cmp_mode,
4698 XEXP (x, 0), XEXP (x, 1));
4699 }
4700 break;
4701 case RTX_COMM_ARITH:
4702 case RTX_BIN_ARITH:
4703 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
4704 break;
4705 case RTX_BITFIELD_OPS:
4706 case RTX_TERNARY:
4707 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
4708 XEXP (x, 1), XEXP (x, 2));
4709 break;
4710 default:
4711 break;
4712 }
4713
4714 if (temp)
4715 {
4716 x = temp;
4717 code = GET_CODE (temp);
4718 op0_mode = VOIDmode;
4719 mode = GET_MODE (temp);
4720 }
4721
4722 /* First see if we can apply the inverse distributive law. */
4723 if (code == PLUS || code == MINUS
4724 || code == AND || code == IOR || code == XOR)
4725 {
4726 x = apply_distributive_law (x);
4727 code = GET_CODE (x);
4728 op0_mode = VOIDmode;
4729 }
4730
4731 /* If CODE is an associative operation not otherwise handled, see if we
4732 can associate some operands. This can win if they are constants or
4733 if they are logically related (i.e. (a & b) & a). */
4734 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
4735 || code == AND || code == IOR || code == XOR
4736 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
4737 && ((INTEGRAL_MODE_P (mode) && code != DIV)
4738 || (flag_associative_math && FLOAT_MODE_P (mode))))
4739 {
4740 if (GET_CODE (XEXP (x, 0)) == code)
4741 {
4742 rtx other = XEXP (XEXP (x, 0), 0);
4743 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
4744 rtx inner_op1 = XEXP (x, 1);
4745 rtx inner;
4746
4747 /* Make sure we pass the constant operand if any as the second
4748 one if this is a commutative operation. */
4749 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
4750 {
4751 rtx tem = inner_op0;
4752 inner_op0 = inner_op1;
4753 inner_op1 = tem;
4754 }
4755 inner = simplify_binary_operation (code == MINUS ? PLUS
4756 : code == DIV ? MULT
4757 : code,
4758 mode, inner_op0, inner_op1);
4759
4760 /* For commutative operations, try the other pair if that one
4761 didn't simplify. */
4762 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
4763 {
4764 other = XEXP (XEXP (x, 0), 1);
4765 inner = simplify_binary_operation (code, mode,
4766 XEXP (XEXP (x, 0), 0),
4767 XEXP (x, 1));
4768 }
4769
4770 if (inner)
4771 return simplify_gen_binary (code, mode, other, inner);
4772 }
4773 }
4774
4775 /* A little bit of algebraic simplification here. */
4776 switch (code)
4777 {
4778 case MEM:
4779 /* Ensure that our address has any ASHIFTs converted to MULT in case
4780 address-recognizing predicates are called later. */
4781 temp = make_compound_operation (XEXP (x, 0), MEM);
4782 SUBST (XEXP (x, 0), temp);
4783 break;
4784
4785 case SUBREG:
4786 if (op0_mode == VOIDmode)
4787 op0_mode = GET_MODE (SUBREG_REG (x));
4788
4789 /* See if this can be moved to simplify_subreg. */
4790 if (CONSTANT_P (SUBREG_REG (x))
4791 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
4792 /* Don't call gen_lowpart if the inner mode
4793 is VOIDmode and we cannot simplify it, as SUBREG without
4794 inner mode is invalid. */
4795 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
4796 || gen_lowpart_common (mode, SUBREG_REG (x))))
4797 return gen_lowpart (mode, SUBREG_REG (x));
4798
4799 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
4800 break;
4801 {
4802 rtx temp;
4803 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
4804 SUBREG_BYTE (x));
4805 if (temp)
4806 return temp;
4807 }
4808
4809 /* Don't change the mode of the MEM if that would change the meaning
4810 of the address. */
4811 if (MEM_P (SUBREG_REG (x))
4812 && (MEM_VOLATILE_P (SUBREG_REG (x))
4813 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
4814 return gen_rtx_CLOBBER (mode, const0_rtx);
4815
4816 /* Note that we cannot do any narrowing for non-constants since
4817 we might have been counting on using the fact that some bits were
4818 zero. We now do this in the SET. */
4819
4820 break;
4821
4822 case NEG:
4823 temp = expand_compound_operation (XEXP (x, 0));
4824
4825 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4826 replaced by (lshiftrt X C). This will convert
4827 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4828
4829 if (GET_CODE (temp) == ASHIFTRT
4830 && GET_CODE (XEXP (temp, 1)) == CONST_INT
4831 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4832 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
4833 INTVAL (XEXP (temp, 1)));
4834
4835 /* If X has only a single bit that might be nonzero, say, bit I, convert
4836 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4837 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4838 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4839 or a SUBREG of one since we'd be making the expression more
4840 complex if it was just a register. */
4841
4842 if (!REG_P (temp)
4843 && ! (GET_CODE (temp) == SUBREG
4844 && REG_P (SUBREG_REG (temp)))
4845 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4846 {
4847 rtx temp1 = simplify_shift_const
4848 (NULL_RTX, ASHIFTRT, mode,
4849 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4850 GET_MODE_BITSIZE (mode) - 1 - i),
4851 GET_MODE_BITSIZE (mode) - 1 - i);
4852
4853 /* If all we did was surround TEMP with the two shifts, we
4854 haven't improved anything, so don't use it. Otherwise,
4855 we are better off with TEMP1. */
4856 if (GET_CODE (temp1) != ASHIFTRT
4857 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4858 || XEXP (XEXP (temp1, 0), 0) != temp)
4859 return temp1;
4860 }
4861 break;
4862
4863 case TRUNCATE:
4864 /* We can't handle truncation to a partial integer mode here
4865 because we don't know the real bitsize of the partial
4866 integer mode. */
4867 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4868 break;
4869
4870 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4871 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4872 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
4873 SUBST (XEXP (x, 0),
4874 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4875 GET_MODE_MASK (mode), 0));
4876
4877 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
4878 whose value is a comparison can be replaced with a subreg if
4879 STORE_FLAG_VALUE permits. */
4880 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4881 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4882 && (temp = get_last_value (XEXP (x, 0)))
4883 && COMPARISON_P (temp))
4884 return gen_lowpart (mode, XEXP (x, 0));
4885 break;
4886
4887 #ifdef HAVE_cc0
4888 case COMPARE:
4889 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4890 using cc0, in which case we want to leave it as a COMPARE
4891 so we can distinguish it from a register-register-copy. */
4892 if (XEXP (x, 1) == const0_rtx)
4893 return XEXP (x, 0);
4894
4895 /* x - 0 is the same as x unless x's mode has signed zeros and
4896 allows rounding towards -infinity. Under those conditions,
4897 0 - 0 is -0. */
4898 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4899 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
4900 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4901 return XEXP (x, 0);
4902 break;
4903 #endif
4904
4905 case CONST:
4906 /* (const (const X)) can become (const X). Do it this way rather than
4907 returning the inner CONST since CONST can be shared with a
4908 REG_EQUAL note. */
4909 if (GET_CODE (XEXP (x, 0)) == CONST)
4910 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4911 break;
4912
4913 #ifdef HAVE_lo_sum
4914 case LO_SUM:
4915 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4916 can add in an offset. find_split_point will split this address up
4917 again if it doesn't match. */
4918 if (GET_CODE (XEXP (x, 0)) == HIGH
4919 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4920 return XEXP (x, 1);
4921 break;
4922 #endif
4923
4924 case PLUS:
4925 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4926 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4927 bit-field and can be replaced by either a sign_extend or a
4928 sign_extract. The `and' may be a zero_extend and the two
4929 <c>, -<c> constants may be reversed. */
4930 if (GET_CODE (XEXP (x, 0)) == XOR
4931 && GET_CODE (XEXP (x, 1)) == CONST_INT
4932 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4933 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4934 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4935 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4936 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4937 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4938 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4939 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4940 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4941 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4942 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4943 == (unsigned int) i + 1))))
4944 return simplify_shift_const
4945 (NULL_RTX, ASHIFTRT, mode,
4946 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4947 XEXP (XEXP (XEXP (x, 0), 0), 0),
4948 GET_MODE_BITSIZE (mode) - (i + 1)),
4949 GET_MODE_BITSIZE (mode) - (i + 1));
4950
4951 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4952 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4953 the bitsize of the mode - 1. This allows simplification of
4954 "a = (b & 8) == 0;" */
4955 if (XEXP (x, 1) == constm1_rtx
4956 && !REG_P (XEXP (x, 0))
4957 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4958 && REG_P (SUBREG_REG (XEXP (x, 0))))
4959 && nonzero_bits (XEXP (x, 0), mode) == 1)
4960 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4961 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4962 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4963 GET_MODE_BITSIZE (mode) - 1),
4964 GET_MODE_BITSIZE (mode) - 1);
4965
4966 /* If we are adding two things that have no bits in common, convert
4967 the addition into an IOR. This will often be further simplified,
4968 for example in cases like ((a & 1) + (a & 2)), which can
4969 become a & 3. */
4970
4971 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4972 && (nonzero_bits (XEXP (x, 0), mode)
4973 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4974 {
4975 /* Try to simplify the expression further. */
4976 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4977 temp = combine_simplify_rtx (tor, mode, in_dest);
4978
4979 /* If we could, great. If not, do not go ahead with the IOR
4980 replacement, since PLUS appears in many special purpose
4981 address arithmetic instructions. */
4982 if (GET_CODE (temp) != CLOBBER && temp != tor)
4983 return temp;
4984 }
4985 break;
4986
4987 case MINUS:
4988 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4989 (and <foo> (const_int pow2-1)) */
4990 if (GET_CODE (XEXP (x, 1)) == AND
4991 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4992 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4993 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4994 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4995 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4996 break;
4997
4998 case MULT:
4999 /* If we have (mult (plus A B) C), apply the distributive law and then
5000 the inverse distributive law to see if things simplify. This
5001 occurs mostly in addresses, often when unrolling loops. */
5002
5003 if (GET_CODE (XEXP (x, 0)) == PLUS)
5004 {
5005 rtx result = distribute_and_simplify_rtx (x, 0);
5006 if (result)
5007 return result;
5008 }
5009
5010 /* Try simplify a*(b/c) as (a*b)/c. */
5011 if (FLOAT_MODE_P (mode) && flag_associative_math
5012 && GET_CODE (XEXP (x, 0)) == DIV)
5013 {
5014 rtx tem = simplify_binary_operation (MULT, mode,
5015 XEXP (XEXP (x, 0), 0),
5016 XEXP (x, 1));
5017 if (tem)
5018 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
5019 }
5020 break;
5021
5022 case UDIV:
5023 /* If this is a divide by a power of two, treat it as a shift if
5024 its first operand is a shift. */
5025 if (GET_CODE (XEXP (x, 1)) == CONST_INT
5026 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
5027 && (GET_CODE (XEXP (x, 0)) == ASHIFT
5028 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
5029 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
5030 || GET_CODE (XEXP (x, 0)) == ROTATE
5031 || GET_CODE (XEXP (x, 0)) == ROTATERT))
5032 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
5033 break;
5034
5035 case EQ: case NE:
5036 case GT: case GTU: case GE: case GEU:
5037 case LT: case LTU: case LE: case LEU:
5038 case UNEQ: case LTGT:
5039 case UNGT: case UNGE:
5040 case UNLT: case UNLE:
5041 case UNORDERED: case ORDERED:
5042 /* If the first operand is a condition code, we can't do anything
5043 with it. */
5044 if (GET_CODE (XEXP (x, 0)) == COMPARE
5045 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
5046 && ! CC0_P (XEXP (x, 0))))
5047 {
5048 rtx op0 = XEXP (x, 0);
5049 rtx op1 = XEXP (x, 1);
5050 enum rtx_code new_code;
5051
5052 if (GET_CODE (op0) == COMPARE)
5053 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5054
5055 /* Simplify our comparison, if possible. */
5056 new_code = simplify_comparison (code, &op0, &op1);
5057
5058 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
5059 if only the low-order bit is possibly nonzero in X (such as when
5060 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
5061 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
5062 known to be either 0 or -1, NE becomes a NEG and EQ becomes
5063 (plus X 1).
5064
5065 Remove any ZERO_EXTRACT we made when thinking this was a
5066 comparison. It may now be simpler to use, e.g., an AND. If a
5067 ZERO_EXTRACT is indeed appropriate, it will be placed back by
5068 the call to make_compound_operation in the SET case. */
5069
5070 if (STORE_FLAG_VALUE == 1
5071 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5072 && op1 == const0_rtx
5073 && mode == GET_MODE (op0)
5074 && nonzero_bits (op0, mode) == 1)
5075 return gen_lowpart (mode,
5076 expand_compound_operation (op0));
5077
5078 else if (STORE_FLAG_VALUE == 1
5079 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5080 && op1 == const0_rtx
5081 && mode == GET_MODE (op0)
5082 && (num_sign_bit_copies (op0, mode)
5083 == GET_MODE_BITSIZE (mode)))
5084 {
5085 op0 = expand_compound_operation (op0);
5086 return simplify_gen_unary (NEG, mode,
5087 gen_lowpart (mode, op0),
5088 mode);
5089 }
5090
5091 else if (STORE_FLAG_VALUE == 1
5092 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5093 && op1 == const0_rtx
5094 && mode == GET_MODE (op0)
5095 && nonzero_bits (op0, mode) == 1)
5096 {
5097 op0 = expand_compound_operation (op0);
5098 return simplify_gen_binary (XOR, mode,
5099 gen_lowpart (mode, op0),
5100 const1_rtx);
5101 }
5102
5103 else if (STORE_FLAG_VALUE == 1
5104 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5105 && op1 == const0_rtx
5106 && mode == GET_MODE (op0)
5107 && (num_sign_bit_copies (op0, mode)
5108 == GET_MODE_BITSIZE (mode)))
5109 {
5110 op0 = expand_compound_operation (op0);
5111 return plus_constant (gen_lowpart (mode, op0), 1);
5112 }
5113
5114 /* If STORE_FLAG_VALUE is -1, we have cases similar to
5115 those above. */
5116 if (STORE_FLAG_VALUE == -1
5117 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5118 && op1 == const0_rtx
5119 && (num_sign_bit_copies (op0, mode)
5120 == GET_MODE_BITSIZE (mode)))
5121 return gen_lowpart (mode,
5122 expand_compound_operation (op0));
5123
5124 else if (STORE_FLAG_VALUE == -1
5125 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5126 && op1 == const0_rtx
5127 && mode == GET_MODE (op0)
5128 && nonzero_bits (op0, mode) == 1)
5129 {
5130 op0 = expand_compound_operation (op0);
5131 return simplify_gen_unary (NEG, mode,
5132 gen_lowpart (mode, op0),
5133 mode);
5134 }
5135
5136 else if (STORE_FLAG_VALUE == -1
5137 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5138 && op1 == const0_rtx
5139 && mode == GET_MODE (op0)
5140 && (num_sign_bit_copies (op0, mode)
5141 == GET_MODE_BITSIZE (mode)))
5142 {
5143 op0 = expand_compound_operation (op0);
5144 return simplify_gen_unary (NOT, mode,
5145 gen_lowpart (mode, op0),
5146 mode);
5147 }
5148
5149 /* If X is 0/1, (eq X 0) is X-1. */
5150 else if (STORE_FLAG_VALUE == -1
5151 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5152 && op1 == const0_rtx
5153 && mode == GET_MODE (op0)
5154 && nonzero_bits (op0, mode) == 1)
5155 {
5156 op0 = expand_compound_operation (op0);
5157 return plus_constant (gen_lowpart (mode, op0), -1);
5158 }
5159
5160 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
5161 one bit that might be nonzero, we can convert (ne x 0) to
5162 (ashift x c) where C puts the bit in the sign bit. Remove any
5163 AND with STORE_FLAG_VALUE when we are done, since we are only
5164 going to test the sign bit. */
5165 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5166 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5167 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5168 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5169 && op1 == const0_rtx
5170 && mode == GET_MODE (op0)
5171 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
5172 {
5173 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
5174 expand_compound_operation (op0),
5175 GET_MODE_BITSIZE (mode) - 1 - i);
5176 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
5177 return XEXP (x, 0);
5178 else
5179 return x;
5180 }
5181
5182 /* If the code changed, return a whole new comparison. */
5183 if (new_code != code)
5184 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
5185
5186 /* Otherwise, keep this operation, but maybe change its operands.
5187 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
5188 SUBST (XEXP (x, 0), op0);
5189 SUBST (XEXP (x, 1), op1);
5190 }
5191 break;
5192
5193 case IF_THEN_ELSE:
5194 return simplify_if_then_else (x);
5195
5196 case ZERO_EXTRACT:
5197 case SIGN_EXTRACT:
5198 case ZERO_EXTEND:
5199 case SIGN_EXTEND:
5200 /* If we are processing SET_DEST, we are done. */
5201 if (in_dest)
5202 return x;
5203
5204 return expand_compound_operation (x);
5205
5206 case SET:
5207 return simplify_set (x);
5208
5209 case AND:
5210 case IOR:
5211 return simplify_logical (x);
5212
5213 case ASHIFT:
5214 case LSHIFTRT:
5215 case ASHIFTRT:
5216 case ROTATE:
5217 case ROTATERT:
5218 /* If this is a shift by a constant amount, simplify it. */
5219 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
5220 return simplify_shift_const (x, code, mode, XEXP (x, 0),
5221 INTVAL (XEXP (x, 1)));
5222
5223 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
5224 SUBST (XEXP (x, 1),
5225 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
5226 ((HOST_WIDE_INT) 1
5227 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
5228 - 1,
5229 0));
5230 break;
5231
5232 default:
5233 break;
5234 }
5235
5236 return x;
5237 }
5238 \f
5239 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
5240
5241 static rtx
5242 simplify_if_then_else (rtx x)
5243 {
5244 enum machine_mode mode = GET_MODE (x);
5245 rtx cond = XEXP (x, 0);
5246 rtx true_rtx = XEXP (x, 1);
5247 rtx false_rtx = XEXP (x, 2);
5248 enum rtx_code true_code = GET_CODE (cond);
5249 int comparison_p = COMPARISON_P (cond);
5250 rtx temp;
5251 int i;
5252 enum rtx_code false_code;
5253 rtx reversed;
5254
5255 /* Simplify storing of the truth value. */
5256 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
5257 return simplify_gen_relational (true_code, mode, VOIDmode,
5258 XEXP (cond, 0), XEXP (cond, 1));
5259
5260 /* Also when the truth value has to be reversed. */
5261 if (comparison_p
5262 && true_rtx == const0_rtx && false_rtx == const_true_rtx
5263 && (reversed = reversed_comparison (cond, mode)))
5264 return reversed;
5265
5266 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
5267 in it is being compared against certain values. Get the true and false
5268 comparisons and see if that says anything about the value of each arm. */
5269
5270 if (comparison_p
5271 && ((false_code = reversed_comparison_code (cond, NULL))
5272 != UNKNOWN)
5273 && REG_P (XEXP (cond, 0)))
5274 {
5275 HOST_WIDE_INT nzb;
5276 rtx from = XEXP (cond, 0);
5277 rtx true_val = XEXP (cond, 1);
5278 rtx false_val = true_val;
5279 int swapped = 0;
5280
5281 /* If FALSE_CODE is EQ, swap the codes and arms. */
5282
5283 if (false_code == EQ)
5284 {
5285 swapped = 1, true_code = EQ, false_code = NE;
5286 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5287 }
5288
5289 /* If we are comparing against zero and the expression being tested has
5290 only a single bit that might be nonzero, that is its value when it is
5291 not equal to zero. Similarly if it is known to be -1 or 0. */
5292
5293 if (true_code == EQ && true_val == const0_rtx
5294 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
5295 {
5296 false_code = EQ;
5297 false_val = GEN_INT (trunc_int_for_mode (nzb, GET_MODE (from)));
5298 }
5299 else if (true_code == EQ && true_val == const0_rtx
5300 && (num_sign_bit_copies (from, GET_MODE (from))
5301 == GET_MODE_BITSIZE (GET_MODE (from))))
5302 {
5303 false_code = EQ;
5304 false_val = constm1_rtx;
5305 }
5306
5307 /* Now simplify an arm if we know the value of the register in the
5308 branch and it is used in the arm. Be careful due to the potential
5309 of locally-shared RTL. */
5310
5311 if (reg_mentioned_p (from, true_rtx))
5312 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
5313 from, true_val),
5314 pc_rtx, pc_rtx, 0, 0);
5315 if (reg_mentioned_p (from, false_rtx))
5316 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
5317 from, false_val),
5318 pc_rtx, pc_rtx, 0, 0);
5319
5320 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
5321 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
5322
5323 true_rtx = XEXP (x, 1);
5324 false_rtx = XEXP (x, 2);
5325 true_code = GET_CODE (cond);
5326 }
5327
5328 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
5329 reversed, do so to avoid needing two sets of patterns for
5330 subtract-and-branch insns. Similarly if we have a constant in the true
5331 arm, the false arm is the same as the first operand of the comparison, or
5332 the false arm is more complicated than the true arm. */
5333
5334 if (comparison_p
5335 && reversed_comparison_code (cond, NULL) != UNKNOWN
5336 && (true_rtx == pc_rtx
5337 || (CONSTANT_P (true_rtx)
5338 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
5339 || true_rtx == const0_rtx
5340 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
5341 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
5342 && !OBJECT_P (false_rtx))
5343 || reg_mentioned_p (true_rtx, false_rtx)
5344 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
5345 {
5346 true_code = reversed_comparison_code (cond, NULL);
5347 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
5348 SUBST (XEXP (x, 1), false_rtx);
5349 SUBST (XEXP (x, 2), true_rtx);
5350
5351 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5352 cond = XEXP (x, 0);
5353
5354 /* It is possible that the conditional has been simplified out. */
5355 true_code = GET_CODE (cond);
5356 comparison_p = COMPARISON_P (cond);
5357 }
5358
5359 /* If the two arms are identical, we don't need the comparison. */
5360
5361 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
5362 return true_rtx;
5363
5364 /* Convert a == b ? b : a to "a". */
5365 if (true_code == EQ && ! side_effects_p (cond)
5366 && !HONOR_NANS (mode)
5367 && rtx_equal_p (XEXP (cond, 0), false_rtx)
5368 && rtx_equal_p (XEXP (cond, 1), true_rtx))
5369 return false_rtx;
5370 else if (true_code == NE && ! side_effects_p (cond)
5371 && !HONOR_NANS (mode)
5372 && rtx_equal_p (XEXP (cond, 0), true_rtx)
5373 && rtx_equal_p (XEXP (cond, 1), false_rtx))
5374 return true_rtx;
5375
5376 /* Look for cases where we have (abs x) or (neg (abs X)). */
5377
5378 if (GET_MODE_CLASS (mode) == MODE_INT
5379 && comparison_p
5380 && XEXP (cond, 1) == const0_rtx
5381 && GET_CODE (false_rtx) == NEG
5382 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
5383 && rtx_equal_p (true_rtx, XEXP (cond, 0))
5384 && ! side_effects_p (true_rtx))
5385 switch (true_code)
5386 {
5387 case GT:
5388 case GE:
5389 return simplify_gen_unary (ABS, mode, true_rtx, mode);
5390 case LT:
5391 case LE:
5392 return
5393 simplify_gen_unary (NEG, mode,
5394 simplify_gen_unary (ABS, mode, true_rtx, mode),
5395 mode);
5396 default:
5397 break;
5398 }
5399
5400 /* Look for MIN or MAX. */
5401
5402 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
5403 && comparison_p
5404 && rtx_equal_p (XEXP (cond, 0), true_rtx)
5405 && rtx_equal_p (XEXP (cond, 1), false_rtx)
5406 && ! side_effects_p (cond))
5407 switch (true_code)
5408 {
5409 case GE:
5410 case GT:
5411 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
5412 case LE:
5413 case LT:
5414 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
5415 case GEU:
5416 case GTU:
5417 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
5418 case LEU:
5419 case LTU:
5420 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
5421 default:
5422 break;
5423 }
5424
5425 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
5426 second operand is zero, this can be done as (OP Z (mult COND C2)) where
5427 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
5428 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
5429 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
5430 neither 1 or -1, but it isn't worth checking for. */
5431
5432 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5433 && comparison_p
5434 && GET_MODE_CLASS (mode) == MODE_INT
5435 && ! side_effects_p (x))
5436 {
5437 rtx t = make_compound_operation (true_rtx, SET);
5438 rtx f = make_compound_operation (false_rtx, SET);
5439 rtx cond_op0 = XEXP (cond, 0);
5440 rtx cond_op1 = XEXP (cond, 1);
5441 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
5442 enum machine_mode m = mode;
5443 rtx z = 0, c1 = NULL_RTX;
5444
5445 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
5446 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
5447 || GET_CODE (t) == ASHIFT
5448 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
5449 && rtx_equal_p (XEXP (t, 0), f))
5450 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
5451
5452 /* If an identity-zero op is commutative, check whether there
5453 would be a match if we swapped the operands. */
5454 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
5455 || GET_CODE (t) == XOR)
5456 && rtx_equal_p (XEXP (t, 1), f))
5457 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
5458 else if (GET_CODE (t) == SIGN_EXTEND
5459 && (GET_CODE (XEXP (t, 0)) == PLUS
5460 || GET_CODE (XEXP (t, 0)) == MINUS
5461 || GET_CODE (XEXP (t, 0)) == IOR
5462 || GET_CODE (XEXP (t, 0)) == XOR
5463 || GET_CODE (XEXP (t, 0)) == ASHIFT
5464 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5465 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5466 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5467 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5468 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5469 && (num_sign_bit_copies (f, GET_MODE (f))
5470 > (unsigned int)
5471 (GET_MODE_BITSIZE (mode)
5472 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
5473 {
5474 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5475 extend_op = SIGN_EXTEND;
5476 m = GET_MODE (XEXP (t, 0));
5477 }
5478 else if (GET_CODE (t) == SIGN_EXTEND
5479 && (GET_CODE (XEXP (t, 0)) == PLUS
5480 || GET_CODE (XEXP (t, 0)) == IOR
5481 || GET_CODE (XEXP (t, 0)) == XOR)
5482 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5483 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5484 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5485 && (num_sign_bit_copies (f, GET_MODE (f))
5486 > (unsigned int)
5487 (GET_MODE_BITSIZE (mode)
5488 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
5489 {
5490 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5491 extend_op = SIGN_EXTEND;
5492 m = GET_MODE (XEXP (t, 0));
5493 }
5494 else if (GET_CODE (t) == ZERO_EXTEND
5495 && (GET_CODE (XEXP (t, 0)) == PLUS
5496 || GET_CODE (XEXP (t, 0)) == MINUS
5497 || GET_CODE (XEXP (t, 0)) == IOR
5498 || GET_CODE (XEXP (t, 0)) == XOR
5499 || GET_CODE (XEXP (t, 0)) == ASHIFT
5500 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5501 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5502 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5503 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5504 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5505 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5506 && ((nonzero_bits (f, GET_MODE (f))
5507 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
5508 == 0))
5509 {
5510 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5511 extend_op = ZERO_EXTEND;
5512 m = GET_MODE (XEXP (t, 0));
5513 }
5514 else if (GET_CODE (t) == ZERO_EXTEND
5515 && (GET_CODE (XEXP (t, 0)) == PLUS
5516 || GET_CODE (XEXP (t, 0)) == IOR
5517 || GET_CODE (XEXP (t, 0)) == XOR)
5518 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5519 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5520 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5521 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5522 && ((nonzero_bits (f, GET_MODE (f))
5523 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
5524 == 0))
5525 {
5526 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5527 extend_op = ZERO_EXTEND;
5528 m = GET_MODE (XEXP (t, 0));
5529 }
5530
5531 if (z)
5532 {
5533 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
5534 cond_op0, cond_op1),
5535 pc_rtx, pc_rtx, 0, 0);
5536 temp = simplify_gen_binary (MULT, m, temp,
5537 simplify_gen_binary (MULT, m, c1,
5538 const_true_rtx));
5539 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
5540 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
5541
5542 if (extend_op != UNKNOWN)
5543 temp = simplify_gen_unary (extend_op, mode, temp, m);
5544
5545 return temp;
5546 }
5547 }
5548
5549 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
5550 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
5551 negation of a single bit, we can convert this operation to a shift. We
5552 can actually do this more generally, but it doesn't seem worth it. */
5553
5554 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5555 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5556 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
5557 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
5558 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
5559 == GET_MODE_BITSIZE (mode))
5560 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
5561 return
5562 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5563 gen_lowpart (mode, XEXP (cond, 0)), i);
5564
5565 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
5566 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5567 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5568 && GET_MODE (XEXP (cond, 0)) == mode
5569 && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
5570 == nonzero_bits (XEXP (cond, 0), mode)
5571 && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
5572 return XEXP (cond, 0);
5573
5574 return x;
5575 }
5576 \f
5577 /* Simplify X, a SET expression. Return the new expression. */
5578
5579 static rtx
5580 simplify_set (rtx x)
5581 {
5582 rtx src = SET_SRC (x);
5583 rtx dest = SET_DEST (x);
5584 enum machine_mode mode
5585 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
5586 rtx other_insn;
5587 rtx *cc_use;
5588
5589 /* (set (pc) (return)) gets written as (return). */
5590 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
5591 return src;
5592
5593 /* Now that we know for sure which bits of SRC we are using, see if we can
5594 simplify the expression for the object knowing that we only need the
5595 low-order bits. */
5596
5597 if (GET_MODE_CLASS (mode) == MODE_INT
5598 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5599 {
5600 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, 0);
5601 SUBST (SET_SRC (x), src);
5602 }
5603
5604 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5605 the comparison result and try to simplify it unless we already have used
5606 undobuf.other_insn. */
5607 if ((GET_MODE_CLASS (mode) == MODE_CC
5608 || GET_CODE (src) == COMPARE
5609 || CC0_P (dest))
5610 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5611 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5612 && COMPARISON_P (*cc_use)
5613 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5614 {
5615 enum rtx_code old_code = GET_CODE (*cc_use);
5616 enum rtx_code new_code;
5617 rtx op0, op1, tmp;
5618 int other_changed = 0;
5619 enum machine_mode compare_mode = GET_MODE (dest);
5620
5621 if (GET_CODE (src) == COMPARE)
5622 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5623 else
5624 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
5625
5626 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
5627 op0, op1);
5628 if (!tmp)
5629 new_code = old_code;
5630 else if (!CONSTANT_P (tmp))
5631 {
5632 new_code = GET_CODE (tmp);
5633 op0 = XEXP (tmp, 0);
5634 op1 = XEXP (tmp, 1);
5635 }
5636 else
5637 {
5638 rtx pat = PATTERN (other_insn);
5639 undobuf.other_insn = other_insn;
5640 SUBST (*cc_use, tmp);
5641
5642 /* Attempt to simplify CC user. */
5643 if (GET_CODE (pat) == SET)
5644 {
5645 rtx new_rtx = simplify_rtx (SET_SRC (pat));
5646 if (new_rtx != NULL_RTX)
5647 SUBST (SET_SRC (pat), new_rtx);
5648 }
5649
5650 /* Convert X into a no-op move. */
5651 SUBST (SET_DEST (x), pc_rtx);
5652 SUBST (SET_SRC (x), pc_rtx);
5653 return x;
5654 }
5655
5656 /* Simplify our comparison, if possible. */
5657 new_code = simplify_comparison (new_code, &op0, &op1);
5658
5659 #ifdef SELECT_CC_MODE
5660 /* If this machine has CC modes other than CCmode, check to see if we
5661 need to use a different CC mode here. */
5662 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5663 compare_mode = GET_MODE (op0);
5664 else
5665 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5666
5667 #ifndef HAVE_cc0
5668 /* If the mode changed, we have to change SET_DEST, the mode in the
5669 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5670 a hard register, just build new versions with the proper mode. If it
5671 is a pseudo, we lose unless it is only time we set the pseudo, in
5672 which case we can safely change its mode. */
5673 if (compare_mode != GET_MODE (dest))
5674 {
5675 if (can_change_dest_mode (dest, 0, compare_mode))
5676 {
5677 unsigned int regno = REGNO (dest);
5678 rtx new_dest;
5679
5680 if (regno < FIRST_PSEUDO_REGISTER)
5681 new_dest = gen_rtx_REG (compare_mode, regno);
5682 else
5683 {
5684 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
5685 new_dest = regno_reg_rtx[regno];
5686 }
5687
5688 SUBST (SET_DEST (x), new_dest);
5689 SUBST (XEXP (*cc_use, 0), new_dest);
5690 other_changed = 1;
5691
5692 dest = new_dest;
5693 }
5694 }
5695 #endif /* cc0 */
5696 #endif /* SELECT_CC_MODE */
5697
5698 /* If the code changed, we have to build a new comparison in
5699 undobuf.other_insn. */
5700 if (new_code != old_code)
5701 {
5702 int other_changed_previously = other_changed;
5703 unsigned HOST_WIDE_INT mask;
5704
5705 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5706 dest, const0_rtx));
5707 other_changed = 1;
5708
5709 /* If the only change we made was to change an EQ into an NE or
5710 vice versa, OP0 has only one bit that might be nonzero, and OP1
5711 is zero, check if changing the user of the condition code will
5712 produce a valid insn. If it won't, we can keep the original code
5713 in that insn by surrounding our operation with an XOR. */
5714
5715 if (((old_code == NE && new_code == EQ)
5716 || (old_code == EQ && new_code == NE))
5717 && ! other_changed_previously && op1 == const0_rtx
5718 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5719 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5720 {
5721 rtx pat = PATTERN (other_insn), note = 0;
5722
5723 if ((recog_for_combine (&pat, other_insn, &note) < 0
5724 && ! check_asm_operands (pat)))
5725 {
5726 PUT_CODE (*cc_use, old_code);
5727 other_changed = 0;
5728
5729 op0 = simplify_gen_binary (XOR, GET_MODE (op0),
5730 op0, GEN_INT (mask));
5731 }
5732 }
5733 }
5734
5735 if (other_changed)
5736 undobuf.other_insn = other_insn;
5737
5738 #ifdef HAVE_cc0
5739 /* If we are now comparing against zero, change our source if
5740 needed. If we do not use cc0, we always have a COMPARE. */
5741 if (op1 == const0_rtx && dest == cc0_rtx)
5742 {
5743 SUBST (SET_SRC (x), op0);
5744 src = op0;
5745 }
5746 else
5747 #endif
5748
5749 /* Otherwise, if we didn't previously have a COMPARE in the
5750 correct mode, we need one. */
5751 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5752 {
5753 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5754 src = SET_SRC (x);
5755 }
5756 else if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
5757 {
5758 SUBST (SET_SRC (x), op0);
5759 src = SET_SRC (x);
5760 }
5761 /* Otherwise, update the COMPARE if needed. */
5762 else if (XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
5763 {
5764 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5765 src = SET_SRC (x);
5766 }
5767 }
5768 else
5769 {
5770 /* Get SET_SRC in a form where we have placed back any
5771 compound expressions. Then do the checks below. */
5772 src = make_compound_operation (src, SET);
5773 SUBST (SET_SRC (x), src);
5774 }
5775
5776 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5777 and X being a REG or (subreg (reg)), we may be able to convert this to
5778 (set (subreg:m2 x) (op)).
5779
5780 We can always do this if M1 is narrower than M2 because that means that
5781 we only care about the low bits of the result.
5782
5783 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5784 perform a narrower operation than requested since the high-order bits will
5785 be undefined. On machine where it is defined, this transformation is safe
5786 as long as M1 and M2 have the same number of words. */
5787
5788 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5789 && !OBJECT_P (SUBREG_REG (src))
5790 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5791 / UNITS_PER_WORD)
5792 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5793 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5794 #ifndef WORD_REGISTER_OPERATIONS
5795 && (GET_MODE_SIZE (GET_MODE (src))
5796 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5797 #endif
5798 #ifdef CANNOT_CHANGE_MODE_CLASS
5799 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
5800 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
5801 GET_MODE (SUBREG_REG (src)),
5802 GET_MODE (src)))
5803 #endif
5804 && (REG_P (dest)
5805 || (GET_CODE (dest) == SUBREG
5806 && REG_P (SUBREG_REG (dest)))))
5807 {
5808 SUBST (SET_DEST (x),
5809 gen_lowpart (GET_MODE (SUBREG_REG (src)),
5810 dest));
5811 SUBST (SET_SRC (x), SUBREG_REG (src));
5812
5813 src = SET_SRC (x), dest = SET_DEST (x);
5814 }
5815
5816 #ifdef HAVE_cc0
5817 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5818 in SRC. */
5819 if (dest == cc0_rtx
5820 && GET_CODE (src) == SUBREG
5821 && subreg_lowpart_p (src)
5822 && (GET_MODE_BITSIZE (GET_MODE (src))
5823 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5824 {
5825 rtx inner = SUBREG_REG (src);
5826 enum machine_mode inner_mode = GET_MODE (inner);
5827
5828 /* Here we make sure that we don't have a sign bit on. */
5829 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5830 && (nonzero_bits (inner, inner_mode)
5831 < ((unsigned HOST_WIDE_INT) 1
5832 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
5833 {
5834 SUBST (SET_SRC (x), inner);
5835 src = SET_SRC (x);
5836 }
5837 }
5838 #endif
5839
5840 #ifdef LOAD_EXTEND_OP
5841 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5842 would require a paradoxical subreg. Replace the subreg with a
5843 zero_extend to avoid the reload that would otherwise be required. */
5844
5845 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5846 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
5847 && SUBREG_BYTE (src) == 0
5848 && (GET_MODE_SIZE (GET_MODE (src))
5849 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5850 && MEM_P (SUBREG_REG (src)))
5851 {
5852 SUBST (SET_SRC (x),
5853 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5854 GET_MODE (src), SUBREG_REG (src)));
5855
5856 src = SET_SRC (x);
5857 }
5858 #endif
5859
5860 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5861 are comparing an item known to be 0 or -1 against 0, use a logical
5862 operation instead. Check for one of the arms being an IOR of the other
5863 arm with some value. We compute three terms to be IOR'ed together. In
5864 practice, at most two will be nonzero. Then we do the IOR's. */
5865
5866 if (GET_CODE (dest) != PC
5867 && GET_CODE (src) == IF_THEN_ELSE
5868 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5869 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5870 && XEXP (XEXP (src, 0), 1) == const0_rtx
5871 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5872 #ifdef HAVE_conditional_move
5873 && ! can_conditionally_move_p (GET_MODE (src))
5874 #endif
5875 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5876 GET_MODE (XEXP (XEXP (src, 0), 0)))
5877 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5878 && ! side_effects_p (src))
5879 {
5880 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5881 ? XEXP (src, 1) : XEXP (src, 2));
5882 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5883 ? XEXP (src, 2) : XEXP (src, 1));
5884 rtx term1 = const0_rtx, term2, term3;
5885
5886 if (GET_CODE (true_rtx) == IOR
5887 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5888 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
5889 else if (GET_CODE (true_rtx) == IOR
5890 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5891 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
5892 else if (GET_CODE (false_rtx) == IOR
5893 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5894 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
5895 else if (GET_CODE (false_rtx) == IOR
5896 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5897 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
5898
5899 term2 = simplify_gen_binary (AND, GET_MODE (src),
5900 XEXP (XEXP (src, 0), 0), true_rtx);
5901 term3 = simplify_gen_binary (AND, GET_MODE (src),
5902 simplify_gen_unary (NOT, GET_MODE (src),
5903 XEXP (XEXP (src, 0), 0),
5904 GET_MODE (src)),
5905 false_rtx);
5906
5907 SUBST (SET_SRC (x),
5908 simplify_gen_binary (IOR, GET_MODE (src),
5909 simplify_gen_binary (IOR, GET_MODE (src),
5910 term1, term2),
5911 term3));
5912
5913 src = SET_SRC (x);
5914 }
5915
5916 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5917 whole thing fail. */
5918 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5919 return src;
5920 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5921 return dest;
5922 else
5923 /* Convert this into a field assignment operation, if possible. */
5924 return make_field_assignment (x);
5925 }
5926 \f
5927 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5928 result. */
5929
5930 static rtx
5931 simplify_logical (rtx x)
5932 {
5933 enum machine_mode mode = GET_MODE (x);
5934 rtx op0 = XEXP (x, 0);
5935 rtx op1 = XEXP (x, 1);
5936
5937 switch (GET_CODE (x))
5938 {
5939 case AND:
5940 /* We can call simplify_and_const_int only if we don't lose
5941 any (sign) bits when converting INTVAL (op1) to
5942 "unsigned HOST_WIDE_INT". */
5943 if (GET_CODE (op1) == CONST_INT
5944 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5945 || INTVAL (op1) > 0))
5946 {
5947 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5948 if (GET_CODE (x) != AND)
5949 return x;
5950
5951 op0 = XEXP (x, 0);
5952 op1 = XEXP (x, 1);
5953 }
5954
5955 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
5956 apply the distributive law and then the inverse distributive
5957 law to see if things simplify. */
5958 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5959 {
5960 rtx result = distribute_and_simplify_rtx (x, 0);
5961 if (result)
5962 return result;
5963 }
5964 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5965 {
5966 rtx result = distribute_and_simplify_rtx (x, 1);
5967 if (result)
5968 return result;
5969 }
5970 break;
5971
5972 case IOR:
5973 /* If we have (ior (and A B) C), apply the distributive law and then
5974 the inverse distributive law to see if things simplify. */
5975
5976 if (GET_CODE (op0) == AND)
5977 {
5978 rtx result = distribute_and_simplify_rtx (x, 0);
5979 if (result)
5980 return result;
5981 }
5982
5983 if (GET_CODE (op1) == AND)
5984 {
5985 rtx result = distribute_and_simplify_rtx (x, 1);
5986 if (result)
5987 return result;
5988 }
5989 break;
5990
5991 default:
5992 gcc_unreachable ();
5993 }
5994
5995 return x;
5996 }
5997 \f
5998 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5999 operations" because they can be replaced with two more basic operations.
6000 ZERO_EXTEND is also considered "compound" because it can be replaced with
6001 an AND operation, which is simpler, though only one operation.
6002
6003 The function expand_compound_operation is called with an rtx expression
6004 and will convert it to the appropriate shifts and AND operations,
6005 simplifying at each stage.
6006
6007 The function make_compound_operation is called to convert an expression
6008 consisting of shifts and ANDs into the equivalent compound expression.
6009 It is the inverse of this function, loosely speaking. */
6010
6011 static rtx
6012 expand_compound_operation (rtx x)
6013 {
6014 unsigned HOST_WIDE_INT pos = 0, len;
6015 int unsignedp = 0;
6016 unsigned int modewidth;
6017 rtx tem;
6018
6019 switch (GET_CODE (x))
6020 {
6021 case ZERO_EXTEND:
6022 unsignedp = 1;
6023 case SIGN_EXTEND:
6024 /* We can't necessarily use a const_int for a multiword mode;
6025 it depends on implicitly extending the value.
6026 Since we don't know the right way to extend it,
6027 we can't tell whether the implicit way is right.
6028
6029 Even for a mode that is no wider than a const_int,
6030 we can't win, because we need to sign extend one of its bits through
6031 the rest of it, and we don't know which bit. */
6032 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
6033 return x;
6034
6035 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
6036 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
6037 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
6038 reloaded. If not for that, MEM's would very rarely be safe.
6039
6040 Reject MODEs bigger than a word, because we might not be able
6041 to reference a two-register group starting with an arbitrary register
6042 (and currently gen_lowpart might crash for a SUBREG). */
6043
6044 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
6045 return x;
6046
6047 /* Reject MODEs that aren't scalar integers because turning vector
6048 or complex modes into shifts causes problems. */
6049
6050 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6051 return x;
6052
6053 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
6054 /* If the inner object has VOIDmode (the only way this can happen
6055 is if it is an ASM_OPERANDS), we can't do anything since we don't
6056 know how much masking to do. */
6057 if (len == 0)
6058 return x;
6059
6060 break;
6061
6062 case ZERO_EXTRACT:
6063 unsignedp = 1;
6064
6065 /* ... fall through ... */
6066
6067 case SIGN_EXTRACT:
6068 /* If the operand is a CLOBBER, just return it. */
6069 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
6070 return XEXP (x, 0);
6071
6072 if (GET_CODE (XEXP (x, 1)) != CONST_INT
6073 || GET_CODE (XEXP (x, 2)) != CONST_INT
6074 || GET_MODE (XEXP (x, 0)) == VOIDmode)
6075 return x;
6076
6077 /* Reject MODEs that aren't scalar integers because turning vector
6078 or complex modes into shifts causes problems. */
6079
6080 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6081 return x;
6082
6083 len = INTVAL (XEXP (x, 1));
6084 pos = INTVAL (XEXP (x, 2));
6085
6086 /* This should stay within the object being extracted, fail otherwise. */
6087 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
6088 return x;
6089
6090 if (BITS_BIG_ENDIAN)
6091 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
6092
6093 break;
6094
6095 default:
6096 return x;
6097 }
6098 /* Convert sign extension to zero extension, if we know that the high
6099 bit is not set, as this is easier to optimize. It will be converted
6100 back to cheaper alternative in make_extraction. */
6101 if (GET_CODE (x) == SIGN_EXTEND
6102 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6103 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
6104 & ~(((unsigned HOST_WIDE_INT)
6105 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
6106 >> 1))
6107 == 0)))
6108 {
6109 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
6110 rtx temp2 = expand_compound_operation (temp);
6111
6112 /* Make sure this is a profitable operation. */
6113 if (rtx_cost (x, SET, optimize_this_for_speed_p)
6114 > rtx_cost (temp2, SET, optimize_this_for_speed_p))
6115 return temp2;
6116 else if (rtx_cost (x, SET, optimize_this_for_speed_p)
6117 > rtx_cost (temp, SET, optimize_this_for_speed_p))
6118 return temp;
6119 else
6120 return x;
6121 }
6122
6123 /* We can optimize some special cases of ZERO_EXTEND. */
6124 if (GET_CODE (x) == ZERO_EXTEND)
6125 {
6126 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
6127 know that the last value didn't have any inappropriate bits
6128 set. */
6129 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6130 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6131 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6132 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
6133 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6134 return XEXP (XEXP (x, 0), 0);
6135
6136 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6137 if (GET_CODE (XEXP (x, 0)) == SUBREG
6138 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6139 && subreg_lowpart_p (XEXP (x, 0))
6140 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6141 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
6142 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6143 return SUBREG_REG (XEXP (x, 0));
6144
6145 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
6146 is a comparison and STORE_FLAG_VALUE permits. This is like
6147 the first case, but it works even when GET_MODE (x) is larger
6148 than HOST_WIDE_INT. */
6149 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6150 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6151 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
6152 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
6153 <= HOST_BITS_PER_WIDE_INT)
6154 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
6155 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6156 return XEXP (XEXP (x, 0), 0);
6157
6158 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6159 if (GET_CODE (XEXP (x, 0)) == SUBREG
6160 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6161 && subreg_lowpart_p (XEXP (x, 0))
6162 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
6163 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
6164 <= HOST_BITS_PER_WIDE_INT)
6165 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
6166 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6167 return SUBREG_REG (XEXP (x, 0));
6168
6169 }
6170
6171 /* If we reach here, we want to return a pair of shifts. The inner
6172 shift is a left shift of BITSIZE - POS - LEN bits. The outer
6173 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
6174 logical depending on the value of UNSIGNEDP.
6175
6176 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
6177 converted into an AND of a shift.
6178
6179 We must check for the case where the left shift would have a negative
6180 count. This can happen in a case like (x >> 31) & 255 on machines
6181 that can't shift by a constant. On those machines, we would first
6182 combine the shift with the AND to produce a variable-position
6183 extraction. Then the constant of 31 would be substituted in to produce
6184 a such a position. */
6185
6186 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
6187 if (modewidth + len >= pos)
6188 {
6189 enum machine_mode mode = GET_MODE (x);
6190 tem = gen_lowpart (mode, XEXP (x, 0));
6191 if (!tem || GET_CODE (tem) == CLOBBER)
6192 return x;
6193 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6194 tem, modewidth - pos - len);
6195 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
6196 mode, tem, modewidth - len);
6197 }
6198 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
6199 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
6200 simplify_shift_const (NULL_RTX, LSHIFTRT,
6201 GET_MODE (x),
6202 XEXP (x, 0), pos),
6203 ((HOST_WIDE_INT) 1 << len) - 1);
6204 else
6205 /* Any other cases we can't handle. */
6206 return x;
6207
6208 /* If we couldn't do this for some reason, return the original
6209 expression. */
6210 if (GET_CODE (tem) == CLOBBER)
6211 return x;
6212
6213 return tem;
6214 }
6215 \f
6216 /* X is a SET which contains an assignment of one object into
6217 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
6218 or certain SUBREGS). If possible, convert it into a series of
6219 logical operations.
6220
6221 We half-heartedly support variable positions, but do not at all
6222 support variable lengths. */
6223
6224 static const_rtx
6225 expand_field_assignment (const_rtx x)
6226 {
6227 rtx inner;
6228 rtx pos; /* Always counts from low bit. */
6229 int len;
6230 rtx mask, cleared, masked;
6231 enum machine_mode compute_mode;
6232
6233 /* Loop until we find something we can't simplify. */
6234 while (1)
6235 {
6236 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
6237 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
6238 {
6239 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
6240 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
6241 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
6242 }
6243 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
6244 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
6245 {
6246 inner = XEXP (SET_DEST (x), 0);
6247 len = INTVAL (XEXP (SET_DEST (x), 1));
6248 pos = XEXP (SET_DEST (x), 2);
6249
6250 /* A constant position should stay within the width of INNER. */
6251 if (GET_CODE (pos) == CONST_INT
6252 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
6253 break;
6254
6255 if (BITS_BIG_ENDIAN)
6256 {
6257 if (GET_CODE (pos) == CONST_INT)
6258 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
6259 - INTVAL (pos));
6260 else if (GET_CODE (pos) == MINUS
6261 && GET_CODE (XEXP (pos, 1)) == CONST_INT
6262 && (INTVAL (XEXP (pos, 1))
6263 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
6264 /* If position is ADJUST - X, new position is X. */
6265 pos = XEXP (pos, 0);
6266 else
6267 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
6268 GEN_INT (GET_MODE_BITSIZE (
6269 GET_MODE (inner))
6270 - len),
6271 pos);
6272 }
6273 }
6274
6275 /* A SUBREG between two modes that occupy the same numbers of words
6276 can be done by moving the SUBREG to the source. */
6277 else if (GET_CODE (SET_DEST (x)) == SUBREG
6278 /* We need SUBREGs to compute nonzero_bits properly. */
6279 && nonzero_sign_valid
6280 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
6281 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
6282 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
6283 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
6284 {
6285 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
6286 gen_lowpart
6287 (GET_MODE (SUBREG_REG (SET_DEST (x))),
6288 SET_SRC (x)));
6289 continue;
6290 }
6291 else
6292 break;
6293
6294 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6295 inner = SUBREG_REG (inner);
6296
6297 compute_mode = GET_MODE (inner);
6298
6299 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6300 if (! SCALAR_INT_MODE_P (compute_mode))
6301 {
6302 enum machine_mode imode;
6303
6304 /* Don't do anything for vector or complex integral types. */
6305 if (! FLOAT_MODE_P (compute_mode))
6306 break;
6307
6308 /* Try to find an integral mode to pun with. */
6309 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
6310 if (imode == BLKmode)
6311 break;
6312
6313 compute_mode = imode;
6314 inner = gen_lowpart (imode, inner);
6315 }
6316
6317 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6318 if (len >= HOST_BITS_PER_WIDE_INT)
6319 break;
6320
6321 /* Now compute the equivalent expression. Make a copy of INNER
6322 for the SET_DEST in case it is a MEM into which we will substitute;
6323 we don't want shared RTL in that case. */
6324 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
6325 cleared = simplify_gen_binary (AND, compute_mode,
6326 simplify_gen_unary (NOT, compute_mode,
6327 simplify_gen_binary (ASHIFT,
6328 compute_mode,
6329 mask, pos),
6330 compute_mode),
6331 inner);
6332 masked = simplify_gen_binary (ASHIFT, compute_mode,
6333 simplify_gen_binary (
6334 AND, compute_mode,
6335 gen_lowpart (compute_mode, SET_SRC (x)),
6336 mask),
6337 pos);
6338
6339 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
6340 simplify_gen_binary (IOR, compute_mode,
6341 cleared, masked));
6342 }
6343
6344 return x;
6345 }
6346 \f
6347 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6348 it is an RTX that represents a variable starting position; otherwise,
6349 POS is the (constant) starting bit position (counted from the LSB).
6350
6351 UNSIGNEDP is nonzero for an unsigned reference and zero for a
6352 signed reference.
6353
6354 IN_DEST is nonzero if this is a reference in the destination of a
6355 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6356 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6357 be used.
6358
6359 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6360 ZERO_EXTRACT should be built even for bits starting at bit 0.
6361
6362 MODE is the desired mode of the result (if IN_DEST == 0).
6363
6364 The result is an RTX for the extraction or NULL_RTX if the target
6365 can't handle it. */
6366
6367 static rtx
6368 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
6369 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
6370 int in_dest, int in_compare)
6371 {
6372 /* This mode describes the size of the storage area
6373 to fetch the overall value from. Within that, we
6374 ignore the POS lowest bits, etc. */
6375 enum machine_mode is_mode = GET_MODE (inner);
6376 enum machine_mode inner_mode;
6377 enum machine_mode wanted_inner_mode;
6378 enum machine_mode wanted_inner_reg_mode = word_mode;
6379 enum machine_mode pos_mode = word_mode;
6380 enum machine_mode extraction_mode = word_mode;
6381 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6382 rtx new_rtx = 0;
6383 rtx orig_pos_rtx = pos_rtx;
6384 HOST_WIDE_INT orig_pos;
6385
6386 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6387 {
6388 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
6389 consider just the QI as the memory to extract from.
6390 The subreg adds or removes high bits; its mode is
6391 irrelevant to the meaning of this extraction,
6392 since POS and LEN count from the lsb. */
6393 if (MEM_P (SUBREG_REG (inner)))
6394 is_mode = GET_MODE (SUBREG_REG (inner));
6395 inner = SUBREG_REG (inner);
6396 }
6397 else if (GET_CODE (inner) == ASHIFT
6398 && GET_CODE (XEXP (inner, 1)) == CONST_INT
6399 && pos_rtx == 0 && pos == 0
6400 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
6401 {
6402 /* We're extracting the least significant bits of an rtx
6403 (ashift X (const_int C)), where LEN > C. Extract the
6404 least significant (LEN - C) bits of X, giving an rtx
6405 whose mode is MODE, then shift it left C times. */
6406 new_rtx = make_extraction (mode, XEXP (inner, 0),
6407 0, 0, len - INTVAL (XEXP (inner, 1)),
6408 unsignedp, in_dest, in_compare);
6409 if (new_rtx != 0)
6410 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
6411 }
6412
6413 inner_mode = GET_MODE (inner);
6414
6415 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
6416 pos = INTVAL (pos_rtx), pos_rtx = 0;
6417
6418 /* See if this can be done without an extraction. We never can if the
6419 width of the field is not the same as that of some integer mode. For
6420 registers, we can only avoid the extraction if the position is at the
6421 low-order bit and this is either not in the destination or we have the
6422 appropriate STRICT_LOW_PART operation available.
6423
6424 For MEM, we can avoid an extract if the field starts on an appropriate
6425 boundary and we can change the mode of the memory reference. */
6426
6427 if (tmode != BLKmode
6428 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6429 && !MEM_P (inner)
6430 && (inner_mode == tmode
6431 || !REG_P (inner)
6432 || TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
6433 GET_MODE_BITSIZE (inner_mode))
6434 || reg_truncated_to_mode (tmode, inner))
6435 && (! in_dest
6436 || (REG_P (inner)
6437 && have_insn_for (STRICT_LOW_PART, tmode))))
6438 || (MEM_P (inner) && pos_rtx == 0
6439 && (pos
6440 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6441 : BITS_PER_UNIT)) == 0
6442 /* We can't do this if we are widening INNER_MODE (it
6443 may not be aligned, for one thing). */
6444 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6445 && (inner_mode == tmode
6446 || (! mode_dependent_address_p (XEXP (inner, 0))
6447 && ! MEM_VOLATILE_P (inner))))))
6448 {
6449 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6450 field. If the original and current mode are the same, we need not
6451 adjust the offset. Otherwise, we do if bytes big endian.
6452
6453 If INNER is not a MEM, get a piece consisting of just the field
6454 of interest (in this case POS % BITS_PER_WORD must be 0). */
6455
6456 if (MEM_P (inner))
6457 {
6458 HOST_WIDE_INT offset;
6459
6460 /* POS counts from lsb, but make OFFSET count in memory order. */
6461 if (BYTES_BIG_ENDIAN)
6462 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6463 else
6464 offset = pos / BITS_PER_UNIT;
6465
6466 new_rtx = adjust_address_nv (inner, tmode, offset);
6467 }
6468 else if (REG_P (inner))
6469 {
6470 if (tmode != inner_mode)
6471 {
6472 /* We can't call gen_lowpart in a DEST since we
6473 always want a SUBREG (see below) and it would sometimes
6474 return a new hard register. */
6475 if (pos || in_dest)
6476 {
6477 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6478
6479 if (WORDS_BIG_ENDIAN
6480 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6481 final_word = ((GET_MODE_SIZE (inner_mode)
6482 - GET_MODE_SIZE (tmode))
6483 / UNITS_PER_WORD) - final_word;
6484
6485 final_word *= UNITS_PER_WORD;
6486 if (BYTES_BIG_ENDIAN &&
6487 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6488 final_word += (GET_MODE_SIZE (inner_mode)
6489 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6490
6491 /* Avoid creating invalid subregs, for example when
6492 simplifying (x>>32)&255. */
6493 if (!validate_subreg (tmode, inner_mode, inner, final_word))
6494 return NULL_RTX;
6495
6496 new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
6497 }
6498 else
6499 new_rtx = gen_lowpart (tmode, inner);
6500 }
6501 else
6502 new_rtx = inner;
6503 }
6504 else
6505 new_rtx = force_to_mode (inner, tmode,
6506 len >= HOST_BITS_PER_WIDE_INT
6507 ? ~(unsigned HOST_WIDE_INT) 0
6508 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6509 0);
6510
6511 /* If this extraction is going into the destination of a SET,
6512 make a STRICT_LOW_PART unless we made a MEM. */
6513
6514 if (in_dest)
6515 return (MEM_P (new_rtx) ? new_rtx
6516 : (GET_CODE (new_rtx) != SUBREG
6517 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6518 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
6519
6520 if (mode == tmode)
6521 return new_rtx;
6522
6523 if (GET_CODE (new_rtx) == CONST_INT)
6524 return gen_int_mode (INTVAL (new_rtx), mode);
6525
6526 /* If we know that no extraneous bits are set, and that the high
6527 bit is not set, convert the extraction to the cheaper of
6528 sign and zero extension, that are equivalent in these cases. */
6529 if (flag_expensive_optimizations
6530 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6531 && ((nonzero_bits (new_rtx, tmode)
6532 & ~(((unsigned HOST_WIDE_INT)
6533 GET_MODE_MASK (tmode))
6534 >> 1))
6535 == 0)))
6536 {
6537 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
6538 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
6539
6540 /* Prefer ZERO_EXTENSION, since it gives more information to
6541 backends. */
6542 if (rtx_cost (temp, SET, optimize_this_for_speed_p)
6543 <= rtx_cost (temp1, SET, optimize_this_for_speed_p))
6544 return temp;
6545 return temp1;
6546 }
6547
6548 /* Otherwise, sign- or zero-extend unless we already are in the
6549 proper mode. */
6550
6551 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6552 mode, new_rtx));
6553 }
6554
6555 /* Unless this is a COMPARE or we have a funny memory reference,
6556 don't do anything with zero-extending field extracts starting at
6557 the low-order bit since they are simple AND operations. */
6558 if (pos_rtx == 0 && pos == 0 && ! in_dest
6559 && ! in_compare && unsignedp)
6560 return 0;
6561
6562 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
6563 if the position is not a constant and the length is not 1. In all
6564 other cases, we would only be going outside our object in cases when
6565 an original shift would have been undefined. */
6566 if (MEM_P (inner)
6567 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6568 || (pos_rtx != 0 && len != 1)))
6569 return 0;
6570
6571 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6572 and the mode for the result. */
6573 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6574 {
6575 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6576 pos_mode = mode_for_extraction (EP_insv, 2);
6577 extraction_mode = mode_for_extraction (EP_insv, 3);
6578 }
6579
6580 if (! in_dest && unsignedp
6581 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6582 {
6583 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6584 pos_mode = mode_for_extraction (EP_extzv, 3);
6585 extraction_mode = mode_for_extraction (EP_extzv, 0);
6586 }
6587
6588 if (! in_dest && ! unsignedp
6589 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6590 {
6591 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6592 pos_mode = mode_for_extraction (EP_extv, 3);
6593 extraction_mode = mode_for_extraction (EP_extv, 0);
6594 }
6595
6596 /* Never narrow an object, since that might not be safe. */
6597
6598 if (mode != VOIDmode
6599 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6600 extraction_mode = mode;
6601
6602 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6603 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6604 pos_mode = GET_MODE (pos_rtx);
6605
6606 /* If this is not from memory, the desired mode is the preferred mode
6607 for an extraction pattern's first input operand, or word_mode if there
6608 is none. */
6609 if (!MEM_P (inner))
6610 wanted_inner_mode = wanted_inner_reg_mode;
6611 else
6612 {
6613 /* Be careful not to go beyond the extracted object and maintain the
6614 natural alignment of the memory. */
6615 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
6616 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
6617 > GET_MODE_BITSIZE (wanted_inner_mode))
6618 {
6619 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
6620 gcc_assert (wanted_inner_mode != VOIDmode);
6621 }
6622
6623 /* If we have to change the mode of memory and cannot, the desired mode
6624 is EXTRACTION_MODE. */
6625 if (inner_mode != wanted_inner_mode
6626 && (mode_dependent_address_p (XEXP (inner, 0))
6627 || MEM_VOLATILE_P (inner)
6628 || pos_rtx))
6629 wanted_inner_mode = extraction_mode;
6630 }
6631
6632 orig_pos = pos;
6633
6634 if (BITS_BIG_ENDIAN)
6635 {
6636 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6637 BITS_BIG_ENDIAN style. If position is constant, compute new
6638 position. Otherwise, build subtraction.
6639 Note that POS is relative to the mode of the original argument.
6640 If it's a MEM we need to recompute POS relative to that.
6641 However, if we're extracting from (or inserting into) a register,
6642 we want to recompute POS relative to wanted_inner_mode. */
6643 int width = (MEM_P (inner)
6644 ? GET_MODE_BITSIZE (is_mode)
6645 : GET_MODE_BITSIZE (wanted_inner_mode));
6646
6647 if (pos_rtx == 0)
6648 pos = width - len - pos;
6649 else
6650 pos_rtx
6651 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6652 /* POS may be less than 0 now, but we check for that below.
6653 Note that it can only be less than 0 if !MEM_P (inner). */
6654 }
6655
6656 /* If INNER has a wider mode, and this is a constant extraction, try to
6657 make it smaller and adjust the byte to point to the byte containing
6658 the value. */
6659 if (wanted_inner_mode != VOIDmode
6660 && inner_mode != wanted_inner_mode
6661 && ! pos_rtx
6662 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6663 && MEM_P (inner)
6664 && ! mode_dependent_address_p (XEXP (inner, 0))
6665 && ! MEM_VOLATILE_P (inner))
6666 {
6667 int offset = 0;
6668
6669 /* The computations below will be correct if the machine is big
6670 endian in both bits and bytes or little endian in bits and bytes.
6671 If it is mixed, we must adjust. */
6672
6673 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6674 adjust OFFSET to compensate. */
6675 if (BYTES_BIG_ENDIAN
6676 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6677 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6678
6679 /* We can now move to the desired byte. */
6680 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
6681 * GET_MODE_SIZE (wanted_inner_mode);
6682 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6683
6684 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6685 && is_mode != wanted_inner_mode)
6686 offset = (GET_MODE_SIZE (is_mode)
6687 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6688
6689 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6690 }
6691
6692 /* If INNER is not memory, we can always get it into the proper mode. If we
6693 are changing its mode, POS must be a constant and smaller than the size
6694 of the new mode. */
6695 else if (!MEM_P (inner))
6696 {
6697 if (GET_MODE (inner) != wanted_inner_mode
6698 && (pos_rtx != 0
6699 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6700 return 0;
6701
6702 if (orig_pos < 0)
6703 return 0;
6704
6705 inner = force_to_mode (inner, wanted_inner_mode,
6706 pos_rtx
6707 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6708 ? ~(unsigned HOST_WIDE_INT) 0
6709 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6710 << orig_pos),
6711 0);
6712 }
6713
6714 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6715 have to zero extend. Otherwise, we can just use a SUBREG. */
6716 if (pos_rtx != 0
6717 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6718 {
6719 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6720
6721 /* If we know that no extraneous bits are set, and that the high
6722 bit is not set, convert extraction to cheaper one - either
6723 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6724 cases. */
6725 if (flag_expensive_optimizations
6726 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6727 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6728 & ~(((unsigned HOST_WIDE_INT)
6729 GET_MODE_MASK (GET_MODE (pos_rtx)))
6730 >> 1))
6731 == 0)))
6732 {
6733 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6734
6735 /* Prefer ZERO_EXTENSION, since it gives more information to
6736 backends. */
6737 if (rtx_cost (temp1, SET, optimize_this_for_speed_p)
6738 < rtx_cost (temp, SET, optimize_this_for_speed_p))
6739 temp = temp1;
6740 }
6741 pos_rtx = temp;
6742 }
6743 else if (pos_rtx != 0
6744 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6745 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
6746
6747 /* Make POS_RTX unless we already have it and it is correct. If we don't
6748 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6749 be a CONST_INT. */
6750 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6751 pos_rtx = orig_pos_rtx;
6752
6753 else if (pos_rtx == 0)
6754 pos_rtx = GEN_INT (pos);
6755
6756 /* Make the required operation. See if we can use existing rtx. */
6757 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6758 extraction_mode, inner, GEN_INT (len), pos_rtx);
6759 if (! in_dest)
6760 new_rtx = gen_lowpart (mode, new_rtx);
6761
6762 return new_rtx;
6763 }
6764 \f
6765 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6766 with any other operations in X. Return X without that shift if so. */
6767
6768 static rtx
6769 extract_left_shift (rtx x, int count)
6770 {
6771 enum rtx_code code = GET_CODE (x);
6772 enum machine_mode mode = GET_MODE (x);
6773 rtx tem;
6774
6775 switch (code)
6776 {
6777 case ASHIFT:
6778 /* This is the shift itself. If it is wide enough, we will return
6779 either the value being shifted if the shift count is equal to
6780 COUNT or a shift for the difference. */
6781 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6782 && INTVAL (XEXP (x, 1)) >= count)
6783 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6784 INTVAL (XEXP (x, 1)) - count);
6785 break;
6786
6787 case NEG: case NOT:
6788 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6789 return simplify_gen_unary (code, mode, tem, mode);
6790
6791 break;
6792
6793 case PLUS: case IOR: case XOR: case AND:
6794 /* If we can safely shift this constant and we find the inner shift,
6795 make a new operation. */
6796 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6797 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6798 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6799 return simplify_gen_binary (code, mode, tem,
6800 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6801
6802 break;
6803
6804 default:
6805 break;
6806 }
6807
6808 return 0;
6809 }
6810 \f
6811 /* Look at the expression rooted at X. Look for expressions
6812 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6813 Form these expressions.
6814
6815 Return the new rtx, usually just X.
6816
6817 Also, for machines like the VAX that don't have logical shift insns,
6818 try to convert logical to arithmetic shift operations in cases where
6819 they are equivalent. This undoes the canonicalizations to logical
6820 shifts done elsewhere.
6821
6822 We try, as much as possible, to re-use rtl expressions to save memory.
6823
6824 IN_CODE says what kind of expression we are processing. Normally, it is
6825 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6826 being kludges), it is MEM. When processing the arguments of a comparison
6827 or a COMPARE against zero, it is COMPARE. */
6828
6829 static rtx
6830 make_compound_operation (rtx x, enum rtx_code in_code)
6831 {
6832 enum rtx_code code = GET_CODE (x);
6833 enum machine_mode mode = GET_MODE (x);
6834 int mode_width = GET_MODE_BITSIZE (mode);
6835 rtx rhs, lhs;
6836 enum rtx_code next_code;
6837 int i, j;
6838 rtx new_rtx = 0;
6839 rtx tem;
6840 const char *fmt;
6841
6842 /* Select the code to be used in recursive calls. Once we are inside an
6843 address, we stay there. If we have a comparison, set to COMPARE,
6844 but once inside, go back to our default of SET. */
6845
6846 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6847 : ((code == COMPARE || COMPARISON_P (x))
6848 && XEXP (x, 1) == const0_rtx) ? COMPARE
6849 : in_code == COMPARE ? SET : in_code);
6850
6851 /* Process depending on the code of this operation. If NEW is set
6852 nonzero, it will be returned. */
6853
6854 switch (code)
6855 {
6856 case ASHIFT:
6857 /* Convert shifts by constants into multiplications if inside
6858 an address. */
6859 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6860 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6861 && INTVAL (XEXP (x, 1)) >= 0)
6862 {
6863 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
6864 new_rtx = gen_rtx_MULT (mode, new_rtx,
6865 GEN_INT ((HOST_WIDE_INT) 1
6866 << INTVAL (XEXP (x, 1))));
6867 }
6868 break;
6869
6870 case AND:
6871 /* If the second operand is not a constant, we can't do anything
6872 with it. */
6873 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6874 break;
6875
6876 /* If the constant is a power of two minus one and the first operand
6877 is a logical right shift, make an extraction. */
6878 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6879 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6880 {
6881 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6882 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
6883 0, in_code == COMPARE);
6884 }
6885
6886 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6887 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6888 && subreg_lowpart_p (XEXP (x, 0))
6889 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6890 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6891 {
6892 new_rtx = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6893 next_code);
6894 new_rtx = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new_rtx, 0,
6895 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6896 0, in_code == COMPARE);
6897 }
6898 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6899 else if ((GET_CODE (XEXP (x, 0)) == XOR
6900 || GET_CODE (XEXP (x, 0)) == IOR)
6901 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6902 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6903 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6904 {
6905 /* Apply the distributive law, and then try to make extractions. */
6906 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6907 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6908 XEXP (x, 1)),
6909 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6910 XEXP (x, 1)));
6911 new_rtx = make_compound_operation (new_rtx, in_code);
6912 }
6913
6914 /* If we are have (and (rotate X C) M) and C is larger than the number
6915 of bits in M, this is an extraction. */
6916
6917 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6918 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6919 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6920 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6921 {
6922 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6923 new_rtx = make_extraction (mode, new_rtx,
6924 (GET_MODE_BITSIZE (mode)
6925 - INTVAL (XEXP (XEXP (x, 0), 1))),
6926 NULL_RTX, i, 1, 0, in_code == COMPARE);
6927 }
6928
6929 /* On machines without logical shifts, if the operand of the AND is
6930 a logical shift and our mask turns off all the propagated sign
6931 bits, we can replace the logical shift with an arithmetic shift. */
6932 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6933 && !have_insn_for (LSHIFTRT, mode)
6934 && have_insn_for (ASHIFTRT, mode)
6935 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6936 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6937 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6938 && mode_width <= HOST_BITS_PER_WIDE_INT)
6939 {
6940 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6941
6942 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6943 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6944 SUBST (XEXP (x, 0),
6945 gen_rtx_ASHIFTRT (mode,
6946 make_compound_operation
6947 (XEXP (XEXP (x, 0), 0), next_code),
6948 XEXP (XEXP (x, 0), 1)));
6949 }
6950
6951 /* If the constant is one less than a power of two, this might be
6952 representable by an extraction even if no shift is present.
6953 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6954 we are in a COMPARE. */
6955 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6956 new_rtx = make_extraction (mode,
6957 make_compound_operation (XEXP (x, 0),
6958 next_code),
6959 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6960
6961 /* If we are in a comparison and this is an AND with a power of two,
6962 convert this into the appropriate bit extract. */
6963 else if (in_code == COMPARE
6964 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6965 new_rtx = make_extraction (mode,
6966 make_compound_operation (XEXP (x, 0),
6967 next_code),
6968 i, NULL_RTX, 1, 1, 0, 1);
6969
6970 break;
6971
6972 case LSHIFTRT:
6973 /* If the sign bit is known to be zero, replace this with an
6974 arithmetic shift. */
6975 if (have_insn_for (ASHIFTRT, mode)
6976 && ! have_insn_for (LSHIFTRT, mode)
6977 && mode_width <= HOST_BITS_PER_WIDE_INT
6978 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6979 {
6980 new_rtx = gen_rtx_ASHIFTRT (mode,
6981 make_compound_operation (XEXP (x, 0),
6982 next_code),
6983 XEXP (x, 1));
6984 break;
6985 }
6986
6987 /* ... fall through ... */
6988
6989 case ASHIFTRT:
6990 lhs = XEXP (x, 0);
6991 rhs = XEXP (x, 1);
6992
6993 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6994 this is a SIGN_EXTRACT. */
6995 if (GET_CODE (rhs) == CONST_INT
6996 && GET_CODE (lhs) == ASHIFT
6997 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6998 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6999 {
7000 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
7001 new_rtx = make_extraction (mode, new_rtx,
7002 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
7003 NULL_RTX, mode_width - INTVAL (rhs),
7004 code == LSHIFTRT, 0, in_code == COMPARE);
7005 break;
7006 }
7007
7008 /* See if we have operations between an ASHIFTRT and an ASHIFT.
7009 If so, try to merge the shifts into a SIGN_EXTEND. We could
7010 also do this for some cases of SIGN_EXTRACT, but it doesn't
7011 seem worth the effort; the case checked for occurs on Alpha. */
7012
7013 if (!OBJECT_P (lhs)
7014 && ! (GET_CODE (lhs) == SUBREG
7015 && (OBJECT_P (SUBREG_REG (lhs))))
7016 && GET_CODE (rhs) == CONST_INT
7017 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
7018 && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
7019 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
7020 0, NULL_RTX, mode_width - INTVAL (rhs),
7021 code == LSHIFTRT, 0, in_code == COMPARE);
7022
7023 break;
7024
7025 case SUBREG:
7026 /* Call ourselves recursively on the inner expression. If we are
7027 narrowing the object and it has a different RTL code from
7028 what it originally did, do this SUBREG as a force_to_mode. */
7029
7030 tem = make_compound_operation (SUBREG_REG (x), in_code);
7031
7032 {
7033 rtx simplified;
7034 simplified = simplify_subreg (GET_MODE (x), tem, GET_MODE (tem),
7035 SUBREG_BYTE (x));
7036
7037 if (simplified)
7038 tem = simplified;
7039
7040 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
7041 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
7042 && subreg_lowpart_p (x))
7043 {
7044 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
7045 0);
7046
7047 /* If we have something other than a SUBREG, we might have
7048 done an expansion, so rerun ourselves. */
7049 if (GET_CODE (newer) != SUBREG)
7050 newer = make_compound_operation (newer, in_code);
7051
7052 return newer;
7053 }
7054
7055 if (simplified)
7056 return tem;
7057 }
7058 break;
7059
7060 default:
7061 break;
7062 }
7063
7064 if (new_rtx)
7065 {
7066 x = gen_lowpart (mode, new_rtx);
7067 code = GET_CODE (x);
7068 }
7069
7070 /* Now recursively process each operand of this operation. */
7071 fmt = GET_RTX_FORMAT (code);
7072 for (i = 0; i < GET_RTX_LENGTH (code); i++)
7073 if (fmt[i] == 'e')
7074 {
7075 new_rtx = make_compound_operation (XEXP (x, i), next_code);
7076 SUBST (XEXP (x, i), new_rtx);
7077 }
7078 else if (fmt[i] == 'E')
7079 for (j = 0; j < XVECLEN (x, i); j++)
7080 {
7081 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
7082 SUBST (XVECEXP (x, i, j), new_rtx);
7083 }
7084
7085 /* If this is a commutative operation, the changes to the operands
7086 may have made it noncanonical. */
7087 if (COMMUTATIVE_ARITH_P (x)
7088 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
7089 {
7090 tem = XEXP (x, 0);
7091 SUBST (XEXP (x, 0), XEXP (x, 1));
7092 SUBST (XEXP (x, 1), tem);
7093 }
7094
7095 return x;
7096 }
7097 \f
7098 /* Given M see if it is a value that would select a field of bits
7099 within an item, but not the entire word. Return -1 if not.
7100 Otherwise, return the starting position of the field, where 0 is the
7101 low-order bit.
7102
7103 *PLEN is set to the length of the field. */
7104
7105 static int
7106 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
7107 {
7108 /* Get the bit number of the first 1 bit from the right, -1 if none. */
7109 int pos = exact_log2 (m & -m);
7110 int len = 0;
7111
7112 if (pos >= 0)
7113 /* Now shift off the low-order zero bits and see if we have a
7114 power of two minus 1. */
7115 len = exact_log2 ((m >> pos) + 1);
7116
7117 if (len <= 0)
7118 pos = -1;
7119
7120 *plen = len;
7121 return pos;
7122 }
7123 \f
7124 /* If X refers to a register that equals REG in value, replace these
7125 references with REG. */
7126 static rtx
7127 canon_reg_for_combine (rtx x, rtx reg)
7128 {
7129 rtx op0, op1, op2;
7130 const char *fmt;
7131 int i;
7132 bool copied;
7133
7134 enum rtx_code code = GET_CODE (x);
7135 switch (GET_RTX_CLASS (code))
7136 {
7137 case RTX_UNARY:
7138 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7139 if (op0 != XEXP (x, 0))
7140 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
7141 GET_MODE (reg));
7142 break;
7143
7144 case RTX_BIN_ARITH:
7145 case RTX_COMM_ARITH:
7146 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7147 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7148 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7149 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
7150 break;
7151
7152 case RTX_COMPARE:
7153 case RTX_COMM_COMPARE:
7154 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7155 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7156 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7157 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
7158 GET_MODE (op0), op0, op1);
7159 break;
7160
7161 case RTX_TERNARY:
7162 case RTX_BITFIELD_OPS:
7163 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7164 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7165 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
7166 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
7167 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
7168 GET_MODE (op0), op0, op1, op2);
7169
7170 case RTX_OBJ:
7171 if (REG_P (x))
7172 {
7173 if (rtx_equal_p (get_last_value (reg), x)
7174 || rtx_equal_p (reg, get_last_value (x)))
7175 return reg;
7176 else
7177 break;
7178 }
7179
7180 /* fall through */
7181
7182 default:
7183 fmt = GET_RTX_FORMAT (code);
7184 copied = false;
7185 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7186 if (fmt[i] == 'e')
7187 {
7188 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
7189 if (op != XEXP (x, i))
7190 {
7191 if (!copied)
7192 {
7193 copied = true;
7194 x = copy_rtx (x);
7195 }
7196 XEXP (x, i) = op;
7197 }
7198 }
7199 else if (fmt[i] == 'E')
7200 {
7201 int j;
7202 for (j = 0; j < XVECLEN (x, i); j++)
7203 {
7204 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
7205 if (op != XVECEXP (x, i, j))
7206 {
7207 if (!copied)
7208 {
7209 copied = true;
7210 x = copy_rtx (x);
7211 }
7212 XVECEXP (x, i, j) = op;
7213 }
7214 }
7215 }
7216
7217 break;
7218 }
7219
7220 return x;
7221 }
7222
7223 /* Return X converted to MODE. If the value is already truncated to
7224 MODE we can just return a subreg even though in the general case we
7225 would need an explicit truncation. */
7226
7227 static rtx
7228 gen_lowpart_or_truncate (enum machine_mode mode, rtx x)
7229 {
7230 if (GET_MODE_SIZE (GET_MODE (x)) <= GET_MODE_SIZE (mode)
7231 || TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
7232 GET_MODE_BITSIZE (GET_MODE (x)))
7233 || (REG_P (x) && reg_truncated_to_mode (mode, x)))
7234 return gen_lowpart (mode, x);
7235 else
7236 return simplify_gen_unary (TRUNCATE, mode, x, GET_MODE (x));
7237 }
7238
7239 /* See if X can be simplified knowing that we will only refer to it in
7240 MODE and will only refer to those bits that are nonzero in MASK.
7241 If other bits are being computed or if masking operations are done
7242 that select a superset of the bits in MASK, they can sometimes be
7243 ignored.
7244
7245 Return a possibly simplified expression, but always convert X to
7246 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
7247
7248 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
7249 are all off in X. This is used when X will be complemented, by either
7250 NOT, NEG, or XOR. */
7251
7252 static rtx
7253 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
7254 int just_select)
7255 {
7256 enum rtx_code code = GET_CODE (x);
7257 int next_select = just_select || code == XOR || code == NOT || code == NEG;
7258 enum machine_mode op_mode;
7259 unsigned HOST_WIDE_INT fuller_mask, nonzero;
7260 rtx op0, op1, temp;
7261
7262 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
7263 code below will do the wrong thing since the mode of such an
7264 expression is VOIDmode.
7265
7266 Also do nothing if X is a CLOBBER; this can happen if X was
7267 the return value from a call to gen_lowpart. */
7268 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
7269 return x;
7270
7271 /* We want to perform the operation is its present mode unless we know
7272 that the operation is valid in MODE, in which case we do the operation
7273 in MODE. */
7274 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
7275 && have_insn_for (code, mode))
7276 ? mode : GET_MODE (x));
7277
7278 /* It is not valid to do a right-shift in a narrower mode
7279 than the one it came in with. */
7280 if ((code == LSHIFTRT || code == ASHIFTRT)
7281 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
7282 op_mode = GET_MODE (x);
7283
7284 /* Truncate MASK to fit OP_MODE. */
7285 if (op_mode)
7286 mask &= GET_MODE_MASK (op_mode);
7287
7288 /* When we have an arithmetic operation, or a shift whose count we
7289 do not know, we need to assume that all bits up to the highest-order
7290 bit in MASK will be needed. This is how we form such a mask. */
7291 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
7292 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
7293 else
7294 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
7295 - 1);
7296
7297 /* Determine what bits of X are guaranteed to be (non)zero. */
7298 nonzero = nonzero_bits (x, mode);
7299
7300 /* If none of the bits in X are needed, return a zero. */
7301 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
7302 x = const0_rtx;
7303
7304 /* If X is a CONST_INT, return a new one. Do this here since the
7305 test below will fail. */
7306 if (GET_CODE (x) == CONST_INT)
7307 {
7308 if (SCALAR_INT_MODE_P (mode))
7309 return gen_int_mode (INTVAL (x) & mask, mode);
7310 else
7311 {
7312 x = GEN_INT (INTVAL (x) & mask);
7313 return gen_lowpart_common (mode, x);
7314 }
7315 }
7316
7317 /* If X is narrower than MODE and we want all the bits in X's mode, just
7318 get X in the proper mode. */
7319 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
7320 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
7321 return gen_lowpart (mode, x);
7322
7323 switch (code)
7324 {
7325 case CLOBBER:
7326 /* If X is a (clobber (const_int)), return it since we know we are
7327 generating something that won't match. */
7328 return x;
7329
7330 case SIGN_EXTEND:
7331 case ZERO_EXTEND:
7332 case ZERO_EXTRACT:
7333 case SIGN_EXTRACT:
7334 x = expand_compound_operation (x);
7335 if (GET_CODE (x) != code)
7336 return force_to_mode (x, mode, mask, next_select);
7337 break;
7338
7339 case SUBREG:
7340 if (subreg_lowpart_p (x)
7341 /* We can ignore the effect of this SUBREG if it narrows the mode or
7342 if the constant masks to zero all the bits the mode doesn't
7343 have. */
7344 && ((GET_MODE_SIZE (GET_MODE (x))
7345 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
7346 || (0 == (mask
7347 & GET_MODE_MASK (GET_MODE (x))
7348 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
7349 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
7350 break;
7351
7352 case AND:
7353 /* If this is an AND with a constant, convert it into an AND
7354 whose constant is the AND of that constant with MASK. If it
7355 remains an AND of MASK, delete it since it is redundant. */
7356
7357 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
7358 {
7359 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
7360 mask & INTVAL (XEXP (x, 1)));
7361
7362 /* If X is still an AND, see if it is an AND with a mask that
7363 is just some low-order bits. If so, and it is MASK, we don't
7364 need it. */
7365
7366 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
7367 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
7368 == mask))
7369 x = XEXP (x, 0);
7370
7371 /* If it remains an AND, try making another AND with the bits
7372 in the mode mask that aren't in MASK turned on. If the
7373 constant in the AND is wide enough, this might make a
7374 cheaper constant. */
7375
7376 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
7377 && GET_MODE_MASK (GET_MODE (x)) != mask
7378 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
7379 {
7380 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
7381 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
7382 int width = GET_MODE_BITSIZE (GET_MODE (x));
7383 rtx y;
7384
7385 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
7386 number, sign extend it. */
7387 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
7388 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7389 cval |= (HOST_WIDE_INT) -1 << width;
7390
7391 y = simplify_gen_binary (AND, GET_MODE (x),
7392 XEXP (x, 0), GEN_INT (cval));
7393 if (rtx_cost (y, SET, optimize_this_for_speed_p)
7394 < rtx_cost (x, SET, optimize_this_for_speed_p))
7395 x = y;
7396 }
7397
7398 break;
7399 }
7400
7401 goto binop;
7402
7403 case PLUS:
7404 /* In (and (plus FOO C1) M), if M is a mask that just turns off
7405 low-order bits (as in an alignment operation) and FOO is already
7406 aligned to that boundary, mask C1 to that boundary as well.
7407 This may eliminate that PLUS and, later, the AND. */
7408
7409 {
7410 unsigned int width = GET_MODE_BITSIZE (mode);
7411 unsigned HOST_WIDE_INT smask = mask;
7412
7413 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
7414 number, sign extend it. */
7415
7416 if (width < HOST_BITS_PER_WIDE_INT
7417 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7418 smask |= (HOST_WIDE_INT) -1 << width;
7419
7420 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7421 && exact_log2 (- smask) >= 0
7422 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
7423 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
7424 return force_to_mode (plus_constant (XEXP (x, 0),
7425 (INTVAL (XEXP (x, 1)) & smask)),
7426 mode, smask, next_select);
7427 }
7428
7429 /* ... fall through ... */
7430
7431 case MULT:
7432 /* For PLUS, MINUS and MULT, we need any bits less significant than the
7433 most significant bit in MASK since carries from those bits will
7434 affect the bits we are interested in. */
7435 mask = fuller_mask;
7436 goto binop;
7437
7438 case MINUS:
7439 /* If X is (minus C Y) where C's least set bit is larger than any bit
7440 in the mask, then we may replace with (neg Y). */
7441 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7442 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
7443 & -INTVAL (XEXP (x, 0))))
7444 > mask))
7445 {
7446 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
7447 GET_MODE (x));
7448 return force_to_mode (x, mode, mask, next_select);
7449 }
7450
7451 /* Similarly, if C contains every bit in the fuller_mask, then we may
7452 replace with (not Y). */
7453 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7454 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
7455 == INTVAL (XEXP (x, 0))))
7456 {
7457 x = simplify_gen_unary (NOT, GET_MODE (x),
7458 XEXP (x, 1), GET_MODE (x));
7459 return force_to_mode (x, mode, mask, next_select);
7460 }
7461
7462 mask = fuller_mask;
7463 goto binop;
7464
7465 case IOR:
7466 case XOR:
7467 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
7468 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
7469 operation which may be a bitfield extraction. Ensure that the
7470 constant we form is not wider than the mode of X. */
7471
7472 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7473 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7474 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7475 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7476 && GET_CODE (XEXP (x, 1)) == CONST_INT
7477 && ((INTVAL (XEXP (XEXP (x, 0), 1))
7478 + floor_log2 (INTVAL (XEXP (x, 1))))
7479 < GET_MODE_BITSIZE (GET_MODE (x)))
7480 && (INTVAL (XEXP (x, 1))
7481 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
7482 {
7483 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
7484 << INTVAL (XEXP (XEXP (x, 0), 1)));
7485 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
7486 XEXP (XEXP (x, 0), 0), temp);
7487 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
7488 XEXP (XEXP (x, 0), 1));
7489 return force_to_mode (x, mode, mask, next_select);
7490 }
7491
7492 binop:
7493 /* For most binary operations, just propagate into the operation and
7494 change the mode if we have an operation of that mode. */
7495
7496 op0 = gen_lowpart_or_truncate (op_mode,
7497 force_to_mode (XEXP (x, 0), mode, mask,
7498 next_select));
7499 op1 = gen_lowpart_or_truncate (op_mode,
7500 force_to_mode (XEXP (x, 1), mode, mask,
7501 next_select));
7502
7503 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7504 x = simplify_gen_binary (code, op_mode, op0, op1);
7505 break;
7506
7507 case ASHIFT:
7508 /* For left shifts, do the same, but just for the first operand.
7509 However, we cannot do anything with shifts where we cannot
7510 guarantee that the counts are smaller than the size of the mode
7511 because such a count will have a different meaning in a
7512 wider mode. */
7513
7514 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
7515 && INTVAL (XEXP (x, 1)) >= 0
7516 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
7517 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
7518 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
7519 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
7520 break;
7521
7522 /* If the shift count is a constant and we can do arithmetic in
7523 the mode of the shift, refine which bits we need. Otherwise, use the
7524 conservative form of the mask. */
7525 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7526 && INTVAL (XEXP (x, 1)) >= 0
7527 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7528 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7529 mask >>= INTVAL (XEXP (x, 1));
7530 else
7531 mask = fuller_mask;
7532
7533 op0 = gen_lowpart_or_truncate (op_mode,
7534 force_to_mode (XEXP (x, 0), op_mode,
7535 mask, next_select));
7536
7537 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7538 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
7539 break;
7540
7541 case LSHIFTRT:
7542 /* Here we can only do something if the shift count is a constant,
7543 this shift constant is valid for the host, and we can do arithmetic
7544 in OP_MODE. */
7545
7546 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7547 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7548 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7549 {
7550 rtx inner = XEXP (x, 0);
7551 unsigned HOST_WIDE_INT inner_mask;
7552
7553 /* Select the mask of the bits we need for the shift operand. */
7554 inner_mask = mask << INTVAL (XEXP (x, 1));
7555
7556 /* We can only change the mode of the shift if we can do arithmetic
7557 in the mode of the shift and INNER_MASK is no wider than the
7558 width of X's mode. */
7559 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
7560 op_mode = GET_MODE (x);
7561
7562 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
7563
7564 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7565 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7566 }
7567
7568 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7569 shift and AND produces only copies of the sign bit (C2 is one less
7570 than a power of two), we can do this with just a shift. */
7571
7572 if (GET_CODE (x) == LSHIFTRT
7573 && GET_CODE (XEXP (x, 1)) == CONST_INT
7574 /* The shift puts one of the sign bit copies in the least significant
7575 bit. */
7576 && ((INTVAL (XEXP (x, 1))
7577 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7578 >= GET_MODE_BITSIZE (GET_MODE (x)))
7579 && exact_log2 (mask + 1) >= 0
7580 /* Number of bits left after the shift must be more than the mask
7581 needs. */
7582 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7583 <= GET_MODE_BITSIZE (GET_MODE (x)))
7584 /* Must be more sign bit copies than the mask needs. */
7585 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7586 >= exact_log2 (mask + 1)))
7587 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7588 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7589 - exact_log2 (mask + 1)));
7590
7591 goto shiftrt;
7592
7593 case ASHIFTRT:
7594 /* If we are just looking for the sign bit, we don't need this shift at
7595 all, even if it has a variable count. */
7596 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7597 && (mask == ((unsigned HOST_WIDE_INT) 1
7598 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7599 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
7600
7601 /* If this is a shift by a constant, get a mask that contains those bits
7602 that are not copies of the sign bit. We then have two cases: If
7603 MASK only includes those bits, this can be a logical shift, which may
7604 allow simplifications. If MASK is a single-bit field not within
7605 those bits, we are requesting a copy of the sign bit and hence can
7606 shift the sign bit to the appropriate location. */
7607
7608 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7609 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7610 {
7611 int i;
7612
7613 /* If the considered data is wider than HOST_WIDE_INT, we can't
7614 represent a mask for all its bits in a single scalar.
7615 But we only care about the lower bits, so calculate these. */
7616
7617 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7618 {
7619 nonzero = ~(HOST_WIDE_INT) 0;
7620
7621 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7622 is the number of bits a full-width mask would have set.
7623 We need only shift if these are fewer than nonzero can
7624 hold. If not, we must keep all bits set in nonzero. */
7625
7626 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7627 < HOST_BITS_PER_WIDE_INT)
7628 nonzero >>= INTVAL (XEXP (x, 1))
7629 + HOST_BITS_PER_WIDE_INT
7630 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7631 }
7632 else
7633 {
7634 nonzero = GET_MODE_MASK (GET_MODE (x));
7635 nonzero >>= INTVAL (XEXP (x, 1));
7636 }
7637
7638 if ((mask & ~nonzero) == 0)
7639 {
7640 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
7641 XEXP (x, 0), INTVAL (XEXP (x, 1)));
7642 if (GET_CODE (x) != ASHIFTRT)
7643 return force_to_mode (x, mode, mask, next_select);
7644 }
7645
7646 else if ((i = exact_log2 (mask)) >= 0)
7647 {
7648 x = simplify_shift_const
7649 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7650 GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7651
7652 if (GET_CODE (x) != ASHIFTRT)
7653 return force_to_mode (x, mode, mask, next_select);
7654 }
7655 }
7656
7657 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7658 even if the shift count isn't a constant. */
7659 if (mask == 1)
7660 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7661 XEXP (x, 0), XEXP (x, 1));
7662
7663 shiftrt:
7664
7665 /* If this is a zero- or sign-extension operation that just affects bits
7666 we don't care about, remove it. Be sure the call above returned
7667 something that is still a shift. */
7668
7669 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7670 && GET_CODE (XEXP (x, 1)) == CONST_INT
7671 && INTVAL (XEXP (x, 1)) >= 0
7672 && (INTVAL (XEXP (x, 1))
7673 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7674 && GET_CODE (XEXP (x, 0)) == ASHIFT
7675 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
7676 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7677 next_select);
7678
7679 break;
7680
7681 case ROTATE:
7682 case ROTATERT:
7683 /* If the shift count is constant and we can do computations
7684 in the mode of X, compute where the bits we care about are.
7685 Otherwise, we can't do anything. Don't change the mode of
7686 the shift or propagate MODE into the shift, though. */
7687 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7688 && INTVAL (XEXP (x, 1)) >= 0)
7689 {
7690 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7691 GET_MODE (x), GEN_INT (mask),
7692 XEXP (x, 1));
7693 if (temp && GET_CODE (temp) == CONST_INT)
7694 SUBST (XEXP (x, 0),
7695 force_to_mode (XEXP (x, 0), GET_MODE (x),
7696 INTVAL (temp), next_select));
7697 }
7698 break;
7699
7700 case NEG:
7701 /* If we just want the low-order bit, the NEG isn't needed since it
7702 won't change the low-order bit. */
7703 if (mask == 1)
7704 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
7705
7706 /* We need any bits less significant than the most significant bit in
7707 MASK since carries from those bits will affect the bits we are
7708 interested in. */
7709 mask = fuller_mask;
7710 goto unop;
7711
7712 case NOT:
7713 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7714 same as the XOR case above. Ensure that the constant we form is not
7715 wider than the mode of X. */
7716
7717 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7718 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7719 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7720 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7721 < GET_MODE_BITSIZE (GET_MODE (x)))
7722 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7723 {
7724 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
7725 GET_MODE (x));
7726 temp = simplify_gen_binary (XOR, GET_MODE (x),
7727 XEXP (XEXP (x, 0), 0), temp);
7728 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7729 temp, XEXP (XEXP (x, 0), 1));
7730
7731 return force_to_mode (x, mode, mask, next_select);
7732 }
7733
7734 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7735 use the full mask inside the NOT. */
7736 mask = fuller_mask;
7737
7738 unop:
7739 op0 = gen_lowpart_or_truncate (op_mode,
7740 force_to_mode (XEXP (x, 0), mode, mask,
7741 next_select));
7742 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7743 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7744 break;
7745
7746 case NE:
7747 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7748 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7749 which is equal to STORE_FLAG_VALUE. */
7750 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7751 && GET_MODE (XEXP (x, 0)) == mode
7752 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7753 && (nonzero_bits (XEXP (x, 0), mode)
7754 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
7755 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
7756
7757 break;
7758
7759 case IF_THEN_ELSE:
7760 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7761 written in a narrower mode. We play it safe and do not do so. */
7762
7763 SUBST (XEXP (x, 1),
7764 gen_lowpart_or_truncate (GET_MODE (x),
7765 force_to_mode (XEXP (x, 1), mode,
7766 mask, next_select)));
7767 SUBST (XEXP (x, 2),
7768 gen_lowpart_or_truncate (GET_MODE (x),
7769 force_to_mode (XEXP (x, 2), mode,
7770 mask, next_select)));
7771 break;
7772
7773 default:
7774 break;
7775 }
7776
7777 /* Ensure we return a value of the proper mode. */
7778 return gen_lowpart_or_truncate (mode, x);
7779 }
7780 \f
7781 /* Return nonzero if X is an expression that has one of two values depending on
7782 whether some other value is zero or nonzero. In that case, we return the
7783 value that is being tested, *PTRUE is set to the value if the rtx being
7784 returned has a nonzero value, and *PFALSE is set to the other alternative.
7785
7786 If we return zero, we set *PTRUE and *PFALSE to X. */
7787
7788 static rtx
7789 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
7790 {
7791 enum machine_mode mode = GET_MODE (x);
7792 enum rtx_code code = GET_CODE (x);
7793 rtx cond0, cond1, true0, true1, false0, false1;
7794 unsigned HOST_WIDE_INT nz;
7795
7796 /* If we are comparing a value against zero, we are done. */
7797 if ((code == NE || code == EQ)
7798 && XEXP (x, 1) == const0_rtx)
7799 {
7800 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7801 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7802 return XEXP (x, 0);
7803 }
7804
7805 /* If this is a unary operation whose operand has one of two values, apply
7806 our opcode to compute those values. */
7807 else if (UNARY_P (x)
7808 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7809 {
7810 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7811 *pfalse = simplify_gen_unary (code, mode, false0,
7812 GET_MODE (XEXP (x, 0)));
7813 return cond0;
7814 }
7815
7816 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7817 make can't possibly match and would suppress other optimizations. */
7818 else if (code == COMPARE)
7819 ;
7820
7821 /* If this is a binary operation, see if either side has only one of two
7822 values. If either one does or if both do and they are conditional on
7823 the same value, compute the new true and false values. */
7824 else if (BINARY_P (x))
7825 {
7826 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7827 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7828
7829 if ((cond0 != 0 || cond1 != 0)
7830 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7831 {
7832 /* If if_then_else_cond returned zero, then true/false are the
7833 same rtl. We must copy one of them to prevent invalid rtl
7834 sharing. */
7835 if (cond0 == 0)
7836 true0 = copy_rtx (true0);
7837 else if (cond1 == 0)
7838 true1 = copy_rtx (true1);
7839
7840 if (COMPARISON_P (x))
7841 {
7842 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
7843 true0, true1);
7844 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
7845 false0, false1);
7846 }
7847 else
7848 {
7849 *ptrue = simplify_gen_binary (code, mode, true0, true1);
7850 *pfalse = simplify_gen_binary (code, mode, false0, false1);
7851 }
7852
7853 return cond0 ? cond0 : cond1;
7854 }
7855
7856 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7857 operands is zero when the other is nonzero, and vice-versa,
7858 and STORE_FLAG_VALUE is 1 or -1. */
7859
7860 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7861 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7862 || code == UMAX)
7863 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7864 {
7865 rtx op0 = XEXP (XEXP (x, 0), 1);
7866 rtx op1 = XEXP (XEXP (x, 1), 1);
7867
7868 cond0 = XEXP (XEXP (x, 0), 0);
7869 cond1 = XEXP (XEXP (x, 1), 0);
7870
7871 if (COMPARISON_P (cond0)
7872 && COMPARISON_P (cond1)
7873 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7874 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7875 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7876 || ((swap_condition (GET_CODE (cond0))
7877 == reversed_comparison_code (cond1, NULL))
7878 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7879 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7880 && ! side_effects_p (x))
7881 {
7882 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
7883 *pfalse = simplify_gen_binary (MULT, mode,
7884 (code == MINUS
7885 ? simplify_gen_unary (NEG, mode,
7886 op1, mode)
7887 : op1),
7888 const_true_rtx);
7889 return cond0;
7890 }
7891 }
7892
7893 /* Similarly for MULT, AND and UMIN, except that for these the result
7894 is always zero. */
7895 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7896 && (code == MULT || code == AND || code == UMIN)
7897 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7898 {
7899 cond0 = XEXP (XEXP (x, 0), 0);
7900 cond1 = XEXP (XEXP (x, 1), 0);
7901
7902 if (COMPARISON_P (cond0)
7903 && COMPARISON_P (cond1)
7904 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7905 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7906 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7907 || ((swap_condition (GET_CODE (cond0))
7908 == reversed_comparison_code (cond1, NULL))
7909 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7910 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7911 && ! side_effects_p (x))
7912 {
7913 *ptrue = *pfalse = const0_rtx;
7914 return cond0;
7915 }
7916 }
7917 }
7918
7919 else if (code == IF_THEN_ELSE)
7920 {
7921 /* If we have IF_THEN_ELSE already, extract the condition and
7922 canonicalize it if it is NE or EQ. */
7923 cond0 = XEXP (x, 0);
7924 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7925 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7926 return XEXP (cond0, 0);
7927 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7928 {
7929 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7930 return XEXP (cond0, 0);
7931 }
7932 else
7933 return cond0;
7934 }
7935
7936 /* If X is a SUBREG, we can narrow both the true and false values
7937 if the inner expression, if there is a condition. */
7938 else if (code == SUBREG
7939 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7940 &true0, &false0)))
7941 {
7942 true0 = simplify_gen_subreg (mode, true0,
7943 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7944 false0 = simplify_gen_subreg (mode, false0,
7945 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7946 if (true0 && false0)
7947 {
7948 *ptrue = true0;
7949 *pfalse = false0;
7950 return cond0;
7951 }
7952 }
7953
7954 /* If X is a constant, this isn't special and will cause confusions
7955 if we treat it as such. Likewise if it is equivalent to a constant. */
7956 else if (CONSTANT_P (x)
7957 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7958 ;
7959
7960 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7961 will be least confusing to the rest of the compiler. */
7962 else if (mode == BImode)
7963 {
7964 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7965 return x;
7966 }
7967
7968 /* If X is known to be either 0 or -1, those are the true and
7969 false values when testing X. */
7970 else if (x == constm1_rtx || x == const0_rtx
7971 || (mode != VOIDmode
7972 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7973 {
7974 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7975 return x;
7976 }
7977
7978 /* Likewise for 0 or a single bit. */
7979 else if (SCALAR_INT_MODE_P (mode)
7980 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7981 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7982 {
7983 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
7984 return x;
7985 }
7986
7987 /* Otherwise fail; show no condition with true and false values the same. */
7988 *ptrue = *pfalse = x;
7989 return 0;
7990 }
7991 \f
7992 /* Return the value of expression X given the fact that condition COND
7993 is known to be true when applied to REG as its first operand and VAL
7994 as its second. X is known to not be shared and so can be modified in
7995 place.
7996
7997 We only handle the simplest cases, and specifically those cases that
7998 arise with IF_THEN_ELSE expressions. */
7999
8000 static rtx
8001 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
8002 {
8003 enum rtx_code code = GET_CODE (x);
8004 rtx temp;
8005 const char *fmt;
8006 int i, j;
8007
8008 if (side_effects_p (x))
8009 return x;
8010
8011 /* If either operand of the condition is a floating point value,
8012 then we have to avoid collapsing an EQ comparison. */
8013 if (cond == EQ
8014 && rtx_equal_p (x, reg)
8015 && ! FLOAT_MODE_P (GET_MODE (x))
8016 && ! FLOAT_MODE_P (GET_MODE (val)))
8017 return val;
8018
8019 if (cond == UNEQ && rtx_equal_p (x, reg))
8020 return val;
8021
8022 /* If X is (abs REG) and we know something about REG's relationship
8023 with zero, we may be able to simplify this. */
8024
8025 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
8026 switch (cond)
8027 {
8028 case GE: case GT: case EQ:
8029 return XEXP (x, 0);
8030 case LT: case LE:
8031 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
8032 XEXP (x, 0),
8033 GET_MODE (XEXP (x, 0)));
8034 default:
8035 break;
8036 }
8037
8038 /* The only other cases we handle are MIN, MAX, and comparisons if the
8039 operands are the same as REG and VAL. */
8040
8041 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
8042 {
8043 if (rtx_equal_p (XEXP (x, 0), val))
8044 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
8045
8046 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
8047 {
8048 if (COMPARISON_P (x))
8049 {
8050 if (comparison_dominates_p (cond, code))
8051 return const_true_rtx;
8052
8053 code = reversed_comparison_code (x, NULL);
8054 if (code != UNKNOWN
8055 && comparison_dominates_p (cond, code))
8056 return const0_rtx;
8057 else
8058 return x;
8059 }
8060 else if (code == SMAX || code == SMIN
8061 || code == UMIN || code == UMAX)
8062 {
8063 int unsignedp = (code == UMIN || code == UMAX);
8064
8065 /* Do not reverse the condition when it is NE or EQ.
8066 This is because we cannot conclude anything about
8067 the value of 'SMAX (x, y)' when x is not equal to y,
8068 but we can when x equals y. */
8069 if ((code == SMAX || code == UMAX)
8070 && ! (cond == EQ || cond == NE))
8071 cond = reverse_condition (cond);
8072
8073 switch (cond)
8074 {
8075 case GE: case GT:
8076 return unsignedp ? x : XEXP (x, 1);
8077 case LE: case LT:
8078 return unsignedp ? x : XEXP (x, 0);
8079 case GEU: case GTU:
8080 return unsignedp ? XEXP (x, 1) : x;
8081 case LEU: case LTU:
8082 return unsignedp ? XEXP (x, 0) : x;
8083 default:
8084 break;
8085 }
8086 }
8087 }
8088 }
8089 else if (code == SUBREG)
8090 {
8091 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
8092 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
8093
8094 if (SUBREG_REG (x) != r)
8095 {
8096 /* We must simplify subreg here, before we lose track of the
8097 original inner_mode. */
8098 new_rtx = simplify_subreg (GET_MODE (x), r,
8099 inner_mode, SUBREG_BYTE (x));
8100 if (new_rtx)
8101 return new_rtx;
8102 else
8103 SUBST (SUBREG_REG (x), r);
8104 }
8105
8106 return x;
8107 }
8108 /* We don't have to handle SIGN_EXTEND here, because even in the
8109 case of replacing something with a modeless CONST_INT, a
8110 CONST_INT is already (supposed to be) a valid sign extension for
8111 its narrower mode, which implies it's already properly
8112 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
8113 story is different. */
8114 else if (code == ZERO_EXTEND)
8115 {
8116 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
8117 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
8118
8119 if (XEXP (x, 0) != r)
8120 {
8121 /* We must simplify the zero_extend here, before we lose
8122 track of the original inner_mode. */
8123 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
8124 r, inner_mode);
8125 if (new_rtx)
8126 return new_rtx;
8127 else
8128 SUBST (XEXP (x, 0), r);
8129 }
8130
8131 return x;
8132 }
8133
8134 fmt = GET_RTX_FORMAT (code);
8135 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8136 {
8137 if (fmt[i] == 'e')
8138 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
8139 else if (fmt[i] == 'E')
8140 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8141 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
8142 cond, reg, val));
8143 }
8144
8145 return x;
8146 }
8147 \f
8148 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
8149 assignment as a field assignment. */
8150
8151 static int
8152 rtx_equal_for_field_assignment_p (rtx x, rtx y)
8153 {
8154 if (x == y || rtx_equal_p (x, y))
8155 return 1;
8156
8157 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
8158 return 0;
8159
8160 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
8161 Note that all SUBREGs of MEM are paradoxical; otherwise they
8162 would have been rewritten. */
8163 if (MEM_P (x) && GET_CODE (y) == SUBREG
8164 && MEM_P (SUBREG_REG (y))
8165 && rtx_equal_p (SUBREG_REG (y),
8166 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
8167 return 1;
8168
8169 if (MEM_P (y) && GET_CODE (x) == SUBREG
8170 && MEM_P (SUBREG_REG (x))
8171 && rtx_equal_p (SUBREG_REG (x),
8172 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
8173 return 1;
8174
8175 /* We used to see if get_last_value of X and Y were the same but that's
8176 not correct. In one direction, we'll cause the assignment to have
8177 the wrong destination and in the case, we'll import a register into this
8178 insn that might have already have been dead. So fail if none of the
8179 above cases are true. */
8180 return 0;
8181 }
8182 \f
8183 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
8184 Return that assignment if so.
8185
8186 We only handle the most common cases. */
8187
8188 static rtx
8189 make_field_assignment (rtx x)
8190 {
8191 rtx dest = SET_DEST (x);
8192 rtx src = SET_SRC (x);
8193 rtx assign;
8194 rtx rhs, lhs;
8195 HOST_WIDE_INT c1;
8196 HOST_WIDE_INT pos;
8197 unsigned HOST_WIDE_INT len;
8198 rtx other;
8199 enum machine_mode mode;
8200
8201 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
8202 a clear of a one-bit field. We will have changed it to
8203 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
8204 for a SUBREG. */
8205
8206 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
8207 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
8208 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
8209 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8210 {
8211 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8212 1, 1, 1, 0);
8213 if (assign != 0)
8214 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8215 return x;
8216 }
8217
8218 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
8219 && subreg_lowpart_p (XEXP (src, 0))
8220 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
8221 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
8222 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
8223 && GET_CODE (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == CONST_INT
8224 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
8225 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8226 {
8227 assign = make_extraction (VOIDmode, dest, 0,
8228 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
8229 1, 1, 1, 0);
8230 if (assign != 0)
8231 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8232 return x;
8233 }
8234
8235 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
8236 one-bit field. */
8237 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
8238 && XEXP (XEXP (src, 0), 0) == const1_rtx
8239 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8240 {
8241 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8242 1, 1, 1, 0);
8243 if (assign != 0)
8244 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
8245 return x;
8246 }
8247
8248 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
8249 SRC is an AND with all bits of that field set, then we can discard
8250 the AND. */
8251 if (GET_CODE (dest) == ZERO_EXTRACT
8252 && GET_CODE (XEXP (dest, 1)) == CONST_INT
8253 && GET_CODE (src) == AND
8254 && GET_CODE (XEXP (src, 1)) == CONST_INT)
8255 {
8256 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
8257 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
8258 unsigned HOST_WIDE_INT ze_mask;
8259
8260 if (width >= HOST_BITS_PER_WIDE_INT)
8261 ze_mask = -1;
8262 else
8263 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
8264
8265 /* Complete overlap. We can remove the source AND. */
8266 if ((and_mask & ze_mask) == ze_mask)
8267 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
8268
8269 /* Partial overlap. We can reduce the source AND. */
8270 if ((and_mask & ze_mask) != and_mask)
8271 {
8272 mode = GET_MODE (src);
8273 src = gen_rtx_AND (mode, XEXP (src, 0),
8274 gen_int_mode (and_mask & ze_mask, mode));
8275 return gen_rtx_SET (VOIDmode, dest, src);
8276 }
8277 }
8278
8279 /* The other case we handle is assignments into a constant-position
8280 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
8281 a mask that has all one bits except for a group of zero bits and
8282 OTHER is known to have zeros where C1 has ones, this is such an
8283 assignment. Compute the position and length from C1. Shift OTHER
8284 to the appropriate position, force it to the required mode, and
8285 make the extraction. Check for the AND in both operands. */
8286
8287 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
8288 return x;
8289
8290 rhs = expand_compound_operation (XEXP (src, 0));
8291 lhs = expand_compound_operation (XEXP (src, 1));
8292
8293 if (GET_CODE (rhs) == AND
8294 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
8295 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
8296 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
8297 else if (GET_CODE (lhs) == AND
8298 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
8299 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
8300 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
8301 else
8302 return x;
8303
8304 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
8305 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
8306 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
8307 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
8308 return x;
8309
8310 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
8311 if (assign == 0)
8312 return x;
8313
8314 /* The mode to use for the source is the mode of the assignment, or of
8315 what is inside a possible STRICT_LOW_PART. */
8316 mode = (GET_CODE (assign) == STRICT_LOW_PART
8317 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
8318
8319 /* Shift OTHER right POS places and make it the source, restricting it
8320 to the proper length and mode. */
8321
8322 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
8323 GET_MODE (src),
8324 other, pos),
8325 dest);
8326 src = force_to_mode (src, mode,
8327 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
8328 ? ~(unsigned HOST_WIDE_INT) 0
8329 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
8330 0);
8331
8332 /* If SRC is masked by an AND that does not make a difference in
8333 the value being stored, strip it. */
8334 if (GET_CODE (assign) == ZERO_EXTRACT
8335 && GET_CODE (XEXP (assign, 1)) == CONST_INT
8336 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
8337 && GET_CODE (src) == AND
8338 && GET_CODE (XEXP (src, 1)) == CONST_INT
8339 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
8340 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
8341 src = XEXP (src, 0);
8342
8343 return gen_rtx_SET (VOIDmode, assign, src);
8344 }
8345 \f
8346 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
8347 if so. */
8348
8349 static rtx
8350 apply_distributive_law (rtx x)
8351 {
8352 enum rtx_code code = GET_CODE (x);
8353 enum rtx_code inner_code;
8354 rtx lhs, rhs, other;
8355 rtx tem;
8356
8357 /* Distributivity is not true for floating point as it can change the
8358 value. So we don't do it unless -funsafe-math-optimizations. */
8359 if (FLOAT_MODE_P (GET_MODE (x))
8360 && ! flag_unsafe_math_optimizations)
8361 return x;
8362
8363 /* The outer operation can only be one of the following: */
8364 if (code != IOR && code != AND && code != XOR
8365 && code != PLUS && code != MINUS)
8366 return x;
8367
8368 lhs = XEXP (x, 0);
8369 rhs = XEXP (x, 1);
8370
8371 /* If either operand is a primitive we can't do anything, so get out
8372 fast. */
8373 if (OBJECT_P (lhs) || OBJECT_P (rhs))
8374 return x;
8375
8376 lhs = expand_compound_operation (lhs);
8377 rhs = expand_compound_operation (rhs);
8378 inner_code = GET_CODE (lhs);
8379 if (inner_code != GET_CODE (rhs))
8380 return x;
8381
8382 /* See if the inner and outer operations distribute. */
8383 switch (inner_code)
8384 {
8385 case LSHIFTRT:
8386 case ASHIFTRT:
8387 case AND:
8388 case IOR:
8389 /* These all distribute except over PLUS. */
8390 if (code == PLUS || code == MINUS)
8391 return x;
8392 break;
8393
8394 case MULT:
8395 if (code != PLUS && code != MINUS)
8396 return x;
8397 break;
8398
8399 case ASHIFT:
8400 /* This is also a multiply, so it distributes over everything. */
8401 break;
8402
8403 case SUBREG:
8404 /* Non-paradoxical SUBREGs distributes over all operations,
8405 provided the inner modes and byte offsets are the same, this
8406 is an extraction of a low-order part, we don't convert an fp
8407 operation to int or vice versa, this is not a vector mode,
8408 and we would not be converting a single-word operation into a
8409 multi-word operation. The latter test is not required, but
8410 it prevents generating unneeded multi-word operations. Some
8411 of the previous tests are redundant given the latter test,
8412 but are retained because they are required for correctness.
8413
8414 We produce the result slightly differently in this case. */
8415
8416 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
8417 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
8418 || ! subreg_lowpart_p (lhs)
8419 || (GET_MODE_CLASS (GET_MODE (lhs))
8420 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
8421 || (GET_MODE_SIZE (GET_MODE (lhs))
8422 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
8423 || VECTOR_MODE_P (GET_MODE (lhs))
8424 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD
8425 /* Result might need to be truncated. Don't change mode if
8426 explicit truncation is needed. */
8427 || !TRULY_NOOP_TRUNCATION
8428 (GET_MODE_BITSIZE (GET_MODE (x)),
8429 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (lhs)))))
8430 return x;
8431
8432 tem = simplify_gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
8433 SUBREG_REG (lhs), SUBREG_REG (rhs));
8434 return gen_lowpart (GET_MODE (x), tem);
8435
8436 default:
8437 return x;
8438 }
8439
8440 /* Set LHS and RHS to the inner operands (A and B in the example
8441 above) and set OTHER to the common operand (C in the example).
8442 There is only one way to do this unless the inner operation is
8443 commutative. */
8444 if (COMMUTATIVE_ARITH_P (lhs)
8445 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
8446 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
8447 else if (COMMUTATIVE_ARITH_P (lhs)
8448 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
8449 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
8450 else if (COMMUTATIVE_ARITH_P (lhs)
8451 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
8452 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
8453 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
8454 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
8455 else
8456 return x;
8457
8458 /* Form the new inner operation, seeing if it simplifies first. */
8459 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
8460
8461 /* There is one exception to the general way of distributing:
8462 (a | c) ^ (b | c) -> (a ^ b) & ~c */
8463 if (code == XOR && inner_code == IOR)
8464 {
8465 inner_code = AND;
8466 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
8467 }
8468
8469 /* We may be able to continuing distributing the result, so call
8470 ourselves recursively on the inner operation before forming the
8471 outer operation, which we return. */
8472 return simplify_gen_binary (inner_code, GET_MODE (x),
8473 apply_distributive_law (tem), other);
8474 }
8475
8476 /* See if X is of the form (* (+ A B) C), and if so convert to
8477 (+ (* A C) (* B C)) and try to simplify.
8478
8479 Most of the time, this results in no change. However, if some of
8480 the operands are the same or inverses of each other, simplifications
8481 will result.
8482
8483 For example, (and (ior A B) (not B)) can occur as the result of
8484 expanding a bit field assignment. When we apply the distributive
8485 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
8486 which then simplifies to (and (A (not B))).
8487
8488 Note that no checks happen on the validity of applying the inverse
8489 distributive law. This is pointless since we can do it in the
8490 few places where this routine is called.
8491
8492 N is the index of the term that is decomposed (the arithmetic operation,
8493 i.e. (+ A B) in the first example above). !N is the index of the term that
8494 is distributed, i.e. of C in the first example above. */
8495 static rtx
8496 distribute_and_simplify_rtx (rtx x, int n)
8497 {
8498 enum machine_mode mode;
8499 enum rtx_code outer_code, inner_code;
8500 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
8501
8502 decomposed = XEXP (x, n);
8503 if (!ARITHMETIC_P (decomposed))
8504 return NULL_RTX;
8505
8506 mode = GET_MODE (x);
8507 outer_code = GET_CODE (x);
8508 distributed = XEXP (x, !n);
8509
8510 inner_code = GET_CODE (decomposed);
8511 inner_op0 = XEXP (decomposed, 0);
8512 inner_op1 = XEXP (decomposed, 1);
8513
8514 /* Special case (and (xor B C) (not A)), which is equivalent to
8515 (xor (ior A B) (ior A C)) */
8516 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
8517 {
8518 distributed = XEXP (distributed, 0);
8519 outer_code = IOR;
8520 }
8521
8522 if (n == 0)
8523 {
8524 /* Distribute the second term. */
8525 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
8526 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
8527 }
8528 else
8529 {
8530 /* Distribute the first term. */
8531 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
8532 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
8533 }
8534
8535 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
8536 new_op0, new_op1));
8537 if (GET_CODE (tmp) != outer_code
8538 && rtx_cost (tmp, SET, optimize_this_for_speed_p)
8539 < rtx_cost (x, SET, optimize_this_for_speed_p))
8540 return tmp;
8541
8542 return NULL_RTX;
8543 }
8544 \f
8545 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
8546 in MODE. Return an equivalent form, if different from (and VAROP
8547 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
8548
8549 static rtx
8550 simplify_and_const_int_1 (enum machine_mode mode, rtx varop,
8551 unsigned HOST_WIDE_INT constop)
8552 {
8553 unsigned HOST_WIDE_INT nonzero;
8554 unsigned HOST_WIDE_INT orig_constop;
8555 rtx orig_varop;
8556 int i;
8557
8558 orig_varop = varop;
8559 orig_constop = constop;
8560 if (GET_CODE (varop) == CLOBBER)
8561 return NULL_RTX;
8562
8563 /* Simplify VAROP knowing that we will be only looking at some of the
8564 bits in it.
8565
8566 Note by passing in CONSTOP, we guarantee that the bits not set in
8567 CONSTOP are not significant and will never be examined. We must
8568 ensure that is the case by explicitly masking out those bits
8569 before returning. */
8570 varop = force_to_mode (varop, mode, constop, 0);
8571
8572 /* If VAROP is a CLOBBER, we will fail so return it. */
8573 if (GET_CODE (varop) == CLOBBER)
8574 return varop;
8575
8576 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
8577 to VAROP and return the new constant. */
8578 if (GET_CODE (varop) == CONST_INT)
8579 return gen_int_mode (INTVAL (varop) & constop, mode);
8580
8581 /* See what bits may be nonzero in VAROP. Unlike the general case of
8582 a call to nonzero_bits, here we don't care about bits outside
8583 MODE. */
8584
8585 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
8586
8587 /* Turn off all bits in the constant that are known to already be zero.
8588 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
8589 which is tested below. */
8590
8591 constop &= nonzero;
8592
8593 /* If we don't have any bits left, return zero. */
8594 if (constop == 0)
8595 return const0_rtx;
8596
8597 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
8598 a power of two, we can replace this with an ASHIFT. */
8599 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
8600 && (i = exact_log2 (constop)) >= 0)
8601 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
8602
8603 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
8604 or XOR, then try to apply the distributive law. This may eliminate
8605 operations if either branch can be simplified because of the AND.
8606 It may also make some cases more complex, but those cases probably
8607 won't match a pattern either with or without this. */
8608
8609 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
8610 return
8611 gen_lowpart
8612 (mode,
8613 apply_distributive_law
8614 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
8615 simplify_and_const_int (NULL_RTX,
8616 GET_MODE (varop),
8617 XEXP (varop, 0),
8618 constop),
8619 simplify_and_const_int (NULL_RTX,
8620 GET_MODE (varop),
8621 XEXP (varop, 1),
8622 constop))));
8623
8624 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
8625 the AND and see if one of the operands simplifies to zero. If so, we
8626 may eliminate it. */
8627
8628 if (GET_CODE (varop) == PLUS
8629 && exact_log2 (constop + 1) >= 0)
8630 {
8631 rtx o0, o1;
8632
8633 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
8634 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
8635 if (o0 == const0_rtx)
8636 return o1;
8637 if (o1 == const0_rtx)
8638 return o0;
8639 }
8640
8641 /* Make a SUBREG if necessary. If we can't make it, fail. */
8642 varop = gen_lowpart (mode, varop);
8643 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
8644 return NULL_RTX;
8645
8646 /* If we are only masking insignificant bits, return VAROP. */
8647 if (constop == nonzero)
8648 return varop;
8649
8650 if (varop == orig_varop && constop == orig_constop)
8651 return NULL_RTX;
8652
8653 /* Otherwise, return an AND. */
8654 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
8655 }
8656
8657
8658 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
8659 in MODE.
8660
8661 Return an equivalent form, if different from X. Otherwise, return X. If
8662 X is zero, we are to always construct the equivalent form. */
8663
8664 static rtx
8665 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
8666 unsigned HOST_WIDE_INT constop)
8667 {
8668 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
8669 if (tem)
8670 return tem;
8671
8672 if (!x)
8673 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
8674 gen_int_mode (constop, mode));
8675 if (GET_MODE (x) != mode)
8676 x = gen_lowpart (mode, x);
8677 return x;
8678 }
8679 \f
8680 /* Given a REG, X, compute which bits in X can be nonzero.
8681 We don't care about bits outside of those defined in MODE.
8682
8683 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8684 a shift, AND, or zero_extract, we can do better. */
8685
8686 static rtx
8687 reg_nonzero_bits_for_combine (const_rtx x, enum machine_mode mode,
8688 const_rtx known_x ATTRIBUTE_UNUSED,
8689 enum machine_mode known_mode ATTRIBUTE_UNUSED,
8690 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
8691 unsigned HOST_WIDE_INT *nonzero)
8692 {
8693 rtx tem;
8694 reg_stat_type *rsp;
8695
8696 /* If X is a register whose nonzero bits value is current, use it.
8697 Otherwise, if X is a register whose value we can find, use that
8698 value. Otherwise, use the previously-computed global nonzero bits
8699 for this register. */
8700
8701 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
8702 if (rsp->last_set_value != 0
8703 && (rsp->last_set_mode == mode
8704 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
8705 && GET_MODE_CLASS (mode) == MODE_INT))
8706 && ((rsp->last_set_label >= label_tick_ebb_start
8707 && rsp->last_set_label < label_tick)
8708 || (rsp->last_set_label == label_tick
8709 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
8710 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8711 && REG_N_SETS (REGNO (x)) == 1
8712 && !REGNO_REG_SET_P
8713 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
8714 {
8715 *nonzero &= rsp->last_set_nonzero_bits;
8716 return NULL;
8717 }
8718
8719 tem = get_last_value (x);
8720
8721 if (tem)
8722 {
8723 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8724 /* If X is narrower than MODE and TEM is a non-negative
8725 constant that would appear negative in the mode of X,
8726 sign-extend it for use in reg_nonzero_bits because some
8727 machines (maybe most) will actually do the sign-extension
8728 and this is the conservative approach.
8729
8730 ??? For 2.5, try to tighten up the MD files in this regard
8731 instead of this kludge. */
8732
8733 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode)
8734 && GET_CODE (tem) == CONST_INT
8735 && INTVAL (tem) > 0
8736 && 0 != (INTVAL (tem)
8737 & ((HOST_WIDE_INT) 1
8738 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8739 tem = GEN_INT (INTVAL (tem)
8740 | ((HOST_WIDE_INT) (-1)
8741 << GET_MODE_BITSIZE (GET_MODE (x))));
8742 #endif
8743 return tem;
8744 }
8745 else if (nonzero_sign_valid && rsp->nonzero_bits)
8746 {
8747 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
8748
8749 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode))
8750 /* We don't know anything about the upper bits. */
8751 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8752 *nonzero &= mask;
8753 }
8754
8755 return NULL;
8756 }
8757
8758 /* Return the number of bits at the high-order end of X that are known to
8759 be equal to the sign bit. X will be used in mode MODE; if MODE is
8760 VOIDmode, X will be used in its own mode. The returned value will always
8761 be between 1 and the number of bits in MODE. */
8762
8763 static rtx
8764 reg_num_sign_bit_copies_for_combine (const_rtx x, enum machine_mode mode,
8765 const_rtx known_x ATTRIBUTE_UNUSED,
8766 enum machine_mode known_mode
8767 ATTRIBUTE_UNUSED,
8768 unsigned int known_ret ATTRIBUTE_UNUSED,
8769 unsigned int *result)
8770 {
8771 rtx tem;
8772 reg_stat_type *rsp;
8773
8774 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
8775 if (rsp->last_set_value != 0
8776 && rsp->last_set_mode == mode
8777 && ((rsp->last_set_label >= label_tick_ebb_start
8778 && rsp->last_set_label < label_tick)
8779 || (rsp->last_set_label == label_tick
8780 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
8781 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8782 && REG_N_SETS (REGNO (x)) == 1
8783 && !REGNO_REG_SET_P
8784 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
8785 {
8786 *result = rsp->last_set_sign_bit_copies;
8787 return NULL;
8788 }
8789
8790 tem = get_last_value (x);
8791 if (tem != 0)
8792 return tem;
8793
8794 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
8795 && GET_MODE_BITSIZE (GET_MODE (x)) == GET_MODE_BITSIZE (mode))
8796 *result = rsp->sign_bit_copies;
8797
8798 return NULL;
8799 }
8800 \f
8801 /* Return the number of "extended" bits there are in X, when interpreted
8802 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8803 unsigned quantities, this is the number of high-order zero bits.
8804 For signed quantities, this is the number of copies of the sign bit
8805 minus 1. In both case, this function returns the number of "spare"
8806 bits. For example, if two quantities for which this function returns
8807 at least 1 are added, the addition is known not to overflow.
8808
8809 This function will always return 0 unless called during combine, which
8810 implies that it must be called from a define_split. */
8811
8812 unsigned int
8813 extended_count (const_rtx x, enum machine_mode mode, int unsignedp)
8814 {
8815 if (nonzero_sign_valid == 0)
8816 return 0;
8817
8818 return (unsignedp
8819 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8820 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
8821 - floor_log2 (nonzero_bits (x, mode)))
8822 : 0)
8823 : num_sign_bit_copies (x, mode) - 1);
8824 }
8825 \f
8826 /* This function is called from `simplify_shift_const' to merge two
8827 outer operations. Specifically, we have already found that we need
8828 to perform operation *POP0 with constant *PCONST0 at the outermost
8829 position. We would now like to also perform OP1 with constant CONST1
8830 (with *POP0 being done last).
8831
8832 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8833 the resulting operation. *PCOMP_P is set to 1 if we would need to
8834 complement the innermost operand, otherwise it is unchanged.
8835
8836 MODE is the mode in which the operation will be done. No bits outside
8837 the width of this mode matter. It is assumed that the width of this mode
8838 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8839
8840 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
8841 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8842 result is simply *PCONST0.
8843
8844 If the resulting operation cannot be expressed as one operation, we
8845 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8846
8847 static int
8848 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
8849 {
8850 enum rtx_code op0 = *pop0;
8851 HOST_WIDE_INT const0 = *pconst0;
8852
8853 const0 &= GET_MODE_MASK (mode);
8854 const1 &= GET_MODE_MASK (mode);
8855
8856 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8857 if (op0 == AND)
8858 const1 &= const0;
8859
8860 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
8861 if OP0 is SET. */
8862
8863 if (op1 == UNKNOWN || op0 == SET)
8864 return 1;
8865
8866 else if (op0 == UNKNOWN)
8867 op0 = op1, const0 = const1;
8868
8869 else if (op0 == op1)
8870 {
8871 switch (op0)
8872 {
8873 case AND:
8874 const0 &= const1;
8875 break;
8876 case IOR:
8877 const0 |= const1;
8878 break;
8879 case XOR:
8880 const0 ^= const1;
8881 break;
8882 case PLUS:
8883 const0 += const1;
8884 break;
8885 case NEG:
8886 op0 = UNKNOWN;
8887 break;
8888 default:
8889 break;
8890 }
8891 }
8892
8893 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8894 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8895 return 0;
8896
8897 /* If the two constants aren't the same, we can't do anything. The
8898 remaining six cases can all be done. */
8899 else if (const0 != const1)
8900 return 0;
8901
8902 else
8903 switch (op0)
8904 {
8905 case IOR:
8906 if (op1 == AND)
8907 /* (a & b) | b == b */
8908 op0 = SET;
8909 else /* op1 == XOR */
8910 /* (a ^ b) | b == a | b */
8911 {;}
8912 break;
8913
8914 case XOR:
8915 if (op1 == AND)
8916 /* (a & b) ^ b == (~a) & b */
8917 op0 = AND, *pcomp_p = 1;
8918 else /* op1 == IOR */
8919 /* (a | b) ^ b == a & ~b */
8920 op0 = AND, const0 = ~const0;
8921 break;
8922
8923 case AND:
8924 if (op1 == IOR)
8925 /* (a | b) & b == b */
8926 op0 = SET;
8927 else /* op1 == XOR */
8928 /* (a ^ b) & b) == (~a) & b */
8929 *pcomp_p = 1;
8930 break;
8931 default:
8932 break;
8933 }
8934
8935 /* Check for NO-OP cases. */
8936 const0 &= GET_MODE_MASK (mode);
8937 if (const0 == 0
8938 && (op0 == IOR || op0 == XOR || op0 == PLUS))
8939 op0 = UNKNOWN;
8940 else if (const0 == 0 && op0 == AND)
8941 op0 = SET;
8942 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8943 && op0 == AND)
8944 op0 = UNKNOWN;
8945
8946 /* ??? Slightly redundant with the above mask, but not entirely.
8947 Moving this above means we'd have to sign-extend the mode mask
8948 for the final test. */
8949 const0 = trunc_int_for_mode (const0, mode);
8950
8951 *pop0 = op0;
8952 *pconst0 = const0;
8953
8954 return 1;
8955 }
8956 \f
8957 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8958 The result of the shift is RESULT_MODE. Return NULL_RTX if we cannot
8959 simplify it. Otherwise, return a simplified value.
8960
8961 The shift is normally computed in the widest mode we find in VAROP, as
8962 long as it isn't a different number of words than RESULT_MODE. Exceptions
8963 are ASHIFTRT and ROTATE, which are always done in their original mode. */
8964
8965 static rtx
8966 simplify_shift_const_1 (enum rtx_code code, enum machine_mode result_mode,
8967 rtx varop, int orig_count)
8968 {
8969 enum rtx_code orig_code = code;
8970 rtx orig_varop = varop;
8971 int count;
8972 enum machine_mode mode = result_mode;
8973 enum machine_mode shift_mode, tmode;
8974 unsigned int mode_words
8975 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
8976 /* We form (outer_op (code varop count) (outer_const)). */
8977 enum rtx_code outer_op = UNKNOWN;
8978 HOST_WIDE_INT outer_const = 0;
8979 int complement_p = 0;
8980 rtx new_rtx, x;
8981
8982 /* Make sure and truncate the "natural" shift on the way in. We don't
8983 want to do this inside the loop as it makes it more difficult to
8984 combine shifts. */
8985 if (SHIFT_COUNT_TRUNCATED)
8986 orig_count &= GET_MODE_BITSIZE (mode) - 1;
8987
8988 /* If we were given an invalid count, don't do anything except exactly
8989 what was requested. */
8990
8991 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
8992 return NULL_RTX;
8993
8994 count = orig_count;
8995
8996 /* Unless one of the branches of the `if' in this loop does a `continue',
8997 we will `break' the loop after the `if'. */
8998
8999 while (count != 0)
9000 {
9001 /* If we have an operand of (clobber (const_int 0)), fail. */
9002 if (GET_CODE (varop) == CLOBBER)
9003 return NULL_RTX;
9004
9005 /* If we discovered we had to complement VAROP, leave. Making a NOT
9006 here would cause an infinite loop. */
9007 if (complement_p)
9008 break;
9009
9010 /* Convert ROTATERT to ROTATE. */
9011 if (code == ROTATERT)
9012 {
9013 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
9014 code = ROTATE;
9015 if (VECTOR_MODE_P (result_mode))
9016 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
9017 else
9018 count = bitsize - count;
9019 }
9020
9021 /* We need to determine what mode we will do the shift in. If the
9022 shift is a right shift or a ROTATE, we must always do it in the mode
9023 it was originally done in. Otherwise, we can do it in MODE, the
9024 widest mode encountered. */
9025 shift_mode
9026 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9027 ? result_mode : mode);
9028
9029 /* Handle cases where the count is greater than the size of the mode
9030 minus 1. For ASHIFT, use the size minus one as the count (this can
9031 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9032 take the count modulo the size. For other shifts, the result is
9033 zero.
9034
9035 Since these shifts are being produced by the compiler by combining
9036 multiple operations, each of which are defined, we know what the
9037 result is supposed to be. */
9038
9039 if (count > (GET_MODE_BITSIZE (shift_mode) - 1))
9040 {
9041 if (code == ASHIFTRT)
9042 count = GET_MODE_BITSIZE (shift_mode) - 1;
9043 else if (code == ROTATE || code == ROTATERT)
9044 count %= GET_MODE_BITSIZE (shift_mode);
9045 else
9046 {
9047 /* We can't simply return zero because there may be an
9048 outer op. */
9049 varop = const0_rtx;
9050 count = 0;
9051 break;
9052 }
9053 }
9054
9055 /* An arithmetic right shift of a quantity known to be -1 or 0
9056 is a no-op. */
9057 if (code == ASHIFTRT
9058 && (num_sign_bit_copies (varop, shift_mode)
9059 == GET_MODE_BITSIZE (shift_mode)))
9060 {
9061 count = 0;
9062 break;
9063 }
9064
9065 /* If we are doing an arithmetic right shift and discarding all but
9066 the sign bit copies, this is equivalent to doing a shift by the
9067 bitsize minus one. Convert it into that shift because it will often
9068 allow other simplifications. */
9069
9070 if (code == ASHIFTRT
9071 && (count + num_sign_bit_copies (varop, shift_mode)
9072 >= GET_MODE_BITSIZE (shift_mode)))
9073 count = GET_MODE_BITSIZE (shift_mode) - 1;
9074
9075 /* We simplify the tests below and elsewhere by converting
9076 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9077 `make_compound_operation' will convert it to an ASHIFTRT for
9078 those machines (such as VAX) that don't have an LSHIFTRT. */
9079 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9080 && code == ASHIFTRT
9081 && ((nonzero_bits (varop, shift_mode)
9082 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
9083 == 0))
9084 code = LSHIFTRT;
9085
9086 if (((code == LSHIFTRT
9087 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9088 && !(nonzero_bits (varop, shift_mode) >> count))
9089 || (code == ASHIFT
9090 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9091 && !((nonzero_bits (varop, shift_mode) << count)
9092 & GET_MODE_MASK (shift_mode))))
9093 && !side_effects_p (varop))
9094 varop = const0_rtx;
9095
9096 switch (GET_CODE (varop))
9097 {
9098 case SIGN_EXTEND:
9099 case ZERO_EXTEND:
9100 case SIGN_EXTRACT:
9101 case ZERO_EXTRACT:
9102 new_rtx = expand_compound_operation (varop);
9103 if (new_rtx != varop)
9104 {
9105 varop = new_rtx;
9106 continue;
9107 }
9108 break;
9109
9110 case MEM:
9111 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9112 minus the width of a smaller mode, we can do this with a
9113 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9114 if ((code == ASHIFTRT || code == LSHIFTRT)
9115 && ! mode_dependent_address_p (XEXP (varop, 0))
9116 && ! MEM_VOLATILE_P (varop)
9117 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9118 MODE_INT, 1)) != BLKmode)
9119 {
9120 new_rtx = adjust_address_nv (varop, tmode,
9121 BYTES_BIG_ENDIAN ? 0
9122 : count / BITS_PER_UNIT);
9123
9124 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9125 : ZERO_EXTEND, mode, new_rtx);
9126 count = 0;
9127 continue;
9128 }
9129 break;
9130
9131 case SUBREG:
9132 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9133 the same number of words as what we've seen so far. Then store
9134 the widest mode in MODE. */
9135 if (subreg_lowpart_p (varop)
9136 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9137 > GET_MODE_SIZE (GET_MODE (varop)))
9138 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9139 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9140 == mode_words)
9141 {
9142 varop = SUBREG_REG (varop);
9143 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9144 mode = GET_MODE (varop);
9145 continue;
9146 }
9147 break;
9148
9149 case MULT:
9150 /* Some machines use MULT instead of ASHIFT because MULT
9151 is cheaper. But it is still better on those machines to
9152 merge two shifts into one. */
9153 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9154 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9155 {
9156 varop
9157 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
9158 XEXP (varop, 0),
9159 GEN_INT (exact_log2 (
9160 INTVAL (XEXP (varop, 1)))));
9161 continue;
9162 }
9163 break;
9164
9165 case UDIV:
9166 /* Similar, for when divides are cheaper. */
9167 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9168 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9169 {
9170 varop
9171 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
9172 XEXP (varop, 0),
9173 GEN_INT (exact_log2 (
9174 INTVAL (XEXP (varop, 1)))));
9175 continue;
9176 }
9177 break;
9178
9179 case ASHIFTRT:
9180 /* If we are extracting just the sign bit of an arithmetic
9181 right shift, that shift is not needed. However, the sign
9182 bit of a wider mode may be different from what would be
9183 interpreted as the sign bit in a narrower mode, so, if
9184 the result is narrower, don't discard the shift. */
9185 if (code == LSHIFTRT
9186 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9187 && (GET_MODE_BITSIZE (result_mode)
9188 >= GET_MODE_BITSIZE (GET_MODE (varop))))
9189 {
9190 varop = XEXP (varop, 0);
9191 continue;
9192 }
9193
9194 /* ... fall through ... */
9195
9196 case LSHIFTRT:
9197 case ASHIFT:
9198 case ROTATE:
9199 /* Here we have two nested shifts. The result is usually the
9200 AND of a new shift with a mask. We compute the result below. */
9201 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9202 && INTVAL (XEXP (varop, 1)) >= 0
9203 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
9204 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9205 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9206 && !VECTOR_MODE_P (result_mode))
9207 {
9208 enum rtx_code first_code = GET_CODE (varop);
9209 unsigned int first_count = INTVAL (XEXP (varop, 1));
9210 unsigned HOST_WIDE_INT mask;
9211 rtx mask_rtx;
9212
9213 /* We have one common special case. We can't do any merging if
9214 the inner code is an ASHIFTRT of a smaller mode. However, if
9215 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
9216 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
9217 we can convert it to
9218 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
9219 This simplifies certain SIGN_EXTEND operations. */
9220 if (code == ASHIFT && first_code == ASHIFTRT
9221 && count == (GET_MODE_BITSIZE (result_mode)
9222 - GET_MODE_BITSIZE (GET_MODE (varop))))
9223 {
9224 /* C3 has the low-order C1 bits zero. */
9225
9226 mask = (GET_MODE_MASK (mode)
9227 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
9228
9229 varop = simplify_and_const_int (NULL_RTX, result_mode,
9230 XEXP (varop, 0), mask);
9231 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
9232 varop, count);
9233 count = first_count;
9234 code = ASHIFTRT;
9235 continue;
9236 }
9237
9238 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
9239 than C1 high-order bits equal to the sign bit, we can convert
9240 this to either an ASHIFT or an ASHIFTRT depending on the
9241 two counts.
9242
9243 We cannot do this if VAROP's mode is not SHIFT_MODE. */
9244
9245 if (code == ASHIFTRT && first_code == ASHIFT
9246 && GET_MODE (varop) == shift_mode
9247 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
9248 > first_count))
9249 {
9250 varop = XEXP (varop, 0);
9251 count -= first_count;
9252 if (count < 0)
9253 {
9254 count = -count;
9255 code = ASHIFT;
9256 }
9257
9258 continue;
9259 }
9260
9261 /* There are some cases we can't do. If CODE is ASHIFTRT,
9262 we can only do this if FIRST_CODE is also ASHIFTRT.
9263
9264 We can't do the case when CODE is ROTATE and FIRST_CODE is
9265 ASHIFTRT.
9266
9267 If the mode of this shift is not the mode of the outer shift,
9268 we can't do this if either shift is a right shift or ROTATE.
9269
9270 Finally, we can't do any of these if the mode is too wide
9271 unless the codes are the same.
9272
9273 Handle the case where the shift codes are the same
9274 first. */
9275
9276 if (code == first_code)
9277 {
9278 if (GET_MODE (varop) != result_mode
9279 && (code == ASHIFTRT || code == LSHIFTRT
9280 || code == ROTATE))
9281 break;
9282
9283 count += first_count;
9284 varop = XEXP (varop, 0);
9285 continue;
9286 }
9287
9288 if (code == ASHIFTRT
9289 || (code == ROTATE && first_code == ASHIFTRT)
9290 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
9291 || (GET_MODE (varop) != result_mode
9292 && (first_code == ASHIFTRT || first_code == LSHIFTRT
9293 || first_code == ROTATE
9294 || code == ROTATE)))
9295 break;
9296
9297 /* To compute the mask to apply after the shift, shift the
9298 nonzero bits of the inner shift the same way the
9299 outer shift will. */
9300
9301 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
9302
9303 mask_rtx
9304 = simplify_const_binary_operation (code, result_mode, mask_rtx,
9305 GEN_INT (count));
9306
9307 /* Give up if we can't compute an outer operation to use. */
9308 if (mask_rtx == 0
9309 || GET_CODE (mask_rtx) != CONST_INT
9310 || ! merge_outer_ops (&outer_op, &outer_const, AND,
9311 INTVAL (mask_rtx),
9312 result_mode, &complement_p))
9313 break;
9314
9315 /* If the shifts are in the same direction, we add the
9316 counts. Otherwise, we subtract them. */
9317 if ((code == ASHIFTRT || code == LSHIFTRT)
9318 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
9319 count += first_count;
9320 else
9321 count -= first_count;
9322
9323 /* If COUNT is positive, the new shift is usually CODE,
9324 except for the two exceptions below, in which case it is
9325 FIRST_CODE. If the count is negative, FIRST_CODE should
9326 always be used */
9327 if (count > 0
9328 && ((first_code == ROTATE && code == ASHIFT)
9329 || (first_code == ASHIFTRT && code == LSHIFTRT)))
9330 code = first_code;
9331 else if (count < 0)
9332 code = first_code, count = -count;
9333
9334 varop = XEXP (varop, 0);
9335 continue;
9336 }
9337
9338 /* If we have (A << B << C) for any shift, we can convert this to
9339 (A << C << B). This wins if A is a constant. Only try this if
9340 B is not a constant. */
9341
9342 else if (GET_CODE (varop) == code
9343 && GET_CODE (XEXP (varop, 0)) == CONST_INT
9344 && GET_CODE (XEXP (varop, 1)) != CONST_INT)
9345 {
9346 rtx new_rtx = simplify_const_binary_operation (code, mode,
9347 XEXP (varop, 0),
9348 GEN_INT (count));
9349 varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
9350 count = 0;
9351 continue;
9352 }
9353 break;
9354
9355 case NOT:
9356 if (VECTOR_MODE_P (mode))
9357 break;
9358
9359 /* Make this fit the case below. */
9360 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
9361 GEN_INT (GET_MODE_MASK (mode)));
9362 continue;
9363
9364 case IOR:
9365 case AND:
9366 case XOR:
9367 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
9368 with C the size of VAROP - 1 and the shift is logical if
9369 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9370 we have an (le X 0) operation. If we have an arithmetic shift
9371 and STORE_FLAG_VALUE is 1 or we have a logical shift with
9372 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
9373
9374 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
9375 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
9376 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9377 && (code == LSHIFTRT || code == ASHIFTRT)
9378 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9379 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9380 {
9381 count = 0;
9382 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
9383 const0_rtx);
9384
9385 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9386 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9387
9388 continue;
9389 }
9390
9391 /* If we have (shift (logical)), move the logical to the outside
9392 to allow it to possibly combine with another logical and the
9393 shift to combine with another shift. This also canonicalizes to
9394 what a ZERO_EXTRACT looks like. Also, some machines have
9395 (and (shift)) insns. */
9396
9397 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9398 /* We can't do this if we have (ashiftrt (xor)) and the
9399 constant has its sign bit set in shift_mode. */
9400 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9401 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9402 shift_mode))
9403 && (new_rtx = simplify_const_binary_operation (code, result_mode,
9404 XEXP (varop, 1),
9405 GEN_INT (count))) != 0
9406 && GET_CODE (new_rtx) == CONST_INT
9407 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9408 INTVAL (new_rtx), result_mode, &complement_p))
9409 {
9410 varop = XEXP (varop, 0);
9411 continue;
9412 }
9413
9414 /* If we can't do that, try to simplify the shift in each arm of the
9415 logical expression, make a new logical expression, and apply
9416 the inverse distributive law. This also can't be done
9417 for some (ashiftrt (xor)). */
9418 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9419 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9420 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9421 shift_mode)))
9422 {
9423 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9424 XEXP (varop, 0), count);
9425 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9426 XEXP (varop, 1), count);
9427
9428 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
9429 lhs, rhs);
9430 varop = apply_distributive_law (varop);
9431
9432 count = 0;
9433 continue;
9434 }
9435 break;
9436
9437 case EQ:
9438 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9439 says that the sign bit can be tested, FOO has mode MODE, C is
9440 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9441 that may be nonzero. */
9442 if (code == LSHIFTRT
9443 && XEXP (varop, 1) == const0_rtx
9444 && GET_MODE (XEXP (varop, 0)) == result_mode
9445 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9446 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9447 && STORE_FLAG_VALUE == -1
9448 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9449 && merge_outer_ops (&outer_op, &outer_const, XOR,
9450 (HOST_WIDE_INT) 1, result_mode,
9451 &complement_p))
9452 {
9453 varop = XEXP (varop, 0);
9454 count = 0;
9455 continue;
9456 }
9457 break;
9458
9459 case NEG:
9460 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9461 than the number of bits in the mode is equivalent to A. */
9462 if (code == LSHIFTRT
9463 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9464 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9465 {
9466 varop = XEXP (varop, 0);
9467 count = 0;
9468 continue;
9469 }
9470
9471 /* NEG commutes with ASHIFT since it is multiplication. Move the
9472 NEG outside to allow shifts to combine. */
9473 if (code == ASHIFT
9474 && merge_outer_ops (&outer_op, &outer_const, NEG,
9475 (HOST_WIDE_INT) 0, result_mode,
9476 &complement_p))
9477 {
9478 varop = XEXP (varop, 0);
9479 continue;
9480 }
9481 break;
9482
9483 case PLUS:
9484 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9485 is one less than the number of bits in the mode is
9486 equivalent to (xor A 1). */
9487 if (code == LSHIFTRT
9488 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9489 && XEXP (varop, 1) == constm1_rtx
9490 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9491 && merge_outer_ops (&outer_op, &outer_const, XOR,
9492 (HOST_WIDE_INT) 1, result_mode,
9493 &complement_p))
9494 {
9495 count = 0;
9496 varop = XEXP (varop, 0);
9497 continue;
9498 }
9499
9500 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9501 that might be nonzero in BAR are those being shifted out and those
9502 bits are known zero in FOO, we can replace the PLUS with FOO.
9503 Similarly in the other operand order. This code occurs when
9504 we are computing the size of a variable-size array. */
9505
9506 if ((code == ASHIFTRT || code == LSHIFTRT)
9507 && count < HOST_BITS_PER_WIDE_INT
9508 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9509 && (nonzero_bits (XEXP (varop, 1), result_mode)
9510 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9511 {
9512 varop = XEXP (varop, 0);
9513 continue;
9514 }
9515 else if ((code == ASHIFTRT || code == LSHIFTRT)
9516 && count < HOST_BITS_PER_WIDE_INT
9517 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9518 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9519 >> count)
9520 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9521 & nonzero_bits (XEXP (varop, 1),
9522 result_mode)))
9523 {
9524 varop = XEXP (varop, 1);
9525 continue;
9526 }
9527
9528 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9529 if (code == ASHIFT
9530 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9531 && (new_rtx = simplify_const_binary_operation (ASHIFT, result_mode,
9532 XEXP (varop, 1),
9533 GEN_INT (count))) != 0
9534 && GET_CODE (new_rtx) == CONST_INT
9535 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9536 INTVAL (new_rtx), result_mode, &complement_p))
9537 {
9538 varop = XEXP (varop, 0);
9539 continue;
9540 }
9541
9542 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
9543 signbit', and attempt to change the PLUS to an XOR and move it to
9544 the outer operation as is done above in the AND/IOR/XOR case
9545 leg for shift(logical). See details in logical handling above
9546 for reasoning in doing so. */
9547 if (code == LSHIFTRT
9548 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9549 && mode_signbit_p (result_mode, XEXP (varop, 1))
9550 && (new_rtx = simplify_const_binary_operation (code, result_mode,
9551 XEXP (varop, 1),
9552 GEN_INT (count))) != 0
9553 && GET_CODE (new_rtx) == CONST_INT
9554 && merge_outer_ops (&outer_op, &outer_const, XOR,
9555 INTVAL (new_rtx), result_mode, &complement_p))
9556 {
9557 varop = XEXP (varop, 0);
9558 continue;
9559 }
9560
9561 break;
9562
9563 case MINUS:
9564 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9565 with C the size of VAROP - 1 and the shift is logical if
9566 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9567 we have a (gt X 0) operation. If the shift is arithmetic with
9568 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9569 we have a (neg (gt X 0)) operation. */
9570
9571 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9572 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9573 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9574 && (code == LSHIFTRT || code == ASHIFTRT)
9575 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9576 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
9577 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9578 {
9579 count = 0;
9580 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9581 const0_rtx);
9582
9583 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9584 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9585
9586 continue;
9587 }
9588 break;
9589
9590 case TRUNCATE:
9591 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9592 if the truncate does not affect the value. */
9593 if (code == LSHIFTRT
9594 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9595 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9596 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9597 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9598 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9599 {
9600 rtx varop_inner = XEXP (varop, 0);
9601
9602 varop_inner
9603 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9604 XEXP (varop_inner, 0),
9605 GEN_INT
9606 (count + INTVAL (XEXP (varop_inner, 1))));
9607 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9608 count = 0;
9609 continue;
9610 }
9611 break;
9612
9613 default:
9614 break;
9615 }
9616
9617 break;
9618 }
9619
9620 /* We need to determine what mode to do the shift in. If the shift is
9621 a right shift or ROTATE, we must always do it in the mode it was
9622 originally done in. Otherwise, we can do it in MODE, the widest mode
9623 encountered. The code we care about is that of the shift that will
9624 actually be done, not the shift that was originally requested. */
9625 shift_mode
9626 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9627 ? result_mode : mode);
9628
9629 /* We have now finished analyzing the shift. The result should be
9630 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9631 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
9632 to the result of the shift. OUTER_CONST is the relevant constant,
9633 but we must turn off all bits turned off in the shift. */
9634
9635 if (outer_op == UNKNOWN
9636 && orig_code == code && orig_count == count
9637 && varop == orig_varop
9638 && shift_mode == GET_MODE (varop))
9639 return NULL_RTX;
9640
9641 /* Make a SUBREG if necessary. If we can't make it, fail. */
9642 varop = gen_lowpart (shift_mode, varop);
9643 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9644 return NULL_RTX;
9645
9646 /* If we have an outer operation and we just made a shift, it is
9647 possible that we could have simplified the shift were it not
9648 for the outer operation. So try to do the simplification
9649 recursively. */
9650
9651 if (outer_op != UNKNOWN)
9652 x = simplify_shift_const_1 (code, shift_mode, varop, count);
9653 else
9654 x = NULL_RTX;
9655
9656 if (x == NULL_RTX)
9657 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
9658
9659 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9660 turn off all the bits that the shift would have turned off. */
9661 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9662 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9663 GET_MODE_MASK (result_mode) >> orig_count);
9664
9665 /* Do the remainder of the processing in RESULT_MODE. */
9666 x = gen_lowpart_or_truncate (result_mode, x);
9667
9668 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9669 operation. */
9670 if (complement_p)
9671 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
9672
9673 if (outer_op != UNKNOWN)
9674 {
9675 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9676 outer_const = trunc_int_for_mode (outer_const, result_mode);
9677
9678 if (outer_op == AND)
9679 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9680 else if (outer_op == SET)
9681 {
9682 /* This means that we have determined that the result is
9683 equivalent to a constant. This should be rare. */
9684 if (!side_effects_p (x))
9685 x = GEN_INT (outer_const);
9686 }
9687 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
9688 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9689 else
9690 x = simplify_gen_binary (outer_op, result_mode, x,
9691 GEN_INT (outer_const));
9692 }
9693
9694 return x;
9695 }
9696
9697 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
9698 The result of the shift is RESULT_MODE. If we cannot simplify it,
9699 return X or, if it is NULL, synthesize the expression with
9700 simplify_gen_binary. Otherwise, return a simplified value.
9701
9702 The shift is normally computed in the widest mode we find in VAROP, as
9703 long as it isn't a different number of words than RESULT_MODE. Exceptions
9704 are ASHIFTRT and ROTATE, which are always done in their original mode. */
9705
9706 static rtx
9707 simplify_shift_const (rtx x, enum rtx_code code, enum machine_mode result_mode,
9708 rtx varop, int count)
9709 {
9710 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
9711 if (tem)
9712 return tem;
9713
9714 if (!x)
9715 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
9716 if (GET_MODE (x) != result_mode)
9717 x = gen_lowpart (result_mode, x);
9718 return x;
9719 }
9720
9721 \f
9722 /* Like recog, but we receive the address of a pointer to a new pattern.
9723 We try to match the rtx that the pointer points to.
9724 If that fails, we may try to modify or replace the pattern,
9725 storing the replacement into the same pointer object.
9726
9727 Modifications include deletion or addition of CLOBBERs.
9728
9729 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9730 the CLOBBERs are placed.
9731
9732 The value is the final insn code from the pattern ultimately matched,
9733 or -1. */
9734
9735 static int
9736 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
9737 {
9738 rtx pat = *pnewpat;
9739 int insn_code_number;
9740 int num_clobbers_to_add = 0;
9741 int i;
9742 rtx notes = 0;
9743 rtx old_notes, old_pat;
9744
9745 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9746 we use to indicate that something didn't match. If we find such a
9747 thing, force rejection. */
9748 if (GET_CODE (pat) == PARALLEL)
9749 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9750 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9751 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9752 return -1;
9753
9754 old_pat = PATTERN (insn);
9755 old_notes = REG_NOTES (insn);
9756 PATTERN (insn) = pat;
9757 REG_NOTES (insn) = 0;
9758
9759 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9760 if (dump_file && (dump_flags & TDF_DETAILS))
9761 {
9762 if (insn_code_number < 0)
9763 fputs ("Failed to match this instruction:\n", dump_file);
9764 else
9765 fputs ("Successfully matched this instruction:\n", dump_file);
9766 print_rtl_single (dump_file, pat);
9767 }
9768
9769 /* If it isn't, there is the possibility that we previously had an insn
9770 that clobbered some register as a side effect, but the combined
9771 insn doesn't need to do that. So try once more without the clobbers
9772 unless this represents an ASM insn. */
9773
9774 if (insn_code_number < 0 && ! check_asm_operands (pat)
9775 && GET_CODE (pat) == PARALLEL)
9776 {
9777 int pos;
9778
9779 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9780 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9781 {
9782 if (i != pos)
9783 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9784 pos++;
9785 }
9786
9787 SUBST_INT (XVECLEN (pat, 0), pos);
9788
9789 if (pos == 1)
9790 pat = XVECEXP (pat, 0, 0);
9791
9792 PATTERN (insn) = pat;
9793 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9794 if (dump_file && (dump_flags & TDF_DETAILS))
9795 {
9796 if (insn_code_number < 0)
9797 fputs ("Failed to match this instruction:\n", dump_file);
9798 else
9799 fputs ("Successfully matched this instruction:\n", dump_file);
9800 print_rtl_single (dump_file, pat);
9801 }
9802 }
9803 PATTERN (insn) = old_pat;
9804 REG_NOTES (insn) = old_notes;
9805
9806 /* Recognize all noop sets, these will be killed by followup pass. */
9807 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9808 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9809
9810 /* If we had any clobbers to add, make a new pattern than contains
9811 them. Then check to make sure that all of them are dead. */
9812 if (num_clobbers_to_add)
9813 {
9814 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9815 rtvec_alloc (GET_CODE (pat) == PARALLEL
9816 ? (XVECLEN (pat, 0)
9817 + num_clobbers_to_add)
9818 : num_clobbers_to_add + 1));
9819
9820 if (GET_CODE (pat) == PARALLEL)
9821 for (i = 0; i < XVECLEN (pat, 0); i++)
9822 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9823 else
9824 XVECEXP (newpat, 0, 0) = pat;
9825
9826 add_clobbers (newpat, insn_code_number);
9827
9828 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9829 i < XVECLEN (newpat, 0); i++)
9830 {
9831 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
9832 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9833 return -1;
9834 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
9835 {
9836 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
9837 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9838 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9839 }
9840 }
9841 pat = newpat;
9842 }
9843
9844 *pnewpat = pat;
9845 *pnotes = notes;
9846
9847 return insn_code_number;
9848 }
9849 \f
9850 /* Like gen_lowpart_general but for use by combine. In combine it
9851 is not possible to create any new pseudoregs. However, it is
9852 safe to create invalid memory addresses, because combine will
9853 try to recognize them and all they will do is make the combine
9854 attempt fail.
9855
9856 If for some reason this cannot do its job, an rtx
9857 (clobber (const_int 0)) is returned.
9858 An insn containing that will not be recognized. */
9859
9860 static rtx
9861 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
9862 {
9863 enum machine_mode imode = GET_MODE (x);
9864 unsigned int osize = GET_MODE_SIZE (omode);
9865 unsigned int isize = GET_MODE_SIZE (imode);
9866 rtx result;
9867
9868 if (omode == imode)
9869 return x;
9870
9871 /* Return identity if this is a CONST or symbolic reference. */
9872 if (omode == Pmode
9873 && (GET_CODE (x) == CONST
9874 || GET_CODE (x) == SYMBOL_REF
9875 || GET_CODE (x) == LABEL_REF))
9876 return x;
9877
9878 /* We can only support MODE being wider than a word if X is a
9879 constant integer or has a mode the same size. */
9880 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
9881 && ! ((imode == VOIDmode
9882 && (GET_CODE (x) == CONST_INT
9883 || GET_CODE (x) == CONST_DOUBLE))
9884 || isize == osize))
9885 goto fail;
9886
9887 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9888 won't know what to do. So we will strip off the SUBREG here and
9889 process normally. */
9890 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
9891 {
9892 x = SUBREG_REG (x);
9893
9894 /* For use in case we fall down into the address adjustments
9895 further below, we need to adjust the known mode and size of
9896 x; imode and isize, since we just adjusted x. */
9897 imode = GET_MODE (x);
9898
9899 if (imode == omode)
9900 return x;
9901
9902 isize = GET_MODE_SIZE (imode);
9903 }
9904
9905 result = gen_lowpart_common (omode, x);
9906
9907 if (result)
9908 return result;
9909
9910 if (MEM_P (x))
9911 {
9912 int offset = 0;
9913
9914 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9915 address. */
9916 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9917 goto fail;
9918
9919 /* If we want to refer to something bigger than the original memref,
9920 generate a paradoxical subreg instead. That will force a reload
9921 of the original memref X. */
9922 if (isize < osize)
9923 return gen_rtx_SUBREG (omode, x, 0);
9924
9925 if (WORDS_BIG_ENDIAN)
9926 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
9927
9928 /* Adjust the address so that the address-after-the-data is
9929 unchanged. */
9930 if (BYTES_BIG_ENDIAN)
9931 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
9932
9933 return adjust_address_nv (x, omode, offset);
9934 }
9935
9936 /* If X is a comparison operator, rewrite it in a new mode. This
9937 probably won't match, but may allow further simplifications. */
9938 else if (COMPARISON_P (x))
9939 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
9940
9941 /* If we couldn't simplify X any other way, just enclose it in a
9942 SUBREG. Normally, this SUBREG won't match, but some patterns may
9943 include an explicit SUBREG or we may simplify it further in combine. */
9944 else
9945 {
9946 int offset = 0;
9947 rtx res;
9948
9949 offset = subreg_lowpart_offset (omode, imode);
9950 if (imode == VOIDmode)
9951 {
9952 imode = int_mode_for_mode (omode);
9953 x = gen_lowpart_common (imode, x);
9954 if (x == NULL)
9955 goto fail;
9956 }
9957 res = simplify_gen_subreg (omode, x, imode, offset);
9958 if (res)
9959 return res;
9960 }
9961
9962 fail:
9963 return gen_rtx_CLOBBER (imode, const0_rtx);
9964 }
9965 \f
9966 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
9967 comparison code that will be tested.
9968
9969 The result is a possibly different comparison code to use. *POP0 and
9970 *POP1 may be updated.
9971
9972 It is possible that we might detect that a comparison is either always
9973 true or always false. However, we do not perform general constant
9974 folding in combine, so this knowledge isn't useful. Such tautologies
9975 should have been detected earlier. Hence we ignore all such cases. */
9976
9977 static enum rtx_code
9978 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
9979 {
9980 rtx op0 = *pop0;
9981 rtx op1 = *pop1;
9982 rtx tem, tem1;
9983 int i;
9984 enum machine_mode mode, tmode;
9985
9986 /* Try a few ways of applying the same transformation to both operands. */
9987 while (1)
9988 {
9989 #ifndef WORD_REGISTER_OPERATIONS
9990 /* The test below this one won't handle SIGN_EXTENDs on these machines,
9991 so check specially. */
9992 if (code != GTU && code != GEU && code != LTU && code != LEU
9993 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
9994 && GET_CODE (XEXP (op0, 0)) == ASHIFT
9995 && GET_CODE (XEXP (op1, 0)) == ASHIFT
9996 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
9997 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
9998 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
9999 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
10000 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10001 && XEXP (op0, 1) == XEXP (op1, 1)
10002 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10003 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
10004 && (INTVAL (XEXP (op0, 1))
10005 == (GET_MODE_BITSIZE (GET_MODE (op0))
10006 - (GET_MODE_BITSIZE
10007 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
10008 {
10009 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
10010 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
10011 }
10012 #endif
10013
10014 /* If both operands are the same constant shift, see if we can ignore the
10015 shift. We can if the shift is a rotate or if the bits shifted out of
10016 this shift are known to be zero for both inputs and if the type of
10017 comparison is compatible with the shift. */
10018 if (GET_CODE (op0) == GET_CODE (op1)
10019 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10020 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
10021 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
10022 && (code != GT && code != LT && code != GE && code != LE))
10023 || (GET_CODE (op0) == ASHIFTRT
10024 && (code != GTU && code != LTU
10025 && code != GEU && code != LEU)))
10026 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10027 && INTVAL (XEXP (op0, 1)) >= 0
10028 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10029 && XEXP (op0, 1) == XEXP (op1, 1))
10030 {
10031 enum machine_mode mode = GET_MODE (op0);
10032 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10033 int shift_count = INTVAL (XEXP (op0, 1));
10034
10035 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
10036 mask &= (mask >> shift_count) << shift_count;
10037 else if (GET_CODE (op0) == ASHIFT)
10038 mask = (mask & (mask << shift_count)) >> shift_count;
10039
10040 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
10041 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
10042 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
10043 else
10044 break;
10045 }
10046
10047 /* If both operands are AND's of a paradoxical SUBREG by constant, the
10048 SUBREGs are of the same mode, and, in both cases, the AND would
10049 be redundant if the comparison was done in the narrower mode,
10050 do the comparison in the narrower mode (e.g., we are AND'ing with 1
10051 and the operand's possibly nonzero bits are 0xffffff01; in that case
10052 if we only care about QImode, we don't need the AND). This case
10053 occurs if the output mode of an scc insn is not SImode and
10054 STORE_FLAG_VALUE == 1 (e.g., the 386).
10055
10056 Similarly, check for a case where the AND's are ZERO_EXTEND
10057 operations from some narrower mode even though a SUBREG is not
10058 present. */
10059
10060 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
10061 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10062 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
10063 {
10064 rtx inner_op0 = XEXP (op0, 0);
10065 rtx inner_op1 = XEXP (op1, 0);
10066 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
10067 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
10068 int changed = 0;
10069
10070 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
10071 && (GET_MODE_SIZE (GET_MODE (inner_op0))
10072 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
10073 && (GET_MODE (SUBREG_REG (inner_op0))
10074 == GET_MODE (SUBREG_REG (inner_op1)))
10075 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
10076 <= HOST_BITS_PER_WIDE_INT)
10077 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
10078 GET_MODE (SUBREG_REG (inner_op0)))))
10079 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
10080 GET_MODE (SUBREG_REG (inner_op1))))))
10081 {
10082 op0 = SUBREG_REG (inner_op0);
10083 op1 = SUBREG_REG (inner_op1);
10084
10085 /* The resulting comparison is always unsigned since we masked
10086 off the original sign bit. */
10087 code = unsigned_condition (code);
10088
10089 changed = 1;
10090 }
10091
10092 else if (c0 == c1)
10093 for (tmode = GET_CLASS_NARROWEST_MODE
10094 (GET_MODE_CLASS (GET_MODE (op0)));
10095 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
10096 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
10097 {
10098 op0 = gen_lowpart (tmode, inner_op0);
10099 op1 = gen_lowpart (tmode, inner_op1);
10100 code = unsigned_condition (code);
10101 changed = 1;
10102 break;
10103 }
10104
10105 if (! changed)
10106 break;
10107 }
10108
10109 /* If both operands are NOT, we can strip off the outer operation
10110 and adjust the comparison code for swapped operands; similarly for
10111 NEG, except that this must be an equality comparison. */
10112 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
10113 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
10114 && (code == EQ || code == NE)))
10115 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
10116
10117 else
10118 break;
10119 }
10120
10121 /* If the first operand is a constant, swap the operands and adjust the
10122 comparison code appropriately, but don't do this if the second operand
10123 is already a constant integer. */
10124 if (swap_commutative_operands_p (op0, op1))
10125 {
10126 tem = op0, op0 = op1, op1 = tem;
10127 code = swap_condition (code);
10128 }
10129
10130 /* We now enter a loop during which we will try to simplify the comparison.
10131 For the most part, we only are concerned with comparisons with zero,
10132 but some things may really be comparisons with zero but not start
10133 out looking that way. */
10134
10135 while (GET_CODE (op1) == CONST_INT)
10136 {
10137 enum machine_mode mode = GET_MODE (op0);
10138 unsigned int mode_width = GET_MODE_BITSIZE (mode);
10139 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10140 int equality_comparison_p;
10141 int sign_bit_comparison_p;
10142 int unsigned_comparison_p;
10143 HOST_WIDE_INT const_op;
10144
10145 /* We only want to handle integral modes. This catches VOIDmode,
10146 CCmode, and the floating-point modes. An exception is that we
10147 can handle VOIDmode if OP0 is a COMPARE or a comparison
10148 operation. */
10149
10150 if (GET_MODE_CLASS (mode) != MODE_INT
10151 && ! (mode == VOIDmode
10152 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
10153 break;
10154
10155 /* Get the constant we are comparing against and turn off all bits
10156 not on in our mode. */
10157 const_op = INTVAL (op1);
10158 if (mode != VOIDmode)
10159 const_op = trunc_int_for_mode (const_op, mode);
10160 op1 = GEN_INT (const_op);
10161
10162 /* If we are comparing against a constant power of two and the value
10163 being compared can only have that single bit nonzero (e.g., it was
10164 `and'ed with that bit), we can replace this with a comparison
10165 with zero. */
10166 if (const_op
10167 && (code == EQ || code == NE || code == GE || code == GEU
10168 || code == LT || code == LTU)
10169 && mode_width <= HOST_BITS_PER_WIDE_INT
10170 && exact_log2 (const_op) >= 0
10171 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10172 {
10173 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10174 op1 = const0_rtx, const_op = 0;
10175 }
10176
10177 /* Similarly, if we are comparing a value known to be either -1 or
10178 0 with -1, change it to the opposite comparison against zero. */
10179
10180 if (const_op == -1
10181 && (code == EQ || code == NE || code == GT || code == LE
10182 || code == GEU || code == LTU)
10183 && num_sign_bit_copies (op0, mode) == mode_width)
10184 {
10185 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10186 op1 = const0_rtx, const_op = 0;
10187 }
10188
10189 /* Do some canonicalizations based on the comparison code. We prefer
10190 comparisons against zero and then prefer equality comparisons.
10191 If we can reduce the size of a constant, we will do that too. */
10192
10193 switch (code)
10194 {
10195 case LT:
10196 /* < C is equivalent to <= (C - 1) */
10197 if (const_op > 0)
10198 {
10199 const_op -= 1;
10200 op1 = GEN_INT (const_op);
10201 code = LE;
10202 /* ... fall through to LE case below. */
10203 }
10204 else
10205 break;
10206
10207 case LE:
10208 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10209 if (const_op < 0)
10210 {
10211 const_op += 1;
10212 op1 = GEN_INT (const_op);
10213 code = LT;
10214 }
10215
10216 /* If we are doing a <= 0 comparison on a value known to have
10217 a zero sign bit, we can replace this with == 0. */
10218 else if (const_op == 0
10219 && mode_width <= HOST_BITS_PER_WIDE_INT
10220 && (nonzero_bits (op0, mode)
10221 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10222 code = EQ;
10223 break;
10224
10225 case GE:
10226 /* >= C is equivalent to > (C - 1). */
10227 if (const_op > 0)
10228 {
10229 const_op -= 1;
10230 op1 = GEN_INT (const_op);
10231 code = GT;
10232 /* ... fall through to GT below. */
10233 }
10234 else
10235 break;
10236
10237 case GT:
10238 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10239 if (const_op < 0)
10240 {
10241 const_op += 1;
10242 op1 = GEN_INT (const_op);
10243 code = GE;
10244 }
10245
10246 /* If we are doing a > 0 comparison on a value known to have
10247 a zero sign bit, we can replace this with != 0. */
10248 else if (const_op == 0
10249 && mode_width <= HOST_BITS_PER_WIDE_INT
10250 && (nonzero_bits (op0, mode)
10251 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10252 code = NE;
10253 break;
10254
10255 case LTU:
10256 /* < C is equivalent to <= (C - 1). */
10257 if (const_op > 0)
10258 {
10259 const_op -= 1;
10260 op1 = GEN_INT (const_op);
10261 code = LEU;
10262 /* ... fall through ... */
10263 }
10264
10265 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10266 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10267 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10268 {
10269 const_op = 0, op1 = const0_rtx;
10270 code = GE;
10271 break;
10272 }
10273 else
10274 break;
10275
10276 case LEU:
10277 /* unsigned <= 0 is equivalent to == 0 */
10278 if (const_op == 0)
10279 code = EQ;
10280
10281 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10282 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10283 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10284 {
10285 const_op = 0, op1 = const0_rtx;
10286 code = GE;
10287 }
10288 break;
10289
10290 case GEU:
10291 /* >= C is equivalent to > (C - 1). */
10292 if (const_op > 1)
10293 {
10294 const_op -= 1;
10295 op1 = GEN_INT (const_op);
10296 code = GTU;
10297 /* ... fall through ... */
10298 }
10299
10300 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10301 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10302 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10303 {
10304 const_op = 0, op1 = const0_rtx;
10305 code = LT;
10306 break;
10307 }
10308 else
10309 break;
10310
10311 case GTU:
10312 /* unsigned > 0 is equivalent to != 0 */
10313 if (const_op == 0)
10314 code = NE;
10315
10316 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10317 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10318 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10319 {
10320 const_op = 0, op1 = const0_rtx;
10321 code = LT;
10322 }
10323 break;
10324
10325 default:
10326 break;
10327 }
10328
10329 /* Compute some predicates to simplify code below. */
10330
10331 equality_comparison_p = (code == EQ || code == NE);
10332 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
10333 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
10334 || code == GEU);
10335
10336 /* If this is a sign bit comparison and we can do arithmetic in
10337 MODE, say that we will only be needing the sign bit of OP0. */
10338 if (sign_bit_comparison_p
10339 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10340 op0 = force_to_mode (op0, mode,
10341 ((HOST_WIDE_INT) 1
10342 << (GET_MODE_BITSIZE (mode) - 1)),
10343 0);
10344
10345 /* Now try cases based on the opcode of OP0. If none of the cases
10346 does a "continue", we exit this loop immediately after the
10347 switch. */
10348
10349 switch (GET_CODE (op0))
10350 {
10351 case ZERO_EXTRACT:
10352 /* If we are extracting a single bit from a variable position in
10353 a constant that has only a single bit set and are comparing it
10354 with zero, we can convert this into an equality comparison
10355 between the position and the location of the single bit. */
10356 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
10357 have already reduced the shift count modulo the word size. */
10358 if (!SHIFT_COUNT_TRUNCATED
10359 && GET_CODE (XEXP (op0, 0)) == CONST_INT
10360 && XEXP (op0, 1) == const1_rtx
10361 && equality_comparison_p && const_op == 0
10362 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
10363 {
10364 if (BITS_BIG_ENDIAN)
10365 {
10366 enum machine_mode new_mode
10367 = mode_for_extraction (EP_extzv, 1);
10368 if (new_mode == MAX_MACHINE_MODE)
10369 i = BITS_PER_WORD - 1 - i;
10370 else
10371 {
10372 mode = new_mode;
10373 i = (GET_MODE_BITSIZE (mode) - 1 - i);
10374 }
10375 }
10376
10377 op0 = XEXP (op0, 2);
10378 op1 = GEN_INT (i);
10379 const_op = i;
10380
10381 /* Result is nonzero iff shift count is equal to I. */
10382 code = reverse_condition (code);
10383 continue;
10384 }
10385
10386 /* ... fall through ... */
10387
10388 case SIGN_EXTRACT:
10389 tem = expand_compound_operation (op0);
10390 if (tem != op0)
10391 {
10392 op0 = tem;
10393 continue;
10394 }
10395 break;
10396
10397 case NOT:
10398 /* If testing for equality, we can take the NOT of the constant. */
10399 if (equality_comparison_p
10400 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
10401 {
10402 op0 = XEXP (op0, 0);
10403 op1 = tem;
10404 continue;
10405 }
10406
10407 /* If just looking at the sign bit, reverse the sense of the
10408 comparison. */
10409 if (sign_bit_comparison_p)
10410 {
10411 op0 = XEXP (op0, 0);
10412 code = (code == GE ? LT : GE);
10413 continue;
10414 }
10415 break;
10416
10417 case NEG:
10418 /* If testing for equality, we can take the NEG of the constant. */
10419 if (equality_comparison_p
10420 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
10421 {
10422 op0 = XEXP (op0, 0);
10423 op1 = tem;
10424 continue;
10425 }
10426
10427 /* The remaining cases only apply to comparisons with zero. */
10428 if (const_op != 0)
10429 break;
10430
10431 /* When X is ABS or is known positive,
10432 (neg X) is < 0 if and only if X != 0. */
10433
10434 if (sign_bit_comparison_p
10435 && (GET_CODE (XEXP (op0, 0)) == ABS
10436 || (mode_width <= HOST_BITS_PER_WIDE_INT
10437 && (nonzero_bits (XEXP (op0, 0), mode)
10438 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10439 {
10440 op0 = XEXP (op0, 0);
10441 code = (code == LT ? NE : EQ);
10442 continue;
10443 }
10444
10445 /* If we have NEG of something whose two high-order bits are the
10446 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10447 if (num_sign_bit_copies (op0, mode) >= 2)
10448 {
10449 op0 = XEXP (op0, 0);
10450 code = swap_condition (code);
10451 continue;
10452 }
10453 break;
10454
10455 case ROTATE:
10456 /* If we are testing equality and our count is a constant, we
10457 can perform the inverse operation on our RHS. */
10458 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10459 && (tem = simplify_binary_operation (ROTATERT, mode,
10460 op1, XEXP (op0, 1))) != 0)
10461 {
10462 op0 = XEXP (op0, 0);
10463 op1 = tem;
10464 continue;
10465 }
10466
10467 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10468 a particular bit. Convert it to an AND of a constant of that
10469 bit. This will be converted into a ZERO_EXTRACT. */
10470 if (const_op == 0 && sign_bit_comparison_p
10471 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10472 && mode_width <= HOST_BITS_PER_WIDE_INT)
10473 {
10474 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10475 ((HOST_WIDE_INT) 1
10476 << (mode_width - 1
10477 - INTVAL (XEXP (op0, 1)))));
10478 code = (code == LT ? NE : EQ);
10479 continue;
10480 }
10481
10482 /* Fall through. */
10483
10484 case ABS:
10485 /* ABS is ignorable inside an equality comparison with zero. */
10486 if (const_op == 0 && equality_comparison_p)
10487 {
10488 op0 = XEXP (op0, 0);
10489 continue;
10490 }
10491 break;
10492
10493 case SIGN_EXTEND:
10494 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
10495 (compare FOO CONST) if CONST fits in FOO's mode and we
10496 are either testing inequality or have an unsigned
10497 comparison with ZERO_EXTEND or a signed comparison with
10498 SIGN_EXTEND. But don't do it if we don't have a compare
10499 insn of the given mode, since we'd have to revert it
10500 later on, and then we wouldn't know whether to sign- or
10501 zero-extend. */
10502 mode = GET_MODE (XEXP (op0, 0));
10503 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10504 && ! unsigned_comparison_p
10505 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10506 && ((unsigned HOST_WIDE_INT) const_op
10507 < (((unsigned HOST_WIDE_INT) 1
10508 << (GET_MODE_BITSIZE (mode) - 1))))
10509 && optab_handler (cmp_optab, mode)->insn_code != CODE_FOR_nothing)
10510 {
10511 op0 = XEXP (op0, 0);
10512 continue;
10513 }
10514 break;
10515
10516 case SUBREG:
10517 /* Check for the case where we are comparing A - C1 with C2, that is
10518
10519 (subreg:MODE (plus (A) (-C1))) op (C2)
10520
10521 with C1 a constant, and try to lift the SUBREG, i.e. to do the
10522 comparison in the wider mode. One of the following two conditions
10523 must be true in order for this to be valid:
10524
10525 1. The mode extension results in the same bit pattern being added
10526 on both sides and the comparison is equality or unsigned. As
10527 C2 has been truncated to fit in MODE, the pattern can only be
10528 all 0s or all 1s.
10529
10530 2. The mode extension results in the sign bit being copied on
10531 each side.
10532
10533 The difficulty here is that we have predicates for A but not for
10534 (A - C1) so we need to check that C1 is within proper bounds so
10535 as to perturbate A as little as possible. */
10536
10537 if (mode_width <= HOST_BITS_PER_WIDE_INT
10538 && subreg_lowpart_p (op0)
10539 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) > mode_width
10540 && GET_CODE (SUBREG_REG (op0)) == PLUS
10541 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT)
10542 {
10543 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
10544 rtx a = XEXP (SUBREG_REG (op0), 0);
10545 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
10546
10547 if ((c1 > 0
10548 && (unsigned HOST_WIDE_INT) c1
10549 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
10550 && (equality_comparison_p || unsigned_comparison_p)
10551 /* (A - C1) zero-extends if it is positive and sign-extends
10552 if it is negative, C2 both zero- and sign-extends. */
10553 && ((0 == (nonzero_bits (a, inner_mode)
10554 & ~GET_MODE_MASK (mode))
10555 && const_op >= 0)
10556 /* (A - C1) sign-extends if it is positive and 1-extends
10557 if it is negative, C2 both sign- and 1-extends. */
10558 || (num_sign_bit_copies (a, inner_mode)
10559 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10560 - mode_width)
10561 && const_op < 0)))
10562 || ((unsigned HOST_WIDE_INT) c1
10563 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
10564 /* (A - C1) always sign-extends, like C2. */
10565 && num_sign_bit_copies (a, inner_mode)
10566 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10567 - (mode_width - 1))))
10568 {
10569 op0 = SUBREG_REG (op0);
10570 continue;
10571 }
10572 }
10573
10574 /* If the inner mode is narrower and we are extracting the low part,
10575 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10576 if (subreg_lowpart_p (op0)
10577 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10578 /* Fall through */ ;
10579 else
10580 break;
10581
10582 /* ... fall through ... */
10583
10584 case ZERO_EXTEND:
10585 mode = GET_MODE (XEXP (op0, 0));
10586 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10587 && (unsigned_comparison_p || equality_comparison_p)
10588 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10589 && ((unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode))
10590 && optab_handler (cmp_optab, mode)->insn_code != CODE_FOR_nothing)
10591 {
10592 op0 = XEXP (op0, 0);
10593 continue;
10594 }
10595 break;
10596
10597 case PLUS:
10598 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10599 this for equality comparisons due to pathological cases involving
10600 overflows. */
10601 if (equality_comparison_p
10602 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10603 op1, XEXP (op0, 1))))
10604 {
10605 op0 = XEXP (op0, 0);
10606 op1 = tem;
10607 continue;
10608 }
10609
10610 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10611 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10612 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10613 {
10614 op0 = XEXP (XEXP (op0, 0), 0);
10615 code = (code == LT ? EQ : NE);
10616 continue;
10617 }
10618 break;
10619
10620 case MINUS:
10621 /* We used to optimize signed comparisons against zero, but that
10622 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10623 arrive here as equality comparisons, or (GEU, LTU) are
10624 optimized away. No need to special-case them. */
10625
10626 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10627 (eq B (minus A C)), whichever simplifies. We can only do
10628 this for equality comparisons due to pathological cases involving
10629 overflows. */
10630 if (equality_comparison_p
10631 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10632 XEXP (op0, 1), op1)))
10633 {
10634 op0 = XEXP (op0, 0);
10635 op1 = tem;
10636 continue;
10637 }
10638
10639 if (equality_comparison_p
10640 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10641 XEXP (op0, 0), op1)))
10642 {
10643 op0 = XEXP (op0, 1);
10644 op1 = tem;
10645 continue;
10646 }
10647
10648 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10649 of bits in X minus 1, is one iff X > 0. */
10650 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10651 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10652 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10653 == mode_width - 1
10654 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10655 {
10656 op0 = XEXP (op0, 1);
10657 code = (code == GE ? LE : GT);
10658 continue;
10659 }
10660 break;
10661
10662 case XOR:
10663 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10664 if C is zero or B is a constant. */
10665 if (equality_comparison_p
10666 && 0 != (tem = simplify_binary_operation (XOR, mode,
10667 XEXP (op0, 1), op1)))
10668 {
10669 op0 = XEXP (op0, 0);
10670 op1 = tem;
10671 continue;
10672 }
10673 break;
10674
10675 case EQ: case NE:
10676 case UNEQ: case LTGT:
10677 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10678 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10679 case UNORDERED: case ORDERED:
10680 /* We can't do anything if OP0 is a condition code value, rather
10681 than an actual data value. */
10682 if (const_op != 0
10683 || CC0_P (XEXP (op0, 0))
10684 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10685 break;
10686
10687 /* Get the two operands being compared. */
10688 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10689 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10690 else
10691 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10692
10693 /* Check for the cases where we simply want the result of the
10694 earlier test or the opposite of that result. */
10695 if (code == NE || code == EQ
10696 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10697 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10698 && (STORE_FLAG_VALUE
10699 & (((HOST_WIDE_INT) 1
10700 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10701 && (code == LT || code == GE)))
10702 {
10703 enum rtx_code new_code;
10704 if (code == LT || code == NE)
10705 new_code = GET_CODE (op0);
10706 else
10707 new_code = reversed_comparison_code (op0, NULL);
10708
10709 if (new_code != UNKNOWN)
10710 {
10711 code = new_code;
10712 op0 = tem;
10713 op1 = tem1;
10714 continue;
10715 }
10716 }
10717 break;
10718
10719 case IOR:
10720 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
10721 iff X <= 0. */
10722 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10723 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10724 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10725 {
10726 op0 = XEXP (op0, 1);
10727 code = (code == GE ? GT : LE);
10728 continue;
10729 }
10730 break;
10731
10732 case AND:
10733 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10734 will be converted to a ZERO_EXTRACT later. */
10735 if (const_op == 0 && equality_comparison_p
10736 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10737 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10738 {
10739 op0 = simplify_and_const_int
10740 (NULL_RTX, mode, gen_rtx_LSHIFTRT (mode,
10741 XEXP (op0, 1),
10742 XEXP (XEXP (op0, 0), 1)),
10743 (HOST_WIDE_INT) 1);
10744 continue;
10745 }
10746
10747 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10748 zero and X is a comparison and C1 and C2 describe only bits set
10749 in STORE_FLAG_VALUE, we can compare with X. */
10750 if (const_op == 0 && equality_comparison_p
10751 && mode_width <= HOST_BITS_PER_WIDE_INT
10752 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10753 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10754 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10755 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10756 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10757 {
10758 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10759 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10760 if ((~STORE_FLAG_VALUE & mask) == 0
10761 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
10762 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10763 && COMPARISON_P (tem))))
10764 {
10765 op0 = XEXP (XEXP (op0, 0), 0);
10766 continue;
10767 }
10768 }
10769
10770 /* If we are doing an equality comparison of an AND of a bit equal
10771 to the sign bit, replace this with a LT or GE comparison of
10772 the underlying value. */
10773 if (equality_comparison_p
10774 && const_op == 0
10775 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10776 && mode_width <= HOST_BITS_PER_WIDE_INT
10777 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10778 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10779 {
10780 op0 = XEXP (op0, 0);
10781 code = (code == EQ ? GE : LT);
10782 continue;
10783 }
10784
10785 /* If this AND operation is really a ZERO_EXTEND from a narrower
10786 mode, the constant fits within that mode, and this is either an
10787 equality or unsigned comparison, try to do this comparison in
10788 the narrower mode.
10789
10790 Note that in:
10791
10792 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
10793 -> (ne:DI (reg:SI 4) (const_int 0))
10794
10795 unless TRULY_NOOP_TRUNCATION allows it or the register is
10796 known to hold a value of the required mode the
10797 transformation is invalid. */
10798 if ((equality_comparison_p || unsigned_comparison_p)
10799 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10800 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10801 & GET_MODE_MASK (mode))
10802 + 1)) >= 0
10803 && const_op >> i == 0
10804 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode
10805 && (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
10806 GET_MODE_BITSIZE (GET_MODE (op0)))
10807 || (REG_P (XEXP (op0, 0))
10808 && reg_truncated_to_mode (tmode, XEXP (op0, 0)))))
10809 {
10810 op0 = gen_lowpart (tmode, XEXP (op0, 0));
10811 continue;
10812 }
10813
10814 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
10815 fits in both M1 and M2 and the SUBREG is either paradoxical
10816 or represents the low part, permute the SUBREG and the AND
10817 and try again. */
10818 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
10819 {
10820 unsigned HOST_WIDE_INT c1;
10821 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
10822 /* Require an integral mode, to avoid creating something like
10823 (AND:SF ...). */
10824 if (SCALAR_INT_MODE_P (tmode)
10825 /* It is unsafe to commute the AND into the SUBREG if the
10826 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
10827 not defined. As originally written the upper bits
10828 have a defined value due to the AND operation.
10829 However, if we commute the AND inside the SUBREG then
10830 they no longer have defined values and the meaning of
10831 the code has been changed. */
10832 && (0
10833 #ifdef WORD_REGISTER_OPERATIONS
10834 || (mode_width > GET_MODE_BITSIZE (tmode)
10835 && mode_width <= BITS_PER_WORD)
10836 #endif
10837 || (mode_width <= GET_MODE_BITSIZE (tmode)
10838 && subreg_lowpart_p (XEXP (op0, 0))))
10839 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10840 && mode_width <= HOST_BITS_PER_WIDE_INT
10841 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
10842 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
10843 && (c1 & ~GET_MODE_MASK (tmode)) == 0
10844 && c1 != mask
10845 && c1 != GET_MODE_MASK (tmode))
10846 {
10847 op0 = simplify_gen_binary (AND, tmode,
10848 SUBREG_REG (XEXP (op0, 0)),
10849 gen_int_mode (c1, tmode));
10850 op0 = gen_lowpart (mode, op0);
10851 continue;
10852 }
10853 }
10854
10855 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
10856 if (const_op == 0 && equality_comparison_p
10857 && XEXP (op0, 1) == const1_rtx
10858 && GET_CODE (XEXP (op0, 0)) == NOT)
10859 {
10860 op0 = simplify_and_const_int
10861 (NULL_RTX, mode, XEXP (XEXP (op0, 0), 0), (HOST_WIDE_INT) 1);
10862 code = (code == NE ? EQ : NE);
10863 continue;
10864 }
10865
10866 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10867 (eq (and (lshiftrt X) 1) 0).
10868 Also handle the case where (not X) is expressed using xor. */
10869 if (const_op == 0 && equality_comparison_p
10870 && XEXP (op0, 1) == const1_rtx
10871 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
10872 {
10873 rtx shift_op = XEXP (XEXP (op0, 0), 0);
10874 rtx shift_count = XEXP (XEXP (op0, 0), 1);
10875
10876 if (GET_CODE (shift_op) == NOT
10877 || (GET_CODE (shift_op) == XOR
10878 && GET_CODE (XEXP (shift_op, 1)) == CONST_INT
10879 && GET_CODE (shift_count) == CONST_INT
10880 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10881 && (INTVAL (XEXP (shift_op, 1))
10882 == (HOST_WIDE_INT) 1 << INTVAL (shift_count))))
10883 {
10884 op0 = simplify_and_const_int
10885 (NULL_RTX, mode,
10886 gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count),
10887 (HOST_WIDE_INT) 1);
10888 code = (code == NE ? EQ : NE);
10889 continue;
10890 }
10891 }
10892 break;
10893
10894 case ASHIFT:
10895 /* If we have (compare (ashift FOO N) (const_int C)) and
10896 the high order N bits of FOO (N+1 if an inequality comparison)
10897 are known to be zero, we can do this by comparing FOO with C
10898 shifted right N bits so long as the low-order N bits of C are
10899 zero. */
10900 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10901 && INTVAL (XEXP (op0, 1)) >= 0
10902 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10903 < HOST_BITS_PER_WIDE_INT)
10904 && ((const_op
10905 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10906 && mode_width <= HOST_BITS_PER_WIDE_INT
10907 && (nonzero_bits (XEXP (op0, 0), mode)
10908 & ~(mask >> (INTVAL (XEXP (op0, 1))
10909 + ! equality_comparison_p))) == 0)
10910 {
10911 /* We must perform a logical shift, not an arithmetic one,
10912 as we want the top N bits of C to be zero. */
10913 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10914
10915 temp >>= INTVAL (XEXP (op0, 1));
10916 op1 = gen_int_mode (temp, mode);
10917 op0 = XEXP (op0, 0);
10918 continue;
10919 }
10920
10921 /* If we are doing a sign bit comparison, it means we are testing
10922 a particular bit. Convert it to the appropriate AND. */
10923 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10924 && mode_width <= HOST_BITS_PER_WIDE_INT)
10925 {
10926 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10927 ((HOST_WIDE_INT) 1
10928 << (mode_width - 1
10929 - INTVAL (XEXP (op0, 1)))));
10930 code = (code == LT ? NE : EQ);
10931 continue;
10932 }
10933
10934 /* If this an equality comparison with zero and we are shifting
10935 the low bit to the sign bit, we can convert this to an AND of the
10936 low-order bit. */
10937 if (const_op == 0 && equality_comparison_p
10938 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10939 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10940 == mode_width - 1)
10941 {
10942 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10943 (HOST_WIDE_INT) 1);
10944 continue;
10945 }
10946 break;
10947
10948 case ASHIFTRT:
10949 /* If this is an equality comparison with zero, we can do this
10950 as a logical shift, which might be much simpler. */
10951 if (equality_comparison_p && const_op == 0
10952 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10953 {
10954 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10955 XEXP (op0, 0),
10956 INTVAL (XEXP (op0, 1)));
10957 continue;
10958 }
10959
10960 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10961 do the comparison in a narrower mode. */
10962 if (! unsigned_comparison_p
10963 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10964 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10965 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10966 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10967 MODE_INT, 1)) != BLKmode
10968 && (((unsigned HOST_WIDE_INT) const_op
10969 + (GET_MODE_MASK (tmode) >> 1) + 1)
10970 <= GET_MODE_MASK (tmode)))
10971 {
10972 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
10973 continue;
10974 }
10975
10976 /* Likewise if OP0 is a PLUS of a sign extension with a
10977 constant, which is usually represented with the PLUS
10978 between the shifts. */
10979 if (! unsigned_comparison_p
10980 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10981 && GET_CODE (XEXP (op0, 0)) == PLUS
10982 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10983 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
10984 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
10985 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10986 MODE_INT, 1)) != BLKmode
10987 && (((unsigned HOST_WIDE_INT) const_op
10988 + (GET_MODE_MASK (tmode) >> 1) + 1)
10989 <= GET_MODE_MASK (tmode)))
10990 {
10991 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
10992 rtx add_const = XEXP (XEXP (op0, 0), 1);
10993 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
10994 add_const, XEXP (op0, 1));
10995
10996 op0 = simplify_gen_binary (PLUS, tmode,
10997 gen_lowpart (tmode, inner),
10998 new_const);
10999 continue;
11000 }
11001
11002 /* ... fall through ... */
11003 case LSHIFTRT:
11004 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
11005 the low order N bits of FOO are known to be zero, we can do this
11006 by comparing FOO with C shifted left N bits so long as no
11007 overflow occurs. */
11008 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
11009 && INTVAL (XEXP (op0, 1)) >= 0
11010 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11011 && mode_width <= HOST_BITS_PER_WIDE_INT
11012 && (nonzero_bits (XEXP (op0, 0), mode)
11013 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
11014 && (((unsigned HOST_WIDE_INT) const_op
11015 + (GET_CODE (op0) != LSHIFTRT
11016 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
11017 + 1)
11018 : 0))
11019 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
11020 {
11021 /* If the shift was logical, then we must make the condition
11022 unsigned. */
11023 if (GET_CODE (op0) == LSHIFTRT)
11024 code = unsigned_condition (code);
11025
11026 const_op <<= INTVAL (XEXP (op0, 1));
11027 op1 = GEN_INT (const_op);
11028 op0 = XEXP (op0, 0);
11029 continue;
11030 }
11031
11032 /* If we are using this shift to extract just the sign bit, we
11033 can replace this with an LT or GE comparison. */
11034 if (const_op == 0
11035 && (equality_comparison_p || sign_bit_comparison_p)
11036 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11037 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11038 == mode_width - 1)
11039 {
11040 op0 = XEXP (op0, 0);
11041 code = (code == NE || code == GT ? LT : GE);
11042 continue;
11043 }
11044 break;
11045
11046 default:
11047 break;
11048 }
11049
11050 break;
11051 }
11052
11053 /* Now make any compound operations involved in this comparison. Then,
11054 check for an outmost SUBREG on OP0 that is not doing anything or is
11055 paradoxical. The latter transformation must only be performed when
11056 it is known that the "extra" bits will be the same in op0 and op1 or
11057 that they don't matter. There are three cases to consider:
11058
11059 1. SUBREG_REG (op0) is a register. In this case the bits are don't
11060 care bits and we can assume they have any convenient value. So
11061 making the transformation is safe.
11062
11063 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
11064 In this case the upper bits of op0 are undefined. We should not make
11065 the simplification in that case as we do not know the contents of
11066 those bits.
11067
11068 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
11069 UNKNOWN. In that case we know those bits are zeros or ones. We must
11070 also be sure that they are the same as the upper bits of op1.
11071
11072 We can never remove a SUBREG for a non-equality comparison because
11073 the sign bit is in a different place in the underlying object. */
11074
11075 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
11076 op1 = make_compound_operation (op1, SET);
11077
11078 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
11079 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11080 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
11081 && (code == NE || code == EQ))
11082 {
11083 if (GET_MODE_SIZE (GET_MODE (op0))
11084 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
11085 {
11086 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
11087 implemented. */
11088 if (REG_P (SUBREG_REG (op0)))
11089 {
11090 op0 = SUBREG_REG (op0);
11091 op1 = gen_lowpart (GET_MODE (op0), op1);
11092 }
11093 }
11094 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
11095 <= HOST_BITS_PER_WIDE_INT)
11096 && (nonzero_bits (SUBREG_REG (op0),
11097 GET_MODE (SUBREG_REG (op0)))
11098 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11099 {
11100 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
11101
11102 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
11103 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11104 op0 = SUBREG_REG (op0), op1 = tem;
11105 }
11106 }
11107
11108 /* We now do the opposite procedure: Some machines don't have compare
11109 insns in all modes. If OP0's mode is an integer mode smaller than a
11110 word and we can't do a compare in that mode, see if there is a larger
11111 mode for which we can do the compare. There are a number of cases in
11112 which we can use the wider mode. */
11113
11114 mode = GET_MODE (op0);
11115 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11116 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
11117 && ! have_insn_for (COMPARE, mode))
11118 for (tmode = GET_MODE_WIDER_MODE (mode);
11119 (tmode != VOIDmode
11120 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
11121 tmode = GET_MODE_WIDER_MODE (tmode))
11122 if (have_insn_for (COMPARE, tmode))
11123 {
11124 int zero_extended;
11125
11126 /* If the only nonzero bits in OP0 and OP1 are those in the
11127 narrower mode and this is an equality or unsigned comparison,
11128 we can use the wider mode. Similarly for sign-extended
11129 values, in which case it is true for all comparisons. */
11130 zero_extended = ((code == EQ || code == NE
11131 || code == GEU || code == GTU
11132 || code == LEU || code == LTU)
11133 && (nonzero_bits (op0, tmode)
11134 & ~GET_MODE_MASK (mode)) == 0
11135 && ((GET_CODE (op1) == CONST_INT
11136 || (nonzero_bits (op1, tmode)
11137 & ~GET_MODE_MASK (mode)) == 0)));
11138
11139 if (zero_extended
11140 || ((num_sign_bit_copies (op0, tmode)
11141 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11142 - GET_MODE_BITSIZE (mode)))
11143 && (num_sign_bit_copies (op1, tmode)
11144 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11145 - GET_MODE_BITSIZE (mode)))))
11146 {
11147 /* If OP0 is an AND and we don't have an AND in MODE either,
11148 make a new AND in the proper mode. */
11149 if (GET_CODE (op0) == AND
11150 && !have_insn_for (AND, mode))
11151 op0 = simplify_gen_binary (AND, tmode,
11152 gen_lowpart (tmode,
11153 XEXP (op0, 0)),
11154 gen_lowpart (tmode,
11155 XEXP (op0, 1)));
11156
11157 op0 = gen_lowpart (tmode, op0);
11158 if (zero_extended && GET_CODE (op1) == CONST_INT)
11159 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
11160 op1 = gen_lowpart (tmode, op1);
11161 break;
11162 }
11163
11164 /* If this is a test for negative, we can make an explicit
11165 test of the sign bit. */
11166
11167 if (op1 == const0_rtx && (code == LT || code == GE)
11168 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11169 {
11170 op0 = simplify_gen_binary (AND, tmode,
11171 gen_lowpart (tmode, op0),
11172 GEN_INT ((HOST_WIDE_INT) 1
11173 << (GET_MODE_BITSIZE (mode)
11174 - 1)));
11175 code = (code == LT) ? NE : EQ;
11176 break;
11177 }
11178 }
11179
11180 #ifdef CANONICALIZE_COMPARISON
11181 /* If this machine only supports a subset of valid comparisons, see if we
11182 can convert an unsupported one into a supported one. */
11183 CANONICALIZE_COMPARISON (code, op0, op1);
11184 #endif
11185
11186 *pop0 = op0;
11187 *pop1 = op1;
11188
11189 return code;
11190 }
11191 \f
11192 /* Utility function for record_value_for_reg. Count number of
11193 rtxs in X. */
11194 static int
11195 count_rtxs (rtx x)
11196 {
11197 enum rtx_code code = GET_CODE (x);
11198 const char *fmt;
11199 int i, j, ret = 1;
11200
11201 if (GET_RTX_CLASS (code) == '2'
11202 || GET_RTX_CLASS (code) == 'c')
11203 {
11204 rtx x0 = XEXP (x, 0);
11205 rtx x1 = XEXP (x, 1);
11206
11207 if (x0 == x1)
11208 return 1 + 2 * count_rtxs (x0);
11209
11210 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
11211 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
11212 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11213 return 2 + 2 * count_rtxs (x0)
11214 + count_rtxs (x == XEXP (x1, 0)
11215 ? XEXP (x1, 1) : XEXP (x1, 0));
11216
11217 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
11218 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
11219 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11220 return 2 + 2 * count_rtxs (x1)
11221 + count_rtxs (x == XEXP (x0, 0)
11222 ? XEXP (x0, 1) : XEXP (x0, 0));
11223 }
11224
11225 fmt = GET_RTX_FORMAT (code);
11226 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11227 if (fmt[i] == 'e')
11228 ret += count_rtxs (XEXP (x, i));
11229 else if (fmt[i] == 'E')
11230 for (j = 0; j < XVECLEN (x, i); j++)
11231 ret += count_rtxs (XVECEXP (x, i, j));
11232
11233 return ret;
11234 }
11235 \f
11236 /* Utility function for following routine. Called when X is part of a value
11237 being stored into last_set_value. Sets last_set_table_tick
11238 for each register mentioned. Similar to mention_regs in cse.c */
11239
11240 static void
11241 update_table_tick (rtx x)
11242 {
11243 enum rtx_code code = GET_CODE (x);
11244 const char *fmt = GET_RTX_FORMAT (code);
11245 int i, j;
11246
11247 if (code == REG)
11248 {
11249 unsigned int regno = REGNO (x);
11250 unsigned int endregno = END_REGNO (x);
11251 unsigned int r;
11252
11253 for (r = regno; r < endregno; r++)
11254 {
11255 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, r);
11256 rsp->last_set_table_tick = label_tick;
11257 }
11258
11259 return;
11260 }
11261
11262 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11263 if (fmt[i] == 'e')
11264 {
11265 /* Check for identical subexpressions. If x contains
11266 identical subexpression we only have to traverse one of
11267 them. */
11268 if (i == 0 && ARITHMETIC_P (x))
11269 {
11270 /* Note that at this point x1 has already been
11271 processed. */
11272 rtx x0 = XEXP (x, 0);
11273 rtx x1 = XEXP (x, 1);
11274
11275 /* If x0 and x1 are identical then there is no need to
11276 process x0. */
11277 if (x0 == x1)
11278 break;
11279
11280 /* If x0 is identical to a subexpression of x1 then while
11281 processing x1, x0 has already been processed. Thus we
11282 are done with x. */
11283 if (ARITHMETIC_P (x1)
11284 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11285 break;
11286
11287 /* If x1 is identical to a subexpression of x0 then we
11288 still have to process the rest of x0. */
11289 if (ARITHMETIC_P (x0)
11290 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11291 {
11292 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
11293 break;
11294 }
11295 }
11296
11297 update_table_tick (XEXP (x, i));
11298 }
11299 else if (fmt[i] == 'E')
11300 for (j = 0; j < XVECLEN (x, i); j++)
11301 update_table_tick (XVECEXP (x, i, j));
11302 }
11303
11304 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
11305 are saying that the register is clobbered and we no longer know its
11306 value. If INSN is zero, don't update reg_stat[].last_set; this is
11307 only permitted with VALUE also zero and is used to invalidate the
11308 register. */
11309
11310 static void
11311 record_value_for_reg (rtx reg, rtx insn, rtx value)
11312 {
11313 unsigned int regno = REGNO (reg);
11314 unsigned int endregno = END_REGNO (reg);
11315 unsigned int i;
11316 reg_stat_type *rsp;
11317
11318 /* If VALUE contains REG and we have a previous value for REG, substitute
11319 the previous value. */
11320 if (value && insn && reg_overlap_mentioned_p (reg, value))
11321 {
11322 rtx tem;
11323
11324 /* Set things up so get_last_value is allowed to see anything set up to
11325 our insn. */
11326 subst_low_luid = DF_INSN_LUID (insn);
11327 tem = get_last_value (reg);
11328
11329 /* If TEM is simply a binary operation with two CLOBBERs as operands,
11330 it isn't going to be useful and will take a lot of time to process,
11331 so just use the CLOBBER. */
11332
11333 if (tem)
11334 {
11335 if (ARITHMETIC_P (tem)
11336 && GET_CODE (XEXP (tem, 0)) == CLOBBER
11337 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
11338 tem = XEXP (tem, 0);
11339 else if (count_occurrences (value, reg, 1) >= 2)
11340 {
11341 /* If there are two or more occurrences of REG in VALUE,
11342 prevent the value from growing too much. */
11343 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
11344 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
11345 }
11346
11347 value = replace_rtx (copy_rtx (value), reg, tem);
11348 }
11349 }
11350
11351 /* For each register modified, show we don't know its value, that
11352 we don't know about its bitwise content, that its value has been
11353 updated, and that we don't know the location of the death of the
11354 register. */
11355 for (i = regno; i < endregno; i++)
11356 {
11357 rsp = VEC_index (reg_stat_type, reg_stat, i);
11358
11359 if (insn)
11360 rsp->last_set = insn;
11361
11362 rsp->last_set_value = 0;
11363 rsp->last_set_mode = 0;
11364 rsp->last_set_nonzero_bits = 0;
11365 rsp->last_set_sign_bit_copies = 0;
11366 rsp->last_death = 0;
11367 rsp->truncated_to_mode = 0;
11368 }
11369
11370 /* Mark registers that are being referenced in this value. */
11371 if (value)
11372 update_table_tick (value);
11373
11374 /* Now update the status of each register being set.
11375 If someone is using this register in this block, set this register
11376 to invalid since we will get confused between the two lives in this
11377 basic block. This makes using this register always invalid. In cse, we
11378 scan the table to invalidate all entries using this register, but this
11379 is too much work for us. */
11380
11381 for (i = regno; i < endregno; i++)
11382 {
11383 rsp = VEC_index (reg_stat_type, reg_stat, i);
11384 rsp->last_set_label = label_tick;
11385 if (!insn
11386 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
11387 rsp->last_set_invalid = 1;
11388 else
11389 rsp->last_set_invalid = 0;
11390 }
11391
11392 /* The value being assigned might refer to X (like in "x++;"). In that
11393 case, we must replace it with (clobber (const_int 0)) to prevent
11394 infinite loops. */
11395 rsp = VEC_index (reg_stat_type, reg_stat, regno);
11396 if (value && ! get_last_value_validate (&value, insn,
11397 rsp->last_set_label, 0))
11398 {
11399 value = copy_rtx (value);
11400 if (! get_last_value_validate (&value, insn,
11401 rsp->last_set_label, 1))
11402 value = 0;
11403 }
11404
11405 /* For the main register being modified, update the value, the mode, the
11406 nonzero bits, and the number of sign bit copies. */
11407
11408 rsp->last_set_value = value;
11409
11410 if (value)
11411 {
11412 enum machine_mode mode = GET_MODE (reg);
11413 subst_low_luid = DF_INSN_LUID (insn);
11414 rsp->last_set_mode = mode;
11415 if (GET_MODE_CLASS (mode) == MODE_INT
11416 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11417 mode = nonzero_bits_mode;
11418 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
11419 rsp->last_set_sign_bit_copies
11420 = num_sign_bit_copies (value, GET_MODE (reg));
11421 }
11422 }
11423
11424 /* Called via note_stores from record_dead_and_set_regs to handle one
11425 SET or CLOBBER in an insn. DATA is the instruction in which the
11426 set is occurring. */
11427
11428 static void
11429 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
11430 {
11431 rtx record_dead_insn = (rtx) data;
11432
11433 if (GET_CODE (dest) == SUBREG)
11434 dest = SUBREG_REG (dest);
11435
11436 if (!record_dead_insn)
11437 {
11438 if (REG_P (dest))
11439 record_value_for_reg (dest, NULL_RTX, NULL_RTX);
11440 return;
11441 }
11442
11443 if (REG_P (dest))
11444 {
11445 /* If we are setting the whole register, we know its value. Otherwise
11446 show that we don't know the value. We can handle SUBREG in
11447 some cases. */
11448 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
11449 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
11450 else if (GET_CODE (setter) == SET
11451 && GET_CODE (SET_DEST (setter)) == SUBREG
11452 && SUBREG_REG (SET_DEST (setter)) == dest
11453 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
11454 && subreg_lowpart_p (SET_DEST (setter)))
11455 record_value_for_reg (dest, record_dead_insn,
11456 gen_lowpart (GET_MODE (dest),
11457 SET_SRC (setter)));
11458 else
11459 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11460 }
11461 else if (MEM_P (dest)
11462 /* Ignore pushes, they clobber nothing. */
11463 && ! push_operand (dest, GET_MODE (dest)))
11464 mem_last_set = DF_INSN_LUID (record_dead_insn);
11465 }
11466
11467 /* Update the records of when each REG was most recently set or killed
11468 for the things done by INSN. This is the last thing done in processing
11469 INSN in the combiner loop.
11470
11471 We update reg_stat[], in particular fields last_set, last_set_value,
11472 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
11473 last_death, and also the similar information mem_last_set (which insn
11474 most recently modified memory) and last_call_luid (which insn was the
11475 most recent subroutine call). */
11476
11477 static void
11478 record_dead_and_set_regs (rtx insn)
11479 {
11480 rtx link;
11481 unsigned int i;
11482
11483 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11484 {
11485 if (REG_NOTE_KIND (link) == REG_DEAD
11486 && REG_P (XEXP (link, 0)))
11487 {
11488 unsigned int regno = REGNO (XEXP (link, 0));
11489 unsigned int endregno = END_REGNO (XEXP (link, 0));
11490
11491 for (i = regno; i < endregno; i++)
11492 {
11493 reg_stat_type *rsp;
11494
11495 rsp = VEC_index (reg_stat_type, reg_stat, i);
11496 rsp->last_death = insn;
11497 }
11498 }
11499 else if (REG_NOTE_KIND (link) == REG_INC)
11500 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11501 }
11502
11503 if (CALL_P (insn))
11504 {
11505 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11506 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11507 {
11508 reg_stat_type *rsp;
11509
11510 rsp = VEC_index (reg_stat_type, reg_stat, i);
11511 rsp->last_set_invalid = 1;
11512 rsp->last_set = insn;
11513 rsp->last_set_value = 0;
11514 rsp->last_set_mode = 0;
11515 rsp->last_set_nonzero_bits = 0;
11516 rsp->last_set_sign_bit_copies = 0;
11517 rsp->last_death = 0;
11518 rsp->truncated_to_mode = 0;
11519 }
11520
11521 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
11522
11523 /* We can't combine into a call pattern. Remember, though, that
11524 the return value register is set at this LUID. We could
11525 still replace a register with the return value from the
11526 wrong subroutine call! */
11527 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
11528 }
11529 else
11530 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11531 }
11532
11533 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11534 register present in the SUBREG, so for each such SUBREG go back and
11535 adjust nonzero and sign bit information of the registers that are
11536 known to have some zero/sign bits set.
11537
11538 This is needed because when combine blows the SUBREGs away, the
11539 information on zero/sign bits is lost and further combines can be
11540 missed because of that. */
11541
11542 static void
11543 record_promoted_value (rtx insn, rtx subreg)
11544 {
11545 rtx links, set;
11546 unsigned int regno = REGNO (SUBREG_REG (subreg));
11547 enum machine_mode mode = GET_MODE (subreg);
11548
11549 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11550 return;
11551
11552 for (links = LOG_LINKS (insn); links;)
11553 {
11554 reg_stat_type *rsp;
11555
11556 insn = XEXP (links, 0);
11557 set = single_set (insn);
11558
11559 if (! set || !REG_P (SET_DEST (set))
11560 || REGNO (SET_DEST (set)) != regno
11561 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11562 {
11563 links = XEXP (links, 1);
11564 continue;
11565 }
11566
11567 rsp = VEC_index (reg_stat_type, reg_stat, regno);
11568 if (rsp->last_set == insn)
11569 {
11570 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11571 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
11572 }
11573
11574 if (REG_P (SET_SRC (set)))
11575 {
11576 regno = REGNO (SET_SRC (set));
11577 links = LOG_LINKS (insn);
11578 }
11579 else
11580 break;
11581 }
11582 }
11583
11584 /* Check if X, a register, is known to contain a value already
11585 truncated to MODE. In this case we can use a subreg to refer to
11586 the truncated value even though in the generic case we would need
11587 an explicit truncation. */
11588
11589 static bool
11590 reg_truncated_to_mode (enum machine_mode mode, const_rtx x)
11591 {
11592 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
11593 enum machine_mode truncated = rsp->truncated_to_mode;
11594
11595 if (truncated == 0
11596 || rsp->truncation_label < label_tick_ebb_start)
11597 return false;
11598 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
11599 return true;
11600 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
11601 GET_MODE_BITSIZE (truncated)))
11602 return true;
11603 return false;
11604 }
11605
11606 /* Callback for for_each_rtx. If *P is a hard reg or a subreg record the mode
11607 that the register is accessed in. For non-TRULY_NOOP_TRUNCATION targets we
11608 might be able to turn a truncate into a subreg using this information.
11609 Return -1 if traversing *P is complete or 0 otherwise. */
11610
11611 static int
11612 record_truncated_value (rtx *p, void *data ATTRIBUTE_UNUSED)
11613 {
11614 rtx x = *p;
11615 enum machine_mode truncated_mode;
11616 reg_stat_type *rsp;
11617
11618 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
11619 {
11620 enum machine_mode original_mode = GET_MODE (SUBREG_REG (x));
11621 truncated_mode = GET_MODE (x);
11622
11623 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
11624 return -1;
11625
11626 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (truncated_mode),
11627 GET_MODE_BITSIZE (original_mode)))
11628 return -1;
11629
11630 x = SUBREG_REG (x);
11631 }
11632 /* ??? For hard-regs we now record everything. We might be able to
11633 optimize this using last_set_mode. */
11634 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
11635 truncated_mode = GET_MODE (x);
11636 else
11637 return 0;
11638
11639 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
11640 if (rsp->truncated_to_mode == 0
11641 || rsp->truncation_label < label_tick_ebb_start
11642 || (GET_MODE_SIZE (truncated_mode)
11643 < GET_MODE_SIZE (rsp->truncated_to_mode)))
11644 {
11645 rsp->truncated_to_mode = truncated_mode;
11646 rsp->truncation_label = label_tick;
11647 }
11648
11649 return -1;
11650 }
11651
11652 /* Callback for note_uses. Find hardregs and subregs of pseudos and
11653 the modes they are used in. This can help truning TRUNCATEs into
11654 SUBREGs. */
11655
11656 static void
11657 record_truncated_values (rtx *x, void *data ATTRIBUTE_UNUSED)
11658 {
11659 for_each_rtx (x, record_truncated_value, NULL);
11660 }
11661
11662 /* Scan X for promoted SUBREGs. For each one found,
11663 note what it implies to the registers used in it. */
11664
11665 static void
11666 check_promoted_subreg (rtx insn, rtx x)
11667 {
11668 if (GET_CODE (x) == SUBREG
11669 && SUBREG_PROMOTED_VAR_P (x)
11670 && REG_P (SUBREG_REG (x)))
11671 record_promoted_value (insn, x);
11672 else
11673 {
11674 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11675 int i, j;
11676
11677 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11678 switch (format[i])
11679 {
11680 case 'e':
11681 check_promoted_subreg (insn, XEXP (x, i));
11682 break;
11683 case 'V':
11684 case 'E':
11685 if (XVEC (x, i) != 0)
11686 for (j = 0; j < XVECLEN (x, i); j++)
11687 check_promoted_subreg (insn, XVECEXP (x, i, j));
11688 break;
11689 }
11690 }
11691 }
11692 \f
11693 /* Utility routine for the following function. Verify that all the registers
11694 mentioned in *LOC are valid when *LOC was part of a value set when
11695 label_tick == TICK. Return 0 if some are not.
11696
11697 If REPLACE is nonzero, replace the invalid reference with
11698 (clobber (const_int 0)) and return 1. This replacement is useful because
11699 we often can get useful information about the form of a value (e.g., if
11700 it was produced by a shift that always produces -1 or 0) even though
11701 we don't know exactly what registers it was produced from. */
11702
11703 static int
11704 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
11705 {
11706 rtx x = *loc;
11707 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11708 int len = GET_RTX_LENGTH (GET_CODE (x));
11709 int i, j;
11710
11711 if (REG_P (x))
11712 {
11713 unsigned int regno = REGNO (x);
11714 unsigned int endregno = END_REGNO (x);
11715 unsigned int j;
11716
11717 for (j = regno; j < endregno; j++)
11718 {
11719 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, j);
11720 if (rsp->last_set_invalid
11721 /* If this is a pseudo-register that was only set once and not
11722 live at the beginning of the function, it is always valid. */
11723 || (! (regno >= FIRST_PSEUDO_REGISTER
11724 && REG_N_SETS (regno) == 1
11725 && (!REGNO_REG_SET_P
11726 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno)))
11727 && rsp->last_set_label > tick))
11728 {
11729 if (replace)
11730 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11731 return replace;
11732 }
11733 }
11734
11735 return 1;
11736 }
11737 /* If this is a memory reference, make sure that there were
11738 no stores after it that might have clobbered the value. We don't
11739 have alias info, so we assume any store invalidates it. */
11740 else if (MEM_P (x) && !MEM_READONLY_P (x)
11741 && DF_INSN_LUID (insn) <= mem_last_set)
11742 {
11743 if (replace)
11744 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11745 return replace;
11746 }
11747
11748 for (i = 0; i < len; i++)
11749 {
11750 if (fmt[i] == 'e')
11751 {
11752 /* Check for identical subexpressions. If x contains
11753 identical subexpression we only have to traverse one of
11754 them. */
11755 if (i == 1 && ARITHMETIC_P (x))
11756 {
11757 /* Note that at this point x0 has already been checked
11758 and found valid. */
11759 rtx x0 = XEXP (x, 0);
11760 rtx x1 = XEXP (x, 1);
11761
11762 /* If x0 and x1 are identical then x is also valid. */
11763 if (x0 == x1)
11764 return 1;
11765
11766 /* If x1 is identical to a subexpression of x0 then
11767 while checking x0, x1 has already been checked. Thus
11768 it is valid and so as x. */
11769 if (ARITHMETIC_P (x0)
11770 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11771 return 1;
11772
11773 /* If x0 is identical to a subexpression of x1 then x is
11774 valid iff the rest of x1 is valid. */
11775 if (ARITHMETIC_P (x1)
11776 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11777 return
11778 get_last_value_validate (&XEXP (x1,
11779 x0 == XEXP (x1, 0) ? 1 : 0),
11780 insn, tick, replace);
11781 }
11782
11783 if (get_last_value_validate (&XEXP (x, i), insn, tick,
11784 replace) == 0)
11785 return 0;
11786 }
11787 else if (fmt[i] == 'E')
11788 for (j = 0; j < XVECLEN (x, i); j++)
11789 if (get_last_value_validate (&XVECEXP (x, i, j),
11790 insn, tick, replace) == 0)
11791 return 0;
11792 }
11793
11794 /* If we haven't found a reason for it to be invalid, it is valid. */
11795 return 1;
11796 }
11797
11798 /* Get the last value assigned to X, if known. Some registers
11799 in the value may be replaced with (clobber (const_int 0)) if their value
11800 is known longer known reliably. */
11801
11802 static rtx
11803 get_last_value (const_rtx x)
11804 {
11805 unsigned int regno;
11806 rtx value;
11807 reg_stat_type *rsp;
11808
11809 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11810 then convert it to the desired mode. If this is a paradoxical SUBREG,
11811 we cannot predict what values the "extra" bits might have. */
11812 if (GET_CODE (x) == SUBREG
11813 && subreg_lowpart_p (x)
11814 && (GET_MODE_SIZE (GET_MODE (x))
11815 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11816 && (value = get_last_value (SUBREG_REG (x))) != 0)
11817 return gen_lowpart (GET_MODE (x), value);
11818
11819 if (!REG_P (x))
11820 return 0;
11821
11822 regno = REGNO (x);
11823 rsp = VEC_index (reg_stat_type, reg_stat, regno);
11824 value = rsp->last_set_value;
11825
11826 /* If we don't have a value, or if it isn't for this basic block and
11827 it's either a hard register, set more than once, or it's a live
11828 at the beginning of the function, return 0.
11829
11830 Because if it's not live at the beginning of the function then the reg
11831 is always set before being used (is never used without being set).
11832 And, if it's set only once, and it's always set before use, then all
11833 uses must have the same last value, even if it's not from this basic
11834 block. */
11835
11836 if (value == 0
11837 || (rsp->last_set_label < label_tick_ebb_start
11838 && (regno < FIRST_PSEUDO_REGISTER
11839 || REG_N_SETS (regno) != 1
11840 || REGNO_REG_SET_P
11841 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno))))
11842 return 0;
11843
11844 /* If the value was set in a later insn than the ones we are processing,
11845 we can't use it even if the register was only set once. */
11846 if (rsp->last_set_label == label_tick
11847 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
11848 return 0;
11849
11850 /* If the value has all its registers valid, return it. */
11851 if (get_last_value_validate (&value, rsp->last_set,
11852 rsp->last_set_label, 0))
11853 return value;
11854
11855 /* Otherwise, make a copy and replace any invalid register with
11856 (clobber (const_int 0)). If that fails for some reason, return 0. */
11857
11858 value = copy_rtx (value);
11859 if (get_last_value_validate (&value, rsp->last_set,
11860 rsp->last_set_label, 1))
11861 return value;
11862
11863 return 0;
11864 }
11865 \f
11866 /* Return nonzero if expression X refers to a REG or to memory
11867 that is set in an instruction more recent than FROM_LUID. */
11868
11869 static int
11870 use_crosses_set_p (const_rtx x, int from_luid)
11871 {
11872 const char *fmt;
11873 int i;
11874 enum rtx_code code = GET_CODE (x);
11875
11876 if (code == REG)
11877 {
11878 unsigned int regno = REGNO (x);
11879 unsigned endreg = END_REGNO (x);
11880
11881 #ifdef PUSH_ROUNDING
11882 /* Don't allow uses of the stack pointer to be moved,
11883 because we don't know whether the move crosses a push insn. */
11884 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11885 return 1;
11886 #endif
11887 for (; regno < endreg; regno++)
11888 {
11889 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
11890 if (rsp->last_set
11891 && rsp->last_set_label == label_tick
11892 && DF_INSN_LUID (rsp->last_set) > from_luid)
11893 return 1;
11894 }
11895 return 0;
11896 }
11897
11898 if (code == MEM && mem_last_set > from_luid)
11899 return 1;
11900
11901 fmt = GET_RTX_FORMAT (code);
11902
11903 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11904 {
11905 if (fmt[i] == 'E')
11906 {
11907 int j;
11908 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11909 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
11910 return 1;
11911 }
11912 else if (fmt[i] == 'e'
11913 && use_crosses_set_p (XEXP (x, i), from_luid))
11914 return 1;
11915 }
11916 return 0;
11917 }
11918 \f
11919 /* Define three variables used for communication between the following
11920 routines. */
11921
11922 static unsigned int reg_dead_regno, reg_dead_endregno;
11923 static int reg_dead_flag;
11924
11925 /* Function called via note_stores from reg_dead_at_p.
11926
11927 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11928 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11929
11930 static void
11931 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
11932 {
11933 unsigned int regno, endregno;
11934
11935 if (!REG_P (dest))
11936 return;
11937
11938 regno = REGNO (dest);
11939 endregno = END_REGNO (dest);
11940 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11941 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11942 }
11943
11944 /* Return nonzero if REG is known to be dead at INSN.
11945
11946 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11947 referencing REG, it is dead. If we hit a SET referencing REG, it is
11948 live. Otherwise, see if it is live or dead at the start of the basic
11949 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11950 must be assumed to be always live. */
11951
11952 static int
11953 reg_dead_at_p (rtx reg, rtx insn)
11954 {
11955 basic_block block;
11956 unsigned int i;
11957
11958 /* Set variables for reg_dead_at_p_1. */
11959 reg_dead_regno = REGNO (reg);
11960 reg_dead_endregno = END_REGNO (reg);
11961
11962 reg_dead_flag = 0;
11963
11964 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
11965 we allow the machine description to decide whether use-and-clobber
11966 patterns are OK. */
11967 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11968 {
11969 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11970 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
11971 return 0;
11972 }
11973
11974 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11975 beginning of function. */
11976 for (; insn && !LABEL_P (insn) && !BARRIER_P (insn);
11977 insn = prev_nonnote_insn (insn))
11978 {
11979 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11980 if (reg_dead_flag)
11981 return reg_dead_flag == 1 ? 1 : 0;
11982
11983 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11984 return 1;
11985 }
11986
11987 /* Get the basic block that we were in. */
11988 if (insn == 0)
11989 block = ENTRY_BLOCK_PTR->next_bb;
11990 else
11991 {
11992 FOR_EACH_BB (block)
11993 if (insn == BB_HEAD (block))
11994 break;
11995
11996 if (block == EXIT_BLOCK_PTR)
11997 return 0;
11998 }
11999
12000 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12001 if (REGNO_REG_SET_P (df_get_live_in (block), i))
12002 return 0;
12003
12004 return 1;
12005 }
12006 \f
12007 /* Note hard registers in X that are used. */
12008
12009 static void
12010 mark_used_regs_combine (rtx x)
12011 {
12012 RTX_CODE code = GET_CODE (x);
12013 unsigned int regno;
12014 int i;
12015
12016 switch (code)
12017 {
12018 case LABEL_REF:
12019 case SYMBOL_REF:
12020 case CONST_INT:
12021 case CONST:
12022 case CONST_DOUBLE:
12023 case CONST_VECTOR:
12024 case PC:
12025 case ADDR_VEC:
12026 case ADDR_DIFF_VEC:
12027 case ASM_INPUT:
12028 #ifdef HAVE_cc0
12029 /* CC0 must die in the insn after it is set, so we don't need to take
12030 special note of it here. */
12031 case CC0:
12032 #endif
12033 return;
12034
12035 case CLOBBER:
12036 /* If we are clobbering a MEM, mark any hard registers inside the
12037 address as used. */
12038 if (MEM_P (XEXP (x, 0)))
12039 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
12040 return;
12041
12042 case REG:
12043 regno = REGNO (x);
12044 /* A hard reg in a wide mode may really be multiple registers.
12045 If so, mark all of them just like the first. */
12046 if (regno < FIRST_PSEUDO_REGISTER)
12047 {
12048 /* None of this applies to the stack, frame or arg pointers. */
12049 if (regno == STACK_POINTER_REGNUM
12050 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
12051 || regno == HARD_FRAME_POINTER_REGNUM
12052 #endif
12053 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
12054 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
12055 #endif
12056 || regno == FRAME_POINTER_REGNUM)
12057 return;
12058
12059 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
12060 }
12061 return;
12062
12063 case SET:
12064 {
12065 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
12066 the address. */
12067 rtx testreg = SET_DEST (x);
12068
12069 while (GET_CODE (testreg) == SUBREG
12070 || GET_CODE (testreg) == ZERO_EXTRACT
12071 || GET_CODE (testreg) == STRICT_LOW_PART)
12072 testreg = XEXP (testreg, 0);
12073
12074 if (MEM_P (testreg))
12075 mark_used_regs_combine (XEXP (testreg, 0));
12076
12077 mark_used_regs_combine (SET_SRC (x));
12078 }
12079 return;
12080
12081 default:
12082 break;
12083 }
12084
12085 /* Recursively scan the operands of this expression. */
12086
12087 {
12088 const char *fmt = GET_RTX_FORMAT (code);
12089
12090 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12091 {
12092 if (fmt[i] == 'e')
12093 mark_used_regs_combine (XEXP (x, i));
12094 else if (fmt[i] == 'E')
12095 {
12096 int j;
12097
12098 for (j = 0; j < XVECLEN (x, i); j++)
12099 mark_used_regs_combine (XVECEXP (x, i, j));
12100 }
12101 }
12102 }
12103 }
12104 \f
12105 /* Remove register number REGNO from the dead registers list of INSN.
12106
12107 Return the note used to record the death, if there was one. */
12108
12109 rtx
12110 remove_death (unsigned int regno, rtx insn)
12111 {
12112 rtx note = find_regno_note (insn, REG_DEAD, regno);
12113
12114 if (note)
12115 remove_note (insn, note);
12116
12117 return note;
12118 }
12119
12120 /* For each register (hardware or pseudo) used within expression X, if its
12121 death is in an instruction with luid between FROM_LUID (inclusive) and
12122 TO_INSN (exclusive), put a REG_DEAD note for that register in the
12123 list headed by PNOTES.
12124
12125 That said, don't move registers killed by maybe_kill_insn.
12126
12127 This is done when X is being merged by combination into TO_INSN. These
12128 notes will then be distributed as needed. */
12129
12130 static void
12131 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx to_insn,
12132 rtx *pnotes)
12133 {
12134 const char *fmt;
12135 int len, i;
12136 enum rtx_code code = GET_CODE (x);
12137
12138 if (code == REG)
12139 {
12140 unsigned int regno = REGNO (x);
12141 rtx where_dead = VEC_index (reg_stat_type, reg_stat, regno)->last_death;
12142
12143 /* Don't move the register if it gets killed in between from and to. */
12144 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
12145 && ! reg_referenced_p (x, maybe_kill_insn))
12146 return;
12147
12148 if (where_dead
12149 && DF_INSN_LUID (where_dead) >= from_luid
12150 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
12151 {
12152 rtx note = remove_death (regno, where_dead);
12153
12154 /* It is possible for the call above to return 0. This can occur
12155 when last_death points to I2 or I1 that we combined with.
12156 In that case make a new note.
12157
12158 We must also check for the case where X is a hard register
12159 and NOTE is a death note for a range of hard registers
12160 including X. In that case, we must put REG_DEAD notes for
12161 the remaining registers in place of NOTE. */
12162
12163 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
12164 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12165 > GET_MODE_SIZE (GET_MODE (x))))
12166 {
12167 unsigned int deadregno = REGNO (XEXP (note, 0));
12168 unsigned int deadend = END_HARD_REGNO (XEXP (note, 0));
12169 unsigned int ourend = END_HARD_REGNO (x);
12170 unsigned int i;
12171
12172 for (i = deadregno; i < deadend; i++)
12173 if (i < regno || i >= ourend)
12174 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
12175 }
12176
12177 /* If we didn't find any note, or if we found a REG_DEAD note that
12178 covers only part of the given reg, and we have a multi-reg hard
12179 register, then to be safe we must check for REG_DEAD notes
12180 for each register other than the first. They could have
12181 their own REG_DEAD notes lying around. */
12182 else if ((note == 0
12183 || (note != 0
12184 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12185 < GET_MODE_SIZE (GET_MODE (x)))))
12186 && regno < FIRST_PSEUDO_REGISTER
12187 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
12188 {
12189 unsigned int ourend = END_HARD_REGNO (x);
12190 unsigned int i, offset;
12191 rtx oldnotes = 0;
12192
12193 if (note)
12194 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
12195 else
12196 offset = 1;
12197
12198 for (i = regno + offset; i < ourend; i++)
12199 move_deaths (regno_reg_rtx[i],
12200 maybe_kill_insn, from_luid, to_insn, &oldnotes);
12201 }
12202
12203 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
12204 {
12205 XEXP (note, 1) = *pnotes;
12206 *pnotes = note;
12207 }
12208 else
12209 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
12210 }
12211
12212 return;
12213 }
12214
12215 else if (GET_CODE (x) == SET)
12216 {
12217 rtx dest = SET_DEST (x);
12218
12219 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
12220
12221 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
12222 that accesses one word of a multi-word item, some
12223 piece of everything register in the expression is used by
12224 this insn, so remove any old death. */
12225 /* ??? So why do we test for equality of the sizes? */
12226
12227 if (GET_CODE (dest) == ZERO_EXTRACT
12228 || GET_CODE (dest) == STRICT_LOW_PART
12229 || (GET_CODE (dest) == SUBREG
12230 && (((GET_MODE_SIZE (GET_MODE (dest))
12231 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
12232 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
12233 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
12234 {
12235 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
12236 return;
12237 }
12238
12239 /* If this is some other SUBREG, we know it replaces the entire
12240 value, so use that as the destination. */
12241 if (GET_CODE (dest) == SUBREG)
12242 dest = SUBREG_REG (dest);
12243
12244 /* If this is a MEM, adjust deaths of anything used in the address.
12245 For a REG (the only other possibility), the entire value is
12246 being replaced so the old value is not used in this insn. */
12247
12248 if (MEM_P (dest))
12249 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
12250 to_insn, pnotes);
12251 return;
12252 }
12253
12254 else if (GET_CODE (x) == CLOBBER)
12255 return;
12256
12257 len = GET_RTX_LENGTH (code);
12258 fmt = GET_RTX_FORMAT (code);
12259
12260 for (i = 0; i < len; i++)
12261 {
12262 if (fmt[i] == 'E')
12263 {
12264 int j;
12265 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12266 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
12267 to_insn, pnotes);
12268 }
12269 else if (fmt[i] == 'e')
12270 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
12271 }
12272 }
12273 \f
12274 /* Return 1 if X is the target of a bit-field assignment in BODY, the
12275 pattern of an insn. X must be a REG. */
12276
12277 static int
12278 reg_bitfield_target_p (rtx x, rtx body)
12279 {
12280 int i;
12281
12282 if (GET_CODE (body) == SET)
12283 {
12284 rtx dest = SET_DEST (body);
12285 rtx target;
12286 unsigned int regno, tregno, endregno, endtregno;
12287
12288 if (GET_CODE (dest) == ZERO_EXTRACT)
12289 target = XEXP (dest, 0);
12290 else if (GET_CODE (dest) == STRICT_LOW_PART)
12291 target = SUBREG_REG (XEXP (dest, 0));
12292 else
12293 return 0;
12294
12295 if (GET_CODE (target) == SUBREG)
12296 target = SUBREG_REG (target);
12297
12298 if (!REG_P (target))
12299 return 0;
12300
12301 tregno = REGNO (target), regno = REGNO (x);
12302 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
12303 return target == x;
12304
12305 endtregno = end_hard_regno (GET_MODE (target), tregno);
12306 endregno = end_hard_regno (GET_MODE (x), regno);
12307
12308 return endregno > tregno && regno < endtregno;
12309 }
12310
12311 else if (GET_CODE (body) == PARALLEL)
12312 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
12313 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
12314 return 1;
12315
12316 return 0;
12317 }
12318 \f
12319 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
12320 as appropriate. I3 and I2 are the insns resulting from the combination
12321 insns including FROM (I2 may be zero).
12322
12323 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
12324 not need REG_DEAD notes because they are being substituted for. This
12325 saves searching in the most common cases.
12326
12327 Each note in the list is either ignored or placed on some insns, depending
12328 on the type of note. */
12329
12330 static void
12331 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2, rtx elim_i2,
12332 rtx elim_i1)
12333 {
12334 rtx note, next_note;
12335 rtx tem;
12336
12337 for (note = notes; note; note = next_note)
12338 {
12339 rtx place = 0, place2 = 0;
12340
12341 next_note = XEXP (note, 1);
12342 switch (REG_NOTE_KIND (note))
12343 {
12344 case REG_BR_PROB:
12345 case REG_BR_PRED:
12346 /* Doesn't matter much where we put this, as long as it's somewhere.
12347 It is preferable to keep these notes on branches, which is most
12348 likely to be i3. */
12349 place = i3;
12350 break;
12351
12352 case REG_VALUE_PROFILE:
12353 /* Just get rid of this note, as it is unused later anyway. */
12354 break;
12355
12356 case REG_NON_LOCAL_GOTO:
12357 if (JUMP_P (i3))
12358 place = i3;
12359 else
12360 {
12361 gcc_assert (i2 && JUMP_P (i2));
12362 place = i2;
12363 }
12364 break;
12365
12366 case REG_EH_REGION:
12367 /* These notes must remain with the call or trapping instruction. */
12368 if (CALL_P (i3))
12369 place = i3;
12370 else if (i2 && CALL_P (i2))
12371 place = i2;
12372 else
12373 {
12374 gcc_assert (flag_non_call_exceptions);
12375 if (may_trap_p (i3))
12376 place = i3;
12377 else if (i2 && may_trap_p (i2))
12378 place = i2;
12379 /* ??? Otherwise assume we've combined things such that we
12380 can now prove that the instructions can't trap. Drop the
12381 note in this case. */
12382 }
12383 break;
12384
12385 case REG_NORETURN:
12386 case REG_SETJMP:
12387 /* These notes must remain with the call. It should not be
12388 possible for both I2 and I3 to be a call. */
12389 if (CALL_P (i3))
12390 place = i3;
12391 else
12392 {
12393 gcc_assert (i2 && CALL_P (i2));
12394 place = i2;
12395 }
12396 break;
12397
12398 case REG_UNUSED:
12399 /* Any clobbers for i3 may still exist, and so we must process
12400 REG_UNUSED notes from that insn.
12401
12402 Any clobbers from i2 or i1 can only exist if they were added by
12403 recog_for_combine. In that case, recog_for_combine created the
12404 necessary REG_UNUSED notes. Trying to keep any original
12405 REG_UNUSED notes from these insns can cause incorrect output
12406 if it is for the same register as the original i3 dest.
12407 In that case, we will notice that the register is set in i3,
12408 and then add a REG_UNUSED note for the destination of i3, which
12409 is wrong. However, it is possible to have REG_UNUSED notes from
12410 i2 or i1 for register which were both used and clobbered, so
12411 we keep notes from i2 or i1 if they will turn into REG_DEAD
12412 notes. */
12413
12414 /* If this register is set or clobbered in I3, put the note there
12415 unless there is one already. */
12416 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
12417 {
12418 if (from_insn != i3)
12419 break;
12420
12421 if (! (REG_P (XEXP (note, 0))
12422 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
12423 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
12424 place = i3;
12425 }
12426 /* Otherwise, if this register is used by I3, then this register
12427 now dies here, so we must put a REG_DEAD note here unless there
12428 is one already. */
12429 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
12430 && ! (REG_P (XEXP (note, 0))
12431 ? find_regno_note (i3, REG_DEAD,
12432 REGNO (XEXP (note, 0)))
12433 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
12434 {
12435 PUT_REG_NOTE_KIND (note, REG_DEAD);
12436 place = i3;
12437 }
12438 break;
12439
12440 case REG_EQUAL:
12441 case REG_EQUIV:
12442 case REG_NOALIAS:
12443 /* These notes say something about results of an insn. We can
12444 only support them if they used to be on I3 in which case they
12445 remain on I3. Otherwise they are ignored.
12446
12447 If the note refers to an expression that is not a constant, we
12448 must also ignore the note since we cannot tell whether the
12449 equivalence is still true. It might be possible to do
12450 slightly better than this (we only have a problem if I2DEST
12451 or I1DEST is present in the expression), but it doesn't
12452 seem worth the trouble. */
12453
12454 if (from_insn == i3
12455 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
12456 place = i3;
12457 break;
12458
12459 case REG_INC:
12460 /* These notes say something about how a register is used. They must
12461 be present on any use of the register in I2 or I3. */
12462 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
12463 place = i3;
12464
12465 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
12466 {
12467 if (place)
12468 place2 = i2;
12469 else
12470 place = i2;
12471 }
12472 break;
12473
12474 case REG_LABEL_TARGET:
12475 case REG_LABEL_OPERAND:
12476 /* This can show up in several ways -- either directly in the
12477 pattern, or hidden off in the constant pool with (or without?)
12478 a REG_EQUAL note. */
12479 /* ??? Ignore the without-reg_equal-note problem for now. */
12480 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
12481 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
12482 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12483 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12484 place = i3;
12485
12486 if (i2
12487 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12488 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12489 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12490 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12491 {
12492 if (place)
12493 place2 = i2;
12494 else
12495 place = i2;
12496 }
12497
12498 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
12499 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
12500 there. */
12501 if (place && JUMP_P (place)
12502 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
12503 && (JUMP_LABEL (place) == NULL
12504 || JUMP_LABEL (place) == XEXP (note, 0)))
12505 {
12506 rtx label = JUMP_LABEL (place);
12507
12508 if (!label)
12509 JUMP_LABEL (place) = XEXP (note, 0);
12510 else if (LABEL_P (label))
12511 LABEL_NUSES (label)--;
12512 }
12513
12514 if (place2 && JUMP_P (place2)
12515 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
12516 && (JUMP_LABEL (place2) == NULL
12517 || JUMP_LABEL (place2) == XEXP (note, 0)))
12518 {
12519 rtx label = JUMP_LABEL (place2);
12520
12521 if (!label)
12522 JUMP_LABEL (place2) = XEXP (note, 0);
12523 else if (LABEL_P (label))
12524 LABEL_NUSES (label)--;
12525 place2 = 0;
12526 }
12527 break;
12528
12529 case REG_NONNEG:
12530 /* This note says something about the value of a register prior
12531 to the execution of an insn. It is too much trouble to see
12532 if the note is still correct in all situations. It is better
12533 to simply delete it. */
12534 break;
12535
12536 case REG_DEAD:
12537 /* If we replaced the right hand side of FROM_INSN with a
12538 REG_EQUAL note, the original use of the dying register
12539 will not have been combined into I3 and I2. In such cases,
12540 FROM_INSN is guaranteed to be the first of the combined
12541 instructions, so we simply need to search back before
12542 FROM_INSN for the previous use or set of this register,
12543 then alter the notes there appropriately.
12544
12545 If the register is used as an input in I3, it dies there.
12546 Similarly for I2, if it is nonzero and adjacent to I3.
12547
12548 If the register is not used as an input in either I3 or I2
12549 and it is not one of the registers we were supposed to eliminate,
12550 there are two possibilities. We might have a non-adjacent I2
12551 or we might have somehow eliminated an additional register
12552 from a computation. For example, we might have had A & B where
12553 we discover that B will always be zero. In this case we will
12554 eliminate the reference to A.
12555
12556 In both cases, we must search to see if we can find a previous
12557 use of A and put the death note there. */
12558
12559 if (from_insn
12560 && from_insn == i2mod
12561 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
12562 tem = from_insn;
12563 else
12564 {
12565 if (from_insn
12566 && CALL_P (from_insn)
12567 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12568 place = from_insn;
12569 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12570 place = i3;
12571 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12572 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12573 place = i2;
12574 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
12575 && !(i2mod
12576 && reg_overlap_mentioned_p (XEXP (note, 0),
12577 i2mod_old_rhs)))
12578 || rtx_equal_p (XEXP (note, 0), elim_i1))
12579 break;
12580 tem = i3;
12581 }
12582
12583 if (place == 0)
12584 {
12585 basic_block bb = this_basic_block;
12586
12587 for (tem = PREV_INSN (tem); place == 0; tem = PREV_INSN (tem))
12588 {
12589 if (! INSN_P (tem))
12590 {
12591 if (tem == BB_HEAD (bb))
12592 break;
12593 continue;
12594 }
12595
12596 /* If the register is being set at TEM, see if that is all
12597 TEM is doing. If so, delete TEM. Otherwise, make this
12598 into a REG_UNUSED note instead. Don't delete sets to
12599 global register vars. */
12600 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
12601 || !global_regs[REGNO (XEXP (note, 0))])
12602 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
12603 {
12604 rtx set = single_set (tem);
12605 rtx inner_dest = 0;
12606 #ifdef HAVE_cc0
12607 rtx cc0_setter = NULL_RTX;
12608 #endif
12609
12610 if (set != 0)
12611 for (inner_dest = SET_DEST (set);
12612 (GET_CODE (inner_dest) == STRICT_LOW_PART
12613 || GET_CODE (inner_dest) == SUBREG
12614 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12615 inner_dest = XEXP (inner_dest, 0))
12616 ;
12617
12618 /* Verify that it was the set, and not a clobber that
12619 modified the register.
12620
12621 CC0 targets must be careful to maintain setter/user
12622 pairs. If we cannot delete the setter due to side
12623 effects, mark the user with an UNUSED note instead
12624 of deleting it. */
12625
12626 if (set != 0 && ! side_effects_p (SET_SRC (set))
12627 && rtx_equal_p (XEXP (note, 0), inner_dest)
12628 #ifdef HAVE_cc0
12629 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12630 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12631 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12632 #endif
12633 )
12634 {
12635 /* Move the notes and links of TEM elsewhere.
12636 This might delete other dead insns recursively.
12637 First set the pattern to something that won't use
12638 any register. */
12639 rtx old_notes = REG_NOTES (tem);
12640
12641 PATTERN (tem) = pc_rtx;
12642 REG_NOTES (tem) = NULL;
12643
12644 distribute_notes (old_notes, tem, tem, NULL_RTX,
12645 NULL_RTX, NULL_RTX);
12646 distribute_links (LOG_LINKS (tem));
12647
12648 SET_INSN_DELETED (tem);
12649
12650 #ifdef HAVE_cc0
12651 /* Delete the setter too. */
12652 if (cc0_setter)
12653 {
12654 PATTERN (cc0_setter) = pc_rtx;
12655 old_notes = REG_NOTES (cc0_setter);
12656 REG_NOTES (cc0_setter) = NULL;
12657
12658 distribute_notes (old_notes, cc0_setter,
12659 cc0_setter, NULL_RTX,
12660 NULL_RTX, NULL_RTX);
12661 distribute_links (LOG_LINKS (cc0_setter));
12662
12663 SET_INSN_DELETED (cc0_setter);
12664 }
12665 #endif
12666 }
12667 else
12668 {
12669 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12670
12671 /* If there isn't already a REG_UNUSED note, put one
12672 here. Do not place a REG_DEAD note, even if
12673 the register is also used here; that would not
12674 match the algorithm used in lifetime analysis
12675 and can cause the consistency check in the
12676 scheduler to fail. */
12677 if (! find_regno_note (tem, REG_UNUSED,
12678 REGNO (XEXP (note, 0))))
12679 place = tem;
12680 break;
12681 }
12682 }
12683 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12684 || (CALL_P (tem)
12685 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12686 {
12687 place = tem;
12688
12689 /* If we are doing a 3->2 combination, and we have a
12690 register which formerly died in i3 and was not used
12691 by i2, which now no longer dies in i3 and is used in
12692 i2 but does not die in i2, and place is between i2
12693 and i3, then we may need to move a link from place to
12694 i2. */
12695 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
12696 && from_insn
12697 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
12698 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12699 {
12700 rtx links = LOG_LINKS (place);
12701 LOG_LINKS (place) = 0;
12702 distribute_links (links);
12703 }
12704 break;
12705 }
12706
12707 if (tem == BB_HEAD (bb))
12708 break;
12709 }
12710
12711 }
12712
12713 /* If the register is set or already dead at PLACE, we needn't do
12714 anything with this note if it is still a REG_DEAD note.
12715 We check here if it is set at all, not if is it totally replaced,
12716 which is what `dead_or_set_p' checks, so also check for it being
12717 set partially. */
12718
12719 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12720 {
12721 unsigned int regno = REGNO (XEXP (note, 0));
12722 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
12723
12724 if (dead_or_set_p (place, XEXP (note, 0))
12725 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12726 {
12727 /* Unless the register previously died in PLACE, clear
12728 last_death. [I no longer understand why this is
12729 being done.] */
12730 if (rsp->last_death != place)
12731 rsp->last_death = 0;
12732 place = 0;
12733 }
12734 else
12735 rsp->last_death = place;
12736
12737 /* If this is a death note for a hard reg that is occupying
12738 multiple registers, ensure that we are still using all
12739 parts of the object. If we find a piece of the object
12740 that is unused, we must arrange for an appropriate REG_DEAD
12741 note to be added for it. However, we can't just emit a USE
12742 and tag the note to it, since the register might actually
12743 be dead; so we recourse, and the recursive call then finds
12744 the previous insn that used this register. */
12745
12746 if (place && regno < FIRST_PSEUDO_REGISTER
12747 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
12748 {
12749 unsigned int endregno = END_HARD_REGNO (XEXP (note, 0));
12750 int all_used = 1;
12751 unsigned int i;
12752
12753 for (i = regno; i < endregno; i++)
12754 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12755 && ! find_regno_fusage (place, USE, i))
12756 || dead_or_set_regno_p (place, i))
12757 all_used = 0;
12758
12759 if (! all_used)
12760 {
12761 /* Put only REG_DEAD notes for pieces that are
12762 not already dead or set. */
12763
12764 for (i = regno; i < endregno;
12765 i += hard_regno_nregs[i][reg_raw_mode[i]])
12766 {
12767 rtx piece = regno_reg_rtx[i];
12768 basic_block bb = this_basic_block;
12769
12770 if (! dead_or_set_p (place, piece)
12771 && ! reg_bitfield_target_p (piece,
12772 PATTERN (place)))
12773 {
12774 rtx new_note
12775 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12776
12777 distribute_notes (new_note, place, place,
12778 NULL_RTX, NULL_RTX, NULL_RTX);
12779 }
12780 else if (! refers_to_regno_p (i, i + 1,
12781 PATTERN (place), 0)
12782 && ! find_regno_fusage (place, USE, i))
12783 for (tem = PREV_INSN (place); ;
12784 tem = PREV_INSN (tem))
12785 {
12786 if (! INSN_P (tem))
12787 {
12788 if (tem == BB_HEAD (bb))
12789 break;
12790 continue;
12791 }
12792 if (dead_or_set_p (tem, piece)
12793 || reg_bitfield_target_p (piece,
12794 PATTERN (tem)))
12795 {
12796 add_reg_note (tem, REG_UNUSED, piece);
12797 break;
12798 }
12799 }
12800
12801 }
12802
12803 place = 0;
12804 }
12805 }
12806 }
12807 break;
12808
12809 default:
12810 /* Any other notes should not be present at this point in the
12811 compilation. */
12812 gcc_unreachable ();
12813 }
12814
12815 if (place)
12816 {
12817 XEXP (note, 1) = REG_NOTES (place);
12818 REG_NOTES (place) = note;
12819 }
12820
12821 if (place2)
12822 REG_NOTES (place2)
12823 = gen_rtx_fmt_ee (GET_CODE (note), REG_NOTE_KIND (note),
12824 XEXP (note, 0), REG_NOTES (place2));
12825 }
12826 }
12827 \f
12828 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12829 I3, I2, and I1 to new locations. This is also called to add a link
12830 pointing at I3 when I3's destination is changed. */
12831
12832 static void
12833 distribute_links (rtx links)
12834 {
12835 rtx link, next_link;
12836
12837 for (link = links; link; link = next_link)
12838 {
12839 rtx place = 0;
12840 rtx insn;
12841 rtx set, reg;
12842
12843 next_link = XEXP (link, 1);
12844
12845 /* If the insn that this link points to is a NOTE or isn't a single
12846 set, ignore it. In the latter case, it isn't clear what we
12847 can do other than ignore the link, since we can't tell which
12848 register it was for. Such links wouldn't be used by combine
12849 anyway.
12850
12851 It is not possible for the destination of the target of the link to
12852 have been changed by combine. The only potential of this is if we
12853 replace I3, I2, and I1 by I3 and I2. But in that case the
12854 destination of I2 also remains unchanged. */
12855
12856 if (NOTE_P (XEXP (link, 0))
12857 || (set = single_set (XEXP (link, 0))) == 0)
12858 continue;
12859
12860 reg = SET_DEST (set);
12861 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12862 || GET_CODE (reg) == STRICT_LOW_PART)
12863 reg = XEXP (reg, 0);
12864
12865 /* A LOG_LINK is defined as being placed on the first insn that uses
12866 a register and points to the insn that sets the register. Start
12867 searching at the next insn after the target of the link and stop
12868 when we reach a set of the register or the end of the basic block.
12869
12870 Note that this correctly handles the link that used to point from
12871 I3 to I2. Also note that not much searching is typically done here
12872 since most links don't point very far away. */
12873
12874 for (insn = NEXT_INSN (XEXP (link, 0));
12875 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
12876 || BB_HEAD (this_basic_block->next_bb) != insn));
12877 insn = NEXT_INSN (insn))
12878 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12879 {
12880 if (reg_referenced_p (reg, PATTERN (insn)))
12881 place = insn;
12882 break;
12883 }
12884 else if (CALL_P (insn)
12885 && find_reg_fusage (insn, USE, reg))
12886 {
12887 place = insn;
12888 break;
12889 }
12890 else if (INSN_P (insn) && reg_set_p (reg, insn))
12891 break;
12892
12893 /* If we found a place to put the link, place it there unless there
12894 is already a link to the same insn as LINK at that point. */
12895
12896 if (place)
12897 {
12898 rtx link2;
12899
12900 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12901 if (XEXP (link2, 0) == XEXP (link, 0))
12902 break;
12903
12904 if (link2 == 0)
12905 {
12906 XEXP (link, 1) = LOG_LINKS (place);
12907 LOG_LINKS (place) = link;
12908
12909 /* Set added_links_insn to the earliest insn we added a
12910 link to. */
12911 if (added_links_insn == 0
12912 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
12913 added_links_insn = place;
12914 }
12915 }
12916 }
12917 }
12918 \f
12919 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
12920 Check whether the expression pointer to by LOC is a register or
12921 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
12922 Otherwise return zero. */
12923
12924 static int
12925 unmentioned_reg_p_1 (rtx *loc, void *expr)
12926 {
12927 rtx x = *loc;
12928
12929 if (x != NULL_RTX
12930 && (REG_P (x) || MEM_P (x))
12931 && ! reg_mentioned_p (x, (rtx) expr))
12932 return 1;
12933 return 0;
12934 }
12935
12936 /* Check for any register or memory mentioned in EQUIV that is not
12937 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
12938 of EXPR where some registers may have been replaced by constants. */
12939
12940 static bool
12941 unmentioned_reg_p (rtx equiv, rtx expr)
12942 {
12943 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
12944 }
12945 \f
12946 void
12947 dump_combine_stats (FILE *file)
12948 {
12949 fprintf
12950 (file,
12951 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12952 combine_attempts, combine_merges, combine_extras, combine_successes);
12953 }
12954
12955 void
12956 dump_combine_total_stats (FILE *file)
12957 {
12958 fprintf
12959 (file,
12960 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12961 total_attempts, total_merges, total_extras, total_successes);
12962 }
12963 \f
12964 static bool
12965 gate_handle_combine (void)
12966 {
12967 return (optimize > 0);
12968 }
12969
12970 /* Try combining insns through substitution. */
12971 static unsigned int
12972 rest_of_handle_combine (void)
12973 {
12974 int rebuild_jump_labels_after_combine;
12975
12976 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
12977 df_note_add_problem ();
12978 df_analyze ();
12979
12980 regstat_init_n_sets_and_refs ();
12981
12982 rebuild_jump_labels_after_combine
12983 = combine_instructions (get_insns (), max_reg_num ());
12984
12985 /* Combining insns may have turned an indirect jump into a
12986 direct jump. Rebuild the JUMP_LABEL fields of jumping
12987 instructions. */
12988 if (rebuild_jump_labels_after_combine)
12989 {
12990 timevar_push (TV_JUMP);
12991 rebuild_jump_labels (get_insns ());
12992 cleanup_cfg (0);
12993 timevar_pop (TV_JUMP);
12994 }
12995
12996 regstat_free_n_sets_and_refs ();
12997 return 0;
12998 }
12999
13000 struct rtl_opt_pass pass_combine =
13001 {
13002 {
13003 RTL_PASS,
13004 "combine", /* name */
13005 gate_handle_combine, /* gate */
13006 rest_of_handle_combine, /* execute */
13007 NULL, /* sub */
13008 NULL, /* next */
13009 0, /* static_pass_number */
13010 TV_COMBINE, /* tv_id */
13011 0, /* properties_required */
13012 0, /* properties_provided */
13013 0, /* properties_destroyed */
13014 0, /* todo_flags_start */
13015 TODO_dump_func |
13016 TODO_df_finish | TODO_verify_rtl_sharing |
13017 TODO_ggc_collect, /* todo_flags_finish */
13018 }
13019 };
13020